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Abstract

In flood risk management, the choice of vulnerability functions has a remark-

able impact on the overall uncertainty of modelling flood damage. The spatial

transferability of empirical vulnerability functions is limited, leading to the

need for computation and validation of region-specific vulnerability functions.

In data-scarce regions however, this option is not feasible. In contrast, the

physical processes of flood impact model chains can be developed in these

regions because of the availability of global datasets. Here we evaluated the

implementation of a synthetic vulnerability function into a flood impact

model. The function bases on expert heuristics on a targeted sample of repre-

sentative buildings (targeted heuristics). We applied the vulnerability function

in a meso-scale river basin and evaluated the new function by comparing the

resulting flood damage with the damage computed by other approaches, (1) an

ensemble of vulnerability functions available from the literature, (2) an indi-

vidual vulnerability function calibrated with region-specific data, and (3) the

vulnerability function used in flood risk management by the Swiss govern-

ment. The results show that targeted heuristics can be a valuable alternative

for developing flood impact models in regions without any data or only few

data on flood damage.
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1 | INTRODUCTION

The analysis of flood impacts requires the combination of
simulation models for natural processes (climate, meteo-
rology, hydrology, and hydrodynamics) and models
simulating the impacts of these processes on elements at
risk, such as assets, citizens, and, in a broader sense,

socio-economic activities. The coupling of specialised and
therefore often disciplinary models for selected processes
towards a coupled component modelling framework has
repeatedly been proposed for integrated assessments of
flood risk (Falter et al., 2015; Falter et al., 2016;
Zischg, 2018). For example, Ward et al. (2015), Felder
et al. (2018), and Hoch et al. (2019) provide an overview
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of coupling global or regional climate models, hydrologic
models, and inundation models. Moreover, data availabil-
ity for setting up global, continental, or basin-wide model
chains for flood risk analyses increased remarkably, espe-
cially due to improved remote sensing and sensor tech-
nologies. Global or continental datasets on topography
(e.g., Courty et al., 2017; Yamazaki et al., 2017; Yamazaki
et al., 2019), land use, rainfall reanalyses (Andreadis
et al., 2017), river network (Andreadis et al., 2013), river
morphology (Yamazaki et al., 2014), runoff (Fekete
et al., 2002) or even hazard maps (Alfieri et al., 2016;
Hirabayashi et al., 2013) are increasingly available (Trigg
et al., 2016). These data are easing the setup of flood
models in various regions of the world, even in data-
scarce regions.

In contrast, reliable flood impact models
(i.e., exposure models and flood vulnerability functions)
are still not available for many regions in the world
(Fuchs et al., 2015; Jongman et al., 2014). These models
rely on region-specific data such as spatial distribution of
the values at risk (buildings, infrastructure; e.g., Jongman
et al., 2012; Eberenz et al., 2020), the construction charac-
teristics of buildings and infrastructure (Englhardt
et al., 2019; Veerbeek & Zevenbergen, 2009; Zischg
et al., 2013), and their physical vulnerabilities to floods
(e.g., Aznar-Siguan & Bresch, 2019). Moreover, the choice
of vulnerability functions (as well as vulnerability
indictors) is still responsible for a major share in the over-
all uncertainties of flood impact models (Apel
et al., 2004; Apel et al., 2008; Keller et al., 2019; Merz
et al., 2004; Papathoma-Köhle et al., 2019; Zischg, Felder,
Mosimann, et al., 2018; Zischg, Felder, Weingartner,
et al., 2018).

Vulnerability functions are usually computed by means
of statistical analyses of region-specific damage data (Fuchs,
Keiler, et al., 2019; Papathoma-Köhle et al., 2017). However,
they are rarely adjusted to different socio-economic condi-
tions when applied to other regions (Amadio et al., 2016).
Hence, the transferability of flood vulnerability functions
from one region to another has been repeatedly debated
(Cammerer et al., 2013; Fuchs, Keiler, et al., 2019;
Mosimann et al., 2018). Besides from statistical analyses
resulting in functions for assessing the physical vulnerabil-
ity of buildings or other infrastructure, detailed physical
modelling may also be an alternative for developing vulner-
ability functions. For example, Sturm et al. (2018a, 2018b)
showed a model approach based on laboratory experiments
to assess the physical vulnerability of buildings. Currently,
also machine learning approaches are used for deriving vul-
nerability functions (e.g., Amadio et al., 2019; Sultana
et al., 2018; Terti et al., 2017). Another alternative is the
development of synthetic models for assessing the physical
vulnerability of elements at risk. These models are based on
“what-if analyses” and rely on expert-based assessments.

Often these models are called synthetic stage-damage cur-
ves and can be deduced by expert knowledge
(e.g., Naumann et al., 2009; Penning-Rowsell, 2010) or are a
combination of expert knowledge and empirical data
(e.g., Department of Natural Resources and Environment,
2000). For instance, Dottori et al. (2016) developed a
component-by-component analysis of physical damage to
buildings. Damage to the building are estimated by steadily
increasing the parameters for flood magnitude based on the
assessment of costs for repairing the damaged parts. They
generalise the relation between the magnitude of a hazard
event, the impact on the building envelope and the
resulting damage. Resulting vulnerability functions were
computed using an expert elicitation approach with the
support of existing scientific and technical literature. A simi-
lar approach has been presented by Neubert et al. (2016)
who developed synthetic vulnerability functions for differ-
ent building types based on civil engineering analyses of the
building constructions. Nevertheless, vulnerability functions
often lack validation (Molinari et al., 2018) which results in
damage assessment bias. For an extended review on recent
developments in vulnerability functions see Fuchs, Keiler,
et al. (2019).

Common to all these approaches for vulnerability
assessment is that they rely on data in one or another
form. In data-scarce regions, however, in-depth informa-
tion required for developing region-specific flood vulner-
ability functions is usually not available (Englhardt
et al., 2019; Malgwi et al., 2020). Yet, model chains for
assessing hazards can still be applied and set up
(although sometimes with limited reliability) because of
the availability of the required input data and their given
regional transferability due to the global validity of their
underlying physical processes. However, the transfer of
vulnerability functions to new case studies is limited due
to the variety in socio-economic conditions, for example,
the tradition of construction typology, construction mate-
rial, or main functionality of buildings. If no damage data
is available for developing or validating vulnerability
functions, the only possible ways for selecting a suitable
vulnerability function to implement in flood impact
model chains are to develop a synthetic function based
on expert-elicitation or by selecting the most representa-
tive function from existing functions by means of a model
comparison.

The main aim of this study is firstly to develop a syn-
thetic vulnerability function by targeted heuristics and to
implement this newly developed function in a flood
impact model chain for simulating a high number of
flood scenarios. We want to show how only few buildings
can be used as representatives for vulnerability assess-
ment of a larger population, based on the location of a
building within the flooded areas and on its functionality.
We hypothesise that a targeted selection of representative
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buildings based on flood model outputs and building
characteristics allows an efficient development of syn-
thetic flood vulnerability functions in regions without
flood damage data. Secondly, we aim at assessing the
effects of flood event and floodplain characteristics on
the evaluation of a new vulnerability function. Due to a
lack of damage data available for a thorough model vali-
dation, we evaluated the new function by a comparison
with other functions. We hypothesise that the evaluation
of a vulnerability function is influenced by the character-
istics of the flood event and the floodplain, as well as by
the regional variability of building characteristics. To
gain a robust evaluation, we applied the different vulner-
ability functions for a high number of modelled flood sce-
narios over multiple floodplains with different
characteristics of the flood processes and with different -
socio-economic settings (urban and rural, residential and
industrial).

2 | METHODS

2.1 | Flood modelling

The study area consists of seven main floodplains located
along the Aare River upstream of Bern, Switzerland with
different flood characteristics. Two floodplains are
characterised by river flooding only (Aare River and

Guerbe River), two floodplains are characterised by lake
flooding (lateral shores of Lake Thun and Lake Brienz),
and three floodplains are characterised by combined river
and lake flooding (city of Thun, city of Interlaken, flood-
plain of Hasliaare River, see Figure 1). In a first step, we
set up the model chain for simulating the physical pro-
cesses of flooding in the case study area. We used a
coupled component model described in Felder
et al. (2017) and Zischg, Felder, Weingartner,
et al. (2018). This model aims at identifying the probable
maximum flood damage on buildings under
probable maximum precipitation within 3 days. The
model chain applied simulates a set of different spatio-
temporal rainfall patterns over the river basin with a
Monte-Carlo procedure (Felder & Weingartner, 2016).
The rainfall sum and the study area were set constant for
all simulations. From the total set of simulations, we
selected 150 flood maps related to different rainfall pat-
terns. The resulting floods differ remarkably in terms of
peak outflow from the river basin, number and locations
of exposed buildings, and inundation depth at the
exposed buildings.

2.2 | Targeted heuristics

The main idea underlying the concept of targeted heuris-
tics is first to set up a flood model and simulate different

FIGURE 1 Characteristics of the floodplains in the river basin of the Aare River upstream of Bern, Switzerland. Background map:

(Swisstopo, 2019). The map shows the maximum flood depth over all scenarios
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flood scenarios, and second to select representative build-
ings in flooded areas with a high variability of flood
depths over all simulations. These selected representative
buildings are then visited by a professional damage asses-
sor and a synthetic depth-damage curve is developed in
an expert elicitation approach. This targeted selection of
representative buildings in flood prone areas that is used
as a sample for elaborating a synthetic vulnerability func-
tion by expert reasoning is hereafter termed as ‘targeted
heuristics’. The approach differs from established
approaches for developing synthetic damage functions
(e.g., Penning-Rowsell and Chatterton, 1977; Penning-
Rowsell et al., 2005; USACE, 1997) by this targeted selec-
tion of the sample for expert assessments. The procedure
is schematized in Figure 2.

2.2.1 | Targeted selection of representative
buildings

In this study, we use an existing dataset of buildings with
the replacement costs modelled on the basis of Swiss
building insurance claim data and the building volume
calculated from the footprint area of buildings and their
height above ground (Röthlisberger et al., 2018). Replace-
ment costs correspond to the financial resources needed
to reconstruct damaged buildings or building parts and
are used by default as building values in cost–benefit ana-
lyses in Switzerland (Bründl et al., 2009; Fuchs &
McAlpin, 2005). Insurance companies in Switzerland

determine the insured value of a building by the replace-
ment costs. In addition to the size and value of the build-
ing, this dataset also contains the age of construction and
the building purpose. The buildings are overlaid with the
150 flood depth maps and the flood depth of each flood
scenario is attributed to each building by the maximum
value at each vertex of the building footprint outline
(Bermúdez & Zischg, 2018). This results in 150 different
flood depths for each building. This overlay gives a range
of flood depths for each building. In order to provide the
damage assessor with a list of representative buildings to
be visited and to heuristically estimate the damage for
selected flood depths, the range in flood depths is the first
criterion for selecting representative buildings. This
means that a representative building should be subject to
a variability of flood depths ranging from nearly >0 m
to at least >1 m over the 150 flood simulations. The
underlying assumption for choosing this criterion was to
avoid the selection of buildings that are either located in
proximity to rivers, in local terrain depressions, or at the
external borders of flood-prone areas. Buildings in
the close proximity of rivers or in local terrain depres-
sions are expected to be more frequently affected by
floods than buildings in other locations and were not
considered as representative because of an additional
high likelihood of local flood protection measures. These
buildings experience high flood depths over all scenarios.
In contrast, buildings located at the outer borders of
flood-prone areas were supposed to show a below-
average exposure and where therefore not included in
the set of representative buildings. A second criterion is
the building type so that the major construction typolo-
gies can be mirrored in the vulnerability assessment. Spe-
cifically, the following building types were considered:

a. old detached single-family building (constructed
before 1990),

b. new detached single-family building (constructed
after 1990),

c. old apartment building (constructed before 1990),
d. new apartment building with more than three hous-

ing units (constructed after 1990),
e. large commercial property with a relatively high

insured value (not classified as single-family or apart-
ment building, building value above 850,000 CHF),

f. small commercial property with a relatively low
insured value (not classified as single-family or apart-
ment building, building value up to 850,000 CHF),

The owners or residents of the primary selection of repre-
sentative buildings were contacted by phone and by
means of written letters. We asked the owners or the
occupants for agreeing to visit their building for the

FIGURE 2 Procedure of the development of flood

vulnerability functions for representative building types based on

targeted heuristics
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purpose of this study and to report the insured value of
the building. The final selection of representative build-
ings with permission to being inspected consisted of two
buildings per category (n = 12). The size of the buildings
sample for being visited was limited by the amount of
available resources. The expert had three field days for
visiting the selected buildings. An additional but not sys-
tematically considered criterion for triaging was the geo-
graphical location of the buildings within the most recent
flood event in August 2005, and buildings located within
the flooded area of this event were selected with a higher
priority because of the possibility to compare the damage
estimations with the damage experienced in 2005. If
available, the damage of the affected houses caused by
this flood event has been reported to the expert by the
house owner. The expert used this information for a plau-
sibility check of his own assessment.

2.2.2 | Damage assessment heuristics

The professional loss assessor inspected the buildings
from outside and inside, looking mainly at the character-
istics of building material, construction technology, elec-
tricity installation, status of smart home technology,
building design (configuration of building openings such
as doors and windows), and presence or absence of a
basement. For each of the flood depth classes (>0–
0.25 m, >0.25–0.5 m, >0.5–0.75 m, >0.75–1 m, >1–
1.25 m, >1.25–1.5 m, >1.5 m), the assessor described the
damage type (damage by moisture, direct water damage,
and structural damage) and calculated the refurbishment
costs by estimating separately necessary repair costs. Due
to the pre-analysed flood depths, the damage assessor
focused on potential damage in the basement and ground
floors. We then normalised the resulting absolute damage
estimation by the insured value of the building. This
resulted in a synthetic vulnerability function (targeted
heuristic) for determining the degree of damage from the
flood depth for each representative building. We averaged
the two vulnerability functions per building category into
one vulnerability function per building category. The vul-
nerability function developed with the targeted heuristics
approach was implemented into a flood impact model.
We computed the damage for each building for each of
the 150 flood scenarios.

2.3 | Comparison with other
vulnerability functions

Due to privacy reasons, we were not allowed to assess
claim data from the mandatory insurance company in

the study area. To evaluate the reliability of the proposed
procedure, we compared the results of the targeted heu-
ristics approach with the results of other available vulner-
ability functions. Specifically, we compared the
developed targeted heuristics approach with (i) an
ensemble of vulnerability functions from the literature,
(ii) a vulnerability function calibrated with region-
specific data, and (iii) a vulnerability function used by
authorities responsible for flood risk management in
Switzerland. The main principle of this comparison was
to keep the building dataset and the flood scenarios con-
stant and to analyse the differences between the out-
comes of the vulnerability computation. All vulnerability
functions therefore computed the damage based on the
predicted relative degree of damage multiplied by
the same reconstruction value of the building of the used
building dataset of Röthlisberger et al. (2018).

2.3.1 | Ensemble of vulnerability functions
from the literature

To account for the uncertainties in flood damage
assessment, Figueiredo et al. (2018) proposed combin-
ing several vulnerability functions to a multi-model
ensemble. This allows also considering the uncer-
tainties due to the transfer of flood vulnerability func-
tions that are calibrated in one socio-economic region
to another. Moreover, we expected a range of different
flood processes in our study area, including lake
flooding, river flooding and flooding with sediment
transport. Thus, we combined the models of Dutta
et al. (2003) (residential structure), Jonkman
et al. (2008), Karagiorgos et al. (2016) (buildings with
cellar), and Fuchs, Heiser, et al. (2019) (Figure 3b). All
of them consider flood magnitude in terms of flood
depths as explaining variable for calculating the degree
of damage and are applicable on an object scale. Thus,
they have a degree of model complexity comparable to
the targeted heuristics approach. The selection of these
functions was guided by the comparability of the
underlying concept, the comparability of the original
and the present context, the targeted spatial scale
(i.e., single building scale), the diversity in the underly-
ing formula, and by a difference in the range of degree
of damage values. The outcome of these functions is
the degree of damage, which can be multiplied with
the replacement costs of the building to estimate the
damage resulting from the flood scenario. Using this
multi-model ensemble will show the upper and lower
bounds of damage estimations by vulnerability func-
tions that had been developed outside of the study area
and were transferred to our case study.
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2.3.2 | Vulnerability function calibrated with
region-specific insurance claim data

An alternative to the transfer of vulnerability functions
from the literature to a specific use case is the develop-
ment of a region-specific vulnerability function. In this
method, a common regression function is calibrated
with the help of damage data, i.e., insurance claims
data on structural damage to buildings in cantons
(regions) located nearby of the case study area where
damage data and insurance claim data were available
and accessible. Due to the similarity of the flood pro-
cesses and building typologies in these neighbouring
regions, we therefore defined this data-driven vulnera-
bility function “region-specific”. The region-specific
vulnerability function was based on three well-
documented flood events including river and lake
flooding (cf. Table 1) in neighbouring regions. We
reconstructed the flood depths of the flood events
based on event documentation reports and overlaid

these data with the building stock in the flooded area.
For each of these buildings the degree of damage was
deduced from the insured value and the documented
damage (insurance claim data). The resulting data
were used to set up a regression model for the relation-
ship between the flood depth and the degree of
damage. The resulting vulnerability function was rep-
resented by a power function because this function
demonstrated the best fit for describing the relation-
ship between flood depth and degree of damage of all
tested functions.

The vulnerability function resulting from the calibra-
tion with region-specific data is shown in Figure 3c and
described by Equation (1) as follows with

dod¼ 0:18846þ0:17152*fdð Þ2 ð1Þ

where dod is the degree of damage and fd is the flood
depth attributed to the building envelope.

FIGURE 3 Applied vulnerability functions; (a) vulnerability function based on targeted heuristics, (b) multi-model ensemble of

vulnerability functions, (c) simple function set up with region-specific insurance claim data, (d) vulnerability function used by the Swiss

government for cost–benefit analyses (exemplified with flow velocity = 0 m/s)

6 of 16 ZISCHG ET AL.



2.3.3 | Vulnerability function used by
authorities responsible for flood risk
management in Switzerland

Finally, we compared the outcomes of the previously
presented vulnerability functions with the outcomes of
the vulnerability function that is officially in use for cost–
benefit analyses of flood protection planning in Switzer-
land (the ‘econoMe’ tool, Bründl et al., 2009). The vulner-
ability function was developed based on merging
individual empirical analyses of damage data of selected
flood events. The function differentiates between three
types of buildings (detached building, apartment build-
ing, and non-residential building). In contrast to all the
other vulnerability functions applied in our study, this
vulnerability function uses also flow velocity as a second
parameter. It distinguishes three classes of hazard inten-
sities. Low hazard intensity is attributed to the process if
flood depth h or the product of h and flow velocity v is
below 0.5 m or 0.5 m2/s. A medium hazard intensity is
attributed if 0.5 m < h < 2 m or 0.5 m2/s < h*v < 2 m2/s.
A high hazard intensity is attributed if h ≥ 2 m or
h*v ≥ 2 m2/s. Here we calculated flow velocity with the
Manning-Strickler formula and used the flood depth at

the building as the hydraulic radius. A value of 30 m1/3/s
for the Strickler roughness coefficient was assumed.

2.4 | Spatial variability of the model
comparison

A high-magnitude flood event causes higher average
flood depths at the buildings than a low-magnitude event
(Keller et al., 2019). Thus, a specific vulnerability func-
tion deduced either from a high or low-magnitude flood
event might reproduce well the observed damage when
applied to a similar magnitude scenario but not if this
function is applied to another magnitude level. The selec-
tion of the best vulnerability function for being
implemented in flood impact models might be hampered
if only one specific flood event is used for validating a
vulnerability function or if the case study site is small
and thus the variety of damage is limited. Considering a
set of different flood scenarios and an adequate size of
the study area mirroring different characteristics of the
built environment is even more important if the number
of damage data for validation is limited or/and the evalu-
ation of a vulnerability function has to be based on a
comparison. In addition, the selection of the vulnerability
function might depend on the topography of the flooded
areas. In mountain areas, the flood depths at the build-
ings vary remarkably with flood magnitude because the
flooded area is laterally restricted. In contrast, in flat ter-
rain or on alluvial fans, the average flood depth at the
buildings will not vary as such with flood magnitude
because the flood water can disseminate, and the spatial
extent of the flooded area will increase. Consequently,
the number of affected buildings will increase but the
average flood depth at the buildings will not increase
with the same gradient. To consider this, we compared
the effects of applied vulnerability functions on the dam-
age estimation regarding (a) flood event characteristics,
(b) floodplain characteristics, and (c) the aggregation
level of the results on the evaluation procedure.

We aggregated the damage estimations to the entire
river basin and compared the outcomes of the different
models for the set of 150 flood simulations. The high num-
ber of flood simulations with a high variability of flood
magnitudes in floodplains within the river basin allows to
analyse a wide range of flood depths in the different flood-
plains. We furthermore selected the flood scenario with the
lowest average flood depth at building level and the flood
scenario with the highest average flood depth for presenting
detailed insights. In a next step, we compared the outcomes
of the damage calculations for different floodplain charac-
teristics considering exposure of buildings and the location
in the flooded area. As suggested by Röthlisberger

TABLE 1 Overview of damage data from case studies used for

developing the region-specific vulnerability function

Case study

No. of
insurance
claim data

Source of event
documentation

Biel-Benken,
Laufen,
Liesberg,
Zwingen
(Canton of
Basel-Country)

186 Measured flood depths
and event
documentation of the
Canton of Basel-
Country for the flood
event of 8/9 August
2007

(Imhof &
Heuberger, 2008)

Klosters-Serneus,
Susch (Canton
of Grisons)

76 Event documentation of
the Canton of Grisons
for the flood event of
23 August 2005

(Geotest AG, 2006;
Hilker et al., 2005)

Buochs,
Ennetbürgen,
Hergiswil,
Stansstaad

135 Lake level of Lake
Lucerne of flood event
of 24 August, 2005
(435.23 m a.s.l.)

(Hilker et al., 2005;
Oeko-B AG and
Niederer + Pozzi
Umwelt AG, 2006)
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et al. (2017), we aggregated the damage estimations for indi-
vidual buildings to hexagons of an area of 0.1 km2, 1 km2,
and 10 km2 to avoid the modifiable areal unit problem
(Charlton, 2008; Openshaw, 1984). This problem causes a
statistical bias and arises when model outcomes (e.g., flood
exposure analyses) are aggregated and compared for differ-
ent sizes of spatial reference units, for example, when com-
paring flood exposure analyses for regions or municipalities
of different size and population.

Finally, we evaluated the damage estimates by the
targeted heuristics model in comparison with the other
model outcomes and rank the damage estimations of the
targeted heuristics model at each spatial aggregation level
with the other estimates, including the upper and lower
boundaries of the ensemble of vulnerability functions.
The ranking aimed to identify outliers in the spatial dis-
tribution of model outcomes and conditions, which cause
over- or underestimation.

3 | RESULTS

3.1 | Targeted heuristics

The targeted heuristics approach led to a synthetic vulnera-
bility function (see Figure 3a). Compared to the multi-
model ensemble of vulnerability functions (Figure 3b), the
synthetic function shows a stepwise increase in the degree
of damage. The maximum degree of damage (0.571) is
reached at a flood depth of 1.25 m. While old detached
buildings have the highest degree of damage, commercial
buildings have the lowest degree of damage. The vulnerabil-
ity function for residential buildings is valid for flood depths
of up to 2.7 m (ground floor). This upper bound results
from the pre-analysis of expected flood depths in the case
study region. From the multi-model ensemble, only the
function of Fuchs, Heiser, et al. (2019) resulted in higher
degrees of damage. The region-specific vulnerability func-
tion (Figure 3c) that was calibrated with insurance claim
data showed lower degrees of damage at low flood depths
(<0.5 m) than the synthetic function. Compared to the vul-
nerability function used by the public administration in
Switzerland (the ‘econoMe’ tool, Figure 3d), the synthetic
function showed a slightly higher degree of damage for
apartment buildings and a markedly lower degree of dam-
age for commercial buildings. Moreover, old buildings were
rated as more vulnerable than new buildings.

3.2 | Model comparison

The use of 150 flood scenarios for comparing the damage
estimations of the different models showed a high

variability in the outcomes. The highest damage estima-
tion for the entire river basin over all flood scenarios and
vulnerability functions was 1576.9 million CHF, while
the lowest damage estimation was 59.9 million CHF.
Hence, possible damage of a three-day probable maxi-
mum rainfall induced scenarios in the Aare River basin
varied by the factor of 26. This considerable variability in
damage estimation is related to the variability in the
number of exposed buildings, the average flood depth at
the exposed buildings as well as to the spatial variability
of the flooded settlements. In the present case, some
flood scenarios did not affect the cities of Thun and Inter-
laken, resulting in low overall damage. Flooding in these
areas, however, resulted in a high number of flooded
buildings in the whole river basin. Moreover, the variabil-
ity depends also on the choice of the vulnerability func-
tion. The minimum average flood depth (0.26 m) over all
flooded buildings results from scenario 73, while the
maximum average flood depth resulted from scenario
no. 149 (0.80 m). In scenario 73, 3868 buildings were
affected and 4545 buildings in scenario 149. Scenario
73 resulted in the lowest damage estimation (over all vul-
nerability functions) while the highest damage estimate
resulted from scenario 103 that affects a high number of
buildings with high replacement costs. Figure 4a shows
the average flood depth of the flooded buildings and the
number of flooded buildings for each of the 150 scenarios.
The relationship between average flood depth and num-
ber of exposed buildings is determined by floodplain
topography. In case of smaller floods, only few buildings
were affected but with generally higher flood depths.
With increasing flooded area, the number of affected
buildings increased but the high number of buildings in
the peripheral areas of the flood extent lowered the aver-
age flood depth at building level. The compared vulnera-
bility functions reflect the high variability of the damage
estimates over the flood scenarios. However, the
damage estimates of the different vulnerability functions
were ranked comparably over all flood scenarios. The
highest damage was mostly computed by the econoMe
vulnerability function. Because 47% of the buildings in
the study area are classified as buildings with a commer-
cial purpose, the econoMe vulnerability function com-
puted a higher degree of damage at relatively low flood
depths. The damage resulting from this function is at the
upper bound of the minimum-maximum range of the
ensemble prediction if these factors are combined. The
damage estimations of the targeted heuristics function
were within the ensemble range but generally higher
than the estimations of the region-specific vulnerability
function and the ensemble mean. Mean bias to these
both functions were 1.34 and 1.62, respectively. Thus, the
targeted heuristic estimations ranked mostly second,
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the region-specific model third, and the ensemble mean
predictions fourth.

The ranking of the damage estimates of the compared
methods is shown in Figure 5. The estimates of the targeted
heuristics approach were bound by the econoMe function
and by the region-specific function. The ranking is robust
also when considering only a specific flood event for model

comparison. For the flood scenarios with the lowest
(73) and the highest (149) average flood depths at building
scale, the damage estimates by the targeted heuristics func-
tion ranked second. However, damage estimates by the
targeted heuristics function were nearly similar to the esti-
mates computed by the econoMe tool for scenario 73 with
the lowest average flood depth at the building footprint.

FIGURE 4 Upper: Average flood depth at buildings (black line, left axis) and the number of flooded buildings (grey line, right axis) for

each of the 150 scenarios. Lower: variability of estimated damages over the 150 flood scenarios

FIGURE 5 Left: damage estimates of all scenarios aggregated at river basin level (TH, targeted heuristics; EM, ensemble mean; RF,

data-driven function; EC, econoMe). Right: damage estimates for the two flood scenarios with the lowest (scenario 73) and highest (scenario

149) average flood depth at building level
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To explain this variability in the model comparison,
we evaluated smaller spatial units of damage aggregation
levels, starting with the aggregation at floodplain level.
The floodplain characteristics reflect the different flood
processes. Figure 6 shows that the targeted heuristics
model ranks first in three of seven floodplains and second
in four of seven floodplains in scenario 73. However, in
scenario 149 the targeted heuristics model ranks first
in one and last in two of seven floodplains. Of the 150 sce-
narios, this scenario has the highest lake level of Lake
Thun. It shows that this vulnerability function underesti-
mates damage in this situation in comparison to the
other vulnerability functions. In this scenario, Interlaken
is flooded by the Lütschine River. Over all flood scenar-
ios, the targeted heuristics model ranked first in the
floodplain of the Aare River downstream of Lake Thun
and last in the floodplains of Thun and Lake Thun. In
four of seven floodplains, the targeted heuristics model
ranked in between the other models. Hence, the rank of
this model is relatively constant over all flood process
types but is sensitive to the floodplain characteristics of
Thun and Lake Thun.

To break this down into smaller aggregation units
and to test the sensitivity of the model comparison
method, we further aggregated the damages computation
from the individual building level to harmonised spatial
units. In a first step, we compared the damage estimates
of scenarios 73 and 149 at the level of the 10 km2 hexa-
gons. The ranking of the damage estimates at this aggre-
gation level shown in Figure 7 varies remarkably in
comparison to the aggregation level of floodplains shown
in Figure 6.

The ranking of the targeted heuristics model was
highest in several places across the river basin. Thus, the
aggregation levels of the entire river basin and of
the floodplains smoothed out the regional particularities
in flood characteristics and exposure characteristics. In
scenario 73, the highest rank of the targeted heuristics
model can be found in the Aare River valley, in Thun, in
Interlaken, and in the Guerbe River valley. Only the Aare
River valley and the Guerbe River valley remained
ranked highest in scenario 149. Scenario 149 has more-
over a high number of hexagons with the targeted heuris-
tics method ranked lowest.

The spatial pattern of the ranking varies over the river
basin, depending on the aggregation level, that is, the size
of the spatial unit for which the damages are aggregated
from the individual building level (c.f. Figure 8). The
smaller the size of the spatial aggregation units,
the higher is the variability of the spatial pattern of the
ranking. The smaller spatial units allow a more detailed
view of the settlements that are determining the rankings
of the damage estimates. Table 2 summarises the

variation of the ranking depending on the size of the spa-
tial aggregation units. When aggregated at 10 km2 hexa-
gons, damage estimates by targeted heuristics rank most

FIGURE 6 Ranks of the damage estimates by the targeted

heuristics function in comparison to the other models, aggregated

at floodplain level

FIGURE 7 Ranks of the damage estimates by the targeted

heuristics function of scenarios 73 and 149 in comparison to the

other models, aggregated at hexagon level (10 km2)
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times between highest and lowest rank. This is also valid
for the 1 km2 hexagons. When aggregated at the 0.1 km2

hexagons, damage estimates by targeted heuristics rank
first in the majority of hexagons.

Figure 9 shows that the targeted heuristics function
generally ranks lowest, that is, underestimates damage in
comparison to the other functions, if flood depths are rel-
atively high (Figure 9a–d) and the share of residential
buildings is relatively low (Figure 9b–d). However, the
average flood depths on the ranking vary with the aggre-
gation level, especially for ranks 2–3. The ranking is not

remarkably influenced by the distance of the buildings to
rivers and lakes and to the flood borders.

4 | DISCUSSION AND
CONCLUSIONS

The evaluation of a newly developed flood vulnerability
function is not feasible in a quantitative way without
damage data of sufficient quality and quantity, for exam-
ple, insurance claim data or other types of documented
damage. Thus, we evaluated the newly developed vulner-
ability function by means of a comparative analyses as
previously shown and suggested by Scorzini and
Frank (2017), Carisi et al. (2018), Figueiredo et al. (2018),
and Amadio et al. (2019). The comparison of the targeted
heuristics models with other modelling approaches
proved the applicability of an expert elicitation and heu-
ristic reasoning approach. The damage estimations
resulting from the targeted heuristics approach lay within
the upper and lower bounds of the other models and
within the uncertainty range of the multi-model ensem-
ble. Furthermore, they have a relatively low positive bias
against the data-driven vulnerability function as well as
against the mean of the ensemble prediction. However,
the proposed function is a stepwise function derived from
a small sample of representative buildings and therefore,
the transfer to the remaining buildings should be
analysed before application. The steps in this function
are determined by the characteristics of the visited sam-
ple buildings. Once a building-specific threshold of flood
depth is exceeded, the damage can increase sharply
because of building openings providing a pathway for
water intrusion. Consequently, limitations of such a step-
wise approach may occur once the floodplains are located
in hilly terrain and flood characteristics become more
dynamic. This fact has repeatedly also been mirrored by
the high spread and skewness in models based on contin-
uous vulnerability functions, as discussed in Fuchs,

FIGURE 8 Ranks of the damage estimates by the targeted

heuristics function over all scenarios, aggregated at hexagon level

with different size (0.1, 1, 10 km2)

TABLE 2 Rank of damage estimates by targeted heuristics depending on aggregation level

Rank

Hexagon
10 km2 Hexagon

1 km2
Hexagon
0.1 km2

Hexagon
10 km2

Hexagon
1 km2 Hexagon

0.1 km2

Times occurring Frequency (%)

No damage 13 93 692 24.5 39.9 60.9

Rank 1 11 44 170 20.8 18.9 15.0

Rank 2 14 57 134 26.4 24.5 11.8

Rank 3 5 11 27 9.4 4.7 2.4

Rank 4 10 28 114 18.9 12.0 10.0
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Heiser, et al. (2019) with respect to European data and
Wing et al. (2020) focusing on the US. Moreover, the
damage may have an upper bound and does not increase
with increasing flood depths because some repairing
costs are not varying with the flood depths. Due to the
stepwise function, the comparison of the targeted heuris-
tics approach with other models is sensitive to the flood
depths at building level. However, the aggregation of
building damage is smoothing the effect of the stepwise
function on the ranking of the outcomes from different
vulnerability functions. The aggregated damages com-
puted with the targeted heuristics function do not show a
threshold behaviour.

Here we showed a top-down approach for selecting
necessary representative buildings, meaning first to run
the flood simulations and second to select the representa-
tive buildings based on the flood characteristics and addi-
tional criteria. The presented targeted selection of
buildings to be used as representative samples for devel-
oping the heuristic function does not remarkably influ-
ence the damage estimations. The approach for selecting
the representative buildings based on flood simulations
has also the advantage that the expected flood depths are
known in advance for the whole study area. This allows
to focus on a certain range of flood depths during the
field visits. If a possibility to compare the outcomes of

FIGURE 9 Effects of aggregation level and floodplain characteristics on the ranking of the targeted heuristic function. (a–d) flood
depths, (e–h) distance of buildings to rivers and lakes, (i–l) distances of buildings to flood border at different aggregation levels. The numbers

in (a–d) show the percentage of the residential buildings to all buildings in the spatial aggregation unit and the rank of the targeted heuristic

function in comparison to the other functions
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this approach with the outcomes of other vulnerability
functions exists, the presented approach on targeted heu-
ristics can be evaluated for being implemented in flood
impact model chains. This offers options for evaluating
flood impact model chains in regions where no damage
data or only few data is available for model validation or
for developing data-driven vulnerability functions.
Targeted heuristics can therefore complement the
methods for elaborating synthetic vulnerability functions
(Amadio et al., 2019; Dottori et al., 2016; Neubert
et al., 2016; Penning-Rowsell, 2010). The steadily increas-
ing availability of exposure data, for example, Open Street
Map data, allows to develop flood impact model chains
in larger areas. The presented vulnerability function was
developed with only 3 days of field investigation, which
proves the applicability in regions where no damage data
exist for calibrating region-specific vulnerability func-
tions. Hence, the method is shown to be efficient in terms
of extending flood model chains with vulnerability func-
tions. However, the presented method requires data on
the reconstruction values of the buildings.

The model comparison resulted to be sensitive to
(a) the characteristics of the flood scenario in terms of
average flood depths at the building scale and in terms
of the spatial pattern of exposed settlements within the
river basin and (b) the size of the spatial unit for aggre-
gating the damage estimations from the building level.
Overall damage increase with the average flood depth at
the building level and the number of affected buildings.
The flood patterns within the river basin, that is, the set-
tlements affected, varied remarkably between the flood
scenarios, although we used the same rainfall sum and
duration. This is mirrored in the comparison of the differ-
ent damage estimations. Depending on the local scale
characteristics of the flood scenario and the buildings,
the targeted heuristics function rank differently against
the other vulnerability functions. This implies that the
choice of the flood event and the case study (size) is
markedly influencing the evaluation of flood impact
models. Thus, the sensitivity of the model comparison
against flood characteristics and exposure urges for bas-
ing a validation of flood impact models on more than one
case study and on cases with different flood characteris-
tics. We suggest validating flood impact models and vul-
nerability functions with data from multiple case studies
and different flood event characteristics, for example,
damage data from flood events with different average
flood depths at building scale.
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