

Verkehrliche Auswirkungen und Infrastrukturbedarf

Zusammenfassung des Teilprojektes ASTRA 2018-002

Presentation

Author(s):

Livingston, Clarissa (6); Hörl, Sebastian; Baumberger-Fischer, R.; Bruns, Frank; Axhausen, Kay W. (6)

Publication date:

2021-09

Permanent link:

https://doi.org/10.3929/ethz-b-000505168

Rights / license:

In Copyright - Non-Commercial Use Permitted

Bevorzugter Zitierstil für diesen Vortrag

Livingston, C. V., Hörl, Dr. S., Baumberger-Fischer, R., Bruns, F. und Axhausen, Prof. Dr. K. W. (2021) Zusammenfassung des Teilprojektes ASTRA 2018-002: Verkehrliche Auswirkungen und Infrastrukturbedarf, Fachtagung Forschung ASTRA-SVI 2021, Bern, 06. September 2021

Zusammenfassung des Teilprojektes ASTRA 2018-002: Verkehrliche Auswirkungen und Infrastrukturbedarf

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Aufgabenstellung

Mit dem Teilprojekt "Verkehrliche Auswirkungen und Infrastrukturbedarf" wurden folgende Aspekte untersucht:

- Welche quantitativen verkehrlichen Folgen hat das automatisierte Fahren für den Personen- und Güterverkehr* in der Schweiz bis zum Jahr 2050?
- Wie verändern sich Fahr- und Verkehrsleistung durch automatisierte Fahrzeugen (AF) unter Berücksichtigung zweier Nutzungsszenarien?
- Wie verändern sich dabei die Engpässe auf dem Strassennetz, sowohl auf der Nationalstrasse als auch auf dem Gemeinde- und Kantonsstrassennetz (exemplarisch)?

^{*} Es wurde nur der strassengebundene schwere Güterverkehr im Modell berücksichtigt.

Abgebildete Entscheidungen

Dynamische und agentenbasierte Modellierung des Verkehrs mithilfe von MATSim unter Berücksichtigung wesentlicher Stufen:

- Verkehrsmittelwahl → Ja
- o Routenwahl → Ja
- \circ Veränderung Abfahrtszeiten \rightarrow Ja (sofern implizit in der Routenwahl und Verkehrsmittelwahl)
- Zielwahlveränderungen → Nein
- o Induzierter Verkehr (zusätzliche Wege) → Nein
- Leerfahrten von privaten AF → Nein
- Taxi-AF (Einzelbelegung) mit Leerfahrten → Ja

Szenarien

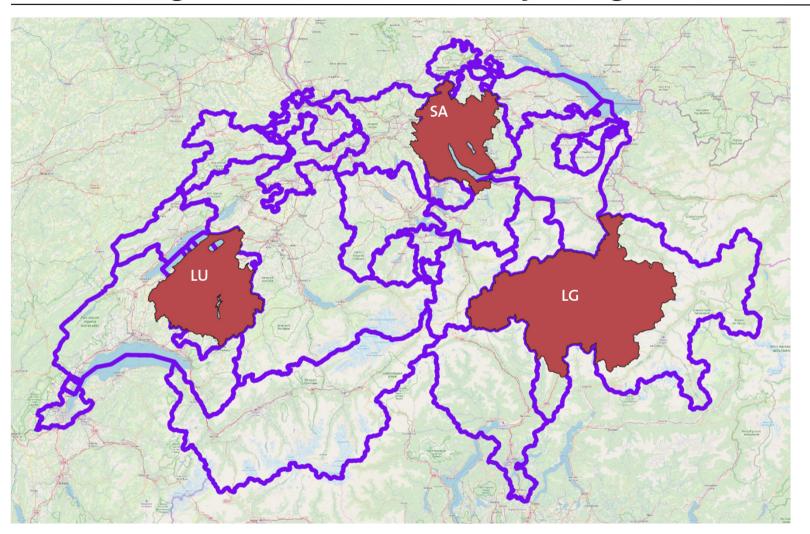
Betrachtung von unterschiedlichen Szenarien des Forschungspaketes:

- Referenzszenario mit unverändertem Mobilitätsverhalten.
- Szenario A "Individuelle und monomodale Nutzungsformen"
- Szenario B "Kollektive und multimodale Nutzungsformen"

Modelltechnisch unterscheiden sich die Szenarien A und B ausschliesslich hinsichtlich des angenommenen Privatfahrzeugbesitzes bzw. des **Zugangs zu einem Privatfahrzeug**.

Für das Jahr 2050 wird in allen Szenarien angenommen, dass eine **Senkung der ÖV-Preise** von 20% auf der Schiene und 40% auf der Strasse umgesetzt wird. Grund dafür sind weitergegebenen Kosteneinsparungspotenziale infolge der Automatisierung.

Tabelle 1: Schlüsselmerkmale der mit MATSim simulierten Szenarien


Szenarien	Verfügbare AF	Rate des Privatfahrzeugbesitzes	Berechnete Jahre	Betrachtete Regionen ***
Referenzszenario	keine	heutige	2020, 2030, 2040, 2050*	Schweiz, Analyseregion
Szenario A, <i>ohne</i> AF-Taxis	Private PW, LKW	heutige	2030, 2040, 2050*	Schweiz, Analyseregion
Szenario A, <i>mit</i> AF-Taxis	Private PW, Taxis, LKW	heutige	2030, 2040, 2050*	Nur Analyseregion
Szenario B, <i>ohne</i> AF-Taxis	Private PW, LKW	Extremer und nicht- linearer Rückgang**	2030, 2040, 2050*	Schweiz, Analyseregion
Szenario B, <i>mit</i> AF-Taxis	Private PW, Taxis, LKW	Extremer und nicht- linearer Rückgang**	2030, 2040, 2050*	Nur Analyseregion

^{*}In 2050 wird in allen Szenarien eine ÖV-Preisreduktion von 20% (Scheine) und 40% (Strasse) angenommen.

^{**}Prozentualer Rückgang gegenüber 2020 in 2030 beträgt 0%, in 2040 beträgt 12.5%, und in 2050 beträgt 55.8%.

^{***}Alle Szenarien wurden mit einer 25% Stichprobe der Gesamtbevölkerung berechnet.

Abbildung 1: Übersicht der Analyseregionen

Raumtypen:

SA: Stadt/Agglomeration LG: ländlich gerichtet LU: ländlich ungerichtet

Tabelle 2: Freigabe für den automatisierten Betrieb

Jahr	2020	2030	2040	2050
Kategorie OpenStreetMap (OSM)	keine Freigabe	city shapes**, motorway, trunk	city shapes**, motorway, trunk, primary, freespeed <= 13.8m/s	alle Links
entspricht <u>etwa*:</u>	keine Freigabe	Stadtgebiet**, HLS 120 km/h, HLS 80-100 km/h	Stadtgebiet**, HLS 120 km/h, HLS 80-100 km/h, HVS, Innerortsstrassen	alle Strassen

^{*} OSM-Kategorien sind international und entsprechen nicht zwingend der Schweizer Strassenklassifizierung

^{**} Durch Teilprojekt 5 auf GIS-Basis definiert und von Teilprojekt 2 in MATSim umgesetzt.

Tabelle 3: Automatisierte Privatfahrzeuge: Annahmen

	Konventionelle Privatfahrzeuge	Automatisierte Privatfahrzeuge
Passenger Car Unit (PCU) - <i>Personenwageneinheit</i> HLS T120 / HLS T100 / Untergeordnetes Netz T80 / Untergeordnetes Netz T50	1.00 (alle)	0.83 / 0.77 / 0.83 / 0.80 *
Value of Time (VOT) - Zeitkosten	31.90 CHF/h	17.14 CHF/h
Durchdringung an Gesamtflotte 2030	99.5%	0.5%
Durchdringung an Gesamtflotte 2040	94.4%	6.6%
Durchdringung an Gesamtflotte 2050	68.7%	31.3%

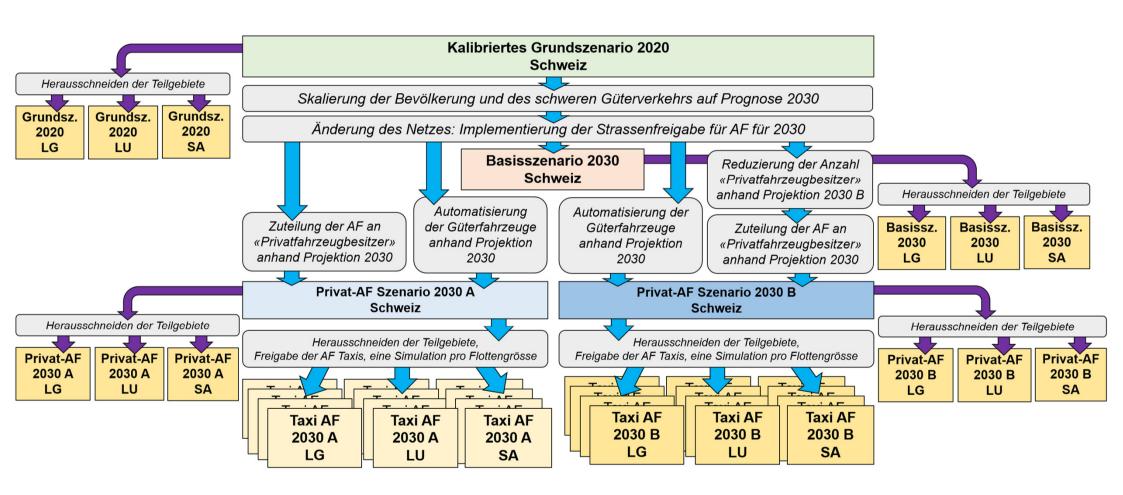

^{*} Festgelegt auf Basis von mikroskopischen Verkehrsmodellen (Stand 2019).

Tabelle 4: Automatisierte Güterfahrzeuge: Annahmen

	Konventionelle Güterfahrzeuge	Automatisierte Güterfahrzeuge
Passenger Car Units (PCU) HLS T80 / Untergeordnetes Netz T80 / Untergeordnetes Netz T50	4.00 (alle)	3.08 / 3.33 / 3.20 *
Durchdringung an Gesamtflotte 2030	99.4%	0.6%
Durchdringung an Gesamtflotte 2040	92.7%	7.3%
Durchdringung an Gesamtflotte 2050	60.9%	39.1%

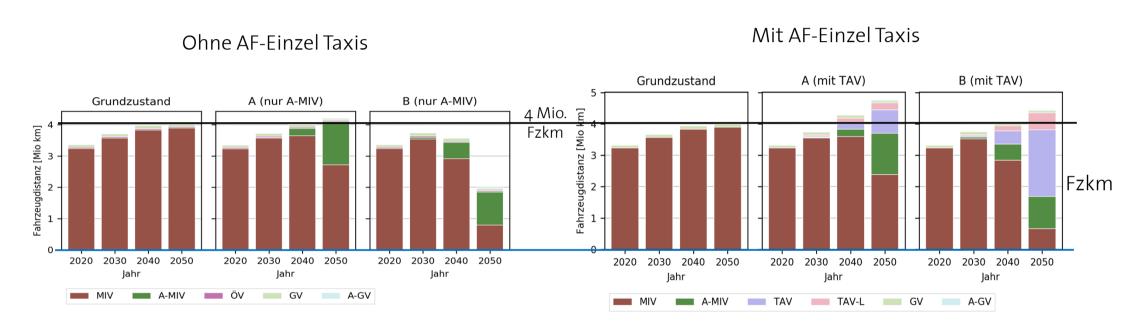
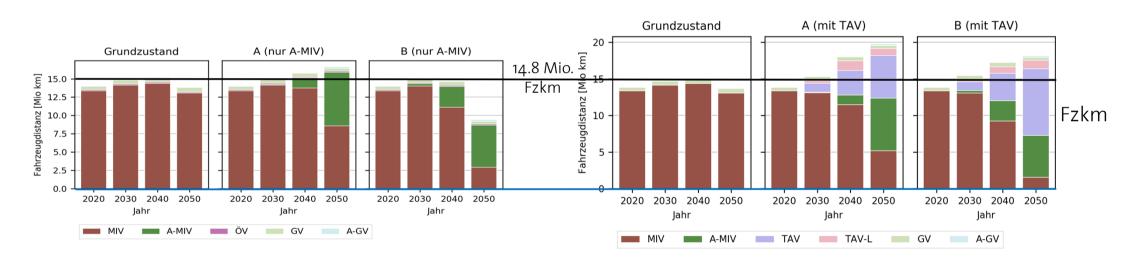
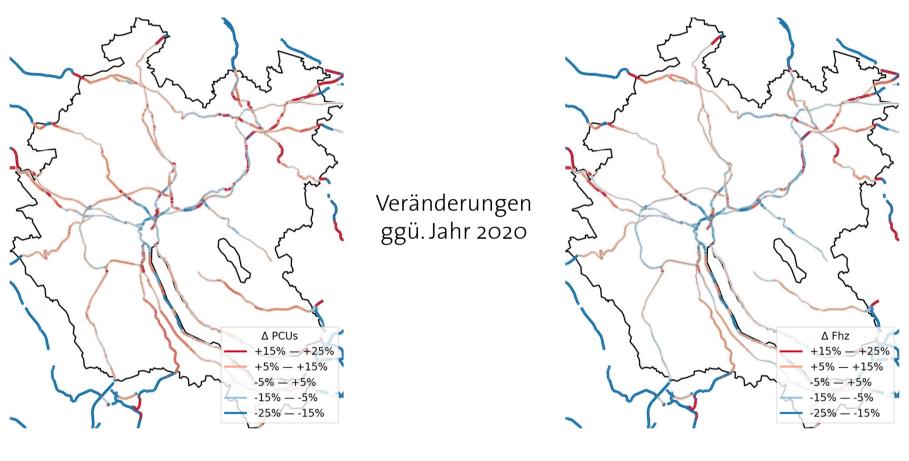

^{*} Festgelegt auf Basis von mikroskopischen Verkehrsmodellen (Stand 2019).

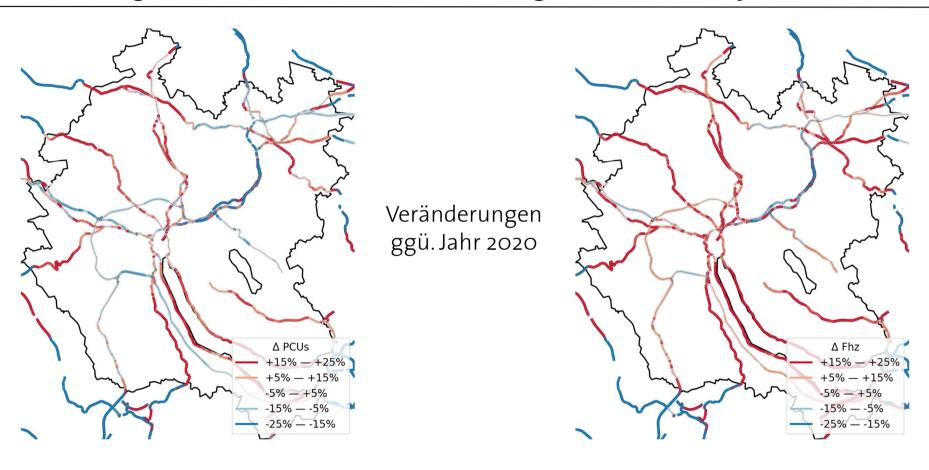
Abbildung 2: Übersicht Szenarioaufbau am Beispiel 2030

Ergebnisse der Simulationen (MATSim)


Abbildung 3: Ländlich Ungerichtet (LU, Fribourg) Fahrleistung, Verteilung auf die Verkehrsmittel in Mio. Fzkm auf der Strasse

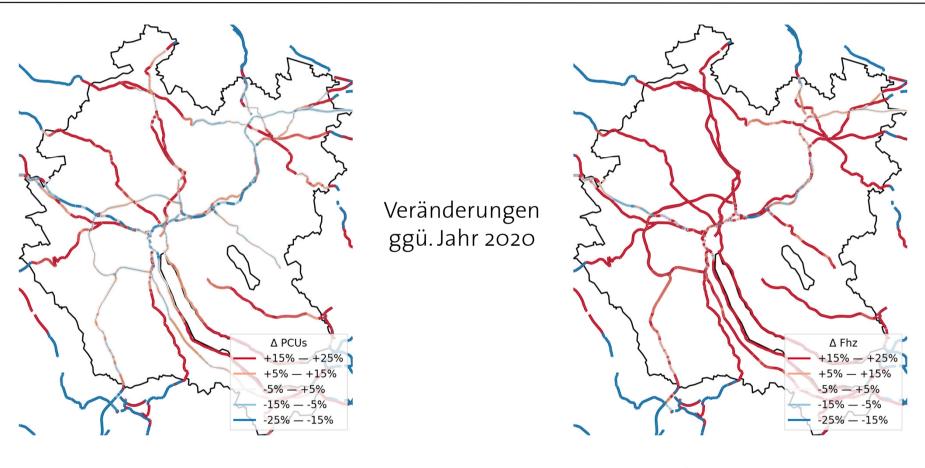

Abbildung 4: Stadt und Agglomeration (SA, Zürich) Fahrleistung, Verteilung auf die Verkehrsmittel in Mio. Fzkm auf der Strasse

Mit AF-Einzel Taxis


Abbildung 5: **Stadt und Agglomeration (SA), Referenzszenario 2050** Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

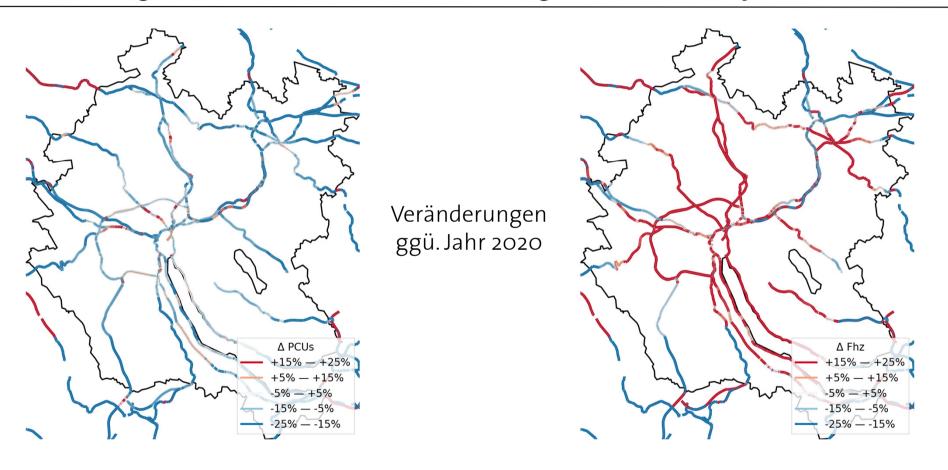
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 6: Stadt und Agglomeration (SA), Szenario A 2050 mit privaten AF ohne AF-Einzel-Taxis

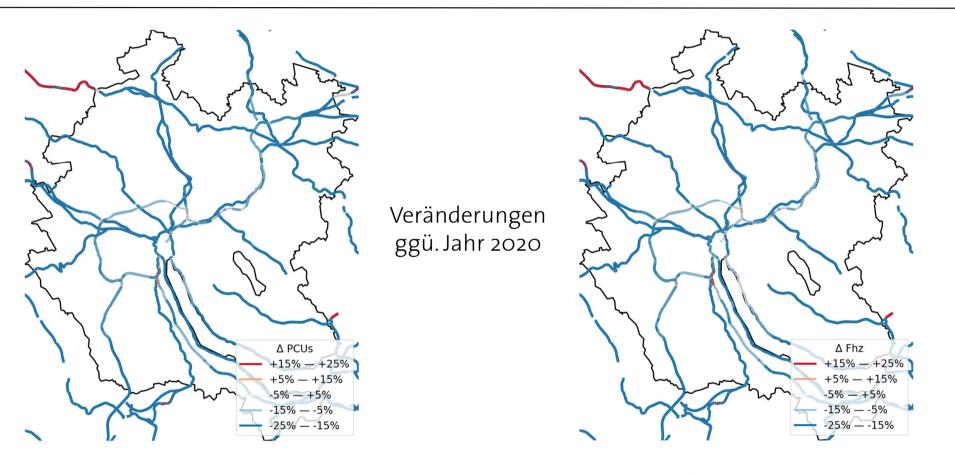
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 7: Stadt und Agglomeration (SA), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis,

in PCU/Tag

in Fahrzeugen/Tag


Abbildung 8: Stadt und Agglomeration (SA), Szenario B 2050 mit privaten AF mit AF-Einzel-Taxis,

in PCU/Tag

in Fahrzeugen/Tag

Abbildung 9: Stadt und Agglomeration (SA), Szenario B 2050 mit privaten AF ohne AF-Einzel-Taxis,

in PCU/Tag

in Fahrzeugen/Tag

Tabelle 5: Durchgeführte Sensitivitätsanalysen

Sensitivitätsanalyse	Berechnete Jahre	Betrachtete Szenarien & Regionen
1: Keine ÖV-Preissenkung	2050	A und B für: Schweiz, jede Analyseregion
2: Höhere Zeitkosten (VOT) für AF	2050	A und B für: Schweiz, jede Analyseregion
3: Pooling-Schwellenwertanalyse - Unter welche Bedingungen wird gepoolt?	2050	A und B: nur SA (Zürich)
4: "Vorsichtige" AF bei Einführung – PCU der AF ist höher als für konventionelle Fahrzeuge (PCU: 1.25)	2050	A und B für: Schweiz, jede Analyseregion
5: Volle Durchdringung und grössere Effizienzsteigerung der AF (Senkung der PCU auf o.67)	2050	A und B für: Schweiz, jede Analyseregion

Sensitivität 5: gegenüber Phase 1 geänderte Annahmen

VOT der AF in Phase 1 und Sensitivität 5					
	Phase 1	Sensitivität 5			
PCU Konventionelles PW HLS120 / HLS100 / UG80 / UG50	1.0 / 1.0 / 1.0 / 1.0	-/-/-			
PCU Automatisiertes PW HLS120 / HLS100 / UG80 / UG50	0.83 / 0.77 / 0.83 / 0.80	0.77 / 0.67 / 0.77 / 0.67			
PCU Konventionelle Güterfahrzeuge HLS80 / UG80 / UG50	4.0 / 4.0/ 4.0	- / -/ -			
PCU Automatisierte Güterfahrzeuge HLS80 / UG80 / UG50	3.08 / 3.33/ 3.20	2.67 / 3.08/ 2.67			

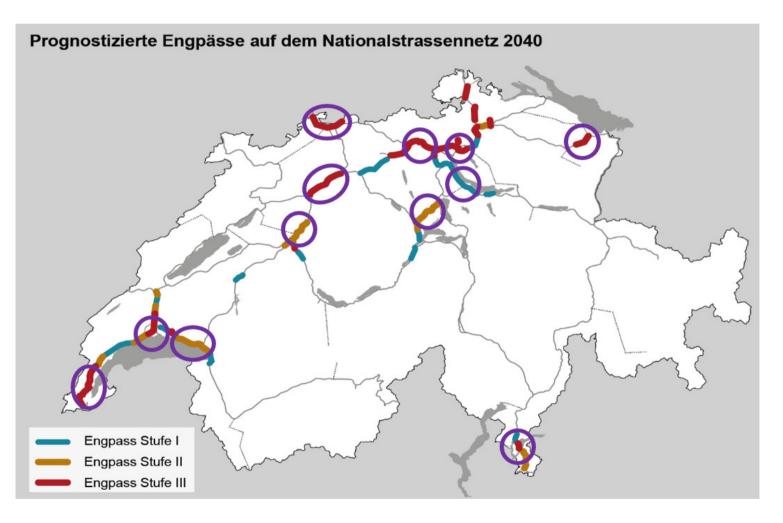

Sensitivitätsanalyse 5: 100% AF, grössere Effizienzsteigerung

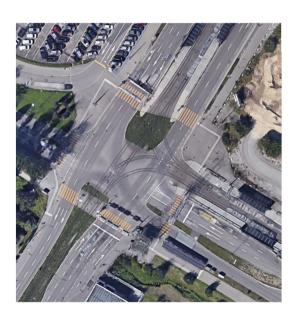
Tabelle 9: % Differenz <i>Fahrleistung</i> ggü. Grundzustand, Sensitivität 5					
	Jahr	SA	LU	LG	
		Gesamt	Gesamt	Gesamt	
		[Mio Fzkm]	[Mio Fzkm]	[Mio Fzkm]	
Grundzustand	2020	13.99	3.36	1.80	
Referenzszenario	2050	-1%	21%	-9%	
Referenzszenario S5	2050	-1%	21%	-9%	
A (mit TAF)	2050	43%	43%	9%	
A (mit TAF) S5	2050	81%	51%	19%	
B (mit TAF)	2050	31%	34%	-8%	
B (mit TAF) S5	2050	42%	36%	-5%	

Engpassanalyse: Nationalstrassen (HLS)

Engpassanalyse gemäss Verfahren STEP-NS für 12 ausgewählte Abschnitte

I = Auslastung 101% - 110%

II = Auslastung 111% - 120%


III = Auslastung >120%

Ergebnisse Engpassanalyse Nationalstrasse

- Für beide Szenarien gilt: **Engpässe** werden teilweise entschärft, aber **nur in wenigen Fällen gelöst**. Dies trotz Annahmen, welche die Kapazitätswirkungen von AF auf den Querschnitten tendenziell überschätzen.
- Kapazitätserhöhende Wirkung automatisierter Fahrzeuge wird durch die Nachfrageeffekte bzgl. Routenwahl, Verkehrsmittelwahl (Verlagerungen vom ÖV) und Wahl der Abfahrtszeiten teilweise wieder kompensiert.
- Sensitivitätsanalyse 5 «Volle Durchdringung und grössere Effizienzsteigerung der AF»: Die leistungsrelevante Verkehrsbelastung (in PCU) sinkt aufgrund der Mehrnachfrage nur um ca. 10%, was einer Reduktion um maximal eine Engpassstufe bedeutet. Bei einem allgemeinen Bevölkerungswachstum und entsprechenden Mobilitätsbedürfnissen wird dieser Effekt nach einigen Jahren wieder kompensiert sein.

Knotenanalyse: Exemplarisch untersuchte Knoten

Städtischer Grossknoten mit Lichtsignalanlage und starkem ÖV-Einfluss

Knoten mit Lichtsignalanlage (dreiarmig, geringere Komplexität)

Knoten mit Kreisverkehr («Standardkreisel»)

Knotenanalyse: Ergebnisse

Szenario A 2050:

Leistungsrelevante Knotenbelastung steigt infolge der Mehrnachfrage, das heisst:

- + Erhöhung Auslastungen
- + Erhöhung Wartezeiten.

Szenario B 2050:

Ähnliche Fahrzeugbelastungen in Fz wie im Szenario A; aber die Knotengesamtbelastungen in PCU sinken um 3 bis 8% gegenüber dem Referenzszenario:

- Reduktion Auslastungen und
- Reduktion mittlere Wartezeiten.

Grund dafür ist der höhere Automatisierungsgrad der gesamten Fahrzeugflotte im Szenario A.

Ausblick:

Weitergehendes Optimierungspotenzial mit einem verstärkten Datenaustausch zwischen Lichtsignalanlage und Fahrzeugen (z.B. Reduktion von leistungsmindernden Zwischenzeiten). Gänzlicher Verzicht auf LSA bei automatisierten Fahrzeugen mit einer starken Vernetzung und ab Durchdringungsraten grösser ca. 75% möglich. Integration des Fuss- und Veloverkehrs zu prüfen!

Fazit aus Teilprojekt 2

- Die angenommenen (eher optimistischen) Kapazitätsgewinne der AF können nur teilweise das durch Bevölkerungswachstum, Verkehrsmittelverlagerungen, Routenwahlentscheidungen und Leerkilometer der AF-Taxis entstehende Wachstum der Verkehrsnachfrage auf den Strassen ausgleichen.
- Erst bei einer sehr hoher Durchdringung und einer hohen kollektiven Nutzung der Fahrzeuge können die PCU-Belastungen (bei steigenden Fahrleistungen) auf der Strasse sinken und sich der Druck auf die Engpässe reduzieren.
- In allen Szenarien und Zuständen hat der ÖV einen bedeutenden Marktanteil und wird nicht durch AF verdrängt, obwohl diese eine starke Konkurrenz bieten. Grund dafür ist insbesondere die Weitergabe möglicher Produktivitätsgewinne im ÖV mittels Preissenkungen.

Fragerunde / Diskussion

Zusatzfolien 1: Annahmen zu Szenarien und Simulation

Tabelle 6: Wesentliche Unterschiede der Szenarien

Szenario	Jahr	Privatfahrzeugbesitz als % des jeweiligen Basisszenario-Jahr	Marktanteil Privatfahrzeuge %		Marktanteil Güterfahrzeuge %		ÖV-Preise als % der 2020 ÖV- Preise	
			Konven.	Autom.	Konven.	Autom.	Schiene	Strasse
Grund	2020	Referenz	100	0	100	0	100	100
Basis	2030	Referenz	100	0	100	0	100	100
Basis	2040	Referenz	100	0	100	0	100	100
Basis	2050	Referenz	100	0	100	0	80	60
А	2030	100	99.5	0.5	99.4	0.6	100	100
А	2040	100	94.4	6.6	92.7	7.3	100	100
А	2050	100	68.7	31.3	60.9	39.1	80	60
В	2030	100	98.5	1.5	99.4	0.6	100	100
В	2040	87.5	86.3	13.7	92.7	7.3	100	100
В	2050	44.2	44.3	55.7	60.9	39.1	80	60

Annahmen PCU

Einflussgrössen:

- Fahrzeuglängen
- o Fahrdynamik: Beschleunigung, Agilität
- o Fahrzeugfolgeverhalten: Zeitlücke, Kooperation
- Streckensegmente (Topologie)
- Geschwindigkeiten
- Anteil der AF
- Anteil des Schwerverkehrs
- o Zu-/Abflussverhältnisse
- o Technologische Entwicklungen

Grundannahme: max. 30% Zunahme auf HLS und 25% auf untergeordneten Strassen möglich

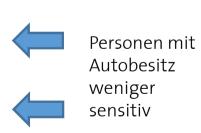
Literatur: Fellendorf (2017), Krause et al. (2017), Fléchon et al. (2019)

Zusatzfolien 2: Sensitivitätsanalysen

Sensitivität 1: gegenüber Phase 1 geänderte Annahmen

- Keine ÖV-Preissenkung

Sensitivitätsanalyse 1: Keine ÖV-Preissenkung


Tabelle 6: % Differenz <i>Fahrleistung</i> ggü. Grundzustand, Sensitivität 1						
	Jahr	SA	LU	LG		
		Gesamt	Gesamt	Gesamt		
		[Mio Fzkm]	[Mio Fzkm]	[Mio Fzkm]		
Grundzustand	2020	13.99	3.36	1.80		
Referenzszenario	2050	-1%	21%	-9%	,	
Referenzszenario S1	2050	10%	24%	-4%		
A (mit TAF)	2050	43%	43%	9%		Wachstum der Fzkm
A (mit TAF) S1	2050	48%	49%	13%		ist grösser
B (mit TAF)	2050	31%	34%	-8%		in S1
B (mit TAF) S1	2050	41%	46%	2%		

Sensitivität 2: gegenüber Phase 1 geänderte Annahmen

VOT der AF in Phase 1 und Sensitivität 2					
	Phase 1 Sensitivität 2				
VOT Konventioneller PW	31.90 CHF/Stunde	31.90 CHF/Stunde			
VOT Automatisierter PW	17.14 CHF/Stunde 22.33 CHF/Stur				
VOT Automatisiertes Taxi	21.43 CHF/Stunde	27.90 CHF/Stunde			

Sensitivitätsanalyse 2: Höhere Zeitkosten für AF

Tabelle 7: % Differenz <i>Fahrleistung</i> ggü. Grundzustand, Sensitivität 2						
	Jahr	SA	LU	LG		
		Gesamt	Gesamt	Gesamt		
		[Mio Fzkm]	[Mio Fzkm]	[Mio Fzkm]		
Grundzustand	2020	13.99	3.36	1.80		
Referenzszenario	2050	-1%	21%	-9%		
Referenzszenario S2	2050	-1%	21%	-9%		
A (mit TAF)	2050	43%	43%	9%		
A (mit TAF) S2	2050	37%	42%	6%		
B (mit TAF)	2050	31%	34%	-8%		
B (mit TAF) S2	2050	20%	25%	-17%		

Sensitivität 3: gegenüber Phase 1 geänderte Annahmen

- Es können nur Fahrten mit «pooling Erlaubnis» gebucht werden

- In den (gescheiterten & nicht präsentierten) Versuchen in Phase 1 wurden Szenarien modelliert, in dem eine Taxiflotte und eine Pooling-Taxiflotte gleichzeitig zur Verfügung standen*. In diesen Szenarien war die Pooling-Taxiflotte nicht konkurrenzfähig und «starb aus».

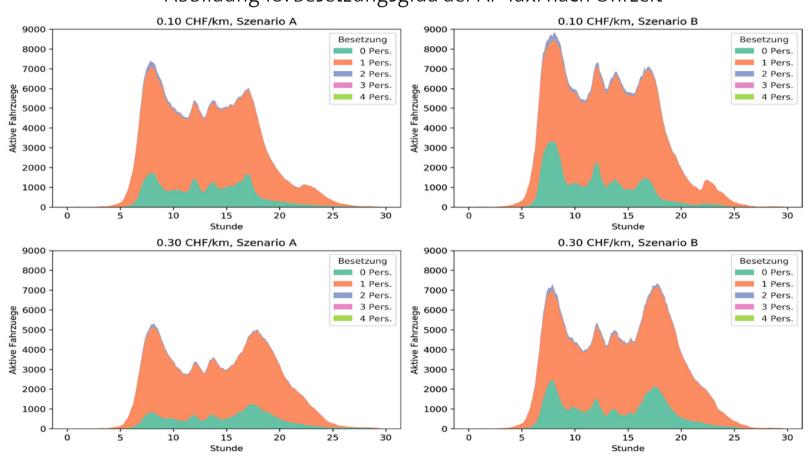
- Zwischen Anfrage und Abfahrt sind mindestens 10 Minuten

- Diese Bedingung war in der Phase 1 nicht vorhanden. Diese Bedingung erhöht die Wahrscheinlichkeit das eine zusätzlicher Fahrgast gefunden werden kann.

Die Flottengrösse war 10'000 Viersitzer**

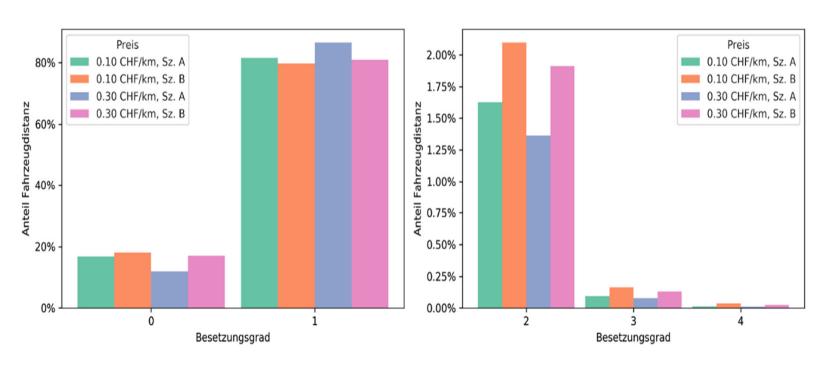
- In der Phase 1 war die Taxiflotte 40k in Szenario A und 60k in Szenario B

Der km-Preis ist fixiert


 In der Phase 1 wurde der Preis anhand der Betriebskosten und Besetzung der vorherigen Iteration für die vorstehende Iteration berechnet

^{*} Der Entwurf eines Geschäftsmodells einer Flotte die Einzel-Buchungen und Pooling-Buchen erlaubt war nicht teil der Aufgabenstellung und hätte den Rahmen des Projekts gesprengt.

^{**} Nur die Region SA wurde modelliert aus Zeitlichen Gründen


Sensitivitätsanalyse 3: Wann wird gepoolt? Fast nie.

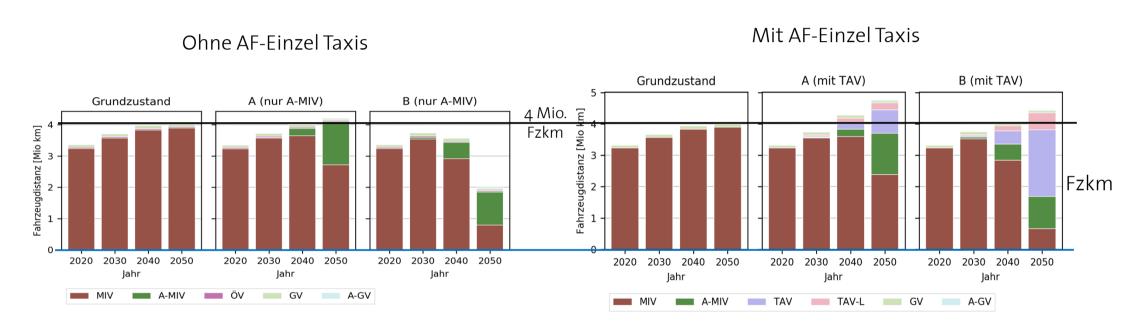
Sensitivitätsanalyse 3: Wann wird gepoolt? Fast nie.

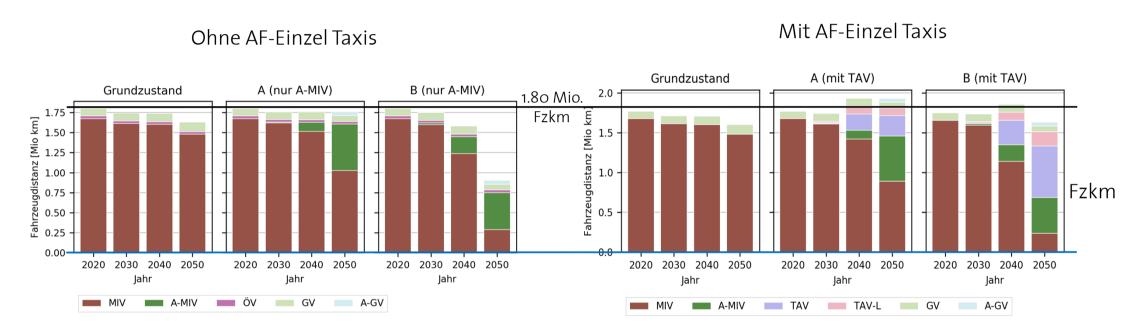
Abbildung 11: Anteil der Fahrdistanz mit einem bestimmten Besetzungsgrad

Sensitivität 4: gegenüber Phase 1 geänderte Annahmen

VOT der AF in Phase 1 und Sensitivität 2						
	Phase 1	Sensitivität 4				
PCU Konventionelles PW HLS120 / HLS100 / UG80 / UG50	1.0 / 1.0 / 1.0 / 1.0	1.0 / 1.0 / 1.0 / 1.0				
PCU Automatisiertes PW HLS120 / HLS100 / UG80 / UG50	0.83 / 0.77 / 0.83 / 0.80	1.18 / 1.25 / 1.25 / 1.43				
PCU Konventionelle Güterfahrzeuge HLS80 / UG80 / UG50	4.0 / 4.0/ 4.0	4.0 / 4.0/ 4.0				
PCU Automatisierte Güterfahrzeuge HLS80 / UG80 / UG50	3.08 / 3.33/ 3.20	5.00 / 5.00/ 5.71				

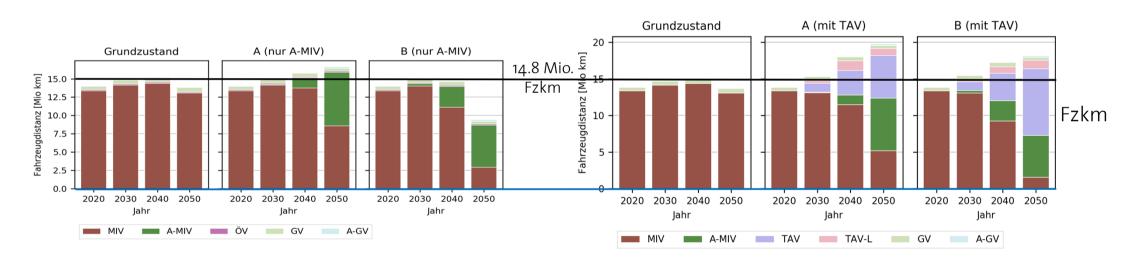
Sensitivitätsanalyse 4: "Vorsichtige" AF bei Einführung

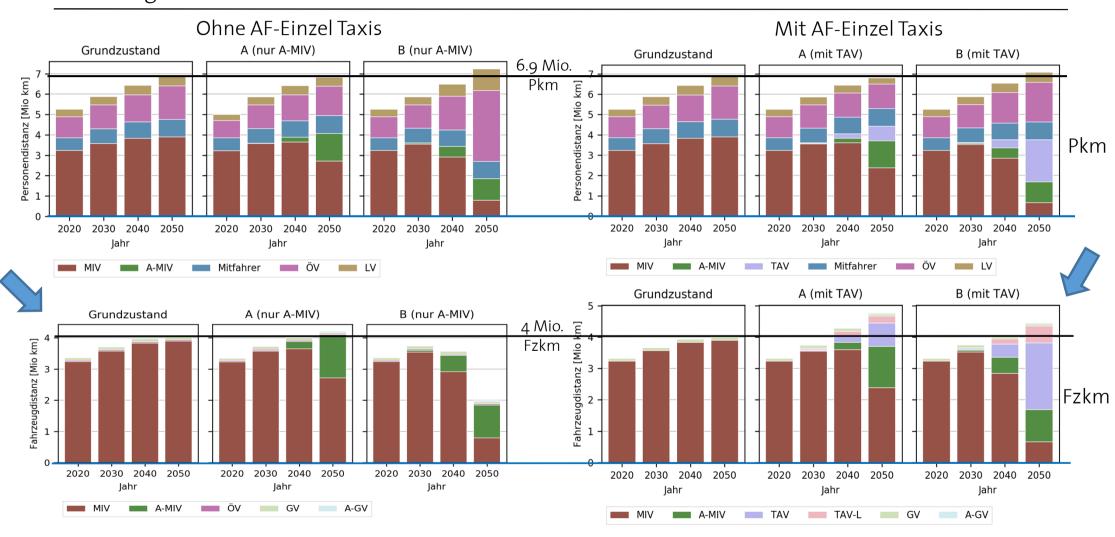

Tabelle 8: % Differenz <i>Fahrleistung</i> ggü. Grundzustand, Sensitivität 4						
	Jahr	SA	LU	LG		
		Gesamt	Gesamt	Gesamt		
		[Mio Fzkm]	[Mio Fzkm]	[Mio Fzkm]		
Grundzustand	2020	13.99	3.36	1.80		
Referenzszenario	2050	-1%	21%	-9%		
Referenzszenario S4	2050	-1%	21%	-9%		
A (mit TAF)	2050	43%	43%	9%		
A (mit TAF) S4	2050	27%	43%	7%		
B (mit TAF)	2050	31%	34%	-8%		
B (mit TAF) S4	2050	17%	30%	-8%		



Zusatzfolien 3: Weitere MATSim-Ergebnisse

Abbildung 3: Ländlich Ungerichtet (LU, Fribourg) Verteilung auf die Verkehrsmittel in Mio. Fzkm auf der Strasse


Abbildung 12: Ländlich Gerichtet (LG, Chur) Verteilung auf die Verkehrsmittel in Mio. Fzkm auf der Strasse


Abbildung 4: Stadt und Agglomeration (SA, Zürich) Verteilung auf die Verkehrsmittel in Mio. Fzkm auf der Strasse

Mit AF-Einzel Taxis

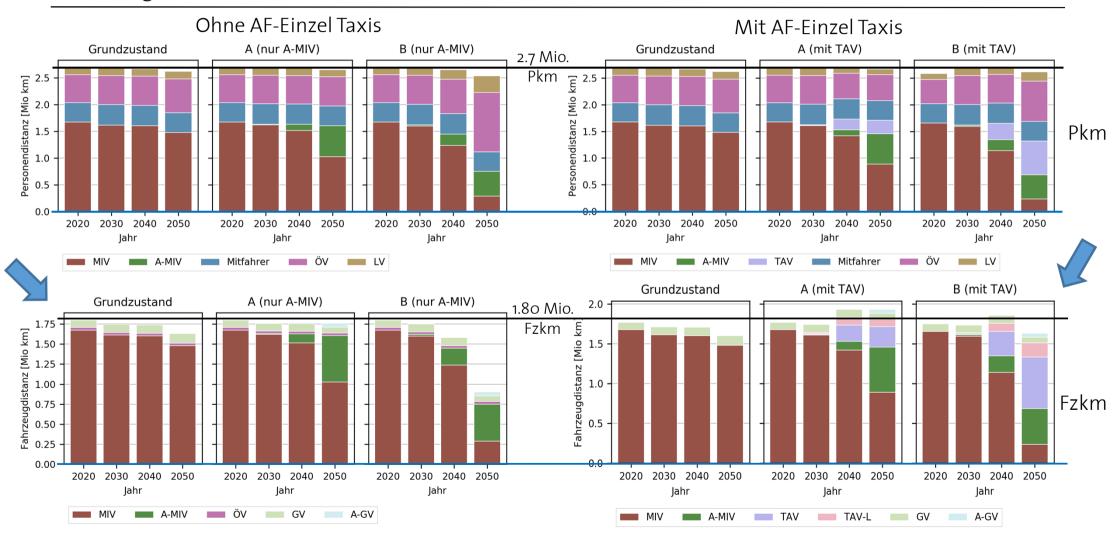


Abbildung 13: Ländlich Ungerichtet (LU, Fribourg) Verteilung auf die Verkehrsmittel in Mio. Pkm und Mio. Fzkm

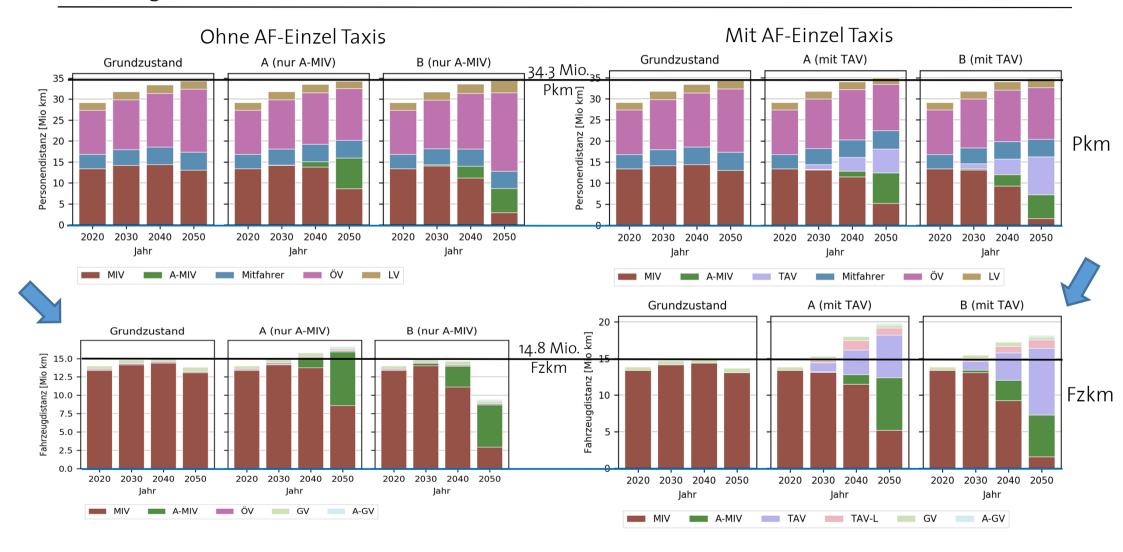


Abbildung 14: Ländlich Gerichtet (LG, Chur)

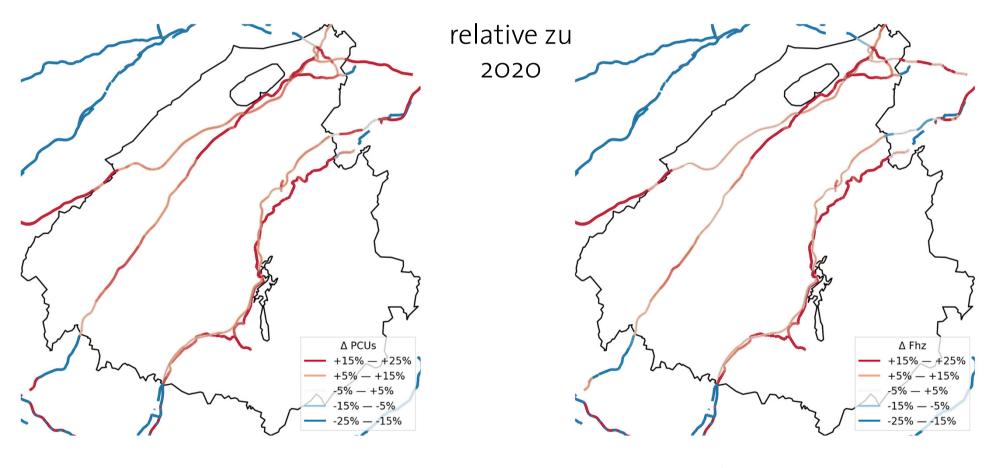
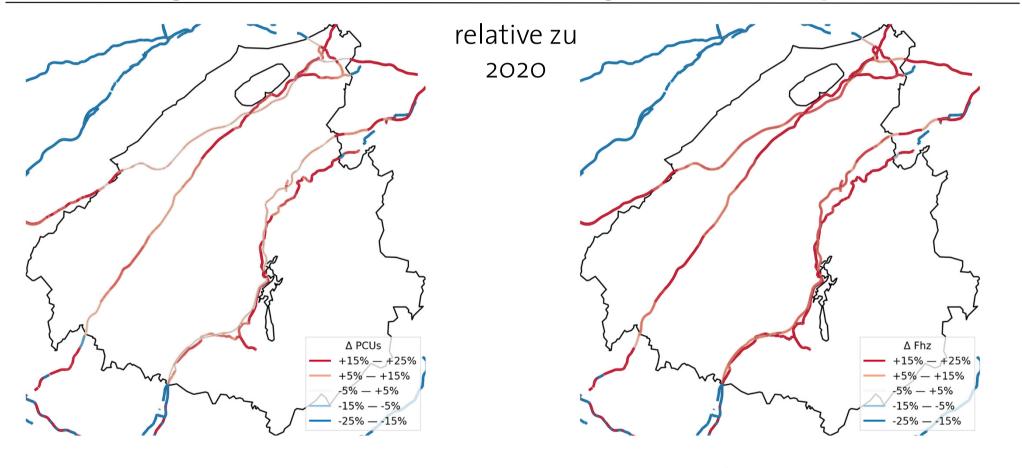
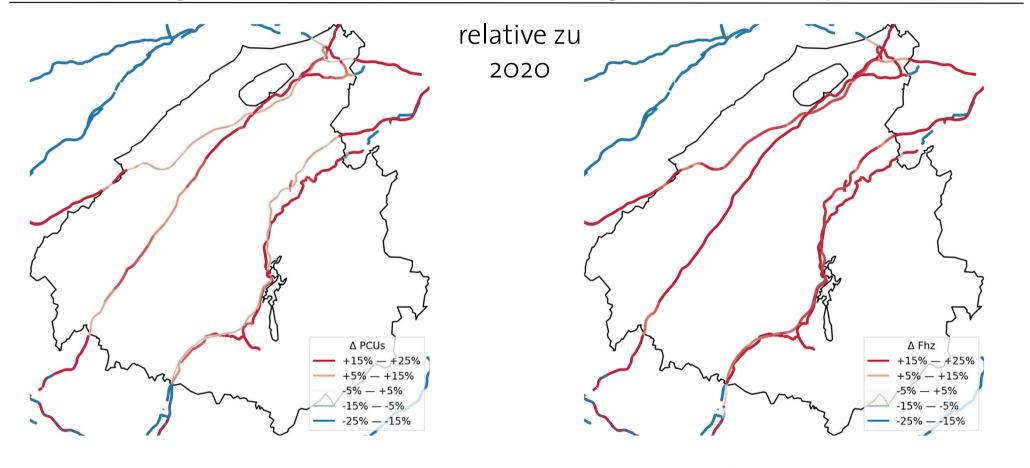

Verteilung auf die Verkehrsmittel in Mio. Pkm und Mio. Fzkm

Abbildung 15: Stadt und Agglomeration (SA, Zürich) Verteilung auf die Verkehrsmittel in Mio. Pkm und Mio. Fzkm


Abbildung 16: Ländlich Ungerichtet (LU), Referenzszenario 2050 Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

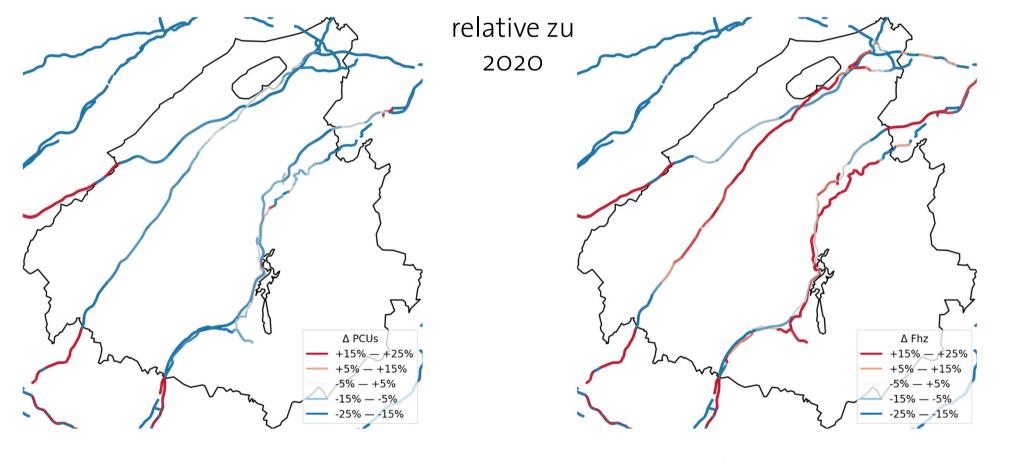
In PCU/Tag

In Fahrzeugen/Tag


Abbildung 17: Ländlich Ungerichtet (LU), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis,

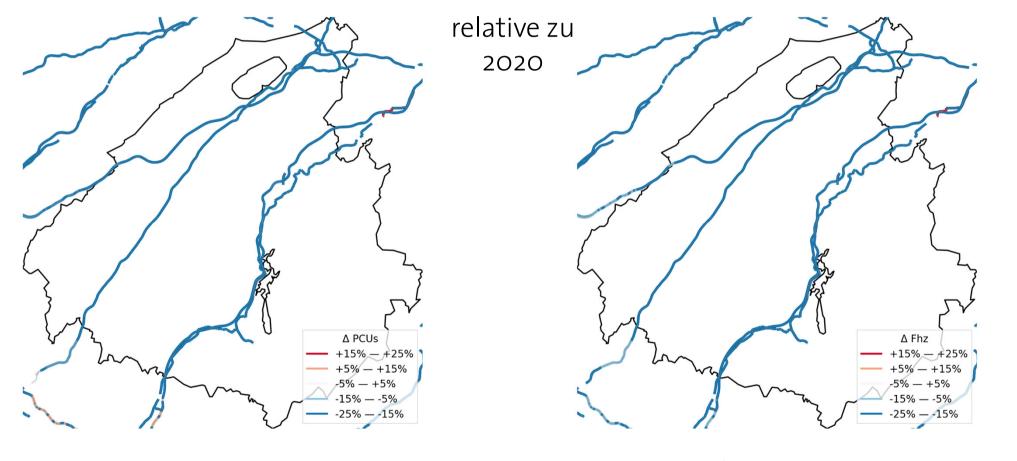
In PCU/Tag

In Fahrzeugen/Tag


Abbildung 18: Ländlich Ungerichtet (LU), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis,

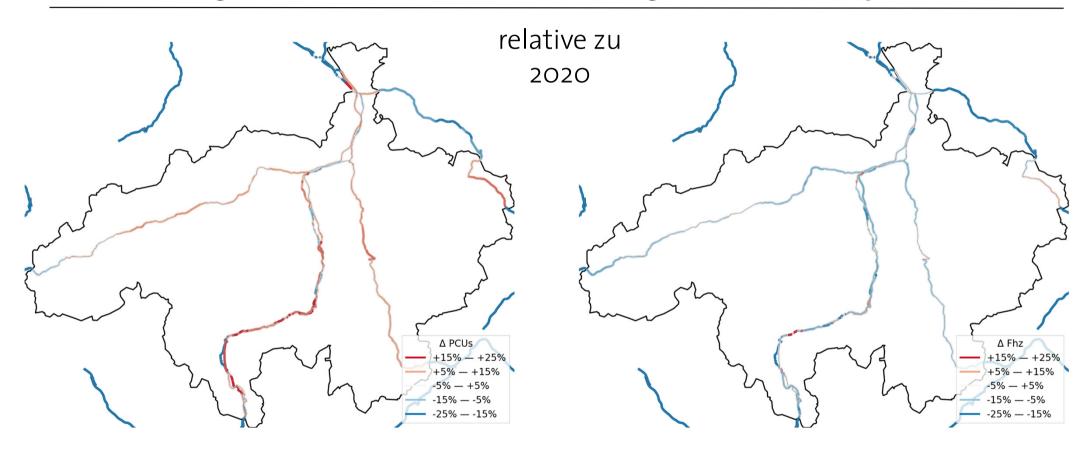
In PCU/Tag

In Fahrzeugen/Tag


Abbildung 19: Ländlich Ungerichtet (LU), Szenario B 2050 mit privaten AF mit AF-Einzel-Taxis,

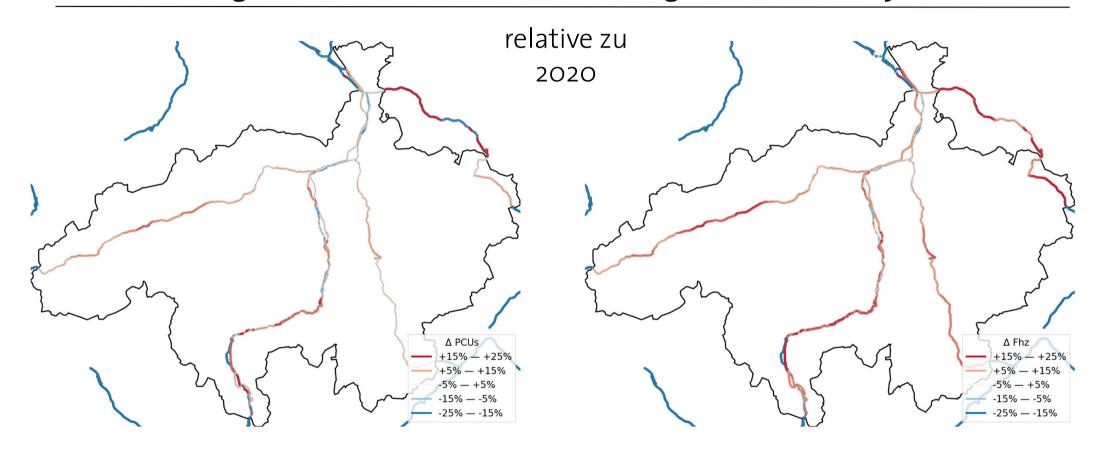
In PCU/Tag

In Fahrzeugen/Tag


Abbildung 20: Ländlich Ungerichtet (LU), Szenario B 2050 mit privaten AF ohne AF-Einzel-Taxis,

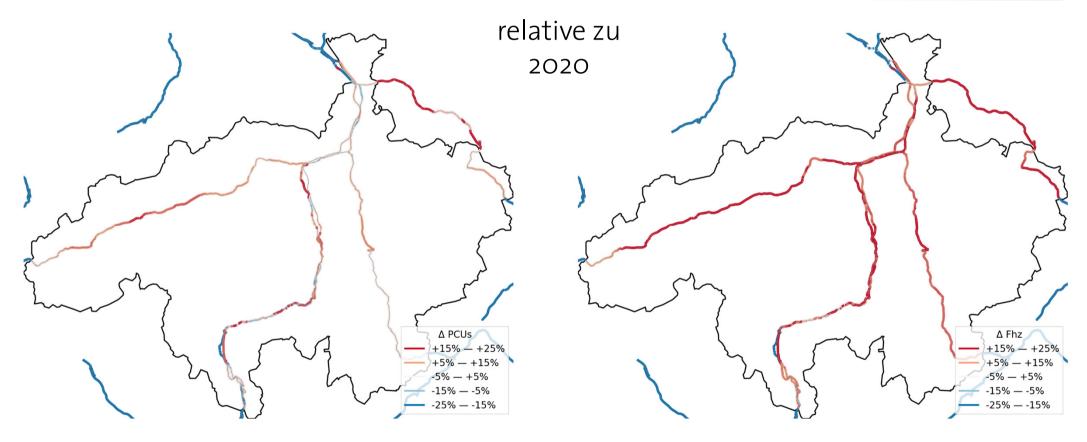
In PCU/Tag

In Fahrzeugen/Tag


Abbildung 21: Ländlich Gerichtet (LG), Referenzszenario 2050 Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

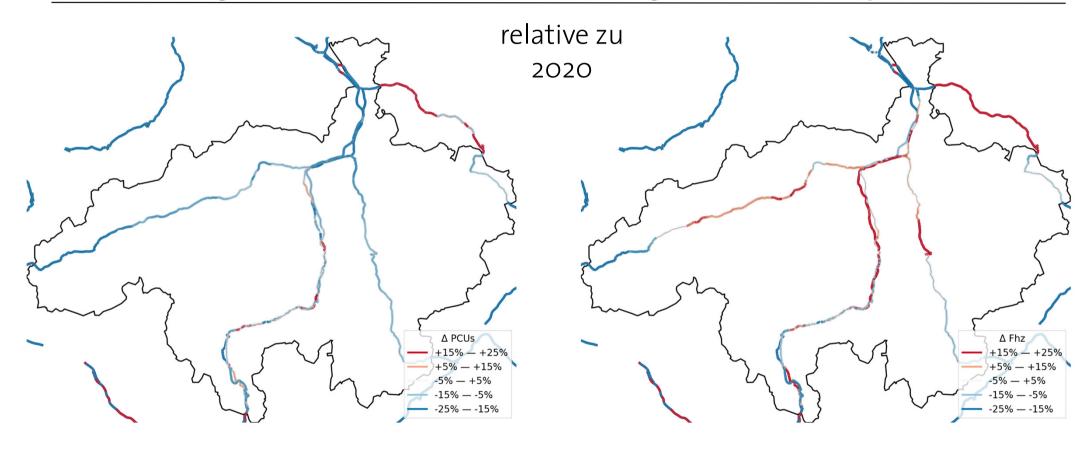
In PCU/Tag

In Fahrzeugen/Tag

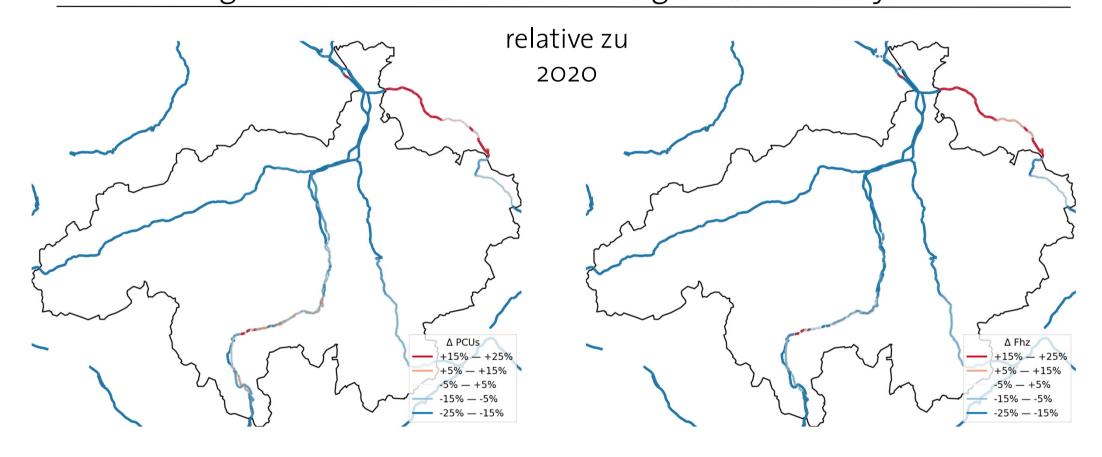

Abbildung 22: Ländlich Gerichtet (LG), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis, Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

In PCU/Tag

Abbildung 23: Ländlich Gerichtet (LG), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis,


Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

In PCU/Tag


Abbildung 24: Ländlich Gerichtet (LG), Szenario B 2050 mit privaten AF mit AF-Einzel-Taxis,

Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

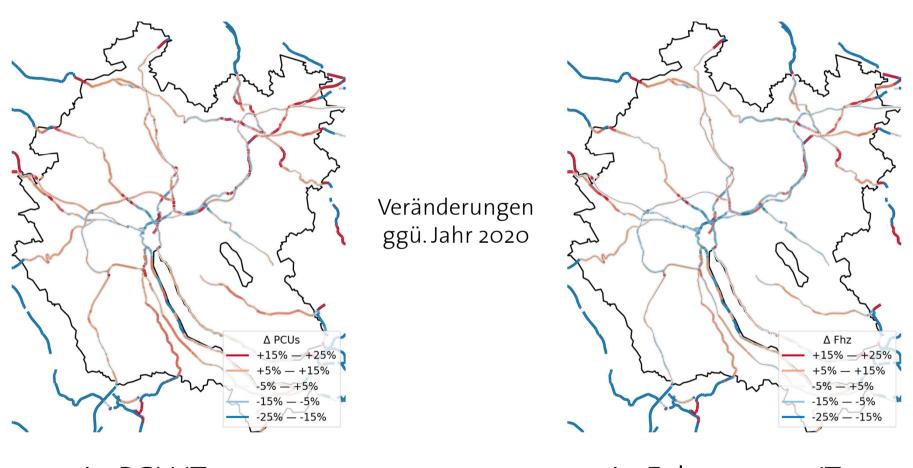
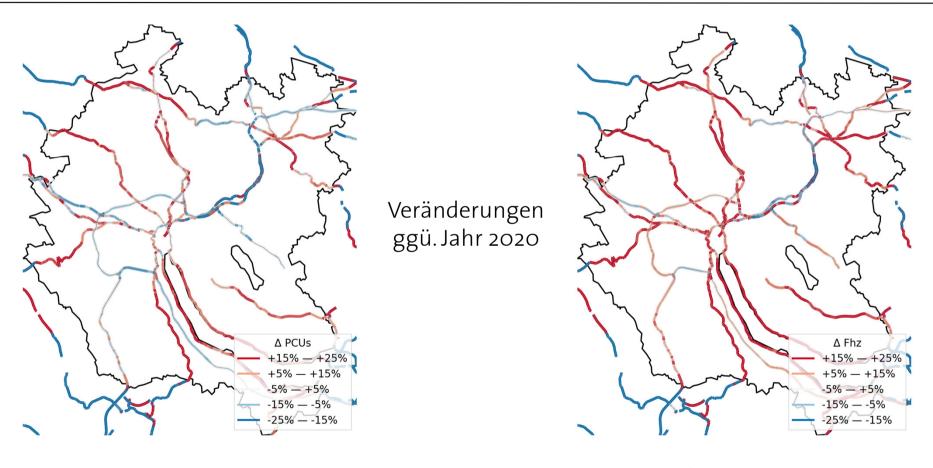

In PCU/Tag

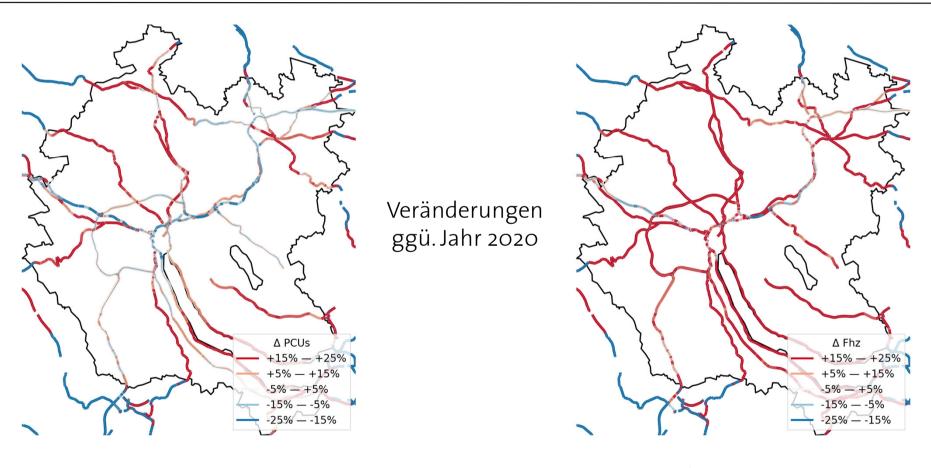
Abbildung 25: **Ländlich Gerichtet (LG), Szenario B 2050 mit privaten AF ohne AF-Einzel-Taxis,** Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

In PCU/Tag


Abbildung 5: **Stadt und Agglomeration (SA), Referenzszenario 2050** Veränderung PCU und DWV auf OSM-Kategorie "Motorway"

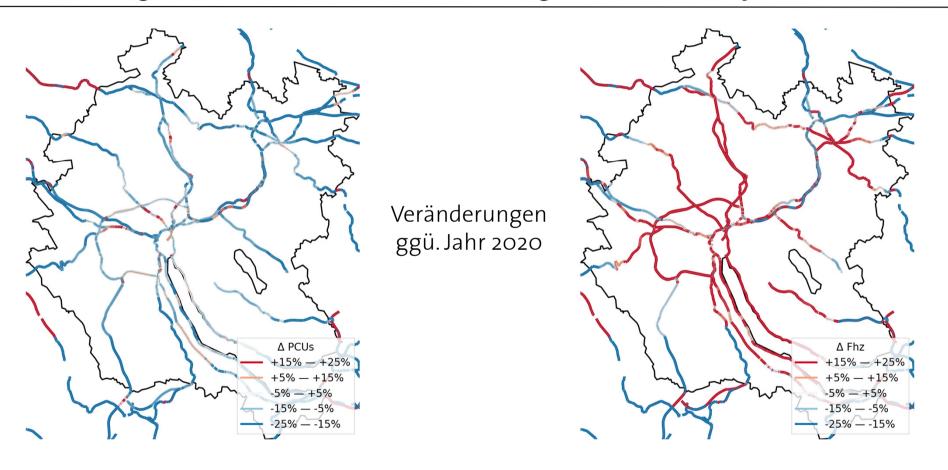
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 6: Stadt und Agglomeration (SA), Szenario A 2050 mit privaten AF ohne AF-Einzel-Taxis

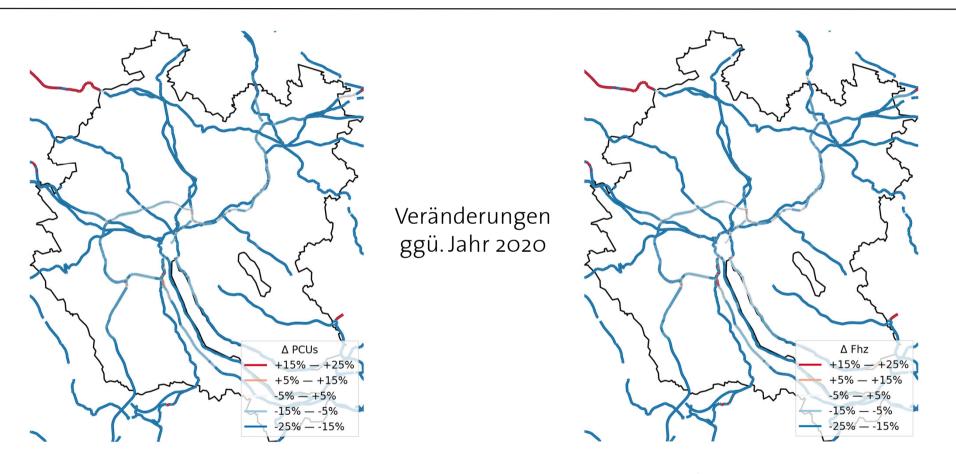
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 7: Stadt und Agglomeration (SA), Szenario A 2050 mit privaten AF mit AF-Einzel-Taxis,

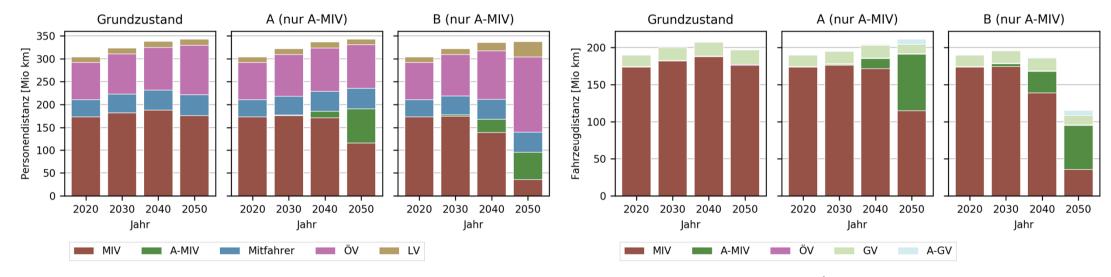
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 8: Stadt und Agglomeration (SA), Szenario B 2050 mit privaten AF mit AF-Einzel-Taxis,

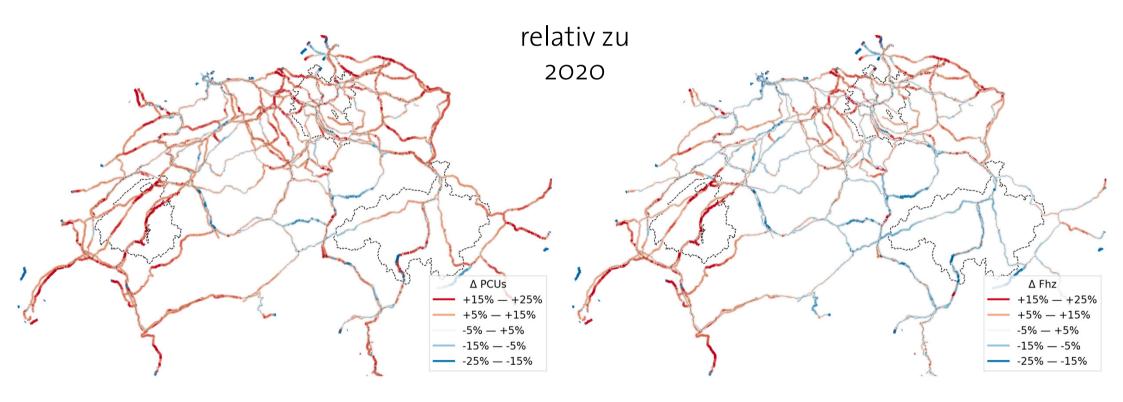
in PCU/Tag

in Fahrzeugen/Tag


Abbildung 9: Stadt und Agglomeration (SA), Szenario B 2050 mit privaten AF ohne AF-Einzel-Taxis,

in PCU/Tag

in Fahrzeugen/Tag


Abbildung 26: **Schweiz 2050, mit private AF,** Verkehrsmittelverteilung in Mio. Pkm und Mio. Fzkm

Mio. Pkm je Tag

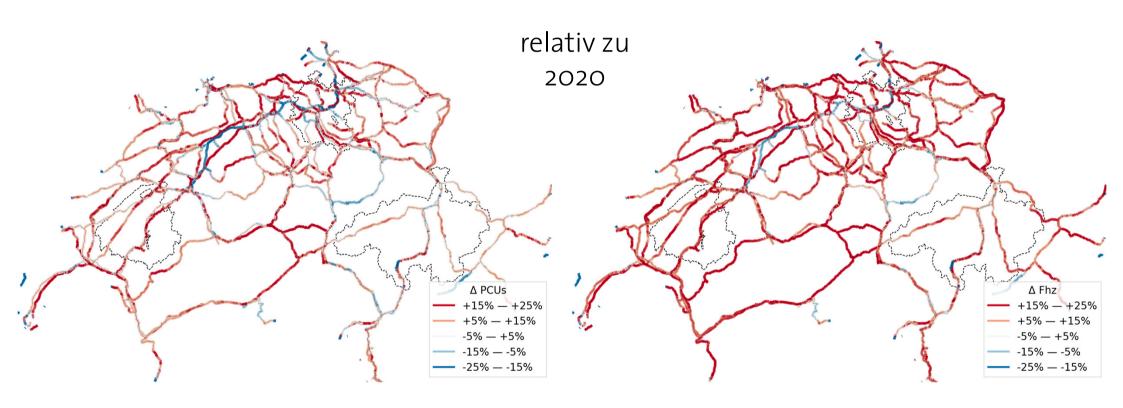

Mio. Fzkm je Tag (nur motorisierter Strassenverkehr)

Abbildung 27: Schweiz Referenzszenario 2050 Veränderung PCU & DWV auf OSM "motorway"

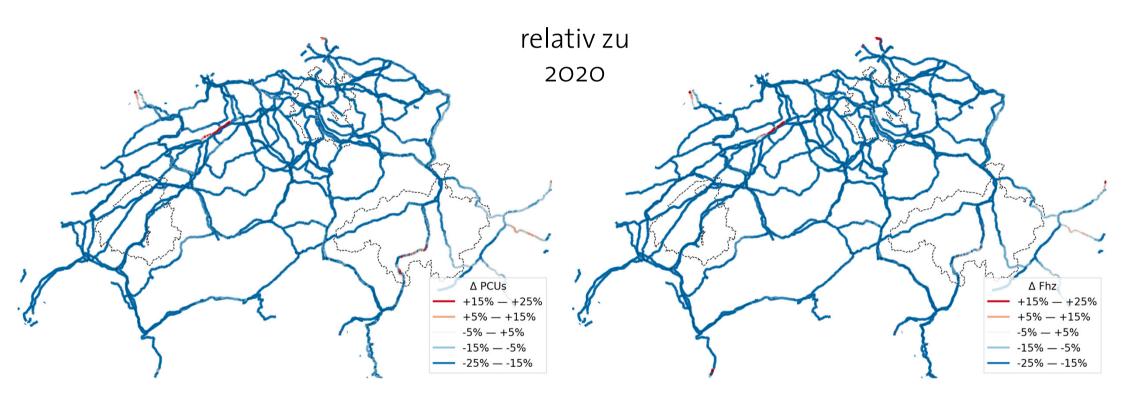

In PCU/Tag

Abbildung 28: Schweiz, Szenario A 2050, mit private AF Veränderung PCU & DWV auf OSM "motorway"

In PCU/Tag

Abbildung 29: Schweiz, Szenario B 2050, mit private AF Veränderung PCU & DWV auf OSM "motorway"

In PCU/Tag

Zusatzfolien 4: Engpassanalyse und Knotenanalyse

Ergebnisse Engpassanalyse

Anzahl Strecken	Engpassanalyse STEP-NS 2040	Szenario A/B 2040	Szenario A 2050	Szenario B 2050
Stufe III (Auslastung 2040: > 120%)	8	4	4	1
Stufe II (Auslastung 2040: 111-120%)	3	4	4	5
Stufe I (Auslastung 2040: 101-110%)	1	1	1	2
Summe Engpässe	12	9	9	8
Engpass gelöst	-	3	3	4
Summe betrachteter Querschnitte	12	12	12	12

Wichtig:

Gilt für optimistische Kapazitätswirkungen von AV (Kapazität +30% bei 100% Durchdringung).

Entlastung Querschnitte aufgrund starrer Kapazitätsrestriktion überschätzt.

Ohne Berücksichtigung von induzierten Verkehr durch AV

Keine Berücksichtigung von Leerfahrten

Bei 2 der 3 gelösten Engpässe konnten die Ergebnisse nicht plausibilisiert werden.

Knotenanalyse

Untersuchung von drei Knoten bezüglich zweier Kenngrössen:

- Maximale Auslastung: Verhältnis der verkehrlichen Nachfrage zur Kapazität. Dabei wird in Analogie zum massgebenden Abschnitt bei der Engpassanalyse auf Nationalstrassen – jeweils die massgebende Knotenzufahrt mit der höchsten Auslastung angegeben. Diese hängt von der Aufteilung der Knotenströme ab.
- Gewichtete Wartezeit: Infolge des Knotenbetriebs kommt es zu Wartezeiten auf den Knotenzufahrten. Die mittlere Wartezeit gibt an, welche Wartezeit im Durchschnitt über alle Fahrzeuge, die den Knoten überqueren, entsteht (bspw. infolge Rotzeiten und/oder Auflösung des Rückstaus).