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Abstract

Current quantum computers are plagued by prohibitive amounts of
noise, which complicates the experimental realization of useful quan-
tum algorithms that outperform classical computers. Quantum error
mitigation techniques could constitute a potential avenue to demon-
strate this feat without the need for fault-tolerant quantum error cor-
rection. One method in this family of mitigation techniques is the
quasiprobability method introduced by Temme et al. [1]. It simulates
a noise-free quantum computer with a noisy one, with the caveat of
only producing the correct expected values of measurement observ-
ables. The cost of a quasiprobability simulation manifests as a sampling
overhead which scales exponentially in the number of error-mitigated
gates in the circuit. In this thesis we aim to reduce the exponential
basis of that overhead, which in turn allows the application of the
quasiprobability method to deeper quantum circuits. A central result
is the introduction of a novel scheme, which we call Stinespring al-
gorithm, that aims to choose the quasiprobability decomposition in a
noise-aware manner. Along the way, we introduce a generalization of
the quasiprobability method, which we denote approximate quasiprob-
ability method, that allows for a tradeoff between an approximation
error and the sampling overhead. This method is already interesting
on its own and we present a few potential applications. Finally, we
present some ideas how quantum error correction can benefit from the
quasiprobability method. This final part is separate to the other top-
ics of the master thesis and gives a rough overview of a new research
project that started towards the end of the thesis and that we will con-
tinue to pursue in the future.
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Chapter 1

Introduction

Quantum computing holds the promise for significant advancements in
many fields such as quantum chemistry, material science, optimization and
machine learning. Recent decades have seen a surge in experimental and
theoretical efforts towards the realization of practical quantum computers,
and while many obstacles have already been overcome, there is still a long
way to go before quantum computers might outperform classical computers
for useful problems. The major obstacle towards large-scale fault tolerant
quantum computing is the experimental difficulty of coherently storing and
manipulating quantum information. In contrast to their transistor-based
classical counterparts, quantum computers suffer from a significant amount
of noise, which physically stems from uncontrolled interactions between the
qubit systems and their environment. This noise accumulates over the execu-
tion of a quantum algorithm and thus limits experimenters to the execution
of restrictively small quantum circuits.

A major breakthrough was the realization that unwanted noise could be sup-
pressed by the use of quantum error correction[2]. This family of schemes
encodes the quantum information of a qubit into multiple physical qubits
in order to protect it from local noise. Quantum error correction requires a
polylogarithmic overhead in terms of number of qubits and quantum gates,
and furthermore it only works if the hardware operations exhibit fidelities
above a certain threshold. This polylogarithmic overhead is tame when
speaking of asymptotics, but currently available quantum hardware does
not fulfill the requirements for quantum error correction [3] and it is esti-
mated that it might take decades to achieve this goal.

Considering this problem, it is not a surprise that recent research on alterna-
tive methods to mitigate noise on quantum hardware has gained traction in
the last few years. Multiple schemes have been proposed [4, 5, 1, 6] that aim
to reduce the effect of noise while also being significantly easier to imple-
ment than quantum error correction. All of these methods have some kind
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1. Introduction

of drawback that prohibits them from achieving large-scale fault tolerant
quantum computation. The hope is rather to enable current or near-term
quantum hardware to demonstrate a speed-up on useful tasks compared
to classical computers. The term Quantum Error Mitigation is often used to
group these methods.

One specific method in the family of quantum error mitigation techniques is
the quasiprobability method (sometimes also known as probabilistic error cancel-
lation). The central idea is to decompose the ideal (noise-free) quantum cir-
cuit into a quasiprobabilistic mixture of noisy circuits that one can efficiently
implement on a given hardware. We will call such mixtures quasiprobability
decompositions. The origin of the method lies in the domain of classical sim-
ulators for quantum circuits [7, 8]. The main insight of Temme et al. [1]
was that the method could easily be lifted to a quantum error mitigation set-
ting: Instead of simulating a noise-free quantum computer with a classical
computer, one rather simulates a noise-free quantum computer with a noisy
quantum computer. For the rest of this thesis we will restrict ourselves to
quasiprobability simulations corresponding to the latter setting.

1.1 Previous Works

The quasiprobability method exhibits a simulation overhead that manifests
as an additional sampling cost. More precisely, the number of shots required
to execute a circuits scales asO(C2·number of gates) where C ≥ 1 is the so-called
C-factor of the quasiprobability decomposition. This quantity encapsulates
how strongly the method has to compensate for the noise in the quantum
system. Notably, C goes to 1 in the limit where the noise vanishes, mak-
ing the simulation overhead disappear. This exponential cost restricts the
quasiprobability method to shallow quantum circuits.

By the above reasoning it is evident that one wants to find quasiprobability
decompositions that exhibit the smallest possible C-factor. The arguably
most difficult part of finding a suitable quasiprobability decomposition is
how to choose the noisy quantum circuits into which we decompose the
ideal quantum circuit. We denote this set of circuits the decomposition set.

Temme et al. [1] realized, under the assumption that the decomposition set
is already fixed, that the optimal quasiprobability decomposition could be
expressed as a linear program. However, they did not specify a procedure
to choose a decomposition set that would suffice to decompose an arbitrary
circuit under the constraint of some arbitrary noise. Endo et al. [9] intro-
duced an explicit decomposition set that fulfills this requirement. However,
this decomposition set is not adapted to the circuit to be decomposed, nor
to the hardware noise present to the hardware. Ideally one would optimize
over the decomposition set in order to achieve a lower C-factor.
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1.2. Outline of Thesis

In this thesis, we introduce a novel method, called the Stinespring algorithm,
that aims to solve this problem. We make extensive use of mathematical
optimization techniques for convex and non-convex problems to obtain a
decomposition set that is adapted to the hardware noise. Simulation results
indicate that our method significantly reduces the C-factor of the quasiprob-
ability decomposition. On the way towards the Stinespring algorithm, we
also introduce a new technique which we call the approximate quasiprobability
decomposition, which is interesting on its own. Instead of perfectly simulat-
ing a certain circuit, we allow for a small approximation error. This enables
us to make a tradeoff between the approximation quality and the sampling
overhead of the quasiprobability method. We will illustrate our results with
simulations and hardware demonstrations whenever possible.

1.2 Outline of Thesis

In Chapter 2 we review the quasiprobability method in detail and investigate
the associated simulation overhead and the difficulty of finding a decompo-
sition set. We also introduce the channel difference decomposition, which
serves as a theoretical bound on how small the C-factor of a quasiprobabil-
ity decomposition can be. In Chapter 3 we introduce the approximate QPD
method and demonstrate some direct applications of it. In Chapter 4 we
present the Stinespring algorithm as well as the necessary building blocks
required to realize it.

Chapter 5 introduces a separate topic of the master thesis that is not directly
related to Chapters 3 and 4. The aim of this section is to investigate how the
quasiprobability method could be used to facilitate the implementation of
quantum error correction on near-term quantum hardware. This is still an
ongoing research effort, and this part of the manuscript aims to document
some first steps towards the described goal.

1.3 Overview of Contributions

We summarize the novel contributions from this thesis:

• Many details in the presentation of Chapter 2 have not been stated in
such precision in previous literature. However, we estimate that many
of these contributions are evident for someone knowledgeable in the
domain.

• The channel difference decomposition (Section 2.6).

• The approximate QPD and its applications (Chapter 3).

• The Stinespring algorithm (Chapter 4).
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1. Introduction

• A few results on the application of the quasiprobability method to
quantum error correction (Chapter 5).

1.4 Notation

In the following section we introduce some recurring notation used through-
out this thesis.

Hilbert spaces: We denote Hilbert spaces with alphabetic subscripts
HA,HB, . . . and interchangeably reference them by A, B, . . . . The ten-
sor products of two spaces HA ⊗HB is also written as AB. All Hilbert
spaces in this thesis will be finite-dimensional.

Density matrices: We denote the set of density matrices on the system A as

S(A) := {ρ ∈ End(HA)|ρ ≥ 0, Tr[ρ] = 1} .

Linear operators: We denote linear maps from a system A to a system B as

L(A, B) := Hom(HA,HB)
L(A) := L(A, A) .

Unitary operators: We denote the unitary maps on a system A as

U(A) := {U ∈ L(A)|U† = U} .

Quantum channels:

TP(A, B) := {E ∈ L(L(A), L(B))|E is trace-preserving }
CP(A, B) := {E ∈ L(L(A), L(B))|E is completely positive }

TPCP(A, B) := TP(A, B) ∩CP(A, B)

Induced quantum operation: For a linear map O ∈ L(A, B) we define the
induced quantum operation [O] ∈ L(L(A), L(B)) as

[O](ρ) := OρO† .

4



Chapter 2

Quasiprobability Method

Consider n-qubit and m-qubit Hilbert spaces HA,HB and a linear operator
F ∈ L(L(A), L(B)). We would like to execute F on n qubits of our quantum
computer which are initially in the state ρin. This task is obviously nonsensi-
cal if F is a non-physical operation1. Even if F is physical, or even unitary,
the quantum computer will at best only be able to approximate its execution,
as current quantum hardware suffers from significant amounts of noise.

The quasiprobability method allows us to simulate a noiseless execution of
F using noisy operations. In contrary to quantum error correction, we don’t
encode our quantum information in a larger space, so a logical qubit still
corresponds to a physical qubit. However, the quasiprobability simulation
only works on average, i.e. one doesn’t actually obtain access to the (possibly
non-physical) state F (ρin) itself, but rather to a random physical state which
is sampled independently in every run of the experiment. This random
state exhibits the same expectation values as F (ρin) for the outcomes of any
measurement, provided that we perform a small amount of classical post-
processing.

A typical application would be that F is a unitary operation representing
some quantum gate. If the the individual gates composing a quantum algo-
rithm suffer from too much noise, then the measurement statistics at the end
of the circuit will differ so strongly from the ideal ones, that it becomes im-
possible to retrieve any useful information out of them. The quasiprobability
method allows us to circumvent that noise, as long as we are only interested
in expectation values of observables at the end of the circuit. This setting
is interesting for many types of quantum algorithms, such as variational
quantum eigensolvers [10, 11], iterative quantum phase estimation [12, 13],
recursive QAOA [14] and generally all quantum circuits that exhibit a deter-
ministic measurement outcome when executed without noise. Interestingly,

1We use the term physical operation interchangeably with TPCP.
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2. Quasiprobability Method

we will also encounter settings where it might be interesting to simulate the
execution of a non-physical map F .

2.1 Quasiprobability Sampling

Definition 2.1. A quasiprobability decomposition (QPD) of the linear oper-
ator F ∈ L(L(A), L(B)) is a finite set of tuples {(ai, Ei)}i with ai ∈ R and
quantum channels Ei ∈ TPCP(A, B) such that

F (ρ) = ∑
i

aiEi(ρ) , ∀ρ ∈ L(A) . (2.1)

We call {Ei}i the decomposition set of the QPD.

The quasiprobability method requires a QPD {(ai, Ei)}i where the maps Ei
correspond to operations that can be implemented on the quantum hard-
ware, e.g. they might correspond to the channel of a noisy quantum gate.
In practice, these could be obtained by doing tomography and/or by using
prior knowledge of the experimental noise. Suppose now that we are in-
terested in the expectation value of a projective measurement described by
a Hermitian operator O, which would be performed after the operation F ,
i.e. we would like to obtain Tr[OF (ρ)], given a certain input state ρ. The
linearity of the trace implies

Tr[OF (ρ)] = C ∑
i

|ai|
C

sgn(ai)Tr[OEi(ρ)] , (2.2)

where we have introduced the C-factor C := ∑i |ai|. The right-hand side
of Equation (2.2) naturally gives us a way to construct an unbiased2 estima-
tor for Tr[OF (ρ)], while only having access to the operations Ei of the noisy
hardware, as seen in Figure 2.1. We choose a random number i with proba-
bility |ai|/C and then perform the operation Ei followed by the measurement
O. The output of the estimator is the outcome of the measurement weighted
by the coefficient Csgn(ai). By sampling this estimator many times and con-
sidering the average value, we can obtain an arbitrarily precise estimate of
the true expectation value Tr[OF (ρ)].
Although generally the Hilbert spaces A and B can have different dimen-
sionality, we will mostly restrict ourselves to the case where HA = HB as
this is the relevant setting for error mitigated quantum computing.

Remark 2.2 (Limitations of Tomography). In practice the Ei are imperfect
estimates of the true underlying quantum channels, produced by tomogra-
phy. Unfortunately, tomography fundamentally cannot give us an arbitrarily

2An estimator is called unbiased if its expected value is exactly the true value.
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2.1. Quasiprobability Sampling

O

𝒑𝟏 =
𝒂𝟏
𝑪 ℰ1 O

𝒑𝟐 =
𝒂𝟐
𝑪

𝒑𝟑 =
𝒂𝟑
𝑪

⋅ 𝐶sign(𝑎1)

ℰ2 O
⋅ 𝐶sign(𝑎2)

ℰ3 O
⋅ 𝐶sign(𝑎3)

...

Figure 2.1: Graphical representation of the quasiprobability method. The ideal quantum gate
U is randomly replaced by a quantum channel Ei that our hardware can implement. The output
of the measurement O must be weighted according to the sampled operation.

precise estimate of the true channels, due to state preparation and measure-
ment (SPAM) errors. When we have an erroneous knowledge of the Ei, our
QPD will have erroneous coefficients ai, which again translate into an er-
ror in our estimator of the expectation value. Endo et al. have shown [9]
that this problem can be circumvented by using gate set tomography (GST),
a specific type of tomography, which gives self-consistent estimates of the
SPAM errors. While the estimates of the Ei are also erroneous with GST,
the authors show that the estimator of the quasiprobability method remains
unbiased. For more information on SPAM errors and GST we refer the
reader to [15]. Recent works have also explored the possibility of learning
the QPD coefficients ab-initio without the need of explicit tomography [16],
though these methods come with their own share of technical difficulties
and shortcomings. An alternative solution could also be the utilization of
novel techniques that have recently been proposed, which allow the charac-
terization of quantum channels without being affected by the error induced
by SPAM errors [17].
For small-scale experiments on current quantum hardware the issue of er-
roneous tomography is not too problematic , since the single-qubit gate
errors occurring during SPAM are significantly lower than the two-qubit
gate errors that can be corrected using the quasiprobability method. There-
fore one can still expect a significant improvement in accuracy by using the
quasiprobability method.
In light of the above discussion we will ignore the issue of tomography
errors for the rest of the thesis, as it can be treated as a separate and inde-
pendent problem to the ones we will address.
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2. Quasiprobability Method

2.2 Sampling Overhead and the C-factor

The quasiprobability estimator constructed above does generally not retain
the full statistics of the measurement outcome of O, it only conserves the
expectation value. In fact, the variance of the estimator increases with C and
one requires O(C2) more shots to estimate Tr[OF (ρ)] compared to the case
where F is implemented perfectly.

To formulate the above statement more precisely, we must introduce some
additional notation. Consider a random variable X which is distributed ac-
cording to the outcomes of the measurement of O on F (ρ). Similarly, Yi
are random variables distributed according to the outcomes of the measure-
ment O on Ei(ρ). For simplicity, we restrict ourselves to the case where O
is a binary measurement with the two possible outcomes 0 and 1. This cor-
responds to the setting that is relevant for error-mitigated quantum comput-
ing. So the X and Yi are binomial distributions and thus fully characterized
by their expectation values, which we denote by µ and mi. Let I be a dis-
crete random variable taking as value one of the indices i with probability
P[I = i] = |ai|/C. The outcome of our quasiprobability sampling estimator
is thus modelled by a random variable Z := Csgn(aI)YI . The behavior of
the variance of Z compared to the reference variance of X (i.e. if we could
implement F perfectly on the hardware) is given by following lemma:

Lemma 2.3. Consider the setup described above. Then,

Var[Z] ≤ Var[X] + C2 (2.3)

with equality for some choice of mi and µ.

If we draw N samples of our quasiprobability sampling estimator, the vari-
ance of the averaged result will be reduced to Var[Z]/N. This provides us
the practical implication of Lemma 2.3: The number of samples required to
reduce the error of our estimator to some fixed constant scales as O(C2).

Proof. We can make use of the law of total variance, i.e. ,

Var[Z] = EI [Var[Z|I]] + VarI [E[Z|I]] (2.4)

= ∑
i

P[I = i]Var[Z|I = i] + ∑
i

P[I = i](E[Z|I = i]−E[Z])2 . (2.5)

By inserting the respective definitions of I, Z and Yi we find

Var[Z] = ∑
i
|ai|
(

Cmi(1−mi) +
(Csgn(ai)mi − µ)2

C

)
, (2.6)

8



2.3. Quasiprobability Decomposition of Multiple Operations

which can be rewritten as

Var[Z] =
1
C ∑

i
|ai|[C2mi − 2Csgn(ai)miµ + µ2] = C ∑

i
|ai|mi − 2µ2 + µ2

(2.7)
where we used ∑i aimi = µ. Therefore we get

Var[Z] = Var[X] + C ∑
i
|ai|mi − µ . (2.8)

The second term on the right hand side reaches it maximum of C2 when all
mi = 1 and the third term vanishes when µ = 0, so the desired inequality fol-
lows directly. We can easily construct an example of random variables Y, Xi
that saturates these bounds, while still fulfilling Y = ∑i aiXi by choosing
mi = 1, ai = ±1 and µ = 0.

The above considerations motivate us to choose the C-factor as a measure of
quality for a QPD. A desired operation F will typically have infinitely many
QPDs into operations that our hardware can execute. Hence, it is important
to find a QPD with the lowest possible C-factor. One way this can be done
will be presented in Section 2.5.

Technically, the C-factor is a worst-case metric for the increase in variance of
the quasiprobability sampling, as there is no guarantee that the inequality
in Lemma 2.3 is close to being saturated. It is impossible to get a better
bound in practice, as we do not have access to the mi during the computation
of the optimal QPD. This is because typically our corrected gate will be part
of a much larger circuit where many other gates, occurring before and after
the gate in question, will also be corrected by the quasiprobability method.
Therefore, one has to make do with using C as a proxy estimate for the
sampling overhead.

2.3 Quasiprobability Decomposition of Multiple Oper-
ations

The above introduction to the quasiprobability method considers the sim-
plest case where one simulates only a single operation. In this section, we
seek to answer how this technique can be applied to large quantum circuits
consisting of many different gates. One might be tempted to try to directly
find a QPD of the quantum circuit as a whole. However, this turns out to
be unfeasible in practice, as finding a QPD of a many-qubit operation is an
optimization problem that requires an amount of resources exponential in
the number of qubits (the details of that statement will be discussed in Sec-
tion 2.5). So the more useful approach is to find a QPD of each quantum
gate individually, and then combine them together into one large QPD of

9



2. Quasiprobability Method

the whole circuit. As we will see further below, this local approach is com-
putationally tractable, but we have to pay a cost: We have no guarantee that
our QPD has the lowest possible C-factor, since the optimal total QPD is
unlikely to be separable into QPDs of the individual gates.

In the following we describe how the QPDs of two separate operations natu-
rally lead to a QPD of the concatenation of both. Note that showing this for
the concatenation also directly implies that it also works for the tensor prod-
uct of the two operations. Using this argument iteratively, one can construct
a QPD of the total circuit from the QPDs of the individual gates.

Consider two linear operators F1 ∈ L(L(A), L(A′)), F2 ∈ L(L(A′), L(A′′))
applied in succession on some quantum state ρ ∈ S(A). Suppose we are
given a QPD of each, which we call {(ai, Ei)} and {(bj,Gj)}. Together they
naturally lead to a QPD of F2 ◦ F1:

(F2 ◦ F1)(ρ) = C1C2 ∑
i,j

|ai · bj|
C1C2

sgn(ai · bj)
(
Gj ◦ Ei

)
(ρ) , ∀ρ ∈ L(A) . (2.9)

We see that the combined C-factor scales in a multiplicative way. Therefore,
when one has a circuit consisting of N gates corrected by the quasiprobabil-
ity method, the C-factor of the total circuit is given by the product of the indi-
vidual C-factors, i.e., Ctot = ∏N

i=1 Ci. This exponential cost in the number of
gates is a heavy price to pay, it is maybe not too surprising. If there were no
such drawback, the quasiprobability method would allow for fault-tolerant
quantum computation without the harsh resource requirements found in
quantum error correction (high gate fidelities and large number of physical
qubits).

For practical usage it is not tractable to store the QPD of the full circuit itself,
as that would require storing an amount of quasiprobability amplitudes that
is exponential in the number of gates. Instead we store the QPDs of the indi-
vidual quantum gates and due to the product form in Equation (2.9), one can
still implement the quasiprobability sampling estimator efficiently. Consider
a sequence of m operation Fm ◦ Fm−1 ◦ · · · ◦ F1 followed by a measurement
described by the observable O. For each operation Fk a QPD {(a(k)i , E (k)i )}
with C-factor Ck is given. Our estimator starts by sampling a random num-
ber i1 according to the probabilities {|a(1)i |/C1 and executing the operation
E (1)i1

. In a second step we sample a random number i2 according to the prob-
abilities |a(2)i |/C2 and execute the operation E (2)i2

. This procedure is repeated
for all m operations while keeping track of all indices i1, . . . , im sampled
along the way. At the very end we measure the observable O on the system.
The estimator then outputs the outcome of that measurement multiplied by
sgn(∏m

i=k a(k)ik
)∏m

i=k Ck.

Remark 2.4 (Assumptions on noise model). The combination of QPDs of
individual parts of a circuit into a QPD of the total circuit, as described

10



2.4. Existence of a QPD and the Endo Basis

in this section, can only work under certain assumptions on the gate noise.
More precisely the noise must be localized and Markovian. In looser term
this means that the noise on any quantum gate must be completely uncorre-
lated with other noise and independent on what operations were performed
previously on the circuit.

Unfortunately, real quantum hardware exhibits significant correlations be-
tween noise of operations which are spatially and temporally separated3 [18,
19, 20]. The first works on the quasiprobability method [1, 9] completely
neglected this issue, by assuming localized and Markovian noise in a first
order approximation. Some more recent research has shown that cross-
correlations can be tackled by using variants of the quasiprobability method
which do not rely on tomography to find the optimal quasiprobability coef-
ficients [16]. We are aware of other, as of yet unpublished, techniques which
can tackle the problem. For the rest of the thesis we will ignore this issue, as
it is independent to the problems that we will consider.

2.4 Existence of a QPD and the Endo Basis

In this section we would like to answer following question: For a given
quantum hardware, can we be certain that there even exists a QPD of F
into operations that the hardware can implement? This question may seem
rather difficult, as its answer appears to depend on the exact details of the
capabilities of the hardware, namely what kind of quantum operations it can
implement and at what fidelity it does so. Endo et al. [9] realized that the re-
quirements on the hardware are actually very few and always fulfilled on a
realistic quantum computer that is accurate enough, assuming that F is Her-
mitian-preserving. This assumption is very natural, as the Ei must be Her-
mitian-preserving (due to the physicality constraint), and any linear combi-
nation of Hermitian-preserving maps is itself Hermitian-preserving. Note
that we don’t require the Ei (and therefore F ) to be trace-preserving though,
as non-trace-preserving maps can be simulated using measurements and
postselection, as discussed at a later point in this section.

We start with the simplest case where F is a single-qubit operation. Let’s
consider 16 single-qubit operations, listed in Table 2.1, which can all be real-
ized by the successive execution of the Hadamard gate [H]4, the phase gate
[S]5 and/or a measurement-postselection operation [P0]6. The measurement-

3These non-local errors are often referred to as crosstalk errors.
4H = 1√

2

(
1 1
1 −1

)
5S =

(
1 0
0 i

)
6P0 := |0〉 〈0| =

(
1 0
0 0

)

11



2. Quasiprobability Method

postselection operation can be simulated in the context of the quasiprobabil-
ity sampling estimator by performing a measurement in the computational
basis and aborting if the outcome is 1, where aborting means that the esti-
mator outputs 0. Therefore any quantum computer able to implement Clif-
ford gates and measurements in the computational basis can also implement
these operations, at least approximately. It can be easily shown that these 16
operations are linearly independent, e.g. by showing that their PTMs are lin-
early independent. Since any Hermitian-preserving single-qubit operation
has a 4× 4 PTM with real entries7, we deduce that the mentioned set of 16
operations forms a basis of the space of Hermitian-preserving operations.
From now on we will call this set of basis operations the Endo Basis.

Note that the last 6 operations in Table 2.1 are not trace-preserving, due to
the measurement-postselection operator. The inclusion of non-trace-preserv-
ing operations is necessary, as elsewise we could only decompose maps F
which are proportional to a trace-preserving map (as any linear combination
of trace-preserving maps will be proportional to another trace-preserving
map).

[1] (no operation)
[σX] = [H][S]2[H]
[σY] = [H][S]2[H][S]2

[σZ] = [S]2

[RX] = [ 1+iσX√
2
] = [H][S]3[H]

[RY] = [ 1+iσY√
2
] = [S][H][S]3[H][S]3

[RZ] = [ 1+iσZ√
2
] = [S]3

[RYZ] = [ σY+σX√
2

] = [H][S]3[H][S]2

[RZX] = [ σZ+σY√
2

] = [S]3[H][S]3[H][S]3

[RXY] = [ σX+σX√
2

] = [H][S]2[H][S]3

[πX] = [ 1+σX

2 ] = [S][H][S][H][P0][H][S]3[H][S]3

[πY] = [ 1+σY

2 ] = [H][S]3[H]P0[H][S][H]

[πZ] = [ 1+σZ

2 ] = [P0]

[πYZ] = [ σY+iσZ

2 ] = [S][H][S][H][P0][H][S][H][S]3

[πZX] = [ σZ+iσX

2 ] = [H][S]3[H][P0][H][S][H][S]2

[πXY] = [ σX+iσY

2 ] = [P0][H][S]2[H]

Table 2.1: 16 basis operations constituting the Endo basis. All these operations can be realized
using Hadamard gates H, phase gates S and measurement-postselection operations P0.

The above argument requires our computer to be able to implement [H], [S]

7We refer the reader to [15] for an exact derivation.
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2.5. Finding the Optimal QPD for a Fixed Decomposition Set

and [P0] exactly. While this is not the case, a useful quantum computer will
be able to approximate them reasonable well. In fact, as long as the fidelity
of this approximation is not too bad, the approximate Endo operations will
still remain linearly independent. This is formalized in following lemma:

Lemma 2.5 ([9]). Denote by B(0)
i the elements of the Endo basis and by Bi an

approximation thereof. These operators are represented as their PTM, i.e. as real
4× 4 matrices. Define

εmax := max {
∥∥∥Bi −B(0)

i

∥∥∥
∞
|i = 1, . . . , 16} . (2.10)

The Bi are linearly independent when εmax < 13−3
√

17
32 ≈ 0.0351.

Actually, the Bi are very likely to remain linearly independent even above
this threshold.

The construction of a universal decomposition set can be straightforwardly
translated to n-qubit operations F for n > 1. The basis is then given by the
tensor products of the Endo basis elements. Therefore we can decompose
any F in at most 16n basis operations.

2.5 Finding the Optimal QPD for a Fixed Decomposi-
tion Set

In Section 2.4 we have shown that in practice there always exists a decom-
position set into which we can find a QPD of the desired n-qubit operation
F . Let’s now consider the setting where we have a fixed decomposition
set {Ei}i and we would like to find the optimal (in terms of lowest possi-
ble C-factor) quasiprobability coefficients ai s.t. Equation (2.1) is fulfilled. If
our decomposition set consists of linearly independent operations, which is
e.g. the case for the Endo basis, then this problem corresponds to solving
a set of linear equations. But in practice one is often confronted with the
more general case where there is an infinity of possible decompositions, so
we require some method to pick out the best one of them.

Temme et al. [1] realized that this optimization problem can be written in
terms of a linear program (LP):


min
ai∈R

∑j |aj|
s.t. F = ∑

j
ajEj . (2.11)

13



2. Quasiprobability Method

To see that this is indeed a linear program one can introduce additional
optimization variables bi and rewrite the problem as

min
ai∈R,bi∈R

∑j bj

s.t. F = ∑
j

ajEj and − bi ≤ ai ≤ bi . (2.12)

To translate the constraint F = ∑j ajEj for a numerical implementation of
a mathematical optimization algorithm, one has to choose an isomorphic
matrix representation of the involved quantum operations, such as the Choi
representation or the PTM representation.

As a final remark we note that the number of equality constraints in the
LP (2.11) is 16n8 where n is the number of qubits involved in the operation.
This exponential cost means that the LP can not be used to compute a QPD
of large circuit blocks. In practice, one typically uses the LP (2.11) to find
the QPD of every one- and two-qubit gate in a given circuit and then uses
the construction in Section 2.3 to implement a quasiprobability sampling
estimator for the whole circuit.

2.6 Channel Difference Decomposition

In this section we will expand on the work from Section 2.5 and ask follow-
ing question: What is the optimal QPD of an operation F without having
fixed the decomposition set previously? More concretely we would like to
generalize the optimization problem (2.11) to not only optimize over the ai,
but also over the Ei. The resulting QPD will not be directly useable for the
quasiprobability method, as the obtained Ei might not be implementable by
a quantum computer in practice. Rather we will assume for the moment
that we have some kind of ideal quantum computer that can implement any
physical map, so the only restriction on the Ei will be that they must be trace-
preserving and completely positive. The fact that the Ei are trace-preserving
implies that we will only be able to find QPDs for F that are trace-preserv-
ing, or at least related to a trace-preserving map by a scaling factor. The
results from this section will turn out to be useful for the Stinespring algo-
rithm, which is covered in Chapter 4.

For the following section, it will be convenient to represent quantum op-
erations by their Choi matrices. We denote the Choi matrix of F by ΛF
and our goal will be to construct a finite set of Choi matrices {ΛEi}i which
correspond to a decomposition set {Ei}i. The Choi representation is very

8The exact value 16n holds under the assumption that we represent the channels as
Choi or PTM matrices. When using the Choi representation, the equations contain complex
numbers, so one actually has 2 · 16n real equality constraints.
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2.6. Channel Difference Decomposition

convenient, as it allows us to formulate the TPCP-condition on the decom-
position basis in a straightforward way: ΛEi ≥ 0 and Tr2[ΛEi ] =

1
2n 1 for all i

where Tr2 stands for the partial trace over the ancillary Hilbert space of the
Choi-Jamiolkowski isomorphism and n is the number of qubits involved in
F .

With the above preparation, we can now easily write down our optimization
problem as 

min
ai∈R,ΛEi∈C4n×4n

N
∑

j=1
|aj|

s.t. ΛF =
N
∑

j=1
ajΛEj

ΛEi ≥ 0
Tr2[ΛEi ] =

1
2n 1 .

(2.13)

We need to be careful with how many indices i we need to sum over. If an
arbitrary large N were required to reach a minimum for a general F , then
the optimization problem (2.13) would be very difficult to solve numerically.
Fortunately, this is not the case:

Lemma 2.6. If the optimization problem (2.13) reaches a minimum, then there
exists an equivalent (in terms of C-factor) minimum with N = 2.

Therefore we can generally choose N = 2.

Proof. We equivalently reformulate (2.13) by separating the positive and neg-
ative quasiprobability coefficients as

ΛF =
Ñ

∑
i=1

a+i Λ+
Ei
−

Ñ

∑
i=1

a−i Λ−Ei
(2.14)

with a±i ≥ 0. Consider a set of variables a+i , a−i , E+i , E−i that minimizes the
optimization problem. We construct

a+ := ∑
i

a+i , a− := ∑
i

a−i , (2.15)

E+ :=
1

a+ ∑
i
E+i , E− :=

1
a− ∑

i
E−i . (2.16)

These variable also fulfill the constraints: F = a+E+ − a−E− and it is easy
to check that E± are TPCP maps. The C-factor of this new solution is the
same as the C-factor of the original solution, because

a+ + a− = ∑
i

a+i + ∑
i

a−i . (2.17)
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2. Quasiprobability Method

Still, it is not clear yet when our problem exhibits feasible9 solutions and
whether a minimum is achieved in that case. These questions are addressed
by following two lemmas:

Lemma 2.7. If feasible solutions exist for the optimization problem (2.13), then the
minimum is reached.

Proof. This statement follows from the extreme value theorem by arguing
that we are minimizing a continuous function over a compact set. So in the
following we need to prove that the set of feasible solutions is compact.
The set of TPCP maps is clearly compact. For the a±i we have to argue that
we can bound their value. Take an arbitrary feasible solution of the problem
that exhibits a C-factor which we denote C∗. Then we can restrict ourselves
to the bounded region.

0 ≤ a±i ≤∑
j

a+j + ∑
i

a−j ≤ C∗ . (2.18)

One can easily check that adding the additional constraint ΛF = ∑
i

aiΛEi to
our compact set again results into a compact set.

Lemma 2.8. Consider a n-qubit quantum channel F for n ≤ 3. The optimization
problem (2.13) has a feasible solution if and only if F is Hermitian-preserving and
proportional to a trace-preserving map.

Proof. Suppose one is given a feasible solution. Then

Tr2[CF ] = ∑
i

a+i Tr2[C+
Ei
]−∑

j
a−j Tr2[C+

Ej
] = (∑

i
a+i −∑

j
a−j )

1
2n 1 . (2.19)

Similarly, F must be Hermitian-preserving because the the Ei are Hermitian-
preserving.
For the reverse side, we make a dimensional argument similar to the one
in Section 2.4. In the case of n = 1 the real vector space of Hermitian-pre-
serving maps is 16-dimensional. Additionally asking for proportionality
to a trace-preserving map is equivalent to restricting ourselves to 3 real
linear constraints (to see that, consider how the TP constraint manifests
in Pauli transfer matrices, see [15] for details), so the space of Hermitian-
preserving trace-preserving maps is 13-dimensional. If we find 13 TPCP
maps which are linearly independent, then we therefore know that they
form a valid decomposition basis for any such F . We already know 10
such maps from the Endo basis, namely [1], [σX], [σY], [σZ], [RX], [RY], [RZ]
(see Table 2.1). Following three maps also fulfill the required properties:
[πX] + [πYZ], [πY] + [πZX], [πZ] + [πXY]. Their linear independence follows

9A feasible solution of a optimization problem is a solution which fulfills the constraints.
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2.6. Channel Difference Decomposition

from the linear independence of the Endo basis. One can easily check that
they are also TP and CP.
A similar argument can be performed in the cases n = 2, 3: The set of
Hermitian-preserving maps forms a space of dimension 16n and the set
of Hermitian-preserving maps proportional to a TP map forms a space of
dimension 16n − (4n − 1). We have to argue that there exist 16n − 4n + 1
linearly independent TPCP maps. We do not explicitly write down the en-
tire list of such TPCP map, as it would be enormous. Instead we describe
how such a list can be constructed numerically. One generates >> 16n

Haar-random quantum channels and checks how many of them are linearly
independent.10 We observed that we obtain exactly 16n − (4n − 1) linearly
independent TPCP maps in this manner.

Remark 2.9. The statement of Lemma 2.8 could be generalized to arbitrary
n, if the following conjecture were proven:
The maximal number of linearly-independent n-qubit TPCP maps is exactly 16n −
4n + 1.
Unfortunately we were not able to derive a proof for this statement for arbi-
trary n, so we formulate Lemma 2.8 and Theorem 2.10 only for n = 1, 2, 3.
This will not lead to a practical limitation for the Stinespring algorithm
in Chapter 4, as we will restrict ourselves to the study of 1-qubit and 2-qubit
channels.

There is another obstacle before we can try to solve problem (2.13) numeri-
cally. It contains quadratic terms in the constraint ΛF = ∑i aiΛEi . Problems
with convex objectives and quadratic constraints are generally NP-hard to
solve. Luckily, using the correct substitution we can obtain a problem with
a linear constraint instead. First we add a distinction between positive and
negative quasiprobability coefficients, as denoted in Equation (2.14), with
a±i ≥ 0, Ñ ≥ dN/2e. Then we define Λ̃±i := a±i Λ±Ei

. In this way we can
reformulate the optimization problem in Equation (2.13) as

min
a±i ∈R≥0,Λ̃±Ei

∈C4n×4n

Ñ
∑

j=1
a+j + a−j

s.t. ΛF =
Ñ
∑

j=1
Λ̃+
Ej
−

Ñ
∑

j=1
Λ̃−Ej

Λ̃±Ei
≥ 0

Tr2[Λ̃±Ei
] = a±i

1
2n 1 .

(2.20)

The optimization problem (2.20) is a SDP. In the mathematical optimization
literature there are known algorithms that can solve such SDPs efficiently.

10One can numerically find the maximal number of linearly independent elements in a
collection of vectors by stacking them into a matrix, computing the singular value decompo-
sition and counting the number of nonzero singular values.
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2. Quasiprobability Method

We can summarize the results of this section into following theorem:

Theorem 2.10 (Channel Difference Decomposition). Consider a n-qubit space
A for n ≤ 3 and let F ∈ L(L(A)) be a Hermitian-preserving map proportional to
a trace-preserving map. Then there exist E+, E− ∈ TPCP(A, A) and a+, a− ≥ 0
such that

F = a+E+ − a−E− , (2.21)

where the C-factor of this QPD a+ + a− is optimal over all possible QPDs in TPCP
maps of the form of Equation (2.13). We call this decomposition the channel differ-
ence decomposition (CDD). The CDD can be expressed as a SDP.

In a certain sense one could see the C-factor a+ + a− of the CDD as a mea-
sure of the non-physicality of a certain Hermitian-preserving TP map F . If
F is TPCP, then a+ + a− = 1, and the value becomes larger the more ’un-
physical’ the map gets. The operational interpretation of this measure is that
it corresponds to the C-factor necessary to simulate a certain operation on an
ideal quantum computer, which could implement any TPCP map perfectly.

2.7 Numerical Demonstration

To end this chapter, we perform a small numerical demonstration by com-
puting the QPD of a few quantum gates using the Endo basis and some
realistic assumptions on how we model the hardware noise. We denote the
ideal unitary corresponding to the gate as U. When one tries to execute
this gate on a noisy quantum computer, one actually implements the noisy
quantum channel A that approximates [U].

We will demonstrate the quasiprobability decomposition on three choices
of U: a single-qubit Ry rotation with angle11 2 arccos

√
0.56789 and the two-

qubit gates CNOT and SWAP. The noisy channels A of these three gates, as
well as the operations in the noisy Endo basis, are obtained from a noise
model included in Qiskit [21], which was generated from calibration mea-
surements of the IBMQ Melbourne hardware backend. While these noise
models do not reproduce the noise present on the real hardware in com-
plete accuracy, they give us a good ballpark approximation of it. Table 2.2
depicts how well A approximates [U] in terms of the process fidelity and
the diamond norm.

In literature on QEM there are generally two variants how the correction
of a gate might be performed using the quasiprobability method. The first
possibility corresponds to the approach how the quasiprobability method
was introduced in Section 2.1, namely by finding a QPD of the ideal gate
operation F = [U]. Endo et al. [9] coined the term compensation method for

11The exact angle is of no further importance.
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Ry CNOT SWAP
Fidelity F([U],A) 0.9973 0.9746 0.9276

Diamond norm ‖[U]−A‖� 0.0054 0.0528 0.1472

Table 2.2: Accuracy of the Ry, CNOT and SWAP gates from the Qiskit noise model of IBMQ
Melbourne. The accuracy is given in terms of the process fidelity and the diamond norm.

this variant. Another option is to find a (generally non-physical) map I such
that I ◦ A = [U], i.e. this map plays the role of an inverse map to the noise.
The noisy gate A is executed as-is and the inverse map, simulated using
the quasiprobability method, is implemented right afterwards. This method
was coined inverse method by Endo et al..

Table 2.3 depicts the numerical results for the compensation method and
the inverse method, as well as the C-factor obtained from the CDD. The opti-
mization problems are solved using the CVXPY package [22, 23]. MOSEK [24]
is used as solver for the SDP of the CDD. Note that the compensation
method works significantly better when the noisy operation A is included in
the decomposition set. This makes sense intuitively - A is already a good ap-
proximation of [U] and the remaining Endo basis only needs to take care of
roughly [U]−A. Because of a similar argument, the inverse method works
already well with only the Endo basis.

In all cases the results are far away from the best theoretically achievable
C-factor, which is given by the CDD. This motivates our search for a decom-
position set which could hopefully be better than the Endo set, in order to
bring the C-factor closer to the theoretical best. In Chapter 4 we will present
an algorithm that does exactly that.
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2. Quasiprobability Method

Ry gate
C-factor

compensation method, Endo basis 2.9892
compensation method, Endo basis ∪{A} 1.0106
compensation method, theoretical best from CDD 1.0000
inverse method, Endo basis 1.0096
inverse method, Endo basis ∪{A} 1.0096
inverse method, theoretical best from CDD 1.0054

CNOT gate
C-factor

compensation method, Endo basis 9.0564
compensation method, Endo basis ∪{A} 1.1789
compensation method, theoretical best from CDD 1.0000
inverse method, Endo basis 1.1935
inverse method, Endo basis ∪{A} 1.1935
inverse method, theoretical best from CDD 1.0618

SWAP gate
C-factor

compensation method, Endo basis 34.1381
compensation method, Endo basis ∪{A} 2.2095
compensation method, theoretical best from CDD 1.0000
inverse method, Endo basis 1.4284
inverse method, Endo basis ∪{A} 1.4284
inverse method, theoretical best from CDD 1.1779

Table 2.3: Numerical results from solving the linear program (2.11) to find the optimal QPD.
The experiment is performed on three different gates: a Ry rotation, a CNOT gate and a
SWAP gate. Both the compensation method and the inverse method are implemented. It is
clearly visible that the noisy operation A should be included in the decomposition basis when the
compensation method is used. The noise channels of the quantum operations involved in the
numerical computations are obtained from a noise model in Qiskit which roughly approximates
the noise present on the IBMQ Melbourne backend.
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Chapter 3

Approximate Quasiprobability
Decomposition

The sampling overhead of the quasiprobability method presents a major
hurdle in the practical realization of the technique. Due to the exponential
scaling of the C-factor in the number of corrected gates, one is restricted to
shallow circuits in practice.

In this chapter, we present a relaxation of the QPD into a more general form,
where we allow for a certain error in the decomposition, i.e.,

F (ρ) ≈∑
i

aiEi(ρ) , (3.1)

which motivates the term approximate QPD. While we give up the exactness
of the quasiprobability method, this generalization allows us to find a better
decomposition in terms of the C-factor. The hope is that one would be able
to significantly reduce the C-factor while only paying with a very small error
in the decomposition. The situation at hand is therefore a tradeoff between
the sampling overhead and the error in the method.

3.1 SDP Relaxation using the Diamond Norm

In order to flesh out the aforementioned intuition in a rigorous manner, we
first have to decide how to quantify the error in the approximate QPD. A nat-
ural candidate is to use the diamond distance, i.e., the distance induced by
the diamond norm, as it has a strong operational interpretation. In fact the
diamond norm fits very naturally in our mathematical optimization setting,
as it has been shown to be expressible as a semidefinite program (SDP) [25]:

Theorem 3.1 (SDP for diamond norm [25]). Let G ∈ L(L(A), L(B)) and denote
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3. Approximate Quasiprobability Decomposition

its Choi matrix representation by ΛG . Then

‖G‖� =



max
ρ0,ρ1∈L(A)
X∈L(BA)

1
2 〈ΛG , X〉+ 1

2 〈Λ∗G , X∗〉

s.t.
(

1B ⊗ ρ0 X
X∗ 1B ⊗ ρ1

)
≥ 0

ρ0 ≥ 0, ρ1 ≥ 0
ρ†

0 = ρ0, ρ†
1 = ρ1 ,

(3.2)

where 〈·, ·〉 is the trace inner product. (3.2) is a SDP.

The dual formulation of the SDP (3.2) is given by

‖G‖� =


min

Y0,Y1∈L(BA)

1
2 ‖TrB[Y0]‖∞ + 1

2 ‖TrB[Y1]‖∞

s.t.
(

Y0 −ΛG
−Λ∗G Y1

)
≥ 0

Y0 ≥ 0, Y1 ≥ 0 ,

(3.3)

where ‖·‖∞ denotes the spectral norm of a matrix.

Let’s consider a setting similar to Section 2.5: We have a fixed decomposition
set {Ei}i and we would like to find the best possible approximate QPD of an
operation F ∈ L(L(A), L(B)) into that decomposition set. More precisely,
we give a certain limit of the C-factor, denoted Cbudget, such that the QPD
may not have a C-factor higher than this limit. The optimization problem at
hand is thus 

min
ai∈R

∥∥∥F −∑j ajEj

∥∥∥
�

s.t. ∑
j
|aj| ≤ Cbudget .

(3.4)

By inserting the SDP from Equation (3.3) into Equation (3.4) the problem
can be rewritten as

min
ai∈R,Y0,Y1∈L(AB)

1
2 ‖TrB[Y0]‖∞ + 1

2 ‖TrB[Y1]‖∞

s.t.

(
Y0 ∑j ajΛEj −ΛF

∑j ajΛ∗Ej
−Λ∗F Y1

)
≥ 0

∑j |aj| ≤ Cbudget

Y0 ≥ 0, Y1 ≥ 0 .

(3.5)

where ΛF , ΛEi are the Choi matrices of F , Ei. Luckily Equation (3.5) is still
a SDP, which allows us to efficiently solve our optimization problem.
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Remark 3.2 (Non-physicality of the approximate decomposition). The ap-
proximation Fapprox := ∑i aiEi of F obtained from the optimization prob-
lem in Equation (3.4) is not guaranteed to be a physical map.1 In practice,
this implies that we simulate the execution of a non-physical map using the
quasiprobability method, even if F is itself physical. It is possible to en-
force complete positivity and/or trace-preservingness into the optimization
problem 

min
ai∈R

∥∥∥F −∑j ajEj

∥∥∥
�

s.t. ∑
j
|aj| ≤ Cbudget

∑
j

ajEi is TPCP ,

(3.6)

which translates into additional constraints in the SDP (3.5):

min
ai∈R,Y0,Y1∈L(BA)

1
2 ‖TrB[Y0]‖∞ + 1

2 ‖TrB[Y1]‖∞

s.t.

(
Y0 ∑j ajΛEj −ΛF

∑j ajΛ∗Ej
−Λ∗F Y1

)
≥ 0

∑j |aj| ≤ Cbudget

Y0 ≥ 0, Y1 ≥ 0
∑j ajΛEj ≥ 0
TrB[∑j ajΛEj ] =

1
2n 1 .

(3.7)

Of course, adding an additional constraint into the problem will lead to an
equal or worse C-factor. Intuitively, one would expect this drawback not to
be significant, as long as the approximation is not too coarse, since a good
approximation of F is going to be ’almost’ a TPCP map. This intuition
seems to hold at least for the three gates Ry, CNOT and SWAP discussed
previously. We observed that their tradeoff curves remain almost identical
under the inclusion of the CP constraint. In some situations it can be very
useful to have some complete positivity guarantee on Fapprox, as it allows
us to use known results and tools from quantum information theory. An
example would be the linear propagation of errors (in terms of the diamond
norm) throughout the circuit.

3.2 Tradeoff Curves

In this section, we present some numerical results of the approximate QPD
by visualizing the result of the SDP (3.5). More precisely, we consider the
same three quantum gates Ry, CNOT and SWAP as in Section 2.7 with the
same noise model. We decompose the gates using the compensation method

1Recall that a map is physical if it is trace-preserving and completely positive.
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Figure 3.1: Tradeoff curves for the three quantum gates Ry(2 arccos
√

0.56789), CNOT and
SWAP using the compensation method and a decomposition set consisting of the Endo basis
and the respective noisy variant of the gate. The noisy channels of the three gates and the Endo
basis are extracted from a noise model in Qiskit [21] which approximates the noise on the IBMQ
Melbourne hardware backend. The red dashed line represents the error (in diamond norm) of
the reference noisy channel, i.e. when the gate is implemented as-is without QEM.

into the decomposition set composed of the Endo basis and the respective
noisy variant of the gate. We solve the SDP (3.5) for different values of
Cbudget to obtain a relation ε(Cbudget) between the diamond distance error
and the C-factor. This function, which we call tradeoff curve, encapsulates the
tradeoff between the approximation error and the sampling overhead. The
tradeoff curves for Ry, CNOT and SWAP were numerically obtained using
the SDP solver in the MOSEK [24] software package through the CVXPY [22,
23] modelling language. The results are depicted in Figure 3.1.

As expected, if the C-factor budget is larger than the optimal C-factor of the
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non-approximate QPD (which can be found in Table 2.3), the error becomes
zero. Similarly, when the C-factor budget is exactly 1, then one doesn’t gain
any advantage over implementing the gate as-is without QEM. The more
interesting regime is in between these two values of Cbudget: One clearly sees
that we can still significantly reduce the error of a gate, without having to
pay the full C-factor necessary for a non-approximate QPD. For the SWAP
gate, the exact QPD requires a C-factor of 2.21 to completely correct the
gate. However, if we only pay a C-factor of 1.21, we can still reduce the
error by 64%. The saved costs due to the lowered C-factor requirement are
substantial, since the number of shots scales as C2·ngates , as seen in Section 2.2.

Interestingly the tradeoff curves seem to resemble pairwise linear functions,
i.e. ε(Cbudget) seems to transition between regimes where the function is
roughly linear. This is especially visible for the Ry and CNOT gates. We
would like to emphasize that this is not a result of using a low amount of
sampling points, but rather an inherent feature of the curves themselves.

3.3 Application: Optimal Resource Distribution

If one is to apply the approximate quasiprobability method to a circuit with
multiple gates, a new degree of freedom emerges, which is not present in the
original formulation of the quasiprobability method: How much C-factor
budget do we give to every individual gate? Lets assume we have a bud-
get Ctotal for the whole circuit, how do we distribute that budget optimally
across the whole circuit? More concretely, given N gates we have to find indi-
vidual budgets Cbudget,i ≥ 0 for i = 1, . . . , N such that ∏N

i=1 Cbudget,i = Ctotal.

One might expect that splitting the budget equally (i.e. Cbudget,i = C1/N
total) is

the optimal solution. As we will see in an example at the end of the section,
this is in fact not the case. The optimal distribution seems to be a non-trivial
optimization problem that has to be solved numerically.

Before we continue, we have to clarify what objective function we seek to
optimize when we talk about an ’optimal’ budget distribution. The overall
goal is to minimize the error (in terms of the diamond norm) of the total cir-
cuit. Let’s consider a setting where we execute N quantum gates U1, . . . , UN
acting on n qubits each. We denote by Fapprox,i the map produced by the
approximate QPD of the i-th gate [Ui]. The objective function is therefore∥∥Fapprox,N ◦ · · · ◦ Fapprox,2 ◦ Fapprox,1 − [UN ] ◦ · · · ◦ [U2] ◦ [U1]

∥∥
� . (3.8)

The computation of this quantity is intractable, as it would require to sim-
ulate the complete noisy circuit. Therefore, we need to find a proxy that is
computable from local quantities.
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3. Approximate Quasiprobability Decomposition

From the triangle inequality and the fact that the diamond norm is a con-
traction under completely positive maps, one immediately obtains∥∥E ◦ F − E ′ ◦ F ′∥∥� ≤ ∥∥E ◦ F − E ′ ◦ F∥∥� + ∥∥E ′ ◦ F − E ′ ◦ F ′∥∥�

≤
∥∥E − E ′∥∥� + ∥∥F −F ′∥∥� ,

for any completely positive maps E ,F , E ′,F ′ where E , E ′ are trace-preserving.
If we wish to apply this bound to our setting in Equation (3.8), we have to
guarantee that the Fapprox,i are TPCP. This can be achieved by inserting an
additional constraint into the SDP of the approximate QPD, as described
in Remark 3.2. Using the notation εi(C) to denote the tradeoff curve of the
i-th gate, we thus obtain the optimization problem

min
Cbudget,i∈R

∑j εj(Cbudget,j)

s.t. Cbudget,i ≥ 0 ∀i
∏j Cbudget,j = Cglobal .

(3.9)

The problem (3.9) is generally non-convex, as we have not enough guaran-
tees on the shape of the tradeoff curves. Still in practice we observe that
the objective is convex in a broad region around the optimum, so we expect
numerical heuristics based on gradient descent to work well.

We finish this section with a small demonstration on a simple circuit that
consists of a Ry and a CNOT gate. The tradeoff curves are computed ex-
actly as in Section 3.2, with the sole difference that we now include a TPCP-
constraint for the approximate QPD. We evaluate the tradeoff curves at dis-
crete points and use linear interpolation in order to extrapolate this data to
a full function that can be used in the optimization routine. We solve the
optimization problem (3.9) for different values of Ctotal using a black box
solver based on the BFGS algorithm implemented in the SciPy [26] software
package. The results are depicted in Figure 3.2. Interestingly, the optimal
strategy for budget distribution is nontrivial. In the regime with a small bud-
get 1 ≤ Ctotal / 1.02, it is optimal to give most of the C-factor budget solely
to the CNOT gate. In a transition regime 1.02 / Ctotal / 1.04 both gates
obtain a significant amount of C-factor. In the upper regime 1.04 / Ctotal the
Ry gate is perfectly decomposed and the remaining budget is then given to
the CNOT gate. So whether one should prioritize the CNOT or the Ry gate
in the budgeting strongly depends on the value of Ctotal.

3.4 Application: Unitary-Only Decomposition

Implementing the quasiprobability method on currently available quantum
hardware is difficult for various reasons. One major roadblock is that realis-
ing a basis set able to decompose any unitary operation, such as the Endo
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Figure 3.2: This curve shows the optimal C-factor budget distribution across a circuit consisting
of a single Ry and CNOT gate. The total C-factor budget Ctotal is varied between 1 and 1.191,
which is the minimal value necessary to obtain perfect QPD for both gates at the same time.
The red dashed lines denote the necessary C-factor to decompose the respective gate perfectly.
The black line denotes Ctotal and therefore corresponds to the multiplication of the blue and
yellow curves.

basis, requires some operations with measurements and/or resets. For ex-
ample, out of the 16 operations in the Endo basis (see Table 2.1) only 10
can be implemented by using purely unitary operations. Measurements at
intermediate locations inside a circuit (i.e. not at the very end) are rarely im-
plemented on current hardware platforms due to technical limitations. Fur-
thermore, current measurements are typically plagued by prohibitively high
noise. They also require orders of magnitude more time than unitary gates,
causing significant decoherence in the surrounding qubits which have to
wait for the measurement to finish. Therefore it is a natural question to ask,
whether some form of the quasiprobability method could be implemented
on a computer only having access to unitary operations.

With the approximate QPD we can perform precisely this task. Instead of
decomposing a target operation F into the full Endo basis, we try to find
the best possible decomposition of F into a restricted decomposition set that
only contains unitary operations. The consequence of this approach is that
we cannot reach a perfect QPD, even with an infinitely high C-factor budget.

In Figure 3.3 the tradeoff curves for the three previously considered gates
Ry, CNOT and SWAP (see Section 3.2) are depicted. The decomposition set
consists of the 10 unitary operations in the Endo basis (or tensor products
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Figure 3.3: Tradeoff curves for the three quantum gates Ry(2 arccos
√

0.56789), CNOT and
SWAP using a unitary-only quasiprobability decomposition. The only difference to Figure 3.1
is that the decomposition set is reduced to only containing the unitary operations in the Endo
basis and the respective noisy variant of the gate.

thereof) as well as the noisy variant of the respective gate. The compensation
method is used to correct the gates. It can be seen that a significant reduction
of the error is still achievable, though the magnitude of this improvements
depends on the specific noise present in the hardware.

In the last part of this section we present experimental results from an imple-
mentation of the unitary-only approximate quasiprobability method on the
IBMQ Singapore quantum chip using Qiskit [21]. The task of the experiment
is to correct following simple quantum circuit:

28



3.4. Application: Unitary-Only Decomposition

|0〉 H ×

|0〉 ×

Since the noise of two-qubit gates is significantly stronger compared to
single-qubit gates, we will onlly correct the SWAP gate with the quasiproba-
bility method.

We wish to perform an approximate QPD as in Equation (3.1) where the 101-
element decomposition set {Ei} consists of 10 · 10 unitary Endo operations
and the noisy SWAP gate A. Since the Endo operations consist of tensor
products of single-qubit unitary gates, we can assume them to be ideal in a
first order approximation. Therefore we only need to perform tomography
of the channel A. This is done using process tomography, which entails
the execution of 144 different quantum circuits (see [15] for more details)
which are each executed with 8192 shots. In a second step we can perform
the approximate QPD [U] ≈ ∑i aiEi with infinite C-factor budget. Next we
generate 101 circuits, each one corresponding to the original circuit with the
SWAP gate replaced by an element Ei of the decomposition set. Each of
these 101 circuits is executed on the hardware with 8192 shots, resulting in
an estimate p̂i of the distribution of the measurement outcomes of the re-
spective circuit. Denote by p the distribution of the measurement outcome
of the ideal circuit which contains an ideal SWAP gate. To evaluate the im-
provement caused by the quasiprobability method, we consider the L1-norm
between p and ∑i ai p̂i (note that the latter is generally not a real distribution,
since ∑i aiEi doesn’t have to be TP or CP. So we have to think of this dis-
tance as a L1-norm between arbitrary vectors). This experimental procedure
is repeated 5 times and the results are reported in Table 3.1. The qubits used
on the hardware platform were the first two (labelled by indices 0 and 1).
On average the error of the statistics is reduced by 23%. We also repeated
the same experiment a second time on the two qubits that had the worst
2-qubit gate fidelities, with the results depicted in Table 3.2. In that case we
obtained an average improvement of 34%.
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3. Approximate Quasiprobability Decomposition

L1 error L1 error
without mitigation with mitigation

Run 1 0.053 0.034
Run 2 0.056 0.043
Run 3 0.058 0.049
Run 4 0.061 0.043
Run 5 0.066 0.056
Mean 0.058 0.045
Stdev 0.005 0.008

Table 3.1: Improvements of the unitary-only quasiprobability method on the IBMQ Singapore
hardware backend. A single SWAP gate on the qubits 0 and 1 is corrected using the compensation
method.

L1 error L1 error
without mitigation with mitigation

Run 1 0.261 0.167
Run 2 0.298 0.205
Mean 0.279 0.186
Stdev 0.026 0.026

Table 3.2: Improvements of the unitary-only quasiprobability method on the IBMQ Singapore
hardware backend. A single SWAP gate on the qubits 12 and 13 is corrected using the compen-
sation method.
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Chapter 4

Stinespring Algorithm

Up to now, we have introduced two variants how to obtain an optimal QPD:
If the decomposition set is fixed in advance, it can be found by a simple
linear program (see Section 2.5) and if we also optimize over the decompo-
sition set, it is given by the CDD (see Section 2.6). Unfortunately, the result
of the CDD is not directly applicable to the quasiprobability method, as we
cannot implement an arbitrary quantum channel on our quantum hardware.
Therefore there is a need for a novel method that is able to find a decomposi-
tion set which can perform better than the Endo basis, but is implementable
on the quantum computer at hand. This algorithm must take into account
the noise of the specific quantum quantum computer, such that it can adapt
the decomposition set accordingly. This task is hard for two reasons:

1. It is difficult to optimize over the space of all possible operations that
a given quantum hardware can perform. In general this space is large1

and might vary significantly from one machine to another.

2. Performing tomography to characterize the operations Ei is expensive.
Hence, we want to limit the number of required uses of tomography.

In this chapter, we will introduce a novel method, called the Stinespring al-
gorithm, that is able to deal with both of these issues. The core idea, which
addresses the first issue, is to construct our decomposition set from a lim-
ited class of operations of a specific form, which can be implemented on any
reasonable quantum computer. More precisely, we will consider noisy op-
erations which approximate an ideal quantum channel using a Stinespring
dilation.

1The space of all possible operations doesn’t just consist of individual gates. It also com-
prises operations that use multiple gates, introduce ancilla qubits, perform measurements,
trace out a subset of the qubits, etc.... Basically any quantum circuit that starts and ends
with the correct amount of qubits can be seen as a possible operation to be used in the
decomposition set.
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4. Stinespring Algorithm

The Stinespring algorithm is able to produce a decomposition set which
exhibits a significantly reduced C-factor compared to the Endo basis. Fur-
thermore, the Stinespring algorithm comes at an additional advantage as
it doesn’t require measurements on the computational qubits — it only re-
quires resets on the ancilla qubits used for the dilation. However, the need
of additional ancilla qubits is a drawback that is not present when using the
Endo basis.

Before presenting the full Stinespring algorithm in section 4.3, we will first
introduce some essential building blocks which will prove useful later.

4.1 Stinespring Dilation on a Quantum Computer

The Stinespring dilation theorem is a fundamental result in quantum infor-
mation theory. It states that any quantum channel can be expressed as a
unitary evolution on some extended Hilbert space, where we don’t have
access to the quantum information stored in the extension.

Theorem 4.1 (Stinespring dilation). Consider E ∈ TPCP(A, A). There exists a
Hilbert space HR and an isometry VSt ∈ L(A, AR) such that

∀ρ ∈ S(A) : E(ρ) = TrR[VStρV†
St] . (4.1)

Furthermore, there exists such a Stinespring dilation with dim(R) ≤ r where r is
the rank of the quantum channel defined by r := rank(ΛE ) for ΛE the Choi matrix
of E .

Any isometry VSt can be extended (generally non-uniquely) to a unitary
USt ∈ U(AR, AR) such that USt acts equivalently to VSt on the space of states
of the form ρA ⊗ |0〉 〈0|R for some arbitrarily chosen state |0〉R. Numerically
it is not difficult to obtain the isometry VSt for an arbitrary channel. For the
exact details we refer the reader to [27].

We can straightforwardly use the Stinespring dilation to approximate an ar-
bitrary quantum channel on a quantum computer by making use of clean
ancilla qubits, performing a circuit corresponding to the unitary USt on the
extended space, and finally discarding the ancilla qubits. However, we can-
not expect a noisy quantum computer to implement USt accurately, so the
resulting channel will only be an approximation of the target channel that
we want to achieve.

Current quantum hardware especially struggles to produce high-fidelity
two-qubit gates, so our approximation will be poor if the circuit implemen-
tation of USt requires too many of them. For simplicity we assume that
the CNOT gate is the only multi-qubit gate that our hardware platform can
implement, and that all other multi-qubit gates must be decomposed into
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4.1. Stinespring Dilation on a Quantum Computer

CNOT gates and single-qubit gates. So the number of CNOT gates is often
a good indicator for the amount of noise accumulated by a quantum circuit.
The number of required CNOT gates to implement USt is generally related
to the number of qubits involved in the unitary, so we want to keep the rank
r as small as possible (r = 1 requires no ancilla qubits, r = 2 requires one
ancilla qubit, r = 3, 4 requires two ancilla qubits, etc...).

In practice we will consider 1-qubit and 2-qubit channels of rank r ≤ 2, such
that the dilation can be implemented with at most a 3-qubit unitary. In our
experience this is the upper limit where the channel still gets reasonably
approximated with current quantum hardware.

In the following subsection we introduce a method which allows us to fur-
ther improve the channel approximation via a Stinespring dilation.

4.1.1 Variational Unitary Approximation

To optimize the approximation of a quantum channel through the Stine-
spring dilation, we can make use of two central observations:

1. There is some additional degree of freedom that we can make use of to
further optimize our approximation, because the choice of the unitary
USt extending the isometry VSt is not unique. Hence one could try
to choose the USt which requires the least amount of CNOT gates to
implement.

2. Since the hardware is noisy, it may not be advantageous to implement
a circuit that represents USt exactly. It might make more sense to imple-
ment a circuit that approximates USt with a finite error that requires
less CNOT gates and thus suffers less from noise on the hardware.
There is a tradeoff between the approximation error and the error stem-
ming from hardware noise.

In this section, we propose a method that makes use of both of these op-
timizations, which we call variational unitary approximation. We use a vari-
ational circuit to implement the dilation and fit its parameters in order to
approximate VSt as well as possible. Denote by θ the tuple of all variational
parameters and UVar(θ) the unitary represented by the variational form. Fur-
thermore we denote by V(UVar(θ)) the submatrix of UVar(θ) restricted on the
subspace where the input ancilla qubits are fixed to the zero state. We want
to choose our parameters θ such that we minimize the difference between
V(UVar(θ)) and VSt.

The variational unitary approximation allows us to freely choose the expres-
siveness of our variational circuit. More concretely, we can tune how many
CNOT gates it shall contain and therefore influence the tradeoff between the
approximation error and the hardware noise error.
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In the following we are going to look at a concrete example to illustrate
the gains from the variational unitary approximation. Consider an arbitrary
2-qubit quantum channel with rank 2 that we want to approximate with a
Stinespring dilation. The exact representation of a general 3-qubit unitary
as a quantum circuit typically requires around 100 CNOT gates (assuming
linear connectivity), which is significantly more than what current hardware
can reasonably handle. We replace this lengthy circuit with a RYRZ varia-
tional circuit

|0〉 Ry(θ1) Rz(θ4) • Ry(θ7) Rz(θ10) • • Ry(θ6m+1) Rz(θ6m+4)

|0〉 Ry(θ2) Rz(θ5) • Ry(θ8) Rz(θ11) • · · · • Ry(θ6m+2) Rz(θ6m+5)

|0〉 Ry(θ3) Rz(θ6) Ry(θ9) Rz(θ12) Ry(θ6m+3) Rz(θ6m+6)

where m denotes the depth of the variational form, the total number of pa-
rameters is 6(m + 1) and the the total number of CNOT gates is 2m. We use
the gradient-based BFGS algorithm implemented in SciPy [26] to minimize
the objective ‖VSt −V(UVar(θ))‖2.2 As initial guess for the parameters we
use uniformly random numbers. The objective is non-convex and in practice
the optimization algorithm finds a different local minimum depending on
the provided initial guess. To obtain a good result in practice, we observed
that it is enough to repeat the optimization 5 times for different initial values
and then take best result.

The above procedure is performed for different depths of the variational
form on a Haar-random 3-qubit unitary USt. By using a Qiskit [21] noise
model extracted from the IBMQ Melbourne hardware backend, we can es-
timate how well our method allows us to approximate the 2-qubit quan-
tum channel ρ 7→ Tr3[UStρU†

St] where Tr3 stands for tracing out the third
qubit. More precisely, we can compute the diamond norm error between
the obtained 2-qubit quantum channel and the ideal 2-qubit quantum chan-
nel. This error encapsulates the approximation error of the variational form
combined with the hardware noise. The results can be seen in Figure 4.1.
The variational unitary approximation technique allows us to significantly
reduce the error to roughly one quarter of its reference value. One can
also clearly see that there is a sweet spot in the variational circuit depth.
This makes sense intuitively when considering the tradeoff mentioned pre-
viously: if the depth is too short, then USt is not well approximated and if
the depth is too long, then the hardware noise takes over and we start to
mostly sample noise. The optimum is reached at a variational circuit depth
of 6. Furthermore one observes that the approximation error goes to zero as
soon as the depth is at least 7.

2In order to avoid having to estimate the gradient with the finite differences method, we
make use of the Autograd [28] package for automatic differentiation.
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Figure 4.1: Numerical results from the variational unitary approximation of a Haar-random 3-
qubit unitary using a RYRZ variational form. (a) depicts the diamond norm error of the induced
2-qubit quantum channel for different depths of the variational form. The dashed red line
corresponds to the error obtained if USt were naively decomposed in a quantum circuit without
the variational unitary approximation. (b) depicts the approximation error ‖VSt −V(UVar(θ))‖2
and can thus be regarded as the analogue of (a) without the effect of hardware noise.

4.2 Rank-Constrained Channel Decomposition

Consider a map F ∈ TP(A, A). Remember that the CDD (see Section 2.6)
asserts that we can find E+, E− ∈ TPCP(A, A), a+, a− ≥ 0 such that F =
a+E+− a−E− with optimal C-factor a+ + a−. For the sake of the Stinespring
algorithm, we would like to approximate the E± using a Stinespring dilation,
as explained in Section 4.1. This will only work reasonably well when the
number of required ancilla qubits is not too large. We can enforce this by
adding an additional constraint rank(Λ±Ei

) ≤ r for some r ∈ N≥1 into Equa-
tion (2.20): 

min
a±i ∈R+,Λ̃±Ei

∈C4n×4n

npos

∑
j=1

a+j +
nneg

∑
j=1

a−j

s.t. ΛF =
npos

∑
j=1

Λ̃+
Ej
−

nneg

∑
j=1

Λ̃−Ej

Λ̃±Ei
≥ 0

Tr2[Λ̃±Ei
] = a±i

1
2n 1

rank(Λ̃±Ei
) ≤ r .

(4.2)

Note that with this constraint we don’t have the guarantee anymore that
we can decompose F into just two channels. We denote by npos, nneg the
number of channels into which we perform the decomposition.

The introduction of such a rank constraint generally turns a SDP into a NP-
hard problem, so one has to resort to heuristics to find a solution. One com-
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mon heuristic for rank constrained SDPs is to minimize the nuclear norm
instead of bounding the rank, as it constitutes the convex envelope of the
rank. Unfortunately this doesn’t work in our case, as the trace of the Choi
matrices is already fixed. We instead opted to use the Burer-Monteiro ap-
proach for low-rank solution of SDPs [29, 30]. Suppose that we want to
solve a given SDP with a rank constraint rank(C) ≤ r for some positive-
semidefinite n × n matrix C. The main idea is to parametrize C = X† · X
for some r × n complex matrix X and then optimize over the matrix ele-
ments of X. The positive-semidefiniteness and rank constraint of C are auto-
matically enforced from the construction. Unfortunately, the objective and
the constraints generally contain quadratic terms of X, so the problem be-
comes a quadratically-constrained quadratic problem. Still, recent research
has demonstrated that the objective landscape of these problem tends to be-
have nicely and that using local optimization methods can provably lead to
the global optimum under some assumptions [31, 32].

In our case the Λ±Ei
don’t actually show up in the objective function, so we

actually have a quadratically-constrained linear problem, i.e. a problem of
the form {

min
x

f (x)

s.t. g(x) = 0 ,
(4.3)

where we grouped all variables into a large vector x, f is a linear function
and g is a quadratic map that encapsulates all constraints. Furthermore, we
know the optimum f ∗ of the objective function without the rank constraint.
Let’s make an assumption for the moment being:

Assumption 4.2. The rank-constrained optimization problem (4.2) reaches
the same minimal C-factor as the original SDP in (2.20).

This assumption does obviously not hold for r = 1, as it would imply that we
could decompose any F ∈ TP(A, A) into unitary operations. We are only
concerned with the case r ≥ 2 in practice, so let’s assume for the moment
that the assumption is correct. This allows us to reformulate Equation (4.3)
as {

min
x
‖g(x)‖2

s.t. f (x) = f ∗ .
(4.4)

We say that our optimization only succeeds if it finds a solution of prob-
lem (4.4) which minimizes ‖g(x)‖2 to zero. The reason why we do this
switching around of objective and constraint, is because linear constraints
tend to be easier to deal with numerically.

To numerically solve problem (4.4) we made use of the trust-region algo-
rithm for constrained optimization which is included in SciPy [26]. We
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fixed r = 2, which corresponds to allowing at most one ancilla qubit in
the Stinespring dilation. In the single-qubit case3 we could consistently find
a good solution, whereas in the two-qubit case we were often confronted
with convergence problems. It is not exactly clear whether these problem
stemmed from the non-existence of a low-rank solution (i.e. Assumption 4.2
being wrong) or from numerical issues with the Burer-Monteiro method. In
any case, we observed that the convergence could be significantly improved
by allowing some error in the linear constraint, i.e.,{

min
x
||g(x)||2

s.t. f ∗ ≤ f (x) ≤ (1 + ε) f ∗ ,
(4.5)

where we used a value of ε = 0.2. In other words, we allow for a sub-
optimality in the C-factor by at most 20%. In principle one could try to find
the smallest admissible ε by usage of bisection. We used npos = nneg = 2 for
single-qubit quantum channels and npos = nneg = 8 for two-qubit quantum
channels. We also observed a good initialization of x for problem (4.4) to be
of major importance. We defer the details how this initialisation procedure
to Appendix A.

4.3 Overview of the Stinespring Algorithm

The result in Section 4.2 allows us to decompose any F ∈ TP(A, A) into
rank r quantum channels. Using the result from Section 4.1 these channels
can be approximated by using dlog2 re ancilla qubits. By choosing r small
enough, we can make sure that this approximation is not too bad.

Still, there is an important step missing before we can practically use this
result. The quasiprobability method requires a QPD where the elements of
the decomposition set Ei correspond to channels describing noisy operations
which the actual quantum hardware can execute. However, the Stinespring
dilation only yields us an approximation of such a QPD. Somehow we have
to take into account the inaccuracy of the Stinespring dilation when con-
structing our QPD. This will be achieved by the use of an iterative algorithm.

Assume that we have access to a noise oracle E 7→ N (E) which tells us how
well we can approximate the channel E using the Stinespring dilation. In
general this oracle could be implemented with some form of tomography,
so we have to assume that it is very expensive to call this oracle. Assume
that we found a decomposition

F =
npos

∑
i=1

a+i E+i −
nneg

∑
i=1

a−i E−i (4.6)

3Here we refer to the number of qubits n on which F acts.
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using the rank-constrained optimization. If we were to implement F with
the quasiprobability method by using the Stinespring approximation of the
involved channels E±i , an error δ would occur where

δ := F −
npos

∑
i=1

a+i N (E+i )−
nneg

∑
i=1

a−i N (E−i ) . (4.7)

We can iteratively repeat our procedure, but this time decomposing δ instead
of F . During each point of the iteration we store the N (E±i ) into our decom-
position set. At some point our decomposition set will be large enough such
that the resulting approximation error is smaller than a desired threshold. A
conceptual visualization of the procedure is depicted in Figure 4.2 and the
exact algorithm can be found in Algorithm 1.

𝓕 Step 1: Optimally decompose target operation

Into quantum channels ℰ𝑖 of rank ≤ 𝑟

Step 2:Approximate ℰ𝑖 using Stinespring dilation
and use noise oracle to find error caused by
hardware noise (e.g. through tomography)

Step3: Determine error 𝛿

Repeat with 𝛿 as target operation

𝒂 𝟏
𝓔 𝟏

𝒂
𝟐 𝓔

𝟐

𝒂 𝟏
𝓝
(𝓔
𝟏
)

𝒂
𝟐 𝓝

(𝓔
𝟐 )

𝜹

Figure 4.2: Graphical visualization of the iterative process involved in the Stinespring algorithm.

It is crucial that the Stinespring dilation allows for a reasonably accurate
approximation of a desired quantum channel. In other words, the yellow
arrow and blue arrow in Figure 4.2 have to be sufficiently close. In practice
we observed that this was only possible with the inclusion of the rank con-
straint introduced before. The variational unitary approximation technique
significantly improves the result further.

Remark 4.3 (Compensation method vs inverse method). Algorithm 1 is for-
mulated analogously to the compensation method, in the sense that we de-
compose the ideal unitary operation [U] into a basis set containing the noisy
variant thereof. It would also be possible to implement the inverse method
instead by choosing the initial F to be the inverse map of the noise instead
of [U]. But for the sake of simplicity, we will restrict ourselves to the com-
pensation method for the rest of this chapter.
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Algorithm 1: Stinespring Algorithm
Given: a target unitary operation [U] for U ∈ U(A), a noise oracle
N , a threshold dnthreshold for the diamond norm error;

Result: Decomposition set D and set of Stinespring dilation circuits
C

C := {circuit of U};
D := {N ([U])};
F := [U];
while True do

aqpd := compute approximate QPD of F using decomposition
set D;

dn := get diamond norm error of approximate QPD aqpd;
if dn < dnthreshold then

break;
end
δ := get the remaining error of the approximate qpd aqpd;
channels := perform rank-constrained channel decomposition of

δ into a set of channels;
StIsos = get Stinespring dilation isometries of the channels

channels;
circuits = get variational unitary approximation circuits of the
isometries StIsos;

opsnoisy = apply noise oracle N on the circuits in circuits;
C = C ∪ circuits;
D = D ∪ opsnoisy;

end

Remark 4.4 (Noise oracle). If a good noise model of the hardware is avail-
able, it might be advantageous to use that to realize the noise oracle N re-
quired in the Stinespring algorithm. That way one doesn’t have to iteratively
perform tomography in each step of the Stinespring algorithm. Instead one
could determine a suitable decomposition set using the noise model and the
Stinespring algorithm, and only then perform tomography of the elements
in the decomposition set at the very end.

4.4 Simulation Results

In this section we present simulation results of the Stinespring algorithm
on the single- and two-qubit gates Ry, CNOT and SWAP, which we already
analyzed in Section 2.7. For all three gates we enforce a rank-constraint r = 2
during the channel decomposition. This corresponds to allowing for at most
one ancilla qubit during the Stinespring dilation. For the two-qubit gates
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we additionally make use of the variational unitary approximation with a
RYRZ variational form4 of depth 6. The noise oracle is based on a noise
model obtained from Qiskit [21], which aims to approximate the noise on
the IBMQ Melbourne hardware platform. Using a noise model instead of a
full tomography significantly speeds up the simulation. We use a threshold
of dnthreshold = 10−7 to stop the iterative procedure.

During each iteration of the Stinespring algorithm, we store the diamond
norm error of the current approximate QPD (denoted dn in Algorithm 1).
Figure 4.3 shows how this error decreases during the Stinespring algorithm.
It is clearly visible that this decrease is exponential, which is not a surprising
observation. It indicates that every Stinespring iteration reduces the remain-
ing error by a roughly relative amount.
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Figure 4.3: Evolution of the approximation error in each step of the Stinespring algorithm. Three
different runs of the algorithm on three different gates Ry, CNOT and SWAP are depicted. The
hardware noise is estimated using a noise model approximating the IBMQ Melbourne hardware
backend. The horizontal grey line denotes the threshold at which the algorithm is programmed
to stop.

For the two qubit gates, each iteration of the Stinespring algorithm extends
the decomposition set by 16 operations (because npos = nneg = 8). By con-
sidering that we need around 6-7 steps to reach the desired threshold, this
implies that the produced decomposition set is significantly smaller than the
Endo basis (around 70-80 elements instead of 256). This result is remarkable
and indicates that the Stinespring algorithm really does find a decomposi-

4The details were introduced in Section 4.1.
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tion set that is well adapted to the hardware noise. As a reminder, the 256
elements in the Endo basis were needed to completely span the space of
Hermitian-preserving operators. The decomposition set produced by the
Stinespring algorithm spans a significantly smaller space, as it is taylored to
only represent one specific operation.

Table 4.1 denotes the C-factors obtained by finding the optimal QPD using
the decomposition set produced by the Stinespring algorithm for the three
gates in question. We see that a significant improvement can be observed
compared to using the Endo basis. As previously discussed, the sampling
overhead of the quasiprobability method scales exponentially in the number
of gates, where the C-factor forms the basis of that exponential cost. There-
fore any reduction in the C-factor is significant and allows us to implement
significantly larger quantum circuits.

C-factor
Endo basis Stinespring algorithm

Ry 1.0106 1.0056
CNOT 1.1789 1.0812
SWAP 2.2095 1.2323

Table 4.1: Simulation results of the Stinespring algorithm applied to the three quantum gates
Ry(2 arccos

√
0.56789), CNOT and SWAP. The obtained C-factor is compared to the value

obtained when the respective gates are decomposed into the decomposition set consisting of the
Endo basis and the corresponding noisy gate (as described in Section 2.7).

4.5 Discussion of Heuristics

It is natural to ask whether we can prove the convergence of the Stinespring
algorithm or derive some bounds on the quality of the obtained solution.
Unfortunately, it is seems difficult to make precise statements about the
convergence, as several heuristics were used throughout this chapter. In this
section we aim to provide a clear overview of these heuristics.

Existence of a low-rank channel decomposition: It is not immediately clear
if Assumption 4.2 holds in practice or not. The fact that we observed
a value of ε > 0 to be necessary for good convergence could be an
indicator that it does indeed not hold. Furthermore it is not clear what
minimal values of npos, nneg are required to reach this minimum.

Consider a SDP of the form
min

X∈Rn×n
〈C, X〉

s.t. A(X) = b
X ≥ 0

(4.8)
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where C ∈ Rn×n is a symmetric matrix, A : Rn×n → Rm a linear
operator and b ∈ Rm. A well-known result in semidefinite program-
ming literature states that there exists a global optimum of rank r such
that r(r + 1)/2 ≤ m as long as the search space of the SDP is com-
pact [33, 34]. It would be interesting to see if this result could somehow
be applied to our problem.

Burer-Monteiro convergence: In recent years, there has been a huge progress
in mathematically demonstrating the convergence and convergence
speed of the Burer-Monteiro heuristic [31, 32]. However, these results
usually apply to the regime r(r + 1)/2 ≤ m and it is not clear if they
can be translated to our setting.

Quality of the Stinespring dilation approximation: Even under the assump-
tion that there always existed a solution of problem (4.2) and that we
could always find this solution efficiently, the convergence speed of
the Stinespring algorithm strongly depends on how well we can ap-
proximate an arbitrary quantum channel with the Stinespring dilation.
More mathematically, we require the noise oracle N to be as closed
to the identity as possible. It would be interesting for further work to
derive some bound on the convergence speed and resulting C-factor
that depend on N . In practice it would still be difficult to evaluate
this bound, as N has a very complicated structure, since it not only
contains the full noise model, but also the variational unitary approxi-
mation.
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Chapter 5

Interplay Between the Quasiprobability
Method and Quantum Error

Correction

The goal of the quasiprobability method is similar to the goal of quantum
error correction: Both aim to suppress the effects of noise by simulating a
noise-free quantum computer using a noisy quantum computer. The two ap-
proaches are very different in how they tackle this problem: The former tries
to compensate for errors by averaging results over different runs, whereas
the latter tries to detect and correct errors by encoding the quantum infor-
mation redundantly in a larger Hilbert space. Quantum error correction
doesn’t suffer from the exponential cost which restricts the quasiprobability
method to shallow circuits, so in the far future it will definitely be the more
desirable alternative of the two. However, current quantum hardware does
not meet the stringent requirements in fidelities and number of qubits nec-
essary to implement quantum error correction and it will most likely not for
the foreseeable future [3].

It is a natural, although vague, intuition that one would like to combine the
two approaches. While full quantum error correction is currently not feasi-
ble, it might be possible to reduce the hardware requirements by assisting
it with the quasiprobability method. This would most likely still imply the
existence of an exponential cost in the circuit size, but it could be used as a
stepping stone towards full quantum error correction. It would be ideal if
there were some tunable parameter that would allow us to choose how much
of the heavy lifting is done by quantum error correction and how much by
quantum error mitigation. In the near future one would rely more on the
error mitigation component, restricting us to shallower circuits. But as hard-
ware would get better, although still not good enough for full quantum error
correction, one could push this parameter more towards the regime where
error mitigation plays a smaller role and thus reduce the C-factor cost.
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Correction

This chapter is meant to capture some research ideas and failed attempts
that were conducted during the master thesis. The work on this project
is still ongoing and therefore the results in this section are not completely
fleshed out yet. We will present multiple independent attempts to merge
ideas from quantum error mitigation and correction.

5.1 Implementing the Recovery Map using the Quasiprob-
ability Method

The celebrated threshold theorem [35] ensures that quantum error correction
is possible if a certain set of operations can be executed with a fidelity above
a certain threshold. If only one operation fails to meet this criterion, fault
tolerance generally cannot be achieved. The experimentally most difficult
operation on current hardware platforms often tends to be the measurement
operation (and the closely related reset operation). It is excessively noisy
and requires orders of magnitude more time to execute than unitary gates,
causing significant decoherence in the surrounding qubits which have to
wait for the measurement to finish.

We asked ourselves the question, whether it might be possible to imple-
ment the recovery operation R of a quantum error correction code without
the use of measurement-resets by employing the quasiprobability method.
More precisely we would like to find a QPD of R into unitary operations
(acting on the same number of qubits1). This would significantly simplify
the implementation of quantum error correction codes on near-term noisy
quantum hardware. Unfortunately this task is not possible, not even approx-
imately. In the below section we will derive why this is the case.

Consider a stabilizer code which encodes 1 logical qubit into n physical
qubits. By using a symplectic Gram-Schmidt procedure, one can construct
an algebra of n virtual qubits which span the physical n-qubit Hilbert space.
One of these virtual qubits plays the role of the logical qubit, whereas the
other qubits are denoted as syndrome qubits. The logical subspace corre-
sponds to the space where all syndrome qubits are in the state |0〉. There
exists some unitary basis transformation Ũ which maps the physical qubits
into the virtual qubits of the code. We consider the recovery operation in the
virtual qubit basis, i.e. R̂ := [Ũ]R[Ũ−1]. Since the recovery map consists
of resetting the syndromes to zero and leaving the logical quantum informa-
tion intact, R̂ can be expressed as a reset operation on the syndrome qubits
and an identity operation on the logical qubit:

1If we make use of additional ancilla qubits in a fixed quantum state, then this would
also implicate a need of periodic measurement-resets, if we are to reuse the ancilla qubit.
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R̂

T

T
... = ...

T

T

logical qubit

where T denotes a single-qubit reset operation. SinceR and R̂ are related by
a basis transformation, one can quickly see that finding a unitary-only QPD
of one of them immediately implies that we can find a unitary-only QPD
of the other. We argue that finding a unitary-only QPD of R̂ is impossible,
since it is impossible to find a unitary-only QPD of the reset operation.

Lemma 5.1. Consider the single-qubit reset operation T. There exists no QPD of
T into unitary operations

T = ∑
i

ai[Ui] . (5.1)

Furthermore, T cannot be approximated arbitrarily closely with QPDs of this form.

Proof. Since we care about linear additivity in Equation (5.1), it is natural to
represent the involved quantum channels via an isomorphic representation,
such as the Choi representation. The Choi matrix of the reset operation is
given by

ΛT =
1
2 ∑

α=0,1
|α〉 〈α| ⊗ |0〉 〈0| = 1

2
(|00〉 〈00|+ |10〉 〈10|) (5.2)

and can thus be decomposed into

ΛT = A + B where (5.3)

A =
1
4
(|00〉 〈00|+ |01〉 〈01|+ |10〉 〈10|+ |11〉 〈11|) and (5.4)

B =
1
4
(|00〉 〈00| − |01〉 〈01|+ |10〉 〈10| − |11〉 〈11|). (5.5)

A is the fully-mixed state, so one can quickly convince oneself that A =
1
8 (ΛId + ΛX + ΛY + ΛZ). This means that A is decomposable into unitary
operations. However, the same does not hold for B. We show below that
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〈B, ΛU〉 = 0 for all unitaries U

〈B, ΛU〉 (5.6)

= ∑
i,j

Tr[|0〉 〈0|i〉 〈j| ⊗ |0〉 〈0|U|i〉 〈j|U† + |0〉 〈0|i〉 〈j| ⊗ |1〉 〈1|U|i〉 〈j|U†

(5.7)

+ |1〉 〈1|i〉 〈j| ⊗ |0〉 〈0|U|i〉 〈j|U† + |1〉 〈1|i〉 〈j| ⊗ |1〉 〈1|U|i〉 〈j|U†]
(5.8)

= 〈0|U|0〉 〈0|U†|0〉−〈1|U|0〉 〈0|U†|1〉+〈0|U|1〉 〈1|U†|0〉−〈1|U|1〉 〈1|U†|1〉
(5.9)

= (|U00|2 + |U01|2)− (|U10|2 + |U11|2) (5.10)
= 0 , (5.11)

which thus implies that B is a remainder that is impossible to decompose or
even approximate with unitary operations. To precisely formalize the state-
ment about the impossibility of an approximation, one must consider that
〈E ,F〉∗ := 〈ΛE , ΛF 〉 is an inner product on the space of quantum operations
and use the fact that it is continuous (by linearity and boundedness, since
we are working with finite-dimensional spaces).

5.2 Logical Inverse

A central idea in quantum error correction is to encode logical qubits in
multiple physical qubits. The effect of local quantum errors can be detected
and corrected, as long as the weight of the error does not exceed a certain
limit, which is determined by the distance of the code. Only errors of high
weight can disturb the quantum information.

The idea presented in this section is as follows: We encode the logical quan-
tum information using a n-qubit quantum code in an extended Hilbert space.
Assume that we start with a state that lies in this logical subspace. After
some noise occurs on the system, we perform an inverse operation to undo
the noise, similar to the inverse method introduced in Section 2.7. But in
contrary to the regular inverse method, we do not invert the complete noise
that occurred, but rather only the noise on the logical subspace. We call such
an inverse a logical inverse.

We illustrate the approach with following example on a single logical qubit:
m consecutive noise operation Ni are applied on the encoded qubit. After
every noise operation, we perform a logical inverse Ii that undoes the noise
on the logical subspace.

N1 I1 N2 I2 . . . Nm Im
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The requirement that I1 shall perform a logical inverse can be mathemati-
cally expressed as

R ◦ I1 ◦ N1 ◦ R = R . (5.12)

We want to chose a I1 that satisfies this criterion and minimizes the required
C-factor. Once I1 is fixed, we can obtain I2 analogously with a different
constraint given by

R ◦ I2 ◦ N2 ◦ I1 ◦ N1 ◦ R = R . (5.13)

This is iteratively repeated until Im is obtained. Note that the definition of
Ij is non-local: it depends on everything that happened before. This is in
stark contrast to the traditional quasiprobability method where one would
perform full inverse operations, in which case Ij would only depend on Nj.

The main goal is to show that this approach would allow for a reduced
C-factor compared to the bare QPD, where every logical qubit is encoded
directly as a physical qubit. First we try to demonstrate this numerically,
but due to the computational complexity of the problem, this turns out to
be infeasible. Therefore we will restrict ourselves to a simple code and noise
model, which allows us to evaluate this advantage analytically.

5.2.1 Numerical Approach

Finding Ij numerically is done in the same way as finding any QPD, namely
with the linear program in Equation (2.11). For example, I1 is given by
∑i αiEi where the coefficients αi are determined with following LP:

minimize ∑i |αi|
such that R ◦ (∑i αiEi) ◦ N ◦R = R ,

(5.14)

and {Ei}i is a basis of operations which is fixed in advance. Once this LP is
solved and we fixed I1, we can iteratively solve an analogous LP for I2, I3,
etc...

The computational cost of this method scales linearly in m, but exponentially
in n. This channel representations usually have 16n variables. For n = 3 it is
feasible to solve this problem numerically, as the LP has ∼ 4 · 103 constraints.
n = 5 already has ∼ 106 constraints, so it might be barely feasible. Anything
beyond that is most likely out of our reach. Unfortunately, restricting our-
selves to the parameter region where n ≤ 5 is not very interesting, as we are
interested in asymptotic statements in n.

5.2.2 Toy Example: Bit Flip Noise and the Repetition Code

We choose the most basic example of a code and noise in hope to get some
useful insights from that. We encode our logical qubit in n physical qubit
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using the repetition code (where n is odd). The noise mapNj are all identical
(denoted simply as N ) and constituted of iid bit flip noise on every physical
qubit with an error probability of ε.

Effective Bit Flip Probability

Here we describe a central insight in this toy example, which makes it an-
alytically easy to analyze. The above described noise acts as an effective
single-qubit bit flip channel on the logical subspace. To understand and de-
rive this, we start off by considering the case of m = 1. The more general
case will follow directly.

The noise map consists only of Pauli-X terms

N (ρ) = ∑
i∈{0,1}n

ai · XiρXi , (5.15)

where the ai are some real coefficients. We now switch to the virtual qubit
picture. The noise transforms as follows in the virtual qubit picture:

N̂ (ρ̂) = ∑
i∈{0,1}n

ai · (ŨXiŨ−1)ρ̂(ŨXiŨ−1) . (5.16)

We now use the fact that our initial state ρ is guaranteed to be in the logical
subspace, i.e. it look like ρ̂ = |0〉 〈0|⊗n−1⊗ ρlogical in the virtual qubit picture.
To make the analysis a bit easier, let’s even assume ρlogical is a pure state
ρ̂ = |Ψ〉 〈Ψ| for |Ψ〉 = α |0 . . . 00〉+ β |0 . . . 01〉. Let’s see how the above terms
(ŨXiŨ−1) act on this state. Ũ−1 brings it to the state α |0 . . . 0〉+ β |1 . . . 1〉.
Xi now causes w(i) bit flips on this state, where w(i) is the number of non-
zero elements in the vector i ∈ {0, 1}n. Ũ brings us back to the virtual
qubits. One immediately sees that, if we only consider the action on the
logical qubit, then the expression (ŨXiŨ−1) will cause a bit flip if and only
if w(i) ≥ n+1

2 . More precisely, the quantum channel restricted to the logical
subspace acts as a bit flip channel

ρ 7→ Tr0,1[N̂ (|0〉 〈0|⊗n−1 ⊗ ρ)] = (1− ε̃)ρ + ε̃XρX (5.17)

with an effective bit flip probability ε̃ which is given by

ε̃(n) = ∑
i∈{0,1}n :w(i)≥ n+1

2

ai. (5.18)

Here the superscript (n) is meant to differentiate between the effective bit
flip probability when different amount of physical qubits are used.

With the above insight, we now naturally see a simple strategy how to do
a restricted inverse on the logical subspace. For any single-qubit bit-flip
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channel with probability p there is a (non-physical) inverse map given by

ρ 7→ 1− p
(1− p)2 ρ− p

(1− p)2 − p2 XρX . (5.19)

We can apply this inverse map on the logical qubit. Translating this back to
the picture of the physical qubits, the inverse maps looks like

I1(ρ) =
1− ε̃

(1− ε̃)2 ρ− ε̃

(1− ε̃)2 − ε̃2 X⊗nρX⊗n (5.20)

and is implementable with a C-factor of

C =
1

1− 2ε̃
. (5.21)

Now that we know how I1 looks like, we finally can consider the m > 1 case.
Because I1 also only contains Pauli-X terms, we can write N ⊗ I1 ⊗N in
the form of Equation (5.15). Therefore we can repeat the same argument for
I2, and thus iteratively for all Ij. We denote the effective bit-flip probability
seen by Ij as ε̃

(n)
j . To also include the dependence on the original physical

bit flip probability, we write ε̃
(n)
j (ε).

Commutation of Noise and Logical Inverse

Recall that ε̃
(n)
j (ε) is the quantity we care about, since it relates 1-to-1 to the

C-factor of Ij. From Equation (5.18) in the previous section, we can easily
write down the j = 1 formula:

ε̃
(n)
1 =

n

∑
k= n+1

2

(
n
k

)
εk(1− ε)n−k. (5.22)

Note that this is basically one minus the CDF of the binomial distribution.
The general formula for j > 1 seems rather daunting to write down it analyt-
ically. Fortunately, thanks to the simplicity of our model, we can use a trick
to get an implicit relation which will simplify many things further down the
line. Because N and all Ij are all Pauli-X channels, they commute. So we
can group together all the noise into one big noise channel and compound
all the logical inverses at the end. One can quickly convince oneself that the
composition of m bit flip channels of probability ε is again a bit flip channel
of probability 1

2 (1− (1− 2ε)m). Similarly the logical inverses aggregate into
a X⊗n joint n-qubit flip channel. Due to the commutativity, one can see after
a bit of thinking, that searching for optimal Ij iteratively (i.e. first I1, then
I2, etc...) must lead to the equivalent result to finding an optimal inverse
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for the aggregated noise. Thanks to this insight we can now get following
formula with the effective bit flip rate:

bfprob(ε̃(n)1 (ε), . . . , ε̃
(n)
m (ε)) = ε̃

(n)
1 (

1
2
− 1

2
(1− 2ε)m) , (5.23)

where bfprob(p1, . . . , pm) is the bit flip rate of a channel consisting of the
composition of bit flip channels with probabilities p1, . . . , pm, i.e. bfprob(q) :=
q and

bfprob(q1, . . . , qn) = bfprob(q1, . . . , qn−1)(1− qn) + bfprob(q1, . . . , qn−1)qn .
(5.24)

Equation (5.23) can be used as an implicit formula which allows us to effi-
ciently compute ε̃

(n)
j (ε) for j > 1.

Our insight also translates directly into the C-factor. The C-factor of doing
the restricted inverses iteratively is the same C-factor of a single restricted in-
verse applied on the the bit flip noise with probability ε̃

(n)
1 ( 1

2 − 1
2 (1− 2ε)m).

Bounds and Asymptotic Behavior

In Section 5.2.2 we realized that the quantity of interest is the effective bit
flip rate. In Section 5.2.2 we saw that we can replace a system with m > 1
by a system with m = 1 with a modified physical bit flip rate and both will
have the identical C-factor and inverse map (just split up differently across
the circuit). So the quantity of interest we want to compute is

ε̄ := ε̃
(n)
1 (

1
2
− 1

2
(1− 2ε)m) (5.25)

which is 1-to-1 related to the C-factor by C = 1
1−2ε̄ . We would now like to

analyze the asymptotic behavior of ε̄ in n and m.

We can formulate ε̄ in terms of the CDF F(k, n, p) of the binomial distribution

ε̄ = 1− F(
n− 1

2
− 1, n,

1
2
(1− (1− 2ε)m) (5.26)

= F(
n− 1

2
, n,

1
2
(1 + (1− 2ε)m) . (5.27)

This is useful, as we can now use the Chernoff and anti-concentration bounds
from above and below

1√
2n

exp(−nD(
k
n
‖p)) ≤ F(k, n, p) ≤ exp(−nD(

k
n
‖p)) , (5.28)

where D(·‖·) denotes the relative entropy. Inserting k and p we quickly
see that both k

n and p converge to 1
2 . This allows us to perform the Talyor

expansion

D(x‖y) ≈ 2(x− 1
2
)2 + 2(y− 1

2
)2 − 4(x− 1

2
)(y− 1

2
) . (5.29)
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Furthermore the
√

2n term becomes irrelevant for large n. We thus obtain

ε̄ ∼ exp(− 1
2n
− 1

2
n(1− 2ε)2m − (1− 2ε)m) . (5.30)

One direct consequence of this result is that the effective bit flip rate decays
exponentially in n.

Summary of results

We compare the previously described setting

N I1 N I2 . . . N Im

with regular quantum error correction

N n R

under the assumption that we have access to an ideal recovery mapR. Quan-
tum error correction does not incur an additional sampling overhead, but
it also doesn’t correct logical errors perfectly. This is why fault tolerant
quantum error correction either requires large n or code concatenation. Our
method can correct any logical errors perfectly, but the sampling overhead
means that we have to pay a price that is exponential in the circuit depth.
By performing the Taylor expansion at ε ≈ 0 of Equation (5.22) one can
analytically compute the C-factor and the error that occur in our method
and in the QEC setting respectively. The result is depicted in Table 5.1. In-
terestingly, the C-factor of the logical inverse approach behaves in a very
analogous manner as the error in the quantum error correction scheme: It
is suppressed exponentially in the number of qubits in the code. We expect
a similar behavior to manifest for general codes and general noise models,
with the difference that the suppression would behave as ε

d+1
2 where d is the

distance of the code in question.

5.2.3 Drawbacks of the Approach

The major drawback of this approach is that we require knowledge of quan-
tum channels that span wide parts of our circuit. More precisely, to compute
Ij one requires knowledge about the channel Nj ◦ Ij−1 ◦ · · · ◦ I1 ◦ N1. It is
not tractable to experimentally perform tomography on this channel, espe-
cially if one considers a more realistic setup with multiple logical qubits,
where multi-qubit gates entangle different logical qubits between two logi-
cal inverses. Generally the method would require tomography of subcircuits
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Correction

C-factor Error (diamond norm)
Bare QPD 1 + 2mε 0
Quantum Error Correction 0 2( n

2+1
2
)(mε)

n+1
2

Logical Inverse Approach 1 + 2( n
2+1

2
)(mε)

n+1
2 0

Table 5.1: Benchmark of three different approaches to correcting m consequent applications of
a bit flip noise with iid rate ε to a single logical qubit. For each method the resulting error and C-
factor are depicted. Bare QPD denotes using the regular quasiprobability method where 1 logical
qubit is encoded in 1 physical qubit. Quantum Error Correction denotes the case where the
logical qubit is encoded in n physical qubits using the repetition code. Logical inverse approach
denotes the method where the qubit is encoded in n physical qubits using the repetition code
and a logical inverse map is implemented after every noise channel using the quasiprobability
method. The formulas in the table are valid in the regime ε→ 0.

that are as wide as the total circuit in question, a task which is as expensive
as classically simulating the circuit in the first place.

The only manner how this method could be applied as-is would be to some-
how restrict it to small subcircuits that are not too wide. A larger circuit
could be subdivided in smaller manageable circuits by periodically insert-
ing recovery operations inside the circuit. Each chunk between two recov-
ery operations would then be individually corrected with the logical inverse
method. Generally, there is a tradeoff to be made here: If the chunks are very
small, then we gain no C-factor over the the bare quasiprobability method.
If the chunks are very large, we have to pay with more expensive tomog-
raphy operations, and at some point this tomography becomes intractable.
Depending on the circuit in question, there might be a sweet spot in between
these two extremes where our method could be of practical interest.
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Appendix A

Initial Guess for Rank-Constrained
Channel Decomposition

The task at hand is to solve following optimization problem:

min
a±i ∈R+,X±i ∈C2×4n

∥∥∥∥∥ΛF − (
npos

∑
j=1

Λ̃+
Ej
−

nneg

∑
j=1

Λ̃−Ej
)

∥∥∥∥∥
2

2

+

npos

∑
j=1

∥∥∥Tr2[Λ̃+
Ej
]− a+j

1
2n 1

∥∥∥2

2
+

nneg

∑
j=1

∥∥∥Tr2[Λ̃−Ej
]− a−j

1
2n 1

∥∥∥2

2

s.t. f ∗ ≤ ∑
npos
j=1 a+j + ∑

nneg
j=1 a−j ≤ f ∗ · (1 + ε)

Λ̃±Ei
= (X±i )

† · X±i .
(A.1)

We restrict ourselves to the case of r = 2, which corresponds to allowing a
single ancilla qubit in the Stinespring dilation. In order to solve this problem
with a local method, an initial guess a±,0

i , X±,0
i for the parameters is required.

In this section we present a heuristic to find such initial values which seems
to work well in our experience.

We start off by computing the CDD F = a+E+ − a−E− of our target opera-
tion. We consider the spectral decomposition of the Choi matrices of E±

ΛE± =

 | |
u±1 . . . u±4n

| |

 · diag(λ1, . . . , λ4n) ·

— (u±1 )
† —

...
— (u±4n)† —

 (A.2)

=
4n

∑
i=1

λiu±i · (u±i )† (A.3)

where λ±i denote the eigenvalues and u±i denote the corresponding eigen-
vectors. We chose the indices such that the λ±i are ordered non-increasingly
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in i. Equation (A.3) is a decomposition of E± into rank-1 operations. Since
we want to find a decomposition into rank-2 operations, we group these
rank-1 matrices into pairs:

ΛE± =
4n/2

∑
i=1

Y±i · (Y±i )† where (A.4)

Yi =

 | |√
λ2iu±2i

√
λ2i+1u±2i+1

| |

 (A.5)

We chose our initial guess as

a±,0
i := Tr[Yi] and X±,0

i :=
Yi

Tr[Yi]
. (A.6)

If npos = nneg < 1
2 4n this implies that we only consider the 2npos largest eigen-

values and discard the others. As already mentioned, in our implementation
we chose npos = nneg = 1

2 4n1. This way

ΛF = (
npos

∑
i=1

Λ̃+
Ei
−

nneg

∑
i=1

Λ̃−Ei
) (A.7)

is already fulfilled by the initial guess. Furthermore we also already fulfill
that the C-factor

npos

∑
i=1

a+i +
nneg

∑
i=1

a−i = f ∗ . (A.8)

Therefore the only condition that is not yet fulfilled is the trace-preservingness
of the Λ̃±Ei

.

1We chose npos = nneg = 1 for n = 2 and npos = nneg = 8 for n = 2.
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