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Review

Diagnostics and correction of batch effects in
large-scale proteomic studies: a tutorial
Jelena �Cuklina1,2,3 , Chloe H Lee1 , Evan G Williams1,4 , Tatjana Sajic1 , Ben C Collins1,5 ,

Mar�ıa Rodr�ıguez Mart�ınez3 , Varun S Sharma1 , Fabian Wendt6 , Sandra Goetze6,7,8 ,

Gregory R Keele9 , Bernd Wollscheid6,7,8 , Ruedi Aebersold1,10,* & Patrick G A Pedrioli1,6,7,8,**

Abstract

Advancements in mass spectrometry-based proteomics have
enabled experiments encompassing hundreds of samples. While
these large sample sets deliver much-needed statistical power,
handling them introduces technical variability known as batch
effects. Here, we present a step-by-step protocol for the assess-
ment, normalization, and batch correction of proteomic data. We
review established methodologies from related fields and describe
solutions specific to proteomic challenges, such as ion intensity
drift and missing values in quantitative feature matrices. Finally,
we compile a set of techniques that enable control of batch effect
adjustment quality. We provide an R package, "proBatch", contain-
ing functions required for each step of the protocol. We demon-
strate the utility of this methodology on five proteomic datasets
each encompassing hundreds of samples and consisting of multiple
experimental designs. In conclusion, we provide guidelines and
tools to make the extraction of true biological signal from large
proteomic studies more robust and transparent, ultimately facili-
tating reliable and reproducible research in clinical proteomics and
systems biology.
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Introduction

Recent advances in mass spectrometry (MS)-based proteomic

approaches have significantly increased sample throughput and

quantitative reproducibility. As a consequence, large-scale studies

consisting of hundreds of samples are becoming increasingly

common (Zhang et al, 2014, 2016; Liu et al, 2015; Mertins et al,

2016; Okada et al, 2016; Williams et al, 2016; Collins et al, 2017;

Sajic et al, 2018). These technological and methodological advances,

combined with proteins being the main regulators of the majority of

biological processes, make MS-based proteomics a key methodology

for studying physiological processes and diseases (Schubert et al,

2017). MS-derived quantitative measurements on thousands of

proteins can, however, be affected by differences in sample prepara-

tion and data acquisition conditions such as different technicians,

reagent batches, or changes in instrumentation. This phenomenon,

known as “batch effects”, introduces noise that reduces the statisti-

cal power to detect the true biological signal. In the most severe

cases, the biological signal ends up correlating with technical vari-

ables, leading to concerns about the validity of the biological

conclusions (Petricoin et al, 2002; Hu et al, 2005; Akey et al, 2007;

Leek et al, 2010).

Batch effects have been extensively discussed, both in the

genomic community that made major contributions to the problem

about a decade ago (Leek et al, 2010; Luo et al, 2010; Chen et al,

2011; Dillies et al, 2013; Lazar et al, 2013; Chawade et al, 2014) and

in the proteomic community which has faced the issue quite

recently (Gregori et al, 2012; Karpievitch et al, 2012; Chawade et al,

2014; V€alikangas et al, 2018). Nevertheless, finding solutions to the

problem of batch effects is still a topic of active research. Although

extensive reviews have been written on the topic (Leek et al, 2010;

Lazar et al, 2013), researchers still get confused about the
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terminology. For example, the distinction between normalization,

batch effect correction, and batch effect adjustments is not always

clear and these terms are often used interchangeably. To clarify how

we use these terms in this Review, we compiled a glossary, found in

Table 1. Some definitions are adapted from Leek et al, 2010.

There is also considerable debate on which batch correction

method performs best, and multiple articles have compared various

methods (Luo et al, 2010; Chen et al, 2011; Chawade et al, 2014).

Other publications advise checking the assumptions about the data

before selecting the bias adjustment method (Goh et al, 2017; Evans

et al, 2018).

The issue of batch correction is further complicated by the fact

that each technology faces different issues. Specifically, RNA-seq

batch effect adjustment requires approaches that address

sequencing-specific problems (Dillies et al, 2013). Similarly, MS

methods in proteomics (e.g., data-dependent acquisition—DDA,

data-independent acquisition—DIA, and tandem mass tag—TMT)

also present several field-specific challenges. First, there is the prob-

lem of peptide to protein inference (Clough et al, 2012; Choi et al,

2014; Rosenberger et al, 2014; Teo et al, 2015; Muntel et al, 2019).

As protein quantities are inferred from the quantities of measured

peptides or even fragment ions, one needs to decide at which level

to correct the data. Second, it is known that missing values can be

associated with technical factors (Karpievitch et al, 2012; Matafora

et al, 2017). Finally, when dealing with experiments with large

sample numbers, typically in the order of hundreds, one needs to

account for MS signal drift.

Here, we discuss the application of established approaches for

batch effect adjustment. We also look at the methods that address

MS-specific challenges. We start by providing an overview of the

workflow and a definition of key terms for each step. In addition to

considering batch effect assessment and adjustment, we summarize

the best practices for assessing the improvements in data quality

post-correction. We also devote a section to the implications of

missing values in relation to batch effects and potential pitfalls

related to their imputation. We finish with a discussion and a future

perspective of the presented approaches.

To facilitate the application to practical use cases, we illustrate

all the relevant steps using three large-scale DIA and two DDA stud-

ies. For these "case studies", we primarily rely on the largest of the

five datasets (i.e., Aging mouse study; preprint: Williams et al,

2021) and refer to the others where appropriate. The data analyses

we show are only for illustration purposes and are not intended for

deriving new biological insights.

Workflow overview

The purpose of this article is to guide researchers working with

large-scale proteomic datasets toward minimizing bias and maximiz-

ing the robustness and reproducibility of results generated from such

data. The workflow starts from a matrix of quantified features (e.g.,

transitions, peptides, or proteins) across multiple samples, here

referred to as “raw data matrix” and finishes with "batch-adjusted"

data, which are ready for downstream analyses (e.g., differential

expression or network inference). We split the workflow into five

steps, shown in Fig 1, and describe each of the steps below.

In the context of this article, we will use the term “adjust for

batch effects” when referring to the whole workflow and “correct

for batch effects” when referring to the correction of normalized

data (see Table 1).

We provide a checklist that summarizes the most important

points of the protocol in Table 2. It is also important to stress that

batch factors should be already considered in the experimental

design phase, to ensure that the data are not biased beyond repair,

something that can happen when biological groups are completely

confounded with sample preparation batches (Hu et al, 2005; Gilad

& Mizrahi-Man, 2015). For an extensive discussion on experimental

design, we refer the reader to previously published materials on the

topic (Oberg & Vitek, 2009; �Cuklina et al, 2020). Here, we assume

that the experiment has been designed with appropriate randomiza-

tion and blocking, ensuring the correctability of bias caused by

batch effects.

In the accompanying “proBatch” package, we implemented

several methods with proven utility in batch effect analysis and

adjustment. We also provide tips for integrating other tools that might

be useful in this context, and for making them compatible. proBatch

is made available as a Bioconductor package (https://www.biocon

ductor.org/packages/release/bioc/html/proBatch.html) and a pre-

built Docker container (https://hub.docker.com/r/digitalproteomes/

probatch), as well as a GitHub repository (https://github.com/symb

ioticMe/batch_effects_workflow_code) of the workflow with all code

and data required to reproduce the case study analyses.

Extensive comparison of various methods has been published

previously (Luo et al, 2010; Chawade et al, 2014), and here, we

summarize the best practices from these papers, as well as reviews

(Leek et al, 2010; Lazar et al, 2013) and application papers (Collins

et al, 2017; Sajic et al, 2018), and turn them into principles that can

guide the reader in choosing an appropriate methodology.

Table 1. Terminology.

Term Definition

Batch effects Systematic differences between the measurements due
to technical factors, such as sample or reagent batches.

Normalization Sample-wide adjustment of the data with the intention
to bring the distribution of measured quantities into
alignment. Most prominently, sample means and
medians are aligned after normalization.

Batch effect
correction

Data transformation procedure that corrects quantities
of specific features (genes, peptides, metabolites) across
samples, to reduce differences that are associated with
technical factors, recorded in the experimental protocol
(i.e., sample preparation or measurement batches).
Usually samples are assumed to be normalized prior to
batch effect correction. This step is often called "batch
effect removal" or "batch effect adjustment" in the
literature. Note the difference in the definition used here.

Batch effect
adjustment

Data transformation procedure that adjusts for
differences between samples due to technical factors
that altered the data (sample-wise and/or feature-wise).
The fundamental objective of the batch effect
adjustment is to make all samples comparable for a
meaningful biological analysis. In our definition, batch
effect adjustment is a two-step transformation: first
normalization, then batch effect correction. Performing
normalization first helps feature-level batch effect
correction by first alleviating sample level discrepancies.
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Raw data matrix: choosing between
protein/peptide/fragment level
This workflow starts with a raw data matrix, for which initial steps

such as peptide-spectrum matching, quantification, and FDR control

have been completed. Data are assumed to be log-transformed

unless the variance stabilizing transformation (Durbin et al, 2002) is

used. In the latter case, the data transformation is included in the

normalization procedure.

We suggest performing batch effect adjustment on the peptide or

fragment ion level, as this procedure alters feature abundances that

are critical for protein quantity inference (Clough et al, 2012; Teo

et al, 2015).

We also suggest that all detected peptides, including non-

proteotypic peptides and peptides with missed cleavages, should be

kept into consideration during batch effect adjustment. Keeping all

measurements is required to better evaluate the intensity

distribution within each sample, which is critical for subsequent

normalization and correction steps.

Initial assessment
The goals of the initial assessment phase are to determine bias

magnitude and sources and to select a normalization method. In

most cases, the intensity distributions differ among samples.

Comparing global quantitative properties such as sample medians

or standard deviations helps with the choice of normalization meth-

ods and the identification of technical factors requiring further

control.

Three approaches are particularly useful for initial assessment:

(i) plotting the sample intensity average or median in order of MS

measurement or technical batch, allows to estimate MS drift or

discrete bias in each batch; (ii) boxplots allow to assess sample vari-

ance and outliers; and (iii) inter- vs. intrabatch sample correlation.

Figure 1. Batch effect processing workflow.

1. Initial assessment evaluates whether batch effects are present in raw data. 2. Normalization brings all samples from the dataset to a common scale. 3. Diagnostics of
batch effects in normalized data. This step determines whether further correction is required. 4. Batch effect correction addresses feature-specific biases. 5. Quality
control tests whether bias has been reduced while retaining meaningful signals.
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A higher correlation of samples from the same batch compared with

unrelated batches is a clear sign of bias. Optionally, a few proteins

or peptides can be checked for signs of bias.

Normalization
The goal of normalization is to bring all samples to the same scale

to make them comparable. Commonly used methods of normaliza-

tion are quantile normalization, median normalization, and

z-transformation. Two main considerations drive the choice of

normalization method:

• Heterogeneity of the data: If samples are fairly similar, the bulk of

the proteome does not change, and thus, techniques such as quan-

tile normalization (Bolstad et al, 2003) can be used. In datasets in

which the samples are substantially different (i.e., when a large

fraction of the variables are either positively or negatively affected

by the treatment) different methods, such as HMM-assisted

normalization can be used (Landfors et al, 2011). Additionally, if

some samples are expected to have informative outliers (e.g.,

muscle tissue, in which a handful of proteins are several orders of

magnitude more abundant than the rest of the proteome), meth-

ods that keep the relationship of outliers to the bulk proteome

need to be used (Wang et al, 2021).

• Distribution of sample intensities: The initial assessment step,

especially boxplots, indicates which level of correction is required:

In most cases, shifting the means or medians is enough, but when

variances differ substantially, these need to be brought to the

same scale as well.

It should be noted that after normalization, no further data

correction might be required. This can be determined with the

diagnostic plots and quality control methods described below. If

the results are satisfactory, keeping data manipulation minimal

is advisable.

Diagnostics of normalized data
While normalization makes the samples more comparable, it only

aligns their global patterns. Therefore, batch effects affecting speci-

fic proteins or protein groups might still represent a major source of

variance even after normalization. Thus, the diagnosis of batch

effects is most informative when performed on normalized data.

The diagnostic approaches can be divided into proteome-wide

and peptide-level approaches. The main approaches for proteome-

wide diagnostics are as follows:

• Hierarchical clustering is an algorithm that groups similar samples

into a tree-like structure called a dendrogram. Similar samples

cluster together, and the driving cause of this similarity can be

visualized by coloring the dendrogram by technical and biological

factors. Hierarchical clustering is often combined with a heatmap,

mapping quantitative values in the data matrix to colors which

facilitates the assessment of patterns in the dataset.

• Principal Component Analysis (PCA) is a technique that identifies

the leading directions of variation, known as principal compo-

nents. The projection of data on two-component axes visualizes

sample proximity. Additional coloring of the samples by techni-

cal/biological factors, or by highlighting replicates, facilitates the

interpretation of what drives sample proximity. This technique is

particularly convenient to assess clustering by biological and tech-

nical factors or to check for replicate similarity. Visualization

without sample point or label overlay effects works in our experi-

ence up to about 50–100 samples in a dataset.

One should be careful in interpreting proteome-wide diagnostics

because these methods were designed for data matrices without

missing values. Proteomic datasets often contain missing values for

Table 2. Batch effect processing checklist.

Step Substeps

Experimental designa Randomize samples in a balanced manner to
prevent confounding of biological factors with
batches (technical factors).

Consider adding replicates if possible, for
example: (a) add replication for each technical
factor; (b) regularly inject a sample mix every few
(e.g., 10–15, but the exact number will need to be
adjusted depending on experimental conditions)
samples for control; (c) incorporate a sample mix
per batch.

Record all technical factors, both plannable and
occurring unexpectedly.

Initial assessment Check whether the sample intensity distributions
are consistent.

Check the correlation of all sample pairs.

If intensities or sample correlations differ, check
whether the intensities show batch-specific
biases.

Normalization Choose a normalization procedure, appropriate
for biological background and data properties.

Diagnostics Using diagnostic tools, determine whether batch
effects persist in the data.

Use quality control already at this step and skip
the correction if it is not necessary.

Tip: If the goal is to determine differentially
expressed proteins, and the batch effects are
discrete or linear, multi-factor ANOVA on
normalized data is a sound statistical approach.
This will adjust for batch effects while
simultaneously identifying differentially expressed
proteins. Note, that "hits" or differentially
expressed proteins identified with this approach
are valid even if diagnostic tools indicate the
presence of batch effects. For more details on
ANOVA methods, refer to (Rice, 2006).

Batch effect
correction

Choose batch effect correction procedure,
appropriate for the biological background and
data properties, especially those detected at the
previous step.

Repeat the diagnostic step.

Assess the ultimate benefit with quality control.

Quality control Compare correlation of samples within and
between the batches. Pay special attention to
replicate correlation, if these are available.

Compare correlation of peptides within and
between the proteins.

aFor details on experimental design, see (�Cuklina et al, 2020).
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technical or biological reasons. For more details, we refer the reader

to Box 1.

In proteomics, peptide-level diagnostics are as useful as

proteome-wide diagnostics. As in other high-throughput measure-

ments, individual features, in this case, peptides, are visualized to

check for batch-related bias. In proteomic datasets, spike-in proteins

or peptides can be added as controls. In most DIA datasets, iRT

peptides (Escher et al, 2012), if added in precise concentrations, are

well suited for individual feature diagnostics. It should be noted that

individual peptides have a variety of different responses to various

Box 1. Missing values

Proteomic experiments now routinely profile hundreds or thousands of proteins across hundreds of samples. However, detecting all proteins without
missing values across the whole dataset is not yet feasible. The patterns of "missingness" are known to be batch-specific (Karpievitch et al, 2012), and
some workflows are susceptible to a rapid inflation of missing values as the number of batches increases (Brenes et al, 2019). This is also true for the
largest datasets of this manuscript: aging mouse DIA and TMT datasets (see Box 1 Figure, Figs EV5 and EV6 for details).
It should be noted, that even though "missingness" for low-abundant peptides is more common (i.e., an issue related to the dynamic range and sensi-
tivity of the mass spectrometer), this problem can also arise due to fundamental peptide interference regardless of their abundance or the acquisition
parameters.
Missing values can also affect batch effect correction methodologies. For instance, the current implementation of ComBat (Johnson et al, 2007) does
not work if a peptide is missing in one batch. One possible solution is to remove all peptides with missing values before the batch correction (Lee
et al, 2019). However, this may lead to loss of valuable quantitative information. Thus, methods which are more robust to missing data, such as
median centering, can sometimes be better suited for proteomic data.
Missing values are often imputed, by filling them with zeros, random small values (Tyanova et al, 2016) or re-quantification of elution traces (Röst
et al, 2016). Such imputation, however, can introduce bias that is batch- or peptide-specific, as seen in Figs EV5A and EV6. In turn, this skews batch
effect diagnostic methods, such as hierarchical clustering, PCA, or PVCA. In these cases, batch effect assessment will be biased, as the clustering pat-
tern will be driven by missing values (Fig EV5A). One can estimate this effect by varying the fraction of missing values and assessing to what extent
the batch effects are driven by consistently quantified peptides vs. missing values containing ones (Fig EV5B).
More importantly, imputed values bias the analysis past the batch effect adjustment stage. As shown in Box 1 Figure B and C, if re-quantifications
("with requants") values inferred from MS elution traces are used, the correlation within batches seems higher than the correlation of replicates, while
this problem is not observed when imputation is not used ("no requants"). Protein inference is also affected by the imputation on lower levels.
Finally, provided that there are enough confidently quantified values, many downstream analysis techniques, such as differential expression or protein
correlation analyses, can handle missing values. We therefore advise to avoid imputation, or at least suggest to perform it after batch correction
whenever possible.

Box Figure 1. The problem of missing values in batch effect diagnosis and correction: Aging mouse study. (A) Hierarchical clustering and heatmap of
normalized data; missing values shown in black. The missing values are non-randomly associated with the batch; (B) heatmap of selected sample cor-
relation: Stronger correlation of samples within Batch 2 (blue) and Batch 3 (brown) is visible in the data with "requants", and replicate correlation is
much more prominent in the data without "requants"; (C) distribution of selected sample correlation: same effect, as in (B) showing the distribution
of sample correlation.
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batch effects, so checking a handful of peptides is necessary,

whether endogenous or spiked-in.

Another reason to check individual peptides in proteomics is to

examine the trends associated with sample running order. These

trends might occur as MS signal deteriorates and require special

correction approaches.

Note, that in proteomics, individual features are sometimes not

peptides, but transitions or peptide groups. Thus, methods referred

here as peptide-level diagnostics are applicable to any feature-level

diagnostics.

Batch effect correction
Diagnostics help to determine whether batch effect corrections are

needed. While global sample patterns are corrected during normal-

ization, batch effects affect specific features and feature groups, and

that is the level on which they need to be corrected.

In proteomic datasets, two types of batch effects are frequently

encountered, continuous and discrete. If batch effects are continu-

ous, e.g., manifest as MS signal drift progressing from run to run

during the sample measurement process, an order-specific curve

needs to be fitted, such as a LOESS fit, or by using any other contin-

uous algorithm. Signal drifts are likely to occur in studies profiling

hundreds of samples. This problem is more prominent in mass spec-

trometry as compared to next-generation sequencing and is thus still

relatively new to the research community.

Discrete batch effects manifest as feature-specific shifts of each

batch as a whole. Here, methods such as mean and median center-

ing work very well. An advanced modification of the mean shift is

provided by ComBat (Johnson et al, 2007) that uses a Bayesian

framework which can be applied to proteomic data (Lee et al,

2019). However, ComBat requires that all features are represented

in each of the batches. Therefore, especially in large-scale proteomic

datasets, applying ComBat might require the removal of a substan-

tial number of peptides that happen to be missing in at least one

batch, regardless of how small this batch is (see Box 1 for details).

Thus, one should be very careful when choosing the method for

batch effect correction.

Quality control
The purpose of the quality control step is to determine whether the

adjustment procedures—normalization and/or batch effect correc-

tion—have improved the data. At this step, the data after adjust-

ment are compared with the raw data matrix. There are two types

of criteria to evaluate the data quality: (i) removal of the bias (nega-

tive control) and (ii) improvement of the data (positive control).

Typically, bias is considered removed if the similarity between

samples is no longer driven by technical factors. This means that

neither hierarchical clustering nor PCA shows clustering by batch,

and the correlation of samples from the same batch is no longer

stronger than the correlation of unrelated samples. Also, individual

features should not show batch-related biases. Thus, comparison

of diagnostic plots for raw and adjusted data serves as the

negative control.

Proving improvement achieved by batch correction is much

harder. It is common to take “improved clustering by biological

condition” or “higher number of differentially expressed proteins”

as a positive control and generally, as a sign of data quality

enhancement. However, both criteria are subjective: It is impossible

to know beforehand, whether biological groups are separable in the

proteomic space, especially if only a subset of proteins changes

while the bulk of the proteome does not. Similarly, it is not possible

to predict whether higher sensitivity for differential expression

comes at the expense of added false-positive hits. Therefore, we do

not recommend using these criteria to assess normalization or batch

effect correction. As described above, the choice of the method

should rather be based on the properties of the samples. In general,

since batch adjustment removes a certain portion of variance, the

coefficient of variation for peptides and proteins in replicated

samples should decrease. This is especially true for spike-in peptides

or proteins that are added to samples in controlled quantities. A

stronger positive control is the assessment of reproducibility, such

as comparison of lists of differentially expressed proteins or regres-

sion/classification models derived from two or more sample sets

belonging to different batches (Lazar et al, 2013). It is expected that

in adjusted datasets, the resulting lists of differentially expressed

proteins, or proteins providing optimal class separation, will be

highly overlapping (Shabalin et al, 2008). If two sample sets are

independently used for predictive modeling, the predictive perfor-

mance of such models is also expected to be comparable in adjusted

datasets (Luo et al, 2010). Note, however, that while this method

generalizes well to studies with data acquired by different technolo-

gies (e.g., microarrays vs. RNA-seq for transcriptomics or DIA vs.

DDA for proteomics), it is restricted to fairly large datasets (several

dozens, preferably, hundreds of samples), as predictions from

small-scale experiments tend to be unstable (underpowered).

Here, we also propose two positive control methods that do not

rely on large sample size and are applicable to most proteomic

experiments. The first is based on sample correlation. It is expected

that the correlation between technical or biological replicate

samples is higher than the correlation of unrelated samples. Particu-

larly, the distribution of replicate correlations should be clearly

shifted upwards, even though replicates might occasionally correlate

less than some unrelated sample pairs, and this distinction should

be strengthened by batch adjustment procedures. Following similar

logic, other distance metrics can be used to assess sample proximity,

which can also be visualized as improved clustering of replicated

samples, seen on hierarchical clustering or PCA component plots.

The latter method visualizes every sample in the experiment and

thus is most suited to assess studies with up to 150 samples, while

bigger sample sizes are harder to visualize. The second assessment

method is specific for bottom-up proteomics and makes use of

peptide correlation. Correlation of unrelated peptides is expected to

be close to zero, while peptides originating from the same protein

are likely to be positively correlated. Since tens of thousands of

peptides are routinely detected in modern high-throughput

proteomic experiments, improvements in this metric are a reliable

readout of data quality following batch adjustment.

Description of datasets used to illustrate the workflow

To illustrate the application of the workflow described above, we

use five proteomic datasets (three acquired in DIA and two in DDA

mode), described in Table 3.

The first study, called here "InterLab study", assessed the robust-

ness of SWATH-MS in a multi-lab setting (Collins et al, 2017; Data
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ref: Collins et al, 2017). A set of 30 stable isotope labeled (SIL)

peptides (Ebhardt et al, 2012), partitioned in five groups, was serially

diluted in HEK293 cell lysate. The SIL peptides in the resulting

samples spanned a concentration range from 12 amol to 10 pmol.

These five sample sets were distributed to 11 laboratories worldwide

for measurement by SWATH-MS according to a predetermined

schedule. Each of the samples was run on 3 separate days, with the

exception of the 4th sample that was run three times on each day. In

total, 229 samples were profiled. Thus, the technical covariates

whose effect needed to be assessed were the data acquisition site

and day. Note that due to the technical nature of the study, no

biological signal needed to be identified. As only a small number of

SIL peptides is different across these samples, all changes can be

attributed to technical covariates, and therefore, the samples in this

study can be treated as replicates. Within this manuscript, we

analyze only the influence of the acquisition site as a batch factor.

The second study, named here "PanCancer study" (Sajic et al,

2018; Data ref: Sajic et al, 2018), profiled the blood plasma glyco-

proteome of a cohort of patients with five solid carcinomas and

matched controls. In total, 155 blood plasma samples were

collected. Protein digestion and glycopeptide enrichment were

performed in 4 batches, several weeks apart. To account for sample

preparation reproducibility, 7 biospecimens were replicated and

allocated to a different batch. To control for intra-sample variation

caused by the sample preparation protocol, bovine fetuin-B was

spiked in equal amounts into each plasma sample. In total, 162

samples were measured (the validation cohort from the original

manuscript is omitted from this analysis).

The third dataset is called here the "Aging mouse study"

(preprint: Williams et al, 2021; Data ref: Williams et al, 2021). In

this study, 413 liver proteomes were measured from 341 individual

mice from the BXD reference mouse population (Peirce et al, 2004)

to identify changes associated with age. Similarly to prior BXD mice

metabolic profiling experiments (Williams et al, 2016), genetically

identical cohorts of animals were also subjected to either chow or

high-fat diet. The samples were randomized with respect to biologi-

cal covariates (age, diet, sex), and samples from two mice with

EarTags "ET1506" or "ET1524" were both injected 10 times at vari-

ous intervals throughout the run to control for signal consistency.

Additionally, a mix of samples was shot 3 times as control. In this

experiment, two technical factors are known to affect the measure-

ment. First, the samples were digested in five batches. Second, to

compensate for signal deterioration, MS data acquisition was inter-

rupted for machine cleaning and tuning, resulting in 7 mass spec-

trometry batches. These are shown as vertical lines in Fig 2. Except

for replicates, samples were run in the same order of digestion

batches (see Fig EV1A), so these two factors are mostly confounded

(i.e., digestion and MS batch mostly overlap). Therefore, in our

analysis we only correct for MS batch, unless noted otherwise.

Given the particularly severe MS signal deterioration at the end of

MS batch 2, the last 13 samples of this batch were profiled again as

first samples of MS batch 3. In total, 375 proteome acquisitions were

considered in this manuscript, while 38 acquisitions were discarded

prior to analysis due to major acquisition failures. See also

"Appendix" in supporting information for a summary of the original

experimental setup of this study.

Table 3. Dataset description.

Sample Organism
Sample
source

Sample-to-sample
heterogeneity

Technical
factors

Biological
factors

Protein
(peak
groups/
precursors)
number

Number
of
samples

Dataset
accession

InterLab
study

Human Cell
culture

Very low: samples
come from the same
tissue cultures and
differ only by few
spike-in peptides

Data acquisition
sites
Profiling days

None 4,077 (31,886) 229 PRIDE
PXD004886

PanCancer
study

Human Blood High: samples come
from cancer patients
and matched controls
with different cancer
localization

Protein
digestion batch

Case / control
Cancer
localization

205 (1,360) 162 PRIDE
PXD004998

Aging
mouse
study

Mouse Liver
tissue

Medium: samples
come from population
of inbred mice
originating from two
parental strains

Protein
digestion batch
MS batch
MS drift

Strain

Diet
Age

3,940
(32,449)a

413 PRIDE
PXD009160

TMT
mouse
study

Mouse Liver Medium: samples
from a population of
inbred mice
originating from eight
parental strains

Sample
preparation
batch
MS batch
MS drift

Strain
Age

6,813(66,418)a 120 PRIDE
PXD018886

Bariatric
surgery
study

Rat Lymph Medium: samples
come from inbred rat
population

Liquid handling
robot

Gastric bypass
vs. placebo
surgery

302 (1,987) 68 MassIVE
MSV000087519

aNumber of proteins and peptides before filtering for peptides with too many missing values.
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The fourth study, named here “TMT mouse study”, used data

acquired from livers from 120 individuals from the Collaborative

Cross reference mouse population, taken at 8 weeks of age

(preprint: Keele et al, 2020; Data ref: Keele et al, 2020). Data were

acquired in 12 TMT batches of 10 samples each, with a six-month

gap between batches 10 and 11. Batches 1–10 and 11–12 were

prepared and run directly sequentially. The peptide measurement

table from that paper was used as input for proBatch, and cis-

pepQTLs were calculated before and after proBatch.

The fifth study, named here “Bariatric surgery study” (Kaufman

et al, 2019; Data ref: Kaufman et al, 2019), profiled N-linked glycopro-

teomes from rat lymph before and after gastric bypass surgery. The

cohort consisted of 68 lymph samples originating from rats before and

after gastric bypass surgery (RYGB) or placebo surgery (SHAM).

Samples were collected from rats before, 5, 10, and 21 days after the

operation. The samples for this study were processed using a Versette

automated liquid handling system (ThermoFisher Scientific) in a

96-well plate format. Differences in the performances of Versette’s

channels have introduced a “robot batch” into these data. The

samples were measured in label-free DDA mode, and glycopeptides

were quantified using Progenesis (non-linear dynamics).

All in all, these datasets are representative of various applica-

tions of large-scale proteomic studies. They make use of different

sample sources (i.e., cell cultures, patients, model organisms). They

ask technical and biological questions about proteomes of varying

complexity and present different degrees of sample-to-sample

heterogeneity. In this respect, the InterLab study is very homoge-

neous, to the point that all the samples are essentially technical

replicates. The PanCancer study is highly heterogeneous and

comprises 205 proteins identified in samples originating from dif-

ferent hospitals and different tissues. Finally, the model-organism-

based studies represent an intermediate case. On the one hand, its

subjects were genetically related, but on the other hand, sampling

introduces a certain amount of sample heterogeneity.
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Figure 2. Initial assessment and normalization of the Aging mouse study.

(A) Mean intensity in raw peptide matrix vs. sample running order with repeatedly replicated samples shown in color. Vertical dotted lines indicate MS batch boundaries;
(B) distribution of unadjusted sample intensity correlations—between batches, within batches, and in replicated samples; (C) bias in protein quantification:
representative ACADS protein, the quantity of which follows the drift of the average sample intensity, preventing allele separation and QTL detection; (D) boxplots of
sample intensities in raw, unnormalized peptide; (E) boxplots of sample intensities after quantile normalization. All plots represent peptide-level data.
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Case studies

Initial assessment
The main goal of the initial assessment is to set a baseline for the

magnitude and nature of batch effects in a particular dataset. At this

stage, the data matrix is “raw”, and the quantities are reported as

measured, without any calibration, normalization, or correction

with regard to their values in other samples.

Thus, it is essential to get a quick overview of the data by

comparing global statistics, such as the average intensity, or correla-

tion of samples and of few individual proteins with known expected

abundance. In mass spectrometry, it is helpful to first plot these

statistics by sample running order, as it is common for the measured

signal to drift (e.g., due to deterioration of the LC and/or the MS).

This is clearly seen in Fig 2A, where the average intensities of

samples from the Aging mouse study are plotted vs. the sample

running order. In this case, the intensity tended to deteriorate after

50–70 samples. The resulting interruptions for cleaning and calibrat-

ing the instrument determined the discrete mass spectrometry

batches. As this type of bias is predictable, but cannot be entirely

planned for in advance, it is particularly important to randomize the

samples and to include replicates (for more details on sample repli-

cation in this dataset, see the “Description of datasets used to illus-

trate the workflow” section).

Not only do batch effects introduce shifts in the total sample

intensity distributions, but they also lead to a spurious correlation

between features (i.e., fragments, peptides, or proteins). It is

common, for samples belonging to the same batch to have strong

correlation (as seen in Figs 2B, EV1A, and EV2B). Often this correla-

tion is not only stronger than the correlation of samples from dif-

ferent batches (“between batches”) but also stronger than the

correlation of replicates, hence the importance of assessing correla-

tion distributions as early as possible. Sample correlation can be

visualized as a square heatmap (Aging mouse—Fig EV1A, InterLab

study—Fig EV2B) or as a correlation distribution box/violinplot

(Fig 2B). The former is preferred with smaller sample sizes (i.e.,

roughly < 150 samples) and the latter with large datasets, as it is

not possible to assess replicate correlation in large datasets on the

heatmap.

Optionally, one can complement the initial assessment with the

analysis of a few specific features (peptides or proteins), for which

prior information is known. Here, we plot a peptide from a repre-

sentative protein ACADS with a known genetic sequence variant

affecting its own expression at a quantitative trait locus (cis-QTL),

which can be seen as the bimodal expression separation on the plot

according to the two possible ACADS alleles of the inbred strain.

However, as seen in Fig 2C, the intensity drift, similar to that in

Fig 2A, prevented the corresponding alleles in this BXD population,

which descends from two strains, DBA/2J (red) and C75BL/6J

(blue), from being separated based on expression level.

Last but not least, intensity boxplots are extremely powerful at

this stage of the analysis, as they visualize in a single plot: median,

quantiles, and outliers. This allows one to see whether there are

batch-specific intensity patterns such as shifts (as in the InterLab

study, see Fig EV2A), or drifts (as in Fig 2D), or no evident batch-

associated patterns (PanCancer data; Fig EV3A). To detect the

patterns, the samples should be sorted by running order or by batch

(if the batches, such as digestion batches have been randomized prior

to MS analysis). Note that in some cases, intensity patterns might be

easier to spot on average intensity plot (compare to Fig 2A).

Normalization
Normalization is an essential step in removing bias from the data as

it brings the samples to the same scale, making the measured quan-

tities comparable (Leek et al, 2010). As stated in the "Workflow

overview" section, the choice of normalization method should take

two factors into account: (i) heterogeneity, as assessed from previ-

ous knowledge, and (ii) global quantitative sample properties, e.g.,

mean/median/variance, as indicated by the initial assessment.

Quantile normalization (Bolstad et al, 2003) is applicable to a

wide range of samples and was chosen for the aging mouse data,

the PanCancer dataset, and the Bariatric surgery study. As shown in

Figure 2D and E (and Fig EV3A and B), the intensity distributions

after quantile normalization are very similar. This is desirable in

experiments where the majority of features are not expected to

change but can be problematic in experimental setups where

outliers bear important information (Wang et al, 2021). The TMT

mouse data were normalized outside of proBatch (preprint: Keele

et al, 2020). Importantly, proBatch allows data to be taken up at dif-

ferent steps of the batch effects processing workflow and was used

for this dataset only post-normalization.

Median centering normalization only brings the medians to the

same scale and thus is a “milder” approach. This normalization was

chosen for the InterLab study and brought the peptide quantities

measured at different sites much closer to each other (see

Fig EV2C). In this dataset, shifting the medians to the same value

was sufficient to remove a substantial portion of bias (see Fig EV2D,

note that the correction on fragment level has residual median

discrepancies on protein level). The resulting improvement in signal

quality is also reflected in the improved protein quantification preci-

sion as illustrated by the reduction in coefficient of variation for the

majority of proteins in the dataset (see Fig EV2E).

As shown in this example, normalization alone is sometimes the

only required correction. In the median-normalized InterLab study,

the improvement of quantification of spike-in peptides (Fig EV2C)

and the decrease in protein coefficient of variation (Fig EV2E) serve

as quality controls and indicate that further batch correction steps

can be skipped.

This is of course not always the case, especially for larger data-

sets, and batch effect diagnostics should be used, as presented in

the next section, to determine whether further correction steps

are required.

Diagnostics
Normalization harmonizes overall sample intensities; however,

batch effects can still be present at the level of specific features and

bias the quantities of many peptides and proteins. Various methods

can be used to assess the extent of remaining bias in the data. Most

methods characterize the dataset as a whole, thus working on the

proteome level. Methods such as Principal Components Analysis

(PCA) and Hierarchical Clustering are the best established. For

instance, in the Aging mouse study, the following patterns became

apparent (see Fig 3A): First, we see a strong clustering of samples

by mass spectrometry batch; second, while replicates tend to be

close, they are not necessarily the samples with the smallest

distance to each other. An overlaid visualization of other factors,

ª 2021 The Authors Molecular Systems Biology 17: e10240 | 2021 9 of 16

Jelena �Cuklina et al Molecular Systems Biology



such as digestion batch, diet, or acquisition date, can be found in

Fig EV1B. Also for the TMT mouse study, PCA shows strong cluster-

ing by batch (TMT batch, see Fig 4A).

Hierarchical clustering, in contrast, allows one to visualize multi-

ple factors at once (Fig 3B). Overall, the same patterns identified in

the PCA plots are confirmed as follows: Clustering is driven primar-

ily by MS and digestion batch, while the effect of diet, a dominant

biological factor, is not as strong. Similarly, in the PanCancer study

(Fig EV3C and D, top parts), we see that the digestion batch is the

key clustering factor, and also in TMT mouse study, TMT batch

(Batch) drives the clustering of samples (Fig 4B).

Principal Variance Components Analysis (PVCA) transforms the

intuition of visualization brought about by PCA and Hierarchical

Clustering into numbers. The weights of each factor in each Princi-

pal Component are combined, thus providing a concise summary of

variance distribution between biological and technical factors and

their combination. In the aging mouse dataset, we see in Fig 3C that

technical factors such as MS batch, digestion batch, and their combi-

nation are leading drivers of variance. Whereas biological factors,

such as diet, sex, and age, are much less prominent. It should also

be noted that a substantial fraction of variance is “residual” and

cannot be explained by the annotated sample characteristics. PVCA

also shows a clear batch effect from the liquid handling robot for

the Bariatric surgery study (see Fig EV4A).

It is important to point out that PCA, hierarchical clustering, and

PVCA require matrices with complete feature measurements, or

with imputed missing values. Since in MS proteomic missing values

are often batch-specific, this might lead to an overestimate of the

batch-related clustering (variance explained) and to over-pessimistic

assessment of data quality (see also Box 1).

In addition to proteome-wide diagnostics, it is often informative

to visualize a few individual features to assess for the presence of

feature-level bias. Spike-in peptides and proteins are particularly

handy for this type of diagnostics. We illustrate this in the aging

mouse data using iRT peptides that were spiked at constant quanti-

ties in all samples. In Fig 3D, one can see, that despite the normal-

ization, batch-specific bias still affects the signal. Moreover, this

bias is order-related and manifests differently for each of the

peptides (e.g., in samples 127–212 of MS_batch 3). In the PanCancer

study, we see that protein quantities are biased by batch effect on

the example of the spiked-in bovine protein fetuin-B (Fig EV3E and

F). In contrast to the Aging mouse study, here there is no order-

related drift, but rather each batch mean is shifted. In conclusion,

feature-level bias can be very different in each dataset and checking

several representative peptides can help understand the exact nature

of the bias.

Together, proteome-level and feature-level diagnostics guide the

choice of appropriate batch correction procedure.
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Principal Variance Compoment Analysis (PVCA), peptides with >50% complete measurements
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Representative peptides with batch−specific bias
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Figure 3. Diagnostics of batch effects: Aging mouse study.

(A) Principal Components #1 and #2 colored by MS batch (left) and replicates (right), percentage of variance in each PC shown in brackets. The effect of clustering by MS
batch is dominating, but the replicated samples are closer to each other than just random samples; (B) hierarchical clustering of samples, with leaves colored by diet,
digestion batch, MS batch, and date–time of sample acquisition is dominated by technical factors; (C) Principal Variance Component Analysis of peptides, detected in
>50% of samples demonstrates, that the technical factors, such as MS batch, digestion batch, and their combination, have a profound effect on the data, while biological
factors such as strain, sex, and age account for a much smaller fraction of variance; (D) peptide-level plots for two iRT peptides demonstrate that batch effect manifests
also as MS signal drift that requires correction.
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Batch effect correction
The goal of batch effect correction is to alleviate the residual bias

after normalization. In most cases, normalization significantly

reduces the unwanted variance (see representative peptides in

Fig EV1C) and, as in the InterLab study, might sometimes be the

only required adjustment. However, in many cases, the batch effect

diagnostic procedures described in the previous section will reveal

that individual features are differentially affected by batch effects

even after normalization (Figs 3D and EV3E). Batch effect correc-

tion is typically applied at the feature level.

Feature-level bias in proteomics can have different roots. In the

aging mouse data, the peptides manifest an order-specific, continu-

ous bias, while data in the PanCancer exhibit discrete shifts. The

latter can be corrected with methods established by the genomic

community, whereas the former is typical of large MS-based

proteomic experiments and will therefore be discussed in more

detail in the following paragraphs.

In MS-based proteomics, samples are analyzed sequentially,

typically using an online chromatographic system directly coupled

to a mass spectrometer. Various components of this system are

susceptible to degradation of performances over time (e.g., changes

in the properties of the chromatographic material, emitter degrada-

tion, contamination of MS lenses, mass calibration drift). Various

factors, such as sample quality and composition, can contribute to

the speed of this degradation. This is particularly relevant in large-

scale studies.

To address this complex bias, we have developed a two-step

batch correction procedure shown for the aging mouse in Fig 5. In

the first step, MS signal drift is corrected based on non-linear curve

fitting. In the second step, remaining discrete batch effects are

addressed using a discrete batch correction procedure (e.g., median

centering, ComBat).

As a curve-fitting algorithm for the first step, we have chosen

LOESS, as it combines computational simplicity with relative

flexibility of the fit characteristics. The procedure runs as follows:

For each peptide and each batch, a unique curve is fit (Fig 5A) and

then subtracted from the normalized intensity value in each sample,

leading to measurements, whose median is different in each batch

(Fig 5B). Note, that LOESS has a parameter "span": Smaller span

fits minute details, while when the span is too big, some of the

trends get missed, meaning each time the span has to be adjusted to

each dataset individually (see Fig EV1D). Alternatively, other algo-

rithms, such as SVM and Random Forest, can be used to correct for

the MS signal drift (Shen et al, 2016; preprint: Luan et al, 2018). For

the second step, the residual discrete batch effects were removed by

median centering (Fig 5C).
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Figure 4. Batch effects in the TMT mouse study.

(A) PCA and (B) Hierarchical clustering in matrix of peptides with complete measurements before (left) and after (right) correction.
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Datasets that do not exhibit MS signal drift require only discrete

batch correction—second step of the aging mouse dataset. Here, the

PanCancer (Fig EV3C–F) and TMT mouse (Fig 4A and B) were

corrected in a single step using median centering. Similarly, in the

Bariatric surgery dataset (Fig EV4A and B) the liquid handling robot

represented the main source of discrete bias and was corrected in a

single step using ComBat (Johnson et al, 2007).

When several batch factors affect the data (as diagnosed by PCA,

hierarchical clustering, and/or PVCA), all factors should be

accounted for during correction. This typically means that batch

factors get combined. This, however, is not always possible (e.g.,

batches become too small). In the Aging mouse study, for instance,

the two main technical factors, MS batch and digestion batch, were

highly confounded. Thus, we opted to only correct for the MS batch.

In conclusion, batch effect correction removes variance from

known, annotated batch factors. Whether the adjustment procedures

—normalization and batch effect correction—improved the data

signal, remains, however, to be determined by a quality control step.

Quality control
The main goal of the quality control step is to determine whether

the data quality has improved.

Examples of negative controls are the plots discussed in the diag-

nostic sections such as individual peptide plots, PCA, hierarchical

clustering, or PVCA. In most cases, these show that samples are no

longer affected by batch-specific patterns (e.g., PanCancer study

hierarchical clustering in Fig EV3C and D and spike-in protein in

Fig EV3E and F).

Depending on the experimental setup, one can sometimes judge

the data improvement through the presence of a better biological

signal. In the Aging mouse study, this can be achieved via mapping

protein quantitative trait loci (pQTL), particularly cis-QTLs (i.e., alle-

les of specific genes have DNA variants which affect their own

protein’s expression level, which is tested on peptide level). As seen

in Fig 6A, certain proteins become clearly easier to separate

according to their variant allele and less biased than before the bias

adjustment (compare to Fig 2C). As a result, there is a clear increase

in pQTL detection sensitivity: 255 cis-pQTLs passed the significance

threshold in the raw data matrix, and extra 133 cis-pQTLs have been

detected after batch effect adjustment—100 after normalization and

33 additional cis-pQTLs after batch effect correction. On peptide level,

this corresponds to 993 peptide-level pQTLs in raw data, additional

405 peptides after normalization and 352 after batch effect correction.

Similarly, for the TMT mouse dataset 3,306 cis-pepQTLs were

detected at LOD ≥ 4 among the 8,774 peptides with complete

measurements in the normalized data, with an additional 109 cis-

pepQTLs detected after correction for TMT batch factor. Note, that for

the aging mouse dataset, normalization seems to alleviate most of the

bias, as was already demonstrated in Fig EV1C. This effect is quite

common and is the reason why the batch effect correction step was

not performed in the InterLab study. Skipping batch effect correction

is also reasonable, when the key question is “which proteins are dif-

ferentially expressed”, which is best address by ANOVA, or when it is

not clear which technical factor should be corrected for (e.g., diagnos-

tic plots do not show a clear clustering pattern and the weights of

technical factors on PVCA are low). However, when biological groups

are not confounded with technical factors, batch correction reduces

noise and should improve the signal quality.

On the other hand, the sample and feature proximity methods

we proposed in the “Quality control” section can be applied in

almost any proteomic experimental context and thus are a more

universal approach to quality control.

Sample proximity measured as correlation distributions for intra-

batch vs. unrelated samples, and for replicates vs. all other samples

can be seen for the aging mouse dataset pre- and post-adjustment in

Figs 2B and 6B and for the Bariatric surgery study in Fig EV4C and

D. This approach and considerations can also be applied with dif-

ferent distance measures and visualizations. Fig EV3G and H

demonstrate this concept on the PanCancer data using Manhattan

distance and a hierarchical clustering representation. These
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proximity-based quality controls are universally applicable to any

dataset with replicated samples and batches.

The second method is based on assessing the proximity of feature

sets. In bottom-up proteomics, these are peptides or fragment ions.

Similarly to the previous method, the distance between related

peptides (i.e., belonging to a common protein) is expected to be

smaller than the distance between unrelated ones. This effect is true

not only for selected proteins (Fig 6C) but also holds true for the

whole proteome (Fig 6D). The correlation of unrelated peptides,

however, gets much closer to zero after the correction. Hence, before

batch adjustment most of the peptide correlation was spurious.

In summary, through a combination of positive and negative

quality controls, it is possible to assess improvements in data qual-

ity. It should, however, be stressed that quality control methods are

not criteria for choosing batch adjustment methods. Their purpose

is rather to provide metrics to control the quality of the data before

and after adjustment.

Computational tools and analysis workflow for future
applications

To facilitate the practical application of the steps and principles

described here, we have developed an R package, named

"proBatch" and made it available in Bioconductor (https://www.b

ioconductor.org/packages/release/bioc/html/proBatch.html). The

"proBatch" package wraps multiple established techniques for data

transformation and visualization with proven utility in the control

of batch effects.

The package has been designed based on the following principles

to facilitate the construction of batch effect adjustment pipelines:

For each step of the workflow, one or more functions are

provided.

The input to each function is standardized to a feature measure-

ment table (e.g., peptide, protein, fragment, transition) and a

sample annotation table with technical and biological factors.
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Consistent visual representation of factors at all steps of the anal-

ysis (e.g., color scheme defined once per analysis).

Note that we have also deliberately avoided the inclusion of a

"single-click" batch adjustment function that would combine

normalization and correction. As explained above, the choice of the

specific algorithm for normalization and batch correction depends

on the properties of a particular dataset, and thus, keeping these

functions as separate exchangeable modules should prompt the

researcher to check the properties of the data and the goals of the

analysis and ultimately make an informed choice of appropriate

batch adjustment methods.

To demonstrate how the package can be applied to different

experimental setups, and how different parameters of the study can

be adjusted, we make the code used for the analyses of the five case

studies presented in this manuscript available as a GitHub repository

(https://github.com/symbioticMe/batch_effects_workflow_code) of

the workflow. An accompanying Docker container containing all the

tools required to replicate the analyses is made available on Dock-

erHub as a proBatch Docker container (https://hub.docker.com/r/

digitalproteomes/probatch).

Conclusions

The meaningful analysis of data generated by large-scale proteomic

studies, made possible by recent technological advances in data

collection, is critically dependent on the statistical power required

for systems biology and translational medicine studies. However,

great power comes with batch effect baggage and requires special-

ized tools to handle this problem.

It is sometimes argued that batch effects should not be corrected,

but rather incorporated into the downstream analysis. We agree that

accounting for batch effects in differential expression analysis using

ANOVA is backed up with decades of statistical research and prac-

tice. However, ANOVA has several important disadvantages. First,

ANOVA is best suited to adjust for batch effects on fragment or

peptide level, as this is the level where batch effects manifest, while

in practice researchers are interested in protein-level protein expres-

sion differences; second, ANOVA adjusts for linear or discrete batch

effects, while MS-based proteomics is often affected by non-linear

signal drift; and finally, when using protein quantities outside of dif-

ferential expression analyses, such as in protein–protein correlation

comparison in molecular networks, adjusting for batch effects with

classical statistic approaches can be difficult. This explains why

most large-scale studies opt for adjusted batch effects and proceed

with a “batch-free” dataset.

Another common advice is to not correct batch effects to avoid

“flattening” the biological signal. This can occur when the biological

groups are confounded with the batch factors. However, confound-

ing is a serious experimental design error and can be prevented by

balancing the biological groups between the expected batches. On

the other hand, to account for ill-defined batches (e.g., MS batches)

samples can be randomized. "Overcorrection’’ can also potentially

occur with small-sized batches, where fitting a non-linear curve or

accurately estimating the mean and the variance becomes difficult.

Hence, it has been suggested that batches should contain at least 25

samples (Alter et al, 2000; Benito et al, 2004). To check whether

small batches add too much noise, one can test the stability of the

significant hits with and without the batch in question. In most

cases, however, the strength of the signal is sufficiently assessed at

the quality control step, described in detail in this manuscript.

While most batch effect methods are similar across "omics"

fields, missing values are more typical in MS proteomics than tran-

scriptomics or genomics data. Missing values are often batch-

associated (Karpievitch et al, 2012) and can cause established clus-

tering and correction methods to fail. For example, missing values

often lead to “uncorrectable” batch effects seen as batch clusters in

PCA. This, however, is often due to filling the batch-specific missing

values with zeros or small random numbers. Other methods, such

as hierarchical clustering or ComBat (Johnson et al, 2007), could

potentially be adapted to account for the sparsity of proteomic data.

Even so, proteomics could benefit from the development of more

methods robust against missing data.

Specialized proteomic applications could also benefit from

further batch adjustment methodological developments. Here, we

presented a workflow and applied it to DIA and DDA (label free and

TMT based) data. The workflow relies on having a quantitative data

matrix with few assumptions on its structure and is applicable to

most quantitative proteomic workflows. However, proteomic appli-

cations incorporating affinity purification, size exclusion chromatog-

raphy, PTM-centric protocols, or subcellular fractionation are

typically more heterogeneous. These dataset types will likely require

additional efforts for batch effect characterization and correction.

While searching for publicly available datasets to present as case

studies in this manuscript, we also noted that many of the available

studies have been deposited with little to none of the technical

meta-data required to perform batch correction. We believe that this

limits the re-usability of proteomic data and would like to encourage

future studies to include this information.

In conclusion, mass spectrometry-based proteomics has come a

longway and is continuing to evolve. As throughput and reproducibil-

ity increase, so do batch effect-related issues. Hence, we expect exper-

imental design and batch effect correction methods to also grow in

importance and to take center stage in large-scale proteomic applica-

tions such as clinical proteomics and systems biology.

Expanded View for this article is available online.
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