
ETH Library

A review of real-time railway and
metro rescheduling models using
learning algorithms

Conference Paper

Author(s):
Jusup, Matej ; Trivella, Alessio ; Corman, Francesco 

Publication date:
2021-09

Permanent link:
https://doi.org/10.3929/ethz-b-000504155

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-3779-5041
https://orcid.org/0000-0002-2614-5051
https://orcid.org/0000-0002-6036-5832
https://doi.org/10.3929/ethz-b-000504155
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


A Review of Real-time Railway and Metro Rescheduling
Models using Learning Algorithms

Matej Jusup

Alessio Trivella

Francesco Corman

Institute for Transport Planning and Systems September 2021

STRC 

 21th Swiss Transport Research Conference 

Monte Verità / Ascona, September 12 – 14, 2021 



            

Institute for Transport Planning and Systems

A Review of Real-time Railway and Metro Rescheduling
Models using Learning Algorithms

Matej Jusup, Alessio Trivella, Francesco
Corman
Institute for Transport Planning and Systems
ETH Zurich
Stefano-Franscini-Platz 5, 8093 Zurich
phone: +41-44-633 26 52
fax: +41-44-633 26 52
{matej.jusup,alessio.trivella,francesco.corman}@ivt.baug.ethzch

September 2021

Abstract

Planning railway and metro systems includes the critical step of finding a schedule for the trains.
Although buffer times and running supplements are added to the schedule to make operations
resilient to minor disturbances, they do not protect against all possible events that may lead to
conflicts during everyday operations. Thus, real-time train rescheduling models are needed to
restore feasibility using actions such as retiming, reordering, rerouting, overtaking or cancelling
of trains. Unfortunately, despite many rescheduling models that have been developed in the
literature, only a few can learn actions from past, simulated, or ongoing events and cope with
disturbances and disruptions’ stochastic nature. However, the last decade’s expansion of learning
algorithms is gaining momentum in the train rescheduling literature by bringing promising
novel ideas. This paper aims to review the state-of-the-art learning algorithms applied to the
real-time railway and metro rescheduling, identifying challenges and opportunities while making
a parallel with other areas where learning algorithms led to breakthroughs.

Keywords
reinforcement learning, approximiate dynamic programming, train rescheduling, delay propa-
gation





            

1 Introduction

A rail system requires a schedule to operate, which is usually planned several months in advance.
The schedule includes buffer times and running time supplements to be resilient to minor delays
(Kroon et al., 2008), but which is not enough to avoid all potential conflicts among trains (e.g.
headway violations) arising due to unexpected events in daily operations. When disturbances
lead to delays and conflicts, the dispatcher’s job is to resolve them in real-time and bring services
back to normal by performing rescheduling actions that include retiming, reordering, rerouting,
overtaking or cancellation. While disturbances directly cause primary (or initial) delays making
them unavoidable, secondary (or consecutive, or knock-on) delays result from the propagation
of primary delays through the network and can be reduced or prevented by rescheduling actions.
Thus, rescheduling aims to compute an updated conflict-free schedule, minimizing deviations
from the original schedule, which requires solving an optimization problem. Train rescheduling
(TR) is essential to provide services that adhere to the planned schedule, resulting in efficient
infrastructure utilization and passenger satisfaction.

Due to its importance, TR has become a thoroughly researched topic in rail transport planning,
and a variety of rescheduling models have been developed in the literature, including both
deterministic and stochastic models. Deterministic models assume perfect information of
the system’s future evolution, which is a simplification of rail operations but often needed to
achieve tractability (Törnquist, 2006, Cacchiani et al., 2014). On the other hand, stochastic
models describe unknown future conditions such as train delays, passenger demand, and energy
consumption using probability distributions or stochastic processes, yielding more realistic
models at the expense of additional computational complexity. Corman and Meng (2014)
overview the online dynamic rescheduling literature, highlighting the stochastic nature of the
problem and discussing how to include it in future research. With the recent development of
learning algorithms and the increase of computational power, adaptive stochastic rescheduling
models have started to become tractable. This review can hence be seen as a follow-up of
Corman and Meng (2014) tracking the progress of adaptive models under uncertainty. Note
that in the literature, terms like real-time, online, dynamic and adaptive models are often used
interchangeably, but some authors make a subtle distinction between them. In this paper, we use
real-time or online to emphasize a quick execution during operations, i.e. within 1–2 minutes,
and reserve the terms adaptive, dynamic and learning for models that can adjust their behaviour
over time based on a new stream of information.

The rescheduling models in the literature also differ by the type of disturbances, type of rail
system considered, and rescheduling objective. Commonly, disturbances lead to minor delays
caused, e.g. by a change in speed limits due to weather or extended passenger alighting, while





            

disruptions lead to major delays induced, e.g. by a line blockage, train accidents, or infrastructure
damage. In most literature, disturbances cause delays up to 15–20 minutes, whereas disruptions
those over 20 minutes, but such a boundary is not strict. Although some researchers have
modelled rescheduling during disruption using stochastic programming and reinforcement
learning (RL) (Meng and Zhou, 2011, Li et al., 2014, Zhu and Goverde, 2020), this literature is
still in its infancy, and most contributions deal with disturbances instead. It is also essential to
distinguish between railway, metro, and light rail, which not always have equivalent objectives
and actions. Although minimizing delays is the most common objective, especially for the
railway, some metro and light rail models have focused on minimizing energy consumption or
passenger delays. Regarding actions, overtaking is important in railway but is generally not
supported by metro and light rail infrastructure, where the focus is instead on a more precise
retiming. Despite these differences, considerable similarities in these systems suggest that
solving one of them efficiently may lead to a solution of the others with minor adaptations to the
objective function, state and action spaces. For instance, some authors have used a weighted
sum of multiple criteria as objective, allowing seeing the three systems under a common lens.
Thus, in this paper, we cover all of them and point out the differences when needed.

Optimizing rescheduling actions in a rail network is a complex task, and learning models are
emerging as a promising direction to tackle it. This work reviews the literature on adaptive
rescheduling in railway, metro, and light rail systems using learning algorithms. We identified
13 papers falling within this scope, with 7 being journal papers. Zou et al. (2006) was the first
such work in the rescheduling domain and the only one on the light rail to this date. Almost a
decade later, Yin et al. (2014) proposed a learning model for metro rescheduling. Šemrov et al.

(2016) presented the first learning model for the railway, and together with Yin et al. (2016)
can be considered as a seminal work. From 2018 onward, learning algorithms have received
growing attention, and we expect this trend to continue. Having a cohesive overview across
domains is important since discoveries in one area might motivate novel ideas in others.

It is worth mentioning that learning algorithms have also been applied to train and traffic-related
problems other than rescheduling, including train marshalling (Hirashima, 2011), railway access
negotiation (Wong and Ho, 2010), train trajectory optimization (Wang et al., 2020), and traffic
signal control (Abdulhai et al., 2003, Shoufeng et al., 2008, Arel et al., 2010). We also want to
emphasize that although adaptive robust formulations fit within our review scope, we have not
come across them. Nonetheless, robust optimization is an active area of research for scheduling
under uncertainty, where schedules can be obtained by setting uncertainty limits that encode
the desired level of stability (Fischetti et al., 2009, Meng and Zhou, 2011, Shafia et al., 2011,

Cacchiani and Toth, 2012, Corman et al., 2014, Hassannayebi et al., 2017, Zhu and Goverde,

2020).





            

The rest of the paper is structured as follows. In §2, we introduce the control setup. In §3, we
classify and compare the literature based on the problem type, reward function, state space,
action space, stochasticity, learning algorithm, and network size. We discuss our findings in §4
and conclude in §5.

2 Control Setup

The control setup is illustrated in Figure 1 and consists of an environment, agent, state space,
action space, transition function, and reward function. The environment includes the infrastruc-
ture, rolling stock, uncertainty and other internal and external factors in TR. The infrastructure
can be a line connecting two main stations with intermediary stations in between or a network
made of multiple lines that meet at junction points. Based on the level of details considered,
there exist macroscopic, microscopic and mesoscopic infrastructure representations. Lines can
be uni- or bi-directional and consist of single- or multi-tracks. Uncertainty might consist of train
running time and passenger demand distributions. The agent is the dispatcher who observes the
environment’s state and can control it by performing rescheduling actions. The state space is
the environment’s representation available to the agent and must include all information needed
for making decisions. For instance, it might consist of the location and speed of trains and
block section signalling colour. The state space might also include random components, e.g.
line blockage scenarios, train delay distribution, or passenger demand distribution. The action
space is a set of rescheduling operations available to the dispatcher to utilize the resources
in the best possible way. For instance, the dispatcher may influence train order or timing via
signalling or by changing train speed, as shown in Figure 2. Since the action space is subject to
many physical constraints (e.g. station capacity, block section availability, speed limits, train
capacity, headway, dwelling and running time), the task of finding rescheduling decisions is
particularly challenging. The transition function describes how the state of the system changes
when performing an action from the current state. Finally, the reward function informs the agent
about the quality of her decisions. For instance, by setting a reward equal to the amount of
delay, the dispatcher can understand whether a decision may lead to lower future delays. Other
domain-specific examples of reward functions are energy utilization, passenger satisfaction, or,
most often, linear or non-linear combination of the mentioned objectives.

Formally, the TR problem can be formulated as a finite-horizon discrete-time Markov decision
process. We consider discrete stages representing the rescheduling horizon t = 0, . . . ,T , where
t = 0 is the current time. For a given t, we denote states and actions by S t ∈ St and at ∈ At,
respectively, where S t may include a random component. The reward Ct(S t, at) is a real-valued
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Figure 1: Control setup.

function of state and action, and the transition function is denoted by S t+1 = f (S t, at). We call
a policy π a collection of decision rules {Aπt (·), t = 0, . . . ,T } mapping states to actions at each
stage t. Given the set of feasible policies Π, the goal of the agent is to find a policy π ∈ Π
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Figure 2: Sample rescheduling actions.





            

maximizing the expected cumulative discounted reward obtained during the horizon, conditional
on the initial state S 0, i.e.

max
π∈Π
E

[ T∑
t=0

γtCt(S t, Aπt (S t))
∣∣∣∣∣ S 0

]
, (1)

where γ is a discount factor. Model (1) is intractable even for the smallest problems, but it is
known that the Bellman’s equation allows its reformulation as a stochastic dynamic program by
introducing a value function Vt(S t). Specifically, setting boundary conditions VT+1(S T+1) = 0,
we can define for t = T backward to t = 0 and each state S t ∈ St:

Vt(S t) =max
at∈At
{Ct(S t, at) + γE[Vt+1( f (S t, at)) | S t]}. (2)

Unfortunately, this formulation is also often intractable due to curses of dimensionality, such as
a high-dimensional or continuous state or action space, which prevent Equation (2) from being
solved directly by backward recursion (Powell, 2007). Approximate dynamic programming
(ADP) comprises a broad set of methods to derive heuristic policies and overcome these curses
of dimensionality, for instance, by computing a value function approximation V̂t(S t) ≃ Vt(S t).
To the best of our knowledge, all real-time models for solving stochastic adaptive TR problems
within the scope of our review use or develop some ADP1 technique.

3 Literature Classification

Learning algorithms are at the core of making Equation (2) tractable, so it is crucial to understand
which algorithms have proven to perform well in which situation. Therefore, in this section, we
classify the existing literature based on problem type (§3.1), state space (§3.2), action space
(§3.3), reward function (§3.4), source of stochasticity (§3.5), network size (§3.6), and learning
algorithm (§3.7). We remark that these categories should not be viewed as independent since
they affect each other during the modelling phase. For instance, the state space representation
may affect the actions and stochasticity design. Even though the transition function is an integral
component of Equation (2), the authors tend not to report it explicitly while deducing it is a
challenging task. Thus, we omit it not to introduce noise into the classification. We also neglect a
classification of the infrastructure since the extant literature focuses on a single line. We believe
this is due to models of entire rail networks remaining intractable at the moment, as we discuss
later.

1We use in this paper ADP and RL interchangeably.





            

In Table 1, we provide a classification of the reviewed papers2. We report the notation used in this
table in the supplementary Tables 2–8. The state space column displays various choices, which
underscores the complexity and variety of representation ideas. We relegate to the appendix
additional classification details and further information on infrastructure representation, test
cases, computational resources and others. In the following, we elaborate on each of the
classification criteria presented in Table 1 in connection with the related literature.

Reference Problem Reward State space Actions Stochasticity Algorithm Size

Zou et al. (2006) L P, D NTS, ATP, TDR B P SARSA M
Yin et al. (2014) M T, D, E TL, RT S P Q S
Yin et al. (2015) M T, D, E TL, RT, PD S P, T Q S
Šemrov et al. (2016) R T, D TL, BA B T Q S
Yin et al. (2016) M P, D, E DT, DD, AT, IVP, WP S P, T Q S
Khadilkar (2018) R T, D PL, CL B T Q L
Schön and König (2018) R P, D IVT, TD, FTD, CTD S T H M
Liu et al. (2018) M T, P, D AD, HD S P, T DDPG S
Ghasempour and Heydecker (2019) R T, D TP, BS T T TD S
Ghasempour et al. (2019) R T, D CAT, RWA B T TD L*
Yang et al. (2019) M T, E TD, DW, CNT, PNT, SNT S, T T DDPG L
Ning et al. (2019) R T, D ATM, DTM B T Q S
Zhu et al. (2020) R T, D ED, CL, TL S T Q S

Table 1: Literature classification

3.1 Problem Type

As previously mentioned, we distinguish between railway, metro, and light rail models. The
main differences among those are in the objective function/reward, actions, and possible sources
of randomness. Nonetheless, all models adhere to Equation (2) with a similar environment and
agent. Thus, it is reasonable to assume that efficient solution frameworks for one problem type
could be adapted to another type with limited effort. From Table 1, we observe that railway
models emphasize minimizing train delays, whereas metro models focus on energy consumption
and light rail models on passenger delays. However, some authors have considered a weighted
sum of these objectives (Yin et al., 2014, Liu et al., 2018). Actions differ due to problem-specific
details. While it is not usual to reorder trains in the metro and especially in light rail rescheduling
due to shorter travel distance, it is often an important source of flexibility in the railway that
originates from speed differences among trains. Sources of randomness differ due to external
factors under which the rail operates and should be carefully analyzed, modelled and estimated.
For instance, metro systems are less subject to weather uncertainty but more to passenger

2Authors not always mention all details we are interested in explicitly, in which case we deduce it from other
available information.





            

boarding time. Each model then imposes a set of operational constraints that are, in most cases,
based on dwell and headway times or speed limits.

3.2 State Space

The state space definition is critical as inadequate choices may lead to curses of dimensionality,
causing intractability (Powell, 2007). Since the environment we want to model is highly complex
and the idea of applying ADP for TR only recently came under research focus, the discussion
about how to define a state space for a rail line is ongoing, whereas defining a tractable state
space for a general network is still an open question. Researchers have experimented with
various state space representations, and there is room for creativity to come up with realistic
and tractable ones, i.e. there is no single correct answer. Even the seemingly simple choice
between microscopic, macroscopic and mesoscopic network representation is hard. One of the
core decisions is how to define a time variable, i.e. in how many time points/stages the agent
can make rescheduling actions. Moreover, there are different choices at our disposal on how
to represent a direction (in case of bi-directional lines), train location, number of in-vehicle
passengers, passenger demand, (block) section availability, disturbance time and duration, arrival
time, dwelling time, train speed and many others.

In general, even small problems with few trains or stations can quickly become intractable. The
state space in the existing literature is predominantly represented by n-dimensional vectors.
For instance, Yang et al. (2019) use a vector consisting of train number, its last dwelling time,
the control strategy, and the current speed and position of the other running trains. Ning et al.

(2019) are the only ones who tried an N × M matrix representation. Unfortunately, existing
representations appear too computationally expensive for a microscopic network or a long
horizon with many decision stages. This most likely explains why almost all work is concentrated
on a critical line within the network during peak hours. To expand the spatial complexity of
the model, Ghasempour et al. (2019) proposed making distributed (i.e. independent) decisions
at important junctions of a network, which is similar in spirit to existing deterministic models
(Corman et al., 2010). To make a state-action space invariant to the size of the network, Khadilkar
(2018) introduced a local block-section-oriented neighbourhood for each train. Yang et al. (2019)
proposed a similar idea based on train-oriented neighbourhoods. One potential drawback of
such representations is that accounting for rerouting actions becomes hardly possible as small
neighbourhoods cannot capture entire train routes and network dynamics. Since this field of
research is quite novel and rapidly expanding, major improvements are expected in the next
few years. Especially, we expect that models capturing a whole network dynamics will emerge,
thereby enabling a richer spectrum or rescheduling decisions.





            

3.3 Action Space

Actions should be designed such that the dispatcher can easily implement them during operations.
Depending on the environment and state space design, they come under three categories: station-
level, block-section-level, and train-level. Station-level actions include varying the dwelling or
departure time and adjusting the running time until the next station (Schön and König, 2018,

Liu et al., 2018). Block-section-level actions consist of modifying the signalling availability
of the next section (Zou et al., 2006, Šemrov et al., 2016). The only train-level action in the
literature in our review scope is adjusting the cruising speed (Yang et al., 2019). Allowing
for multiple or complex actions may also lead to the curses of dimensionality typical of ADP.
Discrete actions like signalling block section availability are useful in a multi-track network as
they allow the agent to reorder trains, for instance. Nevertheless, the number of such actions
grows exponentially with the number of trains and decision stages. Continuous actions such
as adjustment of dwelling and running times have similar expressive power but also lead to
additional computational issues.

3.4 Reward Function

The reward function encodes the optimization goal of the agent and guides the learning al-
gorithm on how to take actions by getting feedback from the environment. In all cases we
have encountered, the reward is a function of train delay, train running time, passenger delay,
passenger travelling time, and energy utilization. The linear or non-linear (weighted) sum of
these components is also common, while a set of rules for calculating the rewards is specified in
rare cases (Khadilkar, 2018, Zhu et al., 2020). An example of user-defined, rule-based reward is
assigning a value of +1 if the sum of priority-weighted total delay is under a certain threshold
and a value of −1 otherwise (Khadilkar, 2018). In railway rescheduling, the total or secondary
train delays are used in all papers except for one in which passenger delays are chosen (Schön
and König, 2018). As discussed, metro applications are instead usually more focused on energy
consumption in combination with passenger or train delay. Liu et al. (2018) found it important
to penalize late arrivals at the terminal station, keeping a regular headway. Zou et al. (2006)
proposed an architecture composed of models with local rewards that cooperate via a global
reinforcement signal.





            

3.5 Stochasticity

Capturing the stochasticity of rail operations is vital to improving real-time rescheduling deci-
sions. Deterministic models cannot look beyond the observed current state unless we assume
perfect information on future states. Improving over deterministic models is possible by ro-
bust optimization approaches that account for a certain amount of risk or by scenario-based
techniques, which sample a discrete set of scenarios from probability distributions but are
computationally practical only for a limited number of scenarios (Corman and Meng, 2014).
When primary delays propagate through the network, it would be beneficial for a rescheduling
model to account for the severity of the secondary delays when making decisions.

Randomness can be modelled by using either probability distributions (Yin et al., 2014, Khadilkar,
2018, Ghasempour and Heydecker, 2019) or stochastic processes (Yin et al., 2016, Liu et al.,

2018), which are more realistic but need expanding the state space with an exogenous component
to be tracked. Thus, models of uncertainty dynamics have to be chosen carefully to balance a
realistic description of operational uncertainty with a tractable state space. Moreover, such mod-
els require calibration based on data, which may be complicated (Trivella and Corman, 2019).
As a consequence, most authors have so far used simple independent identically distributed
probability distributions. The randomness studied in the existing literature includes train delays,
dwelling and running times, and in a few cases, passenger demand or loading time. The most
commonly used distributions are the Weibull, Poisson, and exponential distribution (Meester
and Muns, 2007, Büker and Seybold, 2012).

3.6 Network Size

Due to the high computational complexity, all models up to this date were trained and tested
on a single rail line and based on an environment simulating real-world lines. We have not
come across any learning model tested during actual operations. Our classification uses a simple
rule that a small line consists of less than 15 stations, a medium line of 15–25, and a large
line of 25 or more. Accordingly, we identified eight small test cases, two medium-sized test
cases and three large test cases. Note that such classification does not provide the complete
picture because the number of trains, the time horizon, and the line representation also play a
role in defining an instance and its size. For example, a microscopic representation often leads
to an intractable problem, which motivates the choice of a small test case. Furthermore, there
is no community-wide benchmark for comparing the results leading to authors usually trying
to mimic the rail line of a city or a country by using commercial or their own simulators. A





            

need for solving specific problems or sources of funding might also motivate such choices. In
combination with the lack of reported information in the numerical experiments, it makes it hard
to make more detailed analyses.

Ghasempour et al. (2019) falls in the large test case category with a network consisting of 32
stations. However, this model makes independent rescheduling decisions on two portions of the
network consisting of 4 stations each. Khadilkar (2018) and Yang et al. (2019) report 60 and 28
stations, respectively, which they could tackle only using the local-neighbourhood based state
representation described in §3.2. On top of that, since this research area is in its infancy, we
believe that most researchers try to achieve tractability on small instances with the potential for
follow-up work on larger instances. Thus, most test cases are still very small due to the problem
complexity, real-time execution requirement, novelty of the approach, and potentially limited
computational resources. Unfortunately, even for small test cases, the training time is generally
high and often not even reported in the papers.

3.7 Learning Algorithm

In the context of adaptive TR, four well-known learning algorithms have been reported. Q-
learning (Watkins and Dayan, 1992) dominates the field by being used in more than half of
the papers (Šemrov et al., 2016, Zhu et al., 2020). State–action–reward–state–action (SARSA)
(Zou et al., 2006), a temporal difference (TD) (Ghasempour et al., 2019) and deep deterministic
policy gradient (DDPG) (Yang et al., 2019) are the algorithms used in the rest of the available
literature, except for Schön and König (2018). They developed a heuristic method for solving a
backward recursion using domain-specific knowledge. Details about these and other algorithms
can be found, e.g. in Powell (2007). One important difference that we want to point out is that
Q-learning operates under the assumption of discrete actions while DDPG handles continuous
actions (Lillicrap et al., 2015).

The choice of the learning algorithm can affect the quality of rescheduling decisions as well
as the training time, online performance and adaptiveness. Because of the discussed high
complexity of state space and actions, applying a suitable learning algorithm can make the
difference between tractability and intractability. Only recently a substantial progress has been
made in the domain of ADP/RL applications for efficient approximations of Equation (2); one
of the major successes is AlphaZero, with an RL-based model beating the best human player in
the board game Go two decades sooner than expected (Silver et al., 2018). Despite significant
differences in the control setup, such steep progress gives hope that also the adaptive stochastic
TR problem for an entire network will be solved efficiently in the near future.





            

4 Discussion

The application of learning algorithms for real-time TR is still novel and exclusively focuses
on ADP methods. Due to the problem complexity, existing control setups lead to intractability
even for medium-sized lines, while models of entire networks have not been reported yet. If
we compare it with the evolution of learning algorithms in other application areas, we can draw
multiple conclusions.

Firstly, the control setup can always get better by developing new ideas that may result in
higher quality and more computationally efficient solutions. One of the best examples is natural
language processing, which has gone through multiple development stages that often involved
architecture redesign (Hochreiter and Schmidhuber, 1997, Bahdanau et al., 2014, Vaswani et al.,

2017).

Secondly, the successful application of learning algorithms to real-world problems in other fields
has often required an enormous amount of computational resources. In most cases, a distributed
network of graphical processing units (GPUs) (Brown et al., 2020) or tensor processing units
(TPUs) (Silver et al., 2018). Unfortunately, TR models have not been tested on such a scale
yet, but we believe this will be required soon to tackle larger instances and more complex
networks.

Thirdly, there are other classes of learning frameworks or algorithms with the potential to be
successfully applied. For instance, TR has a nice graph representation (D’ariano et al., 2007)
which might be a fruitful ground for graph neural networks (GNNs) (Wu et al., 2020). GNNs
offer the possibility of supervised, semi-supervised, and what might be of particular interest
unsupervised learning (Zhou et al., 2020). Link prediction might be used for making decisions
under disturbances and node classification for conflict detection. Trying to acquaint and utilize
novel developments in machine learning should be encouraged because it may lead to quicker
progress.

Lastly, almost a decade ago, Corman and Meng (2014) raised the need for a global test case.
Other areas like computer vision, natural language processing, board games and others have
proven that having a benchmark increases competition and can lead to much faster progress. A
promising step in that direction happened when the Flatland competition—TR under disruption—
was organized on the AIcrowd platform during NeurIPS2020 (Laurent et al., 2021). It was
sponsored by Swiss Federal Railway Company (SBB), Deutsche Bahn and Société Nationale
des Chemins de fer Français. SBB and AIcrowd also developed an open-source Python package
(SBB and AIcrowd, 2019) to make it easier to develop and compare RL models for TR. Such





            

developments might bring other benefits like transfer learning (Taylor and Stone, 2009), which
was already briefly discussed in Khadilkar (2018). Transfer learning often leads to reduced
computational requirements since pre-trained models are specialized for specific instances of the
problem. An excellent example of transfer learning is computer vision, where a convolutional
neural network is pre-trained on a huge set of images and specialized from thereon.

5 Conclusions and future research

This paper reviews the current state of research for solving the real-time railway and metro
rescheduling problem under uncertainty using learning algorithms. We envisage four promising
lines for future advances: (i) further improving the existing ADP-based solutions, (ii) expanding
the methodological focus by applying different classes of learning algorithms, (iii) exploit-
ing larger computational power, especially during the training phase, and (iv) working on a
community-wide benchmark and reporting the results achieved on it. Since learning algorithms
in this field are at the outset, they have been employed sparsely in the literature. However, the
growing number of publications in the last three years suggests that they will be given much
more attention in the years to come.

In terms of learning methods, the paper’s focus has been on ADP because the literature has
exclusively considered this class. While the existing research sets a solid ground for further
improvements of ADP-based approaches, different learning techniques such as GNNs seem
promising and might be tried in the future.

One of the main challenges is scaling up the spatial complexity from small lines to larger
instances, or ideally, whole networks, which unfortunately has not been reported yet. As a
consequence, it is hard to imagine railway companies being confident in utilizing such solutions.
Once a breakthrough from small lines to medium- or large-sized networks is made, we might
see the first applications outside of simulated environments, as was the case for deterministic
rescheduling models about a decade ago.
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Symbol Meaning

L light rail
M metro
R railway

Table 2: Problem type notation.

Symbol Meaning

T train
P passenger
D delay
E energy

Table 3: Reward input notation.





            

Symbol Meaning

NTS number of trains in the blocking section
ATP average number of passengers (in all trains) in a section
TL train location
NP number of passengers in a train
TDR train direction
RT reserved trip time, i.e. total time remaining before reaching the final station
PD passenger demand
BA block section availability
DT disturbance time
DD disturbance duration
AT arrival time
AD deviation from scheduled arrival time
HD deviation from scheduled headway
IVP number of in-vehicle passengers
WP number of waiting passengers
PL priority levels for multiple blocks before and after current train position
CL congestion level for multiple blocks before and after current train position
TD train delay
FTD feeder train delay
CTD connecting train delay
CAT number of trains in control area
RWA sequence of right-of-way assignments
TN train number
DT last train dwelling time
CNT control strategy of neighbouring trains
SNT speed of neighbouring trains
PNT position of neighbouring trains
TP permutation of train orders in the control area
BS block section signalling state
ED event delay, i.e. a simulation of a departure or arrival of a train at a station
ATM matrix of possible arrival times for each train and station
DTM matrix of possible departure times for each train and station

Table 4: State space notation.





            

Symbol Meaning

S station level
B block section level
T train level

Table 5: Actions notation.

Symbol Meaning

SARSA state–action–reward–state–action
Q Q-learning
DDPG deep deterministic policy gradient
TD temporal difference
H heuristic

Table 6: Learning algorithm notation.

Symbol Meaning

P passenger loading/arrival time or demand
T train delay

Table 7: Stochasticity notation.

Symbol Meaning

S small (less than 15 stations)
M medium (between 15 and 25 stations)
L large (25 or more stations)
* small blocks within large network considered

Table 8: Network size notation.
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A Supplementary material: Detailed classification tables

Authors sometimes do not explicitly mention all the details relevant to our review. Such
occurrences are mostly related to state space, actions and network details. In such cases, we
make an effort to deduce it from other available information. We leave blank cells when the
information is missing or when we are unable to deduce it confidently. According to such rules,
we fill in Tables 9, 10 and 11 with the correct information to the best of our knowledge. In
Tables 12–23, we explain the symbols used.

Reference Publication Problem

Zou et al. (2006) C L
Yin et al. (2014) C M
Yin et al. (2015) J M
Šemrov et al. (2016) J R
Yin et al. (2016) J M
Khadilkar (2018) C R
Schön and König (2018) J R
Liu et al. (2018) C M
Ghasempour and Heydecker (2019) J R
Ghasempour et al. (2019) J R
Yang et al. (2019) J M
Ning et al. (2019) C R
Zhu et al. (2020) C R

Table 9: Publication and problem type.

Reference Reward State space Actions Stochasticity Algorithm

Zou et al. (2006) PWT NTS, ATP, TDR LR PL, PA SARSA
Yin et al. (2014) WS(TD, EC) TL, RT RT PD Q
Yin et al. (2015) NWS(TD, EC) RT, PD DT, RT PD, TD Q
Šemrov et al. (2016) TD TL, BA SC TD Q
Yin et al. (2016) WS(PD, PTT, EC) DT, DD, AT, IVP, WP RI, DT, RT PD, TD Q
Khadilkar (2018) TBF(PWD(TD)) PL, CL LR TD Q
Schön and König (2018) PD IVT, TD, FTD, CTD DT TD H
Liu et al. (2018) WS(PTT, PA, HR) AD, HD DT, RT PD, TD DDPG
Ghasempour and Heydecker (2019) TD TP, BS DS TD TD
Ghasempour et al. (2019) RTC CAT, RWA DS TD TD
Yang et al. (2019) RE, TE TD, DW, CNT, PNT, SNT CS, DT TD DDPG
Ning et al. (2019) AD ATM, DTM DS TD Q
Zhu et al. (2020) UDF(TD) ED, CL, TL EI TD Q

Table 10: Control setup.





            

Reference
Network

size
Network

type
Track
type

Line
direction

Infrastructure
representation

RAM
(GB)

CPU
(GHz)

Zou et al. (2006) M ML S U MI
Yin et al. (2014) S L MA
Yin et al. (2015) S L S MA
Šemrov et al. (2016) S L S B MI 8 3.4
Yin et al. (2016) S L S B MA
Khadilkar (2018) L L S, D B ME 4
Schön and König (2018) M L S U MA 3.3
Liu et al. (2018) S L S MA
Ghasempour and Heydecker (2019) S L M U MI 32 4
Ghasempour et al. (2019) L* ML M U MI 32 4
Yang et al. (2019) L L S U MA
Ning et al. (2019) S L S U MA 12 2.5
Zhu et al. (2020) S L D U MI

Table 11: Infrastructure details and computational resources.

Symbol Meaning

C conference/proceedings
J journal

Table 12: Publisher notation.

Symbol Meaning

L light rail
M metro
R railway

Table 13: Problem type notation.





            

Symbol Meaning

WS() weighted sum
NWS() non-linear weighted sum
PWS() priority-weighted sum
TBF() threshold-based function
UDF() user-defined fuction
PWT passenger waiting time
TD train delay
EC train energy consumption
PD passenger delay
PTT passenger travel time
PA punctual arrival at the terminal station
AD average delay
HR headway regularity
RTC running time of a train through the control area
RE recovery energy
TE traction energy

Table 14: Reward notation.





            

Symbol Meaning

NTS number of trains in the blocking section
ATP average number of passengers (in all trains) in a section
TL train location
NP number of passengers in a train
TDR train direction
RT reserved trip time
PD passenger demand
BA block section availability
DT disturbance time
DD disturbance duration
AT arrival time
AD deviation from scheduled arrival time
HD deviation from scheduled headway
IVP number of in-vehicle passengers
WP number of waiting passengers
PL priority levels for multiple blocks before and after current train position
CL congestion level for multiple blocks before and after current train position
TD train delay
FTD feeder train delay
CTD connecting train delay
CAT number of trains in control area
RWA sequence of right-of-way assignments
TN train number
DT last train dwelling time
CNT control strategy of neighbouring trains
SNT speed of neighbouring trains
PNT position of neighbouring trains
TP permutation of train orders in the control area
BS block section signalling state
ED event delay—a simulation of a departure or arrival of a train at a station
ATM matrix of possible arrival times for each train and station
DTM matrix of possible departure times for each train and station

Table 15: State space notation.





            

Symbol Meaning

LR binary variable indicating if a train can leave current resource
DT dwelling time in the station
RT running time for the next resource - determined in the station
SC signalling colour (stop/go)
RI indicator signalling if the train should be rescheduled
DS departure sequence of a trains from a current resource
CS train cruising speed
EI indicator signalling if an event is implemented

Table 16: Actions notation.

Symbol Meaning

PL passenger loading time
PA passenger arrival time
PD passenger demand
TD train delay

Table 17: Stochasticity notation.

Symbol Meaning

SARSA state–action–reward–state–action
Q Q-learning
DDPG deep deterministic policy gradient
TD temporal difference
H heuristic

Table 18: Learning algorithm notation.

Symbol Meaning

S small (less than 15 stations)
M medium (between 15 and 25 stations)
L large (25 or more stations)
* small blocks within large network considered

Table 19: Network size notation.





            

Symbol Meaning

L line connecting two major stations
ML multiple lines within network

Table 20: Network type notation.

Symbol Meaning

S single track
D double track
M multi track

Table 21: Track type notation.

Symbol Meaning

U uni-directional
B bi-directional

Table 22: Line direction notation.

Symbol Meaning

MI microscopic
MA macroscopic
ME mesoscopic

Table 23: Infrastructure representation notation.




