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A B S T R A C T

Influenza viruses cause respiratory infections and spread in yearly outbreaks worldwide, causing up
to 650 thousand deaths every year. Vaccination can induce protective antibodies against influenza
viruses and is the most successful strategy to prevent influenza infections. Unfortunately, influenza
viruses rapidly evolve and escape immunity established in previous vaccinations. Frequent updates
of the influenza vaccine formulation and continuous evaluation of vaccine efficacy in large popula-
tions are necessary. A detailed molecular characterization of vaccine responses is experimentally
very difficult and often unfeasible in larger populations. Instead, the hemagglutination inhibition
(HI) antibody titer is commonly used as an easily accessible measure for the potency of influenza
vaccine responses.
In this thesis, we present three mathematical models for analysing HI titers and propose how they
can be used in conjunction to characterize the vaccine response in a patient population based
on easily accessible measurements and medical record information. Specifically, we apply the
models to patients after hematopoietic stem cell transplantation (HSCT), a high-risk group eliciting
heterogeneous vaccine responses that are not well understood.
We first identify patient factors associated with HI titers for three different influenza strains. We
show that sequential regression models are superior to the commonly used binary regression on
conventional cut-offs (seroconversion/seroprotection) for inferring associations between patient
factors and HI titers. Both approaches have a similar interpretation and yield consistent results, but
sequential regression models infer associations with higher precision.
Next, we present a biophysical model of the HI assay that establishes a quantitative relationship
between antibody concentration, antibody avidity (binding strength) and HI titer. We apply the
model to infer antibody avidities in HSCT patients from antibody concentrations and HI titers,
and experimentally validate our predictions. The model predicts that influenza vaccination mostly
induced an increase in antibody concentration but not in avidity. Because the model links antibody
concentrations and avidities to HI titers, it enables to connect mathematical models of the immune
response to HI titers assessed in vaccine studies.
Finally, we integrate the identified most important patient factors into a dynamic model of the
vaccine response in HSCT patients and combine it with the biophysical measurement model of the
HI assay to infer patient-specific differences in immune response mechanisms. Specifically, we infer
differences in memory B cells and germinal center (GC) processes that are potentially modulated by
the investigated patient factors. The model predicts that vaccination induced antibody production
by both plasma B cells from GCs and reactivated memory B cells. The heterogeneity in HI titer
responses was well described by memory B cells and only a few patient factors that potentially
affect the GC response (lymphocyte count and IFN-λ genotype). The study demonstrates how
dynamic modelling of the immune response can be combined with clinical patient information and
statistical inference to characterize the vaccine response based on HI titers.
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Z U S A M M E N F A S S U N G

Influenzaviren verursachen Atemwegsinfektionen und verbreiten sich in jährlichen Ausbrüchen mit
weltweit bis zu 650 Tausend Todesfällen pro Jahr. Eine Impfung kann schützende Antikörper gegen
Influenzaviren induzieren und ist die wirksamste Methode Influenzainfektionen zu verhindern.
Leider verändern sich Influenzaviren sehr schnell und entziehen so sich der Immunität, die in
bisherigen Impfungen etabliert wurde. Daher müssen Influenza-Impfstoffe häufig angepasst und der
Impfschutz durch regelmäßiges Impfen aufrecht erhalten werden. Um die Effektivität von Influenza-
Impfstoffen zu überwachen, müssen die Impfstoffe kontinuierlich evaluiert und in klinischen
Studien bewertet werden. Die molekulare Charakterisierung der Impfstoffreaktionen experimentell
sehr aufwändig und daher in Studien mit größeren Fallzahlen oft nicht durchführbar. Stattdessen
wird häufig der Anti-Hämagglutinin (HA) Antikörper-Titer Test zur Evaluierung von Influenza-
Impfstoffen vewendet.
In dieser Arbeit stellen wir drei mathematische Modelle zur Analyse von HA Antikörper-Titern vor
und zeigen wie sie zur Charakterisierung der Impfantwort auf Grundlage von Daten aus Krankenak-
ten und einfachen Experimenten in Studien mit großen Fallzahlen verwendet werden können. Wir
wenden unsere Modelle auf die Impfantwort von Patienten nach einer Stammzelltransplantation
(SZT) an — eine Risikogruppe die eine heterogene und noch schlecht verstandene Impfantwort
zeigt.
Zuerst identifizieren wir die wichtigsten Patientenfaktoren die mit HA-Titern für drei verschiedene
Influenzastämme zusammenhängen. Wir zeigen, dass sich mit sequentiellen Regres-sionsmodellen
Assoziationen besser inferieren lassen als mit der üblicherweise verwendeten binären Regression
von traditionellen Schwellenwerten (Serokonversion/Seroprotektion). Beide Regressionsmodelle
können ähnlich interpretiert werden, aber sequentiellen Modelle inferieren Assoziationen mit
höherer Präzision.
Als nächstes behandeln wir ein biophysikalisches Modell des HA-Antikörper-Titer Tests, das die
Abhängigkeit von HA-Titer zu Antikörperkonzentration und Antikörper-Avidität (Bindungsstärke)
zeigt. Wir wenden das Modell auf Antikörperkonzentrationen und HA-Titer der SZT-Patienten
an um Aviditäten zu inferieren und validieren die Vorhersagen experimentell. Das Modell zeigt,
dass die Grippeimpfung in den meisten SZT-Patienten nur einen Anstieg in der Antikörperkon-
zentration, aber nicht in der Avidität induzierte. Da das Modell die Abhängigkeit des HA-Titers
von Antikörperkonzentration und Aviditäten beschreibt, ermöglicht es mathematische Modelle der
Immunantwort mit HA-Titern aus Impfstudien zu verbinden.
Schließlich integrieren wir die wichtigsten Patientenfaktoren in ein dynamisches Modell der Impfant-
wort in SZT-Patienten, um Unterschiede in der Immunantwort zu untersuchen. Wir inferieren aus
den beobachteten HA-Titern die Anzahl der aktivierten B-Gedächtniszellen und Unterschiede in
Keimzentrumsprozessen, welche potentiell durch die untersuchten Patientenfaktoren verursacht
werden. Das Modell sagt voraus, dass sowohl Plasmazellen aus der Keimzentrumsreaktion als
auch B-Gedächtniszellen durch die Impfung aktiviert werden und zur Antikörperantwort beitragen.
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Die Heterogenität der HA-Titer-Antworten wird durch Unterschiede in B-Gedächtniszellen und
durch einige wenige Patientenfaktoren, die die Keimzentrumsreaktion möglicherweise beeinflus-
sen (Anzahl der Lymphozyten und IFN-λ-Genotyp), gut beschrieben. Diese Studie zeigt, wie ein
dynamisches Modell der Immunantwort mit Pa-tientendaten und statistischer Inferenz kombiniert
werden kann, um die Impfantwort basierend auf HA-Titern zu charakterisieren.
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1
I N T R O D U C T I O N

Parts of this chapter are published in: J. E. Linnik and A. Egli. Impact of host genetic polymorphisms
on vaccine induced antibody response. Human Vaccines & Immunotherapeutics, 12(4):907–915,
2016. https://doi.org/10.1080/21645515.2015.1119345.

It is not possible to step twice into the same river according to
Heraclitus, or to come into contact twice with a mortal being in
the same state.

— Plutarch

When the pre-Socratic philosopher Heraclitus meditated on his famous panta rhei (everything
flows) principle, he probably not have thought about the adaptive immune system and might not
have expected that, more than two millennia later, his idea speaks to scientists concerned with the
ever-changing state of mortal beings and their environment. We are surrounded by microorganisms
that evolve on a shorter time scale than our own evolution. Exposure to new pathogens, such
as viruses, bacteria, fungi and parasites, can cause diseases. Nevertheless, our body is able to
adapt to new pathogens and protect us from illness thanks to the adaptive immune system. The
adaptive immunity can be interpreted as a fast Darwinian process within our body that quickly
reacts to new pathogens and gives rise to highly adapted immune cells and antibodies necessary to
fight pathogenic invaders, clear infections and keep us healthy and safe (Victora and Nussenzweig,
2012). In contrast to the innate immune response, which is unspecific and provides the first line of
defence against pathogens, the adaptive immune response can result in immunological memory, a
phenomenon describing life-long protection against reinfection with the same pathogen (Murphy
and Weaver, 2016).
Already Heraclitus’ contemporaries documented that people who survived a disease, such as
smallpox, were immune to subsequent infections (Fenner et al., 1988). In Europe, the first attempts
to immunize individuals were described in the 18th century, more than one century before Robert
Koch proved that microorganisms cause infectious diseases. Children and adults were intentionally
exposed to cowpox to immunize them against the often deadly smallpox (Gross and Sepkowitz,
1998; Riedel, 2005). In 1796, Edward Jenner reported that the inoculation with cowpox could
protect against smallpox and called this procedure vaccination (Jenner, 1800). As of today, we
use this term to describe the immunization with attenuated disease-causing agents to protect from
diseases, which – without previous immunization – could overwhelm our organism and lead to
severe illness or even death. In the last century, vaccines have become the primary preventive
strategy against many infectious diseases and have saved millions of lives (Andre et al., 2008).
One of the most notorious pathogens that frequently challenges our immunity and our public
health systems is the influenza virus. Influenza viruses cause respiratory infections and spread
in yearly outbreaks worldwide, causing around 1 billion infections, 3–5 million cases of severe
illness, and 300–650 thousand deaths every year (Krammer et al., 2018; Paget et al., 2019). The
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influenza vaccine formulation has to be updated annually to ensure a match with circulating
influenza strains. Continuous evaluation and assessment of vaccination efficacy in large populations
is crucial to monitor vaccination success and guide vaccine development (Paules and Fauci, 2019).
Unfortunately, individuals at high risk for developing influenza-related complications show lower
vaccine response rates (Paules and Subbarao, 2017), such as very young children and the elderly
(Siegrist and Aspinall, 2009), pregnant women (Faucette et al., 2015), as well as patients with
chronic diseases and comorbidities, e.g., diabetes (Association et al., 2004), autoimmune diseases
(Gelinck et al., 2007; van Assen et al., 2010), or patients after transplantation (Kunisaki and
Janoff, 2009; Manuel et al., 2011; Ljungman, 2012). A better understanding of the influenza
vaccine response, especially in heterogeneous high-risk populations, will help to improve current
vaccination strategies and to develop novel types of vaccines (Germain, 2010; Hagan et al., 2015;
Wooden and Koff, 2018).
This thesis presents three mathematical models and their application to analyse influenza vaccine-
induced immune responses in a population of immunocompromised patients after blood (hematopoi-
etic) stem cell transplantation — a high-risk group showing highly heterogeneous and poorly
understood vaccine responses (Ljungman and Avetisyan, 2008). In the following sections, we
briefly introduce the relevant background on influenza viruses and the immune response to influenza
vaccination, followed by an overview of available methods for analysing vaccine responses and
their limitations. Finally, we conclude with the goals and contributions of this thesis.

1.1 T H E I N F L U E N Z A V I RU S

Influenza in humans is caused by influenza A and B viruses that occur globally as seasonal
epidemics (caused by influenza A and B), as well as sporadically as pandemics (caused by influenza
A) (Krammer et al., 2018). Influenza A viruses are classified into subtypes based on their surface
proteins, hemagglutinin (HA) and neuraminidase (NA). In total, 18 HA and eleven NA subtypes
of influenza A viruses have been identified in birds or bats — most of them in wild birds, which
are the primary reservoir of influenza A viruses (Tong et al., 2013). A similar animal reservoir has
not been found for influenza B viruses; these are classified into two antigenically distinct lineages
based on their HA protein, the Victoria and the Yamagata lineage (Paules and Subbarao, 2017).
Influenza viruses gradually accumulate mutations in their HA and NA proteins, a process called
antigenic drift (Bouvier and Palese, 2008). This antigenic drift makes it necessary to update the
influenza vaccine frequently (Boni, 2008). Importantly, substantial antigenic drift can be introduced
by very few or even a single amino acid substitution in the globular head domain of HA (Koel et al.,
2013). The globular head domain is the part of the HA receptor that binds to sialic acids on surface
glycoproteins of mammalian cells and mediates virus entry (Skehel and Wiley, 2000). In addition
to antigenic drift, there is also antigenic shift in influenza A viruses; this describes a drastic change
in HA proteins (sometimes also in NA) caused by an exchange of viral RNA segments during a
co-infection with antigenically diverse strains.
In the last century, four influenza pandemics have occurred: in 1918 (caused by H1N1), 1957
(H3N2), 1968 (H3N2), and 2009 (H1N1). The pandemic H1N1 strain in 2009 differed substantially
from the circulating seasonal H1N1 strains and caused their extinction (Krammer et al., 2018).
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Since 2009, the strains derived from the 2009 H1N1 pandemic strain co-circulate with influenza A
H3N2 and influenza B strains. Due to the small number of documented influenza pandemics, we
are currently not able to predict the next pandemic influenza strain (Neumann and Kawaoka, 2019).

1.2 T H E I M M U N E R E S P O N S E T O I N F L U E N Z A VAC C I N AT I O N

Vaccination is the most successful method to prevent influenza infections (Houser and Subbarao,
2015). There are currently three types of licensed influenza vaccines: inactivated and live attenuated
virus vaccines (mostly manufactured in embryonated chicken eggs) and recombinant hemagglutinin
vaccines (Grohskopf et al., 2014). The current seasonal influenza vaccines include antigens from
both circulating influenza A subtypes (pandemic H1N1 and seasonal H3N2) along with either one
(trivalent vaccine) or both (quadrivalent vaccine) influenza B lineages. Vaccines are evaluated
in randomized controlled trials (to determine efficacy) and in observational studies involving
vaccinated and unvaccinated individuals (to determine effectiveness). If the vaccine matches the
circulating strains well, meta-analyses show that efficacy rates of 50–60% and effectiveness rates of
60–90% can be achieved (Osterholm et al., 2012). Unfortunately, influenza vaccine effectiveness is
often lower (Paules and Fauci, 2019): between 2004 – 2018, the influenza vaccine effectiveness
against medically attended laboratory-confirmed illness in the United States ranged from 10–60%.
In comparison, the measles vaccine has an effectiveness of 97%. In this respect, more effective
influenza vaccination strategies are needed, especially in high-risk groups that show reduced vaccine
effectiveness also when vaccine and circulating strains match well (Paules and Subbarao, 2017).

1.2.1 The adaptive immune response

We distinguish two types of adaptive immune responses, the humoral and the cell-mediated response
(Murphy and Weaver, 2016). The humoral immune response describes the production of antibodies
that are released into the fluid component of blood or plasma (serum) and extracellular fluids (once
called humors). Human antibodies are glycoproteins, called immunoglobulins (Ig), released by B
lymphocytes and occur as IgA, IgD, IgE, and IgG isotypes. IgG antibodies constitute approximately
75% of all antibodies in serum and have a major role in the immunity against influenza, along
with IgA (15% of serum antibodies) and IgM (10%) (Schroeder and Cavacini, 2010; Krammer
et al., 2018). The cell-mediated response is orchestrated by T lymphocytes. Cytotoxic T cells
(CD8 T cells) control infections by destroying infected cells, while effector (helper) T cells (CD4
T cells) are essential regulators of B cells. Supported by T cell help, B cells can differentiate
to antibody-secreting plasma cells or memory B cells, which do not secrete antibodies but can
be reactivated upon a second exposure to the same antigen. Activated memory B cells quickly
differentiate to plasma cells, inducing a faster and stronger antibody response compared to a naive
response (Siegrist, 2008; Akkaya et al., 2020).
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1.2.2 Vaccination aims at inducing high levels of neutralizing antibodies

Currently licensed influenza vaccines aim at inducing potent antibody responses against the in-
fluenza HA surface protein, which mediates viral entry (Figure 1.1). Antibodies that can bind
the globular head domain of HA have been early identified (and later confirmed) as important
correlates of protection against influenza (Smith et al., 1933; Ohmit et al., 2011; Benoit et al., 2015).
Because these antibodies block the interaction between the virus and host cells, either through
steric hindrance or direct blocking of the receptor binding site, they can also inhibit binding of
influenza viruses to red blood cells (RBCs) in vitro, described as hemagglutination inhibition (HI),
and can neutralize viruses in cell cultures. The lack of such neutralizing antibodies in a population
is considered the main driving factor for the rapid spread of a virus in a pandemic (Krammer, 2019).
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influenza vaccine. The abundance and prop-
erties of the antibodies before and after vac-
cination were compared. They found that the 
majority of the response to vaccination was 
dominated by pre-existing, rather than new, 
antibodies, and that only a small number of 
antibody clonotypes dominated the response. 
Their data also support a number of epide-
miologic studies that have observed a less 
robust neutralizing response to infection in  

have shed new light on the specificities of anti-
bodies induced. Here Lee et al.2 were able to 
use an elegantly different tactic, in which they 
profiled the antibodies themselves rather than 
the cells that produce them. The team used a 
high-resolution proteomics approach, com-
bined with B cell–receptor transcript sequenc-
ing, to examine the antibody responses of 
a cohort of young adults before and after 
vaccination with an inactivated trivalent  

Vaccines that stimulate antibodies to the 
viral hemagglutinin (HA) have been a cor-
nerstone of the public-health response to 
seasonal epidemics and, infrequently, pan-
demics of influenza-induced morbidity 
and mortality. Current influenza vaccines 
are multivalent, containing antigens to the 
circulating A(H3N2), A(H1N1 pdm2009) 
and either one or both lineages of influenza  
B viruses. Some of the primary challenges in 
this regard are the continued evolution of the 
viruses in circulation and the need to select 
the appropriate strains to incorporate into a 
vaccine some 6 months before its actual use. 
Compounding this issue is the fact that the 
vaccine induces protective immunity only 
to viruses that are antigenically similar to 
the vaccine strains. Although the effective-
ness of available vaccine formulations is a 
point of intense study, the consensus is that 
there is ample room for improvement. One 
approach that has been undertaken is to 
detail the immune response to vaccination 
and infection in humans, in hope of learning 
what an ideal and broadly reactive immune 
profile might look like. In this issue of 
Nature Medicine, two studies carry out this 
approach. One study provides a cautionary 
tale of the effect of developing vaccines in 
chicken eggs, and the other improves under-
standing of the type of antibody response 
that we would wish to induce to protect 
against infection (Fig. 1).

Studies that examine the responses of single 
B cells to influenza vaccination, for example1, 

Understanding immune responses to the influenza 
vaccine
Richard Webby

The quest to improve influenza vaccines is aided by research into the immune response that they generate.  
Two recent studies have focused their attention on the specificities of antibodies induced after vaccination with 
conventional inactivated influenza vaccines.

Richard Webby is in the Department of Infectious 
Diseases, St. Jude Children’s Research Hospital, 
Memphis, Tennessee, USA. 
e-mail: richard.webby@stjude.org  

Figure 1  Analysis of the immune response to the influenza vaccine. The kinds of antibodies raised in 
response to the influenza vaccine depend on a multitude of factors. Lee et al.2 show that in response 
to vaccination, antibodies are raised that can target either a multitude of strains or just one strain. 
Raymond et al.6 show that vaccination with an egg-adapted flu strain can result in antibodies that 
specifically target antigens from these adapted viruses.
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Figure 1.1. Influenza vaccination induces antibodies against viral surface proteins. The antibody
response depends on preexisting memory B cells acquired in previous vaccinations or infections. Influenza
vaccine-induced antibodies mostly target the surface protein hemagglutinin (HA) and can be specific to a
single influenza strain or to multiple strains (cross-reactivity) (Lee et al., 2016; Angeletti et al., 2017). Image
reprinted from Webby (2016) with permission by Springer Nature.

1.2.3 Evaluation of antibody responses to influenza vaccination

Two important parameters determine the potency of an antibody response: the antibody concentra-
tion and the antibody avidity (Groth, 1963). Avidity describes the overall binding strength of all
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antibody binding sites to an antigen (here the viral surface protein HA) — in contrast to affinity that
describes the binding strength of one antibody binding site (monovalent vs. multivalent binding).
For instance, IgG antibodies have two binding sites, IgAs have four, and IgMs have ten. Thus, it is
not sufficient to only measure antibody concentration, as the detected antibodies could potentially
have low avidity and poor virus-neutralizing activity. While concentrations are relatively easy to
measure, e.g., in enzyme-linked immunosorbent assay (ELISA) experiments, the determination of
avidities is experimentally delicate. Avidity measurements require either highly sensitive, expensive
equipment that requires long calibration times, such as surface plasmon resonance (SPR) systems,
or ELISA-based experiments with chaotropic agents, such as urea, that are time-consuming and
difficult to establish because the optimal protocol can vary substantially for different antigens and
serums samples (Underwood, 1993; Olsson et al., 2019).
To evaluate the influenza-specific antibody response in larger populations, the hemagglutination
inhibition (HI) assay has established itself because it allows quantifying the neutralizing activity
of a serum sample relatively fast and easy as an HI titer (Hirst, 1941; Kaufmann et al., 2017). To
determine the HI titer, a serum sample with an unknown antibody concentration is serially diluted,
and a constant amount of influenza virus and RBCs is added to each dilution. The dilution factor of
the last serum dilution that is still able to fully inhibit hemagglutination is, by definition, the HI titer
(WHO, 2002). Thus, the HI titer is a coarse-grained measure of influenza-inhibiting antibodies in
a serum sample, whose values are restricted to the considered serum dilutions. Importantly, the
HI titer has been established as a correlate of protection in individuals, and regulatory agencies
widely accept HI titers as a readout in vaccine efficacy trials (Hobson et al., 1972; Haaheim and
Katz, 2011; Ohmit et al., 2011; Couch et al., 2013). However, since the HI titer measures the
combination of both antibody concentration and avidity, an increase in antibody concentration
can not be distinguished from an increase in antibody avidity (and the other way around). The
relationship between HI titer, serum antibody concentration, and avidity has not yet been established.
To fill this gap, we present in Chapter 3 (Linnik et al., 2020) a biophysical model of the HI assay
that disentangles the contribution of IgG concentration and IgG avidity to the HI titer and allows to
infer the difficult-to-measure IgG avidities from easy-to-measure IgG concentrations and HI titers.

1.2.4 Analysis of hemagglutination inhibition (HI) titers

HI titers are traditionally evaluated based on conventional cut-offs (Hobson et al., 1972; Beyer et al.,
2004): individuals showing at least a four-fold increase in HI titer are considered to be seroconverted,
meaning they responded to the vaccination. HI titers greater or equal to 1:40 are considered to be
seroprotective, which means they are assumed to reduce the risk of infection by 50%. However,
this dichotomous surrogate endpoint has only been tested in a limited number of individuals with a
limited number of influenza strains and is probably not generally applicable (Cagigi et al., 2016).
Moreover, when the research question at hand is to compare vaccination outcomes between different
groups, the dichotomization into seroconverted/seroprotected individuals is a loss of information
that can lead to undetected effects, especially when the sample size is small (Scott et al., 1997;
Capuano et al., 2007). It has been demonstrated that ordinal regression on the full range of observed
HI titers has superior power compared to dichotomization approaches (Capuano et al., 2007).
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Ordinal regression models take into account that the analysed HI titers have an intrinsic order
(McCullagh, 1980, 2018), but neglect that titers can only be reached successively step-by-step in
a sequential process (Cox, 1988; Tutz, 1991). As of today, most studies utilize the conventional
cut-offs to analyse HI titers, either by binary logistic regression or contingency table analysis (Beyer
et al., 2004). Only a few influenza vaccine studies apply ordinal regression models (e.g., Hung et al.
(2010)), and the application of sequential regression models (Tutz, 1991) for analysing HI titers has
not yet been reported. In Chapter 2, we apply sequential models to investigate associations between
patient characeristics and HI titers and show that sequential logistic regression on HI titers and
binary logistic regression on seroconversion/seroprotection categories yield qualitatively similar
results, but sequential models infer associations with higher precision.

1.2.5 The vaccine response is orchestrated by various cell types

Although vaccine trials mostly consider HI titers to evaluate vaccine responses, the vaccine-induced
immune response is far more complex and involves various types of specialized immune cells and
signalling molecules (Plotkin et al., 2012). The injected vaccine antigen is recognized by dendritic
cells (DCs) through pattern-recognition receptors, in particular Toll-like receptors (TLRs) (Kawai
and Akira, 2010). Activated TLRs initiate the expression of inflammatory genes, leading to the
production of additional cell surface receptors and release of signalling molecules, such as cytokines
and chemokines (Honda and Taniguchi, 2006). Activated DCs mature to antigen-presenting cells
(APCs) and migrate to lymph nodes, where they present vaccine epitopes to T cells through human
leukocyte antigen (HLA) molecules on their cell surface (Chen and Flies, 2013). This, in turn,
initiates the maturation of naive CD4 T cells to effector T cells. Helper T cells of type 1 mainly
support the cytotoxic immune response and secrete cytokines such as interleukin (IL)-2, interferon
(IFN)-γ, while helper T cells of type 2 secrete different cytokines, such as IL-4, IL-6, and IL-10,
and support B cell activation (Randolph et al., 1999). Follicular helper T cells are located in the
follicle of lymph nodes and directly control B cell differentiation (Bentebibel et al., 2013; Spensieri
et al., 2013; Gavillet et al., 2015).
B cells are the main workhorses of the adaptive immune system. Naive and memory B cells are
activated if they recognize the vaccine antigen either in soluble form or on the surface of APCs with
their B cell receptor (Pape et al., 2007). Activated B cells internalize the antigen and present antigen
epitopes on their cell surface to cognate helper T cells to receive additional activation signals
(Katikaneni and Jin, 2019). This B-T cell interaction is mediated by major histocompatibility
complex (MHC) II molecules displayed on B cells. A fraction of activated naive B cells rapidly
differentiate into short-lived plasmablasts, which produce IgM antibodies and later IgG or IgA after
Ig isotype class switching. Plasmablasts produce the first wave of antibodies, but these antibodies
are not yet perfectly adapted to the antigen. Another fraction of activated B cells migrate to follicles
in the secondary lymphoid tissue to undergo a germinal center (GC) reaction (Figure 1.2). In the
dark zone of GCs, B cells rapidly proliferate and diversify by acquiring mutations in their B cell
receptor, which recognizes the same antigen as the later released antibodies. This process is called
somatic hypermutatation (SHM) and is coordinated by the enzyme activation-induced cytidine
deaminase (AID). During SHM, mutation rates are about 106-fold higher than the background
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mutation rate in other genes, enabling a tremendous antibody diversity (Martin and Scharff, 2002).
Subsequently, B cells compete for antigen presented on follicular DCs (FDCs) and move to the light
zone of the GC for interaction with follicular helper T cells. Only B cells that acquire antigen from
FDCs and successfully present it to follicular helper T cells survive the GC reaction (Heesters et al.,
2014; Mesin et al., 2016). This survival of the "fittest" B cells results in the expansion of B cells
with highly adapted B cell receptors. Moreover, B cells can recycle to the dark zone to undergo
several rounds of proliferation and selection, resulting in a successive increase in the binding avidity
of the B cell receptor, a process called affinity maturation. Eventually, selected B cells class-switch,
exit the GC reaction and bifurcate into memory B cells and plasma cells that secrete high-avidity
IgG antibodies. Importantly, plasma cells can migrate to the bone marrow, where they can survive
for several months or even years, maintaining high levels of protective antibodies in serum. Memory
B cells remain in the periphery for surveillance, and once reactivated, they rapidly proliferate and
differentiate to plasma cells (Lau et al., 2017; Moran et al., 2018). In addition, activated memory
B cells can also re-enter GCs, and it is thought that less somatically mutated memory B cells are
more likely to re-engage in a GC reaction to undergo additional rounds of mutation and selection
(Dogan et al., 2009; Pape et al., 2011; Zuccarino-Catania et al., 2014; Mesin et al., 2020; Turner
et al., 2020).
The GC reaction depends on the antigen and on its environment and is by far not fully understood
(Turner et al., 2018). Because of its outstanding importance to adaptive immunity, the GC reac-
tion is intensely investigated. Sequencing and in vivo imaging techniques, in conjunction with
mathematical models of GC dynamics, greatly advanced our understanding of GC processes in
recent years, especially of GC formation, B cell diversity, T-cell dependent selection, recycling, and
affinity maturation (Schwickert et al., 2007; Victora et al., 2010; Schwickert et al., 2011; Zhang
et al., 2013; Meyer-Hermann et al., 2012; Wang et al., 2015; Tas et al., 2016; Kuraoka et al., 2016;
Papa et al., 2017; Firl et al., 2018; Murugan et al., 2018; Pikor et al., 2020). A recent experimental
study detected influenza-specific GC B cells after influenza vaccination in the draining lymph nodes
of healthy adults (n = 8 investigated individuals) and provided the first direct evidence that influenza
vaccination can trigger GCs in humans (Turner et al., 2020). However, little is known about the
dynamics of influenza vaccine-induced GCs and how GC processes vary in a population (Kuraoka
et al., 2016; Kil et al., 2019). In Chapter 4, we apply our current understanding of GC dynamics and
adaptive immunity to model the antibody response to influenza vaccination in a patient population.

1.2.6 What factors influence the vaccine response?

First of all, the vaccine response is highly influenced by previous influenza infections or vaccinations.
Especially the first immune responses to an antigen is thought to influence subsequent responses, a
phenomenon described as original antigen sin or imprinting (Francis, 1960; Fonville et al., 2014;
Gostic et al., 2016). Antibody titers against influenza strains encountered in early life increase over
time, probably due to (at least partial) recall immune responses (Li et al., 2013; Krammer, 2019).
Repeated vaccination against influenza viruses can lead to reduced vaccine effectiveness, especially
when high basal antibody levels prevent broadly protective B cell responses (Andrews et al., 2015;
Thompson et al., 2016). However, vaccine effectiveness is still better in repeatedly vaccinated
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of the lymph node, they may be affected by the increase 
in fluid pressure and shear stress that occurs in associa-
tion with increased lymph flow. For example, exposure 
to low fluid flow rates in vitro enhanced the production 
of CC-chemokine ligand 21 (CCL21) by FRCs53. By 
contrast, increased flow rates in this model substantially 
decreased CCL21 production by FDCs53–57. Interestingly, 
this suggests that the rate of lymph flow may regulate 
stromal cell function and have an immuno suppressive 
effect under inflammatory conditions. In addition to 
FRCs, FDCs directly interact with the conduit net-
work in B cell follicles (FIG. 4a), which suggests that they 
may also be sensitive to changes in the rate of lymph 
fluid flow.

If a high rate of lymph fluid flow regulates stromal 
cell functions, why would this be advantageous under 
inflammatory conditions? One possibility is that fluid 
flow may help to ‘tune down’ immunity to second-
ary infections. For example, Mueller et al.58 observed 
in mice that following initial splenic infection with 
lymphocytic choriomeningitis virus (LCMV), the 
immune response to a secondary infection was sup-
pressed. Importantly, the Armstrong strain of LCMV 
that was used for these studies does not infect stro-
mal cells, unlike the LCMV strain clone 13 (REF. 59).  
A similar observation was made following the infection 
of mice with other pathogens or the administration of 
virus-like particles, which confirmed that the effect 
was not specific to LCMV infection58. Intriguingly, 
the local production of the homeostatic chemokines 
CCL21 and CXCL13 was dramatically reduced by 
day 3 following infection, which correlated with the 
impaired migration of circulating lymphocytes and 
DCs into the appropriate splenic compartments58. The 
interpretation of these findings was that a local reduc-
tion in the levels of homeostatic chemokines might 
bias the immune response towards responding to the 
primary infection and limit competition from incom-
ing lymphocytes and DCs for space and resources 
in the lymph node. Based on these observations, we 
propose that an increase in lymph pressure and shear 
stress during inflammation may alter antigen cycling 
by FDCs, favouring the presentation of pre-existing 
antigens and limiting the uptake of antigen from a 
secondary infection. In this model, as well as regu-
lating FDC function, the increased lymph fluid flow 
could also enhance B cell responses to the primary 
infecting agent.
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Figure 3 | The germinal centre reaction.  Simplified 
schematic of affinity maturation in the germinal centre 
(GC). At the T cell–B cell border of the lymph node,  
B cells present antigen to T helper cells and receive 
co-stimulatory signals. The selected cells enter the dark 
zone of the GC and undergo somatic hypermutation 
(SHM) by upregulating components of the SHM 
machinery, including activation-induced deaminase 
(AID). After one cycle (or possibly more cycles) of 
proliferation and SHM, the B cells migrate to the light 
zone. In the light zone, the mutated BCRs that are the 
product of SHM are now exposed to antigens that are 
incorporated into immune complexes on the follicular 
dendritic cells (FDCs). If the affinity of the BCR is very 
low, the B cell will not receive survival signals and will 
undergo apoptosis. The remaining B cells need to 
compete for limited T cell help, which favours the  
higher affinity B cells and forces the others to undergo 
apoptosis. Surviving B cells can then undergo one of 
three fates: they can reenter the dark zone and undergo 
further proliferation and SHM, they can exit the GC as 
plasma cells or they can exit as memory B cells. Re-entry 
will allow for further affinity maturation. It is thought  
that FDCs might influence affinity maturation by 
regulating the amount of antigen on their surface, 
however, due to technical limitations this has not been 
shown experimentally. T
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 cell, T follicular helper cell.
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Figure 1.2. B cells evolve in germinal centers. Activated B cells that present antigen to helper T cells
can enter germinal centers (GCs) where they rapidly proliferate and diversify their B cell receptor through
somatic hypermutation (SHM). After several rounds of proliferation, they compete for antigen displayed
on follicular dendritic cells (FDCs) and for T cell help. Only B cells that are able to present antigen to
follicular helper T cells survive the GC reaction. Selected B cells bifurcate into antibody-secreting plasma
cells and memory B cells or re-enter the GC reaction for additional rounds of proliferation and selection.
Image reprinted from Heesters et al. (2014) with permission by Springer Nature.

individuals than in individuals not vaccinated at all (Khurana et al., 2019; Martínez-Baz et al.,
2017). The immune response to repeated vaccinations is highly heterogeneous, and mechanisms
and magnitude of recall responses as well as their impact on antibody production and affinity
maturation are still poorly understood (Belongia et al., 2017). Since influenza viruses circulate
regularly, and most of us encounter them already in childhood, recall responses are most likely
always involved in influenza vaccine responses. The ultimate goal of influenza vaccination would
be to induce a broad, highly diverse immune response and not only boosting preexisting immunity.
Therefore, we have to better understand the non-naive immune response, especially in high-risk
groups, which are recommended to receive influenza vaccinations regularly (Lewnard and Cobey,
2018).
Second, the vaccine response depends on the antigen, type of vaccine and vaccine administration.
Natural influenza infection usually induces longer-lived immunity and more diverse antibodies
than influenza vaccination, but the mechanisms behind durable immunity remain unclear (Chiu
et al., 2014; Krammer et al., 2018). The current understanding of B cell dynamics and the
interaction of the various B cell subsets with DCs and T cells is still rudimentary and does not
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allow to rationally influence B cell faith during vaccination (Krammer, 2019). To better understand
the generation of durable immunity and guide vaccine development, additional correlates for
protection, e. g., affinity maturation and antigen-specific memory B cells, need to be investigated
and integrated into vaccine assessment (Cagigi et al., 2016; Wooden and Koff, 2018). Because
the detection of antigen-specific B cell subsets requires high experimental effort (Buisman et al.,
2009), vaccine studies in larger populations usually focus only on antibodies in serum. Methods
that indirectly infer preexisting memory B cells from antibody response kinetics could help to
better understand how (repeated) vaccination affects this important B cell subset. The current
approach to vaccine development is mostly empirical, and common strategies to improve vaccine-
induced protection in poorly responding groups include administration of higher doses of vaccine
antigen in the elderly (Lee et al., 2018), adding immunologic adjuvants, such as aluminum salts
or organic compounds (Tregoning et al., 2018), or the administration of a second dose (booster
vaccination) in immunocompromised patients (de Lavallade et al., 2011). However, the benefit
of booster vaccinations in immunocompromised populations is under debate, and several studies
report conflicting results (Gueller et al., 2011; Engelhard et al., 2011; de Lavallade et al., 2011;
Karras et al., 2013). The evaluation of vaccines in immunocompromised patients is particularly
challenging as randomized studies are often unfeasible. More studies analysing booster responses
in immunocompromised patients are needed to optimize vaccination schedules in this high-risk
group.
And finally, the vaccine response is associated with various host-related factors affecting the immune
system, such as sex, age, diseases, medical treatment, and genetic background (Franco et al., 2013;
Linnik and Egli, 2016; Paules and Subbarao, 2017). The mechanisms behind these associations are
not fully understood and focus of ongoing research. The effect of increasing age on the immune
system (immunosenescence) is linked to several processes, e.g., thymic involution, decline in
innate immunity, and impaired B cell development (Aw et al., 2007). Sex differences occur in both
innate and adaptive immunity, are conserved across species, and have been linked to hormones and
sex chromosome genes (Klein and Flanagan, 2016). In general, women show stronger antibody
responses, have higher antibody basal levels, and greater B cell numbers (Abdullah et al., 2012;
Furman et al., 2014). Chronic diseases, such as diabetes, autoimmune diseases, or chronic graft-
versus-host disease (cGVHD) in transplant recipients have been reported to affect the influenza
vaccine response (Gelinck et al., 2007; van Assen et al., 2010; Ljungman, 2012). Since these
patients usually receive various medical treatments and often have comorbidities, such patient
populations are highly heterogeneous and difficult to study. To disentangle associations between
host factors and antibody response, relevant host factors have to be included and corrected for in
the analysis. Moreover, differences in genotypes involved in antigen processing (especially HLA)
and signalling (e.g., IFN-λ) have been proposed to alter the vaccine-induced antibody response
(Haralambieva et al., 2011; Kennedy et al., 2012; Franco et al., 2013; Pulendran, 2014; Linnik
and Egli, 2016). The genetic background may be especially important in immunocompromised
individuals where compensating mechanisms are potentially impaired as studies on IFN-λ genotypes
in immunocompromised transplant patients suggest (Egli et al., 2014a,b).
Understanding the mechanism of how differences in immune cells, proteins and signalling molecules
affect the vaccine response is experimentally extremely challenging. Experiments in mice can
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lead to wrong conclusions due to important differences between the human and mouse immune
system (Shultz et al., 2012; Tao and Reese, 2017). For instance, human B cells carry the IFN-λ
receptor, while mouse B cells lack it (Wack et al., 2015; de Groen et al., 2015; Syedbasha and
Egli, 2017; Syedbasha et al., 2020). In vitro experiments with human immune cells try to mimic
the natural environment by adding relevant signalling molecules. However, due to the complexity
of the adaptive immune system and many unknowns, in vitro systems can not fully reflect the
in vivo situation. In addition, host factors may bias the results. Mathematical models allow to
investigate mechanistic hypothesis in a precisely defined environment and have proved themselves
as valuable assistants in understanding immune response mechanisms and explaining experimental
results (Meyer-Hermann et al., 2012; Zhang et al., 2013; Wang et al., 2015; Hauser et al., 2007;
Murugan et al., 2018; Buchauer and Wardemann, 2019). A model that connects different data types
via mechanistic hypotheses, such as immunobiological results and host-related factors, could check
their compatibility with clinical observations, raise new hypotheses, and guide future experiments.

1.3 M AT H E M AT I C A L M O D E L S H E L P T O D E C I P H E R I M M U N E R E S P O N S E S

Mathematical models of the adaptive immune response are derived from our mechanistic under-
standing of the interaction and kinetics of critical components, such as lymphocytes (B and T cells),
antibodies, antigen, and signalling molecules. In 1970, Bell presented an ordinary differential
equation (ODE) model of the antigen-dependent B cell expansion and laid the theoretical base
for understanding clonal selection and affinity maturation (Bell, 1970). In subsequent years, ODE
models of GC B cell dynamics predicted key processes of the GC reaction that have been later
confirmed experimentally, such as recycling of GC B cells (Kepler and Perelson, 1993; Oprea and
Perelson, 1997; Allen et al., 2007b; Schwickert et al., 2007), and feedback by secreted antibodies
that mask antigen in GCs (Iber and Maini, 2002; Zhang et al., 2013). ODE models enable to
concisely describe dynamic systems, but they assume that the simulated entities are homogeneously
distributed. When spatial distribution has to be taken into account, agent-based models are fre-
quently applied to model immune responses (Bauer et al., 2009), and have successfully predicted
that B cell selection depends not only on the competition for antigen on FDCs but also on the
competition for limited T cell help (Meyer-Hermann et al., 2006; Victora et al., 2010).
The first GC models focused on modelling a single GC to investigate the driving processes, such as
proliferation, recycling, and selection. Since activated GCs may be connected, e. g., via secreted
antibodies, and respond in a coordinated manner (Schwickert et al., 2007; Zhang et al., 2013),
models of GC populations have been developed to describe affinity maturation during infection
(Childs et al., 2015; Murugan et al., 2018). A model of several GC reactions in parallel was able to
explain reduced affinity maturation during malaria infection (Murugan et al., 2018). However, little
is known on how GC reactions could vary between vaccinated individuals and how these differences
relate to host factors associated with poor vaccine response. Since studying GC processes is
associated with high experimental effort (Turner et al., 2020), GC responses in patient populations
are not well characterized. In Chapter 4, we investigate whether our current understanding of GC
dynamics can explain the heterogeneous antibody response to influenza vaccination in hematopoietic
stem cell transplant (HSCT) patients. We infer differences in preexisting memory B cells and GC
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processes directly from observed HI antibody titers using a model that combines our understanding
of GC B cell dynamics with important patient factors via mechanistic hypotheses about how these
factors might modulate the GC response.

1.4 C O N T R I B U T I O N S O F T H I S T H E S I S

The goal of this thesis was to establish novel methods for analysing HI antibody titers that could
improve the evaluation of the influenza vaccine response in larger populations, where detailed
molecular analysis of influenza-specific B cell subsets and antibodies is unfeasible, and to apply
them to investigate the vaccine response in a population of HSCT patients. The thesis demonstrates
how different mathematical models can be used in conjunction to characterize the vaccine response
in a patient population from easy-to-establish measurements (Figure 1.3).

Vaccine Patient Immune response Antibodies

• Age, sex 
• Medical record 
• Genotype (IFN- )λ

• pH1N1
• H3N2
• B

• B cell dynamics • IgG concentration
• IgG avidity

Mechanistic, biophysical model
Chapter 3

Chapter 2
Inferring associations between patient factors and HI titers

Phenomenological/ 
mechanistic models 

(literature) 

Mechanistic  
hypotheses 
(literature)

Chapter 4
Inferring differences in immune response dynamics

HI titer

• pH1N1
• (H3N2)
• (B)

Figure 1.3. Thesis overview. We investigate the immune response to seasonal influenza vaccination (against
pandemic H1N1, H3N2, and B influenza strains) in hematopoietic stem cell transplant (HSCT) patients. In
Chapter 2, we infer associations between patient factors and HI antibody titers. In Chapter 3, we present a
biophysical model of the HI assay that establishes the relationship between IgG concentration, avidity, and
HI titer for influenza H1N1. In Chapter 4, we combine the HI assay model from Chapter 3 with a model of
the vaccine-induced B cell response and antibody production to describe HI titer responses in HSCT patients.
We integrate important patient factors associated with the antibody response (identified in Chapter 2) into the
model and infer differences in memory B cells and GC processes associated with the investigated patient
factors.

In Chapter 2, we identify the most important patient factors associated with HI baseline titers and
HI titer responses against three different influenza strains (pandemic H1N1, H3N2, B). We perform
a multivariable regression analysis with sequential models and show that the inferred effects have a
similar interpretation as the commonly used binary regression on seroprotection/seroconversion
but that our approach estimates effects with higher precision. Furthermore, we show that HSCT
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patients benefit from the booster vaccination and elicit similar average responses after two influenza
vaccinations as healthy individuals after one.
In Chapter 3, we derive from first principles a biophysical model of the HI assay for influenza
H1N1 and establish a mechanistic link between IgG concentration, avidity, and HI titer. We apply
the model to infer IgG avidities from ELISA-detected IgG concentrations and HI titers in HSCT
patients and experimentally validate our predictions in independent avidity measurement. Our model
predicts that vaccination induced affinity maturation in only a few patients and that the observed HI
titer increases are mostly explained by an increase in IgG concentration. Because the model links
IgG concentrations and avidities to HI titers, it closes the gap between immunobiological models
and vaccination outcomes in vaccine studies that apply HI titers.
In Chapter 4, we combine the lessons learned from the previous chapters with literature knowledge
to develop an ODE model of the vaccine-induced B cell dynamics, antibody production, and HI
titer response in HSCT patients. We apply the model to infer differences in preexisting memory B
cells and GC reaction processes that are potentially modulated by the investigated patient factors
(identified in Chapter 2). The model predicts that both newly generated plasma cells and reactivated
memory B cells contribute to the observed increase in HI titers, and that the heterogeneity in HI
titer responses is well described by preexisting memory B cells and only a few patient-specific
factors that potentially modulate the GC reaction, such as absolute lymphocyte count in the blood
and IFN-λ genotype. Our analysis suggests that an increase in lymphocyte count is associated with
an increase in the number of successfully established GCs and potentially affects additional GC
processes leading to stronger antibody responses.
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2
A S S O C I AT I O N O F H O S T F A C T O R S W I T H A N T I B O D Y R E S P O N S E
T O I N F L U E N Z A VA C C I N AT I O N I N H S C T PAT I E N T S

This chapter is an Author’s Original Version (AOV) of an article that has been accepted for
publication in The Journal of Infectious Diseases published by Oxford University Press: J. Linnik,
M. Syedbasha, H.-M. Kaltenbach, D. Vogt, Y. Hollenstein, L. Kaufmann, N. Cantoni, S. Ruosch-
Girsberger, A. M. S. Müller, U. Schanz, T. Pabst, G. Stüssi, M. Weisser, J. Halter, J. Stelling, and
A. Egli. Association of host factors with antibody response to seasonal influenza vaccination in
allogeneic hematopoietic stem cell transplant (HSCT) patients. The Journal of Infectious Diseases,
08 2021. https://doi.org/10.1093/infdis/jiab391.

2.1 S U M M A RY

Influenza causes increased morbidity and mortality in patients after allogeneic hematopoietic stem
cell transplantation (HSCT). Therefore, HSCT patients are recommended to receive influenza
vaccination regularly. However, vaccination efficacy is reduced compared to healthy individuals,
and factors determining vaccination outcomes are still poorly understood. We identified host factors
associated with the antibody response to seasonal influenza vaccination in a multivariable regression
analysis of hemagglutination inhibition (HI) antibody titers and seroconversion/seroprotection
categories. We show that both approaches yield consistent results, but that regression on HI titers
infers association with higher precision. HSCT patients showed a highly heterogeneous vaccine
response and required two vaccine doses to achieve average responses comparable to a single
dose in healthy volunteers. Pre-vaccination titers were strongly associated with the time after
transplantation, confirming that HSCT patients can elicit potent vaccine responses and can acquire
durable antibody levels over the years after transplantation. However, we identified several common
host factors that reduce the odds of responding, such as treatment with calcineurin inhibitors, an
unrelated donor, and absolute lymphocyte counts below the normal range. Moreover, mycophenolate
treatment and a donor mismatch in HLA class II negatively affected pre-vaccination titers. Patients
belonging to such poorly responding groups might benefit from additional preventive strategies.

2.2 A B S T R AC T

Patients after allogeneic hematopoietic stem cell transplantation (HSCT) are at high risk for severe
influenza infections. Influenza is a vaccine-preventable disease, but vaccination efficacy is reduced
after HSCT, and patient factors influencing vaccine response are still poorly understood.
In this observational multicenter cohort study, we enrolled 135 HSCT patients and 69 healthy
volunteers (HVs) in 2014/15 and 2015/16. HVs received one dose of the seasonal influenza
vaccine, patients two doses at a 30-day interval. Antibody response was assessed by hemagglu-
tination inhibition (HI) assays. Effects of vaccination and patient-factor associations with pre-
and post-vaccination titers were investigated in a multivariable regression analysis on HI titers
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against A/California/2009/H1N1, A/Texas/2012/H3N2, and B/Massachusetts/2012. For compari-
son, associations were also inferred by binary logistic regression on seroprotection (HI titer ≥ 40)
and seroconversion (HI titer fold-change ≥ 4). Both approaches yielded consistent results, but
regression on titers estimated effects with higher precision. Patients showed higher odds for HI
titer increase after the second dose compared to the first (95% confidence interval (CI) OR = 1.03 –
1.54) and achieved after two doses a response comparable to a single dose in HVs. Pre-vaccination
titers were positively associated with the time after transplantation (OR = 2.47 – 5.99 for 4 years
post-HSCT) and negatively with mycophenolate treatment (OR = 0.30 – 0.78) and donor mismatch
in HLA class II (OR = 0.25 – 0.79). Important negative factors for vaccine response were an
unrelated donor (OR = 0.44 – 0.71) and intake of calcineurin inhibitors (OR = 0.25 – 0.53 for
cyclosporine A, OR = 0.34 – 0.65 for tacrolimus), while lymphocyte count (OR = 1.23 – 1.49 per
doubling), and, surprisingly, chronic graft-versus-host-disease (OR = 1.34 – 1.74 per grade) were
positively associated.
In conclusion, regression on titers should be preferred over dichotomization approaches. Patients’
vaccine responses are highly heterogeneous, but overall, patients benefited from the booster shot
and can acquire seroprotective antibody baseline levels over the years. However, an unrelated donor
and calcineurin inhibitors, a frequent immunosuppressive treatment, lower the odds of responding,
urging to investigate additional preventive strategies for HSCT patients.

2.3 I N T RO D U C T I O N

Influenza is a major cause of morbidity and mortality in high-risk populations such as the elderly,
pregnant women, and patients after hematopoietic stem cell transplantation (HSCT) (Kunisaki and
Janoff, 2009; Ljungman et al., 2011; Schuster et al., 2017). Before stem cell transplantation, patients
receive chemotherapy, radiation therapy, or both, to destroy malignant cells, permit engraftment,
and prevent rejection, leaving patient’s immune cells depleted for months or even years (Storek
et al., 2008; Williams and Gress, 2010). Once the immune system reconstitutes, HSCT patients
often remain immunocompromised and require life-long immunosuppressive treatment to prevent
or treat graft-related complications such as graft-versus-host disease (GVHD) (Copelan, 2006;
Mackall et al., 2009). Therefore, community-acquired viruses, such as influenza, pose a high risk for
HSCT patients, with reported case fatalities of up to 20–30% for seasonal and pandemic influenza
(Kunisaki and Janoff, 2009). Vaccination is the primary intervention to protect from influenza,
but vaccine effectiveness is lower in HSCT patients than in healthy individuals (Ljungman and
Avetisyan, 2008; Beck et al., 2012). To develop better vaccination strategies for HSCT patients and
to identify patients at high risk for a higher morbidity and even fatal outcome, it is important to
understand which host factors influence the vaccine response.
Several studies investigated the response to influenza vaccination in HSCT patients (reviewed
in (Ljungman and Avetisyan, 2008)). Most studies agree that time post HSCT (transplantation-
to-vaccination interval), especially within the first year (Engelhard et al., 1993; Avetisyan et al.,
2008; Mohty et al., 2011; Fukatsu et al., 2017), and immunosuppressive treatment with calcineurin
inhibitors or monoclonal antibodies (Gueller et al., 2011; Roll et al., 2012; Nazi et al., 2013;
Fukatsu et al., 2017) are important factors determining vaccination outcomes. However, there are
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mixed results on the effect of chronic GVHD (Pauksen et al., 2000; Mohty et al., 2011; Issa et al.,
2011; Gueller et al., 2011; Roll et al., 2012; Dhédin et al., 2014; Fukatsu et al., 2017), and little is
known on the effect of donor relationship and mismatch (Engelhard et al., 2011). One of the main
strategies to improve vaccine efficacy is administering a second dose (booster shot), but there is also
conflicting data on the benefit of booster shots for HSCT patients (Gueller et al., 2011; Engelhard
et al., 2011; de Lavallade et al., 2011; Karras et al., 2013).
In recent years, host genetic factors have been proposed to influence the vaccine-induced antibody
response in children and adults (Haralambieva et al., 2011; Kennedy et al., 2012; Pulendran, 2014;
Linnik and Egli, 2016). An association between the interferon(IFN)-λ genotype and influenza
vaccine response has also been observed in immunosuppressed organ transplant patients (Egli
et al., 2014b). Genetic factors may be especially important in immunocompromised populations
where compensating mechanisms are potentially impaired, but so far, genetic factors have not been
investigated in HSCT patients.
Understanding the vaccine response in HSCT patients is particularly challenging. Controlled studies
are unethical or unfeasible, and the number of patients in observational studies is usually low, which
hampers statistical power and can introduce bias in the estimated effects (Greenland et al., 2016).
Moreover, HSCT patients are highly heterogeneous, e.g., in medication and comorbidities, which
further complicates the comparison of published studies. Many host factors are not independent
of each other. For instance, donor mismatch can increase the risk for GVHD, which in turn
requires increased immunosuppression. Therefore, adjustment for relevant patient factors, such as
multivariable regression analysis, is crucial to disentangle host factor associations. Besides, vaccine
responders and non-responders are commonly classified based on conventional cut-off values
such as seroprotection and seroconversion, and statistical analysis is performed on dichotomized
outcomes instead of the full data, which can further decrease statistical power (Capuano et al., 2007;
Fedorov et al., 2009).
Here, we performed a multivariable regression analysis directly on the observed antibody titers
to investigate the association of patient and transplant characteristics with vaccination outcomes
in allogeneic HSCT patients, including IFN-λ genotypes that were reported to be associated with
vaccine response (Haralambieva et al., 2011; Kennedy et al., 2012; Egli et al., 2014b). We assessed
the antibody response against three different influenza types (H1N1, H2N3, B), which enabled
us to study strain-specific differences, and, more importantly, to investigate strain-independent
host factors associated with vaccine response. We compared patients’ vaccine responses to healthy
volunteers, who received two doses of the seasonal influenza vaccine instead of one. In addition,
we investigated the association of local side effects with vaccine response. Our results obtained by
titer regression are consistent with results obtained by the commonly used binary logistic regression
on seroconversion and seroprotection categories but our approach yields higher precision in the
estimated effects.
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2.4 M E T H O D S

2.4.1 Ethics and regulatory requirements

The study was conducted following the Declaration of Helsinki and approved by the Ethics com-
mittee northwest and central Switzerland (EKNZ identifier 2014-141). All participants signed
informed consent. The study was registered under the ClinicalTrials.gov identifier NCT03467074.

2.4.2 Study design, participants and data collection

In this prospective observational multicenter cohort study, we recruited patients at six hematological
centers in Switzerland (at the University Hospitals in Basel, Bern, and Zurich, the Cantonal
Hospitals in Aarau and Lucerne, and at Ospedale San Giovanni in Bellinzona) from October 2014 to
January 2015 and October 2015 to January 2016 (Figure 2.1). Only adult patients (at least 18 years
old) who received allogeneic hematopoietic stem cells at least one year ago (time post HSCT≥1
year) and without known vaccine intolerance, such as egg protein allergy or vaccine-associated
adverse events, were eligible for participation. Patients received two doses of non-adjuvanted
seasonal influenza vaccine (see section Vaccine composition). The second dose (booster shot) was
given 30 days after the first, following the standard of care for HSCT patients. Serum samples and
peripheral blood mononuclear cells (PBMCs) were collected before the first vaccination (d0) and
afterward (d7, d30, d60, d180) and stored in aliquots at −80◦C.

Excluded due to 
missing patient 
record, only HI 
titers available  

(n = 2)

(n = 87)(n = 57)

Season 2014/2015 
(n = 55)

Season 2015/2016 
(n = 80)

Study population 
(n = 135)

Drop-out 
(n = 2)

Excluded due to 
missing patient 
record, only HI 
titers available  

(n = 3)

Excluded because 
patients received 

only one 
vaccination  

(n = 2)

Patients from  
Aarau, 
Basel, 

Lucerne

Patients from  
Aarau, 
Basel, 
Bern, 

Lucerne, 
Ticino, 
Zurich

Figure 2.1. Overview of patient recruitment.

16



The study team documented patients’ medication and the grade of chronic GVHD (cGVHD) at
the time of inclusion according to the NIH consensus criteria (Filipovich et al., 2005). Patients
were asked to document side effects on d7 and d37 in a questionnaire. Absolute lymphocyte
counts were available from routine laboratory tests from the same day or the same week of the
first vaccination, except for one patient in season 2014/15 and seven patients in season 2015/16
for which the lymphocyte counts were measured at a later/earlier time point. The genotype of the
transplanted stem cells (the donor’s genotype) was determined from blood samples using TaqMan
quantitative real-time PCR assays (see section Genotyping). Patients were advised to consult a
physician in case of influenza-like illness and influenza infections were confirmed by PCR.
In addition, we collected serum samples from vaccinated healthy volunteers (d0, d7, d30, d60, and
d180 after vaccination) during the same influenza seasons for comparison (25 in 2014/15 and 44 in
2015/16, 69 volunteers in total). In contrast to HSCT patients, healthy volunteers received only one
dose of the seasonal influenza vaccine.

2.4.3 Vaccine composition

In 2014/15, all participants received a non-adjuvanted trivalent influenza vaccine (Agrippal, Novar-
tis, Switzerland) against the following strains: A/California/7/2009, A/Texas/50/2012 (H3N2), and
B/Massachusetts/2/2012 (Yamagata lineage). In 2015/16, participants received a non-adjuvanted
quadrivalent vaccine (Fluarix Tetra, GSK, UK) against A/California/7/2009 (H1N1),
A/Switzerland/9715293/2013 (H3N2), B/Phuket/3073/2013 (Yamagata lineage), and
B/Brisbane/60/2008 (Victoria lineage). Both vaccines comprised inactivated, subunit influenza
viruses with 15 µg HA antigen of each vaccine strain. Vaccines were administered by intramus-
cular injection. We measured HI titers against all vaccine strains from both seasons except for
B/Phuket/3073/2013.

2.4.4 Genotyping

We investigated SNPs that were reported to be associated with vaccination outcome and antiviral
immune response (Thomas et al., 2009; Tanaka et al., 2009; Ge et al., 2009; Suppiah et al., 2009;
Jiménez-Sousa et al., 2013; Egli et al., 2014b). Specifically, we genotyped three SNPs near the
IFNL3 gene locus (rs8099917, rs12979860, rs10853727) and one SNP within the 3’UTR region
of the interferon-λ receptor gene IFNLR1 (rs10903035). In addition, we determined the genotype
of three SNPs in other cytokine genes (IFNA1, IL4, and IL6), which have been suggested in
genome-wide association studies to be associated with measles vaccine-induced antibody response
(Haralambieva et al., 2011; Kennedy et al., 2012).
All SNPs were genotyped using TaqMan Real-Time PCR assay kits by Applied Biosystems as
previously described (Thomas et al., 2014; Egli et al., 2014a; da Silva Conde et al., 2014). To differ-
entiate the major and minor alleles, we used the probe sets for rs8099917 (T>G, #C__11710096_10),
rs12979860 (C>T, #C__7820464_10), rs10853727 (T>C, #C___7820456_10), rs10903035 (A>G,
#C_____68976_10), rs28383797 (G>A, #C__59380188_10), rs2243248 (T>G, #C__16176227_10),
and rs2069824 (T>C, #C____383639_10).
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The genomic DNA of the donor was isolated from EDTA blood (QIAamp DNA Blood Mini Kit
by Qiagen, #51106), as described by the manufacturer. In brief, 5 µL of 2X TaqMan genotyping
master mix (Applied Biosystems, #4371355), 0.5 µL of 20X combined primers and probes mix,
and 1 µL of DNA (1-20 ng) were added to 3.5 µL nuclease-free water in a total volume of 10
µL. We used the 7500 Fast real-time PCR system (Applied Biosystems) with the following cycle
conditions: 50 cycles of denaturation at 92◦C for 15s and annealing at 60◦C for 60s. Samples and
positive controls were run in duplicates. SNP genotypes were determined by automated genotype
calling in conjunction with the allelic discrimination plot using the Applied Biosystems TaqMan
Genotyper Software.

2.4.5 Hemagglutination inhibition assay

Antibody levels were determined as hemagglutination inhibition (HI) titers. We performed HI assays
according to the WHO manual (WHO, 2002) using a previously published protocol (Kaufmann
et al., 2017). In both influenza seasons, we measured HI titers against viruses in the vaccine and
circulating viruses: A/California/7/2009, A/Texas/50/2012 (H3N2), A/Switzerland/9715293/2013
(H3N2), B/Massachusetts/2/2012 (Yamagata lineage), and B/Brisbane/60/2008 (Victoria lineage).

2.4.6 Data analysis

Patient information, HI assay results, and SNP genotypes were collected in Excel worksheets, and
all data were preprocessed and analysed using in-house scripts in R (R Core Team, 2019).

2.4.6.1 Investigated endpoints and regression analysis of HI titers

Primary endpoints were investigating the association of patient and transplant characteristics with
(i) vaccine-induced antibody response in terms of relative HI titer increase and seroconversion (HI
titer fold change ≥ 4), and (ii) pre-vaccination antibody levels, i.e., HI titer level and seroprotection
(HI titer ≥ 40) on d0. Secondary endpoints were (i) investigating the association of local side
effects with vaccine response in HSCT patients, and (ii) comparing vaccine responses between
HSCT patients and healthy volunteers (HVs).
For analysing HI titers, we used a generalized linear regression model for ordered data where
response categories are reached successively step-by-step, known in the literature as the sequential
model, continuation-ratio model, or stopping-ratio model (here referred to as titer regression, see
Supplementary Methods for details) (Tutz, 1991; Agresti, 2003; Yee et al., 2010). To investigate
associations with vaccine response, we pooled post-vaccination titers from d30 and d60; we
corrected for strain-specific baseline levels (titers on d0) and time point to account for differences
between d30 and d60 (effect of booster shot). To estimate the average effect of vaccination, we
performed a regression over all time points encoding each time point after vaccination (d7, d30, d60,
d180) as a binary variable with d0 as the reference level. Using this model, we estimated the odds
ratio for HI titer increase (increase by at least one titer level) on d7/d30/d60/d180 compared to d0
in HSCT patients and HVs. Models were fitted using maximum likelihood estimation implemented
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Figure 2.2. Cross-reactivity between influenza strains. (a) HI titers against the two H3N2 strains
A/Texas/2012 and A/Switzerland/2013 by influenza season. In 2014/15, the A/Texas strain was part of
the vaccine composition, while in 2015/16, A/Switzerland replaced it. (b) Correlation in HI titers be-
tween influenza strains. Sequence identity refers to hemagglutinin protein sequences provided on GISAID.
Correlations were quantified using Kendall’s rank correlation coefficient τ for ordinal outcomes.

in the R package VGAM (Yee et al., 2010). Adjacent titer categories were grouped together, when
observations per category were too sparse, which affected the lowest titer and very high titers. We
corrected for experimental batches, inclusion center, influenza strain, and season in all performed
analyses.
We compared the effects estimated from HI titers by the sequential logistic model to the commonly
used binary regression on seroconversion/seroprotection categories. We performed the same
inference on the pooled seroconversion on d30 and d60, and on seroprotection on d0 using the glm
function for binary logistic regression in R (R Core Team, 2019).
More specifically, we pooled the data for three different influenza types, namely pandemic
A/California/2009 (H1N1), seasonal A/Texas/2012 (H3N2), and B/Massachusetts/2012 (Yam-
agata lineage) collected during the two flu seasons. HI titers against B/Brisbane/2008 (Victo-
ria lineage) had to be excluded due to low immunogenicity (Figure S2.3). HI titers against
A/Switzerland/2013 (H3N2) were highly correlated with HI titers against A/Texas/2012 (H3N2)
(Figure 2.2b, Kendall’s τ = 0.85, P < 10−15), and we chose the titers against the A/Texas strain to
study H3N2-response because unlike the A/Switzerland titers, they showed a strong response in
both seasons (Figure 2.2a).
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2.4.6.2 Patient variables

We included the patient and transplant characteristics summarized in Table 3.2 in our multivariable
regression analysis, except for the patient’s underlying disease.
Patient variables were encoded as follows: Time after transplantation in years (continuous vari-
able), total lymphocyte count in cells per µL (log-transformed continuous variable), treatment with
rituximab within the previous six months before vaccination (binary variable), treatment with cy-
closporine A, tacrolimus, mycophenolate mofetil/sodium or prednisone at the time of inclusion (all
as binary variables), transplant source (bone marrow vs peripheral blood, binary variable), disease
state (complete remission vs recurrence, binary variable), family relationship with donor (related
vs unrelated, binary variable), HLA mismatch (fully matched vs at least one mismatch, where we
distinguished between mismatch in HLA class I, HLA class I or haploidentical transplantation – all
encoded as binary variables). We included the grade of cGVHD as an ordered categorical variable
(with 0 for no cGVHD, 1–3 for cGVHD grade), and added interaction effects between cGVHD
grade and donor mismatch to investigate potential synergistic effects since HLA mismatching is one
of the main risk factors for cGHVD (Woolfrey et al., 2011; Petersdorf et al., 2013). We adjusted
for sex (binary variable) and age in years (continuous variable) as well as for PCR-confirmed
influenza A or B infection during the considered flu season, encoded as a binary variable with 0 for
no infection and 1 for A or B infection.
We encoded each genotype as a binary variable with 0 for homozygous major allele carriers and
1 for minor allele carriers. Specifically, we included the IFNL3 genotype in rs8099917 (T>G)
and rs12979860 (C>T) as well as the IFNLR1 genotype in rs10853727 (A>C). We excluded the
SNP rs10853727 due to small sample size and because no patients carried the homozygous minor
allele (CC); only 24/135 patients (18%) carried the heterozygous minor allele (CT), and almost
all patients carrying the rs10853727 minor allele also had the rs12979860 minor allele (n=23/24).
For the three SNPs in the other cytokine genes (IFNA1, IL4 and IL6) we also mostly observed the
major allele (95%, 84%, 81%) and only 1% of the study population carried the homozygous minor
allele (Table S2.1). Therefore, we also excluded these SNPs from further analysis.
We detected no interaction effects between host factors and influenza strains according to the
Bayesian information criterion (BIC), confirming that the inferred effects were not significantly
different across the investigated strains and that the observed strain-specific differences in post-
vaccination titers were mostly explained by differences in pre-vaccination titers (Figure 2.3a).
Finally, we also tested whether continuous variables (lymphocyte count, time post HSCT, age) have
a significant quadratic term, needed for capturing saturation effects.

2.4.6.3 Missing data

The collected data had only a few missing values (Table S2.3) except for the influenza infection
state (27% missing), disease state (25% missing), and absolute lymphocyte count (9% missing). We
used multiple imputation in conjunction with several sensitivity analyses to ensure that the missing
data do not affect the interpretation of our results.
Assuming a Missing At Random (MAR) process, we generated 50 imputed data sets from an
imputation model that included all patient variables, HI titers, and other necessary factors that might
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explain the missing data, such as influenza season, inclusion center, and interaction effects. Results
were combined using Rubin’s rule (Little and Rubin, 2019). Imputed data sets were generated using
the function aregImpute of the R package Hmisc that uses bootstrapping to approximate the process
of drawing predicted values from a full Bayesian predictive distribution (Harrell Jr et al., 2019).
Imputation R2 were 0.96 or higher for all missing HI titers and 0.71–0.95 for the remaining missing
variables, indicating overall a suitable imputation procedure (Table S2.3).
In addition, we performed the same analysis as on the imputed data (n = 135) on four different
data subsets: (i) data complete in lymphocyte count (n = 123), (ii) data complete in disease state (n
= 101), (iii) data complete in influenza infection state (n = 99), and as an extreme case, (iv) data
complete in lymphocyte count, influenza infection state and disease state (n = 85) (Figure S2.5 and
Figure S2.9).

2.4.6.4 Sensitivity analyses

We compared the results obtained by the full regression model, which included all patient variables
described above, with four reduced models excluding (i) donor family relationship, (ii) donor
mismatch (both to investigate whether this influences the effect of mismatch/donor relationship),
(iii) lymphocyte count (as this variable is often not available), and (iv) the interaction effect between
cGVHD and donor mismatch (Figure S2.6 and Figure S2.10).
To investigate the stability of the inferred effects, we fitted the full model to ten data subsets (n =
108), where 20% of patients were randomly excluded (Figure S2.7 and Figure S2.11). Note that
patients with rituximab treatment (n = 3) and a haploidentical donor (n = 1) had to be included in
all data subsets because of the small sample size.

2.4.6.5 Data and code availability

Data and results are available in a machine-readable format on GitLab along with R scripts for
reproducing: https://gitlab.com/csb.ethz/hsct-study (will be made public upon publication).

2.5 R E S U LT S A N D D I S C U S S I O N

2.5.1 Patient characteristics

HSCT patient characteristics are summarized in Table 3.2. The two cohorts (from influenza seasons
2014/15 and 2015/16) showed similar distributions in age, sex, and transplant characteristics. There
were slightly more patients suffering from cGVHD in the first cohort than in the second (64% vs
50%), accompanied by a slightly higher fraction of patients receiving immunosuppressive drug
treatment (Table 3.2). The distribution of immunosuppressive treatment stratified by cGVHD grade
is shown in Figure S2.1.
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Table 2.1. Patient characteristics. Columns refer to two consecutive influenza seasons. Abbreviations:
IQR: interquartile range; GVHD: graft-versus-host disease

.

2014/2015 2015/2016 All

Total 55 80 135

Age Median, IQR, range (years) 55, 44-64, 22-72 54, 47-63, 24-74 54, 46-64, 22-74
≥ 65 years 13 (24%) 18 (22%) 31 (23%)

Sex Female 26 (47%) 32 (40%) 58 (43%)
Male 29 (53%) 48 (60%) 77 (57%)

Underlying disease Acute myeloid leukemia (AML) 21 (38%) 29 (36%) 50 (37%)
Acute lymphoblastic leukemia (ALL) 10 (18%) 12 (15%) 22 (16%)
Multiple myeloma (MM) 6 (11%) 8 (10%) 14 (10%)
Chronic myeloid leukemia (CML) 6 (11%) 6 (8%) 12 (9%)
Chronic lymphocytic leukemia (CLL) 6 (11%) 0 6 (4%)
Myelodysplastic syndromes (MDS) 3 (5%) 8 (10%) 11 (8%)
Non-Hodgkin lymphoma (NHL) 1 (2%) 6 (8%) 7 (5%)
Myeloproliferative neoplasms (MPN) 1 (2%) 5 (6%) 6 (4%)
Other 1 (2%) 6 (8%) 7 (5%)

Time after Median, IQR, range (years) 4, 2-8, 1-25 4, 2-7, 1-22 4, 2-7, 1-25
transplantation 1-2 years 19 (35%) 33 (41%) 52 (39%)

3-5 years 15 (27%) 21 (26%) 36 (27%)
> 5 years 21 (38%) 26 (33%) 47 (35%)

Lymphocyte count Median, range (109 cells/L) 1.5, 0.3-7.5 1.7, 0.5-5.5 1.7, 0.3-7.5

Disease state Remission 51 (93%) 40 (50%) 91 (67%)
Recurrence 4 (7%) 6 (8%) 10 (7%)
Unknown 0 34 (43%) 34 (25%)

Transplant source Peripheral blood stem cells 49 (89%) 74 (92%) 123 (91%)
Bone marrow 6 (11%) 6 (8%) 12 (9%)

Donor source Matched donor 45 (82%) 60 (75%) 105 (78%)
Matched unrelated donor 19 (35%) 26 (33%) 45 (33%)

Mismatched donor 10 (18%) 20 (25%) 30 (22%)
Mismatched unrelated donor 8 (15%) 12 (15%) 20 (15%)
HLA class I mismatch 5 (9%) 6 (8%) 11 (8%)

HLA-A, -B, -C 3, 0, 2 4, 1, 1 7, 1, 3
HLA class II mismatch 4 (7%) 10 (13%) 14 (10%)

HLA-DP, -DQ, -DR 2, 2, 0 5, 1, 4 7, 3, 4
HLA-haploidentical donor 1 (2%) 0 1 (1%)
Not available mismatch type 0 4 (5%) 4 (3%)

Immunosuppressive None 25 (45%) 45 (56%) 70 (52%)
treatmenta Tacrolimus 16 (29%) 14 (18%) 30 (22%)

Prednisone 13 (24%) 16 (20%) 29 (22%)
Mycophenolateb 9 (16%) 11 (14%) 20 (15%)
Cyclosporine Ac 5 (9%) 13 (16%) 18 (13%)
Rituximabd 3 (5%) 0 3 (2%)

Chronic GVHD None 20 (36%) 40 (50%) 60 (44%)
Mild (grade 1) 12 (22%) 16 (20%) 28 (21%)
Moderate (grade 2) 12 (22%) 6 (8%) 18 (13%)
Severe (grade 3) 11 (20%) 14 (18%) 25 (19%)
Not available 0 4 (5%) 4 (3%)

IFNL3 genotype rs8099917 (GT/GG) 23 (42%) 27 (34%) 50 (37%)
rs12979860 (CT/TT) 35 (64%) 40 (50%) 75 (56%)

IFNLR1 genotype rs10903035 (AG/GG) 25 (46%) 44 (55%) 69 (51%)

Influenza infectione Influenza A 5 (9%) 1 (1%) 6 (4%)
Influenza B 3 (5%) 0 3 (2%)

aBefore vaccination (documented at the time of inclusion),
bMycophenolate Mofetil (CellCept®) or Mycophenolate Sodium (Myfortic®),
cSandimmun Neoral®,
dMabThera® within the previous six months,
ePCR-confirmed influenza infection during flu season.



Chronic GVHD were similarly distributed among patients with an unrelated/related donor, as
well as among fully matched/mismatched patients (Table S2.2). In total, 105 patients had a fully
matched donor (matched in 10/10 HLA loci), 25 patients a 9/10 matched donor, and only one
patient a haploidentical donor (5/10 matched). The type of mismatch was not available for four
mismatched patients.
All determined genotypes are summarized in Table S2.1 and the distribution of investigated
genotypes is shown in Figure S2.2. Importantly, all patients carrying the rs8099917 minor allele
(GT/GG) also carried the minor allele in rs12979860 (CT/TT) (n = 50, 37%); 25 of 75 patients
carrying the rs12979860 minor carried the rs8099917 major allele (Figure S2.2). Consequently,
we could not distinguish whether a potential association of rs8099917 with vaccination outcome is
due to the rs8099917 genotype or due to an interaction effect between rs8099917 and rs12979860
genotypes.
The fractions of seroprotected patients on d0 (HI titer≥ 40) in the first/second season was 47%/38%
for A/California (H1N1), 35%/41% for A/Texas (H3N2), and 38%/26% for
B/Massachusetts; for comparison, the d0 seroprotection rates in healthy volunteers (HVs) were
28%/53% for A/California (H1N1), 16%/50% for A/Texas (H3N2) and 64%/50% for
B/Massachusetts (for all strains and time points see Table S2.4).

2.5.2 HSCT patients show high variability in antibody titers

HSCT patients showed a more diverse vaccine response for all measured influenza strains and over
the whole study period compared to HVs (Figure 2.3a and Figure 2.3b). However, HVs showed
larger differences in HI titer levels between strains and seasons. Seroconversion (HI titer fold
change ≥ 4) rates on d30 were similar or even higher in HSCT patients compared to HVs, ranging
from 24–59% in patients and 12–73% in HVs for the respective vaccine strains. Seroprotection rates
on d30 ranged from 53–70% in patients and 35–98% in HVs, and were higher in HSCT patients
at all time points for A/California (H1N1) and A/Texas/H3N2 in the first season, but otherwise,
always higher in HVs than in patients (Table S2.4). The number of non-responders, defined as
no seroprotection on d0 and no HI titer increase on d7, d30 or d60 after vaccination, ranged from
2–18% in HSCT patients and 0–12% in HVs, and were higher in HSCT patients for all vaccine
strains except for the A/California (H1N1) strain in the first season, where 9% of patients (n = 5)
and 12% of HVs (n = 3) were non-responders (Table S2.4).
To compare the average effect of vaccination between HSCT patients and HVs, we estimated the
odds ratios for showing higher HI titers (increase by at least one titer level) on d7, d30, d60, and
d180 compared to d0 over both seasons and all influenza types (see Methods). Healthy volunteers
showed a stronger response on d7 and d30, while responses were comparable on d60 and d180
(Figure 2.3c), even though HSCT patients received two vaccine doses (on d0 and d30) and HVs
received just one (d0). The difference was largest on d7, suggesting that many HVs responded with
a rapid antibody production by memory B cells. Thus, the slower and weaker antibody response in
HSCT patients might be partially explained by a lower number of memory cells for the investigated
influenza strains, and partially by the compromised immune system. Moreover, healthy volunteers
were younger than HSCT patients — with a median age of 37 yrs (IQR 32–49 yrs) compared to
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Figure 2.3. Antibody titers in hematopoietic stem cell transplant (HSCT) patients and healthy volun-
teers. (a) Hemagglutination inhibition (HI) titers against three different influenza strains in HSCT patients
from two consecutive flu seasons. (b) As (a) but in healthy volunteers from the same seasons. (c) Average
effect of vaccination on HI titer increase (relative to influenza strain- and season-specific baseline levels)
in HSCT patients and healthy volunteers. Effects are expressed as the odds ratio for an increase in at least
one titer level on d7/d30/d60/d180 compared to d0. (d) Estimated differences in vaccine response between
time points, season and influenza strains. Effects are expressed as the odds ratio for an HI titer increase by at
least one level compared to the reference, specifically, d60 vs d30, season 2015/16 vs 2014/15 (by strain),
A/California titers vs A/Texas titers and B/Massachusetts titers vs others (by season).
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54 yrs (IQR 46–64 yrs) — and influenza vaccine efficacy in adults decreases with increasing age
(Goodwin et al., 2006; Smetana et al., 2018).
In summary, the vaccine response in HSCT patients is highly heterogeneous. While some patients
showed no response or a weaker response than HVs, others showed a stronger response. However,
the differences in pre-vaccination titers and potential differences in vaccination history (unknown
in this study) hamper the comparison between HSCT patients and HVs.

2.5.3 HSCT patients benefited from booster shot

The results in Figure 2.3c suggest that HSCT patients showed a stronger vaccine response on
d60 (OR = 3.35, 95% CI = [2.77, 4.05], P < 10−12) compared to d30 (OR = 2.78 [2.30, 3.36],
P < 10−12). Consistent with these estimates, slightly more patients were seroconverted on d60
than d30 across all strains in both seasons (Table S2.4). On average, 11% of seroconverted patients
(range 5–19%, 1–5 patients) were seroconverted on d60 but not on d30. Moreover, although HSCT
patients showed a weaker response on d7 and d30 compared to HVs, both groups showed a similar
response on d60 and d180, suggesting that the booster shot had a compensating effect (Figure 2.3c).
We quantified the effect of the booster shot by estimating the odds ratio for showing an increase
in HI titer by at least one titer level on d60 compared to d30, adjusting for relevant patient and
experimental factors using our multivariable regression model (see Methods). Indeed, patients
had higher odds for showing HI titer increase on d60 compared to d30 with an estimated OR =
1.26 (95% CI = [1.03, 1.54], P = 0.022). In comparison, HVs showed lower odds for HI titer
increase on d60 than d30, although not significantly lower (OR = 0.75 [0.55, 1.03], P = 0.080).
Nevertheless, the estimated odds ratios were significantly different from each other (Welch’s test on
log-transformed OR, P < 10−3, see also Figure 2.3d). In summary, this suggests that the booster
shot helped the patients in our study population to mount a stronger antibody response.
Whether HSCT patients benefit from a second influenza vaccine dose is still under debate. A
significant booster effect has been observed for an AS03-adjuvanted H1N1 vaccine in 17 (Gueller
et al., 2011) and in 26 HSCT patients (de Lavallade et al., 2011). For the same adjuvanted H1N1
vaccine, another study reported responses in 65 HSCT patients with two doses comparable to 138
healthy adults with a single dose (Mohty et al., 2011). A randomized trial in 65 HSCT patients
vaccinated with a non-adjuvanted quadrivalent influenza vaccine did not detect a significant effect
(Karras et al., 2013). However, the median time after transplantation was only one year (IQR
0.3–2 yrs) in this trial, while complete B-cell reconstitution can take up to two years (Williams and
Gress, 2010; Ogonek et al., 2016). For comparison, our patient population had a median time after
transplantation of four years (IQR 2–7 yrs). Taking these observations together suggests that the
effect of a booster shot depends on both patient- and vaccine-specific factors.

2.5.4 Cross-reactivity between influenza strains

Both HSCT patients and HVs showed a significantly stronger vaccine response for influenza
A/California (H1N1) and A/Texas (H3N2) in 2015/16 compared to the participants in 2014/15
(Figure 2.3d). It is unlikely that this effect is due to a higher fraction of patients under immuno-
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suppressive treatment in 2014/15 since we corrected for immunosuppressants and observed this
effect also in HVs. More likely, participants were primed by the vaccination in the previous season.
However, we did not observe significantly different responses in B/Massachusetts titers between
the two seasons (Figure 2.3d).
The stronger response in A/Texas titers in the first season compared to the second is surprising.
A/Texas/50/2012 (H3N2) was part of the vaccine in 2014/15 but not in 2015/16, where it has
been replaced with A/Switzerland/9715293/2013 (H3N2), suggesting a strong cross-reactivity
between these two strains (Figure 2.2a). A/Texas/50/2012 and A/Switzerland/9715293/2013 differ
in only 9-14 amino acids in their HA protein sequence (∼98% sequence identity according to
GISAID sequences) (Kaufmann et al., 2017) and we observed a strong correlation between the
respective HI titers (Figure 2.2b, Kendall’s τ = 0.85, P < 10−15). Interestingly, vaccination with
A/Texas in 2014/15 did not induce a comparable response in HI titers against A/Switzerland, but
vaccination with A/Switzerland in 2015/16 induced similar or even higher HI titers against A/Texas
(Figure 2.2a). Potentially, the seasonal vaccines differed in immunogenicity and cross-reactivity, or
participants showed a stronger response for A/Texas in 2015/16 due to the priming effect.
In 2014/15, A/Switzerland-like and not A/Texas-like H3N2 strains dominated the Northern Hemi-
sphere (European Centre for Disease Prevention and Control, 2016; D’Mello et al., 2015). The mis-
match in vaccine composition and the antigenic difference between A/Texas and
A/Switzerland resulted in low vaccine effectiveness and caused a comparably severe influenza
season in 2014/15 (Chambers et al., 2015; European Centre for Disease Prevention and Control,
2016). In line with previous reports, we observed 80% of influenza A infections in 2014/15 and
only 20% in 2015/16 (Table 3.2), which were all A/Switzerland (H3N2) infections.
We also observed some cross-reactivity between B/Massachusetts/2/2012 and
B/Phuket/3073/2013 (both from the Yamagata lineage, ∼98% HA sequence identity). Although
B/Massachusetts was part of the vaccine in 2014/15 but not in 2015/16, where B/Phuket replaced it,
there was no significant difference in the B/Massachusetts response between the two seasons for
both HSCT patients and HVs (Figure 2.3d). Since we did not measure HI titers against B/Phuket,
we could not investigate the correlation in HI titers between these two strains. However, the similar
antibody response in both seasons suggests some cross-reactivity.

2.5.5 Regression analysis of HI titers yields higher precision in estimated effects

To investigate associations of patient factors with vaccine response (vaccine-induced increase in
HI titers on d30/d60) and baseline titers (pre-vaccination titers on d0), we fitted a multivariable
sequential regression model directly to the observed HI titer levels (see Methods and Supplemen-
tary Methods for details). HI titers were available for 135 patients against the three different
influenza types (H1N1, H3N2, B), resulting in 405 baseline titers (pre-vaccination titers on d0), and
810 response titers (post-vaccination titers on d30 and d60). Since most influenza vaccine studies
perform binary logistic regression on seroprotection and seroconversion cut-offs, we compared the
results obtained by titer and binary regression.
An illustrative comparison between the binary and titer regression model is shown in Figure 2.4a.
The effects inferred from binary logistic regression can be interpreted as an odds ratio between
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Figure 2.4. Host factors associated with vaccine response in HSCT patients.
(a) Illustrative explanation of the compared models: the commonly used binary regression model for
seroconversion vs the sequential regression model for HI titers. An effect inferred from binary logistic
regression can be interpreted as the odds ratio between groups A and B for showing seroconversion. In
contrast, an effect inferred by the sequential regression model used in this study can be interpreted as the
odds ratio for showing hemagglutination inhibition when hemagglutination inhibition has also been observed
in all preceding dilution steps (i.e., increase in HI titer by at least one level). Alternatively, effects can also be
interpreted as a shift in the underlying antibody concentration between the compared subpopulations. Since
all patient serum samples are diluted equally, this shift is the same at all dilution steps (see Supplementary
Methods). (b) Variable importance in terms of contribution to explained residual deviance of all investigated
host factors. Results can only be compared within each model but not across models. (c) Estimated effects
for important host factors. All inferred effects are shown in Figure S2.5.

an exposed (group A) and an unexposed population (group B) to show seroconversion (or sero-
protection) (Figure 2.4a). For the titer regression model used here (Tutz, 1991), estimated effects
are the odds ratio for hemagglutination inhibition at the same dilution step between groups A and
B, when hemagglutination inhibition has also been observed in all preceding dilution steps, or in
other words, for showing at least one level higher HI titers. Note that we corrected for baseline
titers when analysing post-vaccination titers since we want to infer effects on the relative HI titer
increase, which means that we compare patients with the same baseline titer levels. In general, in
the multivariable setting, an inferred effect gives the odds ratio between groups A and B for showing
a higher HI titer/seroconversion/seroprotection when all the other variables are held constant. Impor-
tantly, effects inferred by both models can also be interpreted as a shift in the underlying antibody
concentration (Figure 2.4a) that gives rise to the observed HI titer or seroconversion/seroprotection
category, respectively (see Suppementary Methods) (Agresti, 2003).
Consistent with the interpretation of both models, binary and sequential regression models yielded
qualitatively similar results in all our analyses (Figure 2.4b and Figure S2.8). It has been previously
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suggested that regression over titer categories using ordinal regression models (McCullagh, 1980,
2018) increases the power of serological studies compared to the regression on dichotomized
outcomes (Capuano et al., 2007). Ordinal models account for the intrinsic order of the titer
categories, but neglect that titers can only be reached successively step-by-step in a sequential
process. In our study, titer regression with sequential models estimated effects with higher precision
(Figure 2.4c, Figure S2.6, Figure S2.10) due to the higher resolution in patient’s underlying
antibody level, and the effects inferred by both approaches can be interpreted similarly, i.e., as a
positive or negative shift in antibody concentration.

2.5.6 Association of host factors with vaccine response and baseline titers in HSCT patients

Finally, we identified the most important host factors determining vaccine response and baseline
titers. We compared each host factor’s contribution to the residual deviance in the respective
multivariable regression model, which reflects how much this variable is needed to explain the
observed variability in HI titers (Figure 2.4b and Figure S2.8).
The most important negative factors for vaccine response were an unrelated donor, an influenza
infection, as well as cyclosporine A and tacrolimus treatment (Figure 2.4c, for all results see
Figure S2.5). Interestingly, important positive factors were cGVHD and a donor mismatch in
human leukocyte antigen (HLA) class I loci. In addition, increasing absolute lymphocyte counts
were highly associated with stronger response.
For baseline titers, the time after transplantation was the most dominant association (Figure 2.5a).
We also observed a positive association with lymphocyte count and negative associations for
mycophenolate mofetil/sodium treatment, HLA class II mismatch, increasing age, and influenza
infection (Figure S2.9).
In the following, we discuss the estimated effects of the various host factors separately.

2.5.6.1 Immunosuppressive treatment

Patients receiving calcineurin inhibitors, specifically cyclosporine A (OR = 0.36 [0.24, 0.53],
P = 2 · 10−7) and tacrolimus (OR = 0.48 [0.34, 0.66], P = 7 · 10−6), showed lower odds for
vaccine-induced HI titer increase. Calcineurin inhibitors suppress T-cell activation and have been
previously reported to negatively affect influenza vaccine response in HSCT patients (Gueller et al.,
2011; Roll et al., 2012; Fukatsu et al., 2017).
For mycophenolate mofetil/sodium, another immunosuppressive treatment to prevent graft rejection,
we observed no significant effect on response but on baseline titers (OR = 0.49 [0.30, 0.78],
P = 0.003). Mycophenolate inhibits the proliferation of T- and B-lymphocytes and suppresses
cell-mediated immune responses (Allison and Eugui, 2005). Thus, mycophenolate treatment
potentially affected the production of long-lived B cells in our patient population, needed for
long-term production of antibodies. In general, treatment with mycophenolate mofetil (MMF)
is a known risk factor for hypogammaglobulinemia (antibody counts below the normal range)
(Arai et al., 2014). A previous study in 82 HSCT patients observed less seroprotection among
patients receiving MMF, but the effect was not significant, perhaps due to small sample size or
dichotomization (Issa et al., 2011).
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Figure 2.5. Association of time after HSCT and absolute lymphocyte count with vaccination outcomes.
(a) Comparison of variable importance for explaining HI baseline titers (d0) vs HI titer response (d30 & d60).
While multiple host factors affected vaccine response, baseline titers were mostly explained by the time post
HSCT. The association of time post HSCT was significantly stronger for HI titers against B/Massachusetts
compared to the influenza A strains (P = 0.001). There was no significant difference between A/California
(H1N1) and A/Texas (H3N2) (P = 0.340).
(b) Scatterplot showing lymphocyte counts by time after transplantation for the investigated HSCT patient
population. For patients with missing values, data show the mean and standard deviation of imputed values.
Data were fitted by a smoothing spline. (c) Association of absolute lymphocyte count with response and
baseline titers. Normal lymphocyte counts range from 1000–4800 cells per µL blood. Shaded area indicates
95% CI in all figures.
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We detected no effect of prednisone on vaccine response, a corticosteroid suppressing inflammation,
used to treat GVHD. However, our data indicate to a small positive association with baseline titers
(OR = 1.54 [0.98, 2.42], P = 0.060). Previous HSCT studies reported a protective role of steroid
use in influenza acquisition (Machado et al., 2005) and progression (Nichols et al., 2004). The
authors hypothesized that steroid use could help patients restore local immunity (Machado et al.,
2005). Additional studies with larger sample size are needed to confirm this positive effect.
We were not able to investigate the effect of rituximab, a monoclonal anti-CD20 antibody targeting
B cells. Only three patients received rituximab, in conjunction with other immunosuppressants
(Figure S2.1).

2.5.6.2 Time after transplantation

The time after transplantation was not significantly associated with vaccine response, probably
because we included only patients who received hematopoietic stem cells at least one year ago.
Previous studies that observed a significant association also included patients with two (Mohty
et al., 2011), three (Avetisyan et al., 2008), and six months (de Lavallade et al., 2011; Issa et al.,
2011) post HSCT, whereas another study with a time-post-HSCT distribution like ours detected no
significant effect (Fukatsu et al., 2017).
However, the time after transplantation was the most important predictor for pre-vaccination titer
levels (Figure 2.5a). The association was significantly stronger for titers against B/Massachusetts
compared to the influenza A strains (A/California and A/Texas (Figure 2.5a). Importantly, the
average effect on HI titer increase of four years post HSCT (OR = 3.84 [2.47, 5.99], Figure 2.5a)
was comparable to the average effect of vaccination on d60 (OR = 3.35 [2.77, 4.05], Figure 2.3b).
Thus, HSCT patients can acquire seroprotective antibody levels over the years, probably by repeated
influenza vaccinations.

2.5.6.3 Absolute lymphocyte count

Our patient population showed a large variability in absolute lymphocyte count (B, T, and NK
lymphocytes) ranging from∼250–7500 cells per µL blood (Figure 2.5b). Patients with lymphocyte
count below 1000 cells per µL showed both lower response and baseline titers. In contrast, patients
with lymphocyte count above 1000 cells per µL showed a stronger response but not significantly
different baseline titers (Figure 2.5c). Similarly, Engelhard et al. reported a significant association
of absolute lymphocyte count with both seroconversion and seroprotection after vaccination in
allogeneic HSCT patients vaccinated with an adjuvanted A/California (H1N1) vaccine (Engelhard
et al., 2011).
In healthy adults, lymphocyte counts range from 1000–4800 cells per µL blood and correlate
with absolute counts of B and T-helper cells, which are necessary for a potent antibody response
(Valiathan et al., 2014). After HSCT, the innate immunity, including NK lymphocytes, recovers first
(within weeks or months), whereas adaptive immunity, consisting of B and T lymphocytes, can take
several years (Storek et al., 2008). Although B and T cells often reach normal counts within 1–2
yrs, the adaptive immunity can stay impaired for longer, e.g., due to slow recovery of the B- and
T-cell repertoires and impaired cell-cell communication (Williams and Gress, 2010; Ogonek et al.,
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2016). However, patients’ vaccine responses were strongly associated with absolute lymphocyte
count and not with the time after transplantation in our study population.
All other estimated effects were very similar when we excluded lymphocyte count from the
multivariable regression model (Figure S2.6), showing that the other host-factor associations were
statistically independent of lymphocyte count.

2.5.6.4 HLA mismatch

Surprisingly, we found a positive association with vaccine response for mismatch in HLA class I,
but in conjunction with a strong negative interaction effect with cGVHD (OR = 0.44 [0.30, 0.65]
per cGVD grade, P = 4 · 10−5). Thus, patients with a class I mismatch showed a stronger vaccine
response than fully matched patients (OR = 3.50 [2.05, 5.98], P = 4 · 10−6), but only if they did
not suffer from cGVHD (Figure 2.4c). The effect was weaker and not significant when we removed
the interaction effect (OR = 1.44 [0.99, 2.04], P = 0.059), suggesting that this association highly
depends on the patient’s cGVHD state. However, only eleven patients in our study population
had a class I mismatch, of which four had no cGVHD, and these small case numbers potentially
introduce upward bias in the estimated effect (Greenland et al., 2016). We did not detect a significant
interaction between cGVHD and class II mismatch (OR = 0.78 [0.56, 1.09], P = 0.139, n = 5/14
without cGVHD). Class II mismatch showed a weak positive association with response (OR =
1.50 [1.04, 2.17], P = 0.030) and a strong negative association with pre-vaccination titers (OR
= 0.45 [0.25, 0.79], P = 0.006). However, both effects were unstable in our sensitivity analysis
(Figure S2.7), suggesting that patients showed high heterogeneity in antibody titers that was not
explained by our model. All associations were only marginally affected when we did not correct
for an unrelated donor (Figure S2.6).
HLA class I and class II proteins are expressed on different cell types: while class I is expressed
on all cells (except for red blood cells), class II is limited to antigen-presenting cells, such as B-
and T-lymphocytes, macrophages and dendritic cells. Previous vaccine studies in HSCT patients
mostly neglected the role of mismatch, probably due to the immense complexity and small study
sizes. There is a consensus that a mismatch in one of the HLA class I loci (A, B, C) or in the
class II locus DRB1 negatively affects transplantation outcomes (Petersdorf, 2013; Fürst et al.,
2013; Tiercy, 2016). Class I mismatched patients have twice the mortality risk compared to fully
matched patients (Passweg et al., 2015). In contrast, a mismatch in class II has either no significant
or weaker effect, depending on the loci (Passweg et al., 2015). Our data suggest that class I vs
class II mismatched patients are differently affected by cGVHD and might respond to vaccination
differently. However, the classification of mismatches into only two categories does not fully
capture the biological diversity, and additional donor factors, such as donor’s age (Kollman et al.,
2016), might also influence the patient’s immune state. Studies with significantly larger sample
sizes are needed to distinguish HLA mismatch effects on vaccine response.

2.5.6.5 Chronic GVHD

In contrast to the mismatch effect, the positive association with cGHVD was also significant without
the interaction effect (OR = 1.63 [1.43, 1.86], P = 7.7 · 10−13 with mismatch interaction, OR =
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1.53 [1.34, 1.75], P = 1.6 · 10−10 without). Our sensitivity analyses confirmed that this effect was
very stable compared to the other effects (Figure S2.5 and Figure S2.7).
The robust, positive association of cGVHD with vaccine response is puzzling. It raises the question
of whether patients suffering from cGVHD have an overstimulated immune system that can boost
vaccine response under certain circumstances. Several studies showed that patients with cGVHD
show disturbed B-cell homeostasis and persistent B-cell activation (Sarantopoulos et al., 2007, 2009;
Greinix et al., 2008; Jacobson et al., 2014). Vaccine studies reported mixed results, with either no
significant effect of cGVHD (Pauksen et al., 2000; Issa et al., 2011; Engelhard et al., 2011; Gueller
et al., 2011; Fukatsu et al., 2017), or a negative effect (Mohty et al., 2011; Dhédin et al., 2014; Roll
et al., 2012). However, the results are not directly comparable: A study that determined active
GVHD (acute GVHD of grade ≥2 or chronic extensive GVHD) as the main, negative determinant
for vaccine response accounted for the time after transplantation and lympchocyte counts in a
multivariable regression analysis, but not for immunosuppressive drug treatment (Mohty et al.,
2011). In general, studies showing a negative effect investigated HSCT patients with a shorter
transplantation-to-vaccination interval than in our patient population (Mohty et al., 2011; Dhédin
et al., 2014; Roll et al., 2012). Another study with a time-post-HSCT distribution like ours detected
no significant effect in a multivariable regression analysis. Thus, the effect of cGVHD might
depend on the time after transplantation. In our study, cGVHD might also be confounded with
repeated vaccinations, because patients with cGVHD are recommended to receive yearly influenza
vaccination (Hilgendorf et al., 2011). However, patients with cGVHD did not show significantly
higher baseline titers than patients without cGVHD (Figure S2.10). Since the patient’s vaccination
history was not available, we were not able to test this hypothesis.
In summary, the effect of cGVHD is probably modulated by other host factors. Future studies could
try to resolve the reported conflicting results by investigating interaction effects for cGVHD, for
instance, with time after transplantation or donor mismatch.

2.5.6.6 Unrelated donor

Having an unrelated donor was an important negative factor for vaccine response as previously
reported (Engelhard et al., 2011). This effect was statistically independent of HLA mismatch (OR
= 0.55, 95% = [0.44, 0.71], P = 1.7 · 10−6 when adjusted for mismatch, OR = 0.62 [0.50, 0.78],
P = 4.0 · 10−5 when unadjusted).
The definition of HLA matching depends on the resolution of HLA typing. The gold standard
is matching in 10 HLA loci (10/10 match). However, more than 14,000 HLA alleles have been
identified accounting for >10,000 HLA proteins, making histocompatibility matching extremely
challenging (Tiercy, 2016). Our and previous results suggest that the diversity in HLA proteins
has negative consequences for the vaccine response in HSCT patients with an unrelated donor
(Engelhard et al., 2011).

2.5.6.7 Disease state and HSCT source

Patients with relapse showed a significantly weaker vaccine response than patients in complete
remission (OR = 0.68 [0.47, 0.99], P = 0.043). However, the effect was small and unstable
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(Figure S2.5), indicating that the missing entries on the disease state in 25% of the patients
hampered the analysis.
There was no significant association with transplant source (peripheral blood stem cells vs bone
marrow), but only twelve patients (9%) received bone marrow stem cells.

2.5.6.8 Sex and age

Consistent with previous studies (Issa et al., 2011; Gueller et al., 2011), sex and age played only
a minor role for vaccination outcomes in our patient population (Figure 2.4b and Figure S2.8).
Nevertheless, we observed some weak associations. Female patients showed slightly higher odds
for vaccine-induced HI titer increase, although not significantly higher (OR = 1.30 [0.96, 1.77], P =

0.092). In healthy adults, females often have significantly stronger immune responses to vaccination
and infection (Furman et al., 2014; Klein and Flanagan, 2016), but sex differences in HSCT patients
have not yet been reported. Increasing age was negatively associated with pre-vaccination titers
(OR = 0.81 [0.71, 0.93] for a 10-year difference in age, P = 0.002). Immunosenescence affects
the adaptive immune system, particularly B cells (Aw et al., 2007; Siegrist and Aspinall, 2009).
While the effect of age on vaccine response is well studied in healthy adults (Goodwin et al., 2006;
Smetana et al., 2018), it has not yet been reported for HSCT patients.

2.5.6.9 Donor’s IFNL3 genotype

Interestingly, we observed a positive association of the IFNL3 rs8099917 minor allele (GT/GG)
with response (OR = 1.54 [1.13, 2.09], P = 0.006) and baseline titers (OR = 1.55 [1.00, 2.40], P =

0.050). The other investigated genotypes showed no significant associations (Figure 2.4c). However,
since all patients carrying the rs8099917 minor allele also carried the IFNL3
rs12979860 minor allele (CT/CC), the positive association could also be due to an interaction
effect between these two genotypes.
Both rs8099917 and rs12979860 genotypes gained prominence in recent years because several
studies reported an association with IFN-α treatment and spontaneous clearance of hepatitis C virus
(HCV) (Thomas et al., 2009; Tanaka et al., 2009; Ge et al., 2009; Suppiah et al., 2009; Sheahan
et al., 2014; Bruening et al., 2017). A study in solid organ transplant patients demonstrated that
patients carrying the IFNL3 rs8099917 minor-allele had lower IFN-λ expression and were more
likely to be seroconverted after influenza vaccination (Egli et al., 2014b). Recent studies showed
that IFN-λ directly modulates B-cell proliferation (Syedbasha et al., 2020) and has adjuvant effects
in mice for influenza vaccination (Ye et al., 2019). However, the mechanistic role of IFN-λ in
vaccine response is still unknown.

2.5.6.10 Influenza infection

There were only nine patients with a PCR-confirmed influenza infection. Nevertheless, we observed
a stable and significant negative association with both response (OR = 0.50 [0.34, 0.72], P =

3 · 10−4) and baseline titers (OR = 0.55 [0.32, 0.94], P = 0.030), confirming that low antibody
levels increase the risk for influenza infection.

33



2.5.7 Patients with local side effects show stronger vaccine response

No serious adverse events were reported. Patients from all centers except from Bern documented
the occurrence of local side effects one week after each vaccination (Table 2.2). In total, 46/118
(39%) patients reported any side effect on d7 and 41/118 (35%) on d37. The most frequent event
was pain, followed by swelling, redness and warm skin (Table 2.2). Patients reporting any local
side effect on d7 had a stronger HI titer increase on d30 compared to patients without side effects
(OR = 1.72 [1.26, 2.35], P = 7 · 10−4 for imputed data; OR = 1.72 [1.24, 2.40], P = 0.001 for
complete case analysis), and analogously, patients with any side effect on d37 showed stronger
response on d60 (OR = 1.66 [1.23, 2.25], P = 0.001 for imputed data; OR = 1.81 [1.30, 2.52],
P = 5 · 10−4 for complete case analysis).

Table 2.2. Reported local side effects by HSCT patients (n = 118). Questionnaires on side effects were
not available for patients from Bern.

Side Effect Count on day 7 Count on day 37

Pain 38 (32%) 32 (27%)
Swelling 26 (22%) 16 (14%)

Warm skin 21 (18%) 14 (12%)
Reddness 20 (17%) 16 (14%)

Restricted arm movement 11 (9%) 12 (10%)
Itching 9 (8%) 11 (9%)

Any 46 (39%) 41 (35%)

We investigated the association of each side effect in a multivariable regression analysis to identify
the best predictors (Figure S2.4). Our results suggest that patients experiencing redness and pain
on d7 or d37 might respond more on d30 or d60, respectively (Figure S2.4). However, only the
association for redness on d37 was significant (OR = 1.98 [1.22, 3.21], P = 0.005), probably
because our sample size was too small.

2.6 C O N C L U S I O N

HSCT patients show a highly heterogeneous influenza vaccine response that can be partially
explained by easily accessible host factors, such as absolute lymphocyte count or the type of
immunosuppressive treatment. Factors related to the donor, such as family relationship, mismatch,
and IFN-λ genotype, are potentially additional modulating factors that have not been sufficiently
investigated yet. Additionally, the conflicting results on the effect of cGVHD suggest that interaction
effects between host factors might need to be taken into account in future studies. However, since
HSCT patients are rare, pooled studies are probably needed to reach adequate sample sizes for the
investigation of such interactions.
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This study shows that sequential regression models for HI titers are a compelling alternative to the
commonly used binary regression on seroconversion/seroprotection for identifying determinants
of serological outcomes. The gain in precision of estimated effects is particularly large for small
case numbers per treatment or other exposure categories, frequently the case for HSCT patients or
other heterogeneous patient populations. Therefore, we hope to encourage future studies to apply
sequential regression models directly on HI titers. However, if observations for some titer categories
are sparse, adjacent titer categories need to be grouped together. Both approaches, binary and titer
regression, can suffer from the sparse data bias, and additional strategies, such as penalization,
might be required in extreme cases (Greenland et al., 2016; Mansournia et al., 2018).
On average, HSCT patients benefited from the booster shot and showed comparable responses
after two vaccine doses as healthy volunteers after one. Importantly, the strong association of
the time after transplantation with pre-vaccination titers shows that HSCT patients can acquire
durable antibody levels over the years. However, lymphocyte counts below the normal range, an
unrelated donor, or calcineurin inhibitors — frequently used to prevent GVHD — lower the odds of
responding. Moreover, treatment with mycophenolate or a mismatch in HLA class II seem to reduce
long-term antibody production. Thus, although the current standard of care approach induces potent
vaccine responses in some HSCT patients, patients belonging to the poorly responding groups
might benefit from additional, more targeted preventive strategies.
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2.7 S U P P L E M E N TA RY TA B L E S

Table S2.1. Overview of genotypes in the investigated HSCT patient population (n = 135). The respective
homozygous major allele is highlighted in gray. Only the first three SNPs were included in the final analysis.

Gene SNP ID Allele 2014/15 2015/16 All

IFNL3/4 rs8099917 TT 32 (58%) 53 (66%) 85 (63%)
GT 22 (40%) 16 (20%) 38 (28%)
GG 1 (2%) 11 (14%) 12 (9%)

IFNL3/4 rs12979860 CC 20 (36%) 40 (50%) 60 (44%)
CT 32 (58%) 31 (39%) 63 (47%)
TT 3 (5%) 9 (11%) 12 (9%)

IFNLR1 rs10903035 AA 30 (55%) 36 (45%) 66 (49%)
AG 20 (36%) 32 (40%) 52 (39%)
GG 5 (9%) 12 (15%) 17 (13%)

IFNL3/4 rs10853727 TT 46 (84%) 65 (81%) 111 (82%)
CT 9 (16%) 15 (19%) 24 (18%)
CC 0 0 0

IFNA1 rs28383797 GG 51 (93%) 77 (96%) 128 (95%)
AG 2 (4%) 3 (4%) 5 (4%)
AA 2 (4%) 0 2 (1%)

IL4 rs2243248 TT 46 (84%) 68 (85%) 114 (84%)
GT 9 (16%) 11 (14%) 20 (15%)
GG 0 1 (1%) 1 (1%)

IL6 rs2069824 TT 46 (84%) 63 (79%) 109 (81%)
CT 9 (16%) 15 (19%) 24 (18%)
CC 0 2 (2%) 2 (1%)
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Table S2.2. Number of patients with cGHVD by donor relationship/mismatch.

With cGVHD Without cGVHD NA Total

Related donor 32 35 3 70
Unrelated donor 28 36 1 65

Fully matched 47 54 4 105
Mismatched 13 17 0 30

Total 60 71 4 135

Table S2.3. Overview of missing data in the investigated HSCT patient population (n = 135). HI titers
on d0 were available for all patients and all influenza strains.

Variable Missing entries Imputation R2

Patient variables
Influenza infection 36 (27%) 0.83
Remission state 34 (25%) 0.84
Lymphocyte count 12 (9%) 0.78
cGVHD grade 4 (3%) 0.85
Mycophenolate treatment 1 (1%) 0.71
Mismatch type 4 (3%) 0.95

HI titers
California titer on d30 1 (1%) 0.97
Massachusetts titer on d30 1 (1%) 0.98
Texas titer on d30 1 (1%) 0.99

California titer on d60 5 (4%) 0.96
Massachusetts titer on d60 5 (4%) 0.98
Texas titer on d60 5 (4%) 0.99

Side effects∗
Restricted arm movement on d7 14 (12%) 0.97
Pain on d7 14 (12%) 0.96
Reddness on d7 13 (11%) 0.98
Swelling on d7 13 (11%) 0.98
Warm skin on d7 13 (11%) 0.99
Itching on d7 13 (11%) 0.97

Restricted arm movement on d37 16 (14%) 0.91
Pain on d37 15 (13%) 0.88
Reddness on d37 15 (13%) 0.99
Swelling on d37 15 (13%) 1.00
Warm skin on d37 15 (13%) 0.95
Itching on d37 15 (13%) 0.95

∗n = 118, patients from Bern excluded.
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Table S2.4. Seroprotection (SP) and seroconversion (SC) in HSCT patients and healthy volunteers.
Patients received two doses of the seasonal influenza vaccine (on d0 and d30), healthy volunteers only one
(on d0). Non-responders are defined as being not seroprotected on d0 (HI titer < 40) and showing no increase
in HI titer on d7, d30 or d60.

HSCT patients

Season 2014/15 Season 2015/16

d0 d7 d30 d60 d180 d0 d7 d30 d60 d180

Total 55 52 55 55 55 80 71 79 75 74

A/California/2009 (H1N1)
SP 26 (47%) 30 (58%) 36 (65%) 37 (67%) 33 (60%) 30 (38%) 37 (52%) 54 (68%) 57 (76%) 50 (68%)
SC 0 (0%) 6 (12%) 13 (24%) 14 (25%) 5 (9%) 0 (0%) 12 (17%) 35 (44%) 40 (53%) 32 (43%)

Non-responder: 5 (9%) Non-responder: 7 (9%)

B/Massachusetts/2012 (Yamagata lineage)
SP 21 (38%) 23 (44%) 32 (58%) 33 (60%) 32 (58%) 21 (26%) 32 (45%) 42 (53%) 42 (56%) 36 (49%)
SC 0 (0%) 9 (17%) 19 (35%) 21 (38%) 17 (31%) 0 (0%) 13 (18%) 29 (37%) 34 (45%) 25 (34%)

Non-responder: 10 (18%) Non-responder: 11 (14%)

A/Texas/2012 (H3N2)
SP 19 (35%) 24 (46%) 33 (60%) 36 (65%) 31 (56%) 33 (41%) 43 (61%) 55 (70%) 57 (76%) 46 (62%)
SC 0 (0%) 8 (15%) 21 (38%) 24 (44%) 18 (33%) 0 (0%) 18 (25%) 41 (52%) 43 (57%) 34 (46%)

Non-responder: 6 (11%) Non-responder: 2 (2%)

A/Switzerland/2013 (H3N2)
SP 7 (13%) 14 (27%) 21 (38%) 22 (40%) 19 (35%) 17 (21%) 34 (48%) 51 (65%) 54 (72%) 42 (57%)
SC 0 (0%) 6 (12%) 17 (31%) 21 (38%) 19 (35%) 0 (0%) 21 (30%) 47 (59%) 50 (67%) 42 (57%)

Non-responder: 9 (16%) Non-responder: 4 (5%)

B/Brisbane/2008 (Yamagata lineage)
SP 4 (7%) 5 (10%) 8 (15%) 9 (16%) 7 (13%) 3 (4%) 4 (6%) 17 (22%) 15 (20%) 21 (28%)
SC 0 (0%) 2 (4%) 7 (13%) 6 (11%) 3 (5%) 0 (0%) 8 (11%) 23 (29%) 25 (33%) 25 (34%)

Non-responder: 25 (45%) Non-responder: 26 (32%)

Healthy volunteers

Season 2014/15 Season 2015/16

d0 d7 d30 d60 d180 d0 d7 d30 d60 d180

Total 25 25 25 25 25 44 44 44 44 44

A/California/2009 (H1N1)
SP 7 (28%) 13 (52%) 13 (52%) 13 (52%) 14 (56%) 26 (59%) 43 (98%) 43 (98%) 43 (98%) 37 (84%)
SC 0 (0%) 4 (16%) 5 (20%) 5 (20%) 4 (16%) 0 (0%) 14 (32%) 15 (34%) 11 (25%) 6 (14%)

Non-responder: 3 (12%) Non-responder: 0

B/Massachusetts/2012 (Yamagata lineage)
SP 16 (64%) 20 (80%) 20 (80%) 19 (76%) 19 (76%) 22 (50%) 32 (73%) 33 (75%) 31 (70%) 26 (59%)
SC 0 (0%) 2 (8%) 3 (12%) 3 (12%) 2 (8%) 0 (0%) 6 (14%) 5 (11%) 6 (14%) 1 (2%)

Non-responder: 3 (12%) Non-responder: 3 (7%)

A/Texas/2012 (H3N2)
SP 4 (16%) 8 (32%) 9 (36%) 7 (28%) 5 (20%) 22 (50%) 38 (86%) 39 (89%) 38 (86%) 35 (80%)
SC 0 (0%) 4 (16%) 5 (20%) 3 (12%) 3 (12%) 0 (0%) 16 (36%) 24 (55%) 20 (45%) 11 (25%)

Non-responder: 2 (8%) Non-responder: 0

A/Switzerland/2013 (H3N2)
SP 1 (4%) 1 (4%) 1 (4%) 1 (4%) 1 (4%) 6 (14%) 36 (82%) 38 (86%) 35 (80%) 30 (68%)
SC 0 (0%) 4 (16%) 6 (24%) 3 (12%) 1 (4%) 0 (0%) 22 (50%) 32 (73%) 30 (68%) 21 (48%)

Non-responder: 9 (36%) Non-responder: 0

B/Brisbane/2008 (Yamagata lineage)
SP 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (7%) 7 (16%) 11 (25%) 9 (20%) 7 (16%)
SC 0 (0%) 1 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 11 (25%) 16 (36%) 10 (23%) 5 (11%)

Non-responder: 17 (68%) Non-responder: 9 (20%)
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Figure S2.1. Number of patients with immunosuppressive drug treatment stratified by cGVHD grade.
Numbers on top of the barplots show the number of patients in each intersection/subset that is specified by
the diagram below.
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Figure S2.4. Association of local side effects with vaccine response. Side effects were documented
one week after each vaccination (d7, d37), and associations were investigated with HI titer increase (titer
regression) and seroconversion (binary regression) on d30 and d60, respectively. (a) Contribution of each side
effect to the explained deviance. Results can only be compared within each model but not across models. (b)
Estimated associations inferred from all data with imputed missing values (n = 118) and only from complete
cases (n = 103/102 on d7/d37).
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Titer regression (HI titer increase) Binary regression (seroconversion)
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Figure S2.5. Comparison between estimated effects inferred from imputed vs complete data for the
pooled HI titer response/seroconversion on d30 and d60 (vaccine response).
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Titer regression (HI titer increase) Binary regression (seroconversion)
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Figure S2.6. Comparison between estimated effects inferred by the full vs reduced models for vaccine
response.
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Titer regression (HI titer increase) Binary regression (seroconversion)
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Figure S2.7. Sensitivity analysis to investigate the stability of estimated effects on vaccine response.
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Figure S2.8. Explained deviance by investigated host factors for HI baseline titers (titer regression)
and seroprotection on d0 (binary regression). Results can only be compared within each model but not
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Titer regression (HI titer on d0) Binary regression (seroprotection on d0)
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Figure S2.9. Comparison between estimated effects inferred from imputed vs complete data for
baseline titers.
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Titer regression (HI titer on d0) Binary regression (seroprotection on d0)
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Figure S2.10. Comparison between estimated effects inferred by the full vs reduced models for baseline
titers.
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Titer regression (HI titer on d0) Binary regression (seroprotection on d0)
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Figure S2.11. Sensitivity analysis to investigate the stability of estimated effects for baseline titers.
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2.9 S U P P L E M E N TA RY M E T H O D S

2.9.1 Sequential models for regression of influenza antibody titers

Sequential models have been introduced in categorical regression to model response categories that
are reached successively step-by-step (Cox, 1988; Tutz, 1991). Since then, sequential models have
been applied in social sciences, e.g., to model educational levels or career development (Liu et al.,
2011). In biology and medicine, these models remain largely unknown, although serial dilution
data obtained in biological assays and many clinical response categories can be explained by an
underlying sequential process, for instance, by an increase in concentration.
Antibody titers serve as a coarse-grained measure of antibody abundance in serum samples. In gen-
eral, titers are obtained from serial dilution experiments and correspond to the minimal dilution of
antibodies that is still able to perform certain biological functions, for instance, virus neutralization
or hemagglutination inhibition. As of today, the standard approach to analyse antibody titers is
based on dichotomization using predefined cut-off values that classify outcomes in responders and
non-responders, such as seroconversion or seroprotection. It has been demonstrated that this loss of
information can lead to undetected effects, especially when the sample size is small (Scott et al.,
1997; Capuano et al., 2007). For optimal cut-off values, regression on dichotomized outcomes can
perform similarly to regression on the full information (Fedorov et al., 2009). However, since cut-
offs are chosen by convention, they might not achieve optimal power (Armstrong and Sloan, 1989).
The ordinal logistic regression model (also known as the proportional odds model or cumulative
odds model) (McCullagh, 1980; Agresti, 2003) has been previously proposed to analyse antibody
titers for swine influenza and has been shown to have superior power compared to binary logistic
regression (Capuano et al., 2007). The ordinal model takes into account that the analysed categories
have an intrinsic order but neglects the underlying sequential process, i. e., that titer categories can
only be reached successively. The application of sequential models in titer regression has not yet
been reported, although it captures the measurement process more accurately. Therefore, we briefly
illustrate how sequential models can be interpreted in antibody titer regression.

2.9.1.1 The measurement process

Antibody titers against influenza virus are commonly determined in hemagglutination inhibition (HI)
assays (WHO, 2002). This assay is based on the observation that influenza viruses can cross-link red
blood cells (RBCs) to macroscopic aggregates (Hirst, 1941). This process is called hemagglutination.
If a sufficient amount of influenza-binding antibodies is present, hemagglutination is inhibited. To
determine the HI titer, a serum sample with an unknown antibody concentration is serially diluted,
normally two- or ten-fold, and a constant amount of influenza virus and RBCs is added to each
dilution. By definition, the dilution factor of the last serum dilution that is still able to fully inhibit
hemagglutination is the HI titer (WHO, 2002). Thus, the HI titer is a coarse-grained measure of
influenza-binding antibodies, whose values are restricted to the considered serum dilutions.
In the following, we derive a regression model for HI titers based on the assumption that the
unobserved antibody concentration gives rise to the observed antibody titer.
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2.9.1.2 Regression model

The HI assay can be interpreted as follows: At each serum dilution step, there is a certain probability
that hemagglutination inhibition occurs. We assume that the main factor that drives this process is
the amount of influenza-binding antibodies in the considered serum sample. Factors related to the
experimental design, such as the amount of virus, RBCs, or temperature, are ideally constant over
all measurements, or we can correct for them (batch effects). We aim at identifying factors that are
associated with the antibody concentration in the investigated sera, such as the type of vaccine or
the vaccine antigen, and patient-specific factors such as age, gender, or medical treatment.

θ
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Serum

Inhibition

No inhib.

1 2 3 4 5 6 7 … K
Observed 
outcome

Probability that there is no inhibition 
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P(Y = k |Y ≤ k , x) = logit−1(ck−1 − θ )
Assay-
specificReported  

HI titer

No inhibition for 
the first time

Figure S2.12. Overview of the HI assay and the regression model for HI antibody titers.

Let c0 denote the logarithm of the undiluted and unobserved antibody concentration that gives rise
to the observed HI titer, and let xT = (x1, . . . , xp) denote a vector of explanatory variables that
determine the antibody concentration. We assume that c0 is related to x through a linear model of
the form c0 = xT β, where β is a vector of parameters βT = (β1, . . . , βp). To determine the HI
titer, a dilution series of the antibody concentration c0 is performed and each dilution is tested for
hemagglutination inhibition. Let ck denote the logarithm of the diluted antibody concentration at
dilution step k = 1, . . . , K. With each dilution step, c0 decreases by a dilution-specific factor δk:

ck = c0 − δk. (2.1)

We assume that hemagglutination inhibition occurs at dilution step k if ck is above an unknown
threshold θ that is specific to the assay (Figure S2.12):

Inhibition if ck > θ ,

No inhibition if ck ≤ θ.

The assay stops when no hemagglutination inhibition occurs for the first time and the dilution factor
of the preceding dilution is reported as the HI titer (Figure S2.12). We observe no inhibition for
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the first time at dilution step k if ck ≤ θ and ck−1 > θ. Let Y ∈ {1, . . . , K} denote the dilution
steps where the assay can stop. The probability that the assay stops at dilution step k and not before
relates to ck−1 still being above the threshold θ via a logistic function:

P(Y = k | Y ≤ k) =
exp(ck−1 − θ)

1 + exp(ck−1 − θ)
= logit−1(ck−1 − θ) , k = 2, . . . , K.

We substitute ck−1 with Equation 2.1 and the linear model for c0 and obtain the following linear
predictor:

ck−1 − θ = c0 − δk−1 − θ = xT β− δk−1 − θ︸ ︷︷ ︸
:=θk−1

.

We combine the dilution-specific factors δk with the assay-specific threshold θ to a set of unknown
threshold parameters θk. This yields a model that is also known as the reverse stopping ratio model
(Tutz, 1991; Yee et al., 2010):

P(Y = k | Y ≤ k) = logit−1(xT β− θk−1) , k = 2, . . . , K. (2.2)

For each patient i with explanatory variables xi, the probability that the assay stopped at dilution
step k is given by the probability that the assay stops for the first time at dilution k and not in the
preceding dilutions:

P(Yi = k) = logit−1
(

xT
i β− θk−1

) k−1

∏
l=2

(
1− logit−1

(
xT

i β− θl−1

))
, k = 2, . . . , K,

and

P(Yi = 1) = 1−
K

∑
l=2

P(Yi = l).

The parameters β and θk are estimated over all patients i = 1, . . . , n. Let pik denote the probabilities
P(Yi = k), and let yik be a binary indicator of the response of patient i that takes the value 1 if the
assay stopped at dilution step k and 0 otherwise. Then, the full likelihood is given by the following
product (Agresti, 2003):

n

∏
i=1

K

∏
k=1

p
yij
ik .

An overview of the binary, ordered, and sequential logistic models along with an illustrative
comparison of the latent variable interpretation for each regression model is shown in Figure S2.13
(Cox, 1988; Tutz, 1991; Agresti, 2003; McCullagh, 2018).
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3
M O D E L - B A S E D I N F E R E N C E O F N E U T R A L I Z I N G A N T I B O D Y
AV I D I T I E S A G A I N S T I N F L U E N Z A V I R U S

This chapter is to be submitted as: J. Linnik, M. Syedbasha, Y. Hollenstein, J. Halter, A. Egli, and J.
Stelling. "Model-based inference of neutralizing antibody avidities against influenza virus."

A B S T R AC T

To assess the response to vaccination, quality (avidity) and quantity (concentration) of neutralizing
antibodies are the most important parameters. Specifically, an increase in avidity indicates germinal
center (GC) formation, which is required for establishing long-term protection. For influenza, the
classical hemagglutination inhibition (HI) assay, however, quantifies the combination of both and
to separately determine avidity requires high experimental effort. Here, we present a biophysical
model that infers avidities from measured HI titers and IgG concentrations. We applied our
model to infer serum IgG avidities against influenza A/California/7/2009 (H1N1) in vaccinated
hematopoietic stem cell transplantation patients (n = 45) and validated our results with independent
avidity measurements. The model predicted that increased IgG concentrations mainly contribute to
observed HI titer increases and that immunosuppressive treatment is associated with lower baseline
avidities. Because the model requires only easy-to-establish measurements as input, we anticipate
that it will help to disentangle causes for poor vaccination outcomes also in larger vaccine studies.

3.1 I N T RO D U C T I O N

To prevent influenza epidemics, it is crucial to annually develop effective vaccines against circulating
influenza strains. To assess influenza vaccine efficacy, hemagglutination inhibition (HI) titers
are traditionally used as a surrogate for the influenza-neutralization capacity of vaccine-induced
antibodies in serum (Palache et al., 2003; Benoit et al., 2015). The HI assay makes use of
the phenomenon that influenza viruses bind with their surface receptor hemagglutinin (HA) to
red blood cells (RBCs) and can cross-link them to macroscopic cell aggregates in a process
called hemagglutination (Hirst, 1941). In the presence of influenza-binding antibodies that block
RBC binding sites, hemagglutination is inhibited. This allows quantifying the neutralization
capacity of serum antibodies in dilution experiments: the highest serum dilution that fully inhibits
hemagglutination is determined, and its dilution factor is reported as the HI titer (WHO, 2002).
The HI titer measures a combination of both antibody concentration and avidity, where avidity
quantifies the overall strength of a multivalent antibody binding to hemagglutinin epitopes involved
in virus-RBC interaction (neutralizing binding). When assessing vaccine response, however, it is
important to distinguish between antibody concentration and avidity. In particular, no increase in
avidity following vaccination indicates a hampered formation of germinal centers (GCs) where
B cells undergo affinity maturation and proliferate to long-lived B cells, providing long-term
protection (Shlomchik and Weisel, 2012; De Silva and Klein, 2015).
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Avidity measurements of serum antibodies are time-consuming and costly. Commonly used
techniques are surface plasmon resonance (SPR) and elution experiments with chaotropic agents
(such as urea) based on enzyme-linked immunosorbent assays (ELISAs). While SPR experiments
require special equipment and long calibration, elution assays are very sensitive to experimental
conditions, and optimal protocols might vary substantially for different samples (Underwood, 1993;
Olsson et al., 2019). In comparison, measurements of HI titers and serum IgG concentrations are
faster to establish and simpler to perform (Kaufmann et al., 2017). HI assays are considered the
gold standard and routinely performed in vaccine studies; they proved to be fast, cheap, and reliable.
IgG concentrations can be determined in standardized ELISA experiments. These are suitable for
large-scale serological studies because they can be fully automated and yield highly reproducible
results. Therefore, estimation of avidities from HI titers and IgG concentrations would facilitate
influenza vaccine studies in larger populations.
Here, we present a biophysical model of the HI assay that mechanistically describes the relationship
of neutralizing IgG concentration and avidity to the resulting HI titer, and enables the inference of
neutralizing IgG avidities from HI titers and ELISA-detected IgG concentrations. We applied our
approach to vaccinated hematopoietic stem cell transplantation (HSCT) patients, focusing on IgG
antibodies specific to pandemic influenza A/California/7/2009 (H1N1pmd09). Despite available
vaccines, the case fatality rate for influenza infection is 17–29% in these patients (Kunisaki and
Janoff, 2009). HSCT patients are commonly immunocompromised due to post-transplant immune
reconstitution and immunosuppressive treatment against graft rejection. Since patients with low
antibody avidities are at risk for fatal infections, we investigated the association of inferred avidities
with three indicators of immunocompromised status as defined by CDC (Brunette et al., 2015),
known to be associated with immune cell proliferation, affinity maturation and antibody production
(Ogonek et al., 2016): first two years post transplantation, immunosuppressive treatment, and
chronic graft-versus-host disease (cGVHD) grade according to NIH criteria (Filipovich et al., 2005).
Our model detected that immunosuppressive treatment is associated with lower baseline avidities,
but we did not detect a significant association with cGVHD or the time after transplantation. In
addition, our model suggests that vaccination induced affinity maturation of neutralizing antibodies
in only a few patients.

3.2 R E S U LT S

3.2.1 Model of the hemagglutination inhibition (HI) assay

We extended and combined existing models of antibody-virus interaction (Groth, 1963) and cell-cell
agglutination (Dolgosheina et al., 1992) to a model that mechanistically captures the key processes
of the HI assay (Figure 3.1). The HI assay is performed in three consecutive steps (WHO, 2002):
(i) Serial dilution of patient serum and 30 min incubation with influenza virus, (ii) addition of RBCs
followed by 30 min incubation, and (iii) determination of the HI titer based on the presence or
absence of hemagglutination inhibition in each serum dilution (Figure 3.1, top). We represent these
steps separately: the model output of one step serves as input for subsequent steps (Figure 3.1,
bottom).
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Figure 3.1. Overview of the hemagglutination inhibition (HI) assay (top) and illustrative simulation
results (bottom). First step: patient serum is serially diluted and incubated with a constant amount of
influenza virus. The model computes the amount of antibody-bound viral hemagglutinin (HA) for each serum
dilution. Second step: red blood cells (RBCs) are added to each dilution and virus particles with free HA
binding sites cross-link RBCs to cell aggregates. The model predicts a switch-like increase in agglutinated
RBCs with decreasing antibody concentration. Thirds step: the plate is tilted by 90 degrees to detect full
hemagglutination inhibition. If none/few RBCs are agglutinated, sedimented RBCs flow down to the rim.
By definition, those wells show full hemagglutination inhibition. The reciprocal of the maximal inhibitory
dilution is the HI titer. We classify our simulation results into inhibition and no inhibition by setting a
threshold at 25% hemagglutination. Simulation results show median and interquartile range indicating the
uncertainty due to experimental conditions (RBC concentration, virus concentration, readout time) and model
parameters (summarized in Table 3.1) for an IgG serum concentration of 25 nM (4 µg/mL) and Kapp

D = 0.1
nM.
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Step 1 (binding of antibodies to virus): We modeled the binding of IgG antibodies to virus
hemagglutinin (HA) as a diffusion-controlled reversible reaction between IgG molecules and virus
particles (see Methods for all details). Each homotrimeric HA receptor has three identical binding
sites for monoclonal IgG, but we assume that an HA trimer accommodates at most one IgG molecule
due to steric hindrance (Taylor et al., 1987; Poumbourios et al., 1990; Otterstrom et al., 2014).
Serum contains a mixture of polyclonal IgG antibodies. Thus, after the addition of influenza virus to
serum, HA-specific IgG clones form a mixture of IgG-HA complexes according to their individual
dissociation constants (avidities). We assume that any other interactions are negligible because
serum samples are pretreated with proteases to limit unspecific binding. Without information on
the individual concentrations or avidities of each IgG clone, we consider the total concentration of
HA-specific serum IgG and the apparent dissociation constant Kapp

D . This constant is proportional
to the ratio of free HA-specific IgG molecules over all formed IgG-HA complexes at equilibrium.
Importantly, the inverse 1/Kapp

D is interpreted as the apparent avidity of HA-specific serum IgG.
We compute the fraction of antibody-bound virus at binding equilibrium for each serum dilution
(Figure 3.1, left) as input for step 2 because 30 min incubation suffices to reach binding equilibrium.
Step 2 (hemagglutination): When RBCs are added, virus particles bind reversibly with free HA
binding sites to sialic acid (SA) linked receptors on RBCs. We assume that IgG antibodies and
SA-linked receptors do not compete for HA binding sites because the affinity of SA to HA is in the
mM range (Sauter et al., 1989, 1992; Weinhold and Knowles, 1992), far below the affinity of HA-
specific IgGs in the nM range (Lee et al., 2016). The tight binding of the virus to RBCs results from
binding multiple SA moieties simultaneously (Takemoto et al., 1996). The virus-RBC interactions
will eventually induce hemagglutination. We model it as a coagulation process (Von Smoluchowski,
1917), where RBCs stick together whenever they collide such that virus particles can cross-link
them. Only when a free SA linked receptor on an RBC meets a free HA on a virus particle that
is simultaneously bound to another RBC, the collision leads to a successful cross-link. We define
a degree of hemagglutination that takes the value 0% without any hemagglutination (not a single
cross-link), and 100% when all RBCs form a single aggregate. The model predicts a switch-like
increase in the degree of hemagglutination with decreasing antibody concentration, consistent with
the experimentally observed switch-like behavior of the assay (Figure 3.1, middle).
Step 3 (determination of HI titer): After another 30 min incubation, each serum dilution is inspected
for hemagglutination inhibition and the reciprocal of the maximal dilution that shows full inhibition
is the HI titer (Figure 3.1, right). To model this binary decision (inhibition or no inhibition), we
classify the outcome by setting a threshold at 25% hemagglutination because we define 50% hemag-
glutination as partial inhibition and our model predicts for ≥ 1 HA unit virus a hemagglutination
degree of ≥ 75%. By definition, this is interpreted as full inhibition (Figure S3.1), suggesting that
differences in hemagglutination degree below 25% or above 75% cannot be distinguished by eye.
We extracted parameters from literature for IgG, chicken RBCs and the virus strain to make the
model specific for H1N1pdm09 (Table 3.1). In addition, we established the agglutination rate
parameter from experiments with reference serum (see Methods). Here, avidity is defined as the
inverse of the apparent dissociation constant of the IgG-hemagglutinin complex, 1/Kapp

D : the lower
the Kapp

D value, the tighter the binding and thus the higher the avidity.
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Table 3.1. Model parameters and variables. Abbreviations are: IgG, Immunoglobulin G; RBC, red blood
cell; HA, hemagglutinin; HAU, HA unit; SA, sialic acid.

Description Symbol Value Distribution in sensitivity analysis Reference

Serum IgG
concentration

A0 Sample-specific Unif(0, 2800) nM (0 – 420 µg/mL) Eidem et al.
(2015)

Apparent IgG
dissociation constant

Kapp
D Sample-specific Unif(0.001, 300) nM Lee et al. (2016)

Initial virus
concentration

V0 1.3 · 10−4 nM
(4 HAU)

Unif(0.9 · 10−4, 2.3 · 10−4) nM
(3 – 7 HAU)

WHO (2002)

Initial RBC
concentration

RBC0 3.1 · 10−5 nM Unif(1.6 · 10−5, 6.3 · 10−5) nM WHO (2002)

Number of HA
receptors per virus

r 400 Discrete Unif(300,500) Ruigrok et al.
(1984); Harris
et al. (2013)

Number of epitopes
per HA receptor

e 3 Fixed at 3 Wilson et al.
(1981); Jackson
et al. (1991)

Number of shaded
epitopes per bound
IgG

e∗ 3 Bernoulli(0.5) with e∗ ∈ {3, 6} Otterstrom et al.
(2014)

Number of SA
receptors per RBC

b 4.5 · 105 Discrete Unif(4 · 105, 5 · 105) Aich et al.
(2011); Aoki
(2017)

Number of shaded SA
receptors per bound
virus

b∗ 34 Sampled from model See Methods

SA-HA association
rate constant

kRBC
ass 2 · 10−6 s−1 Lognorm(log(2 · 10−6), 0.22) s−1 Takemoto et al.

(1996)
SA-HA dissociation
rate constant

kRBC
diss 2 · 10−4 nM−1s−1 Lognorm(log(2 · 10−4), 0.22) nM−1s−1 Takemoto et al.

(1996)
RBC agglutination rate
constant

kagg 2 · 106 s−1 Unif(0.4 · 106, 13 · 106) s−1 Estimated from
data
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Figure 3.2. Model sensitivity and resolution of the hemagglutination inhibition assay for influenza
H1N1pdm09. (a) Sensitivity analysis using Sobol indices. First-order effects show only the linear contri-
bution to the total variance in hemagglutination degree (they sum up to 1), whereas total effects consider
also interactions (see Methods for details). (b) Predicted degree of hemagglutination for different IgG
concentrations and apparent dissociation constants Kapp

D (avidity). The red box indicates the usual assay
range, bounded by the biological range of Kapp

D = 0.001 – 100 nM, and the gray dashed line indicates
Kapp

D = 0.03 nM. (c) Predicted HI titers for the biological range of influenza-specific serum IgG and avidity.
Colored areas correspond to titers shown on top.

3.2.2 The model quantitatively relates IgG concentration and avidity to HI titer

To infer antibody avidities accurately, the model needs to be sensitive to the experimental data
used as inputs. However, it should not be sensitive to other experimental factors and uncertainties
in model parameters. To evaluate the model in this respect, we used Sobol sensitivity analysis
(Saltelli et al., 2004), which attributes variance in model output (here hemagglutination degree)
to the individual model input factors. The more influential the input factor is, the higher is its
contribution to the variance in hemagglutination degree. We considered the ranges for all model
input factors summarized in Table 3.1. Specifically, for IgG concentration and avidity the ranges
match the experimentally observed ranges for H1N1pmd09-specific IgG after vaccination in adults
(Eidem et al., 2015; Lee et al., 2016). For experimental conditions, we aimed to generously cover
experimental variability. For model parameters, we considered measurement uncertainty and
biological variability as described in the literature.
Sensitivity analysis showed that avidity and serum IgG concentration are the most influential factors
for the model’s output (Figure 3.2a). Variability in RBC and virus concentration, as well as in
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readout time, contribute very little to the total variance. The model is also robust to uncertainty in
all model parameters except for the kinetic agglutination rate of RBCs, which we varied within the
95% highest probability density interval estimated from our calibration data (see Methods). Other
relevant factors were the ability of IgG to bind two HA receptors simultaneously and the number of
RBC receptors that are covered by one bound virion. Hence, the model’s predictions are dominated
by the measured input quantities, despite uncertainties in experimental conditions, mechanisms,
and parameters.
The model predicts a clear separation between hemagglutination inhibition and no inhibition —
partial inhibition occurs only within a small range of IgG concentration and avidity (Figure 3.2b).
Thus, the well-known binary nature of the assay is captured. Using an initial virus concentration of
4 HA units as defined by WHO ensures both high sensitivity and robustness, whereas 8 HA units
or more increase robustness but lower sensitivity (Figure S3.1e). The model predicts also a yet
unknown property of the HI assay: for avidities Kapp

D ≥ 0.03 nM, hemagglutination quantifies a
combination of IgG concentration and avidity, but for very high avidities Kapp

D < 0.03 nM, the
assay only detects changes in IgG concentration (Figure 3.2b).
Within the linear range for Kapp

D ≥ 0.03 nM, a doubling in IgG concentration or avidity results in a
doubling of the predicted HI titer (Figure 3.2c). In other words, a two-times lower antibody avidity
can be compensated by a two-times higher antibody concentration. However, this only applies to
the linear range and the exact relationship depends on the considered avidity and concentration
ranges (Figure 3.2c). The model also suggests why HI titers above 8192 (= 13 in log2) are rarely
observed. Even for a high serum IgG concentration of 1000 nM (150 µg/mL), such high titers
require antibody avidities in the fM range, but influenza-specific antibody affinities in vaccinated
healthy adults lie in the nM range (Lee et al., 2016).
In summary, we conclude that the model yields robust predictions in the applicable assay range,
and reveals new quantitative aspects of the HI assay.

3.2.3 Inference of neutralizing antibody avidities in HSCT patients

Next, we applied our model to infer avidities from ELISA-detected serum IgG concentrations and
HI titers in HSCT patients (patient characteristics are summarized in Table 3.2). We used a Bayesian
approach that accounts for uncertainties due to ELISA measurement error and discretization in HI
titers (see Methods for details). Model parameters were fixed for all serum samples (Table 3.1),
assuming that differences in HI titer arise mostly from differences in IgG concentration and avidity
as suggested by our sensitivity analysis (Figure 3.2a). All patients received two doses of non-
adjuvanted trivalent seasonal influenza vaccine on d0 and d30 (see Methods). Measurements were
available from 45 patients at five time points before (d0) and after (d7, d30, d60, d180) the first
vaccination with 221 serum samples in total. HI titers and IgG concentrations were significantly
correlated (Kendall’s τ = 0.69, P < 10−15, rank correlation for ordinal data; Figure 3.3a).
However, especially moderate HI titer values of 32 and 64 (log2HI titer 5 and 6) showed a large
spread in serum IgG, indicating variable antibody avidities.
For serum samples with HI titers below assay resolution (HI titer < 8), we could only infer an
upper bound for the avidity (it could be lower, but not higher). This affected 23 serum samples
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from seven patients (12% of inferred avidities). Analogously, for serum samples with Kapp
D ≤ 0.03

nM, we could, in principle, only report a lower bound, but all inferred avidities for our patient
cohort exceeded this threshold. In 24 samples, inferred Kapp

D -values showed very large uncertainty
(approximately ±100%) due to large measurement error in ELISA measurements; we excluded
these samples from further analysis. In the remaining samples, posterior distributions were log-
normally distributed (Figure S3.2) and we determined the uncertainty intervals due to discretized
HI titer measurements and ELISA measurement error by sampling, yielding an average uncertainty
in Kapp

D -values of approximately ±30% (range 20–57%, interquartile range (IQR) 25–30%).
In summary, we were able to reliably infer 197 avidities from in total 43 patients (89% of analysed
samples). The inferred avidities ranged from Kapp

D = 0.1 nM to ≥22 nM (upper bound), with a
median of 1.7 nM and IQR 0.9–2.5 nM. Inferred avidities and HI titers were significantly correlated
(Kendall’s τ = 0.56, P < 10−15), although the correlation was weaker than for IgG concentration
(Figure 3.3a).

3.2.4 Inferred avidities correlate with experimentally determined avidities

We validated our model with experimental measurements of 59 serum samples from 12 patients.
We performed ELISA-based elution assays that quantify the fraction of IgG remaining bound after
3h incubation with 4M urea, yielding a measure for the overall binding strength of serum IgG to
H1N1pmd09 in the form of an avidity index between 0 (low avidity) and 1 (high avidity).
The inferred and the experimentally determined avidities were significantly correlated (Pearson’s
ρ = 0.54, 95% CI = [0.31, 0.70], P < 10−4, Figure 3.3b). We detected one outlier patient
(standardized residuals ≈ 3) whose serum did not show HI activity at any time point (Figure 3.3b),
suggesting that the ELISA detected non-neutralizing IgG in this patient. Experimental and inferred
avidities distinguished different types of patient responses, for example, where both IgG concentra-
tion and avidity increased after vaccination (patient 1 in Figure 3.3c) or where an increase in HI
titer was mostly explained by an increase in IgG concentration (patient 2). We identified one patient
that produced non-neutralizing IgG (patient 3): Here, the ELISA detected an increase in IgG con-
centration that leads to HI titer doubling according to our model predictions. However, the HI titer
did not increase at any time point (Figure 3.3c), suggesting that the ELISA-detected IgGs had no
HI activity. The inferred Kapp

D -value refers to neutralizing IgG-virus interactions only, and its value
is biased towards lower avidity if the measured IgG concentration also includes non-neutralizing
IgGs. Nevertheless — in contrast to patient 11 who did not show HI activity at any time point
(Figure 3.3b) — the inferred avidities for patient 3 approximately mirrored the experimentally
determined avidity indices, probably because this patient showed high HI titer and serum IgG levels
before vaccination and only a small increase in non-neutralizing IgGs after vaccination, indicating
that previously acquired neutralizing IgGs dominated the avidity measurements (Figure 3.3c).
Thus, apparent serum avidities inferred by our model-based approach were in good accordance
with experimentally determined avidities. However, if non-neutralizing IgG dominates in serum,
the results are not directly comparable because the inferred avidity refers to neutralizing IgG with
HI activity.
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Figure 3.3. Inference of antibody avidities in HSCT patients. (a) ELISA-detected anti-H1N1pmd09
serum IgG concentration, HI titers and corresponding inferred apparent dissociation constants Kapp

D from 197
serum samples from 43 HSCT patients. The dashed line indicates the seroprotection threshold (HI titer ≥
40). (b) Correlation of inferred and experimentally determined avidities in 59 serum samples from 12 HSCT
patients (Pearson’s ρ = 0.54, 95% CI = [0.31, 0.70]). Data show mean and standard deviation for avidity
indices from two experiments (each performed in duplicates) and the median of the posterior distribution
with the uncertainty range due to discretized HI titer measurements and ELISA measurement error for
inferred Kapp

D -values (see Methods for details on inference and Figure S3.2 for posterior distributions).
Avidity indices correspond to the fraction of H1N1pmd09-specific serum IgG remaining bound after 4M urea
treatment. Patient 11 was identified as an outlier, probably because ELISA detected non-neutralizing IgG;
the patient showed no HI activity at any time point. For this patient, the measured avidity index is plotted
against the estimated upper bound for the inferred avidity and the uncertainty interval reflects the estimated
uncertainty of the upper bound due to discretized HI titer measurements and ELISA measurement error. (c)
Example patients with different types of responses to vaccination. In patient 3, we detected an increase in
non-neutralizing IgG on d30. The predicted HI titer for the observed increase in IgG (shown in grey) is twice
as high as the actually observed titer (green). For all 12 patients with experimentally determined avidities see
Figure S3.3.
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3.2.5 Detection of vaccine-induced affinity maturation in HSCT patients

Next, we compared the vaccine-induced increase in inferred avidities in all investigated HSCT
patients and identified candidates for successful GC formation and affinity maturation (Figure 3.4).
Since the establishment of GCs takes approximately seven days (De Silva and Klein, 2015), we
considered an increase in IgG concentration and avidity on d30 or d60 as indicative for GC formation
(patients were vaccinated on d0 and d30; see Methods).
The response characteristics of the patient cohort are shown in Figure 3.4a. Given the uncertainty
in inferred Kapp

D -values, we could detect fold changes in avidity of approximately >1.5 or <0.5
(except for samples below assay resolution with HI titer<8) (Figure S3.4a). Eight patients showed
a detectable increase in avidity on d30 and/or d60, of which only one showed no increase in serum
IgG (Figure 3.4b). This suggests that vaccination induced GC formation and affinity maturation
in seven patients (including patient 1 in Figure 3.3c). Serum avidity returned back to baseline on
d180 in most of these patients, suggesting that vaccination failed to induce a sustained production
of high-avidity antibodies. Over all patients showing a detectable increase in avidity at any time
point after vaccination (n=11), we observed a time-dependent increase with the largest increase on
d60, i.e., after the booster dose (Figure 3.3c), consistent with our understanding of GC dynamics
(De Silva and Klein, 2015). We could not detect a significant increase in avidity in 24 patients,
although 15/24 patients showed an increase in serum IgG on d30 or d60 (such as patient 2 in
Figure 3.3c).
In summary, although 30 patients showed an increase in serum IgG concentration on d30 and/or
d60, only 7/30 patients (23%) are candidates for vaccine-induced affinity maturation, and 6/30
patients (20%) showed vaccine-induced production of non-neutralizing IgG (such as patient 3 in
Figure 3.3c). We excluded 4/45 patients as they showed too large measurement uncertainty in
ELISA-detected IgG concentration on several time points (see above).

3.2.6 Association with criteria for compromised immune response

Finally, we investigated associations between inferred avidities, IgG concentration and HI titers with
time post HSCT≤2 years, intake of immunosuppressive drugs quantified by immunosuppression
grade ranging from 0 (none) to 3 (severe), and cGVHD grade with the same range (Figure 3.4d).
We investigated effects on baseline (levels before vaccination) and response (relative increase) in a
multivariable regression analysis with patient-specific random intercepts and controlling for sex
and age. Regression was performed on log2-transformed values using models for continuous data
for avidity/concentration and models for sequential ordinal data for HI titers (Tutz, 1991). When
analysing the vaccine-induced increase in avidity, we excluded non-neutralizing IgG responders
(n=6) because their inferred avidities are not indicative of affinity maturation.
Early transplant patients (time post HSCT ≤ 2 years) showed significantly lower baseline levels
in IgG concentration (−1.92± 0.46, P = 1.8 · 10−4) and HI titer (log odds ratio −0.96± 0.25,
P = 1.2 · 10−4) than patients with HSCT>2 years (Figure 3.4d). At the time of this study, the annual
influenza vaccine contained H1N1pmd09 already for five years. Therefore, it is likely that patients
with HSCT>2 years acquired durable H1N1pmd09-neutralizing antibodies in previous seasons. Yet,
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Figure 3.4. Response to influenza vaccination against H1N1pmd09 in HSCT patients. (a) HI titers and
ELISA-detected serum IgG concentrations in the investigated patient population. Patients were vaccinated
on d0 and d30 with a non-adjuvanted trivalent influenza vaccine. Seroprotection corresponds to HI titer
≥ 40 and seroconversion to a four-fold HI titer increase compared to d0. (b) Fold changes in HI titer,
serum IgG and inferred avidity (1/Kapp

D ) in all patients with a detectable increase in inferred avidity on d30
and/or d60. (c) Comparison of inferred avidities between patients with a detectable increase in avidity at
any time point after vaccination (left), patients with no detectable increase (middle), and patients with a
detectable increase in non-neutralizing IgG (right). We excluded 4/45 patients as they showed too large
measurement uncertainty in IgG concentration on several time points. (d) Estimated effects on baseline
levels of criteria for compromised immune response. Effects were estimated in a multivariable regression
analysis on log2-transformed values controlling for sex and age. Time after HSCT was encoded as a binary
variable (1 for HSCT ≤ 2 years and 0 for HSCT > 2 years). Immunosuppression grade and cGVHD grade
ranging from 0 (no immunosuppression/cGVHD) to 3 (severe immunosuppression/cGVHD) were encoded
as ordered categorical variables with grade 0 as reference (see Methods for details).
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early transplant patients did not show significantly different baseline avidities compared to patients
with HSCT>2 years (0.36± 0.45, P = 0.43), potentially because previous vaccinations did not
induce (detectable) affinity maturation. Patients under immunosuppression showed significantly
lower baseline avidities with an estimated effect size of −0.58± 0.19 per immunosuppression
grade (P = 4.0 · 10−3). This means, that patients with immunosuppression grade 2 showed
approximately two-fold lower baseline avidities than patients without immunosuppression, while
patients with immunosuppression grade 3 showed three- to four-fold lower baseline avidities (see
also Figure S3.5). Most patients in our cohort under immunosuppression received cell division
inhibitors such as prednisone or mycophenolate mofetil (MMF) and calcineurin inhibitors such as
tacrolimus or cyclosporine A that lower T cell activity, while a few patients received rituximab,
an anti-CD20 antibody that leads to B-cell depletion (Table 3.2). Since we did not know the
patients’ medical history, we could not investigate whether the low baseline levels are explained
by immunosuppressive drug treatment or an underlying disease during a former encounter with
H1N1pmd09. For instance, patients might have suffered from GVHD in previous seasons, which
required treatment with immunosuppressive drugs. In the current season, we could not detect any
effects on the vaccine-induced increase in serum IgG or avidity, probably due to lack of power.
We also did not detect a significant effect of cGVHD on avidity or serum IgG, but we detected a
positive effect on HI baseline titers (log odds ratio 0.43± 0.11, P = 6.2 · 10−5).

3.3 D I S C U S S I O N

The HI assay is a well-established gold standard method, and yet, little is known on the relationship
between HI titer, serum antibody concentration, and avidity. Mathematical models of cell aggluti-
nation by antibody cross-linking have been previously reported (Ming et al., 1965; Dolgosheina
et al., 1992) and applied to guide the design of immunoassays (Kylilis et al., 2019). We presented
an extension to a three-component system consisting of antibodies, viruses, and cells. Our model
captures known properties of the HI assay and provides a biophysical explanation for why the
HI assay has become the gold standard in serological studies. First, the assay is equally sensitive
to both antibody concentration and avidity. Only for extremely high avidities (Kapp

D <0.03 nM),
it detects only changes in concentration. Second, the assay is robust to pipetting errors or other
experimental variability in RBC and virus concentration.
The model allows the inference of neutralizing serum avidities from ELISA-detected IgG concen-
trations and HI titers, which are simpler, faster, and cheaper to measure than antibody avidities,
especially in larger populations. In our experimental setup where HI titers were determined in
two-fold serial dilutions, we were able to estimate avidities with a precision of approximately
±30%. A limitation of our approach is that we cannot distinguish whether HI titers below assay
resolution (here: HI titer<8) correspond to non-neutralizing IgG (which could potentially have
high avidity but not to HA) or to neutralizing IgG below assay resolution (with low avidity or low
concentration). In addition, the detection of both neutralizing and non-neutralizing IgG can bias
our results towards lower avidities; this possibility could be evaluated with SPR or calorimetry
measurements. We also neglected IgM antibodies because IgMs show lower serum concentration
than IgGs (Gonzalez-Quintela et al., 2008). When IgM concentration is high while IgG’s low, for
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example on d7 after vaccination in naive subjects, modeling the contribution of IgM to the HI titer
may be necessary.
Regarding our experimental assays, we note that most influenza-specific IgG antibodies bind to the
immunodominant HA globular domain (part of HA1) that harbors the SA binding site and attaches
the virus to host cells (Wilson et al., 1981; Gerhard et al., 1981). Although we used whole-virus for
ELISA coating, we observed a similar correlation between ELISA-detected serum IgG and HI titers
as previous studies for HA and HA1 coating (Li et al., 2014; Trombetta et al., 2018). This is in line
with studies on immunodominance showing that antibody response to influenza is dominated by
HA-specific neutralizing IgG, and the HA globular domain is favored over the HA stalk domain,
neuraminidase or other proteins on influenza (Altman et al., 2015; Angeletti et al., 2017).
Only a few patients showed a vaccine-induced increase in avidity, potentially because the number
of responders was low or because the increase was below our detection limit (fold change<1.5).
However, we observed consistent effects: among 32 (13) patients with an increase in serum IgG on
d30 or d60 (seroconversion on d60), we identified only seven (five) candidates for vaccine-induced
affinity maturation. Thus, vaccine-induced increases in HI titer were mostly explained by increased
IgG concentration. These results might not apply to other populations, especially because hampered
affinity maturation is likely in HSCT patients (Ogonek et al., 2016). The precision of our inference
was also sufficient to detect differences in baseline avidities between patients with and without
immunosuppression. Excluding the two patients without HI activity at any time point from our
analysis only slightly affects the detected association between immunosuppression grade and avidity
(−0.39± 0.16, P = 0.02). HI titers were negatively associated with immunosuppression grade as
well, but positively with cGVHD grade. Patients with cGVHD show disturbed B cell homeostasis,
persistent B cell activation, and elevated levels of B-cell activating factor (BAFF), which promotes
survival and differentiation of activated B cells (Sarantopoulos et al., 2007, 2009; Greinix et al.,
2008; Jacobson et al., 2014). However, several studies reported no significant effect of cGVHD on
vaccine response to H1N1pmd09 (Issa et al., 2011; Engelhard et al., 2011; Gueller et al., 2011) or
a negative effect (Roll et al., 2012; Mohty et al., 2011). Information on the patients’ vaccination
history, medication and disease state at the time of previous vaccinations would be required to better
understand this positive association.
We inferred serum avidities for our HSCT patient cohort because serum avidities serve as markers
for GC formation and affinity maturation in vaccine studies in general (Khurana et al., 2011, 2012;
Eidem et al., 2015; Khurana et al., 2019). For example, it has been shown that in response to
influenza A, the average HA-specific affinity of GC B cells is correlated with the HA-specific
apparent avidity of serum antibodies (Frank et al., 2015) and that avidity of serum antibodies is
important for protection (Olszewska et al., 2000; Polack et al., 2003). However, it is unknown to
which extent vaccination against H1N1pmd09 induces affinity maturation in HSCT patients and it is
currently under debate whether poor vaccine-induced affinity maturation is responsible for the poor
effectiveness of seasonal influenza vaccines (Ellebedy, 2018; Arevalo et al., 2020). Previous studies
in healthy adults showed that serum avidity against HA1 peaks at 21–28d after vaccination and
decreases almost back to baseline on d180 (Eidem et al., 2015; Khurana et al., 2019). We observed a
similar behavior among those HSCT patients that showed a detectable increase in avidity, although,
in contrast to healthy subjects, HSCT patients received a booster dose on d30. We observed the
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largest increase in avidity on d60, suggesting that the booster dose might enhance vaccine-induced
affinity maturation.
Interestingly, all patients identified as non-neutralizing IgG producers showed relatively high HI
titers (geometric mean titer=128, range=32–1024) and high neutralizing avidities before vaccination
(Figure 3.4c). Even if we detected both neutralizing and non-neutralizing IgG on d0 in these
patients, this would bias the inferred Kapp

D -values towards lower avidities, which means that the
actual neutralizing baseline avidities could be even higher. This observation supports computer
simulations suggesting that preexisting antibodies that mask immunodominant epitopes, such as the
RBC-binding HA head domain, lead to the production of antibodies against less accessible epitopes
such as the HA stalk domain (Meyer-Hermann, 2019). This might be important for the generation
of broadly neutralizing antibodies targeting the HA stalk domain, which show high potential in
vivo despite poor neutralization activity in vitro (Krammer, 2016, 2019). Further studies might
investigate whether preexisting antibodies with high avidities against the HA head domain favor the
production of HA-stalk antibodies.
Overall, we argue that our biophysical model of the HI assay not only generates detailed insights
and hypotheses on influenza vaccine responses in small patient cohorts as here. Because the model
requires only easy-to-establish measurements as inputs, we anticipate that it can also refine the
analysis in larger vaccine studies.

3.4 M E T H O D S

3.4.1 Ethics statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethic
committee northwest and central Switzerland (EKNZ ID 2014-141). All patients signed informed
consent.

3.4.2 Patient sera

Adult patients that received allogeneic hematopoietic stem cell transplantation (HSCT) at least one
year before were recruited in a multicenter cohort study in Switzerland (at the University Hospital
Basel and the Cantonal Hospitals in Aarau and Lucerne) between October 2014 and January 2015.
Only patients without known vaccine intolerance such as egg protein allergy or vaccine-associated
adverse events were eligible for participation. In total, 57 patients were recruited; we included 45
of them in the present study based on the availability of serum samples. Following the standard of
care for HSCT patients, each patient received two doses of the seasonal non-adjuvanted trivalent
influenza vaccine (TIV), where the second dose was given 30 days after the first. Serum samples
were collected prior to first vaccination (d0) and after vaccination (d7, d30, d60, d180) and stored
in aliquots at -80◦C. Almost all patients were in complete remission (42/45, 93%), and no patient
showed progression. Patient characteristics is summarized in Table 3.2.
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Table 3.2. Characteristics of allogeneic hematopoietic stem cell transplant patients (all patients and subset of
patients with experimentally determined avidities for validation of inferred avidities).

All Validation subset

Total 45 12
Age Median, IQR (years) 58, 44–64 45, 43–67

≥ 65 years 11 (25%) 4 (33%)
Sex Male 23 (51%) 4 (33%)

Female 22 (49%) 8 (67%)
Underlying disease Acute myeloid leukemia (AML) 17 (38%) 6 (50%)

Acute lymphoblastic leukemia (ALL) 8 (18%) 2 (17%)
Chronic myeloid leukemia (CML) 5 (11%) 1 (8%)
Chronic lymphocytic leukemia (CLL) 5 (11%) 1 (8%)
Multiple myeloma (MM) 5 (11%) 1 (8%)
Plasma cell leukemia (PCL) 1 (2%) 0
Myeloproliferative neoplasms (MPN) 1 (2%) 1 (8%)
Myelodysplastic syndromes (MDS) 2 (4%) 0
Non-Hodgkin lymphoma (NHL) 1 (2%) 0

Time after median, IQR (years) 4, 2–8 6, 3–8
transplantation 1–2 years 16 (36%) 2 (17%)

3–5 years 13 (29%) 3 (25%)
>5 years 16 (36%) 7 (58%)

Transplant source Peripheral blood 40 (89%) 11 (92%)
Bone marrow 5 (11%) 1 (8%)

Donor source Matched related donor 16 (36%) 5 (42%)
Matched unrelated donor 21 (47%) 5 (42%)

Disease statusa Complete remission 42 (93%) 12 (100%)
Stable 1 (2%) 0
Recurrence 2 (4%) 0
Progressive 0 0

Immunosuppressiona None 18 (40%) 2 (17%)
Mild (grade 1) 6 (13%) 2 (17%)
Moderate (grade 2) 14 (31%) 6 (50%)
Severe (grade 3) 7 (16%) 2 (17%)

Immunosuppressive Prednisone 13 (29%) 5 (42%)
treatmenta Tacrolimus 14 (31%) 7 (58%)

Mycophenolateb 9 (20%) 3 (25%)
Cyclosporine Ac 4 (9%) 0
Rituximabd 3 (7%) 0

Chronic GVHD None 15 (33%) 0
Mild (grade 1) 9 (20%) 4 (33%)
Moderate (grade 2) 10 (22%) 6 (50%)
Severe (grade 3) 11 (24%) 2 (17%)

Abbreviations: IQR: interquartile range; GVHD: graft-versus-host disease.

aBefore vaccination, bCellCept® or Myfortic®, cSandimmun®, dMabThera® within the previous six months.
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3.4.3 Vaccine composition

Patients received two doses of the non-adjuvanted TIV from 2014/2015 (Agrippal, Novartis,
Switzerland), comprising inactivated subunit influenza virus with 15 µg HA antigen of each vaccine
strain: A/California/7/2009 (H1N1pdm09), A/Texas/50/2012 (H3N2) and B/Massachusetts/2/2012
(Yamagata lineage).

3.4.4 HI assay

HI assays were performed according to the WHO manual (WHO, 2002). Sera were pre-treated
with receptor destroying enzyme (RDE) (Sigma-Aldrich, C8772) and two-fold serially diluted,
covering dilutions from 1:8 to 1:2048. A 0.75% (v/v) suspension of chicken RBCs (Cedarlane,
CLC8800) and 4 HA units of influenza H1N1pdm09 virus (NYMC-X181) were used to perform
the assay. The reported HI titer is the dilution factor of the highest serum dilution that showed full
hemagglutination inhibition. The protocol has been published in detail (Kaufmann et al., 2017).

3.4.5 ELISA for influenza-specific IgG detection

ELISA 96-well plates (Thermo Scientific, 442404) were coated with 0.5 µg/mL whole virus
H1N1pdm09 (NYMC-X181, 45 µg HA/mL) at 4◦C overnight. Plates were blocked with 5% bovine
serum albumin (BSA) in PBS for 1h at room temperature (RT). Patient serum samples were 1:4000
diluted in 0.5% BSA in PBS. Reference serum was 1:1000 diluted (top dilution of calibration curve)
and then six times four-fold serially diluted, yielding a calibration curve with seven measurements.
After blocking and washing with 0.05% TWEEN 20 in PBS, 100 µL/well of diluted serum samples
were added and incubated for 2h at RT. Unbound serum antibodies were removed by washing
the plates four times, and bound serum IgG was detected by 70 µL/well of 1:3000 diluted rabbit
anti-human IgG antibody linked to horseradish peroxidase (Agilent, P021402-2) incubated for
2h at RT. After washing, plates were developed with 100 µL/well TMB substrate solution (BD,
555214) for 15 min and stopped with 50 µL/well 2N H2SO4. Absorbance was measured at 450
and 620 nm. Measurements were background- and blank-corrected. To obtain a calibration curve,
reference measurements were fitted using a four-parameter logistic equation (log concentration vs
log absorbance). All measurements were performed in duplicates.

3.4.6 Urea elution assay to measure IgG avidities

The ELISA described above was adapted to measure serum IgG avidities against influenza
H1N1pdm09. Each serum was accordingly diluted to obtain a final concentration within the
linear range of the calibration curve. After incubation with serum and washing as described above,
each well was incubated for an additional 3h at RT with either 100 µL/well 4M urea (treated) or
100 µL/well PBS (untreated). The concentration of bound IgG was determined using a calibration
curve as described above. The fraction of IgG remaining bound after urea treatment compared to
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the untreated wells is reported as the avidity index. Avidities were determined in two experiments,
each performed in duplicates.

3.4.7 Reference serum

The concentration of H1N1pdm09-specific IgG antibodies was determined in ELISA experiments
relative to a reference serum collected from a healthy volunteer on day 7 after vaccination with
2014/2015 TIV (Agrippal, Novartis, Switzerland), showing an HI titer of 512. Since the absolute
reference concentration could only be determined by mass spectrometry, which was not feasible in
this study, we estimated the concentration based on reported H1N1pdm09-specific IgG concentra-
tions in vaccinated healthy adults with similar HI titers (Eidem et al., 2015). We set the reference
concentration to 100 µg/mL (670 nM), yielding an estimated avidity for the reference serum of
0.4–0.8 nM, consistent with observed affinities for post-vaccination serum IgG for H1N1pdm09 in
healthy adults (Lee et al., 2016).

3.4.8 Model derivation

3.4.8.1 Assay step 1: binding of antibodies to virus

We model the formation of antibody-epitope complexes, denoted by C, as a diffusion-controlled
reaction between viruses and antibodies, following the model of antibody-virus interaction proposed
by Groth (1963). For complex formation, free antibodies, A, need to successfully collide with
free influenza virus particles, V. In addition, antibody-epitope complex formation depends on the
probability of epitopes being unbound, denoted by φ. The dynamics of complex formation is thus
given by:

dC(t)
dt

= kass · A(t) ·V(t) · φ(t)− kdiss · C(t),

where kass and kdiss are kinetic rate constants for association and dissociation, respectively. Note
that some IgG antibodies bind bivalently to hemagglutinin, resulting in higher antibody affinities
compared to their monovalent Fab fragments due to lower macroscopic dissociation rates (Edwards
and Dimmock, 2000; Williams et al., 2018). This antibody valency is lumped into the macroscopic
dissociation constant kdiss.
The total number of epitopes is proportional to the total virus concentration Vtot1 (where ’1’ indicates
the first step of the assay), the average number of hemagglutinin receptors per virus, r, and the
number of identical binding sites per hemagglutinin, e (e = 3 since hemagglutinin is a homotrimer).
With e∗ being the number of epitopes bound or shaded by one antibody molecule, the fraction of
unbound epitopes is:

φ(t) =
e · r ·Vtot1 − e∗ · C(t)

e · r ·Vtot1

.

We assume that cross-linking of virus particles by antibodies is rare for the considered concentra-
tions, such that the concentration of virus particles V remains approximately the same during the
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experiment, i.e., V ≈ Vtot1 . In addition, the mass balance for antibodies is Atot1 = A(t) + C(t).
Substituting into the dynamics of complex formation leads to:

dC(t)
dt

=
kass

e · r · [Atot1 − C(t)] · [e · r ·Vtot1 − e∗ · C(t)]− kdiss · C(t).

Since the average number of epitopes per virus particle e · r is constant, the dynamics is equivalent to
a reversible bimolecular reaction following mass action kinetics with apparent dissociation constant
Kapp

D = e · r · kdiss
kass

. We assume that antibody-virus binding is fast, such that after the incubation
time the system is at steady-state. At steady-state, the complex concentration Ceq fulfills

0 = [Atot1 − Ceq] · [e · r ·Vtot1 − e∗ · Ceq]− Kapp
D · Ceq.

We exploit the analytic solution to this quadratic equation in Ceq to compute the fraction of covered
hemagglutinin epitopes at equilibrium, θ, defined as:

θ =
e∗ · Ceq

e · r ·Vtot1

to obtain:

θ =
erVtot1 + e∗Atot1 + Kapp

D
2erVtot1

−√
e2r2V2

tot1
+
(
Kapp

D
)2

+ e∗2 A2
tot1
− 2erVtot1 e∗Atot1 + 2Kapp

D erVtot1 + 2Kapp
D e∗Atot1

2erVtot1

.(3.1)

3.4.8.2 Assay step 2: hemagglutination

When RBC suspension is added to the system, two processes happen simultaneously: viruses
bind to SA-linked receptors on RBCs with their free hemagglutinin binding sites, and RBCs stick
together and form aggregates whenever they collide such that virus particles are able to cross-link
them.
For virus binding to SA-linked receptors, we assume mass-action kinetics, leading to:

dV(t)
dt

= −kRBC
ass · (1− θ) · r ·V(t)︸ ︷︷ ︸

free virus sites

· [1− ρ(t)] · b · RBCtot2︸ ︷︷ ︸
free RBC sites

+kRBC
diss ·

b
b∗
· ρ(t) · RBCtot2︸ ︷︷ ︸
bound RBC sites

.

(3.2)
Kinetic constants for association and dissociation are denoted as kRBC

ass and kRBC
diss . We assume e =

e∗ = 3 (Poumbourios et al., 1990) to define the contribution of the concentration of hemagglutinin
receptors that are not covered by antibodies (free virus sites) to the association rate. Association
further depends on the amount of RBC binding sites that are not yet covered by virus, defined by
the fraction of covered sites, ρ(t), the average number of SA-linked surface receptors each RBC
carries, b, and the total concentration of RBCs in step 2 of the assay, RBCtot2 . For the dissociation
term, we assume that one virus particle covers on average b∗ binding sites, since influenza virus
particles are approximately 60-times smaller than RBCs (see below). The correction by b∗ reflects
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the definition of the fraction of covered RBC binding sites (making the term for bound RBS sites
equivalent to the concentration of bound virus, Vtot2 −V(t)):

ρ(t) =
b∗ · [Vtot2 −V(t)]

b · RBCtot2

. (3.3)

To capture RBC aggregation, let Bk denote the concentration of agglutinating particles (individual
RBCs and RBC aggregates) consisting of k cells, with a maximum aggregate size N. To describe
the dynamics, we use the Smoluchowski coagulation equation (Von Smoluchowski, 1917), where
the rate of agglutination is proportional to an agglutination rate constant kagg and the number of
available cross-linking sites ρ(t)(1− ρ(t))(1− θ)2, which is proportional to the number of mutual
pairs of free binding sites on colliding RBCs and can be interpreted as a cross-linking probability:

dBk(t)
dt

= kaggρ(t)(1− ρ(t))(1− θ)2

(
1
2 ∑

i+j=k
KijBi(t)Bj(t)− Bk(t)

N

∑
i=1

KikBi(t)

)

For the special case Kij = Kik = K, where the kernel is independent of the particle size, there is a
simple analytical solution for the discrete size distribution of aggregates. Let ∑N

i=1 Bi(t) = BN(t)
denote the total concentration of particles, and BN(t = 0) = RBCtot2 the concentration of particles
before agglutination. In addition, from mass conservation follows: ∑N

k=1 kBk(t) = RBCtot2 .
Summing over all values of k then yields:

dBN(t)
dt

= kaggρ(t)(1− ρ(t))(1− θ)2
[(

K
2

)
· RBC2

tot2
− K · RBC2

tot2

]
= −kaggρ(t)(1− ρ(t))(1− θ)2

(
K
2

)
· RBC2

tot2
.

Integrating once gives:

BN(t) =
RBCtot2

1 +
(

kagg

2

)
ρ(t)(1− ρ(t))(1− θ)2RBCtot2 t

. (3.4)

Here, we set K = 1 such that the effect of K is lumped into kagg because we estimated kagg from
data (see below).

3.4.8.3 Assay step 3: determination of HI titer

We define the degree of hemagglutination as:

h(t) =
(

1− BN(t)
RBCtot2

)
· 100, (3.5)

such that it takes values between 0% and 100%. If there is no hemagglutination, the concentration
of agglutinated particles is the same as the initial concentration of RBCs (BN(t) = RBCtot2) and
the degree of hemagglutination is 0%. If all RBCs are agglutinated, there is only one agglutinating
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particle in the system and BN(t) = 1/NA · 109 nM, where NA is Avogadro’s number. Since
NA ≈ 6 · 1023, BN ≈ 10−15 ≈ 0 nM such that h(t) = 100%.

3.4.9 Model implementation

To obtain the degree of hemagglutination h(t) in Equation 3.5, we compute θ from Equation 3.1,
ρ(t) for any time point t in assay step 2 from Equations 3.2 and 3.3, and the corresponding BN(t)
from Equation 3.4.
In addition, the total concentration of antibodies is given by

Atot1 = 0.5 · dp · dj · A0,

where A0 is the initial serum antibody concentration, dp is the serum predilution factor, d the serial
dilution factor and j the considered dilution step. The total concentrations of virus are

Vtot1 = 0.5 ·V0 and Vtot2 = 0.5 ·Vtot1 ,

because each assay step involves adding equal volumes of solution; V0 is the initial virus concentra-
tion. Analogously,

RBCtot2 = 0.5 · RBC0,

where RBC0 is the initial concentration of RBCs.
The model is implemented in the R package himodel (https://gitlab.com/csb.ethz/himodel).

3.4.10 Model parameters and initial conditions

All model parameters and initial conditions could be either extracted or derived from literature
(summarized in Table 3.1), except for the agglutination rate of RBCs (kagg), which we estimated
from data as described below.

3.4.10.1 RBC concentration (RBC0)

Following the WHO protocol (WHO, 2002), a 0.75% (v/v) suspension of chicken RBCs is used to
measure HI titers against H1N1pdm09. This corresponds approximately to 1.875 · 106 cells/mL
(Tyrrell and Valentine, 1957). Given that 1 mol corresponds to 6.022 · 1023 cells, the molar
concentration is approximately RBC0 = 3.1 · 10−5 nM. To determine the effect of pipetting errors,
we set the RBC concentration range in the sensitivity analysis to 0.375%–1.5% (v/v) suspension,
which corresponds to approximately 1.6 · 10−5–6.3 · 10−5 nM.

3.4.10.2 Number of sialic acid-linked receptors on RBC (b)

Influenza hemagglutinin binds to SA-linked surface receptors of RBCs. Human H1 influenza
viruses bind preferentially to α2→ 6 linked SA (Rogers and D’Souza, 1989), which occurs on the
surface of chicken RBCs mainly in N-linked glycans (Aich et al., 2011; Aoki, 2017). Chicken RBCs
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contain a mixture of α2→ 3 and α2→ 6-linked glycans in a ratio of approximately 60:40–50:50
(Aich et al., 2011). The total number of N-glycan on RBCs has been estimated to be 1 · 106 (Aoki,
2017). Thus, we assume that the average number of receptors that can interact with hemagglutinin
is 0.45 · 106. Chicken RBCs also have SA-linked O-glycans such as glycophorins (Duk et al., 2000)
on their surface, but most of them contain α2→ 3-linked SA. Therefore, we neglect them.

3.4.10.3 Steric virus factor (b∗): number of sialic acid-linked receptors covered by bound virions

Influenza virions are approximately 60-times smaller than RBCs (Harris et al., 2006). To model
the binding of virions to RBCs, we need to take into account that bound virions cover multiple
SA-linked receptors. We estimated the average number of covered α2→ 6 SA-linked receptors, b∗,
from simple geometry. We assume that SA-linked receptors are uniformly distributed on RBCs.
Their estimated surface area ranges from 140–160 µm2 and we assume an average surface area of
ARBC = 150 · 106 nm2 (Ballas, 1987; Movassaghian and Torchilin, 2015). The virus-covered area
is determined by the virus’ diameter. Most influenza virions are spherical with a diameter ranging
from 84–170 nm and mean diameter d = 120 nm (Harris et al., 2006). We estimate the shaded area
from the circle area, which yields:

b∗ =
π(d/2)2

ARBC
· b ≈ 34. (3.6)

In the sensitivity analysis, we sample b∗ assuming d ∼ Unif(84, 170), ARBC ∼ Unif(130 ·
106, 170 · 106), and b ∼ Unif(0.4 · 106, 0.5 · 106), where d has unit nm, ARBC has unit nm2 and b
is unitless.

3.4.10.4 Virus concentrations (V0)

To ensure the reproducibility of the HI assay, the same amount of virus particles must be used in
each experiment. Therefore, virus concentration is measured in HA units, an operational unit that is
determined in the so called HA titration assay, where virus is titrated against a constant amount
of RBCs (same amount as used in the HI assay, i.e. 50 µL of 0.75% (v/v) RBC suspension are
added to 50 µL serum-virus dilution). The amount of virus that agglutinates an equal volume of
standardized RBC suspension is defined as 1 HA unit (WHO, 2002). Electron microscopy data
show that partial hemagglutination occurs at 1:1 binding (on average, one virus particle binds to
one RBC) (Tyrrell and Valentine, 1957). We assume that full hemagglutination requires at least 2:1
binding. We used the rate equation for virus-RBC binding (Equation 3.2) to determine the virus
concentration that leads to 2:1 binding with 0.5 · 3.1 · 10−5 nM RBC (Figure S3.1a): 3.2 · 10−5

nM. Assuming that this virus concentration corresponds to 1 HA unit in our model simulations, 4
HA units are approximately V0 = 1.3 · 10−3 nM. In the sensitivity analysis, we varied V0 in the
range of 3–7 HA units.

3.4.10.5 Agglutination rate (kagg)

We inferred the agglutination rate of RBCs from HI titer and serum IgG concentration of the
reference serum using the inference procedure described in the next section. We used a broad
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uniform prior for kagg ∼ Uniform(105, 109), set the coagulation kernel K to 1 and fixed all
remaining parameters to the values in Table 3.1. The kagg posterior distribution was approximately
log-normal (centered at around 2 · 106 s−1 with 95% credibility interval of approximately 0.4 · 106–
13 · 106 s−1) with slightly heavier tail towards larger kagg values since hemagglutination reaches
saturation at approximately 30 min (Figure S3.1b). Data at earlier time points would be needed
to infer kagg with higher precision. We set kagg = 2 · 106 s−1; the precision suffices as we are
interested in hemagglutination at ≥ 30 min.

3.4.11 Inference of neutralizing antibody avidities

Given a measured IgG antibody concentration Ai of serum sample i (with estimated log mean µA,i

and log standard deviation σA,i) and the corresponding HI titer determined in an HI assay with
j = 1, . . . , J dilution steps, serum predilution factor dp, and serial dilution factor d, the generative
model to infer the posterior distributions for Kapp

D,i is defined as follows:

Kapp
D,i ∼ Lognormal(µK, σ2

K)

Ai ∼ Lognormal(µA,i, σ2
A,i)

A0,ij = Ai · dp · dj

θij = fθ(A0,ij, Kapp
D,i )

ρij = fρ(θij)

hij = fh(ρij, θij)

pij = logit−1 (α(hij − h0)
)

yij ∼ Bernoulli(pij).

Here, A0,ij is the final concentration of diluted serum IgG at dilution step j. It gives rise to sample-
and dilution-specific θij, ρij, and hij as defined by Equations 3.1, 3.3 and 3.5 (here abbreviated for
convenience with fθ , fρ and fh and with time dependencies dropped).
To specify the HI titer of serum sample i, each serum dilution j is inspected for hemagglutination
inhibition and the minimal dilution that shows full inhibition is determined. We treat the binary
decision at each dilution step (inhibition/no inhibition) as a Bernoulli process with inhibition
probability pij, a shorthand notation for P

(
yij = 1 | hij

)
. The indicator variable yij takes the value

0 if the hemagglutination degree hij is above a certain threshold h0 (no inhibition) and 1 otherwise
(inhibition):

yij =

0, if hij > h0 (no inhibition),

1, if hij ≤ h0 (inhibition) .
(3.7)
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This binary decision is modelled by a logistic function with steepness parameter α and inflection
point h0. The conditional likelihood for yi

T = (yi1, yi2, . . . , yi J) over all J dilutions is then given
by a product of Bernoulli likelihoods:

P
(

yi | Kapp
D,i , Ai

)
=

J

∏
j=1

p
yij
ij · (1− pij)

(1−yij) (3.8)

and the full posterior is:

P
(

Kapp
D,i , Ai | yi

)
=

P
(

Kapp
D,i

)
P (Ai)P

(
yi | Kapp

D,i , Ai

)
P (yi)

. (3.9)

We sampled posterior distributions using the Metropolis-Hastings algorithm (Brooks et al., 2011)
with 6000 samples, burn-in size of 1000 samples, and 5 chains. We used a broad log-normal prior
for Kapp

D,i centered at 1 nM with log mean µk = 0 and log standard deviation σK = 4. To define
the value of h0, we investigated the relationship between HA units and hemagglutination degree
in our HA titration simulations. The model predicted that the hemagglutination degree is > 75%
for ≥1 HA unit (Figure S3.1c), which by definition corresponds to full hemagglutination. Thus,
assuming symmetry, we consider h0 = 25% a reasonable estimate, also assuming that differences
below 25% cannot be distinguished by eye. However, a different value for h0 does not affect the
interpretation of our results: it would only shift the estimates of all samples either towards lower
avidities (for larger h0) or higher avidities (for smaller h0). Steepness parameter α affects only
the width of the posterior distribution. Here, we set α = 15 and then investigated the relationship
between posterior distribution and resulting HI titer by sampling. We sampled 500 times from the
joint posterior distribution of Kapp

D,i and Ai for all patient sera i and predicted the resulting HI titer
to investigate the uncertainty in Kapp

D,i due to discretization of HI titer measurements and ELISA
measurement error. On average, approximately 55% of samples resulted in the observed HI titer,
whereas approximately 95% of samples also included HI titers one dilution step higher or lower
than the actually observed HI titer.

3.4.12 Identification of patients with increase in avidity and increase in non-neutralizing IgG

For each inferred Kapp
D value, we identified the uncertainty interval due to ELISA measurement

error and dichotomization in HI titers by sampling from the joint posterior distribution (see above)
and considered non-overlapping intervals as a significant change in Kapp

D . To detect patients that
produced non-neutralizing IgG after vaccination, we identified patients that showed no increase in
HI titer while showing an increase in serum IgG that resulted in a significant decrease in avidity
(Figure S3.4a).
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3.4.13 Sensitivity analysis

Sobol sensitivity analysis attributes variance in model output to individual model input factors using
variance decomposition (Saltelli et al., 2004). Given k model inputs, the total variance V(y) in
model output can be decomposed as:

V(y) = ∑
i

Vi + ∑
i

∑
j>i

Vij + . . . + V12...k , (3.10)

where Vi = V(E(Y|xi)) is the variance with respect to the distribution of input factor xi. The
second-order interaction term Vij = V(E(Y|xi, xj))−Vi −Vj captures the part of the effect of xi

and xj that is not described by the first order terms Vi, Vj and so on. The relative contribution of
each term to the unconditional variance V(y) serves as a measure of sensitivity. For instance, Vi

will be large, if xi is influential. The first order Sobol sensitivity index is defined as

Si =
Vi

V(y)
. (3.11)

To obtain the total contribution of xi, that is the sum of all terms in the variance decomposition that
include xi, we compute the total contribution to variance V(y) due to all factors but xi, denoted by
x−1. The total Sobol sensitivity index for xi is then given by

ST
i =

V(y)−V(E(y|x−1))

V(y)
. (3.12)

We used Monte Carlo estimation to estimate Sobol indices (Jansen, 1999; Saltelli et al., 2010)
implemented in the R package sensitivity (Iooss et al., 2019) with n = 10000 random samples
of model input vector xT = (x1, x2, . . . , xk) and 10 bootstrap replicates to estimate confidence
intervals. Input variables were assumed to be independent of each other. We considered k = 12
inputs sampled within a biologically reasonable range (Table 3.1).

3.4.14 Statistical analysis

Serum IgG and inferred Kapp
D values were available for 43 patients at five time points (t =

0, 7, 30, 60, 180 days) with 197 observations in total. To estimate the effects of a patient’s im-
mune state on serum IgG and avidity (1/Kapp

D ), we used a linear mixed model with patient-specific
random intercepts that takes the following general form:

yij = β0 + xT
ij β1 + γi + εij,

γi ∼ N (0, σ2
γ),

εij ∼ N (0, σ2
ε ),

where yij is the log2-transformed IgG concentration or 1/Kapp
D value, respectively, of patient i at time

point j, xij is a p-dimensional vector of p covariates, β0 is an intercept term, β1 is a vector of fixed
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effects , γi the random patient-specific intercept, and εij models the within-patient measurement
error. We modeled the observed rise and fall of serum IgG and 1/Kapp

D value after vaccination
using a second-degree polynomial. To distinguish time trends in avidity between neutralizing
and non-neutralizing IgG responders, we added a dummy variable for neutralizing response when
analysing response in avidity. Time post HSCT ≤ 2 years, cGVHD grade, and immunosuppression
grade were added as fixed effects on intercept to investigate effects on baseline, and on slope to
investigate effects on response. Time post HSCT ≤ 2 years was encoded as a binary variable (1
for ≤ 2 years, 0 for > 2 years). Both cGVHD and immunosuppression grade were encoded as
numerical variables with values 0, 1, 2, 3, such that grade 0 is the reference level, and there is a
linear increase in effect with increasing grade. To control for potential confounders, we corrected
for sex and age. For model selection, the full model with fixed effects on slope and intercept
was fitted using maximum likelihood estimation implemented in the lmer4 package (Bates et al.,
2015) and type II ANOVA by Satterthwaite’s approximation provided by the lmerTest package
(Kuznetsova et al., 2017).
We detected no significant effects on response for serum IgG and avidity. Therefore, we removed
fixed effects on slope and refitted the final models using restricted maximum likelihood estimation
to obtain unbiased estimates (Bates et al., 2015). Residuals indicated that the normality assumption
was satisfied (Figure S3.4b). Confidence intervals were computed via the Wald method provided
by lme4. To compare the results with HI titers, we estimated the effect of time post HSCT ≤ 2
years, cGVHD grade, and immunosuppression on HI titers controlling for age, sex, and time after
vaccination using a generalized linear regression model for sequential ordered data (Tutz, 1991).
The model was fitted using maximum likelihood estimation implemented in VGAM (Yee et al.,
2010).

3.4.15 Data and software availability

The model is available in the R package himodel (https://gitlab.com/csb.ethz/himodel). Source
files necessary to reproduce the results of this work are available on GitLab
(https://gitlab.com/csb.ethz/himodel-manuscript).
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Figure S3.1. Simulation results for the HA titration assay with influenza H1N1pdm09 and model
sensitivity. (a) Binding kinetics of virus particles to red blood cells. We assume that full hemagglutination
requires at least two bound virus particles per cell. (b) Hemagglutination kinetics. (c) For HA units ≥ 1, the
hemagglutination degree is > 75 %, which is by definition interpreted as full hemagglutination. Gray areas
and error bars indicate the uncertainty due to uncertainty in model parameters. (d) Performing the HI assay
with 4 HA units balances sensitivity and robustness. There is a clear distinction between inhibition and no
inhibition. (e) In addition, the assay detects with 4 HA units lower antibody concentrations than with ≥ 8
HA units.
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Figure S3.2. Marginal posterior distributions of the apparent dissociation constants in 43 patients
(197 posteriors in total). Some posteriors show larger variance due to larger measurement error in ELISA-
detected IgG concentration. Here, for samples with HI titer < 8, the shown posterior distributions correspond
to the inferred avidity when assuming HI titer = 4 (affected 23 serum samples from seven patients)
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Figure S3.3. HI titer, ELISA-detected anti-H1N1pmd09 serum IgG concentration, inferred apparent
dissociation constant and experimentally determined avidity index in twelve patients. Avidity indices
correspond to the fraction of H1N1pmd09-specific serum IgG remaining bound after 4M urea treatment.
Data shows mean and standard deviation for serum IgG and avidity indices and the median of the posterior
distribution with the uncertainty range due to discretized HI titer measurements and ELISA measurement
error for inferred apparent dissociation constants Kapp

D . Most patients showed either little or no increase
in avidity. In some patients, the measured avidity decreased and then returned back to baseline on d180,
potentially because the vaccine-induced short-lived antibodies were sensitive to the urea treatment, resulting
in antibody denaturation.
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Figure S3.4. Vaccine response analysis in 43 patients (197 samples in total). (a) Fold change in inferred
avidity and serum IgG concentration after vaccination. Error bars indicate uncertainty in fold change due
to uncertainty in inferred Kapp

D -values. Shading indicates regions with qualitatively different responses to
vaccination. (b) Residual plots of the regression models used to investigate associations of criteria for
compromised immune response with avidity and serum IgG concentration.
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Figure S3.5. Inferred avidity, serum IgG concentration, and HI titers by time after transplantation,
immunosuppression grade, and cGVHD grade in 43 patients (197 samples in total). Note that data show
one-dimensional associations, whereas regression analysis was performed with a high-dimensional model
simultaneously accounting for time after transplantation, immunosuppression/cGVHD grade, and correcting
for sex and age.
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4
I N F E R R I N G D I F F E R E N C E S I N I M M U N E R E S P O N S E D Y N A M I C S
F R O M I N F L U E N Z A VA C C I N E - I N D U C E D A N T I B O D Y T I T E R S
I N I M M U N O C O M P R O M I S E D PAT I E N T S

This chapter is to be submitted as: J. Linnik, A. Egli, and J. Stelling. "Inferring differences
in immune response dynamics from influenza vaccine-induced titers in immunocompromised
patients".

4.1 A B S T R AC T

Vaccination aims at inducing high-levels of neutralizing antibodies and memory B cells that can
protect the host from infection. Memory B cells and antibody-producing plasma cells evolve
from germinal centers (GCs), where B cells compete for survival signals in a dynamic process,
resulting in a rapid expansion of antigen-specific B cells. To which extent influenza vaccination
induces GC reactions in immunocompromised patients is unknown and very difficult to study
experimentally. Therefore, we asked whether our current understanding of GC dynamics captured
by a mathematical model is able to explain the heterogeneous vaccine response in a population
of hematopoietic stem cell transplant patients (n = 102). We integrated patient group-specific
parameters into the classical GC reaction model according to mechanistic hypotheses on how these
patient factors affect GC processes and inferred them from antibody titers. The model suggests
that both reactivated memory B cells and GCs contribute to the observed vaccine response. The
heterogeneity in antibody response was well described by only a few patient-specific variables,
such as preexisting memory B cells, absolute lymphocyte count and IFN-λ genotype. Specifically,
the model suggests that an increase in lymphocyte count increases the number of successfully
formed GCs and potentially affects additional GC processes leading to higher antibody titers. This
study demonstrates how dynamic modelling of the immune response can be combined with clinical
patient information and statistical inference to investigate a heterogeneous antibody response from
easily accessible measurements.

4.2 I N T RO D U C T I O N

The germinal center (GC) reaction is one of the most important processes of the human adaptive
immunity (Victora and Wilson, 2015; Mesin et al., 2016). GCs arise temporarily upon infection or
vaccination in secondary lymphoid follicles (LFs) as densely packed, structured micro-environments,
where resident follicular dendritic cells (FDCs) present antigen to B cells and fuel B cell proliferation
(Gatto and Brink, 2010; Tam et al., 2016). Somatic hypermutation diversifies B cell receptors and
mutated B cells that can bind the antigen compete for interaction with helper T cells to receive
additional survival signals (Turner et al., 2018; Woodruff et al., 2018). As a result, antigen-specific
B cells expand and differentiate to memory B cells or antibody-producing plasma cells ready to
fight infection. The classical GC model distinguishes between two different GC B cell populations:
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rapidly dividing centroblasts in the dark zone of the GC and non-proliferating centrocytes in the
light zone that compete for T cell help (Allen et al., 2007a; Mesin et al., 2016).
Over the past decades, the investigation of the dynamic nature of the GC reaction has been
accompanied by mathematical modelling to help data interpretation and suggest novel hypotheses
(reviewed in Buchauer and Wardemann (2019)). In recent years, our understanding of the GC
reaction to different types of antigens rapidly evolved thanks to novel sequencing and in vivo
imaging techniques (Schwickert et al., 2007; Victora et al., 2010; Schwickert et al., 2011; Tas et al.,
2016; Kuraoka et al., 2016; Firl et al., 2018). Mathematical models of a single GC helped to interpret
the new wealth of data and to investigate mechanistic hypotheses on GC B cell selection, recycling,
differentiation, and feedback mechanisms (Figge et al., 2008; Meyer-Hermann et al., 2012; Zhang
et al., 2013; Papa et al., 2017; Hauser et al., 2007). Since activated GCs may respond in a coordinated
manner, e. g., due to secreted antibodies that mask antigen in neighboring GCs (Schwickert et al.,
2007; Zhang et al., 2013), models of GC populations have been developed to describe affinity
maturation and antibody diversity during infection (Childs et al., 2015; Murugan et al., 2018).
A model of several GC reactions in parallel has been successfully applied to explain affinity
maturation during malaria infection in humans (Murugan et al., 2018). But how GC reactions
may vary between individuals is not well characterized. An experimental study demonstrated
recently that seasonal influenza vaccination can induce GC reactions in the draining lymph nodes
(Turner et al., 2020). Therefore, we asked whether our current understanding of GC dynamics can
explain the heterogeneous influenza vaccine-induced antibody in an immunocompromised patient
population.
We combined the classical GC reaction model with a biophysical model of the hemagglutination inhi-
bition (HI) assay to describe the vaccine-induced HI titer response against influenza
A/California/7/2009 H1N1. We applied the model to a population of HSCT patients (n = 102)
that received two doses of a seasonal influenza vaccine at a 30-day interval. HSCT patients are
often immunocompromised due to graft-related comorbidities and immunosuppressive treatment,
putting them at high risk for severe influenza infections (Ogonek et al., 2016; Schuster et al., 2017).
They show a highly heterogeneous vaccine response, and a better understanding of why certain
patient groups elicit a stronger antibody response than others could help to develop more targeted
preventive strategies for vulnerable patient groups. We previously identified the most important
patient factors associated with the antibody titer response in the investigated patient population
(Chapter 2). We integrated these patient factors into the GC model based on mechanistic hypotheses
about how these factors modulate crucial GC processes, such as B cell survival, selection, cycling
between the light and the dark zone, and the number of activated GCs. Using a Bayesian inference
approach, we inferred the patient factor-specific GC model parameters directly from measured
antibody titers, taking the antibody response from preexisting memory B cells into account.
With the inferred parameters and initial memory B cell concentrations, the model could recapitulate
different antibody responses over the full range of observed antibody titers. The model predicted
that the observed heterogeneity in responses could be explained by previously acquired memory B
cells and a few patient factors potentially modulating the GC reaction, such as absolute lymphocyte
count and interferon (IFN)-λ genotype. Specifically, the model suggests that an increase in lym-
phocyte count increases the number of successfully formed GCs and potentially affects additional
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GC processes leading to higher antibody titers. Moreover, the model suggests that the associations
between antibody titers and chronic graft-versus-host-disease (cGVHD), immunosuppressive treat-
ment with calcineurin inhibitors, and family relationship with the donor could be fully explained by
differences in the amount of previously acquired memory B cells.

4.3 R E S U LT S

4.3.1 Vaccine response model

We combined published models of the humoral immune response and the GC reaction (Rundell
et al., 1998; Iber and Maini, 2002) into a concise ordinary differential equation (ODE) model that
describes with 35 parameters (Table 4.1) and ten model states (Table 4.2) the key processes of the
GC-dependent IgG production: antigen uptake and presentation in lymph nodes, clonal expansion
of centroblasts, selection and recycling of centrocytes, and bifurcation to plasma and memory B
cells (Figure 4.1a). The model accounts for both the activation of naive B cells and the activation
of memory B cells upon re-exposure to the antigen. Each key process of the GC reaction that
determines GC B cell dynamics and B cell faith is captured by a single parameter: the duration
of the GC reaction is determined by the fraction of absorbed antigen πabs, GC B cell survival
by the survival probability πsurv, the probability of non-fatal mutations is given by πmut, the
selection probability of centrocytes by πsel, the recycling probability of centrocytes by πrec, and the
bifurcation into memory or plasma B cells by πmem or 1− πmem, respectively. The total number
of activated GCs is restricted by the total volume of activated secondary LFs (VLF), which defines a
physical upper bound for the maximal total volume of activated GCs (Figure 4.1b). To link the IgG
response to the observed HI antibody titers, we used a previously established biophysical model of
the HI assay (Linnik et al. (2020), presented in Chapter 3).
The model captures the qualitative dynamics of B cells in GCs as well as the response in IgG and
HI titers upon primary and secondary immunization (Figure 4.1c): Activated B cells (Bact) peak
on approximately day 4 after vaccination (De Silva and Klein, 2015). Proliferation of GC B cells
(Bcb and Bcc) is most active between d7 and d14 (Liu et al., 1991; De Silva and Klein, 2015). After
two weeks, the GC begins to dissolve, and after three weeks the GC reaction is fully terminated. In
general, the duration of the GC reaction depends on the amount of antigen retained in the GC and
presented by FDCs (AGpr) (Gatto and Brink, 2010; Tam et al., 2016), which is controlled in our
model by the fraction of absorbed antigen πabs (Figure 4.6a). The amount of centroblasts (Bcb)
exceeds the amount of centrocytes (Bcc) as found in vivo (Victora et al., 2010). The Bcb/Bcc ratio
increases if the selection is less stringent (with πsel = 5% shown in purple vs. πsel = 20% in the
other simulation scenarios, Figure 4.1c) as previously shown experimentally (Victora et al., 2010)
and in simulation studies (Meyer-Hermann et al., 2012). Memory B cells appear on approximately
d7 after vaccination. If high levels of previously acquired antigen-specific memory B cells are
present, the model predicts a strong and rapid IgG response (Siegrist, 2008), which is already
detectable on d7 in the HI assay (shown in green in Figure 4.1c). Without preexisting memory,
plasma B cells and IgG antibodies begin to appear after one week and reach a maximum after
approximately four weeks (Siegrist, 2008). The response to the second vaccination (injected on
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Figure 4.1. Overview of the vaccine response model. (a) Schematic overview of the germinal center reac-
tion model. Arrows indicate transitions, edges on arrows indicate activations. Model states are summarized
in Table 4.2 and model parameters in Table 4.1. For a detailed model explanation with model equations, see
Methods. (b) Model compartments. Injected vaccine antigen is transported from the subcutaneous tissue to
the draining lymph nodes, where it is presented by antigen-presenting cells to initiate and fuel the GC reaction.
IgG antibody-producing plasma B cells eventually migrate from the lymph nodes to the bone marrow, where
they can survive for several months or even years. IgG antibodies are released into the plasma, where they
are detected in HI assay experiments. High levels of secreted antibodies can block antigen presentation in
lymph nodes and inhibit the GC reaction (Zhang et al., 2013). (c) Four different simulation scenarios of the
response to two doses of seasonal influenza vaccination (first shot on d0, second shot on d30). The green line
shows a response with high-levels of preexisting memory B cells. The other simulation scenarios assume
no preexisting memory and show a strong vaccine response with vaccine-induced production of memory B
cells (blue), a strong response without vaccine-induced production of memory B cells (orange), and a poor
vaccine response which is only detectable in the HI assay after the second vaccination (purple). Simulations
were performed with the parameter values summarized in Table 4.1 and as indicated in the figure legend.
Cell numbers refer to the total amount of the respective B cell population. IgG concentration refers to the
concentration in plasma, which gives rise to the HI titer measured on d0, d7, d30, and d60 (here modelled for
influenza A/California/7/2009).
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d30) depends on the amount of memory B cells that can be reactivated and on the IgG level on d30
(high levels of neutralizing IgG block the antigen and inhibit the GC reaction) (Zhang et al., 2013;
Andrews et al., 2019; Kil et al., 2019).
The actual number of activated GCs after influenza vaccination is unknown. Our model predicts that
the maximal number of GC B cells is in the order of 107 for a strong immune response and 106 for
a weaker response when neutralizing antibodies are already present. Assuming a fully activated GC
consists of 104–105 cells (Liu et al., 1991; Küppers et al., 1993), this corresponds to approximately
100–1000 activated GCs for a strong, and 10–100 for a weak response. The maximal volume of one
GC has been estimated to approximately 0.01 mL (Hollowood and Macartney, 1992). Given that
the median volume of one lymph node is 10 mL (IQR 5–21 mL) (Agrawal et al., 2017), one lymph
node might contain several hundred or up to 1000 GCs. Thus, our model predicts that influenza
vaccination could induce on the order of 1–10 lymph nodes. This seems physiologically feasible as
humans have about 20 axillary lymph nodes that drain the muscle of the upper arm in which the
influenza vaccine is injected (Carati et al., 2010).
In summary, the model is able to recapitulate different types of vaccine responses consistent with
our current understanding of the IgG-producing B cell response. Importantly, the model establishes
a link between B cell dynamics and HI antibody titers.

4.3.2 Sensitivity to GC reaction parameters

We performed a Sobol sensitivity analysis to quantify the sensitivity of the plasma IgG level to the
parameters modelling the key processes of the GC reaction (Figure 4.2a). Parameters were varied
within a physiologically reasonable range (Table S4.1). Since the normal range of activated LFs
after vaccination is unknown, we assume that at most ≈10 lymph nodes are activated as predicted
by our model. The fraction of non-fatal mutations πmut has been derived from mathematical
modelling by Shlomchik et al. and has been estimated to ≈70% (Shlomchik et al., 1998), which
approximately matches with the number of non-apoptotic centroblasts (Liu et al., 1991; Hardie
et al., 1993; Iber and Maini, 2002). Shlomchik et al. reported a very high sensitivity of their model
outcome to the number of total mutations, concluding that the true value must be very close to this
estimate. Consistent with their result, we observe a high sensitivity for πmut assuming πmut =
50–90%.
The sensitivity analysis suggests that processes involved in B cell proliferation dominate the IgG
level, especially the survival probability πsurv (Figure 4.2a). The number of GC seeding B cells
(βseed) is only a minor contributor to the final IgG levels as it is probably compensated for in the
subsequent clonal expansion. The migration of plasma B cells to the bone marrow (where B cells
can survive over several months) is mostly relevant for the long-term antibody production (>d60
post vaccination). Interestingly, our model predicts a non-monotonic dependency of IgG on the
recycling probability πmut with an optimum at 45% (Figure 4.2b). Similarly, Oprea and Perelson
predicted a non-monotonic dependency of the total affinity on the recycling probability with an
optimum at 70% (Oprea and Perelson, 1997).
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Table 4.1. Overview of model parameters. Most parameters were set to literature values or to estimated
values as indicated below. The posterior distributions of estimated parameters are shown in Figure 1.4.
Abbreviations: Ag, antigen; GC, germinal center; IgG, immunoglobulin G; LF, lymphoid follicle.

Description Symbol Value Unit Reference

Ag absorption αabs 1 d−1 MacLean et al. (2001)

Ag decay dag 0.012 d−1 Tew and Mandel (1979)

Fraction of absorbed
Ag

πabs Estimated Unitless (Figure 4.4)

Ag presentation αpr 1 d−1 Set such that AGmax
pr = 100%

reached on d4 (Liu et al., 1991; Hol-
lowood and Macartney, 1992)

Decay of presented Ag dpr 1 d−1 Set such that AGmax
pr = 100%

reached on d4 (Liu et al., 1991; Hol-
lowood and Macartney, 1992)

Activation and seeding
of GC

βseed 300 cells mL−1

d−1
Set such that≈100 cells seed GC (Tas
et al., 2016)

Differentiation to
centroblasts

βcb 4 d−1 Liu et al. (1991)

Maximal proliferation
of centroblasts

βcb
prol 4 d−1 Liu et al. (1991)

Survival probability of
centroblasts

πsurv Estimated Unitless (Figure 4.4)

Probability of non-fatal
mutations

πmut 0.7 Unitless Shlomchik et al. (1998)

Degradation of
centroblasts

dcb 0.8 d−1 Liu et al. (1994)

Differentiation to
centrocytes

βcc 2 d−1 Liu et al. (1991)

Selection of centrocytes βsel 48 d−1 Meyer-Hermann et al. (2012)

Selection probability of
centrocytes

πsel Estimated Unitless (Figure 4.4)

Recycling of
centrocytes

βrec 12 d−1 Victora et al. (2010)

Recycling probability
of centrocytes

πrec Estimated Unitless (Figure 4.4)

Degradation of
centrocytes

dcc 3 d−1 Cohen et al. (1992)

GC-limiting cell
concentration

Cgc 5 · 107 cells mL−1 Rundell et al. (1998)
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Differentiation to
plasma B cells

βplasm 4 d−1 GC B cell differentiation rate (Liu
et al., 1991)

Differentiation to
memory B cells

βmem 4 d−1 GC B cell differentiation rate (Liu
et al., 1991)

Bifurcation parameter
for differentiation to
memory/plasma B cells

πmem Estimated Unitless (Figure 4.4)

Proliferation of plasma
B cells in lymph nodes

β
plasm
prol 2.5 · 10−4 d−1 Rundell et al. (1998)

Degradation of plasma
B cells in lymph nodes

dlymph
plasm 0.05 d−1 Estimated (corresponds to a half-life

of 14d) (Macallan et al., 2005)

Degradation of plasma
B cells in bone marrow

dbm
plasm 0 d−1 Given a half-live of several years,

dbm
plasm ≈ 0 for our time scale (Ham-

marlund et al., 2017)

Activation of memory
B cells

βmem
act 2 d−1 Estimated

Proliferation of
activated memory B
cells

βmem
prol 2 d−1 Assuming memory B cell pool is not

depleted (Tangye and Hodgkin, 2004;
Fearon et al., 2001)

Plasma B cell migration
to bone marrow

βbm 0.02 d−1 Estimated

Probability of
migration to bone
marrow

πbm 0.2 Unitless Estimated

Production rate of IgG pigg 4.3 · 10−5 µg cell−1

d−1
Rundell et al. (1998); Alberts et al.
(2018)

Degradation of IgG digg 0.033 d−1 Half-life of 21d (Mankarious et al.,
1988)

Neutralization factor on
d0

κinit 1 · 10−4 Unitless Estimated

Increase in
neutralization factor

αneutr Estimated Unitless (Figure 4.4)

Total volume of
activated LFs

VLF Estimated mL (Figure 4.4)

Plasma volume Vplasm 2800 mL 40 mL per Kg body weigth (Yiengst
and Shock, 1962)

Bone marrow volume Vbm 1750 mL Hassan and El-Sheemy (2004)

Apparent IgG avidity
(for predicting HI titers
form IgG
concentrations)

Kapp
D 2 · 10−9 M Estimated (Linnik et al., 2020)
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Table 4.2. Overview of model states. Abbreviations: APCs, Antigen-presenting cells; GC, germinal center;
IgG, immunoglobulin G

Description Symbol Initial value Unit

Injected antigen AGinj 15 µg

Antigen presented by APCs AGpr 0 a.u. (%)

Activated naive B cells Bact 0 cells/mL

GC centroblasts Bcb 0 cells/mL

GC centrocytes Bcc 0 cells/mL

Selected GC B cells Bsel 0 cells/mL

Memory B cells Bmem 0 / Patient-specific* cells/mL

Long-lived plasma plasma B cells in lymph
nodes with a half-life of 14d

Blymph
plasm 0 cells/mL

Long-lived plasma B cells in bone marrow with
half-life & 1y

Bbm
plasm Patient-specific cells/mL

IgG serum antibody IgG Patient-specific µg/mL
* We compare two scenarios: with and without preexisting antigen-specific memory B cells.

As of today, the recycling probability of GC B cells remains unknown, in particular in immuno-
compromised patients. Modelling studies show that recycling is not necessary fo GC establishment
(Meyer-Hermann and Maini, 2005), and different models of GC populations suggest 30% recy-
cling (Victora et al., 2010), or 90% recycling (Meyer-Hermann et al., 2012). In practice, the
non-monotonic dependency of IgG production on πrec makes this parameter non-identifiable. How-
ever, increased recycling has been linked to an increased affinity maturation (Oprea and Perelson,
1997). We previously observed in HSCT patients that the influenza vaccine-induced increase in HI
titers is mostly explained by an increase in IgG concentrations (Linnik et al., 2020), indicating that
the increase in affinity is low compared to the increase in IgG concentration. Therefore, we assume
in the following estimation that the recycling probability is .50% in our patient population (Oprea
and Perelson, 1997).

4.3.3 Mapping of patient factors to GC reaction parameters

We previously identified the most important patient factors associated with the HI antibody titer
response in the considered patient population in a multivariable regression analysis (Chapter 2).
In the following, we summarize how we mapped each patient factor to a GC reaction process,
accounting for mechanistic hypotheses reported in the literature on how these factors might affect
the GC reaction. Specifically, we considered the following patient groups: grade of cGVHD
(none, mild, moderate, severe), immunosuppressive treatment with calcineurin inhibitors (yes or
no), IFN-λ genotype (rs8099917 TT or GT/GG), family relationship with the donor (related or
unrelated), and the concentration of lymphocytes in the blood (continuous variable).
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Figure 4.2. Sensitivity analysis. (a) Left: Sobol sensitivity index of the total and first order effect of
parameters modelling the key processes of the germinal center reaction. The sensitivity refers to the log-
transformed IgG concentration on d60 after the first vaccination. Right: Sobol sensitivity index of the total
effect on d30, d60, and d180 after vaccination. (b) Local sensitivity of the IgG concentration over time to
the recycling probability πrec. Simulations were performed with two vaccine doses (vaccination on d0 and
d30) with all initial concentrations set to 0 and model parameters πabs = 60%, πsurv = 90%, πsel = 20%,
πmem = 0%, πbm = 20%, VLF = 20 mL. All other parameters were set to the values summarized in
Table 4.1.

Chronic GVHD

We observed a positive association between cGVHD grade and antibody response in our HSCT
patient population. Patients suffering from cGVHD show elevated levels of B-cell activating
factor (BAFF), disturbed B cell homeostasis and persistent B cell activation (Sarantopoulos et al.,
2007, 2009; Greinix et al., 2008; Jacobson et al., 2014). BAFF promotes survival of B cells
(Mackay and Browning, 2002) and can increase the number of plasma B cells and enhance antibody
response (Moore et al., 1999; Do et al., 2000). The role of BAFF in germinal centers remains unclear.
However, experiments in mice suggest that BAFF inhibition has an inhibitory effect on GC formation
and antibody production (Yan et al., 2000; Mackay and Browning, 2002), and that signalling through
the BAFF receptor regulates the number of follicular B cells (Harless et al., 2001). Therefore, we
hypothesized that the cGVHD grade might affect the survival probability of centroblasts πsurv and
inferred this parameter for each cGVHD grade (πsurv0, πsurv1, πsurv2, πsurv3 for none, mild,
moderate and severe cGVHD).

Calcineurin inhibitors

Patients receiving calcineurin inhibitors, a frequently used immunosuppressive treatment to prevent
graft rejection, showed a reduced antibody response. Calcineurin inhibitors block T cell proliferation
(Hamawy, 2003) and have been shown to reduce the B cell antibody response by interfering with T
cell help (Heidt et al., 2010). Centrocytes require signals from follicular helper T cells to survive
the selection process (Turner et al., 2018). To investigate if calcineurin inhibitors could affect the
selection process, we estimated the selection probability πsel for the two patients groups (πsel0 for
patients without calcineurin inhibitor treatment and πsel1 for patients with treatment).
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IFN-λ genotype

Patients carrying the rs8099917 minor allele (GT/GG) in the IFN-λ gene IFNL3 showed a stronger
antibody response than patients carrying the major allele (TT). The same effect has been observed
in vaccinated, immunocompromised solid organ transplant patients (Egli et al., 2014b). Both
naive and memory B cells respond to IFN-λ. However, the role of IFN-λ in vaccine response
remains unknown, and seemingly contradictory experimental results have been reported: IFN-λ
boosts B cell differentiation to plasma B cells in vitro (de Groen et al., 2015; Syedbasha et al.,
2020) and has adjuvant effects in mice vaccinated against influenza (Ye et al., 2019); yet, reduced
IFN-λ expression has been observed in solid organ transplant patients carrying the minor allele and
showing stronger antibody responses (Egli et al., 2014b). As a potential solution to this paradox,
we hypothesized that patients carrying the minor allele might indeed have decreased plasma B
cell differentiation (due to lower IFN-λ levels), causing fewer B cells exiting the GC reaction and
a higher fraction of centrocytes cycling back to the dark zone to undergo additional rounds of
proliferation and selection. Assuming πrec .50%, this could explain why immunocompromised
transplant patients show lower IgG levels despite a boosting effect of IFN-λ on B cell differentiation.
We estimated the recycling probability πrec for each genotype (πrec0 for patients carrying the major
allele TT and πrec1 for patients with the minor allele GT/GG).

Lymphocyte count and family relationship with donor

We observed a strong positive effect of lymphocyte counts on antibody response, and a negative
effect for an unrelated donor. We speculated that both lymphocyte count and a family relationship
with the donor affect the number of activated GCs. The successful GC formation requires B cells
to present antigen on their major histocompatibility (MHC) II complex to cognate helper T cells
(Schwickert et al., 2011; Yeh et al., 2018). The disruption of the conjugate B-T cell interaction
results in impaired GC formation and reduced humoral immunity (Crotty et al., 2003; Qi et al.,
2008). Moreover, experimental results suggest that the MHCII-dependent selection of B cells is
more stringent for B cells entering GCs than for B cells in already established GGc (Yeh et al.,
2018). Therefore, we hypothesized that the number of lymphocytes is associated with the number
of cognate T and B cells. Patients with an unrelated donor received blood stem cells that are
potentially not well matched to their own human leukocyte antigen (HLA) gene that encodes the
MHCII protein complex. Therefore, the number of cognate cells might be reduced in this patient
group. In our model, the number of successfully formed GCs is restricted by the total volume of
activated LFs (VLF). We used the following linear model to investigate the dependency of VLF to
lymphocyte count and donor relationship:

log2 (VLF) = log2 (VLFref) + γlymph log2(xlymph)− γdonorxdonor . (4.1)

Here, xlymph is the absolute lymphocyte count in units 109 cells/L, such that log2 xlymph = 0 if
xlymph = 109 cells/L (1000 cells/µL), which corresponds to the lower limit of the normal range
and is our reference value (normal counts range from 1000 – 4800 cells/µL) (Valiathan et al., 2014).
The patient’s relationship with the donor is encoded by the dummy variable xdonor that takes the
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value 1 if patient and donor are unrelated and 0 if they are related. We estimated VLFref, γlymph,
and γdonor.

4.3.4 Estimation and quality of fit

We estimated the patient-group specific GC reaction parameters presented above along with three
unknown model parameters, i. e., the fraction of absorbed antigen πabs, the increase in neutralization
capacity at the injection site αneutr and the bifurcation parameter πmem by Bayesian inference (14
parameters in total, see Methods for details). All remaining model parameters were set to literature
values or values previously estimated from the investigated patient data (Table 4.1). We performed
the inference on antibody titers from 102 patients (Table S4.2) and four time points (d0, d7, d30,
d60). All patients received two doses of a non-adjuvanted seasonal influenza vaccine (first dose on
d0, second dose on d30, see Methods).
Importantly, patients’ vaccination history was unknown, which prevented us from correcting for
potential preexisting memory in a multivariable regression analysis (Chapter 2). The vaccine
response model allows us to investigate the effect of preexisting memory by taking the initial
memory B cell concentration (Bmem,init) into account. Therefore, we inferred Bmem,init for each
patient under the assumption that an increase in HI titer on d7 is due to an increase in IgG levels
released by reactivated memory B cells. In addition, we performed an estimation where we set
Bmem,init = 0 cells for all patients (no initial memory) to investigate to which extent antibody
responses from preexisting memory B cells affect the results. In addition, we performed an inference
where we estimated the number of activated LFs (VLF) for each patient individually, not taking
patient information into account (106 parameters in total, referred to as unconstrained estimation
with initial memory, see Methods for details).
Posterior distributions were sampled using the No-U-Turn sampler (NUTS) (Hoffman and Gelman,
2014) implemented in Stan (Stan Development Team, 2020b) with 500 warm-up iterations, 1000
sampling iterations, and six chains. No divergences were detected in any of the estimation settings.
All estimated parameters and initial concentrations had R̂ = 1, indicating that chains mixed well,
with a Bulk Effective Sample Size and Tail Effective Sample Size >2000, indicating that estimates
from posterior quantiles are reliable (Vehtari et al., 2020).
The model is able describe different responses in our patient population over the full range of
observed HI titers also when the inferred GC reaction parameters are constrained by patient factors
(Figure 4.3a and Figure S4.2). Not taking initial memory B cells into account substantially
impairs the model fit and the Bayesian information criterion (BIC) increased from 3136 to 3408
(Figure 4.3b). The difference ∆BIC = 272 is strong evidence against the model without initial
memory. In particular, the no-memory model underestimated the antibody titers in several patients,
suggesting that the antibody response by preexisting memory B cells is necessary to fully explain the
observed titer increase in these patients (Figure S4.3). The model with unconstrained parameters
yielded a slightly better fit (Figure 4.3c). However, the BIC increased from 3136 to 3350 (∆BIC
= 214) due to the larger number of estimated parameters, indicating that the model with patient
factor-specific parameters explains the data best. Thus, adding patient-specific constraints to the
model parameters substantially reduces the number of unknown parameters.

95



● ●

●

●

● ●
●

●

●
●

● ●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

● ●

●

●
● ●

●

●
● ●

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

0 7 30 60 0 7 30 60 0 7 30 60 0 7 30 60 0 7 30 60
2
4
6
8

10
12

Days after first vaccination

lo
g 2

 H
I t

ite
r

● ●

●

●

● ●
●

●

●
●

● ●

●
●

● ● ●
●

● ●

●
●

● ●

●

●

●
●

●

●

●
●

●

●
● ●

●

●
● ●

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

0 7 30 60 0 7 30 60 0 7 30 60 0 7 30 60 0 7 30 60
2
4
6
8

10
12

Days after first vaccination

lo
g 2

 H
I t

ite
r

a

b

52 0 0 1 0 0 0 0 0 0
5 6 3 0 0 0 0 0 0 0
6 2 26 7 1 0 0 0 0 0
1 2 9 34 5 3 1 0 1 0
2 0 1 7 48 10 1 2 0 1
1 1 0 1 11 25 10 5 0 0
0 0 0 0 0 5 38 11 4 0
0 0 0 0 0 2 6 25 1 1
0 0 0 0 0 0 0 3 14 1
0 0 0 0 0 0 0 0 0 6

2
3
4
5
6
7
8
9
10
11

2 3 4 5 6 7 8 9 10 11
Observed log2 HI titer

Pr
ed
ic
te
d 
lo
g 2

 H
I t
ite
r

p = 218, BIC = 3136, τ = .86

46 2 1 0 0 0 1 0 1 0
5 5 1 2 1 0 0 0 0 0
7 2 27 12 1 3 2 0 0 0
2 1 3 25 8 8 1 1 0 1
3 0 4 5 40 11 6 2 0 0
1 0 3 3 11 20 20 8 2 1
2 0 0 2 2 1 26 12 6 3
0 0 0 0 1 2 0 23 3 0
1 1 0 0 0 0 0 0 8 0
0 0 0 1 1 0 0 0 0 4

2
3
4
5
6
7
8
9
10
11

2 3 4 5 6 7 8 9 10 11
Observed log2 HI titer

Pr
ed
ic
te
d 
lo
g 2

 H
I t
ite
r

p = 116, BIC = 3408, τ = .71

55 0 0 0 0 0 0 0 0 0
10 8 1 0 0 0 0 0 0 0
1 2 29 7 0 0 0 0 0 0
1 1 7 36 5 0 0 0 0 0
0 0 2 6 50 8 0 0 0 0
0 0 0 1 10 29 10 0 0 0
0 0 0 0 0 6 39 13 4 0
0 0 0 0 0 2 7 30 1 1
0 0 0 0 0 0 0 3 15 2
0 0 0 0 0 0 0 0 0 6

2
3
4
5
6
7
8
9
10
11

2 3 4 5 6 7 8 9 10 11
Observed log2 HI titer

Pr
ed
ic
te
d 
lo
g 2

 H
I t
ite
r

p = 310, BIC = 3350, τ = .92

Data
Model

Parameters constrained by patient factors

Without initial memory With initial memory

Unconstrained parameters
(estimation of         for each 

patient individually)
VLF

c

Figure 4.3. Model fits. (a) Predicted (black) and observed (orange) HI titers for five ex-
ample patients showing different responses and antibody baseline levels (d0 titer). Predicted
HI titers were obtained by setting estimated parameters to the median value of the posterior
distributions obtained by the patient-factor constrained parameter estimation with initial memory.
The gray area indicates 95% posterior predictive intervals. For all patients, see Figure S4.2.
(b) Comparison of the quality of model fits for the patient-factor constrained parameter estimation without
and with initial memory B cell estimation. Numbers indicate total counts; p indicates the total number of
estimated model parameters and initial conditions in the respective estimation setting, BIC is the Bayesian
information criterion for 4080 observations (102 patients, 4 time points, and 10 serum dilutions for HI titer
determination), and τ indicates Kendall’s correlation coefficient for observed and predicted titers. (c) As (b)
but results show the predicted titers from an estimation where the patients factors were not taken into account
and the number of activated LFs (VLF) was estimated for each patient individually (unconstrained parameter
estimation, see Methods).
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In conclusion, the model can reflect the heterogeneous antibody titer response in our patient
population by a few patient factors, but only when the antibody response from previously acquired
memory B cells is taken into account.

4.3.5 Differences in vaccine responses can be explained by differences in GC reaction processes
and differences in preexisting memory B cells

Finally, we compared the estimated GC reaction parameters between the investigated patient groups
(Figure 4.4a and Figure 4.4b). In the estimation where we assume no initial memory for all
patients, the results qualitatively agree with the previously observed associations inferred by the
multivariable regression analysis: Patients with severe cGVHD show the highest survival probability
πsurv, which could potentially explain the stronger antibody response. However, patients with mild
or moderate cGVHD show similar πsurv as patients without cGVHD. Patients receiving calcineurin
inhibitors show a lower selection probability πsel, potentially explaining the weaker response.
Patients carrying the IFN-λ minor allele show a higher recycling probability πrec, potentially
explaining a stronger antibody response despite lower IFN-λ expression (Figure 4.4a, left). The
effect of an unrelated donor is γdonor = 1.4 (1.0 – 1.9), which means that patients with an unrelated
donor have 3- to 4-fold smaller VLF. Increase in lymphocyte count increases the total volume of
activated LFs (VLF) with γlymph = 2.3 (95% credible interval 1.6 – 2.8), meaning that a doubling
in lymphocyte count results in approximately 5-fold increase (3- to 7-fold) in VLF. This result is
unrealistic; given that the estimated reference value VLFref is approximately 25 mL (Figure 4.4b), a
patient with 4000 lymphocytes/µL is predicted to have a total volume of activated LFs of 625 mL
(225 – 1125 mL).
The results change substantially for some parameters when the antibody response by potentially
preexisting memory B cells is taken into account (Figure 4.4a and Figure 4.4b). Then, the model
predicts that patients without cGVHD and patients with severe cGVHD have similar survival proba-
bilities (≈ 80%), while patients with mild or moderate cGVHD have lower survival probabilities
(around 75% and 50%, respectively). Thus, the strong response of patients with severe cGVHD
could also be explained by previously acquired memory B cells. The difference in selection proba-
bilities vanishes when initial memory is taken into account, as well as the donor effect (γdonor ≈ 0).
This indicates that also these effects can also be explained by differences in memory B cells. The
effect of lymphocyte counts decreases to γlymph = 1.8 (1.3 – 2.3), corresponding to a 3.5-fold (2.5-
to 5-fold) increase in VGC for a doubling in lymphocyte count. The reference value VLF decreases
to approximately 20 mL. Thus, a patient with 4000 lymphocytes/µL is predicted to have VLF = 245
mL (125 – 500 mL). This effect seems to be more realistic than the value estimated before but is still
surprisingly high. Thus, the model proposes that the strong association between antibody response
and lymphocyte counts can not be fully explained by an increase in the number of activated GCs.
Taking initial memory B cells into account also affects the estimation of the other unknown model
parameters that were estimated over all patients (Figure 4.4c), contributing to the better model fit.
For instance, the parameter πabs is estimated to be higher, resulting in a shorter duration of the
vaccine-induced GC reaction compared to the estimation without initial memory. The estimated

97



0

200

400

50% 60% 70%
πabs

C
ou
nt

0
200
400
600

4e−03 6e−03 8e−03
αneutr (−)

C
ou
nt

0

500

1000

0% 20% 40% 60%
πmem

C
ou
nt

b

40% 60% 80% 100% 40% 60% 80% 100%
0

200
400
600
800

0

1000

2000

πsurv

C
ou
nt

0% 20% 40% 60% 0% 20% 40% 60%
0

200
400
600

0

1000

2000

πsel

C
ou
nt

0% 20% 40% 60% 0% 20% 40% 60%
0

200

400

0
250
500
750
1000

πrec

C
ou
nt

Chronic GVHD
None
Mild
Moderate
Severe

Treatment with  
calcineurin inhibitors

No

Yes

Interferon- 
genotype rs8099917

Major (TT)

Minor (GT/GG)

λ

Without initial memory
With initial memory

0
100
200
300
400
500

10 mL 20 mL 30 mL
VLFref (at 1000 lymphoc. µL)

C
ou

nt

0
100
200
300
400
500

1.0 1.5 2.0 2.5 3.0
Lymphocyte count effect γlymph

C
ou

nt

0
500

1000
1500
2000

−2.0 −1.5 −1.0 −0.5 0.0
Unrelated donor effect −γdonor

C
ou

nt

c Without initial memory
With initial memory

Without initial memory With initial memorya

Figure 4.4. Marginal posterior distributions of estimated model parameters for two estimation settings:
assuming no initial memory B cells for all patients (left) and with estimating patient-specific initial
memory B cell concentrations from the d7 response (right). (a) Posterior distributions of the GC B cell
survival probability πsurv by chronic graft-versus-host disease (GVHD) grade, selection probability πsel by
calcineurin inhibitor treatment, and recycling probability πrec by IFN-λ genotype. (b) Posterior distributions
for parameters affecting the total volume of activated lymphoid follicles (LFs) (VLF, see Equation 4.1). (c)
Posterior distributions of unknown model parameter that were estimated over all patients: fraction of absorbed
antigen πabs, increase in neutralization capacity at the injection site αneutr, and bifurcation parameter for
memory/plasma B cell differentiation πmem.
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value for πmem of 30% (14 – 50%) suggests that the first vaccination induced the production of
memory B cells that could be reactivated in the second vaccination (Figure 4.4c).
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Figure 4.5. Pearson correlations of posterior draws. The chain-like model structure introduces correlations
between πabs, πsurv, πsel, πrec and VLF. Because πsurv, πsel, and πrec are constrained by patient factors
and the investigated patient groups highly overlap (Figure S4.4), the patient group-specific parameters also
show a positive correlation between the groups. This allows to estimate differences between the groups (for
instance between πrec0 and πrec1) more precisely than the absolute values of the estimated parameters.

The estimation allows to infer differences between patient groups more precisely than the marginal
posterior distributions in Figure 4.4 suggest. Due to the chain-like structure of the vaccine response
model (Figure 4.1a), the absolute values of the GC model parameters πsurv, πsel, πrec, and VGC

depend on each other. For instance, an increase in πsurv could be compensated by a decrease in
πsel, πrec, or VGC, and thus have no effect on the final IgG concentration. By constraining these
parameters by patient factors, we introduced additional correlations between the patient groups,
i. e., between πsurv0, πsurv1, πsurv2, and πsurv3, as well as between πsel0 and πsel1, and πrec0 and
πrec1 (Figure 4.5). These positive correlations occur because the patient groups highly overlap
(Figure S4.4). This means that the relative differences in parameters between patient groups can
be inferred more precisely than their absolute values. For instance, πrec0 and πrec1 show a broad
marginal posterior distribution in Figure 4.4b (right). However, since both parameters are positively
correlated (Figure 4.5), the shift between πrec0 and πrec1 is not affected by the absolute values of
the other model parameters. Thus, although the marginal posterior distributions highly overlap, the
model suggests that the recycling probability for patients carrying the IFN-λ minor allele is higher
than for patients carrying the major allele also when taking antibody response by initial memory B
cells into account.
In summary, the posterior distributions confirm that the increase in antibody titers can not be fully
explained in some patients without the contribution of preexisting memory B cells. Not taking
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initial memory B cells into account results in maximal survival probability for patients with severe
cGVHD, maximal recycling probability for patients carrying the IFN-λ minor allele, very high
selection probability for patients with calcineurin inhibitor treatment and a very high lymphocyte
count effect γlymph. Therefore, we anticipate that (i) the heterogeneous antibody response in
HSCT patients is mostly explained by previously acquired memory B cells, lymphocyte count and
IFN-λ genotype, and (ii) the positive effect of cGVHD grade and the negative effects of calcineurin
inhibitors and an unrelated donor are explained by differences in previously acquired memory B
cells.

4.4 D I S C U S S I O N

To the best of our knowledge, a study that infers GC reaction parameters and memory B cell
responses directly from patient data to investigate differences in vaccine responses has not yet been
reported. Our approach combines dynamic modelling of B cell populations and clinical patient
information with statistical inference to describe the heterogeneous vaccine response in HSCT
patients with minimal parameterization. We showed that the model can recapitulate the observed
antibody titer kinetics and explain the observed differences between patient groups by previously
acquired memory B cells and a few patient factors potentially modulating the GC reaction. The
model predicts that an increase in lymphocyte count increases the number of successfully formed
GCs and potentially affects additional GC processes. For instance, lymphocyte counts could
additionally increase the selection probability; since patients with more lymphocytes have higher B
and T cell diversity, more B cells might be able to acquire antigen from FDCs and receive T cell
help. Our analysis also suggests that patients suffering from cGVHD do not have higher GC B cell
survival probabilities than patients without cGVHD, as initially hypothesized. Furthermore, our
results raise the question of whether cGHVD, treatment with calcineurin inhibitors, and a family
relationship with the donor potentially affect memory B cell acquisition. Unfortunately, we were
not able to investigate whether the differences in the amount of memory B cells can be explained by
patients’ immunization history (the annual influenza vaccine contained A/California/7/2009 already
for five/six years, see Table S4.2).
How the GC reaction depends on its environment is by far not fully understood (Turner et al., 2018).
The humoral immune response is a highly adaptive complex system and the observed differences
in our patient population could also be explained by alternative mechanisms. The low survival
probability for moderate cGVHD indicates a poor antibody response in this patient group when
patients with preexisting memory B cells are excluded. This negative effect could also be explained
by a mechanisms that were not taken into account in our model, e. g., by less antigen presentation
in lymph nodes. Our analysis suggests that the observed association between IFN-λ genotype could
be explained by different recycling probabilities, resolving the conflicting observations that IFN-λ
boosts B cell differentiation and at the same time reduces vaccine-induced antibody production
in immunocompromised transplant patients (Egli et al., 2014b; de Groen et al., 2015; Syedbasha
et al., 2020). However, it is unknown how IFN-λ affects GC B cells. Due to the non-monotonic
dependency of antibody production on recycling (Figure 4.2b), higher levels of IFN-λ and less
recycling could also lead to a higher antibody production if recycling is more dominant than we
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assumed in our immunocompromised population (πrec >50%). The effect of IFN-λ in healthy and
immunocompromised populations is poorly understood, and more studies on IFN-λ are needed
to understand its role in vaccine response. And finally, the investigated patient factors could also
influence several GC reaction processes in parallel.
In this study, only patients’ antibody titers along with clinical patient information were included. In
principle, the model can incorporate additional data on different B cell populations, for instance,
memory B cells. However, detecting antigen-specific B cells is tedious, especially in larger studies,
and we therefore inferred the amount of influenza-specific memory B cells indirectly from antibody
titer kinetics. However, IgM antibodies released by short-lived plasmablasts could also influence
the antibody titer on d7. Since IgM has a lower serum concentration than IgG (Gonzalez-Quintela
et al., 2008), we assumed that its contribution is negligible compared to IgG. Longitudinal data of
IgG concentrations with more time points (e.g., measured in ELISA experiments) could improve
the estimation of initial memory B cells. In addition, patients’ vaccination history could be included
as a model variable determining the amount of previously acquired memory B cells similar to our
implementation of a dependency between absolute lymphocyte count and total volume of activated
LFs (Equation 4.1).
Our approach has several limitations. The total volume of activated LFs defines only an upper
bound for the total number of activated GCs. Therefore, it does not accurately reflect the patients’
ability to initiate the GC reaction. Furthermore, many parameters extracted from the literature were
derived from mathematical models or experiments in mice and might not be directly applicable to
influenza vaccination in humans. Another limitation is that we model the same GC dynamics in all
activated GCs. GC processes could also vary within one patient, depending on the diversity and the
number of GC seeding B cell clones. However, imaging and sequencing data show that early GCs
are highly diverse (Tas et al., 2016). The homogeneous GC is the result of clonal expansion of a
few clones, either randomly selected or based on their affinity (Tas et al., 2016). If most activated
GCs were seeded by highly diverse B cells, we can assume that the estimated GC reaction model
parameters are averages that represent the GC reaction in one patient.
We did not model affinity maturation and neglected the contribution of a potential increase in IgG
avidity to the increase in HI titer. Reduced affinity maturation is likely in immunocompromised
populations (Ogonek et al., 2016), and we previously observed in HSCT patients that an increase in
influenza vaccine-induced HI titers is mostly explained by an increase in IgG concentrations (Linnik
et al., 2020). Thus, we assumed that the vaccine-induced increase in affinity is low compared to
the increase in IgG levels. Kuraoka et al. observed that GC B cell selection is more permissive
in response to complex antigens, such as influenza hemagglutinin, compared to simple haptens,
often used to study GC responses (Kuraoka et al., 2016). Moreover, simulation studies suggest that
increased antigen complexity leads to reduced affinity maturation (Murugan et al., 2018). Whether
the poor affinity maturation in HSCT patients is linked to the compromised immune system or to the
antigen (or both) is unclear. Adding affinity maturation into the model (and taking its dependency
on the recycling probability into account) could provide additional insights on affinity maturation in
HSCT patients. However, additional data, either on patients’ IgG concentration or IgG avidity, has
to be included to disentangle their contributions to the HI titer.
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As of today, little is known about the heterogeneity of GCs in vaccinated patient populations, since
GC measurements are hardly accessible (Turner et al., 2020). Our approach that connects clinical
patient data with B cell population dynamics via mechanistic hypothesis and checks their compa-
tibility with observed HI titers could help to identify important differences between patient groups
and to better understand the immune response to influenza vaccination in immunocompromised
patients.

4.5 M E T H O D S

4.5.1 Vaccine response model

Based on published work (Rundell et al., 1998; Iber and Maini, 2002), the model describes in
eleven ordinary differential equations (ODEs) key processes of the vaccine-induced IgG antibody
response, i. e., (i) antigen uptake and presentation in lymph nodes, (ii) antigen-dependent clonal
expansion of centroblasts, (iii) T-cell dependent selection of centrocytes, and (iv) differentiation to
plasma and memory B cells.
Injected antigen moves from the subcutaneous tissue to the draining lymph nodes in soluble form
or through transportation by dendritic cells (Cavanagh and Von Andrian, 2002; Catron et al., 2004).
In lymph nodes, the antigen is presented by antigen-presenting cells (APCs, here dendritic cells and
follicular dendritic cells) to B cells (Itano et al., 2003). We model vaccine antigen absorption and
antigen presentation by APCs phenomenologically. The injection site absorbs only a fraction of
injected antigen (πabs), the rest is slowly degraded (Tew and Mandel, 1979):

AGinj

dt
= − AGinj ·

[
πabsαabs + (1− πabs) dag

]
(4.2)

The antigen absorption by the injection site is much faster than the antigen processing and presen-
tation by APCs. We can therefore assume quasi-steady state for the amount of absorbed antigen:
AGss

abs = πabs AGinj
αabs
dag

, where αabs is the absorption rate constant of the injected antigen and

dag the degradation rate constant of absorbed antigen. Then, antigen processing and presentation
by APCs can be modelled by the following Hill equation:

AGpr

dt
=

αpr AGss
abs

1 + (κ · IgG)2 + AGss
abs

− dpr AGpr (4.3)

The term (κ · IgG)2 models the neutralization of antigen by IgG through competitive inhibition
(Zhang et al., 2013). Here, κ is an unknown conversion factor estimated from data. Equations 4.2
and 4.3 are also known as the indirect response model often used to model drug uptake (Mager and
Kimko, 2016). The advantage of this phenomenological model is that we can tune the duration of
antigen presentation in germinal centers by only one parameter (πabs, see Figure 4.6a).
To capture the observed response to the second vaccination (Figure S4.2), we had to include the
contribution of other antibodies than IgG that can neutralize (or opsonize) the injected vaccine
antigen at the injection site, such as IgA (Davis et al., 2020). We do not explicitly model the
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production of IgA. Instead, we assume that the IgA concentration is correlated with IgG (Externest
et al., 2000) and model its contribution by adding a time-dependent increase in κ:

κ

dt
= αneutr.

The initial value for κ can be inferred from data based on the response to the first vaccination (d30)
and αneutr from the response to the second vaccination (d60).
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Figure 4.6. Antigen presentation in lymph nodes. (a) The model parameter πabs controls the duration of
antigen presentation in lymph nodes and thus the duration of the GC reaction. (b) The model parameter αneutr
models the contribution of IgA (and potentially other neutralizing factors) to the increase in the neutralization
capacity after vaccination, that is not explained by the increase in IgG concentration. Arrows in cyan indicate
the time point of vaccinations (d0 and d30). We estimate both πabs and αneutr.

Next, B cells are activated by APCs and helper T cells and eventually enter the GC reaction. We
assume that the amount of B cells which recognize the vaccine antigen is not a limiting factor
because 50 – 200 B cell clones suffice to seed a GC (Tas et al., 2016; Yeh et al., 2018). This
corresponds to approximately βseed ∈ [100, 1000] cells mL−1 day−1 in our model and our
sensitivity analysis shows that the GC reaction is relatively insensitive to variability in this range
(Figure 4.1d). We assume βseed = 300 cells mL−1 day−1 for all patients:

Bact

dt
= βseed AGpr − βenterBact (4.4)

When activated B cells enter the GC reaction (with rate constant βenter), they differentiate to
centroblasts (Bcb), which proliferate, undergo somatic hypermutation, and differentiate to centro-
cytes (Bcc). Only centroblasts with non-fatal mutations (πmut) and that receive survival signals
through their BAFF receptor (πsurv) clonally expand with maximal proliferation rate βcb

prol, and
differentiate further to centrocytes with differentiation rate constant βcc; all other cells undergo
apoptosis (Mackay and Browning, 2002). Centroblasts require restimulation with antigen to con-
tinue proliferation; when no antigen is present anymore, the GC dissolves (Gatto and Brink, 2010;
Tam et al., 2016; Pikor et al., 2020). Therefore, the proliferation rate depends on the amount of
presented antigen AGpr. The maximal proliferation βcb

prol is only reached when AGpr = 100%
(Figure 4.6a). The differentiation rate constant βcc remains constant over the course of the GC
reaction. In summary, the dynamics of centroblasts is given by:
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Bcb
dt

= βenterBact + βcb
prolBcbπmutπsurv AGpr

(
1− Bcb + Bcc

Cgc

)
− dcbBcb

[
(1− πmut) + πmut (1− πsurv)

]
− βccBcbπmutπsurv

+ βrecBselπrec (4.5)

The parameter Cgc accounts for the physical size constrain of the GC (Rundell et al., 1998) and
βrec is the recycling rate constant of positively selected centrocytes that return to the dark zone
(Victora et al., 2010).
After capturing antigen from FDCs, centrocytes compete for interaction with follicular helper T
cells to receive additional survival signals (Turner et al., 2018; Woodruff et al., 2018). Only a
fraction of centrocytes survive this selection process (πsel), the rest is degraded:

Bcc

dt
= βccBcbπmutπsurv − Bcc

[
βselπsel + dcc (1− πsel)

]
(4.6)

One fraction of selected B cells return to the dark zone of the GC and undergo additional rounds
of proliferation (πrec), the other fraction differentiate further to either memory B cells (πmem) or
plasma cells (1-πmem):

Bsel
dt

= βselBccπsel − βrecBselπrec

− Bsel

[
βmem (1− πrec)πmem + βplasm (1− πrec) (1− πmem)

]
(4.7)

Memory B cells that are activated by presented antigen differentiate directly to plasma cells,
inducing a rapid antibody response:

Bmem

dt
= βmemBsel (1− πrec)πmem + Bmem AGpr

(
βmem

prol − βmem
act

)
(4.8)

Given our time-scale of 60 days post vaccination, we assume that, once established, the memory
B cell pool remains constant (Tangye and Hodgkin, 2004; Fearon et al., 2001). Thus, activated
memory B cells proliferate with proliferation rate constant βmem

prol = βmem
act to ensure that the

memory B cell pool is not depleted.
IgG-producing plasma B cells in the lymph nodes (Blymph

plasm ) proliferate with rate constant β
plasm
prol or

eventually migrate to the bone marrow (Bbm
plasm) with migration probability πbm and migration rate

constant βbm (Davis et al., 2020):
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Blymph
plasm

dt
= βmem

act Bmem AGpr + βplasmBsel (1− πrec) (1− πmem)

+ β
plasm
prol Blymph

plasm (1− πbm)

− Blymph
plasm

[
βbmπbm + dlymph

plasm (1− πbm)
]

(4.9)

Bbm
plasm

dt
= βbmBlymph

plasm πbm
VLF

VBM
− dbm

plasmBbm
plasm (4.10)

We assume that only the environment of the plasma B cell determines its half-life (dlymph
plasm and

dbm
plasm). B cells resident in the lymph node or blood have a half-life in the order of several weeks

(Macallan et al., 2005), while bone marrow B cells (Bbm
plasm) can have half-lives in the order of

months or even years and are thus responsible for the long-term antibody production (Hammarlund
et al., 2017).
Finally, IgG is released into the plasma, where it is quantified in HI assay experiments:

IgG
dt

=
pigg

VPlamsa

(
Blymph

plasm VLF + Bbm
plasmVBM

)
− digg IgG (4.11)

Here, pigg is the IgG production rate in units µg cell−1 day−1, digg the IgG degradation rate

constant, Blymph
plasm VLF the total number of plasma cells in the lymph nodes, Bbm

plasmVBM the total
number of plasma cells in the bone marrow and VPlasma the plasma volume. An illustrative
simulation showing the influence of the parameters modelling the key processes of the GC reaction
on the plasma IgG concentration is shown in Figure S4.1.

4.5.2 Sobol sensitivity analysis

We analysed the global sensitivity of the IgG response to the key processes of the GC reaction
(summarized in Table S4.1) using a Sobol sensitivity analysis (Saltelli et al., 2004). The Sobol
sensitivity analysis quantifies the contribution of model inputs on a model output using the following
variance decomposition: Given p model inputs (here the investigated model parameters), the total
variance V(log(IgG)) in model output (here the log-transformed IgG concentration) can be
decomposed as:

V(log(IgG)) = ∑
i

Vi + ∑
i

∑
j>i

Vij + . . . + V12...p ,

where Vi = V(E(log(IgG)|xi)) is the variance with respect to the distribution of parameter xi,
Vij = V(E(log(IgG)|xi, xj))−Vi −Vj is the second order interaction term describing the effect
of xi and xj not captured by the first order terms Vi, Vj, and so on. The relative contribution of
each term to the unconditional variance V(log(IgG)) quantifies the sensitivity of the considered
parameter. The first order Sobol sensitivity index is defined as:
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Si =
Vi

V(log(IgG))
.

The total contribution of xi is the sum of all terms in the variance decomposition that include xi.
The total contribution to variance V(log(IgG)) due to all factors but xi is denoted by x−1. Then,
the total Sobol sensitivity index for xi is given by:

ST
i =

V(log(IgG))−V(E(log(IgG)|x−1))

V(log(IgG))
.

Sobol sensitivity indices were determined using a Monte Carlo estimation (Jansen, 1999; Saltelli
et al., 2010) implemented in the R package sensitivity (Iooss et al., 2019) with n = 10000
samples and 10 bootstrap replicates for estimating confidence intervals. We considered p = 7
model parameters sampled within a physiologically reasonable range (Table S4.1). All initial
concentrations were set to 0 (no preexisting plasma/memory B cells). All other model parameters
were set to values summarized in Table 4.1.

4.5.3 Patient data

We performed the inference on HI titers measured against influenza A/California/7/2009 from
102 HSCT patients and four time points (d0, d7, d30, d60) (data set presented in Chapter 2). All
patients were vaccinated with a non-adjuvanted, subunit seasonal influenza vaccine on d0 and d30
by intramuscular injection. The original data set contained 135 HSCT patients; however, we had
to exclude 33 patients due to missing values (4 patients with missing cGVHD grade, 6 patients
with missing HI titers, 12 patients with missing lymphocyte count). We choose the complete case
analysis instead of missing value imputation because the investigated associations showed robust
results on random data subsamples (Figure S2.7 in Chapter 2), and pooling posterior distributions
from a couple of imputed data sets does not guarantee reliable posteriors (Zhou and Reiter, 2010).
For patients’ characteristics, see Table S4.2.

4.5.4 Linking IgG antibody concentrations to HI antibody titers

To link the IgG concentrations predicted from the vaccine response model to the observed HI titers,
we used a previously established biophysical model of the HI assay (Linnik et al., 2020) (presented
in Chapter 3). In brief, the HI titer is determined as follows: a serum sample with an unknown
antibody concentration is serially diluted, and a constant amount of influenza virus and animal red
blood cells (RBCs) is added to each dilution. If no influenza-specific antibodies are present (or not
enough), the virus cross-links RBCs to macroscopic aggregates (hemagglutination) (Hirst, 1941).
However, if antibodies recognize the influenza virus and block the binding, hemagglutination is
prevented (hemagglutination inhibition). The dilution factor of the last serum dilution that can still
fully inhibit hemagglutination is the HI titer (WHO, 2002).
The HI assay model predicts the inhibition probability for each dilution from a given serum IgG
concentrations and apparent IgG avidity Kapp

D . Since we previously inferred for a subset of the
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investigated HSCT patient population (n = 43) that the vaccine-induced increase in HI titers is
mostly explained by an increase in IgG concentrations (Linnik et al., 2020), we assumed that the
increase in avidity is small compared to the increase in IgG and set the apparent IgG avidity to the
estimated median value of 2 nM for all patients and time points (Linnik et al., 2020).
To speed up computation, we approximated the solution of the HI model by a superposition of two
generalized logistic functions:

y =
p1

(1 + p2 exp(−p3x))1/p4
+

1− p1

(1 + p5 exp(−p6x))1/p7
. (4.12)

Here, x = log(IgG)− log(Kapp
D ) and y is the log-transformed and normalized inhibition proba-

bility predicted by the HI model. Approximation and model show excellent agreement over all IgG
concentrations and a range of IgG avidites (Figure 4.7).
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Figure 4.7. Approximation of the biophysical model of the HI assay. (a) Inhibition probabilities obtained
by the HI model vs by approximation (Equation 4.12) for a large range of IgG concentrations (0 – 4 · 104

µg/mL). (b) Histogram of the residuals for the results shown in (a).

4.5.5 Inference

We estimated the initial concentrations for antigen-specific IgG (IgGinit), long-lived plasma B
cells in bone marrow (Bbm

plasm,init) and memory B cells (Bmem,init) for each patient along with 14
parameters (summarized in Figure 4.4). All other initial concentrations were set to 0 cells/mL and
all remaining parameters were set to the values summarized in Table 4.1.
For each patient i, IgGinit,i was estimated using a log-normal prior centered at µigg,i, which is the
IgG value predicted by the HI assay model from the patient’s prevaccination titer (d0 titer) for an
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apparent IgG avidity of 2 nM. The log standard deviation σigg = 0.1 accounts for the uncertainty in
IgG concentration due to the discretization in HI titer measurements:

IgGinit,i ∼ Lognormal(µigg,i, σ2
igg) .

Then, Bbm
plasm,init is simply given by the steady-state solution:

Bbm
plasm,init,i =

digg IgGinit,iVPlasma

piggVBM

The estimation of Bmem,init is based on the assumption that the observed HI titer response on d7 is
determined by IgG released by memory B cells, while IgM released by short-lived plasmablasts is
neglectable. We used a long-normal prior with a large log standard deviation (σmem = 1):

Bmem,init,i ∼ Lognormal(µmem,i, σ2
mem),

where µmem,i is the number of plasma cells needed to achieve the observed increase in HI titer on
d7 in patient i (µmem,i = 0 cells, if no increase from d0 to d7 is observed).
To take into account that survival probabilities πsurv,n (n = 0, 1, 2, 3) are most likely above 50%
(Liu et al., 1991; Hardie et al., 1993), while selection probabilities πsel,m and recycling probabilities
πrec,m (m = 0, 1) are below 50% (Tas et al., 2016; Oprea and Perelson, 1997), we used appropriate
Beta priors. We further assumed that the absolute volume of activated LFs at a lymphocyte count
of 1000 cells/µL corresponds to approximately 1–2 activated lymph nodes (Agrawal et al., 2017),
and used a log-normal prior centered at 20 mL for VLFref. For the effect of lymphocyte counts and
donor family relationship, we used broad uniform priors. Finally, given patient’s cGVHD grade
(encoded by the 4-dimensional design vector xgvhd,i), calcineurin inhibitor treatment (encoded
by the dummy variable xinh,i ∈ {0, 1}), IFN-λ genotype (xlambda,i ∈ {0, 1}), and donor family
relationship (dummy variable xdonor,i ∈ {0, 1}), as well as patient’s absolute lymphocyte count
xlymph,i (continuous variable), the generative model is given by:

πsurv,n ∼ Beta(10, 2) , n = 0, 1, 2, 3

πsel,m ∼ Beta(4, 20) , m = 0, 1

πrec,m ∼ Beta(3, 10) , m = 0, 1

VGCref ∼ Lognormal(log(20), 0.152)

γlymph ∼ Uniform(1, 10)

γdonor ∼ Uniform(1, 10)

πabs ∼ Lognormal(log(0.6), 0.052)

αneutr ∼ Lognormal(log(5 · 10−3), 0.12)

πmem ∼ Beta(2, 10)
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πsurv,i = xT
gvhd,i

(
πsurv0 πsurv1 πsurv2 πsurv3

)T

πsel,i = (1− xinh,i)πsel0 + xinh,iπsel1

πrec,i = (1− xlambda,i)πrec0 + xlambda,iπrec1

log2 (VLF,i) = log2 (VLFref) + γlymph log2(xlymph,i)− γdonorxdonor,i

IgGij = f (IgGinit,i, Bbm
plasm,init,i, Bmem,init,i, πsurv,i, πsel,i, πrec,i, VLF,i, πabs, αneutr, πmem, tj)

Pijk = g(IgGij, Kapp
D , dilutionk)

Yijk ∼ Bernoulli(Pijk)

Here, IgGij is the plasma IgG concentration of patient i at time point j predicted by the vaccine
response model (denoted by f ), Pijk is the corresponding hemagglutination inhibition probability
for serum dilution step k and Kapp

D = 2 nM predicted by the HI assay model (denoted by g), and
Yijk is an indicator variable which takes the value Yijk = 1 if hemagglutination inhibition has
been observed and Yijk = 0 otherwise. The full likelihood is given by the product of Bernoulli
likelihoods over all patients, time points, and dilution steps:

∏
ijk

P
Yijk
ijk · (1− Pijk)

(1−Yijk)

We refer to the estimation described above as the constrained estimation with initial memory as
model parameters are constrained by patient factors, and we estimate Bmem,init,i for each patient.
For comparison, we performed the same estimation but with Bmem,init,i = 0 cells (i. e., assuming no
initial memory B cells) for all patients. In addition, to compare the model fits from the constrained
estimation to model fits where parameters are not constrained by patient factors (unconstrained
estimation with initial memory), we performed a slightly modified estimation using the following
priors and parameters:

VGC,i ∼ Lognormal(log(20), 22)

πrec ∼ Beta(3, 10)

πabs ∼ Lognormal(log(0.6), 0.052)

αneutr ∼ Lognormal(log(5 · 10−3), 0.12)

πmem ∼ Beta(2, 10)

πsurv = 0.9

πsel = 0.2

In this setting, the total volume of activated LFs is estimated for each patient individually, πrec is
estimated over all patients, and πsurv and πsel are set to constant values to ensure convergence.
The rest is identical to the constrained estimation.
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Posterior distribution were sampled using the No-U-Turn sampler (NUTS) (Hoffman and Gelman,
2014) implemented in Stan (Stan Development Team, 2020b) with 500 warm-up iterations, 1000
sampling iterations, and six chains. Processing of results was performed in R (R Core Team, 2019)
using the packages CmdStanR (Gabry and Češnovar, 2020) and RStan (Stan Development Team,
2020a).

4.5.6 Data and code availability

The model is implemented in R and Stan. All source files used in this study are available on GitLab
(https://gitlab.com/csb.ethz/bcell-model). The patient data are available at https://gitlab.com/csb.ethz/hsct-
study. (Both repositories will be made public upon publication.)

4.6 AU T H O R C O N T R I B U T I O N S

JL, JS and AE designed the study. JL and JS developed the model. JL implemented the model and
performed the analysis. JS and AE acquired funding and supervised the project. JL wrote the first
draft of the manuscript, and JS commented on the final version.
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We thank Simon Dirmeier for helping with the initial implementation of the model in Stan and
Hans-Michael Kaltenbach for valuable discussions. AE, JS and JL acknowledge support by an
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4.8 S U P P L E M E N TA RY TA B L E S

Table S4.1. Model parameters and parameter distributions considered in the Sobol sensitivity analysis.

Description Symbol Sampling distr. Reference

Activation and seeeding of GC βseed Uniform(100, 1000)
cells mL−1 d−1

≈ 50 – 200 cells seed GC (Tas
et al., 2016)

Total volume of activated LFs VLF Uniform(0.1, 200)
mL

Hollowood and Macartney
(1992); Agrawal et al. (2017)

Survival probability of centroblasts πsurv Uniform(0.5, 1) (Mackay and Browning, 2002)

Selection probability of centrocytes πsel Uniform(0.01, 0.5) (Woodruff et al., 2018)

Recycling probability of centrocytes πrec Uniform(0.01, 0.99) (Victora et al., 2010)

Bifurcation parameter for differentiation to
plasma/memory B cell

πmem Uniform(0, 0.5)

Migration probability to bone marrow πbm Uniform(0, 1)
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Table S4.2. Characteristics of hematopoietic stem cell transplant patients. Abbreviations: IQR, interquar-
tile range; cGVHD, chronic graft-versus-host-disease; IFN, interferon; HI, hemagglutination inhibition.

Variable Count (%) or median (IQR) [range]

Male 58 (57%)

Female 44 (43%)

Age in years 55 (46, 63) [22, 74]

Time after transplantation in years 4 (2, 7) [1, 25]

Recruited in influenza season 2014/15 42 (41%)

Recruited in influenza season 2015/16 60 (59%)

No cGVHD 44 (43%)

Mild cGVHD 21 (21%)

Moderate cGVHD 17 (17%)

Severe cGVHD 20 (20%)

No treatment with calcineurin inhibitors 63 (62%)

Treatment with calcineurin inhibitors 39 (38%)

IFN-λ genotype rs8099917 (TT) 64 (63%)

IFN-λ genotype rs8099917 (GT/GG) 38 (37%)

Absolute lymphocyte count (109cells/L) 1.7 (1.1, 2.3) [0.3, 7.5]

Related donor 54 (53%)

Unrelated donor 48 (47%)

No HI titer increase on d7 63 (62%)

HI titer increase on d7 39 (38%)

with inferred Bmem on d0 (107 cells) 5.1 (1.4, 13.0) [0.2, 131.4]
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4.9 S U P P L E M E N TA RY F I G U R E S
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Figure S4.1. Effect of parameters modelling the key processes of the GC reaction on plasma IgG
concentration. Simulations were performed with two vaccine doses (vaccination on d0 and d30) and model
parameters πabs = 65%, πsurv = 90%, πsel = 20%, πrec = 30%, πmem = 10%, πbm = 20%, VGC = 20
mL or as indicated in the figure legends. All other parameters were set to the values summarized in Table 4.1.
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Figure S4.2. Model fit for the patient-factor constrained estimation with initial memory. Data show
predicted (black) and observed (orange) HI antibody titers in 102 HSCT. The gray area indicates 95%
posterior predictive intervals.
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Figure S4.3. Model fit for the patient-factor constrained estimation without initial memory. Data
show predicted (black) and observed (orange) HI antibody titers in 102 HSCT. The gray area indicates 95%
posterior predictive intervals. The model poorly describes the observed titer responses.
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5
C O N C L U D I N G R E M A R K S A N D O U T L O O K

We presented three mathematical models for analysing the immune response to influenza vaccination
and how they can be applied in combination to characterize the vaccine response in a patient
population based on easily accessible measurements and clinical record information. We especially
focused on overcoming limitations in the evaluation of HI titers: their analysis for inferring
associations with patient factors, their relationship to antibody concentration and avidity, and how
the gap between immunobiological models and clinical observations could be addressed. However,
some important aspects of vaccine-induced immunity were not covered, and several open questions
remain to be answered in further studies.

5.1 S E Q U E N T I A L M O D E L S F O R T I T E R R E G R E S S I O N

In Chapter 2, we showed that the common approach to dichotomize HI titers based on seroconver-
sion and seroprotection cut-offs unnecessarily neglects the full range of observed HI titers when
comparing patient groups. Effects inferred by sequential logistic regression and binary logistic
regression can be both interpreted as a shift in the unobserved antibody concentration (or, more
precisely, in neutralizing activity if a shift in antibody avidity also contributes to the difference
in HI titers). Consistent with this interpretation, they yielded qualitatively similar results but
regression on HI titers increased the precision in estimated effects due to the higher resolution in
patients’ underlying antibody concentration. However, the proportional odds assumption, i. e., that
the inferred effects (β in Equation 2.2) do not depend on the HI titer level, could be violated if
saturation effects in antibody responses decrease the difference in concentrations between compared
patient groups with increasing HI titer. In this case, the general sequential model that accounts for
category-specific effects (βk) would be more appropriate (Fahrmeir et al., 2007). We presented
only a first case study on the application of sequential models to HI titers. Sequential models are
not yet established in seroepidemiological studies in humans, and additional studies investigating
their limitations and applicability to different HI titer data sets are needed. Of particular interest
would be to investigate when the proportional odds assumption is violated, whether the model can
be further simplified by assuming that all threshold parameters (θk, Equation 2.2) must have the
same distance between each other (because the serum samples are serially diluted), or whether the
thresholds show a nonlinear behavior due to a detection limit that could be eventually accounted
for. In addition, future studies could investigate sequential models in a systematic manner, e.g., in
simulation studies, to evaluate their performance with respect to power, bias and precision (Morris
et al., 2019), and how they perform in comparison to ordinal regression models that have been
previously proposed for analysing HI titers (Capuano et al., 2007).
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5.2 A M E C H A N I S T I C M O D E L F O R H I A S S AY S

The biophysical model of the HI assay presented in Chapter 3 establishes the first reported quantita-
tive relationship between IgG concentration, avidity, and HI titer. The model explains why log2 HI
titers >13 are seldom observed as such high titers would require avidities in the fM range (<0.01
nM), and predicts a yet unknown property of the HI assay: for very high avidities (<0.03 nM), the
assay only detects changes in IgG concentration. We further showed that the model can be applied
to infer avidities from IgG concentrations and HI titers and thereby refine the analysis of antibody
responses. We focused on IgGs due to their major role in immunity against influenza and because
they constitute the majority of serum antibodies (Schroeder and Cavacini, 2010). However, early
no-memory antibody responses are dominated by IgMs, and when basal IgG levels are low, they
could contribute to the observed HI titer. Since IgGs released by reactivated memory B cells and
IgMs released by short-lived plasmablasts peak both approximately at the same time (one week
after antigen exposure) (Krammer et al., 2018), accounting for IgMs in serum might be necessary in
some cases to properly infer memory B cell responses from HI titer response kinetics. Therefore, it
would be useful to investigate if the neutralizing activity of IgMs could be integrated into the model.
Furthermore, we focused on influenza H1N1 as this influenza subtype is well characterized in the
literature. Since we do not know which influenza strain might become the next pandemic strain,
it is worth exploring whether the HI model could be extended to influenza H3N2 and B viruses.
Although these influenza viruses are less well characterized, our model could serve as a starting
point and perhaps be calibrated based on antibody concentration, avidity and HI titer measurements
for H3N2 and B strains.

5.3 T O WA R D S A B E T T E R U N D E R S TA N D I N G O F I M M U N E R E S P O N S E DY N A M I C S

I N PAT I E N T P O P U L AT I O N S

The HI model closes the gap between immunological models describing B cell dynamics and HI
titers obtained in vaccine studies. This enabled us to directly infer differences in memory B cell
responses and GC processes from measured HI titers (Chapter 4). An important result of this
chapter is that the previously inferred associations between cGVHD, calcineurin inhibitors, and
donor family relationship with antibody response could be explained by differences in previously
acquired memory B cells, either due to (i) differences in vaccination history or (ii) differences in
memory B cell production. In both cases, previous vaccinations or vaccination outcomes would be
the main determinant of the vaccine response in the investigated influenza season. Specifically, it
suggests that either (i) repeated seasonal vaccinations can induce memory and boost the antibody
response in HSCT patients, or (ii) some patient groups respond differently to repeated vaccination.
This is a clinically relevant aspect that should be further investigated. For instance, previous vaccine
studies in HSCT patients reported no significant effect of cGVHD on vaccine response (Pauksen
et al., 2000; Issa et al., 2011; Engelhard et al., 2011; Gueller et al., 2011; Fukatsu et al., 2017), or a
negative effect (Mohty et al., 2011; Dhédin et al., 2014; Roll et al., 2012). If the positive effect of
cGVHD in our patient cohort is linked to a greater number of previous vaccinations in patients with
cGVHD (especially with severe cGVHD), similar vaccination schedules could potentially improve
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vaccine responses also in other cGHVD patients. Effective vaccination strategies for cGVHD
patients are not sufficiently explored and not well established, mostly because of the low number of
patients in most vaccine studies (Hilgendorf et al., 2011).
Another interesting finding is that clinical patient information, pre-filtered by statistical inference
of associations between patient factors and HI titers (Chapter 2), and integrated into a dynamic B
cell model via mechanistic hypotheses, is able to explain the heterogeneous HI titer response with
minimal model parameterization (Chapter 4). Next, it would be relevant to quantify the contribution
of newly generated plasma cells vs. reactivated memory B cells to the observed HI titer responses.
We also want to test how well the model describes the data only by reactivated memory B cells
(setting VLF = 0 for all patients, Equation 4.1). Furthermore, the strong association between
lymphocyte count and antibody response has to be investigated in more detail. A lymphocyte count
dependency could be implemented for additional GC reaction processes, e.g., T-cell dependent
selection, to investigate whether the inferred differences in GC reaction processes lie within a
physiologically reasonable range or whether the strong association between lymphocyte count and
HI titers must be explained by alternative mechanisms not captured by our model structure. We
also did not further investigate the correlations between the inferred parameters and whether some
patient groups exhibit stronger compensatory effects than others.
Importantly, we did not investigate the long-term antibody production (>60d post vaccination)
determined by bone marrow plasma cells (BMPCs). The migration kinetics of plasma cells to the
bone marrow is not well characterized, and until recently, it was unclear with which magnitude and
what half-life BMPCs occur after influenza vaccination; Davis et al. detected at four weeks after
influenza vaccination an increase in influenza-specific BMPCs in healthy individuals (Davis et al.,
2020). The newly-generated BMPCs were derived from preexisting memory cells, showing that
vaccination did not induce new BMPC clones. The BMPC levels mostly returned to pre-vaccination
levels after one year. Therefore, we would like to examine how long-term immunity is associated
with patient factors and preexisting memory B cells.
To better understand the vaccine response in a patient population in general, it is essential to identify
which processes can be assumed to be very similar in the investigated population (population
parameters), which processes are modulated by patient factors (group-specific parameters), and
which processes have to be inferred for each patient individually (patient-specific parameters),
such as the reactivation of previously acquired memory B cells. More data on influenza vaccine-
induced GC and B cell dynamics is needed to identify sources of heterogeneity. Since GCs are
hardly accessible in experiments, little is known about their variability in humans. Mathematical
models could help to identify the most sensitive parameters for the research question at hand.
Experimentalists could then decide which parameters could be established by measurement and
which parameters would need to be inferred statistically.

5.4 N E W C O R R E L AT E S O F P ROT E C T I O N

A critical aspect of vaccine-mediated protection that we have not covered is the vaccine-induced
memory B cell and antibody diversity. The inferred avidity by the HI model (Chapter 3) refers
to the apparent dissociation constant over all neutralizing IgGs and we do not know whether the

119



neutralization activity arises from only a few influenza-specific B cell clones (oligoclonal), or
whether vaccination induced a broad response with antibodies targeting different epitopes with
different HA-binding avidities (polyclonal). Since narrow vaccine responses can lead to poor
vaccine effectiveness, understanding how broad vaccine responses emerge is of great importance.
In recent years, promising high-throughput methods for measuring antibody affinities have been
developed, enabling to characterize antigen binding of thousand of antibody variants in parallel
(Fowler et al., 2014; Adams et al., 2016). More sophisticated models of GC populations have been
proposed to explain how antigen dosage, antigen complexity, and vaccine composition (monovalent
vs. polyvalent) affect affinity maturation and clonal diversity (Chaudhury et al., 2014; Childs
et al., 2015; Wang et al., 2015; Wang, 2017; Papa et al., 2017; Murugan et al., 2018; Molari et al.,
2020). These models distinguish between naive and memory B cells recruited to GCs, account
for stochastic events during somatic hypermutation and selection, and consider B cell competition
for antigen across neighboring GCs (Schwickert et al., 2007). A simulation study on malaria
vaccination proposed that the administration of polyvalent vaccines favors cross-reactive antibodies
(Chaudhury et al., 2014). However, modelling studies and experiments in mice on vaccination with
HIV (human immunodeficiency virus) envelope proteins suggest that sequential immunization with
one antigen type at a time (at a 2-week interval) induces cross-reactive antibody more effectively
than the polyvalent cocktail approach (Wang et al., 2015). Several aspects of clonal diversity in
GCs are not yet understood, for instance, how GCs respond to several antigen variants at once,
to which extent preexisting memory B cells contribute to the GC seeding B cell population, and
how re-engaged memory B cells influence the GC reaction outcome. To better understand vaccine-
induced diversity and identify optimal influenza vaccination schedules and formulations (especially
in repeatedly vaccinated patients), we have to complement measurements of antibody concentration
and avidity with a measure of antibody diversity that could be assessed in larger vaccine studies.
Single-cell technologies and monoclonal antibody production in mice lead to the discovery of
broadly-neutralizing monoclonal antibodies that target the HA stem domain, which is more con-
served across influenza strains than the HA globular domain (Okuno et al., 1993; Cho and Wram-
mert, 2016). This discovery raised the question about the possibility of an universal influenza
vaccine (Paules et al., 2017). New vaccination approaches have been proposed for inducing broadly-
neutralizing antibodies against influenza (Wei et al., 2010; Nabel and Fauci, 2010). However, the
HA stem domain is usually not targeted in influenza vaccine-induced immune responses and B cells
recognizing the HA head domain dominate the vaccine response (Andrews et al., 2015). How to
overcome this immunodominance of the HA head domain and how to boost stem-reactive B cells
is focus of ongoing research (Krammer, 2016). The current understanding is that stem-reactive
memory B cells constitute a small part of the B cell repertoire, while head-reactive memory B cells
dominate (Altman et al., 2015; Cho and Wrammert, 2016). Only if a new influenza strain lacks
the immunodominant epitopes recognized by preexisting memory B cells, stem-reactive memory
B cells are reactivated and boosted (Wrammert et al., 2011; Pica et al., 2012). Since reactivated
memory B cells respond faster than naive B cells, they will dominate the immune response. This is
consistent with studies showing that re-exposure to the same influenza strains boosts head-reactive
responses, while exposure to more diverse influenza strains can boost stem-reactive antibodies
(Miller et al., 2013; Andrews et al., 2015). The distinction between head- vs. stem-reactive anti-
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bodies will be important for developing such next-generation influenza vaccines. However, the HI
assay mostly detects head-reactive antibodies; stem-reactive antibodies often show low or even no
hemagglutination activity at all (Andrews et al., 2015; Krammer, 2016). Therefore, novel correlates
of protection are currently explored, e.g., based on ELISAs or cell responses (Ng et al., 2019;
Krammer et al., 2020). In the future, additional correlates of protection could be integrated into
immune response models and not only improve influenza vaccine development but also enhance
our understanding of vaccine-mediated immunity.

The SARS-CoV-2 pandemic in 2020 revealed that our society is not as robust to pandemics as we
would wish. Climate change and the emergence of new viral reservoirs due to deforestation could
accelerate the emergence and spread of new pathogens in future decades (Lindgren et al., 2012;
Afelt et al., 2018). The success story of vaccines leading to the eradication of smallpox and control
of several dangerous infectious diseases over the last century demonstrates that vaccines are the key
to protect against rapidly evolving pathogens (Hinman, 1998; Andre et al., 2008). Hence, a better
understanding of how vaccination shapes adaptive immunity and how vaccination strategies can be
optimized to their full potential is of fundamental importance and will require the joint effort of
multiple disciplines.
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