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1. Introduction
Hydrological catchments are complex systems in which various interacting processes transport water and 
pollutants at different spatio-temporal scales. Understanding and quantification of such processes is of high 
relevance to estimate the risk of diffuse pollution of headwater streams, especially in catchments dominated 
by agricultural land use. We can only ever observe a limited fraction of the relevant input, states and outputs 
of transport processes at the catchment scale. As a consequence, an important property arises: such natural 
systems apparently behave stochastically at the resolution we observe them, that is, they can show a differ-
ent response for the same measured driving forces since the true driving forces were different. For example, 
for two cases of the same measured volume of precipitation, input pollutant mass and catchment state; the 
true output (e.g., streamflow and pollutant concentration in the stream) will not respond identically in the 
two cases. This is because the observations of the driving forces and of the states are highly aggregated, 
which means that they are compatible with many different true realizations of those quantities.

The numerical models used to characterize such complex systems can only be approximate representations 
and they are subject to multiple sources of uncertainty. A better understanding and quantification of the 
uncertainties of water quality (WQ) models has been identified as one of the most pressing issues in the 
field (e.g., Rode et al., 2010), which is further emphasized by the scarcity of WQ data such as pollutant con-
centrations compared to, for example, more abundant hydrological data such as streamflow measurements. 
In addition, the success of machine-learning techniques (e.g., Shen, 2018) has shown the benefit of models 
that are more flexible in nature (e.g., Nearing et al., 2016). The limited amount of WQ measurements makes 
the calibration of such data-hungry models often difficult, however. There is thus a need to add flexibility 

Abstract Small streams in catchments with agricultural land use are at high risk of diffuse 
pollution by herbicides. Fast transport processes can cause concentration peaks that exceed regulatory 
requirements. These processes have a high spatio-temporal variability and data characterizing their 
occurrence is often sparse. For this reason, such systems show a stochastic behavior at the resolution we 
observe them (same input and initial conditions lead to different output). Realistic model representations 
should acknowledge this pronounced apparent intrinsic stochasticity. However, a deterministic 
description of the physical and chemical processes at the catchment scale is state of the art in research and 
practice. We explore the potential of stochastic process formulations in combination with the Bayesian 
learning paradigm to (a) improve the quantification of the uncertainty of conceptual catchment-scale 
pesticide transport models and (b) gain new mechanistic insights about the system by interpreting the 
temporal evolution of the stochastic processes. This is done with the help of a framework for time-
varying stochastic parameters. Thereby, we find that (a) the stochastic process formulation can lead to a 
more realistic characterization of the uncertainty of internal states and model output compared to the 
deterministic one, and that (b) the temporal dynamics of parameters resulting from the inference can 
highlight model deficits (and inspire improvements) such as a better sustained baseflow in dry periods. 
We also identify two key challenges: numerical difficulties in sampling the posterior and the question 
of where to introduce and how to constrain the additional degrees of freedom such that they are not 
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to conventional mechanistic process-based WQ models in an interpretable way and to enable uncertainty 
quantification and calibration of such models with limited amounts of data.

In light of the considerations on stochasticity and flexibility in the two preceding paragraphs, let us look 
at the fundamental distinction between deterministic process model (DPM) and stochastic process model 
(SPM). As DPMs, we classify models that rely on process descriptions that yield the same result when pro-
vided with the same input, parameters, and initial states. In such models, a stochastic error term is usually 
added to the output of the underlying purely DPM. SPMs, on the other hand, are more flexible and account 
for stochasticity in internal model states (as opposed to just the output), for example, through stochastic 
differential equations, stochastic parameters, or stochastic input. While the latter allows to account for in-
put uncertainty, the former two are possible approaches to consider model structural uncertainty. SPMs are 
a promising technique to combine the need for increased flexibility with the interpretability provided by 
process-based (mechanistic) approaches. A more detailed definition of DPMs and SPMs can be found in 
Section 2.

A large part of the previous studies dealing with uncertainty quantification of WQ models at the catchment 
scale fall into the category of DPMs. For example, Zheng and Keller (2007) account for input, parameter, 
model structure, and observational uncertainty through an additive error model in combination with the 
GLUE approach (Beven & Binley, 1992). Bertuzzo et al. (2013) quantify parametric uncertainty of a concep-
tual WQ model to quantify herbicide concentration dynamics in a small catchment. Bayesian approaches 
have been identified as especially a promising technique in dealing with uncertainty of WQ models (Rode 
et al., 2010). Previous studies have proven the value of Bayesian approaches to quantify uncertainties of WQ 
models (e.g., Gardner et al., 2011; Hantush & Chaudhary, 2014; Hong et al., 2005; Raat et al., 2004; Talamba 
et al., 2010; Wellen et al., 2014). Bayesian frameworks have also been developed (Schoups & Vrugt, 2010) or 
applied in WQ modeling studies (Han & Zheng, 2016; Zheng & Han, 2016). Han and Zheng (2018) present 
a Bayesian framework for jointly considering input, parametric and residual uncertainty based on a per-
turbation of input pollutant loading, acknowledging the large input uncertainties typically present in WQ 
modeling studies. While these developments have certainly advanced the assessment of uncertainty of WQ 
models, they fail to acknowledge the fundamental inherent stochasticity of the systems we deal with.

SPMs, on the other hand, have been rarely applied in WQ studies so far. Beck and Young (1976) illustrate the 
potential of stochastic, time-dependent parameter methods in identifying model structures of simple river 
WQ models, while state assimilation techniques have been used at much larger scales in river WQ modeling 
(e.g., Kim et al., 2014; Loos et al., 2020). SPMs are common in purely hydrological applications, where it 
has been argued that the assumption of deterministic behavior of a catchment is “indefensible” (Kuczera 
et al., 2006). The mentioned study explains in detail why this is the case and makes an argument for what we 
call SPMs. In hydrology, SPMs are mostly used in connection with a class of methods called “data assimila-
tion.” These methods aim at reconciling model states, parameters, or structures with observations to obtain 
more accurate estimates of model states and parameters including their uncertainty (Liu & Gupta, 2007). 
For an overview of the large number of previous studies on this topic, the reader is referred to Liu and Gup-
ta (2007) and Liu et al. (2012). While many approaches estimate either states or parameters separately, it is 
generally recognized that a joint estimate is conceptually preferable (Liu & Gupta, 2007; Vrugt et al., 2005). 
Various approaches for the joint estimation of parameters and states have been achieved (e.g., Moradkhani, 
Hsu, et al., 2005; Moradkhani, Sorooshian, et al., 2005; Vrugt et al., 2005); an interdisciplinary overview is 
provided by Kantas et al. (2015). However, many of the previous approaches are based on stochastic states 
and parameters, but fewer studies rely on the concept of time-varying stochastic parameters (e.g., Pathiraja 
et al., 2016b; Rajaram & Georgakakos, 1989; Reichert & Mieleitner, 2009; Smith et al., 2008). Even though 
the two approaches are technically very similar, the concept of time-varying parameters is more satisfying as 
it conserves mass balances and therefore respects fundamental physical principles. In this study, we rely on 
the approach for stochastic, time-dependent parameters suggested by Reichert and Mieleitner (2009) since 
it is fully compatible with the Bayesian learning paradigm by providing an approach to sample from the full 
joint posterior distribution of constant and time-dependent parameters. The approach taken here can be 
classified as a “smoothing” approach according to McLaughlin (2002), since the posterior of the quantity 
of interest at each time point is calculated conditional on all (past, present, and future) observations; it is 
therefore used offline in batch mode. Filtering approaches, which only condition on past and present obser-
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vations, have been frequently applied for joint state and parameter estimation. Smoothing approaches, on 
the other hand, have been given much less attention (Yang et al., 2018).

The objectives of this study are the following:

•  Explore the potential of SPMs of conceptual nature for the characterization of herbicide transport in 
small headwater catchments. Investigate whether this approach can reveal mechanisms in the underly-
ing system that have not been accounted for so far.

•  Check whether incorporating the identified patterns in time-dependent parameters into the determinis-
tic part of the model structure improves the likelihood compared to the original model.

•  Assess the uncertainty estimates provided by the SPMs for quantities that are of interest in WQ prob-
lems, like high-frequency dynamic fluctuations of herbicide concentrations in a small catchment with 
agricultural land use.

2. Definition of Deterministic and Stochastic Process Models
For DPMs, the states, y (note the use of boldface for vectors), are given by the model, m, which is a function 
of the parameters θ:

 ( )my θ (1)

Note that we omit the input from the notation, since statistically speaking, it is not fundamentally different 
from the parameters; both are quantities that affect the states and the output of the model. By model output, 
we mean the model's estimate of the true value of the observed state (e.g., streamflow). Let us assume that 
the actual observations, yobs, are a specific realization of the random variable Yobs (note the use of capital 
letters for random variables), which is either given by

 obs o( , ) ( , )oY y θ E y ψ (2a)

or by obs h obs hY y E Y y E         
h h o h h o

1 ( , ) ( ) ( ) ( , ) ( )    (2b)

where o(⋅) is a function mapping the model states to the outputs and Eo is a stochastic term that describes 
the effect of all sources of errors (including measurement errors) on Yobs in a lumped way. Since errors are 
often heteroscedastic (e.g., Clarke, 1973), Eo depends on y and on error model parameters, ψ. Alternatively, 
the transformation h(⋅) (e.g., Box-Cox) may be applied (Equation 2b), which ideally leads to a homoscedastic 
error term, Eh, that does not depend on the states anymore. However, the error tends to have other complex 
and unfavorable characteristics such as nonnormality (e.g., Schoups & Vrugt, 2010), and autocorrelation 
(e.g., Aitken, 1973; Beven & Westerberg, 2011; Kavetski et al., 2003). Accounting for these characteristics 
can be difficult (e.g., Ammann et al., 2019; Evin et al., 2014; McInerney et al., 2017; Schoups & Vrugt, 2010).

For SPMs, on the other hand, the states, Y, are random variables obtained by the stochastic model M:

 ( )MY θ (3)

and the observations are characterized as a deterministic or stochastic function, o(⋅), of the states:

 obs ( , ) ( , )oY Y θ Z Y ψ (4)

where Z, describes the residual stochasticity, which considers the remaining uncertainty that is neither 
accounted for in the process model, M, nor in the function, o, which maps the states to the output. Ideally, 
Z represents the measurement error only, which is the case if all other sources of uncertainty have been 
accounted for in M and o. Equation 4 has conceptual advantages over Equation 2. First, it is preferable to 
account for the errors where they actually originate: in the internal states and fluxes of the model. This is 
a more accurate description of many environmental systems, for which the uncertainty in the modeled 
states and fluxes is often larger than the measurement uncertainty of the output. Second, calibrated optimal 
temporal dynamics of internal states or parameters can be used to inspire model structural improvements 
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(e.g., Reichert & Mieleitner, 2009; Vrugt et al., 2005). For a more detailed discussion of the advantages and 
challenges of stochastic models, see Reichert and Mieleitner (2009).

3. Methods
The procedure applied in this study is largely based on the approach for stochastic models presented in 
(Reichert & Mieleitner, 2009; Reichert et al., 2020). After a short introduction to the study site and the data 
(Section 3.1), we describe in detail how that approach is applied in this study by (a) introducing stochasticity 
in a previously deterministic model by making some of its parameters stochastic, time-dependent quantities 
(Section 3.2), (b) screening for patterns in the inferred temporal dynamics of time-dependent parameters 
(Section 3.3), (c) based on the identified patterns, formulating model improvements to eliminate systemat-
ic model deficits (Section 3.4), and (d) subsequent prediction for uncertainty quantification (Section 3.5). 
Finally, Section 3.6 provides some details of the numerical implementation of the model and the sampler.

3.1. Study Site and Data

The modeled study catchment is the Ossingen experimental catchment, located in north-eastern Switzer-
land. It has a size of approx. 1.2 km2 with predominantly agricultural land use (75%, crop production) and 
a subdued topography with an average slope of 4.3° (Doppler et al., 2012). While the dominating soil type 
in the catchment is a well-drained cambisol, poorly drained gleysols can be found in the center close to the 
stream (FAL, 1997). The average precipitation is around 900 mm/yr (MeteoSwiss, 2016). The catchment 
is rather typical for the Swiss Plateau regarding the mentioned characteristics. In the growing period of 
2009, Doppler et al. (2012) conducted a controlled application of various herbicides in the Ossingen catch-
ment and measured precipitation (10 min resolution), streamflow (5 min resolution), in-stream herbicide 
concentrations (15 min resolution during elevated streamflow), and various additional relevant states like 
groundwater levels and concentration of herbicides in the top soil layer. A more detailed overview of the 
experiment and the catchment characteristics is given in the mentioned study.

The model input and observation data we use for calibration is a preprocessed subset of the data obtained 
by Doppler et al. (2012) and it is the same that was used by Ammann et al. (2020). The observations used for 
calibration extend from March 1 to October 12, 2009 and involve measurements of streamflow, in-stream 
concentrations of the two herbicides atrazine and terbuthylazine, and soil/water distribution coefficients 
of atrazine. High-frequency in-stream concentration measurements are available during five major precip-
itation events that differ considerably in volume, intensity, and dominant runoff processes that they cause 
(Doppler et al.,  2012). The variability in the characteristics of the rainfall events is expected to increase 
the general validity of the results. The overall resolution of the preprocessed input data (precipitation, po-
tential evapotranspiration) is 15 min. A more detailed description of the data can be found in Ammann 
et al. (2020).

3.2. Probabilistic Model Based on Stochastic, Time-Dependent Parameters

We base our analysis on the deterministic conceptual model of herbicide fate and transport that has been 
suggested based on experimentalist knowledge for the Ossingen catchment. The model is described in detail 
in Ammann et al. (2020), where it is denoted as “MexpH4.” Let m(t, θ) be the model function, which defines 
how the model states, y, evolve in time depending on the parameters θ (Table 1). The states consist of mul-
tiple reservoirs that represent fast and slow responding elements of the catchment in terms of water and 
herbicide transport. For example, the “groundwater” reservoir (representing an ensemble of slow transport 
processes) defined by the state Sgy  (for ease of notation we use X instead of yX in the following) is given by:

 g g
g, in ggk

dS
Q S

dt
 (5)

 g
gg( , ) ko Sy θ (6)
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where Qg, in is the inflow to that reservoir,  gk  and  g are part of θ, o(⋅) is the function that maps the states 
to the observations, and “… ” denotes that this function depends on other states and parameters not shown 
here. Note that, because the model is conceptual in nature, its states and parameters are not directly measur-
able quantities but they are related to key states and processes in the catchment. For example, Sg represents 
the water content of the part of the saturated zone that is connected to the stream. See Ammann et al. (2020) 
for a more detailed explanation of the meaning of the individual parameters and states of the model.

In order to turn m into a stochastic model that can be written in the form of Equations 3 and 4, we make use 
of a previously developed framework for time-dependent parameters (Reichert & Mieleitner, 2009) which 
turns (a subset of) model parameters that were previously constant in time into a time-dependent stochastic 
process, Θs(t, ξs). This leads to

  ( , ) , Θ ( )s s s s smY θ ξ θ ξ (7a)

  ( , ) ( , )o s s s soY θ ξ Y θ ξ (7b)

  obs( , , ) ( , ) ( , )s s o s s oY θ ξ ψ Y θ ξ Z Y ψ (7c)

where Y are the model states, Yo is the model output that is comparable to the observations, Yobs, is a ran-
dom variable characterizing the observations, s is the index of the stochastic parameter, and θ−s = {θi} for 
all i ≠ s. The probability distribution of Yo describes our knowledge about the system's states represented by 
the model output variables. This knowledge is uncertain due to incomplete (epistemic) knowledge of model 
parameters as well as due to stochastic (aleatory) system behavior. As we describe both of these types of un-
certainty probabilistically, we can combine them in a Bayesian approach despite the fact that this includes 
uncertainty of frequentist nature (Reichert et al., 2014).
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Parameter index i Units Description

ϕe - Multiplication factor for the potential evapotranspiration

Pex mm/h Precipitation intensity threshold for the onset of infiltration excess runoff

D - Splits the flux between the fast and the slow reservoirs

St, max mm Maximum water content of the topsoil reservoir

Su, max mm Maximum water content of the lower unsaturated zone reservoir

βu - Exponent of the nonlinear relation of the unsaturated zone reservoir

ki h−1 Coefficient of the constitutive function of the imperivous areas reservoir

kc h−1 Coefficient of the constitutive function of the connected areas reservoir

kd  1 1mm hd Coefficient of the constitutive function of the drained areas reservoir

αd - Exponent of the constitutive function of the drained areas reservoir

kg  1 1mm hg Coefficient of the constitutive function of the groundwater reservoir

αg - Exponent of the constitutive function of the groundwater reservoir

λ h−1 Degradation rate (1st order) of the herbicides

St, z1 mm Extent of completely mixed dead zone of the topsoil reservoir (fast sorption)

St, z2 mm Extent of partially mixed dead zone of the topsoil reservoir (slow sorption)

rs h−1 Kinetic coefficient of the slow sorption process

Note. For each inference setting, one of them is turned into a time-dependent stochastic process and fitted jointly with all the others.

Table 1 
Parameters, θi, of the Transport Model, Which are Calibrated in This Study
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Note that, to limit the computational effort and to avoid potentially excessive identifiability problems, only 
one parameter is time-dependent in each inference setting. For the stochastic process, Θs(t, ξs) and its reali-
zation θs(t), we use an Ornstein-Uhlenbeck (OU) processes (Uhlenbeck & Ornstein, 1930),

   
 

   
1 2( ) ( ( ) ) ( ),s s s s
s s

d t t dW t (8)

which is defined by parameters ξs =  {μs, σs, τs} (mean, asymptotic standard deviation, and characteristic 
correlation time, respectively), and where W(t) is a Wiener process (i.e., random walk in continuous time).

The residual error model, Z, is formulated for the different types of measurements (indexed by j) to which 
the models are calibrated; streamflow data, concentration measurements, and soil water distribution coef-
ficients (see Ammann et al., 2020 for detailed information on the data). For the error of a measurement of 
type j at time t, we assume that

  Z,( ) 0, ( )j jZ t N t (9)

where N is the normal distribution and σZ,j(t) is its standard deviation:


 

   
 

,
Z, 0, 0,

0,

( )
( )

c j
o j

j j j j j
j

Y t
t a y y b

y
 (10)

where ψj = {aj, bj, cj} are the parameters of the residual error model for observations of type j and y0,j is a scal-
ing constant. Equation 10 is equivalent to the formulation used in Ammann et al. (2020) with the difference 
that we assume no temporal autocorrelation in Z(t), since it should mostly represent the random compo-
nent of the measurement error. Note that we cannot specifically account for systematic measurement errors 
such as the ones caused by faulty rating curves.

In our case, the model states, Y, do not require a probabilistic formulation since they are a deterministic 
function of the parameters. Assuming independence of the priors of ξs and ψ, the joint distribution of pa-
rameters and potentially observed states, yobs, is given by:

         joint obs obs pri OU priobs, ( ), , , | , ( ), ( , ) ( ) | ( )s s s Y s s s s s sf t f t f f t fθ ξ ψ y y θ ψ θ ψ ξ ξ (11)

where obsYf  is the likelihood conditional on the time-dependent and constant parameters, which arises 
from the assumed statistical properties of the measurement error, Z (Equation  9). obsYf  is based on the 
likelihood framework proposed by Ammann et  al.  (2019) and its details for the specific application to 
the Ossingen data are given in Ammann et al. (2020). fOU(⋅|ξ) is the probability density of the discretized 
OU-process given parameters ξ, and fpri is the prior distribution. The latter consists of independent distri-
butions for most of the individual parameters and we use hard boundaries on all of the marginals (see Ap-
pendix A). Regarding the prior for ξs, note that τs is fixed for all s due to theoretical difficulties in estimating 
that parameter (Roberts & Stramer, 2001). Liu and Gupta (2007) rightly argue that temporal variations of 
the parameters should be slower than those of the states, which reduces the peril of producing output re-
sponse to input solely by the temporal dynamics of the parameter and not the states. This is why we fix τs at 
a relatively large value of ca. 10 days. μs and σs are inferred. Out of ψ, a is inferred and the other elements 
are fixed (see Appendix A).

According to the Bayesian inference paradigm, we learn about the parameters by conditioning Equation 11 
on the variable yobs and by substituting it with actual observations:

     


 


  
joint obs

post obs joint obs
y obs

, ( ), , ,
, ( ), , | , ( ), , ,

( )
s s s

s s s s s s

f t
f t f t

f

θ ξ ψ y
θ ξ ψ y θ ξ ψ y

y
 (12)

where the normalizing factor fy(yobs) is constant w.r.t. the parameters. The procedure used to sample from 
fpost is described in Section 3.6.
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In order to keep the time-dependent parameters in reasonable ranges, 
and for reasons of numerical efficiency of the sampler, we redefine the 
time-dependent parameter as:
 

(13)

where us(⋅) is a scaled and shifted logistic function for s = D, and equal to 
the exponential function otherwise, s is a time-constant parameter and 
 *( )s t  is a dimensionless time-dependent parameter. The logistic func-
tion is used to asymptotically reach the relatively narrow bounds within 
which the prior for θD is nonzero (see Table A1). Through Equation 13, 
we hope to gain numerical efficiency, since the time-constant s becomes 
part of θ−s, which allows for θs(t) to be additionally updated in the Me-
tropolis sampling step in Equation 17, as opposed to only in Equation 19. 
The mean of  *( )s t  is kept fixed at 0 for the inference.

3.3. Finding Patterns With Local Regression and Cross-Correlation

Once the posterior distribution of θs(t) has been obtained for each parameter s, potential temporal patterns 
in θs(t) are of interest, since they could indicate possibilities to improve our deterministic model. In other 
words, such patterns would indicate that the introduced stochasticity has been misused to compensate for 
systematic model deficiencies. Such deficiencies would need to be corrected before a meaningful interpre-
tation of the predictive uncertainty can be made. For example, if the evaporation multiplication factor was 
found to correlate with temperature, the parameterization of the potential evaporation would have to be 
re-evaluated.

Let us define    * * *
1( ), , ( )ˆ ˆ ˆ

s s s nt tθ  as the component  *( )s t  of the posterior sample  
*, ( ),s s tθ ξ  for which 

obsYf  is maximal. Let us further assume that

   *
g( ) ( ), ( )ŝ i s i i it g t tx y  (14)

where gs is a function of external influence factors, x, and of a vector yg that contains only a subset of all 
the states y (see Table 2). ϵi are random deviations. If gs can approximate *ˆ

sθ  well, we have a chance of 
improving our model m by (i) using the empirical model gs as is (i.a) or in a parameterized form (i.b) to 
replace some constant model parameters by their estimated temporal dynamics, or by (ii) reasoning about 
the deficits in physical process representation that cause the pattern gs and adapt the process representation 
of m accordingly. In this paper, we choose approach (i.a). An example for (ii) would be the extension of 
the model structure by adding a new reservoir after identifying deficits in the constitutive function of an 
existing reservoir.

For the function gs, we choose a weighted local regression model according to Cleveland et al. (1992) under 
the assumption of independent Gaussian deviations, ϵi, with a polynomial of order two, and a smoothing 
parameter equal to unity. As arguments of the function gs, we use the features in Table 2 individually and 
in all possible combinations of two. We refrain from combining three or more features due to the limited 
benefit of going from one to two features (see Section 4.1). Weights, wi, are introduced for the least squares 
regression to account for the fact that the identifiability of the parameters (and thus the information content 

in the posterior) varies over time. The weights are given by  
  2 2

* min1 / max ( ) ,i i
s

w t , where 


 * ( )i
s

t  is the 

standard deviation of the posterior distribution of the dimensionless time-dependent parameter  *
s  at time 

point ti (visible e.g., in Figure 1) and σmin is a minimal standard deviation introduced to prevent overly large 
weights of time points where the parameter is at the boundary. For the purposes of this study, we set σmin 
equal to 5% of the mean of the posterior of σs. The weighted R2,

  
s s s s

t u t( ) : ( )  *
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Feature Description

St State of the topsoil reservoir

Su State of the unsaturated reservoir

Sd State of the drainage reservoir

Sg State of the groundwater reservoir

Epot Potential evapotranspiration

Precip. Precipitation

Note. The humidity, precipitation and wind speed are based on data 
recorded by Doppler et al. (2012).

Table 2 
Model States and External Influence Factors Used as Features in Local 
Regression to Approximate the Maximum Likelihood Estimate of the Time-
Dependent Parameter
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is used to quantify the goodness of fit of the regression.
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Figure 1. Posterior distribution (indicated by 50%- and 90%-credibility intervals) of θs(t) for all indices s (y-axes of panels a–n) during the study period in 2009. 
In panel (k), the soil/water distribution coefficient, Kd, is based on time-dependent St,z1 and constant St, z2, while it is vice versa for panel (l). The 90% credible 
interval inferred with all parameters being constant (i.e., with the deterministic model m(θ)) are given by the horizontal lines for reference.
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In addition, we scan for potentially time-shifted dependencies between  *ˆ ( )s t  and {x(t), yg(t)}, by calculating

                  * ( ) * ( )
g m mg( , ) corr ( ), ( ) , ( , ) corr ( ) )ˆ ,ˆ ( ,k k

x s y sk t x t k t y t t t 

for each element k of the external influence factors and the states, where corr(⋅, ⋅) denotes the correlation 
and tm is 2 weeks.

3.4. Model Improvement Based on Patterns Found in Time-Dependent Parameters

The deterministic empirical relationships between ˆ
sθ  and the influence factors, x, and model states, yg, are 

used to improve the predictions made by model m by constructing a “hybrid” model:

    * *
hyb g, hyb( , ( )); ( ) ( ), ( )s s s sm t t g t ty θ x y (16)

where gs is the optimal empirical model (identified as described in Section 3.3) approximating the temporal 
dynamics of  *ˆ ( )s t , and yg, hyb consists of a subset of the states, yhyb, of this model. As an alternative and more 
flexible approach, one could choose another function that is based on gs but has additional parameters, 
which could then be fitted together with θ−s.

The posterior distribution of θ−s of the hybrid model is then obtained according to the procedure in Sec-
tion 3.6. Note, however, that the time-dependent parameters of the hybrid model, *( )s t , are not stochastic, 
but given by  g, hyb( ), ( )sg t tx y  and therefore need not be inferred (the sampling steps in Equations 18 and 19 

are not necessary). Remember that the multiplication factor, s, is part of θ−s, to still allow for an overall ad-
justment of the level of the parameter with index s. During inference, yg, hyb might reach values that were not 
reached in connection with ̂ ( )s t  (based on which the function gs was fitted). In that case, yg, hyb is truncated 
so that it agrees with the support of gs.

3.5. Prediction

The prerequisites for a meaningful interpretation of the uncertainties estimated with time-dependent pa-
rameters is that the stochasticity provided by  *( )s t  is not misused to compensate for systematic deficits of 
the model. In addition to the procedure described in Sections 3.3 and 3.4, this should be verified by pseudo-/
predictive cross validation, which is described in the following paragraphs.

The estimated uncertainty of the state variables of interest are obtained by propagating the joint poste-
rior distribution obtained for θ−s, ξ, and ψ though the model. In the following, we distinguish between 
“intrinsic” and “residual” stochasticity. The former means all the uncertainty that is accounted for within 
the process model (i.e., through the constant parameters θ−s and the time-dependent parameters Θs(ξ) in 
Equation 7a), including all the uncertainty this causes in the internal states and the output. Residual un-
certainty, on the other hand, is characterized by the term Z(ψ) (Equation 7c), which includes the effect of 
all additional sources of uncertainty not accounted for within the process model, such as measurement 
uncertainty of the output or some remaining structural uncertainty. For visualization, we estimate intrinsic 
stochasticity on one hand, and combined intrinsic and residual uncertainty on the other hand by propagat-
ing the posterior distributions of (θ−s, ξ) and (θ−s, ξ, ψ), respectively, through the model given in Equation 7.

Note that in this study, due to the uniqueness of the data set and the limited period of high-frequency 
concentration measurements, the prediction period is the same as the calibration period (see Section 3.1), 
leading to the term “pseudo-prediction,” which is explained in more detail below. This prevents us from 
quantifying the prediction error to be expected for an independent time period. Nonetheless, the approach 
is suitable to avoid overfitting and to confirm that the additional degrees of freedom are not used to repro-
duce variability that should be produced by the deterministic part of the model. When “pseudo-predicting,” 
we neglect the posterior knowledge about the temporal dynamics of  *( )s t  (even though it would be avail-
able in our pseudo-prediction period) to mimic prediction during a time period that is independent of the 
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calibration period. Therefore, like in a true prediction setting, the  *( )s t  used for the pseudo-prediction are 
random realizations of an OU-process with parameters ξ taken from the posterior sample. This means that 
the many degrees of freedom introduced through the time-dependent parameters, which constitute the 
main part of the danger of overfitting, are not used for prediction. Furthermore, we focus on the character-
ization of the resulting predictive uncertainty and its division into intrinsic and residual uncertainty, which 
is independent of whether we predict during the calibration or a validation period.

3.6. Numerical Implementation of Model and Sampler

The original model, m(t, θ), as well as the adapted model, m(t, Θs(t)), which accepts time series of param-
eters, are implemented with the SUPERFLEX framework for conceptual hydrological models (Fenicia 
et al., 2011). In SUPERFLEX, the evolution of the internal states are governed by differential equations 
 ( , , )f ty y θ  and the states, y(ti), are obtained based on y(ti−1) with the implicit Euler method on the grid 

ti = t0 + iΔt with a fixed step size Δt of 15 min in our case. In the modified version with time-dependent 
parameters, θs(ti) is assumed to be constant from ti−1 to ti. The output for the observation time points, 
 obs( )o ty , is obtained through linear interpolation of  ( )io ty .

The hybrid model is implemented as an iterative procedure where the k-th step consists of evaluating 
 

 ( 1) *,( 1)
hyb ( , )k k

s smy θ θ  and then calculating *,( ) ( 1)
g, hyb( , )k k

s gθ x y  for all time points. The convergence criteri-
on was chosen to be the maximal (over all time points) relative difference in yg, hyb from one iteration to the 
next of below 1%.

We sample from fpost (Equation 12) according to the procedure developed by Buser (2003) and Tomassini 
et al. (2009). The ideas underlying this approach are described in detail in Reichert and Mieleitner (2009) 
and Reichert et al.  (2020). The approach is based on Gibbs sampling across constant model parameters, 
parameters of the OU process that governs the time-evolution of the stochastic parameter, and the time-
course of the stochastic, time-dependent parameter. In the kth step of this Gibbs sampling approach, we 
sample

  
   *, 1

obs priobs( , ) | , ( ), ( , ),k k k k k k k
s Y s s sf t fθ ψ y θ ψ θ ψ

 
(17)

  *, 1
OU pri( ( ) | ) ( ),k k k k

s s s sf t fξ ξ ξ (18)

   *, *, *,
obs OUobs( ) | , ( ), ( ( ) | ) .k k k k k

s Y s s s st f t f ty θ ψ ξ (19)

Sampling of the constant parameters, ( , )k k
sθ ψ  and k

sξ , within this Gibbs sampling scheme is done by Me-
tropolis sampling with automatic adaptation of the proposal distribution during an initializing phase that 
is discarded as part of the burn-in phase. The stochastic parameter,  *, ( )k

s t , is proposed by sampling from 
the OU-process on sub-intervals (i.e., arbitrary sections of the whole simulation period) conditional on 
the values at the endpoints of that interval and accepting or rejecting based on the observation likelihood. 
By adapting  *( )s t  only within sub-intervals, we reach a higher acceptance rate, since the new proposal for 
 *, ( )k

s t  is largely similar to  *, 1( )k
s t  and only differs within one sub-interval. This leads to faster convergence. 

On the other hand, one has to be aware that the split into sub-intervals increases the number of model runs 
required to complete one step of the outer Gibbs sampling procedure. In the present application, for most 
parameters that we made stochastic, we chose 50 sub-intervals, which results in a reasonably high accept-
ance rate for most time-dependent parameters. However, for some parameters that led to a relatively low 
acceptance rate during inference, we chose 100 sub-intervals. Convergence is assessed visually based on the 
Markov chains for the constant parameters, some selected time-points of the time-dependent parameters, 
the observational likelihood, obsYf , and the posterior density, fpost.

To improve the numerical efficiency of the sampler, all parameters in θ−s are log-transformed for sampling, 
except for D (see Equation 13). Parameters in ψ and ξ are not transformed.
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We use the R Language for Statistical Computing (R Core Team, 2019) for all the computations and vis-
ualizations, except for the hydrological process model, m, which is written in Fortran. For the sampling 
procedure, we use the R-package “timedeppar” (Reichert, 2020).

4. Results and Discussion
Convergence was achieved in most inference cases with time-dependent parameters and in the case of all 
parameters being constant in time (see supporting information). Convergence problems were observed for 
the time-dependent  t,maxS  and  u,maxS  (the results of which are not shown), and for the infiltration excess 
parameter  exP . The latter parameter is expected to be difficult to infer due to its threshold-like behavior and 
the fact that its effect on the output is restricted to very limited time periods. Inference of these parameters 
was, however, successful in the cases in which they were part of the constant parameters estimated jointly 
with other time-dependent parameters. No grave convergence problems were encountered for the other 
cases of time-dependent parameters and when inferring all parameters as constant in time.

4.1. Inferred Dynamics of Time-Dependent Parameters and Identified Patterns

For each inference approach with time-dependent parameter s, we obtain a posterior uncertainty estimate 
of   s s s

t, ( ),
*

and . The resulting temporal dynamics of θs(t) (obtained from  *( )s t  acc. to Equation 13) show 
distinctly different characteristics for the different time-dependent parameters s (Figure 1). While some pa-
rameters show rather high-frequency fluctuations (Figure 1; e.g., panels a, c, n), others vary on longer time-
scales (Figure 1; e.g., panels g, h, k, l). They also differ in the relative width of their distribution at each time 
point compared to the amplitude of the temporal fluctuations. For example, panels (i) and (k) in Figure 1 
show parameters with a wide uncertainty band relative to the amplitude of their temporal dynamics. Also, 
different parameters show different relative identifiability (indicated by the width of their distribution) dur-
ing different time periods. This is especially pronounced for the parameter θD (Figure 1a), which controls 
the split of the fluxes into a fast and a slow response; this parameter is only identifiable during precipitation 
events and reverts to the prior otherwise. Similarly, the release rate  ik  of the reservoir representing the im-
pervious areas shows a smaller uncertainty (and also lower values) during three distinct time periods (Fig-
ure 1d). Most of the parameters result in similar ranges of the marginal posteriors when time-dependent 
compared to the case of all constant parameters (Figure 1), which means that the interpretation regarding 
process representation of the individual parameters is consistent for the case of constant and time-depend-
ent parameters. Exceptions are  ck ,  dk , and  u. For the first two, the reason for this is that s goes to the 
lower boundary of the prior, which is the same as for the corresponding parameter in the case of all-con-
stant parameters. Lower values for θs(t) are then reached by shifting  *( )s t  to values predominantly below 0.

For the case of s = kg, Figure 2 shows the corresponding uncertainties in model output (streamflow and 
atrazine concentration), internal states (level of the groundwater reservoir, Sg) and the temporal dynamics 
of  g ( )k t  in the calibration setting. Of the two parameters ( gk  and  g) that lead to the largest increase in 
the likelihood (see Figure 3a), we choose to show  gk , since the interpretation is more intuitive. The spread 
of the posterior estimate of  g ( )k t  does not vary strongly between inter-event and event periods (Figure 2d); 
the parameter is identifiable during both periods since the groundwater reservoir doesn't fall dry during the 
study period. Propagating the posterior distribution of   g g, ( ),k k tθ ψ  through the model leads to a very 
small uncertainty of the groundwater reservoir level, which is barely visible in Figure 2c. This outcome is 
expected during calibration.

There is a pronounced difference in the increase of the observational likelihood, obsYf , obtained when mak-
ing different parameters time-dependent compared to the reference case where θs(t) = const. (Figure 3a). 
The largest increase in obsYf  is observed for the parameters related to the groundwater reservoir,  gk  and  g 
(for their meaning, see Equation 5). The strong increase of the likelihood is confirmed by the very good 
agreement of modeled and observed streamflow (Figure 2a). A smaller increase is found for the parameters 
that control the chemical processes (θλ,  sr ,  t,z1S , and  t,z2S ). Obviously, the strong skewness in data abun-

dance w.r.t. the different data types (large amount of streamflow data, limited number of measurements of 
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concentration and soil/water distribution coefficients) is clearly reflected in the sensitivity of the observa-
tional likelihood to the degrees of freedom in the individual parameters.

The inferred temporal evolution of  gk  (Figure 2d) has very similar characteristics as the one of  g (see 
supporting information). In particular, both time series show a reasonable amplitude of the fluctuations. 
This is opposed to most other parameters controlling the hydrological processes (see Figure 1), for which 
the variability (in terms of σs) is larger than expected to a degree that must be seen as unreasonable. Note 
that the two parameters without exaggerated variability are the ones that cause the largest increase in likeli-
hood when being made time-dependent (Figure 3a). This indicates that, in case of structural model deficits, 
additional degrees of freedom introduced w.r.t. θs can be misused (resulting in a large temporal variability 
of θs) to compensate for deficits unrelated to θs.

A comparison of the resulting dynamics of the time-dependent parameters when performing inference 
on streamflow data only, as opposed to the full data set, can reveal further interesting insights w.r.t. the 
sensitivity of the parameters to the different data types at different points in time. For example, Figure C3 
in the appendix shows that the parameter for the shortcut reservoir,  ck , is mainly informed by streamflow 
data, except during the major precipitation event in the end of May, which was the first one after spraying 
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Figure 2. Posterior calibration uncertainty of model output (a and b), the level of the groundwater reservoir (c), and 
the time-dependent parameter  gk  (d) during the study period in 2009. The 90%-uncertainty bands are given for the 
intrinsic and residual stochasticity (a–c), while the 50% and 90% credible intervals are shown for the time-dependent 
parameter (d). The dashed red line indicates the application of herbicides and periods shaded in blue are the events 
zoomed in Figures 5 and 6.

(a)

(b)

(c)

(d)
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of herbicides. This shows that the model relies on this fast shortcut reservoir to produce the observed con-
centration peak. The equivalent comparison for all other parameters is given in the supporting information.

When approximating  s t
*

( )  as a local regression of the features {x(t), yg(t)}, we obtain values of weighted 
R2 between close to 0 and 0.61 for the one-dimensional local regression (Figure 3b) and up to 0.72 for the 
two-dimensional local regression (Figure C2). A relatively large R2 is found for the one-dimensional regres-
sion (0.6) for  *

gk  as a function of the level of the groundwater reservoir, Sg (Figure 4a). The identified rela-
tionship is “banana-shaped,” with higher values of the parameters coinciding with the lowest groundwater 

levels. The pattern for 
*
g is similar (Figure 4b). There also seems to be a tendency for  gk  and  g to increase 

again to very high groundwater levels (Figures 4a and 4b), however, this is only supported by a limited 
amount of data (one event only). The temporal patterns of  gk  remain largely unchanged in preliminary tri-
als where it is inferred jointly with other time-dependent parameters. This increases confidence in the gen-
erality of the results described above. A closer look at the cause of the pattern in Figures 4a and 4b reveals 
that, in particular, April and August 2009 were very dry months, which caused the groundwater reservoir to 
fall below 10 mm (Figure 2).  gk  and  g increase during that period to produce the relatively large baseflow 
still observed in the stream. This suggests that the catchment's baseflow is less affected by dry periods than 
can be represented with the static parameterization of a single nonlinear reservoir chosen in the model.

In order to allow for more sustained baseflow in dry periods, one could think of several model improve-
ments, for example, an additional (slower) reservoir or an adaptation of the constitutive function of the 
existing groundwater reservoir. An advantage of the first option, is that it is effective also in time periods 
during which the existing reservoir is empty, while an advantage of the second option is the possibility of 
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Figure 3. Values of R2 obtained (x-axis) by approximating  *ˆ ( )s t  with a local regression model (gs) when making the parameter with index s (y-axis) time 
dependent. (a) The color indicates which feature in the one-dimensional regression led to the highest R2, and the point size shows the increase in likelihood 
obtained compared to the case of no time-dependent parameters. (b) More detailed information on which of the features {x(t), yg(t)} (x-axis) resulted in which 
R2 for which time-dependent parameter (y-axis). The y-axis is ordered according to the maximal R2 achieved with the one-dimensional local regression, the 
x-axis is ordered according to which feature reaches the highest average R2 for all parameters.

(a) (b)
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keeping the number of additionally introduced parameters low (or even equal to zero). We refrain from 
introducing an additional slower reservoir, which would require at least two new parameters (a split and a 
release rate), since based on visual assessment, the baseflow is already reasonably well fitted even with the 
DPM with constant parameters (see Figure C1 in the appendix). Instead, we choose to adapt the constitutive 
relation of the existing groundwater reservoir as described in Section 3.4.

An elevated value of R2 is also obtained for the parameter  ik , which controls the response of the impervious 
areas. Figure 4c shows a surprisingly clear-cut threshold at Si ≈ 8 mm below and above which we tend to 
get small and large values of  ik , respectively. Note that the limited flexibility of the regression function does 
not allow for a good approximation of this pattern. The pattern is interpreted as an activation of additional 
flow paths with a slower response time (compared to the very fast responding impervious areas) in cases 
where the reservoir reaches a sufficiently high level. For example, these might be paths including compact-
ed gravel roads, which are abundant in the study catchment, and which tend to react slightly slower than 
completely sealed surfaces.

The other strong correlations visible in Figure 3b are judged to be of less interest, since the pattern for the 
pair (kd, Sg) is dominated by a single event, (St, z2, Su) and (rs, Sd) are judged to be coincidental, and (kc, Sg) is 
similar to (ki, Si). As an example for a potentially coincidental pattern, we discuss the pair (St, z2, Su) in more 
detail in Appendix B.
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Figure 4. Weighted local regression fits (black lines) of the dimensionless form of three time-dependent parameters as 
a function of the features that led to the highest R2 for those parameters. Weighted R2-values are also given. The weights 
were divided by their median for this plot and the data with the largest 1,000 weights are plotted as points. The red 
shading indicates the density of the remaining data. Sg is the state of the reservoir representing groundwater and  *

kg  
(panel a) and  *

gα  (panel b) are parameters controlling its release rate, while Si represents the impervious surfaces and 
 *

ki (panel c) their release rate. The boundaries of  *
ki are reached in (c).
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Regarding the cross-correlation analysis, we find correlations of around ρ = 0.6 or weaker for all the com-
binations of  *

s  and x(k) or ( )
g
ky . Many of the strongest correlations have already been discussed above or do 

not have an obvious interpretation that is physically meaningful. One potential exception is the exponent 
governing the nonlinearity of the response of the unsaturated reservoir, 

*
u, which is negatively correlated 

(ρ = −0.6) to the water content of the reservoir representing the unsaturated zone, Su, 10 days earlier. How-
ever, this finding is more an example of how an expert's reasoning can be stimulated and does not prove 
a causal relation between the two quantities. For that, we are missing longer time series of observations, 
which would enable a more robust analysis.

In summary, this analysis reveals that there are meaningful patterns in the inferred temporal dynamics of 
the parameters that allow for interpretation by the domain expert, which can inspire potential model im-
provements. This confirms the findings of previous hydrological modeling studies, which have found pat-
terns in output innovations when estimating states (Vrugt et al., 2005) or patterns in the temporal dynamics 
of time-dependent parameters (Pathiraja et al., 2016a), and extends them to a WQ modeling case study. 
However, not all the identified patterns might be physically meaningful; a potential example is the relation 
between  t,z2S  and Su. This shows that such patterns need to be interpreted with great caution, especially if 

they are based on limited data that does not allow for an independent temporal validation.

4.2. Model Improvement by Incorporating Found Patterns

The patterns shown in Section 4.1 that are most promising for improving the DPM are the ones identified 
for  gk  and  g. This is due to their relatively large effect on the observational likelihood (Figure 3a) and due 
to the rather good interpretability of the mechanisms that cause the identified patterns. Table 3 shows an 
expected result; when estimating the dynamics of the time-dependent parameters through regression (with 
the hybrid model 

*( , ( ))s sm tθ , column 3) the observational likelihood is higher than the one reached with 
time-constant parameters (with base model m(θ), column 1), but lower than the one reached when estimat-
ing the dynamics directly from the data (with the stochastic model m(θ−s, Θs(t)), column 4). This is true for 
both, s = kg and s = αg. In both of these cases, however, the hybrid model is closer to the deterministic than 
to the stochastic model, which indicates that exploiting the information contained in the temporal variation 
of the time-dependent parameters leads to a rather limited model improvement in this case. This means 
that most of the variation (in terms of likelihood improvement) of  *( )s t  is probably “true” stochasticity and 
only a minor part is caused by the systematic deficit revealed in Figures 4a and 4b. The predictive uncertain-
ties (Section 4.3) obtained based on the inferred σs for those parameters are therefore valid. For an example 
where the revealed deficits and the inspired improvements are more significant, see Reichert et al. (2020).

Note that we opted for a static function, gs, to improve the parameterization of the reservoir representing 
groundwater. More flexibility could have been traded for less accuracy by choosing a more general adapta-
tion of the constitutive relationship of the reservoir, thereby introducing additional parameters. This might 
have led to a larger (or a smaller) increase in obsYf .
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No time-dep. parameter Time-dep. parameter *( )s t  *( )s t

84,042 (31) s = kg 86,410 (34) 92,836 (31)

s = αg 84,919 (31) 92,905 (28)

Note. The result for the original model with no time-dependent parameters is also given for reference.

Table 3 
Natural Logarithm (and Std. Dev. in Brackets) of the Observational Likelihood, obsYf , Reached During Inference With Time-Dependent Groundwater Reservoir 
Parameters When Approximating the Temporal Dynamics by the Local Regression Predictor gs (Resulting in *( )s t ), and When Inferring the Temporal Dynamics 
of  *( )s t  Directly
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4.3. Estimated Uncertainties Based on Bayesian Posterior Distributions

When using the DPM, the predictive uncertainty for streamflow and herbicide concentrations is domi-
nated by the residual stochasticity, which is much larger than the parametric uncertainty (Figure 5). The 
combination of the two yields error bands of reasonable width for the type of observations, j, for which we 
formulated an error model according to Equation 10. The unobserved states, for which one did not for-
mulate a residual error model, for example, Sg, have only parametric uncertainty, which seems too small, 
especially compared to the uncertainty of observed states like streamflow (Figure 5). Furthermore, the sto-
chastic realizations of model output for an observed state, say streamflow, have to be produced by sampling 
the residual stochasticity, since it combines multiple relevant sources of uncertainty. However, this leads to 
model realizations with unreasonably weak temporal short-range correlation compared to the observations 
(see the first and second row in Figure 5).

Regarding the predictions with the SPMs, we focus on the one with time-dependent parameter  gk  (Fig-
ure 6), since it led to the largest increase in the observational likelihood. The results regarding predictive 
uncertainty that we obtain for  gs  (see supporting information) are similar due to the similar structural 
function of the parameters. The predictive uncertainties obtained for all other parameters made time-de-
pendent are given in the supporting information.

Figure 6 shows that the total output uncertainty is dominated by the intrinsic stochasticity whereas the re-
sidual stochasticity is rather small. This is opposed to the dominant role of the residual stochasticity for the 
deterministic model (Figure 5). Internal model states, such as the level of the groundwater reservoir, show 
a larger (probably more realistic) uncertainty in the case of the stochastic model (Figure 6) compared to the 
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Figure 5. Parametric (intrinsic) and residual uncertainty estimated with all parameters being constant in time. The shaded areas cover 90% of the predictions.



Water Resources Research

deterministic model (Figure 5). This is of practical relevance whenever we are interested in such internal 
states. The uncertainty that characterizes our knowledge of states, output, and observations is much smaller 
during calibration (Figure 2) than during prediction (Figure 6) when relying on the SPM, which is a very in-
tuitive result. This is not the case for the DPM. Furthermore, with the stochastic model, we can easily obtain 
realizations of the states that have both, a reasonable autocorrelation and a reasonably large uncertainty 
(green dashed line, Figure 6). With DPMs, a similar result would require considering autocorrelation in the 
residual error term, which has been shown to be problematic (e.g., Evin et al., 2013), especially for high-fre-
quency data (e.g., Ammann et al., 2019) like the one used in this study. Note that another study successfully 
considers autocorrelation in the residual error term and finds stronger model deficits (Reichert et al., 2020).

4.4. Challenges, Recommendations, and Transferability

One major issue we encountered, which we believe to be general, is related to the additional degrees of free-
dom introduced by making different parameters stochastic. The freedom w.r.t. some stochastic parameters 
led to exaggerated temporal variability in these parameters, which was misused to reduce errors originating 
from other sources. In particular, parameters to which the likelihood was rather insensitive suffered from 
this deficiency, presumably because large changes in these parameters are necessary to achieve a higher 
likelihood. This shows that failing to constrain the stochastic parameters through an adequate prior for their 
asymptotic standard deviation, σs, which is difficult in our experience, can lead to unreasonable behavior of 
the SPM. We find that an effective solution to this is to make the parameter that has the largest impact on 
the likelihood time-dependent, which is also conceptually reasonable, since in that case, the degrees of free-
dom are introduced where they are most needed. A systematic procedure for selecting which parameters to 

AMMANN ET AL.

10.1029/2020WR028311

17 of 27

Figure 6. Parametric (intrinsic) and residual uncertainty estimated with time-dependent parameter  gk . The shaded areas cover 90% of the predictions.
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make time-dependent is still to be developed in future studies. Identifiability issues are expected to increase 
with more time-dependent parameters. A preliminary analysis in which we infer two time-dependent pa-
rameters jointly (see supporting information) shows that the two fast reservoirs Si and Sc are less misused as 
slow reservoirs when their release rates are fitted jointly with  gk  of the slow reservoir as compared to when 
they are fitted as single time-dependent parameters. This is an indication of potential benefits of inferring 
multiple time-dependent parameters, given that the most sensitive parameters are included.

Sampling from the posterior distribution was numerically challenging; the chosen sampler required up 
to 100 evaluations of the DPM for one iteration of the Markov chain in order to achieve a reasonable ac-
ceptance rate. This resulted in a rate of ca. 2,500 samples per week on a modern processor. This sampler 
is therefore only applicable if at least one of the following conditions is met: (a) the model is cheap to run, 
(b) a limited amount of information is contained in the inferred time series (i.e., a short length or a small 
signal-to-noise ratio), or (c) only part of the simulation period has to be re-evaluated if the value of the 
time-dependent parameters have changed only on a short sub-interval.

When choosing the parameter(s) to be made time-dependent, we recommend to focus on the ones to which 
the likelihood function is most sensitive. The degree of flexibility of the empirical model, gs, on which the 
screening is based, should be reasonable in light of the amount of data; a gs that is too simple will conceal 
interesting dependencies, an overly complex gs will find many coincidental relationships that lack physical 
meaning. Since it is not a priori clear what the optimal complexity is, such patterns need to be interpreted 
with great caution. Section 3.3 gives an example of how to scan the potentially large amount of results for 
patterns (visualized in Figures 3 and 4), which are expected to work well for a large class of problems. Sec-
tion 3.4 presents a generally applicable empirical improvement of the original model. It might be preferable 
to design more process-based changes, but these are much more dependent on the case study and should be 
formulated by the respective domain expert.

Since we explore a single case study, we can only make limited statements about the general applicability 
of the stochastic parameter approach to other problems or fields. On the other hand, the study involves a 
coupled hydrological and WQ model and joint inference to three types of data with vastly different number 
of observations each. This proves the transferability of the approach from purely hydrological applications 
(Reichert & Mieleitner, 2009; Reichert et al., 2020) to WQ models, which increases the confidence in fur-
ther transferability to other models, case studies, or domains. In WQ modeling, approaches like this are 
especially needed due to the large uncertainties and the lack of data, which often precludes other flexible 
approaches that are more data-hungry, like machine-learning techniques.

5. Conclusions
This study has shown that SPMs based on time-dependent, stochastic parameters can be used at the catch-
ment scale to assess dynamic herbicide pollution from diffuse sources on short timescales. This is one step 
in a potentially much broader future application of similar techniques in WQ modeling, a field in which 
SPMs have not received sufficient attention so far.

The analysis with time-dependent parameters revealed that the parameters controlling the hydrological 
processes lead to a larger increase in the observational likelihood (i.e., goodness of fit) when being made 
stochastic than the parameters controlling the chemical processes. Based on the temporal dynamics of the 
inferred parameter time series we conclude that the release rate of the slow reservoir seems to be slightly 
underestimated during dry conditions with the original deterministic model. After verifying that the pre-
dictive uncertainty is reasonable and after accounting for the identified deficit by adapting the DPM and 
repeating inference, we find that the increase in model performance in terms of observation likelihood is 
rather limited. Therefore we conclude that the identified deficit of the original model is not severe, which 
is a prerequisite for a save interpretation of the uncertainty estimates obtained with the chosen approach.

The resulting temporal dynamics of the time-dependent parameters were shown to contain information 
that is interpretable by the modeler or the domain expert. The spread of the posterior distribution of a 
parameter's time-series provides additional information about the periods during which the observed mod-
el output is especially sensitive to this parameter. This proves that the chosen method is able to disclose 
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systematic deficits of a model's internal process formulation that have been unaccounted for so far. It is 
therefore a promising tool to produce insights that stimulate experts’ reasoning about the respective parts of 
the system and about potential model improvements. We showed that the SPM leads to a more reasonable 
distinction of process-related and residual stochasticity than the DPM. This allows for a better separation 
of the predictions of the true states of interest from their random observation error. On one hand, this leads 
to model output that better resembles the observations in terms of elevated autocorrelation. On the other 
hand, with the SPM, we obtain a more realistic uncertainty of internal model states and of the predicted true 
output, and a smaller residual (observation) error than with the DPM.

One major practical challenge when applying the tested approach turned out to be the control over the ex-
cessive degrees of freedom introduced with time-dependent parameters. This calls for further investigations 
into the possibilities of constraining the stochastic parameters, for example, through the prior distribution. 
Other challenges of more numerical nature were linked to the chosen sampler. These suggest that the sam-
pler is only applicable if rather restrictive conditions are met and further research is needed to design more 
efficient samplers capable of inference with stochastic models. Future research should also focus on the 
application of SPMs to longer time series of observations that allow for proper calibration/validation splits 
and on better exploring the capability of such models to account for the large uncertainty in input that is 
often encountered in WQ settings, but which was of limited relevance in this study. Overall, there is a large 
potential benefit of using more SPMs to assess WQ problems at the catchment scale in the future, since we 
are often forced to use structurally deficient models to describe systems that obviously behave highly sto-
chastic at the resolution we can observe them.

Appendix A: Prior Parameter Distribution
The prior distribution we use for the parameter vectors θ and ψ are independent distributions for each of 
the parameters contained in those vectors (Table A1). The only exceptions are  t,z1S  and  t,z2S , which are be-

lieved to be correlated and which are therefore described by a two-dimensional lognormal distribution with 
nonzero off-diagonal elements. The prior in this study is mostly equivalent to the prior used by Ammann 
et al. (2020), where more detailed information can be found.

The only changes in the prior compared to Ammann et al. (2020) are (i) the replacement of the uniform 
distribution for D with a lognormal distribution, (ii) the adaptation of the lower boundary for  d, (iii) the 
adaptation of the upper boundary for  ik , and (iv) the prior for a ∈ ψ and the neglection of autocorrelation in 
the residual error model. Change (i) was made because a lognormal distribution is a more realistic approxi-
mation of our expectation of this parameter than a uniform distribution. The effect on the results is believed 
to be insignificant since we chose a rather large standard deviation. Change (ii) was made to acknowledge 
the expected increase in rate of macropore flow with wetting of the soil.

Change (iv) expresses the new interpretation of the residual stochasticity in the face of a SPM as opposed to 
a DPM; compare Equations 2 and 4. The parameter controlling autocorrelation, denoted as γj in Table A1, 
is fixed at zero for all types of observations j, to account for the fact that when using a SPM, the residual 
stochasticity is expected to characterize measurement errors only, which are assumed to be uncorrelated 
in time. However, considering correlation of the errors was a convenient way of achieving a reasonable 
weighting between observation types with a lot of data and such with little amounts of data. When neglect-
ing correlation, we have to prevent unreasonably large aatra and aterb resulting from the preference of the 
model to fit streamflow due to the much more abundant data. We do so by choosing narrower priors for 
aatra and aterb.

The prior distribution for s, which is effectively the median of the time-dependent parameter θs(t), are the 
same as for the constant version of the parameter with index s (see Table A1). The asymptotic standard de-
viation of the OU-process, σs, is equal to one fifth of σ listed in Table A1. In addition, we limit the values of 
 *

s  to a range of [−1.5, 1.5] to prevent overly large fluctuations of the time-dependent parameters.
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Parameter index Distribution Units μ σ Min Max

ϕe LN - 1.02e+00 2.06e−01 3.68e−01 2.72e+00

Pex LN mm h−1 4.07e+01 8.22e+00 8.06e+00 7.95e+01

D LN - 7.00e−01 3.00e−01 5.00e−01 1.00e+00

St, max LN mm 1.50e+01 1.50e+00 1.00e+01 5.00e+01

Su, max LN mm 2.77e+02 1.48e+02 3.00e+01 9.92e+02

βu LN - 4.06e+00 5.32e+00 1.00e−01 6.05e+00

kc LN h−1 2.75e+00 1.47e+00 3.28e−01 1.09e+01

kd LN h−1 4.64e−01 1.42e−01 1.21e−01 1.47e+00

αd LN - 1.25e+00 2.52e−01 1.00e+00 3.32e+00

kg LN h−1 1.63e−02 2.14e−02 2.46e−05 2.70e−02

αg LN - 2.11e+00 6.46e−01 1.00e+00 6.05e+00

St, z1 LN mm 2.28e+01 1.21e+01 1.00e+00 1.10e+03

St, z2 LN mm 5.07e+01 2.70e+01 1.00e+00 1.10e+03

rs LN h−1 3.05e−02 1.63e−02 4.00e−04 1.47e+00

λ LN h−1 4.83e−03 2.01e−03 4.00e−04 1.47e+00

ki LN h−1 6.13e−01 3.27e−01 7.33e−02 1.09e+01

aQ LN - 8.22e−02 2.11e−03 5.00e−02 9.00e−01

bQ Fixed - 2.00e−01 - - -

cQ Fixed - 7.00e−01 - - -

γQ Fixed h 0.00e+00 - - -

y0,Q Fixed mm h−1 4.00e−02 - - -

aatra LN - 8.22e−02 2.11e−03 5.00e−02 9.00e−01

batra Fixed - 2.00e−02 - - -

catra Fixed - 8.00e−01 - - -

γatra Fixed h 0.00e+00 - - -

y0,atra Fixed μg l−1 1.00e+00 - - -

aterb LN - 8.22e−02 2.11e−03 5.00e−02 9.00e−01

bterb Fixed - 2.00e−02 - - -

cterb Fixed - 8.00e−01 - - -

γterb Fixed h 0.00e+00 - - -

y0,terb Fixed μg l−1 1.00e+00 - - -

aK Fixed - 2.00e−01 - - -

bK Fixed - 1.00e−01 - - -

cK Fixed - 8.00e−01 - - -

γK Fixed h 0.00e+00 - - -

y0,K Fixed l kg−1 1.00e+00 - - -

Note. The distribution types are: LN, lognormal, U, uniform, Exp, exponential, “Fixed”: parameter was fixed at the 
respective value and not inferred.

Table A1 
Prior Distribution of the Parameters of the Transport Model, θ−s, the Residual Error Model, ψ, and the OU-Process, ξ
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Appendix B: Temporal Dynamics and Predictive Uncertainty Obtained for 
Time-Dependent St, z2

A rather high R2 (0.42, Figure 3b) was obtained when describing the temporal dynamics of  t,z2S  as a func-
tion of Su. The coinciding dynamics of the two quantities are shown in the original space in the last two 
rows of Figure B1. However, a dependency of the two quantities would be in contradiction of the physical 
understanding we have of sorption processes. Especially the peak of  t,z2S  close to the application day and 
the following sharp decrease (Figure B1) is unrealistic and probably caused by compensating the models 
tendency to overestimate the concentration during a small rainfall event shortly after application. On the 
other hand, the subsequent slow increase in sorption equilibrium during the second half of the experi-
ment (Figure B1) is in agreement with a process called “aging” of soils. This process has been observed at 
many sites (Wauchope et al., 2002) and was also observed in the study catchment (Camenzuli, 2010), but 
it was not included in the model m to keep parsimony. The results of the two-dimensional local regression 
reveal a significant increase of R2 to 0.63 when additionally including Sg as an explanatory variable for  *

t,z2S  
(Figure C2). Note that this should be interpreted with great caution, as the concentration measurements 
that support the inference of  t,z2S  are limited and contain only a few precipitation events.
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Figure B1. Posterior uncertainty estimates of model output, internal states, and θs(t) obtained based on inference with 
time-dependent parameter  t,z2S . For easier interpretation, panel (d) shows the soil/water distribution coefficient, Kd, 
calculated based on  t, z1S  and  t,z2S . The dashed red line indicates the application of herbicides. Areas shaded in blue 
indicate event periods zoomed in Figure B2.

(a)

(b)

(c)

(d)
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Figure B2. Parametric and residual uncertainty estimated when making  t,z2S  time-dependent.
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Appendix C: Additional Results
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Figure C1. Maximum posterior prediction and 90% uncertainty bands obtained with the deterministic process model 
m(θ) with all parameters constant. The uppermost panel is zoomed to the baseflow for better visibility.

(a)

(b)

(c)
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Figure C2. Results of the two-dimensional local regression. Pairwise combination of the features {x(t), yg(t)} (x-axis) and the resulting R2 for the time-
dependent parameter (y-axis). The y-axis is ordered according to the maximal R2 achieved, the x-axis is ordered according to which combination of the features 
reaches the highest average R2 for all parameters.
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Figure C3. Comparison of posterior marginal distributions obtained when performing inference with time-dependent parameter  ck  based on streamflow only 
versus based on the full data set. The top two panels show the time-dependent parameter and the obtained observational likelihood, respectively. The lower 
panels show the marginals of the constant parameters.
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Data Availability Statement
The data underlying this article will be made available upon publication through the Eawag Research Data 
Institutional Repository, accessible at https://opendata.eawag.ch.
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