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Abstract

An energy transition in cities is underway, bringing new technical and financial chal-

lenges for multi-utility companies. The implementation of decarbonization policies has

a long-term impact on the design, operation, and profitability of electrical, heat, and

mobility infrastructure, resulting in significant investments and various types of risks.

These risks are amplified by the individual choices of thousands of customers whose

present and future behavior is uncertain. Therefore, it is necessary to analyze the inter-

dependencies among the various actors in the energy transition and quantitatively assess

its implications.

Multi-utility companies generally address these unknowns by relying on top-down models

based on historical data, statistical models, and architectural standards. These models

often do not provide the granularity needed for city-scale assessments and are not well

suited to model discontinuities, such as the introduction of new technologies. Thus, this

study’s main contribution is the development of three predictive, integrated, bottom-up

models to simulate electricity, heat, and electric mobility demand at the urban level.

The most significant methodological advances of this study include the integration of

the demand models into a single, high-resolution “digital twin” of an actual city, as well

as the inclusion of behavioral models of individuals, obtained through the extensive and

large-scale use of agent-based models.

Three case studies are used to evaluate the accuracy and performance of the developed

models and their suitability in supporting a sustainable energy transition. In the mobility

case study, it was found that providers face considerable financial exposure at today’s low

electric vehicle penetration, and the initial investment in public charging stations would

only break even from a 4% electric vehicle penetration. Moreover, the study revealed

that revenues based on parking duration break even faster than tariffs based on power

supplied. However, the revenues from parking fees are also found to be more sensitive

to user charging behavior. Furthermore, at 20% penetration, charging at public and

charging at work can cause a local increase in grid load of up to 78%. In the heat case

study, a model considering building occupants’ behavior was found to quantify the time-

resolved heat demand better, achieving an average annual error of -4.8%. To support the

city’s plans to expand the district heating network, the model was used in conjunction

with a predictive model capable of quantifying the probability of a building connecting

to the future network. By considering both the spatial distribution of heat demand and

the probability that a building would connect to the future network, the internal rate

of return of the district heat infrastructure could be increased by 25%, compared to a

network extension in which the probability of connection was not modeled. Finally, the

electricity study demonstrated how the implementation of behavioral models linked to

location-specific habits improves electricity demand forecasts. The impact on the grid of

future population dynamics and increased electricity demand due to the electrification of

mobility and decarbonization of the building stock through heat pumps was quantified

by identifying the areas of the city where the increase in load on the grid would be the

greatest.

In conclusion, this study demonstrates the superiority of bottom-up agent-based energy

demand forecasting models compared to other approaches, as well as the importance

of incorporating individual behavioral patterns into the models. The results of this

work have already been used in the test-case city to concretely support decision-making

processes, improve business models, and ensure that future investments are socially

accepted.



Sommario

Nelle città è in corso una transizione energetica e ciò, per le società multiservizi, comporta

nuove sfide tecniche e finanziarie. L’implementazione di politiche di decarbonizzazione

ha un impatto di lungo termine sulla progettazione, sul funzionamento e sulla redditività

delle infrastrutture elettriche, di riscaldamento e di mobilità, da cui risultano importanti

investimenti e vari tipi di rischi. Questi rischi sono amplificati dalle scelte individuali di

migliaia di clienti il cui comportamento - nel presente e nel futuro - è incerto. Occorre

quindi analizzare le interdipendenze tra i vari attori della transizione energetica e valutare

quantitativamente le implicazioni di essa.

Generalmente le società multiservizi affrontano queste incognite affidandosi a modelli

“top-down” basati su dati storici, modelli statistici e norme architettoniche. Questi

modelli spesso non forniscono la granularità necessaria per valutazioni a livello urbano

e non sono adatti a modellare discontinuità, come l’introduzione di nuove tecnologie. Il

contributo principale di questo studio è quindi lo sviluppo di tre modelli previsionali,

integrati e di tipo “bottom-up”, in grado di simulare il fabbisogno elettrico, termico

e di mobilità elettrica a livello urbano. Gli avanzamenti metodologici più significativi

di questo studio sono rappresentati dall’integrazione dei modelli predittivi in un unico

“gemello digitale” di una città reale (“digital twin”), ad alta risoluzione, cos̀ı come

dall’inclusione di modelli comportamentali dei singoli individui, ottenuti attraverso l’uso

estensivo e su larga scala di modelli basati sugli agenti.

L’accuratezza e la performance dei modelli, nonché la loro adeguatezza nel supportare

una transizione energetica sostenibile, sono stati valutati in tre studi. Nello studio sulla

mobilità, si è evidenziato come l’attuale bassa penetrazione di veicoli elettrici sottoponga

i provider ad una considerevole esposizione finanziaria; l’investimento iniziale in colon-

nine pubbliche verrebbe coperto (break-even) solo a partire da una penetrazione del

4%. Inoltre, lo studio rivela che introiti basati sulle durata di parcheggio permettono di

raggiungere il pareggio dell’investimento più rapidamente che tariffe basate sull’ energia

fornita. Tuttavia, le prime, si dimostrano anche essere più sensibili al comportamento

di ricarica degli utenti. Inoltre, ad una penetrazione del 20%, la ricarica presso colonni-

ne pubbliche e sul posto di lavoro può localmente causare un aumento del carico sulla

rete fino al 78%. Nello studio sul calore si è dimostrato come un modello, che consideri

il comportamento degli abitanti negli edifici, sia migliore nel quantificare il fabbisogno

termico nel tempo, ottenendo un errore medio annuale del -4,8%. Per sostenere i piani

di ampliamento della rete di teleriscaldamento cittadina, il modello è stato utilizzato

in abbinamento ad un modello predittivo in grado di quantificare la probabilità che un

edificio si colleghi alla futura rete. Tenendo conto sia della distribuzione spaziale del

fabbisogno energetico, sia della probabilità che un edificio si colleghi alla futura rete, il

tasso interno di rendimento dell’infrastruttura può essere aumentato del 25%, rispetto

a un’estensione della rete in cui il secondo aspetto non sia considerato. Lo studio sul-

l’elettricità ha mostrato come l’implementazione di modelli comportamentali legati alle

abitudini del luogo, migliori le previsioni della domanda elettrica. L’impatto sulla rete

di distribuzione di future dinamiche demografiche e l’aumento della domanda elettrica in

seguito all’elettrificazione della mobilità e alla decarbonizzazione del parco immobiliare

mediante pompe di calore, è quantificato identificando le zone della città dove l’aumento

del carico sulla rete sarà maggiore.

In conclusione, questo studio ha dimostrato la superiorità, rispetto ad altri approcci, di

modelli di previsione della domanda energetica di tipo “bottom-up” e basati su agenti

cos̀ı come l’importanza di includere modelli comportamentali individuali alla base degli

algoritmi. I risultati di questo lavoro sono già stati utilizzati nella città di studio per sup-

portare concretamente processi decisionali, migliorare i modelli di business e assicurarsi

che futuri investimenti siano accettati dalla popolazione.
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Chapter 1

Introduction

1.1 The Energy Transition

The world is undergoing an energy transition. In cities, this implies profound and long-

term changes to the urban electricity, heat, and mobility infrastructure. To reduce their

carbon footprint and improve their overall energy efficiency, cities are implementing

decarbonization policies. These include replacing fossil-fueled heating systems with more

sustainable technologies (such as heat pumps and district heat [DH]), the electrification

of private and public mobility, and distribution grid upgrades to support the additional

electric power demand and the increased penetration of renewable energy sources.

Five years after the ratification of the Paris Climate Agreement [1], the goal of which

being to limit the increase in global average temperature to 1.5°C above pre-industrial

levels, national and supranational actors have defined plans for the long term. The EU,

China, and Japan have committed to becoming climate neutral between 2050 and 2060.

In the mid term, the EU’s goal is to reduce emissions by at least 55% by 2030 (compared

to 1990), Japan’s goal is a reduction of 15% by 2030 (compared to 1990), and China’s

goal is to reach its emissions peak in 2030. Furthermore, the new US administration

recently pledged to make the country climate neutral by 2050.

Figure 1.1 illustrates that, in 2020, 45% (252 TWh) of the total amount of electricity

production in Germany was generated from renewable energy sources. Over the last

20 years, the share of electricity generated from renewable energy sources in Germany

has increased considerably, while emission-intense coal and nuclear energy recorded a

significant decline. Germany has been described as a global role model: It has already

reached the 2025 goal of 45% electricity from renewable energy sources. Moreover,

according to the German Atomic Energy Act (Atomgesetz ), all German nuclear reactors

will be shut down by 2022.
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Figure 1.1: Gross electricity generation in Germany by energy source from 2000 to 2020
(in TWh/year). Elaborated from: [2] (*: values for 2020 are preliminary)

Figure 1.2 depicts the increase in the share of electricity generated from renewable energy

sources in Germany and the increase of the EEG levy over the same time frame. The

EEG is a surcharge for electricity end consumers used to finance the energy transition

with a government-set feed-in tariff scheme. The EEG has been continuously increased

over the last decade. Moreover, estimates predict that by 2050, around 110 billion euros

will be required for the expansion and modernization of the German distribution grids.

From these numbers, it is clear that the energy transition comes at a price and that this

price should be sustainable for all actors involved, distribution system operators (DSOs)

and cities included.

Cities have the critical role of driving the energy transition; therefore, they must to face

opportunities, challenges, and risks arising from its implementation. For example, the

design and operation of charging infrastructures for private and public mobility comes

with large investment costs and raises the question of whether the power grid should

be upgraded. Particularly high initial investment costs also mark the construction and

extension of DH networks. Furthermore, cities must ensure cost neutrality compared to

traditional heating systems to keep district heating economically attractive to end-users.

Moreover, the individual choices of thousands of customers, whose present and future

behaviors are associated with large uncertainties, amplify these and other risks.
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Figure 1.2: Share of renewable energy sources in German gross electricity generation and
amount of EEG levy (surcharge for end consumers) for household electricity. Elaborated
from: [3]

1.1.1 Ongoing decarbonization trends

The Paris Climate Agreement was signed in Paris on 12 December 2015 by 196 countries

[1]. For the first time, almost all countries set common climate targets: In particu-

lar, they agreed that a further increase in global warming should be limited to 1.5°C.

Although no binding reduction targets for greenhouse gases were specified, and some

significant emitters (e.g., the US, which is responsible for 14% of CO2 emissions world-

wide) are not part of the agreement, the Paris Agreement is an indicator of an increased

awareness and sensitivity to the impact that economic activity has on the environment.

Environmental awareness, political accountability, and, above all, technical progress are

the drivers of an energy transition that is broadly – yet heterogeneously – happening

worldwide. Figure 1.3 presents the levelized cost of energy in Germany for various power

sources in 2013 and 2018. In 2013, producing electricity from coal (lignite) was cheaper

than using wind turbines and solar PV. In 2018, solar PV and onshore wind turbines

were economically competitive with electricity generation from coal and cheaper than

electricity generation from gas.
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Figure 1.3: Levelized cost of energy for renewable energies and conventional power plants
in Germany in the years 2013 (above) and 2018 (below). Elaborated from: [4]
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As a result of technical progress and environmental awareness, national and suprana-

tional actors are and will be implementing new energy strategies to achieve the Paris

Agreement’s goals. Here follows an overview:

European Union

On 11 December 2020, the European Council approved the EU Commission’s proposal

to cut net greenhouse gas emissions by at least 55% compared with 1990 levels by the

end of 2030 [5]. This new goal replaces the previous goal of a 40% emissions cut, which

was considered insufficient to meet the Paris Agreement’s environmental targets. The

European Green Deal’s main goal is for Europe to become the first climate-neutral

continent by 2050 [5].

Switzerland

In 2017, the Swiss people approved an energy act called Energy Strategy 2050 [6] to

restructure the overall energy system, including a progressive withdrawal from nuclear

energy production. The implementation of Energy Strategy 2050 has and will have

relevant consequences for cities and multi-utilities. In 2020, Switzerland approved the

revision of the CO2 law [7] that shall help attain a 50% emissions cut by 2030. However,

only 37.5% needs to be reduced domestically. Moreover, the Swiss government has

decided that Switzerland should become CO2 neutral by 2050.

China

With a share of almost 30% of global emissions, China is the world’s largest emitter of

CO2. The country aims to be carbon neutral by 2060, a target that was first announced

in September 2020 by the Chinese president [8]. As China still depends on coal for more

than half of its primary energy, the country’s ambitions have a potentially significant

impact.

United States

The United States withdrew from the Paris Agreement in 2020. The new administration

elected in 2020 recently announced that the country would rejoin the agreement.

Are all these announcements, past and present, affecting greenhouse emissions? Figure

1.4 illustrates the forecasted greenhouse emissions for the coming decades as a function

of the different policies that should be implemented until 2030. If countries were to

continue with today’s measures until 2030, the earth would warm up by about 2.9°C
by the end of the century. With the implementation of the announced policies until

2030, the temperature will increase by just 2.5°C. More robust policies (such as CO2

neutrality) are needed to reach the Paris goal.
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Figure 1.4: Forecast of global greenhouse gas emissions as a function of implemented pol-
icy and the resulting increase in world average temperature (width of the curve indicates
inaccuracy). Source: [9]

Notably, the implementation of environmental policies does not occur at the same pace

in different areas of the world:

• The European Union met its 2020 goal of a 20% reduction of greenhouse gas

emissions by 2020 compared to 1990: The EU reduced its emissions by 24% between

1990 and 2019 [10]. Another 2020 goal was to reach a 20% share of of electricity

from renewable sources. In 2018, this goal was achieved by 13 member states, as

shown in Figure 1.5 [11].

• Switzerland had the same goal as the EU, but, instead of the desired 20% reduction,

Switzerland emitted only 14% fewer greenhouse gases in 2018 than in 1990 [12].

• In the United States, between 1990 and 2018, greenhouse gas emissions increased

by 6% [13].

• In China, between 1990 and 2018, greenhouse gas emissions increased by 388%

[14].

Therefore, it is clear that an energy transition is indeed occurring and that the latest

announcements portend an acceleration. However, the transition is happening at a

slower pace than what is needed or is sometimes portrayed by politics. Current concerns

about the world economy’s capacity to recover are certainly a restraining factor in its

implementation.
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Figure 1.5: Share of electricity from renewable sources in the EU member states in 2018.
Source: [11]

1.1.2 The role of city multi-utilities in energy transition

Cities play a central role in the energy transition: Worldwide, more than 50% of the

population live in cities, and they are responsible for 70% of the greenhouse gas emissions

[15]. On the one hand, the relevance of cities will continue to increase due to urbaniza-

tion; on the other hand, cities have several opportunities to actively engage in the energy

transition due to their dense and interconnected infrastructure. Furthermore, cities can

set important impulses through their exemplary function in the areas of energy supply,

mobility, area development, and the renovation of buildings [16].

The Swiss electricity market is highly fragmented; there are about 900 utilities in Switzer-

land that greatly vary in size and financial means. In general, midsized and large cities

have their own publicly owned multi-utility companies. These companies are in charge

of implementing the energy strategy at a city level, as they are particularly integrated

into the economy of the city in which they operate and are subject to its political deci-

sions and will. The public services they provide, i.e., energy, water, telecommunications,

transport, and waste disposal, are all energy transition actors.

Within the national context of Switzerland’s Energy Strategy 2050 [6], Swiss multi-

utility companies such as the St. Galler Stadtwerke (sgsw) [17] have elaborated their

own energy concepts – in the case of sgsw, it is known as EnK3 [18]. The concept is
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centered around three areas of focus – electricity, heat, and mobility – and is aligned

with global climate targets and worldwide ongoing decarbonization trends. It is charac-

terized by a holistic view in which energy transitions in the three mentioned areas are

addressed either individually or by taking into account the overlaps between them, as

graphically illustrated in Figure 1.6. The figure illustrates a selection of technologies

and planning/financial tools that are considered drivers for the urban energy transition

in EnK3.

Figure 1.6: Ongoing technological, planning, and financial trends to support city-scale
energy transition, classified according to the three pillars of the energy concept EnK3 –
electricity, heat, and mobility. Elaborated from: [18]

Analyzing the energy transition implementation concepts worldwide reveals structures

similar to EnK3 [19]. The technological and planning/financial tools that are generally

put in place can be categorized as follows:

• Energy system and electricity

– Electricity from renewable energy sources

– Integrated supply concepts – for individual buildings or neighborhoods
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– Smart grid technologies: demand-side management, virtual power plants, etc.

– Coupling of technologies (combined heat and power, batteries, power-to-gas,

etc.)

• Heat

– Heat from renewable energy sources

– Heat from waste

• Mobility

– Robust and optimized public transport

– E-mobility private and public charging infrastructure

– Innovative goods and freight transport

Therefore, a globally accepted paradigm suggests that a successful energy transition

shall imply changes to the electricity, heat, and mobility infrastructure.

1.2 Risks and Uncertainties

The implementation of an energy transition in a city is associated with large investment

expenditures and various types of risks. For a city, these risks encompass, for example,

regulatory and governance (political) risks, financial and currency risks, counterparty

risks, and operational and technological risks. Furthermore, the choices of individuals

whose behaviors are associated with large uncertainties amplify these risks.

1.2.1 Techno-economic uncertainties

For the goals of EnK3 to be accomplished, several transformations in the generation

mix of the multi-utility sgsw and in the energy and urban infrastructure must occur.

Such transformations may, for example, include decarbonization of domestic heating,

increased e-mobility, increased district heating, or active management of demand through

load shifting and reduction. The main targets of EnK3 (schematically represented in

Figure 1.7 through energy flow diagrams) foresee the following by 2050:

• A fourfold reduction/increase in non-renewable/renewable primary energy

• A 25% reduction in overall energy demand
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Figure 1.7: Energy flows for the city of St. Gallen in 2010 (above) and elaborated in
energy concept EnK3 2050 (below). Source: [18]

These main targets are to be achieved by implementing well-known technologies and

policies (Section 1.1.2, Figure 1.6). Nevertheless, the possible transition pathways to

accomplish the necessary transformations are numerous, which generates technical and

financial uncertainties. For the decision makers, the ultimate goal of the energy transition

is to ensure sustainability in the long term. The concept of sustainability requires, by

definition, the balancing of several elements:

• From a financial point of view, the profitability of the multi-utility must be guar-

anteed. The implementation of the Energy Strategy 2050 is associated with con-

siderable costs. However, the same goal could be achieved by generating very

different costs. For example, the upgrade of the electricity distribution network in

compliance with national guidelines entails investment costs ranging from 230,000

to 40 million Swiss Francs. As a reference, the net income of the multi-utility sgsw
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in 2019 was 12.0 million Swiss Francs.

• From an environmental perspective, the transition must be aligned with the na-

tional energy strategy and global climate targets.

• From a technical perspective, the DSOs will need to handle long-term changes

in energy demand characteristics for electricity, heat, and gas. In particular, the

electrification of the mobility and the decarbonization of the building sector will

have a profound impact on the distribution grid. Moreover, the daily operations of

DSOs will change profoundly, with a shift from a one-way, demand-driven power

flow to a two-flow power flow, where the variability in customer behavior will play

a fundamental role. In particular, the management of demand peaks (caused by

sudden loads from households and e-mobility) entails a significant technical effort

for a small utility.

• From a social perspective, the economic benefit for the population and the city

must be considered. If there is no consensus on the adopted measures, these are

likely to fail, particularly in Switzerland, because of direct democracy.

Given the numerous interdependencies between the various elements and the overall

complexity of a city-scale energy transition, only integrated assessments and quantita-

tive analysis of the transition pathways’ technical and economic consequences can help

the stakeholders meet the targets of EnK3. In this way, risks and uncertainties are

minimized. Therefore, for policymakers, a strategic decision-making process backed up

with a data-driven and quantitative assessment of the costs and benefits of the different

transition pathways is a way to overcome economic, political, and social barriers.

In the past, optimizations have taken place in nearly isolated compartments following

a so-called silo-thinking approach. Establishing connections between different company

departments makes the city a “system of systems” – also known as a smart city. There-

fore, the prerequisite for creating an intelligent urban environment is to follow a holistic

and data-driven approach – as the one applied in this work.

1.2.2 The human factor

When analyzing future scenarios of an energy system, population dynamics and human

behavior cannot be neglected. The sustainable implementation of a broad energy transi-

tion requires a wide range of energy behavior changes among individuals. These changes

include adopting sustainable energy sources and energy-efficient technology, investments

in energy efficiency measures in buildings, and changes to direct and indirect energy use

behavior [20]. These aspects can be analyzed at a macro and micro level.

At a macro level, these behaviors occur in a political and economic context; therefore,
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it is crucial to integrate behavioral insights into the context of these larger systems [21].

On this matter, Switzerland is unique worldwide in that its citizens have the final say

on political matters. By virtue of the direct democracy that is in place in Switzerland,

citizens are always allowed to approve or reject public investments, regardless of their

entity. The Energy Strategy 2050, which, for instance, envisages a maximum limit of

95 g of CO2/km for gasoline cars by the end of 2020, as well as a ban on new nuclear

power plants, was approved by 58.2% of voters in 2017 [22]. Although most layers of

society supported the project, some heterogeneities could be observed: Acceptance was

much greater among women than men, increasing as age decreased or with educational

attainment. The Swiss implementation of the Paris Climate Agreement is closely linked

to the revision of the CO2 law [7], which will likely also be subject to a popular vote in

2021. It is, therefore, clear that energy transitions in participatory democracies cannot

be efficiently implemented if citizens do not cooperate. Hence, some of the outcomes of

this work aim to enhance social acceptance of long-term investments.

At a micro level, the behaviors, preferences, and choices of the individuals are even

more relevant than in the macroscopic dimension; they can determine the success, or

otherwise, of implementing an energy transition. These aspects are, by definition, het-

erogeneous throughout the population, as they generally depend on personal knowledge,

motivations, and contextual factors.

To provide an example of the impact of customer preferences on adopting new technolo-

gies, many studies have analyzed the characteristics of households willing to connect

to new DH pipelines, a problem which is also investigated in this work (Section 4.3).

District heat network extensions are associated with large investment and political risks

as, generally, there is no obligation for building owners to connect to an extended net-

work. Ruokamo [23] found that Finnish households’ views on heating alternatives are

affected by socio-demographic characteristics and that homeowners valuing comfort, re-

liability, and environmental friendliness lean more towards DH. However, DH customers

are sensitive to investment cost subsidization and are particularly sensitive to increases

in operating costs. In a study on German households, Braun [24] found that multi-

family buildings have a rather large probability of connecting to DH pipelines and that

DH is predominantly applied by renters, particularly in Eastern Germany. The author

also found that the probability of connection to DH is not a function of income and

education level and that DH is less likely to be chosen for old buildings.

As another example, the willingness to pay for an electricity subscription for certified

green electricity has been studied. Tabi et al. [25] conducted a study in which most

respondents (80%) had a clear preference for electricity mixes derived from renewable

energy sources, but only 7% of them had already translated their preferences into pur-

chases of green electricity. They found that demographic variables played a marginal
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role in explaining the difference. Instead, an analysis of psychographic and behavioral

features revealed that adopters tended to perceive consumer effectiveness to be higher,

placed more trust in science, tended to estimate lower prices for green electricity tariffs,

were willing to pay significantly more for other eco-friendly products, and were more

likely to have recently changed their electricity contracts than non-adopters [25]. The

fact that many customers exhibit positive attitudes toward a new technology, but only

a small percentage of them are willing to adopt it, translates into a high risk of invest-

ment for DSOs. This mismatch between how people respond to surveys and their actual

choices is a well-known issue for multi-utilities.

The uncertainties related to human choices, particularly in the context of long-term

investments, can be addressed by carrying out a series of “what-if ” scenario assessments

and quantifying the propagation of the uncertainties through sensitivity analysis. The

need for an integrated approach in studying the human dimensions of a sustainable

energy transition that increases our understanding is generally recognized in the scientific

community[20]. Hence, the agent-based and bottom-up models developed in this work

are best suited to provide these kinds of insight. However, it is worth noting that this

work aims not to carry out a socio-economic study, but rather to develop a simulation

framework in which behavioral aspects can be quantitatively converted into techno-

economic considerations.

1.3 Requirements for the Simulation Model

For a multi-utility, the complexity and risks associated with implementing the energy

transition represent economic, technical, and policy barriers that must be overcome.

Simulation models facilitate a successful and sustainable energy transition as they pro-

vide answers and solutions to policy- and decision-makers by assessing future “what-if ”

scenarios and solving optimization problems. This section details the four requirements

that the developed simulation models must satisfy.

1.3.1 Agent-based

The developed simulation framework must be agent-based. Agent-based models (ABMs)

are a typology of models in which individual agents - which can include population

individuals, dwellings, buildings, or vehicles - autonomously make decisions and interact

among each other and with the environment, changing their status to pursue individual

targets and goals [26], as schematically illustrated in Figure 1.8.

The most salient characteristics of ABM are that agents:

• Interact and mutually influence each other.
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• Learn from experience.

• Adapt their behavior to the environment.

Figure 1.8: Schematic of an agent-based simulation environment. Source: [27]

Agent-based modeling is particularly suitable for developing models that simulate an

environment in a life-like fashion. The modeling is achieved by linking agents to behav-

ioral models; thereby, the simulated agents adapt to changes in the environment and the

infrastructure through choices. Because of their inherent bottom-up nature, ABMs are

best suited for integration into physical bottom-up demand models like those developed

throughout this work.

Another advantage of ABMs is that agents can be characterized by a large number

of parameters. For this reason, they are particularly indicated for usage with holistic

frameworks that require flexibility and consistency in the simulation outputs and allow

for the observation of propagation of behaviors at multiple scales [26].

The usage of ABMs in energy demand models has become increasingly established over

the years (Section 1.4). The novelty of this work lies in the large scale of agent-based

simulations, their combination with purely bottom-up models, and their integration into

a high-resolution digital twin, in which the elements have been characterized by real-

world data.

The disadvantages of ABMs are related to their complexity and can be summarized as
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follows:

• They require a large number of variables to be modeled, calibrated, and validated.

These steps are challenging since the availability of reference data is often limited

or aggregated on a large scale.

• Due to the interdependence between agents, ABMs usually run on CPUs whose

speed can be a limiting factor.

• They assume that agents are rational; therefore, ABMs are not capable of capturing

irrational behaviors.

1.3.2 Bottom-up

One of the main requirements of the developed simulation framework for long-term

strategic planning is the need to precisely estimate the agent’s actual energy consump-

tion. Various modeling techniques can be applied to calculate energy consumption at

the city level; these are classified into top-down and bottom-up modeling approaches.

The terminology refers to the hierarchal position of data inputs as compared to the sec-

tor as a whole. Top-down models attribute the total demand to agents based on their

characteristics, while bottom-up models calculate each agent’s energy consumption and

aggregate it at an upper level [28].

The top-down approach is unsuitable for planning and modelling the energy transition:

It models long-term forecasting in the absence of any discontinuity, whereas the energy

transition involves a rupture of people’s habits and mentalities and the introduction of

new technologies [29]. In other words, top-down models are not able to cope with shock

events [26]. Moreover, top-down approaches:

• Tend to have a lower resolution, which is of fundamental importance when model-

ing urban systems or distribution networks.

• Rely on historical demand profiles and scaling factors that might not be available

for a given area.

• Cannot accurately account for changes in society due to changes in demographic

structure or individual preferences.

• Do not easily integrate behavioral models.

In contrast, bottom-up models, which determine each end user’s contribution to the

aggregate value, are more appropriate for modeling an energy transition, as they provide

a greater level of detail and the ability to model technological options. They can follow

either a statistical or an engineering approach. Statistical methods utilize samples of

customers’ energy billing information as a data source and combine them with agents’
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attributes (such as building age, type, or size). They can account for behavioral patterns;

however, they rely on historical data [29].

In bottom-up engineering models, the characteristics of individual agents are used to de-

termine the energy consumption of individuals, buildings, or vehicles through physical

models as, for instance, heat transfer calculations [29]. Thus, each element’s physical

properties need to be modeled - for example the conduction resistances of different build-

ing components in the case of buildings. Therefore, bottom-up engineering models are

generally computationally intense since they require a significant amount of geometrical

and parametric input building data (such as 3D building models). In return:

• They are advantageous in that historical data are not required, whereby historical

data are used for calibration and validation.

• They can explicitly account for the behavior of building occupants [28].

1.3.3 Integrated

The third requirement for the simulation models is that the developed models must

be integrated into a single simulation framework. When implementing a city-scaled

energy transition, a holistic approach is paramount. The investigated energy concept

EnK3 itself and the Energy Strategy 2050 pursue a holistic approach by considering the

mutual interactions and feedback loops occurring between the areas of heat, electricity,

and mobility. These interactions may be more or less noticeable; for example:

• Increased EV penetration may cause an additional load on the distribution grid,

which will need to be upgraded in some areas.

• The multi-utility sells both DH and gas; buildings connected to new DH pipelines

will no longer buy natural gas, causing revenue loss.

• At a national level, the promotion of renewable energies must be supported by the

expansion and optimization of electricity storage.

A silo thinking approach, often found in multi-utilities of a certain size, would result in a

suboptimal implementation of the energy transition. Individual departments would try

to get the most out of the energy transition for themselves, losing sight of the greater

goal.

Most energy models (Section 1.4), regardless of their bottom-up or agent-based approach,

fail to provide a holistic picture. By creating a modular architecture in which the

developed models are integrated into a single digital twin, the holistic view is ensured

while assessing scenarios.
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1.3.4 Large-scaled

The simulation framework requirements previously formulated (agent-based, bottom-

up, and holistic) generally collide with the need to carry out large-scale assessments.

Large-scale population or network simulation (with hundreds of thousands of links and

nodes) models that include ABMs, too, are generally constrained by computational

power limitations.

However, only large-scaled simulations ensure that the outcomes are realistic and reliable.

The reason is self-explanatory: A city cannot be simulated as an island because, for

example, its daily traffic does not only start and end within it, but the commuter flows

also strain its road infrastructure, the resident population is exposed to migration flows,

and energy systems are connected to national grids.

Several studies (Section 1.4) have developed accurate, bottom-up, and behaviorally pro-

vided energy models; however, due to their limited scope of application, they are likely

to remain academic studies with no practical purpose. This risk can be avoided by en-

suring the planning ability of the models developed in this work. For this reason, no

aggregations or down-scaling of the elements of the digital twin must occur. In other

words, simulations must model each inhabitant of the country, each vehicle traveling

along the network, and each building of the investigated city.

1.4 Literature Survey

1.4.1 Electric mobility and EV charging infrastructure

Increase in electric mobility

Worldwide sales of new electric vehicles (EVs) surpassed 1 million units in 2017, a 54%

increase compared to sales in 2016 [30]. Indeed, the global stock of EVs is expanding

rapidly, having crossed the threshold of 3 million vehicles in 2017. There are several

drivers for this transition to EVs, including policies and incentives, cost reductions, and

more stringent CO2 targets for cars. From the perspective of policies and incentives,

rebates to EV owners in the state of California, as well as cost-free license plates for

EVs in Shanghai, are among the drivers for the transition. The cost of batteries used in

EVs is now decreasing faster than historical data suggest [31, 32], and, together with the

entry of traditional manufacturers of internal combustion engine vehicles into the EV

market [32, 33], substantial cost reductions of EVs entering the market are anticipated.

Cities such as Cologne, Hamburg, and Stuttgart, among many others, have undertaken

clean city initiatives that limit or entirely ban diesel or petrol cars. Indeed, until now,

the growth in the number of EVs has been driven primarily by their urban use [33].
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Thus, for cities and, in particular, distribution system operators (DSOs), there are sig-

nificant challenges in the EV transition. One of the main challenges for DSOs is to

anticipate the development in electric mobility and then to adapt, in advance, the in-

frastructure for the anticipated development. Planning tools that can accurately assess

the impact of EVs on the infrastructure and optimize the finances of DSOs to ensure

the best benefit-to-cost ratios are required to support a successful transition to EVs.

However, the development of such tools is challenging, as EVs’ deployment is accompa-

nied by new technologies and changes to current and future EV users’ perceptions and

habits. Fast chargers, new grid management solutions such as “controlled charging” and

“smart charging”, and individual preferences in regard to charging at home, work, or

public chargers translate into significant economic and technical uncertainties, around

which DSOs must make planning decisions for both the short- and long-term.

State of the art of simulation models

Various approaches have been used to assess the impacts of increased EV penetrations.

[34] coupled a MARKAL model with a static transportation model to demonstrate that

EVs have little effect on the energy system. The behavior of EV users and the character-

istics of EVs were assessed on a 34-node IEEE test feeder model in [35], which suggests

that peak loads may be of concern. Using two real distribution grids, with assumed

charging and driving behaviors of EV users, [36] found that peak hour charging had the

most significant impact on the distribution grid. In addition, the placement, size, and

operation of public charging stations have been investigated in several different studies.

A genetic algorithm technique was used in [37] to determine a layout that minimized the

total cost of deploying charging stations. To investigate and optimize the utilization of

charging stations, [38] used the formulation of a classic set covering problem. Recently,

the optimal layout of multi-types of public chargers, derived using a two-step equivalence

method, was investigated [39]. By using a 31-bus distribution system, the overall cost of

the EV charging infrastructure could be reduced with the optimal layout. Furthermore,

coupled models of the distribution and transportation networks have been used to iden-

tify locations of the least expensive charging stations [40]. A K-means clustering method

was used to determine the optimal number, location, and capacity of public charging

stations that maximize the profits of a distribution system operator [41]. Considering the

characteristics and number of EVs and the technical specifications of charging stations,

the locations and sizes of charging stations on the Italian highway system were assessed

in [42]. Finally, in [43], a Markov chain model coupled with geospatial maps was used

to estimate the charging load arising from EVs in a city; three distinct charging profiles

(home, work, and other) were modeled and applied to a model of the city of Uppsala,

Sweden.

Some previous studies have also focused on issues that arise from EV charging at home.
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For example, the coordination of EV charging at homes to avoid grid congestion and volt-

age problems was examined [44]. As exact forecasting of household loads is not possible,

stochastic models of load profiles have been studied to develop optimal charging profiles

that minimize the power losses associated with charging EVs at homes [45]. Moreover,

[46] developed a stochastic bottom-up model that accounts for socio-economic, techni-

cal, and spatial factors and found that uncoordinated EV charging at home profoundly

impacts the distribution grid. The economic rationale of EV charging infrastructure

has not been extensively studied. In [47], the authors examined the uncertainties of EV

rollout and demonstrated that the investment in fast-charging infrastructure is hardly

profitable at low EV penetrations. [48] suggests that the needs of specific EV users

should be accounted for in the development of networks of standard chargers. Further-

more, [41] argues that a DSO’s profits do not necessarily increase with increased EV

penetration, as the costs of establishing parking lots are often higher.

1.4.2 Heat demand and district heat

Heat demand of the residential sector

The European Union consumes half of its total final energy for heating and cooling

purposes, with space heating and hot water preparation being responsible for 27% and

4% of the total final energy demand, respectively [49]. With more than 2800 TWh

consumed per year, the residential sector is the largest consumer of heat, consuming 43%

of Europe’s heat demand [49]. In 2017, in the EU-28 countries, more than half of this

heat was still obtained from fossil fuels, with gas and oil accounting for more than 57%

of space heat production and hot water preparation in households [11]. In Switzerland,

where 38% of the country’s final energy consumption is attributable to buildings for

heating, air conditioning, and hot water purposes [50], the residential sector accounts

for more than 60% of this, and almost 2/3 of buildings are heated with oil or gas [51].

Aside from Luxembourg, no other European country consumes as much oil per capita

for heating purposes as Switzerland [51].

Decarbonization through district heat

One possible way to comply with CO2 reduction policies is to incentivize the decarboniza-

tion of residential buildings with measures aiming to improve the energy efficiency of

buildings or support the dismantling of fossil-fuel heating systems [50].

On a municipal level, the extension of DH networks is a way for cities and local multi-

utility companies to decarbonize the building stock. District heat has long been consid-

ered a resource- and cost-efficient means of supplying heat to buildings and a promising

method to mitigate climate change [52]. Connolly et al. [52] demonstrated that, by

exploiting the potential district heating in the EU, the EU could reach its target of an
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80% reduction in annual greenhouse gas emissions by 2050 at a 15% lower cost than in

a baseline scenario. However, the potential of district heating is not yet fully exploited,

as revealed by Persson and Werner [53]; in fact, the excess heat recovery potential could

cover 90% of the total heat demand of residential and commercial buildings in the EU.

Thus, in Switzerland, many cities are currently implementing network extension projects

as well [54]. However, for local multi-utilities, this task is accompanied by significant

multi-annual investments and uncertainties related to the local building stock’s charac-

teristics, the distribution of heat demand over the territory, and the occupants’ habits

and personal choices. From a city perspective, a significant uncertainty is that there is

generally no obligation for buildings to connect to new DH pipelines, because, in general,

neither the building owners nor the city has such a legal obligation [54]. To guarantee

economic sustainability, DH pipelines should be built in city areas where buildings have

both large heat demand and a sufficient likelihood of connecting to the future network

and generating revenues.

Bottom-up models for heat demand calculations

In bottom-up models, the characteristics of individual buildings are used to determine

their energy consumption. Thus, buildings’ physical properties, such as the conduction

resistances of different building components, need to be modeled. Perez et al. [55]

compiled a comprehensive set of physical properties of building walls, roofs, and windows,

from which conduction resistances were inferred in this work. Cesaratto and De Carli

[56] evaluated the correlation between design and in situ-measured conduction resistances

and found that the differences in heat demand ranged from 11–14%. Convective heat

transfer coefficients for external building surfaces are a function of building geometry,

surroundings, facade roughness, local airflow patterns, and temperature differences [57].

Liu et al. [58] found that the total heating energy consumption within similar-sized

urban neighborhoods varies as much as 32% in a dense city compared to a less dense

city because of the different magnitudes of convective heat transfer from exterior building

surfaces due to the effects of shading and wind sheltering. Mirsadeghi et al. [57] provide

an extensive review of convective heat transfer coefficient models for bottom-up modeling

of heat demand and identify their applicability range; most models define the convective

heat transfer coefficient as a function of a reference wind speed.

Behavior of building occupants: Agent-based and other modeling techniques

Bottom-up demand models can explicitly account for the behavior of building occupants

[28]. In recent work, people’s social and behavioral aspects have been integrated into

energy models, generally with stochastic heat demand models [59]. One approach uses

random patterns of occupancy, for instance, by applying Monte-Carlo algorithms that

randomly assign parameters from probability distributions of empirically observed data



1.5 Novelty of the Present Study and Thesis Goals 21

[60]. Another approach, proposed by McKenna [61], is to use a first-order Markov chain

to stochastically model the occupancy and activity of the building occupants. Hetero-

geneous Markov chains were also used in [62] to model individuals’ activity patterns

to quantify the electricity consumption in an average American household. An alter-

native approach is to use activity-based models, whereby the modeling of occupancies

and activities is based on time-use surveys [60]. Subbiah et al. [63] used logistic and

Poisson regressions of survey data to model the total household energy demand based

on the building occupants’ energy-consuming activities. A limitation of stochastic mod-

els is that, as the models are based on historical data, such models cannot account for

events – such as climate change or the introduction of new technologies – that have not

previously occurred.

On the other hand, ABMs can account for the heterogeneity in the heat demand and

capture the interactions between different system components. Azar and Menassa [64]

used an agent-based approach to model building occupants’ behavior to determine a

single commercial building’s energy demand. Similarly, Bustos-Turu et al. [65] used

the behavior of building occupants derived from an ABM to assess the heat demand in

different zones of an urban area. However, the heat demand was determined in a manner

similar to that of the traditional heating degree day method. Finally, Chingcuanco

and Miller [66] coupled an agent-based choice model with a building energy simulation

software to stochastically simulate residential space heating demand.

1.5 Novelty of the Present Study and Thesis Goals

This work focuses on the three pillars that commonly sustain a city’s energy transition:

electricity, heat, and mobility infrastructure. It investigates their role in the energy

transition with the intent to assess and minimize the uncertainty that accompanies the

implementation of energy policy in the next 10 to 30 years.

More precisely, the following elements of energy transition are investigated in detail:

• Mobility : the technical and financial consequences of a larger penetration of EVs.

• Heat : the implementation of the extension of the DH network.

• Electricity : the impact of population dynamics on the electrical distribution grid.

It is evident from the aforementioned literature that a variety of behavioral, economic,

technological, and sociological factors are driving the urban energy transition. This com-

plexity applies, for example, to the EV transition and the decarbonization of the building

stock. The literature survey indicates that a comprehensive simulation framework that

integrates agent-based, bottom-up, holistic, and large-scale energy demand models into
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a highly resolved digital twin is still missing.

In this Ph.D. project, to holistically plan and assess a successful energy transition, three

novel bottom-up physical models of demand (electricity, heat, and electric mobility) have

been fully coupled and applied to an integrated digital twin of a mid-sized town, which

was developed during the Ph.D. project. The digital twin provides high temporal res-

olution and spatial granularity (individual buildings and low-voltage network elements)

and builds an integrated and holistic framework that allows for addressing “what-if ”

scenarios and optimization problems, where large databases from different sources are

bridged together.

Human behavior patterns have been included in all developed models through the exten-

sive use of large-scale (country-wide) agent-based simulations to ensure realistic assess-

ment of future scenarios and, in particular, to account for future population dynamics

and mobility needs. Moreover, smart meter data analysis results and other measure-

ments have been applied to calibrate and validate the developed models. Additionally,

four tools are included in the developed framework:

• A power flow simulation tool that, for the first time, has been used to simulate the

low-voltage distribution grid of the investigated city.

• A predictive algorithm to quantify via machine learning the willingness of building

owners to connect to future DH pipelines.

• A routing algorithm for future DH pipelines to maximize revenues for the multi-

utility.

• A model for the optimal placement of an EV charging infrastructure.
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Thus, the main objectives of this research are as follows:

• To study the impact of individuals’ characteristics and behaviors on the techno-

economic consequences for a city going through an energy transition.

• To quantify the sensitivity associated with the developed bottom-up models’ input

variables on the techno-economic consequences of the energy transition.

• To assess how agent-based, holistic, and data-driven model predictions compare

with norm-based top-down approaches.

• To understand how agent-based, holistic, and data-driven predictions can help

overcome economic, technical, and policy barriers to the energy transition.



Chapter 2

Methodology

2.1 Extension and Improvement of the EnerPol Frame-

work

EnerPol is a bottom-up integrated simulation framework that has been in development

since 2009 at the Laboratory for Energy Conversion (LEC), which is used to support

strategic decision making through data-driven and scenario-based assessments. Origi-

nally, EnerPol was used primarily for the performance evaluation of gas and electric

infrastructure. The extensive and granular database and the physical models’ resolu-

tions provided by the gas and electricity models guarantee a high spatial and temporal

resolution. Many studies have proven the suitability and the accuracy of EnerPol to

model large-scale interconnected systems:

• Singh et al. presented an integrated approach of geographically indexed electricity

production, demand, and grid modeling for large-area power systems and applied

EnerPol to assess wind power development in Switzerland [67].

• Eser et al. extended EnerPol with a gas system model, which captures the market

behavior of both gas traders and gas system operators, as well as investigated the

impact of the new gas pipeline Nord Stream 2 on gas trade and security of supply

in the European gas network [68].

Moreover, EnerPol ’s modular architecture and the integration of all developed models

into a single digital twin ensure the capability of EnerPol to provide a holistic view in

the scenario assessment. The following are some examples of holistic assessments carried

out with EnerPol and their findings:

• Eser [69] demonstrated that the increased penetration of renewables in 2020 will
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induce an increase in the number of starts of conventional plants and that the

number of load ramps significantly increases by 63–181%, which underlines the

need for action for equipment manufacturers and utilities.

• Eser [70] also showed that increased penetration of EVs in Europe with the current

electricity generation mix would imply that 65% of the electricity used to charge

the EVs is produced by conventional power plants. Consequently, the intrinsic

CO2 emissions of EVs are found to be up to 25% higher than those of gasoline

cars. Therefore, the decarbonization of personal transport requires more effort

than simply promoting the sales of EVs.

• In the development of an agent-based mobility model, Saprykin [71] illustrated how

only a holistic and integrated approach that combines different elements (popula-

tion synthesis, job assignment, car ownership, and mode choice models) is capable

of generating a realistic synthetic population and agents’ daily plans for a large-

scale scenario.

More recently, EnerPol has been extended by three large-scale ABMs: a population

model, a daily activity model, and a mobility model, illustrated in detail in Section

2.4. These models have allowed a paradigm shift in the modeling of individuals within

EnerPol. For example, an agent-based daily activity model simulates the daily routine of

all inhabitants of a given domain. The top-down approach previously used in EnerPol,

in which, for example, electricity demand, obtained from historical time series, was

distributed and then up-down-scaled to simulate future scenarios, does not lend itself

to simulations of urban systems. The ABMs were used to carry out assessments of

transportation infrastructure [72, 73], land use, and urban development [74, 75].

Therefore, EnerPol provides an initial framework suitable to support an urban energy

transition as it satisfies the previously stated requirements for a simulation framework:

agent-based, bottom-up, holistic, and large-scale. In this work, the EnerPol framework

has been extended and improved to enhance its capabilities to model energy transitions

at a city-scaled level. Furthermore, the new models are demonstrated using the digital

twin of an entire city; GPUs’ architecture is used to overcome the large computational

requirements.

For the project to proceed systematically, the four overall phases of the project were

dictated by the existing EnerPol structure, well established in the past ten years of

development at LEC. The EnerPol structure is based on four pillars: Data, Models,

Scenarios, and Results Aggregation, as schematically represented in Figure 2.1. Data

digitally represent the infrastructure, the environment, the energy, mobility, and the eco-

nomic systems, and the population of the investigated area. In EnerPol, data constitute

the foundation of models, and their quality is essential to guarantee accurate simula-
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tions. Models interlink the data to assess “scenarios” for decision makers. “Results” are

then aggregated to be displayed to different audiences.

Figure 2.1: Schematic of EnerPol ’s four pillars on which the EnerPol framework is
based.

To manage a large number of variables, the high temporal resolution, the level of de-

tail of the simulation domain, and the resulting large number of agents, the models were

developed and run on the hybrid CPU-GPU architecture that has recently been incorpo-

rated into EnerPol [26]. Thanks to the hybrid CPU-GPU architecture, no aggregations

or down-scaling of the digital twin elements occurred in this work. In other words,

each inhabitant of the country, each vehicle traveling along the network, and individual

buildings of the investigated city are modeled.

2.2 Methodology Outline

Following the previously explained EnerPol structure, this project’s methodology is

hereby presented as it was developed and applied:

1. Data: The creation of a real digital twin of the built infrastructure, the

analysis of real measurements data from low-voltage transformers and smart

meters, and a tool to run power flow simulations of the low-voltage grid are

presented in Section 2.3

2. Models : The integration into the digital twin of various large-scaled ABMs of

population, daily activities, and mobility simulations is presented in Section

2.4

3. Models : The methodology applied in the development of the new agent-
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based bottom-up demand model for electricity, heat, and electric mobility is

presented in the case study Chapters 3, 4, and 5 (specifically in Sections 3.1,

4.1, and 5.1)

4. Scenarios : The scenarios investigated in the case studies are detailed in Sec-

tions 3.2, 4.2, and 5.2.

5. Results and Aggregation: The results of the case studies are presented in the

respective chapter sections (3.3, 4.3, and 5.3).
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2.3 Digital Twin Development

2.3.1 Geo-referenced built infrastructure

An actual and comprehensive digital twin of the investigated city’s energy and urban

infrastructure was developed in this project; Figure 2.2 shows an example detail of the

digital twin. The model functions as a digital twin of the city and interfaces the geo-

referenced highly resolved datasets with the agent-based and bottom-up physical models.

The usage of geo-referenced data, particularly of the ESRI shapefile format – a geospatial

vector data format for geographic information system (GIS) software – facilitates the

identification of interdependences between databases.

Figure 2.2: Detail of the digital twin with elements of the energy and the urban infras-
tructure
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The following tables summarize the geo-referenced datasets that were included in the

digital twin. Table 2.1 and Table 2.2 detail the geo-referenced datasets utilized to model

the city’s real estate and mobility infrastructure, respectively. Table 2.3 and Table 2.4

describe the geo-referenced datasets utilized to model the city’s electricity and DH in-

frastructure, respectively. More details on the datasets’ attributes are explained in the

methodology sections of the respective case studies. The tables specify the datasets’

source: Seven datasets contain proprietary data and were made available by the multi-

utility sgsw. These data were verified and standardized to comply with EnerPol stan-

dards. The other datasets are part of the EnerPol database and were obtained from

open-source data sources and federal registers.

The geo-referenced digital twin of the city’s real estate contains 14,000 buildings’ roof

print areas and the respective building heights; the building geometry is approximated

to prisms with the roof surface parallel to the basis. A set of architectural (height,

perimeter, build year, renovation year) and functional attributes (typology, ownership,

end-use, purchase value, garage availability) characterizes each building. The buildings’

functional attributes were either obtained from the land surveying office of the city of

St. Gallen or official federal registers (Federal Register of Buildings and Dwellings and

Federal Register of Commercial Activities). Each building is also characterized by an

energy-demanding area in m2, and annual electricity and heat consumption data were

obtained from the multi-utility customer database.

The geo-referenced digital twin of the city’s mobility infrastructure contains 230 km

of primary, secondary, tertiary, and residential roads; the locations of 7,045 public and

private parking lots; and the locations of the existing 11 parking lots with public chargers

with a total of 23 chargers (year 2018).

The geo-referenced digital twin of the city’s distribution grid includes, among others:

• 15,391 power lines: 9 high-voltage (110 kV) cables, 291 middle-voltage (10 kV)

cables, and 15,091 low-voltage (400 V) cables

• 192 transformers

• 1,216 smart meters

The geo-referenced digital twin of the city’s DH network includes 50 km of DH supply

pipelines in operation and 3 DH plants.
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Table 2.1: Description of the geo-referenced database included in the digital twin of the
investigated city to model the city’s real estate

Category Dataset Attributes
Resolution

Data Source
Spatial Temporal

Urban
infrastructure

R
ea

l
es

ta
te

Buildings

• Geometric
attributes

• Architectural
attributes

• Functional
attributes

• Energy demand
measurements

• Individual
buildings

• 0.2-1.5
meters

• Year
2019

• Land surveying
office of city of
St. Gallen [76]

• Federal office
of topography
(swisstopo)

Garages • Location
• Individual

private
and public
garages

• Year
2018

• Land surveying
office of the city
of St. Gallen [76]

Federal Register
of Buildings and

Dwellings

• Resident
attributes

• Household
attributes

• Dwelling
attributes

• Individual
buildings

• Year
2015

• Federal registers
[77, 78]

Federal Register
of Commercial

Activities

• Building end-use
• Job properties

• Individual
buildings

• Year
2013

• Federal register
[79]

Table 2.2: Description of the geo-referenced database included in the digital twin of the
investigated city to model the city’s mobility infrastructure

Category Dataset Attributes
Resolution

Data Source
Spatial Temporal

Urban
infrastructure

M
ob

il
it

y

Roads

• Geometric
attributes

• Functional
attributes

• <5 meters
[80]

• Year
2019

• Open street
maps [81]

Parking lots
• Ownership
• Location
• Capacity

• <5 meters • Year
2018

• Land surveying
office of the city
of St. Gallen [76]

Existing EV
public chargers

• Location
• Capacity

• Aggregated
at parking
lots

• Year
2018

• Own research
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Table 2.3: Description of the geo-referenced database included in the digital twin of the
investigated city to model the city’s electricity infrastructure

Category Dataset Attributes
Resolution

Data Source
Spatial Temporal

Energy
infrastructure

E
le

ct
ri

ci
ty

Electrical
distribution grid

• Distribution
lines

• Network ele-
ments: substa-
tions, transform-
ers, distribution
boxes, house
connections

• Individual
line seg-
ments

• Individual
network
elements

• Year
2017

• sgsw [17]

Smart meters

• Real power con-
sumption with a
time resolution
of 15 minutes

• Individual
customers

• April
2015-
April
2017

• sgsw [17]

Table 2.4: Description of the geo-referenced database included in the digital twin of the
investigated city to model the city’s DH infrastructure

Category Dataset Attributes
Resolution

Data Source
Spatial Temporal

Energy
infrastructure H

ea
t

District heat
pipelines

• Geometric at-
tributes

• Functional at-
tributes

• Individual
line seg-
ments

• Individual
pipeline
elements

• Year
2018

• sgsw [17]

District heat
plants

• Location
• Power produc-

tion with a time
resolution of 15
minutes

• 1 waste
incinerator
& 2 district
heat plants

• January
2013-
May
2018

• sgsw [17]
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2.3.2 Transformers data analysis

The distribution grid of St. Gallen comprises 192 transformers on grid level 6 that

connect the mid-voltage grid (10 kV, grid level 5) to the low-voltage grid (400 V, grid

level 7). A power quality system for fault analysis and monitoring of power quality tracks

the power flow through 17 transformers that supply to different city areas. Therefore,

the power flow measurements were aggregated for clusters of, on average, 75 buildings

of various types. The measurements had a time resolution of 15 minutes and covered

the period from November 2018 to May 2020. The locations of the transformers with

available measurements are displayed in Figure 2.3, and Figure 2.4 presents an example

power demand profile of a period of one year for a transformer located in a residential

area. The supplied demand had a time resolution of 15 minutes and followed a daily and

a seasonal trend: The demand peak over a day was reached at 18:00, and the demand for

summer months was lower than in other months because heat pumps and other electric

heating systems were not used, and building occupants spent less time at home during

dark hours. Moreover, demand drops due to school holidays are visible. The demand

drop to 0 kW in March was due to a temporary change in network switch status.

Figure 2.3: Map of low-voltage transformers with indication of power flow measurement
availability.
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Figure 2.4: Annual aggregated power demand at a low-voltage transformer in a resi-
dential area in grid level 7 with a time resolution of 15 minutes (source: Power Quality
System of sgsw).

The mid- and low-voltage distribution network’s digital twin was applied to determine

which buildings were connected to a specific transformer. Figure 2.5 illustrates an ex-

ample topography of the network layout around a transformer. A correct allocation of

buildings to the supplying transformer was crucial to correctly interpret the calibration

and validation results of power flow simulations. The electricity demand of a build-

ing is not necessarily supplied by the closest transformer since the distribution network

depends on the city’s topography; in addition, it includes redundant pathways (mesh net-

work). Therefore, the allocation of buildings was not based on nearest neighbor searches

but on the actual network topography as modeled in the SQL network database of the

multi-utility, which had been imported into the digital twin.

Power flow simulations were used to simulate the demand at transformers to verify both

the functioning of the digital twin and the results of the electricity demand model. Six

of the transformers for which power flow measurements are available were used in the

calibration and validation of the electricity demand model.

2.3.3 Smart meter data analysis

The smart meters installed in the city track the real power consumption of 13 typologies

of customers with a frequency of 15 minutes. The measurement pool consisted of 1,216

customers of various types, as reported in Table 2.5. The total measurement duration
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Figure 2.5: Example of low-voltage network topography around a low-voltage trans-
former (brown circle) as it is modeled in the digital twin; blue circles are network nodes
placed at a lower hierarchical level in the network.
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covered the period from April 1, 2015 to April 30, 2017. Nevertheless, the measured

time for an individual customer may be shorter. Each smart meter is uniquely identified

with an anonymized 33-digit code and, in the case of St. Gallen, by a city address. The

address was used to geo-reference all measuring points. Subsequently, through a nearest

neighbor search algorithm (cKD-Tree), a building was assigned to each smart meter; in

this way, each smart meter could be characterized with the following characteristics:

• Building end-use: household or, for other kinds of buildings, NACE code of level

1 for economic activities, as reported in Table 2.5

• Energy-consuming area [m2]

In addition to the smart meters from the city of St. Gallen, a second pool of mea-

surements was made available by the Elektrizitätswerke des Kanton Zürich (EKZ). This

second measurement pool consisted of 4,630 customers of various types, as also reported

in Table 2.5. For all customers, the total measurement duration covered the year 2016.

The time resolution of the power demand in kW was 15 minutes. Unlike the first mea-

surement pool, the measurements were fully anonymized and could not be geo-referenced.

An official EKZ classification was made available and used.

A single shared pool was created to increase the number of available customers and

the results’ representativity. To allow the merge, both sgsw and EKZ categories were

converted into NACE codes of level 1. All customers who behaved as “prosumers”

(meaning that they did not only draw electricity from the grid but also fed self-produced

electricity back into the network) were filtered out from the shared pool.

An automatized pre-processing analyzed the quality of the available yearly time series

day by day. Due to flawed or missing data, primarily as a result of technical prob-

lems with the smart meters, not all time series could be used. Flawed/missing data

were substituted, when possible, with interpolated data. With a set data quality cri-

terion (maximum 5% of missing/flawed data per day), about 15.7% of data needed to

be discarded. In particular, 44.4% of data on households needed to be discarded. Mea-

surements from building categories “Energy”, “Construction”, and “Real Estate” were

also not used because the number of accepted time series was too little to guarantee

representativity.

The results extracted from the analysis were typical normalized power demand profiles

and baseload distributions for the 13 customer typologies reported in Table 2.5. Both

outcomes were used to calibrate the electricity demand model presented in Chapter 5.

Typical normalized power demand profiles

The normalization for N customers of the same customer typology took place according
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Table 2.5: Categorization and quality assessment of smart meter data delivered by St.
Gallen and EKZ.

Customers Accepted
Yearly

Time Series

Acceptance
Ratio
[%]

Typical
power demand

profiles
implemented

sgsw EKZ

Household 361 300 1383 55.6 No

Agriculture 0 61 57 93.4 Yes

Manufacturing -
Industrial

67 379 537 92.6 Yes

Energy 11 9 28 66.7 No

Water Supply,
Sewerage, Waste
Management

4 45 50 87.7 Yes

Construction 4 4 12 75 No

Wholesale, Retail 128 540 884 95.7 Yes

Transportation,
Storage

0 34 33 97.1 Yes

Accommodation,
Food Services 17 294 338 98 Yes

Financial and
Insurance Activities 0 29 27 93.1 Yes

Real Estate 4 0 8 66.7 No

Scientific, Technical 0 35 34 97.1 Yes

Public Administration 9 5 89 96.7 Yes

Education 59 150 301 92.1 Yes

Health 11 84 111 94.9 Yes

Entertainment,
Recreation, Arts

69 89 263 88.9 Yes

Offices and Other
Services

382 230 1285 93.4 Yes

Total categorized
customers

1126 2288 7727 84.3 -

Total uncategorized
customers

90 2342 - - -
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to Equation 2.1, where nDF stands for normalized power demand factor.

nDF =
1

N

N∑
n=1

demand(t)

demand
(2.1)

Normalized power demand factor curves were defined for a period of one year. Figure

2.6 illustrates the trend of normalized power demand factor over one average year for

customers belonging to the “Education” category. The demand dropped over the sum-

mer; school holidays were clearly visible and were therefore accounted for in modeling

power demand in the electricity demand model. Figure 2.7 provides some examples of

normalized demand factors over an average week for customer typologies “Manufactur-

ing/Industrial” and “Education”. The electricity demand dynamic was strictly related

to the type of activity: For example, in industrial customers, the peak-to-base ratio over

the workweek was always smaller than 1.4/1 , while it was 2.7/1. for customers belonging

to the “Education” category.

Figure 2.6: Normalized power demand factor over an average year for customers belong-
ing to ”Education” category calculated from smart meter measurements.
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Figure 2.7: Normalized power demand factor over an average week for industrial cus-
tomers (left) and customers belonging to “Education” category (right) calculated from
smart meter measurements.
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Figure 2.8: Normalized power demand factor over an average week for households cal-
culated from smart meter measurements.
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To evaluate a specific power demand factor’s representativity, the standard Pearson cor-

relation factor between the typical trend and the available trends used to define it was

calculated. The mean absolute error (MAE) between the typical trend and the avail-

able trends was also calculated. The resulting values are reported in Table 2.6. This

data indicates whether the defined typical power demand factor was representative for

its customer category or whether the variance between customers’ demand profiles was

too large to obtain any representative trend. For customers belonging to the categories

“Manufacturing/Industrial”, “Wholesale/Retail”, “Accommodation”, “Scientific/Tech-

nical”, “Education”, “Health”, and “Entertainment”, the typical load profiles were found

to be representative and would be used in the electricity demand model. For the “House-

holds” category (Figure 2.8), that was not the case: A correlation factor of 0.12 and MAE

0.76 suggest that different households show very different demand patterns. This inho-

mogeneity is due to different family sizes, compositions, ages, preferences, daily routines,

and other household characteristics. Hence, accurate modeling of electricity demand for

households necessitates the inclusion of individuals’ preferences and choices, which pro-

vides an argument for the development of an agent-based electricity demand model.
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Table 2.6: Assessment of representativity of typical normalized power demand profiles
obtained from smart meter data analysis – by customer category

Variability of Demand Typical
power demand

profile implemented in
electricity

demand model?

Average
Correlation
Coefficient

[-]

Average
Normalized

MAE
[-]

Household 0.12 0.76 No

Agriculture 0.11 0.77 No

Manufacturing/Industrial 0.53 0.56 Yes

Water Supply, Sewerage,
Waste Management 0.05 0.44 No

Wholesale, Retail 0.65 0.41 Yes

Transportation, Storage 0.17 0.32 No

Accommodation,
Food Services 0.48 0.46 Yes

Financial and
Insurance Activities 0.38 0.37 No

Scientific, Technical 0.58 0.2 Yes

Public Administration 0.54 0.36 Yes

Education 0.61 0.43 Yes

Health 0.69 0.3 Yes

Entertainment, Recreation, Arts 0.43 0.54 Yes

Offices and Other Services 0.6 0.45 Partially
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Distribution of baseload demand, normalized to the surface area in m2

When defining the baseload distributions, it must be noted that only sgsw smart me-

ter data can be geo-case studied and, therefore, linked to a building for which the

energy-consuming area is known. Thus, EKZ smart meter data were not used to obtain

baseload distributions. From the baseload distributions, baseloads outside the 90% per-

centile were discarded as they did not represent typical customers. Figure 2.9 provides

examples of baseload demand distributions calculated on a yearly basis for customers

belonging to categories “Education” and “Wholesale/Retail”. The standard deviation

of the distribution for customers belonging to “Education” was smaller than that of

“Wholesale/Retail”, indicating that the former category presents more homogeneous

demand patterns; the electricity demand model considers these aspects.

Figure 2.9: Distribution of base loads normalized with energy-consuming area for cus-
tomers belonging to category “Education” (left) and category “Retail” (right) calculated
from smart meter measurements with indication of average value and standard deviation.

The peak-to-base ratios for weekdays and weekends, as well as the baseload distribution’s

mean and standard deviation values, calculated on the 0–90% percentile range, are

reported in Table 2.7. The results are reported only for customer categories whose

typical power demand load profiles have been implemented in the electricity demand

model. For the sake of completeness, Table 2.7 also reports the baseload distribution’s

mean and standard deviation values calculated over all available measurements.
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Table 2.7: Results of the analysis of smart meter measurements: (i) Peak-to-base ratios
for weekdays and weekends, and (ii) baseload distribution’s mean and standard deviation
values for customers categories whose typical power demand load profiles have been
implemented in the electricity demand model

Peak-to-base Ratio
Base Load [W/m2]

90% Percentile All

Weekdays Weekends µ σ µ σ

Household 2.8 1.9 1.4 1.8 2.3 5.4

Manufacturing/Industrial 1.6 1.7 4.6 8.9 13.9 51.8

Wholesale, Retail 4.5 3.8 3.8 7.9 6.2 13.2

Accommodation,

Food Services
2.3 2.1 4.1 2.9 4.5 3.4

Scientific, Technical 1.3 1.1 n/a

Public Administration 2 1.5 n/a

Education 3.1 1.8 1.8 2.8 4.4 13.4

Health 2.4 1.7 9.8 23.0 15.5 33.4

Entertainment, Recreation, Arts 2.8 2 1.9 1.8 2.4 2.7

Offices and Other Services 3.4 2.5 2.1 2.7 3.9 11.7
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2.3.4 Power flow simulations of the low-voltage grid

Variations in electricity demand – both in magnitude and time dynamics – as predicted

by the electricity demand model presented in this work were investigated using power

flow simulations of the low-voltage network.

Power flow modeling is generally recognized as an essential tool for investors and poli-

cymakers to support the development of energy technologies, power security and trade,

and policymaking [67]. When the high temporal and spatial resolutions provided by the

bottom-up and the ABMs are combined with power flow modeling, the consequences

of the energy transition on the grid can be precisely assessed by identifying lines that

necessitate an upgrade due to increased load. The consequences of the electrification

of mobility or the decarbonization of heating systems are particularly significant at the

distribution level [82, 83].

The predicted normal steady-state operation of a power system can be analyzed by

numerically determining, among others, the magnitude and phase angle of the voltage

at each bus, as well as the real and reactive power flowing in each line. Figure 2.10

illustrates a typical result of power flow simulations (i.e., the day-averaged line loading

as a percentage of the individual lines’ loading limit). Thereby, the cables’ thermal limit

was chosen as the constraint for the maximum available power flow. More details on

the approach used in EnerPol to model power flow simulations can be found in [67].

It must, however, be noted that the approach applied in this work differentiates from

previous EnerPol simulations:

• The simulated network was a mid- to low-voltage distribution grid instead of a

high-voltage transmission grid.

• The electricity demand was modeled in a bottom-up way instead of being allocated

according to a top-down approach.

• The generation of electricity was not accounted for in the digital twin; hence, power

flow simulations, rather than optimal power flow simulations, were carried out.

All distribution grid elements needed to run power flow simulations were included in the

digital twin and were used in combination with the Python-based open-source power flow

solver pandapower [84], which combines the data analysis library pandas and the power

flow solver PYPOWER. The solver was applied at a quarter-hourly time resolution.

Since some distribution grid elements could not be univocally identified and character-

ized, the demand at some distribution boxes (15.4% of the city’s total demand) could

not be precisely allocated when defining the power flow simulation problem. This miss-

ing demand has been homogeneously distributed over the city domain. However, it is

worth noting that these results represent the first full-scale simulations of the low-voltage
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distribution grid ever carried out in the investigated city.

Figure 2.10: Day-averaged line loading as % of the line thermal limit in the city’s low-
voltage distribution grid.

2.4 Agent-Based Models

Three existing EnerPol agent-based models (ABMs) – population, daily activities, and

mobility- were used and extended with the ABMs developed in this work. For complete-

ness, salient features of these three models are presented in this section.

The existing EnerPol ABMs have been extended to make them suitable for simulating

the urban energy transitions. Two main extensions have been made:

• In the electricity and heat case studies, the agent activities occurring inside the

buildings needed to be accounted for to predict the electricity and heat demand at

home or at the workplace. These activities, simulated with a 15-minute temporal

resolution, include being at home, sleeping, cooking, and washing. The modeling

approach, applied in both the electricity and the heat demand model, is based on

reservoir-based variables and probability distributions calibrated on survey data.
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• In the mobility case study, EV users’ preferences and charging behaviors needed

to be accounted for when designing an EV charging infrastructure.

The modeling details and the specific utilization of the extended ABMs are explained in

the respective case studies.

2.4.1 Agent-based population model

In the agent-based population model [26, 74, 75, 85], a synthetic population of individ-

ual agents is generated from population statistics at the municipal level and housing

stock and activities databases. Characteristics such as total population, age distribu-

tion, income distribution, household structure, and employment status are among the

population statistics. Examples of individual agents’ activity locations in the synthetic

population include office workplaces, shops, or schools. Each agent is linked to a house-

hold and is assigned a dwelling and, if relevant, a workplace. The demographics and

the activity locations of each agent provide the basis for generating the activity-based

demand, which comprises a set – typically three – of daily activities for each agent;

each daily plan consists of travel start times, destinations, and the preferred mode of

transport. The characteristics of individual buildings and the locations of activities are

extracted from highly detailed databases such as the Swiss Federal Registries of Res-

idential Buildings and Dwellings [77, 78] and the Swiss Federal Registry of Economic

Activities [79]. In the present work, the entire population of Switzerland, 8,534,667 in-

dividuals, is considered, with a focus on the city of St. Gallen in Eastern Switzerland,

which has 80,000 inhabitants.

2.4.2 Agent-based daily activity model

The agent-based activity model [71] simulates the daily routines of the synthetic popu-

lation generated by the agent-based population model. Microscopic daily-activity plans

are generated for those agents that need to leave their home during the day to accomplish

some daily tasks, related to either work, leisure, education, shopping, or business.

The 8.5 million agents select a mode of transport through a mode choice model that

assigns a transportation mode (car, public transport, or walking). The assignment pro-

cess uses characteristics of the household, such as household size and income, as well as

location-specific information, such as the quality of public transport in one’s surround-

ings. In this work, micro-census data on mobility and transport, which provided the

personal attributes and the detailed travel behavior of 57,090 participants in Switzer-

land, were used to sample activity chains, and aggregated micro-census data were used

to calibrate the models [71].

Moreover, a car ownership model is used to assign the number of cars owned by each of
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the synthetic households that selected “car” as a transportation mode. A discrete choice

model is applied to these synthetic households to estimate the number of cars owned;

monthly income, household typology, public transit quality, and municipality typology

are the household characteristics that impact the choice.

By considering the geographic locations of houses, jobs, and economic activities included

in the agent-based population model, the daily activity model generates the agents’ daily

activities with a time resolution of 1 second. These include start and end locations,

departure and arrival times, transport mode, and travel purpose.

2.4.3 Agent-based mobility model

The outcome of the agent-based daily activity model is used in EnerPol ’s agent-based

mobility model developed by Saprykin et al. [73]. This mesoscopic, queue-based model

is multi-modal; the choice of transportation mode depends on the agent’s characteristics,

such as age, as well as the accessibility to the given means of transport at the agent’s

location. The agent-based mobility model simulates, with a one-second temporal res-

olution, the entire country’s vehicular transportation using a digital twin of the road

network [81] and the official public transit schedule. In a mobility simulation, with one

daily plan per agent, the agents perform their daily activities as specified in the agent-

based daily activity model and travel between locations of activities. Each mobility

simulation is scored based on a cumulative utility function that accounts for all agents’

travel times. Based on a given probability, a sample of the agents modify, or leave as is,

their individual daily activities; re-routing on account of traffic congestion or changing

transportation mode are two examples of modifying the daily activities. The daily activ-

ities of the agents are iteratively varied until the population reaches a Nash equilibrium.

For EVs, the simulated driven distance, travel time, and time of arrival at home or at

the workplace are subsequently used to quantify the electric consumption of each EV.

In this work, the entire Swiss driving population of 5,200,000 agents was simulated. For

the city of St. Gallen, it was considered that there were 23,000 internal daily commuters

and 39,000 external commuters circulating by car in the city each weekday.



Chapter 3

Case Study: Electric Mobility

The transition to electric mobility is accelerating worldwide. However, the transition is

often happening at a pace that is slower than what is necessary for cities to meet their

goals. Figure 3.1 depicts a comparison between the current trend of EV penetration in

the city of St. Gallen and the mid- and long-term goals set in the city’s Energy Concept

(EnK3), which plans for 50% of mobility demand to be covered electrically by 2050. In

2018, the EV penetration of 0.3% was slowly moving towards the city of St. Gallen’s

goals; the transition is lagging.

Figure 3.1: Current trend of EV penetration in the city of St. Gallen versus mid- and
long-term goals of the EnK3.

As a consequence, the economic and operational implications for DSOs of the transi-
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tion to electric mobility are not obvious; numerous factors are beyond the control of

the DSO (for example, customers’ charging behavior). Thus, to ensure a financially

sustainable transition, it is increasingly important to be able to anticipate and adapt

future development of the EV charging infrastructure. To assess the implications of the

energy transition of the mobility sector for the investigated city, we integrated into En-

erPol newly developed agent-based, bottom-up models – specifically (i) an agent-based

electric mobility demand model that accounts for the characteristics, preferences, and

behavior of the EV owners and (ii) a Monte-Carlo-based optimizer, which optimizes the

placement of the EV public charging infrastructure across the city.

In the results section, business models that enhance the profitability of public charging

infrastructure are identified. Moreover, it is quantified how the behavior of EV users

affects the profitability and the operation of the EV charging infrastructure. These find-

ings are highly relevant for DSOs, who seek to anticipate and adapt their infrastructure

in a rapidly changing marketplace.

3.1 Methodology

The outcomes of the ABMs previously presented were used as the main inputs of the

electric mobility demand model. Likewise, elements of the digital twin of the built

infrastructure were used to further characterize the EV charging infrastructure. An

overview of the ABMs’ output and elements of the digital twin utilized by the electric

mobility demand model is presented in Table 3.1.

3.1.1 Stochastic EV use model

For a given penetration of EVs, the total number of EVs was determined, and multiple

different sets of distributions of these EVs were generated in the stochastic EV use

model. In each set, the EVs were randomly assigned to eligible agents of the working

population. An agent is eligible to have an EV assigned to him/her if the EV has a

range that is equal to or greater than twice the distance between the agent’s dwelling

and workplace. As the users of EVs are generally not known a priori, this stochastic

EV use model allows the extended EnerPol framework to be applied even in geographic

areas where either no survey of EV use or ownership exists, or where there is not yet

penetration of EVs in vehicle fleet.
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Table 3.1: Outcomes of agent-based and elements of digital twin used by the electric
mobility demand model

Source Attributes

Agent-based population model
Total population, age distribution, income distribution,

household structure, employment status

Agent-based daily activities model
Agent presence time at home and at the workplace,

travel start times, destinations, preferred mode of transport

Agent-based mobility model

Simulated driven distance, travel time, and time of arrival at

home/workplace are used to quantify the electric

consumption of each EV

Digital twin of built infrastructure

3D building model, building end-uses

Availability of a parking garage

Distribution of private and public parking lots

Locations of activities of individual agents of the

synthetic population (office workplaces, shops, schools, . . . )

Electricity distribution grid

3.1.2 Stochastic behavior model of EV users

The human patterns of EV charging behavior were stochastically modeled. In this re-

gard, when the battery state of charge was less than 50%, the probability of charging was

determined. This work considered three different behaviors – a price-driven behavior,

a comfort-driven behavior, and a mixed behavior – and the respective probabilities of

charging at a given instant in time were modeled as follows:

A Price-driven behavior: The probabilities were assumed to be inversely proportional

to the price of charging at a home, work, or public charger at the time of the

opportunity to charge; and

B Comfort-driven behavior: The probabilities were derived from a recent analysis of

surveys of EV charging behavior [86]. These probabilities are summarized in Table

3.2. For example, the probabilities of an agent who lives in a single-family house

charging at a home, work, or public charger are 81%, 9%, and 10%, respectively.

Scaling factors (k) were applied to ensure that the sum of probability is unity.

C Mixed behavior: a mix between price-driven and comfort-driven behaviors was

assumed to be the most realistic. Today, EVs are generally adopted by younger

males with higher income [87] who are less sensitive to price variations. However,

the technical development of EVs will enhance their affordability such that broader

layers of society will have access to electromobility. As a result, it is expected that
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price-driven consumers will gain importance. In fact, although the price of car fuel

in relation to income in Switzerland and other wealthy countries is currently among

the lowest worldwide [88], 59% of drivers in the United States choose a specific gas

station because of its lower prices [89]. The income-to-price ratio in the United

States is even more favorable for drivers than in Switzerland. For these reasons,

in future simulations, EV drivers with income below the Swiss median according

to agent-based population simulations were assigned a price-driven behavior; the

other half, a comfort-driven behavior.

Table 3.2: Summary of probabilities of charging at home, work, or public chargers when
an agent with comfort-driven behavior has an opportunity to charge his/her EV. k is
scaling factor.

Place of Charging Dwelling Type

Single-family Multi-family

No garage With garage

Home 0.81 0.00 k · 0.81

Work 0.09 0.09 k · 0.09

Public Charger 0.10 0.91 k · 0.10
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3.1.3 Deterministic EV charging infrastructure model

Consistent with other studies (for example, [30, 86]), the three charging options – home,

work, or public chargers – were modeled as follows:

Home charging : charging duration of up to 16 hours using
standard home AC plugs; and

Workplace charging : charging duration up to 8 hours using
wall-boxes installed at the EV user’s workplace; and

Charging at public chargers, with a minimum charging du-
ration of 15 min, up to 4 hours, using either:

• AC chargers (having a nominal power of 15-20 kW)
that are installed in public parking lots, or

• Fast DC chargers (having a nominal power of 100-150
kW) that are installed at hotspots

The public chargers were assumed to operate with a conversion efficiency of 90%. Ta-

pering of the charging speed occurred from a battery state of charge (SOC) of 80%,

and charging ended when the battery SOC reached 95%. The investment and annual

maintenance costs of the EV charging infrastructure are summarized in Table 3.3. It

should be noted that discount factors were applied when multiple chargers were installed

at the same location [90].

3.1.4 Financial optimization of electric vehicle charging infrastructure

To assess future EV public charging infrastructure, the EnerPol simulation framework

was further extended by embedding the agent-based electric mobility demand model

within an optimizer, which optimized the placement of the EV public charging infras-

tructure across the city. The optimal placement maximized the load factor of public

chargers and, therefore, the profitability of the infrastructure.

As shown in Figure 3.2, for a given penetration of EVs, a sequence of placement and

mobility simulations was used to determine this optimal placement.
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Table 3.3: Modeled charging elements and associated investment and maintenance costs.

Charging Option Element
Power

[kW]

Investment

(Swiss Francs)

Annual Maintenance

(Swiss Francs)

DSO Cost Share

αDSO(%)

Home Plug 2.3 – – 0

Workplace Wall Box 10 6,000 1,200 20

Public

AC (2018)

AC (future)

DC (2018)

DC (future)

15

20

70

150

20,000

25,000

100,000

110,000

1,200

2,000

2,500

2,500

100

Initially, similar to the approach used in the modeling of power systems in EnerPol

[69], a Voronoi tessellation centered on the locations of the low-voltage transformers was

established. Then, in the first step of the sequence of simulations, one public charger

was allocated to each Voronoi cell, and then in a second step of the sequence, a mobility

simulation was conducted to assess the usage of the public chargers. In subsequent

iterations of the sequence, public chargers were added or removed with the goal of

maximizing the load factor of the public chargers. In particularly busy locations, which

have more than 20 users per day, AC chargers were substituted with DC fast chargers

to minimize the queuing time of EV users. Further, if the load factor was less than 1

hour per day, then chargers were removed. A Monte Carlo approach was employed, as

in each iteration one of the sets of randomly distributions EVs for the given penetration

of EVs, which were generated in the stochastic EV use model (3.1.1), was used. The

iterative sequence of placement and mobility simulations was considered converged when

there was less than 5% difference in the successively predicted: electricity supplied for

charging at (i) all homes, (ii) all workplaces, and (iii) all public chargers; (iv) usage

of each charging station; (v) number of required public chargers; and (vi) share of

agents not able to find an available public charger. The agent-based mobility model and

agent-based population model were run on GPUs and, therefore, provide high-resolution

simulations in a reasonable amount of time. Since our methodology is based on agent-

based mobility and population simulations, very detailed data and high-performance

computing resources were required.

3.1.5 Evaluation of profitability of EV charging infrastructure

The profitability of the EV charging infrastructure is was evaluated in terms of time to

break even (tBE in Eq. [3.1]). This period between the first year of operation and break-

even year is was determined when the net present value of the infrastructure is was equal

to or greater than 0. A discount rate r of 5% is was used. The revenues and costs of all

components of the infrastructure (chargers and wall-boxes) are were considered; thus, it
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Figure 3.2: Schematic of iterative sequence of placement and mobility simulations that
is integrated into the EnerPol framework.
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is possible that EV users who charge at home may also pay back for the investment in

public chargers. From the DSO’s perspective, this approach provides the most complete

evaluation of profitability.

0 = NPV (tBE) = −CInv · αDSO +

tBE∑
t=0

Revenues− CMaint · αDSO
1 + r

(3.1)

Other financial assumptions are as follows:

• The cash flows were assumed to be unlevered (cash flow without financing).

• The discount rate r did not include an interest rate; it only represented the risk of

investment.

• The lifetime of the chargers was 15 years.

3.2 Scenarios

For the case of the existing EV charging infrastructure in the city, 1260 scenarios were

evaluated, in which the EV penetration, the source of revenues, the charging behavior of

EV users, and the preferences of EV users were varied. For the case of new EV charging

infrastructure in the city, 1308 scenarios were assessed.

The simulation parameters can be described as follows:

• EV penetrations. The ratio of EVs and the entire vehicle fleet circulating to or

within the city that were simulated were 0.3%, 2%, 5%, 10%, 15%, and 20%. The

EV penetration of 0.3% was the 2018 EV penetration in Switzerland [91]; the EV

penetration of 2% was the 2020 goal for the city [18]; and the 20% EV penetration

was the city’s 2030 goal and the EV penetration that is anticipated for Europe

in 2030 [30]. In the 20% EV penetration case, 12,078 EVs were simulated. For

all EV penetrations greater than 0.3%, on account of the expected improvements

in technology, the efficiencies of EVs were increased up to 25% over the baseline

case used in the 0.3% EV penetration case [86], and the conversion efficiency of

chargers were increased to 94%.

• EV models. The top 10 EVs in terms of 2019 sales in Switzerland ([92, 93]), Table

3.4, were included in the model.

• Source of revenues. Two alternative options were considered. In the first op-

tion, EV users were charged by the amount of power used to charge the EV. The

power charge per kWh was a multiple (πMultiplier
Power ) of the average Swiss electric-

ity price, which was 0.20 Swiss Francs/kWh in 2018 [94]. The marginal gain
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Table 3.4: Characteristics of electric vehicles. Sources: [92, 93]

EV model
Share of sales

[%]

Autonomy range

[km]

Consumption

[kWh/(100 km)]

Tesla Model 3 – Long Range 38.2 499 16.1

Renault Zoe 13.7 315 16.5

BMW i3 8.1 183 18.0

Hyundai Kona EV 6.5 415 17.4

Audi e-tron 5.2 328 28.6

VW e-Golf 4.7 201 17.4

Nissan Leaf 4.0 243 18.6

Tesla Model X – Long Range 4.0 523 21.7

Tesla Model S 3.8 417 20.5

Jaguar I-Pace 3.4 377 27.3

for the DSO was assumed to be a multiple of 0.16 Swiss Francs/kWh, which

was the difference between the European Energy Exchange wholesale electricity

price in Switzerland and the electricity price for households [94]. In the second

option, EV users were charged by parking duration. The parking charge was

PFeeParking = PBase + ∆PSurcharge, where the base fee, PBase, was the same as the

city’s current market price for parking of traditional vehicles, which is 2 Swiss

Francs/hour. The base-case values of πMultiplier
Power and ∆PSurcharge were set by ana-

lyzing the tariffs of some Swiss chargers’ operators and service providers, which in

Switzerland vary greatly depending on the provider (Table 3.5). In the base-case

scenario, the surcharge, ∆PSurcharge, was 2 Swiss Francs/hour: a value obtained

by averaging the price per hour reported in Table 3.5.

• Preferences of EV users. Three charging preferences of EV users were considered:

(i) leaving the parking space immediately after completion of charging, (ii) leaving

the EV plugged in for a buffer time, and (iii) moving the EV after work.

• Charging behavior of EV users. Price-driven, comfort-driven, and mixed behaviors

were simulated, each with respective probabilities of charging at home, work, or

public chargers.

• Pricing policy. In addition to the base-case prices, the response of the price-driven

EV users to pricing policies was assessed by including public charging locations

where EV users are only charged for the parking but not for the charging. This is

a widespread policy among many retailers [96, 97] and car manufacturers that offer

free supercharging to their customers [98]. The possibility to charge at work for a
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Table 3.5: Prices for EV charging at public chargers in Switzerland for three of the
main national providers (rated power at AC chargers: 22 kW; at DC chargers: 150 kW).
Roaming fees and subscriptions are not included. Source: [95]

Provider

Price per kWh

[Swiss Francs/kWh]

Price per hour

[Swiss Francs/hour]

AC DC AC DC

PlugnRoll 0.43 0.62 3.60 10.8

Move 0.35 0.59 1.8

(+1.5/process)

6

(+1.5/process)

Swisscharge 0.25 0.44 0.5 3

discounted price is also a common practice, sustained by DSOs [99]; therefore, the

possibility to charge at the workplace for a discounted power fee (25% discount on

the power charge per kWh) was implemented as well.

3.3 Results

The results section is structured as follows: In the first section, the model predictions

are compared with data on the actual usage of the existing public charger infrastructure.

In the second section, the profitability of the existing charging infrastructure is assessed

based on an evaluation of present and future scenarios characterized by different business

models, as well as by the entry of new providers of charging stations into the market.

The last section assesses the resulting financial and technical consequences of a future

infrastructure designed to accommodate the increasing number of EVs.

3.3.1 Model validation

Figure 3.3 compares the predicted and actual monthly charging cycles in 2017 at the

four most widely used public charging stations of the city. The geographic locations of

the four charging stations are also shown in Figure 3.3. In 2017, the city had a total of 23

public chargers, and the EV penetration was 0.3%. In the simulations, a comfort-driven

charging behavior of the EV users was assumed. It is clear that there was overall good

agreement between the predicted and actual monthly charging cycles. For all public

chargers, simulations predicted an average of 106 charging cycles per month, a 4.3%

difference from the actual average of 110.8 charging cycles per month. For the city’s 23

public chargers, the predicted and actual monthly supplied electricity were 1.18 MWh

and 1.05 MWh, respectively: a difference of 12%. This overall good agreement between

predictions and data validated our novel agent-based simulation methodology.
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Figure 3.3: Locations (upper) and comparison of predicted and actual monthly charging
cycles (lower) in 2017 at the four most widely used public charging stations of the city.
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3.3.2 Business model, competition, and profitability of the existing

charging infrastructure

This section assesses scenarios where, as the EV penetration increased, the city’s existing

EV infrastructure of 23 public charging stations was unchanged. Figure 3.4 compares the

DSO’s revenues from charging at home, work, and public chargers, for the two options

of paying for the use of public chargers – sales of power and parking duration. In the

first option, power sales, the price of charging was 0.20 Swiss Francs/kWh, which was

the 2018 market price for EV charging in the city; in the second option, parking fees,

the price of charging of 4 Swiss Francs/hour was the city’s current market price for the

parking with a surcharge, ∆PSurcharge, of 2 Swiss Francs/hour.
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Figure 3.4: Comparison, for EV users with price-driven and comfort-driven charging
behaviors, of the effect of EV penetration on the DSO’s revenue for EV charging based
on parking duration (solid lines) and power sales (dotted lines).

Further, in Figure 3.4, the two different charging behaviors of EV users – price-driven

behavior and comfort-driven behavior – are assessed. It can be seen that for a given

EV penetration, the DSO’s revenue from parking fees was greater than the revenue

from power sales, both for price-driven and comfort-driven charging behaviors. Even

though a business model based on parking fees rather than power sales generated more

revenue, this business model showed greater sensitivity to the charging behavior of EV
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users, and the revenue was lower for comfort-driven charging behavior compared to price-

driven charging behavior. This observation also highlighted an advantage of ABMs in

comparison to models that forecast based on historical statistical data, as ABMs can

account for the interactions between agents and their environment, whereas statistically

based models do not account for such interactions. Because of the feedback included in

our agent-based simulation framework, changes in pricing systems affected the choices of

EV users and, in turn, the design, costs, and revenue of the EV charging infrastructure.

For example, doubling the electricity price neither doubled revenue nor halved the time

to break even.

The effect of EV penetration on the time to break even of the city’s existing EV infras-

tructure is shown in Figure 3.5. Two business unit cases were compared: (i) the business

unit managed all EV charging infrastructure, and (ii) the business unit managed only

the public EV charging infrastructure. In both cases, the DSO’s revenues came from

parking fees, and the EV users had price-driven charging behavior. Whereas a business

unit that manages all EV charging infrastructure will have a time to break even of 11

years at today’s EV penetration of 0.3%, and subsequently shorter times to break even

as the EV penetration increases, a business unit that manages only public EV charging

infrastructure will only break even when the EV penetrations are 4% or higher.
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Figure 3.5: Comparison of time to break even for the cases when revenue comes from all
EV charging infrastructure and for when revenue comes only from public EV chargers
are considered. The revenue comes from parking fees, and the EV users have price-driven
charging behavior.
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In 2017, it was announced that private companies plan to enter the market of public EV

chargers in St. Gallen [100]. As i llustrated in Figure 3.6, the impact of 10 proposed

privately owned public chargers on the DSO’s existing infrastructure was assessed. In

the assessment, the DSO’s revenues were based on parking fees, and the EV users were

assumed to have a price-driven charging behavior. It can be seen that the privately-

owned public chargers had a substantial adverse impact, with a 35% decrease in load

factor for a 2% EV penetration, on the DSO’s revenue from its existing infrastructure,

Figure 3.6 (a). At two representative public charging stations of the DSO, the impact

of competition on the annual revenue is shown, Figure 3.6 (b). It can be seen that at

both public charging stations, there was an adverse impact on the DSO’s revenue, even

at high penetrations of EVs.

Proposed EV Chargers
Load factor decrease at DSO's chargers [%]

Greater than 50%
25-50
0-25

0 750 1500 m

Figure 3.6: (a) Locations of 10 proposed privately owned public chargers and their
impact on the load factors at the DSO’s existing public chargers
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3.3.3 Techno-economic consequences of increasing electric vehicle pen-

etration

Economic consequences

This section assesses scenarios in which the city’s EV infrastructure of public charging

stations was expanded as the EV penetration increased. Figure 3.7 shows the optimized

placement and number of public charging stations for EV penetrations of 2% (Figure 3.7

[a]), 10% (Figure 3.7 [b]), and 20% (Figure 3.7 [c]). These optimized placements ensure

both that sufficient EV charging is available to all EV users and that the load factor of

the public chargers is maximized. The revenues from EV charging were based on parking

duration, a mixed behavior of the EV users was assumed, and different preferences of

EV users – i.e., leaving the parking lot immediately after charging; leaving 30, 60, 120,

240, or 480 minutes after charging; and leaving at the end of the EV user’s workday

– were assessed. As can be seen in Figure 3.7, and as summarized in Table 3.6, the
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median number of required chargers increased with EV penetration. It is noteworthy

that at busy locations, to minimize the queuing time of EV users, DC fast chargers were

deployed in place of AC chargers. As a guideline, a ratio of 10 public chargers to 100 EVs

has been targeted in Europe [30]. For an EV penetration of 10%, the simulations showed

that this target was reached, while the number of public chargers exceeded the target for

lower EV penetrations. As there are varying preferences of EV users in terms of when

the EV user leaves the EV charger, there was an uncertainty in the median number of

required chargers; Table 3.6 shows that the uncertainty in the median number of required

chargers increased with increased EV penetration.

Table 3.6: Summary of the impact of EV penetration on optimized public EV charging
infrastructure.

EV Penetration

[%]

Median Number of

Required Public

Chargers

Ratio of Median Number

of Public Chargers to

100 EVs

Uncertainty in

Median Number

of Public Chargers

2 146 12 34

5 402 13 83

10 552 9 109

20 824 7 127
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Figure 3.7: Optimized placements of public EV charging infrastructure for EV pene-
trations of (a) 2%, (b) 10%, and (c) 20%. The size of the symbols is indicative of the
number of chargers.
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For an EV penetration of 2%, the effect of elasticity in demand on the DSO’s revenue for

EV charging and the time to break even for the EV charging infrastructure are compared

in Figure 3.8. Both the DSO’s total (that is, from charging at home, work, and public

chargers) revenue and the revenue from public chargers alone are shown in Figures 3.8

– 3.9. Thus, as shown in Figure 3.8 and Figure 3.9, the revenue was normalized relative

to the total revenue based on power sales at the reference price (of 3.5 Swiss Francs

with power sales and 2 Swiss Francs with parking fees). For each option, different

charging behaviors of EV users – price-driven behavior and comfort-driven behavior –

were examined. Furthermore, for each option, different preferences of EV users – i.e.,

leaving the parking lot immediately after charging; leaving 30, 60, 120, 240, or 480

minutes after charging; and leaving at the end of the EV user’s workday – were assessed;

the impacts of these preferences of EV users are displayed as uncertainty bars in Figures

3.8 – 3.11.

Figure 3.8: Comparison, for EV users with price-driven charging behavior, of the effect
of elasticity of demand on the DSO’s revenue for EV charging based on power sales
and parking duration. The total revenue is from charging at home, work, and public
chargers. The revenue is normalized relative to the total revenue based on power sales at
the reference price. The EV penetration is 2%. The vertical bars show the uncertainty
due to the preference of when EV users leave.
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Figure 3.9: Comparison, for EV users with comfort-driven charging behavior, of the
effect of elasticity of demand on the DSO’s revenue for EV charging based on power
sales and parking duration. The total revenue is from charging at home, work, and
public chargers. The revenue is normalized relative to the total revenue based on power
sales at the reference price. The EV penetration is 2%. The vertical bars, not shown for
public charger parking fees for the sake of clarity, represent the uncertainty due to the
preference of when EV users leave.

It can be seen that, similar to the case of an unchanged EV public charging infrastructure,

as the public charging infrastructure was expanded, the DSO’s revenue from parking fees

was always greater than the revenue from power sales, both for price-driven (Figure 3.8)

and comfort-driven (Figure 3.9) charging behaviors. Furthermore, for both charging

behaviors of EV users, the DSO’s revenue was less sensitive to changes in price, as EV

users that were price driven tended to charge even more at home as the price of charging

was increased. Even though a business model based on parking fees rather than power

sales would generate greater revenue, it can be seen that in the uncertainty in revenue,

for public chargers in the case of price-driven charging behavior (Figure 3.8) and for

both total and public charging revenue in the case of comfort-driven charging behavior

(Figure 3.9), increased with increased prices. This increase in uncertainty occurred as

EV users with a comfort-driven charging behavior tended not to adapt their charging
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behavior, as their behavior was more driven by comfort and less so by price.

Figure 3.10 shows the effect of elasticity of demand on the time to break even of the

whole EV charging infrastructure. As the time to break even accounts for the revenues,

the investment costs, and the operation and maintenance costs, the time to break even,

rather than the generated revenue, was considered a more robust assessment of the

profitability of business models. Despite the increased uncertainty in revenue for a

business model that is based on parking fees, a business model based on parking fees is

preferable to a business model based on power sales, as the latter business model only

broke even if the price of charging was five times the market price for EV charging in

the city; even then, the time to break even was substantially larger than for the power

sales business model. It is noteworthy that while the business model based on parking

fees did not break even with sales at the reference price (which was the city’s current

market price for the parking of traditional vehicles), with prices of 10% or more above

the reference price, the business model broke even, and the time to break even decreased

as the sales price increased.

Figure 3.10: Comparison of the effect of elasticity of demand on the time to break even
of the EV charging infrastructure for EV charging based on power sales and parking
duration. The EV penetration is 2%. The vertical bars represent the uncertainty due to
the preference of when EV users leave.
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Figure 3.11 compares the impact of EV penetration on the time to break even, for

the business model based on parking fees, for both the price-driven and comfort-driven

charging behaviors. This business model has been identified above as the most profitable.

However, with sales at the city’s prevailing market price for the parking of traditional

vehicles, at the current EV penetration of 0.3%, no break even was possible for either

price-driven or comfort-driven charging behaviors of EV users. At an EV penetration

of 2%, this business model was profitable only if the EV users exhibited comfort-driven

charging behavior. Thus, even though revenue increased with increased EV penetration,

early entrants into the EV charging marketplace had substantial financial exposure if

knowledge of the charging behavior of EV users was unknown. Only for EV penetrations

of 10% or larger was the financial exposure due to the charging behavior of EV users

reduced and was the uncertainty due to the preference of when EV users leave a parking

lot smaller.

Figure 3.11: Comparison, for the business model based on parking fees, of the impact of
EV penetration on the time to break even for both the price-driven and comfort-driven
charging behaviors. The vertical bars represent the uncertainty due to the preference of
when EV users leave.
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Technical consequences

In this section, the results of the electric mobility demand model were used to assess the

technical consequences of an increasing EV penetration. When assessing the impact of

EV demand on grid load, the additional electric demand was aggregated at low-voltage

transformers and compared to the predicted demand derived from power flow simulations

without EVs.

Figure 3.12 quantifies, by source, the additional electricity demand that arises from EV

charging. The EV penetrations were 2% (Figure 3.12 [a]), 10% (Figure 3.12 [b]), and

20% (Figure 3.12 [c]), and a business model based on parking fees was used for EV users

with mixed behavior. The time series, with 1-minute temporal resolution, covered the

duration of a week. It is evident that the characteristics of charging at work, home, and

public chargers were different. While charging at work and at public chargers showed

sharp peaks in electricity demand at morning peak hours, the time series of charging at

home had less distinctive peaks and had maxima during evenings. Over the range of

EV penetrations that have been assessed, charging at home was the largest source of the

additional electricity demand, and, quantitatively, charging at home, work, and public

chargers accounted for 47%, 45%, and 8% of the total additional electricity demand due

to EV charging. It can also be seen in Figure 3.12 that as our agent-based simulation

framework differentiates between the activities of all individuals in the population, the

trends in the additional demand differed between workdays and weekends.
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Figure 3.12: Comparison of the sources of the additional electricity demand due to EV
charging, for EV penetrations of 2% (a), 10% (b), and 20% (c).
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For a 20% EV penetration, the maximum increase in load at the city’s low-voltage

transformers is shown in Figure 3.12 . The increase was determined at the time of the

largest hourly increase in load and for the transformer that had the largest increase

in load. It is evident that the largest hourly increase occurred in the case of price-

driven behavior, which had an increase of approximately 78% compared to 22% for

the case of comfort-driven behavior. This larger increase occurred as more EV users

charged in the city in the case of price-driven behavior. It can also be seen in Figure

3.12 (a) that in the case of the price-driven behavior, public chargers accounted for

80% of the hourly increase in load, whereas in the case of the comfort-driven behavior,

charging at work and public chargers were approximately equal, each accounting for

40% of the maximum hourly increase in load. In Figure 3.12 (b), the load increase

averaged over the city at the hour of the maximum increase in load is shown. It is useful

to highlight three observations. First, it can be seen that the city-averaged increase

in load of 6.1% was less than the local increase in load that is shown in Figure 3.12

(a). Furthermore, averaged over the city, it is evident that EV users charging at work

accounted for the largest increase in load, as both residents of the city and external

commuters were considered. Lastly, in comparison to the case of local load increases,

there was little difference averaged over the city due to the different behaviors of EV

users. Overall, Figure 3.12 highlights the importance of using a digital twin of the actual

built infrastructure, as bottlenecks in the grid could then be reliably identified.
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Figure 3.12: (a) Comparison of the maximum increase in the peak load due to EV
charging across the city. (b) Comparison of the increase in peak load at peak hour due
to EV charging averaged over the city.



Chapter 4

Case Study: Heat

The existing DH network of the test-case city supplies DH to 2,210 buildings, mostly

located in central areas of the city. The energy concept EnK3 envisages that, by 2050,

the valley area of the city will mainly be supplied with DH from waste-to-energy plants.

The connection rate of buildings to the extended DH network shall reach 90% in the

longer term. Buildings outside of the DH areas will be heated with heat pumps. Figure

4.1 illustrates the consequences of these plans on the city’s heat demand until 2050 for

different heat sources.

Figure 4.1: Evolution of heat demand in the city of St. Gallen according to EnK3 by
energy source. Elaborated from: [18]

The DH network extension is associated with large investment (65.5 million Swiss Francs)
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and political risks, as there is no obligation for building owners to connect to the extended

network. The following questions need to be answered:

• Does the business plan pay off?

• Which property owners will connect to the network?

• What is the optimal layout of the future DH network?

• What are the main arguments to convince the population of the necessity of new

expenditures?

To answer these questions, the extension of the DH network in the city of St. Gallen and

the decarbonization of the building stock were assessed with the developed agent-based

simulation framework. The following newly developed agent-based, bottom-up models

were integrated into EnerPol : (i) an agent-based heat demand model that accounts for

the characteristics and behavior of the building occupants; (ii) a predictive model that

quantifies, based on the characteristics of the building, the likelihood of the building

being connected to a DH network; and (iii) a routing model that determines the optimal

least-cost path for the pipeline of an expanded DH network. The overall approach is

illustrated in Figure 4.2.

The results indicate that accounting for building occupants’ behavior substantially im-

proves the quantitative prediction of the heat demand. Furthermore, by means of a

predictive model, possible extensions of the local DH network of the test-case city were

identified, and it is shown how the profitability of the DH infrastructure can be enhanced

by using the model. The findings of this case study have been used to increase the social

acceptance of new investments in the DH network, and in 2017, the city’s inhabitants

approved a credit of 65.5 million Swiss Francs to extend the DH network [54]. Moreover,

the model was delivered to the multi-utility sgsw and installed on their servers for use

by the DH sales department.
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4.1 Methodology

The methodology section first presents the development of the bottom-up heat demand

model (Sections 4.1.1, 4.1.2, and 4.1.3) and then the development of the DH predictive

and routing model (Sections 4.1.4 and 4.1.5). The two models were coupled together as

illustrated in Figure 4.2.

Figure 4.2: Process flow diagram of heat case study, coupling agent-based building and
occupant behavior models with a bottom-up heat demand model and a predictive model
of the likelihood of buildings to connect to the DH network to optimize the routing of
new DH pipelines.

4.1.1 Characterization of agents

The modeling approach of the heat demand model combines large-scale ABMs of both

population and building stock with a fully bottom-up thermodynamic heat demand
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model. A detailed synthetic population was generated for an entire country, and the daily

activities of each person, household, and dwelling were modeled. Both the occupants

of buildings and buildings were modeled as agents. The characteristics of the building

occupants and the buildings are summarized in Table 4.1 and Table 4.2, respectively.

Characterization of building occupants

The characteristics of occupants of buildings were generated in the agent-based pop-

ulation model (2.4.1); those relevant for the heat demand model are reported in the

following table.

Table 4.1: Outcomes of agent-based population model used to characterize the occupants
of buildings in the heat demand model

Agent Characteristic

Person Age, sex, employment status, location, job location, number of kids

Household Members, number of kids, incomes

Dwelling Size, number of rooms

The characteristics of buildings were extracted from the digital twin of the built infras-

tructure (2.3.1); those relevant for the heat demand model are reported in the following

table.

Table 4.2: Characteristics of buildings used by the heat demand model

Category Sub-category Characteristic

History
Build year, renovation year,

installation year of heating system

End-Use
Sector Residential, commercial, industrial

Archetype Single-family, multi-family, mix-use

Ownership Public, private, housing cooperative, social housing

Geometry
Internal

Perimeter, height,

surfaces of building envelope

(areas of roof, wall, and windows)

External Energy-consuming area

Heat demand

Build-year dependent
Thermal resistances of walls, roofs, and floors;

ventilation rate, type of SH system, type of DHW system

Non-build-year dependent

Domestic hot water consumption, heat gain from occupants,

heat gain from electrical appliances,

installation year of heating system

Weather Hourly external temperature, wind speed, solar radiation
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Characterization of buildings

The topographic landscape model of Switzerland, swissTLM3D, developed by the Swiss

Federal Office of Topography, was used to derive the geometric characteristics of each

building [101]. The energy-consuming area was calculated as a share of the total floor

area in a building to account for the fact that not the entire building may be heated and

that some buildings are not for solely residential purposes. SIA architectural norms were

used to model numerous components of the total heat demand, such as the consumption

of domestic hot water and heat gains from solar radiation, building occupants, and

electrical appliances. For the heat demand model, the following norms were used: Norm

380/1: Thermische Energie im Hochbau [102], Norm 2024: Raumnutzungsdaten für die

Energie- und Gebäudetechnik [103] and Norm 2044: klimatisierte Gebäude - Standard

Berechnungsverfahren für den Leistungs- und Energiebedarf [104].

Other components of the building heat demand were modeled as a function of the build-

ing build or renovation year. In particular, the thermal resistances of walls, roof, and

ground and the ventilation rates to model mechanically ventilated buildings were given

in [55]. Ventilation rates for ventilation through windows and infiltration were given in

[105]. Lastly, the weather data were either simulated using the Weather Research and

Forecasting Model [106], which is integrated into the EnerPol framework, or were from

actual measurements obtained from the data portal for teaching and research of Me-

teoSwiss [107]. A WRF full-year simulation at 10km x 10k km resolution was conducted

to obtain the hourly solar irradiance at ground level, the hourly wind speeds at heights

of 20 meters above the ground, and the ambient temperature. From the research portal

of MeteoSwiss, 15-minute solar irradiance at ground level and ambient temperature were

obtained; in calibration and validation scenarios, only real weather data were used.

4.1.2 Agent-based model of building occupants’ behavior

The population of building occupants was generated in EnerPol ’s agent-based population

model. Additionally, the agent-based daily activity model was used to simulate the

daily routines of the building occupants, with a temporal resolution of 15 minutes, to

determine where an agent was at each time of the day; in particular, whether he/she

was at home. Subsequently, the time and duration of building occupants’ activities that

have an impact on heat demand, such as sleeping, waking up, showering, and cooking,

were simulated. These occupants’ activities were modeled as in the electricity demand

model.

Each demographic of the population has a preferred ambient comfort temperature, as

reported in [108] (elderly people) and [109] (males and females); stochastic perturbations

in the preferred comfort temperature were introduced through a normal probability dis-

tribution of comfort temperatures, centered on the preferred comfort temperature of
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each demographic. Thus, based on the mix of building occupants, the ambient comfort

temperature, as well as the nighttime setback of ambient temperature for comfort and

environmental reasons [110], of each dwelling were determined. Thereby, the timing

and duration of showering were also determined for each building occupant. The daily

household consumption of domestic hot water was taken as 45 liters per occupant for

single-household buildings, and 40 liters per occupant for residential buildings with mul-

tiple dwellings and other typologies of households [111]. The characteristics and behavior

of the building occupants were subsequently used in the modeling of the time-varying

heat demand in each residential building.

4.1.3 Agent-based heat demand model

Space heating, QSHu , and heating of domestic hot water, QDHWu , constituted the hourly

total heat demand of a residential building, QSH+DHW
f . The thermal efficiencies of the

space heating (ηSH) and the domestic hot water systems (ηDHW ), in Equation (4.1), were

specified as a function of the type of heating system and the build year of the building.

The hourly space heating demands, QSHu and QDHWu , were calculated by solving a heat

balance equation where various heat fluxes inside and across building boundaries were

modeled as heat sources or sinks of heat, as shown in Figure 4.3.

QSH+DHW
f =

QSHu
ηSH

+
QDHWu

ηDHW
(4.1)

Thereby, the approach described in [102, 103, 104] was adapted to account for the agent-

based modeling of the occupants of buildings and of the buildings themselves. Therefore,

the heat transfer across building surfaces – that is roof, walls, and windows –, QT , the

ventilation losses, QV , the heat gain from solar radiation through windows, QS , the heat

gain from electrical appliances, QE , and the heat gain from building occupants, Qp, were

modeled as a function of buildings’ occupants.
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Figure 4.3: Modeled heat fluxes, inside the building, and across system boundaries
(green: building heated area; red: space heating and hot water system; blue: building
boundaries). The thermal inertia of the building is accounted for using the capacitance
in an electrical analog circuit (based on [102]).

The heat transfer QT accounted for the conduction, convection, and radiation that arise

across building surfaces due to the difference between the ambient temperature inside

a building and the temperature external to the building. The overall heat transfer

coefficient of a building surface was given by

U =
1

1

hin
+R+

1

hout

(4.2)

The conduction resistance, R, was specified as a function of the building’s build year and

the type of wall [55]; typical conduction resistances are shown in Table 4.3. The internal

convection and radiation coefficient hin and external radiation coefficient hout,radiation
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were assumed to be constant (respectively, 9.1 W/(m2 · K) and 5 W/(m2 · K) [102]),

whereas the external convection coefficient, hout,convection, was evaluated as a function of

the local wind speed and the terrain surrounding the building [57].

hout = hout,convection + hout,radiation = 3 · uw,local + 2.8 + hout,radiation (4.3)

where uw,local = uw,20m · β ·

(
z

20

)α

In Equation (4.3), the local wind uw,local speed at the half-height of the building was

extrapolated from the predicted wind speed at 20 meters above ground level, where α and

β were coefficients related to the surrounding terrain and z is the building’s half-height.

Table 4.3: Example conduction resistances used in the agent-based heat demand model
[55]

Build Year Type of Wall
Conduction resistance [m2K/W ]

Renv Rroof Rwin

Before 1918
Rough stone

0.90 1.84 0.34

1919-1945 0.89 2.34 0.34

1961-1970 Insulated,

armed concrete

0.81 1.26 0.34

2001-2010 1.80 2.06 0.42

The ventilation losses, QV were given by the product of the hourly ventilation rate, the

energy-consuming area, the heat capacity of air, and the density of air at the altitude of

the building. The ventilation rate, Equation (4.4), accounted for the ventilation behavior

of building occupants; the ventilation share of each member of the household, fshare; the

build year; and infiltration (nV,infiltration = 0.1 · 10−3 m3

m2s
). The ventilation behavior of

building occupants was established based on survey data [112], some outcomes of which

are summarized in Table 4.4. For building occupants who ventilate more than once a

day, two to five 10-minute-long ventilation events were assigned; the probability of the

occurrence of a ventilation event was uniform over the day; and, thus, the durations of

the ventilation events, Twindow, were defined.
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nV,total =

Household∑
i

(nV,infiltration + nV,window · fshare) (4.4)

with nV, window = 0 if t /∈ Twindow

and nV, window = 5.7 · 10−3 m
3

m2s
if t ∈ Twindow

Based on survey data, 10% of buildings were assumed to have a mechanical ventilation

system, and for these buildings, the ventilation rate was assumed to be independent of

the behavior of building occupants. Further, as the quality of insulation has improved

over time (Figure 4.4), the ventilation rate in mechanically ventilated buildings was

specified as a function of the building’s build year [55].

The archetype of the building was accounted for in the determination of the heat gain

from solar radiation through windows, QS . Specifically, depending on the measured

solar gains of typical Swiss archetypes [113] the measured or predicted solar radiation

was scaled up or down.

The heat gain from electrical appliances, QE , Equation (4.5), varied as the appliances

were used by each building occupant.

QE =
Household∑

i

loadt,i ·QE,max · fshare · fcorrection ·Aeca (4.5)

Following [102], the maximum heat gain from electrical appliances (QE,max) was 8 W/m.

To model the temporal variability of the heat gain, an hourly load profile, loadt, that

ranged from 0.1 to 1 was specified; the amplitude of this profile was randomly applied

to each member of the household, whose presence in or absence from the building was

Table 4.4: Shares of buildings relative to the behavior of building occupants [112].

Behavior

Share of

buildings

[%]

Behavior

Share of

buildings

[%]

Occupants ventilate

once a day
47

Occupants ventilate

before sleeping
52

Occupants ventilate

more than once a day
53

Occupants do not ventilate

before sleeping
48
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Figure 4.4: Modeled hourly ventilation rate as a function of build year for mechanically
ventilated buildings [55].

denoted by fshare. To ensure that the annual time history of the heat gain was equal to

the data reported in [102], a correction factor fcorrection was applied.

The heat gain from building occupants, Qp, was specified as 70W per person [102].

In the heat balance equation, the thermal inertia of the buildings was accounted for

by using an electrical analog circuit, in which the thermal capacity of the building was

represented by the capacitance Cm, as schematically represented in Figure 4.3. The

building was modeled as a simplified resistor-capacitor circuit as described in SIA norm

2044 [104] and accordingly sketched in Figure 4.5. In the figure, different building

components are represented as circuit nodes and are characterized by different tem-

peratures, whereby Tair was the indoor air temperature; T externalair was the outdoor air

temperature;Tcentral and T externalcentral combined air temperature, mass temperature, and

surface temperatures of light building parts (windows) inside and outside of the build-

ings, respectively; Tthermal mass and T externalthermal mass were temperature of heavy building

parts (walls and roof) inside and outside of the buildings, respectively. Hventilation,

Htransmission, H1, and H2 were heat transfer coefficients between nodes that were re-

calculated at each time step. The heat gains toward air, light building parts, and heavy

building parts were symbolized by Qgainair , Qgaincentral, Q
gain
thermal mass. Cm and Am were the

building heat capacity and its associated area.



4.1 Methodology 82

The nodes were connected by five resistances; these represented building materials and

systems whose heat transfer coefficients were derived from previously described building

properties and re-calculated at each time step, as described in detail in [114]. The solar

heat gains and internal heat gains were distributed among the indoor nodes. Finally, the

building mass area (Am) and internal heat capacity (Cm) were modeled as a function

of the energy-consuming area, according to [104]. Thereby, it was assumed that all

buildings were thermally medium-heavy, and the air stream temperature accounted for

infiltration [104]. Once all parameters were quantified, a numerical finite difference

method (Crank-Nicholson scheme) was applied at each hourly time step to calculate

all temperatures of Figure 4.5 and to find QSHt such that Tair was equal to the indoor

comfort temperature.

Figure 4.5: Resistor-capacitor circuit model used to account for the thermal inertia of
buildings in the heat demand model; adapted from architectural norm [104].

The heating of domestic hot water, QDHWu , was given as

QDHWu =
Household∑

i

(Vshower,t,i + Vother draws,t,i) ·∆T · cp · fshare (4.6)

with Vshower,t,i = 0 if t /∈ Tshower
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whereby showering and smaller draws of water were differentiated, and the presence or

absence of building occupants was accounted for. The shares of the daily consumption

of domestic hot water were based on [115] and are summarized in Table 4.5. The

annual consumption of domestic hot water in each household was based on the average

daily consumption of the household members as previously discussed; to account for

the seasonal variation in the consumption of domestic hot water, the daily consumption

over a year had a sinusoidal variation that was maximum in mid-winter. Lastly, as

domestic hot water is usually stored in a hot water tank, a water heater, for which the

maximum power was defined such that the daily consumption of domestic hot water

could be supplied with 16 hours of full-load operation, was implemented to account for

the difference between the time when energy was used to heat the water and the time

when the hot water was consumed.

Table 4.5: Summary of type and share daily consumption of domestic hot water. Source:
[115]

Type of draw Share of daily usage [%]

Shower 50

Other draws
Kitchen 29

Bathroom 21
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4.1.4 District heat predictive model

Figure 4.6 illustrates a schematic of the workflow process that couples the agent-based

heat demand model, the predictive agent-based building model, and the routing of the

extended DH network.

Agent-Based

Heat Demand 

Agent-Based

Population and Buildings

Go to next year

Max Cost 
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Process
Legend Input/Output
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Clustering of Demand 

Hot 

Water 
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Hourly Heat Demand
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Routing
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Final DH Layout
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Figure 4.6: Schematic of the workflow process, coupling the agent-based heat demand
model (red), the predictive agent-based building model (purple), and the routing of the
extended DH network (green), that is integrated into the EnerPol framework.

The likelihood of a building being connected to a DH network was described on the basis

of a logistic regression model. Such models are well suited for problems in which one

needs to find the probability of any event occurring/not occurring or being true/false.

Moreover, in logistic regression models, categorical predictors, such as the characteristics

of a building (e.g., the type of heating system) may be used. In this work, residential

buildings were differentiated by their characteristics, which are summarized in Table 4.2;

therefore, in areas where the DH network was operational, a relationship between the

characteristics of the buildings and the buildings connection or non-connection to the DH

network was sought. The initial dataset comprised 2,210 buildings (that is, all buildings

located in zones where DH was already operational). After filtering out buildings with

incomplete information, the regression matrixes were built upon 1,123 building entries,

which was considered an adequate sample size.

Thus, a stepwise approach was used, whereby from an initial step in which all charac-

teristics of the buildings were considered, in subsequent steps the relevance of a char-

acteristic in the evaluation of the probability of connection was determined. Thus, the
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logistic regression model yielded a relationship of the form

p (x1, x2, . . .) =
1

1 + eB1x1+B2x2 + . . .
(4.7)

where p was the probability of connecting to the DH network, and the coefficients Bi

were the regression coefficients.

To guarantee statistically meaningful results, the following conditions were verified:

• Predictors were expressed as intervals; categorical predictors were converted into

numeric variables by defining dummy numerical intervals;

• Predictors were independent of one another; therefore, covariance between regres-

sion coefficients was verified;

• The sample size was adequate (> 50 records per predictor); and

• The statistical significance of the determined regression coefficient was evaluated

by calculating the p-value associated with each coefficient; the null hypothesis was

discarded if a p-value was smaller than 0.05.

4.1.5 District heat routing model

A routing algorithm was developed to optimally extend the existing DH network. The

routing of the extended DH network was obtained with a Dijkstra-based algorithm. The

nodes of the Dijkstra graph were the centroids of clusters which comprised the residential

buildings on each 50-meter-long road segment. The edges of the Dijkstra graph were the

road segments between the centroids (Figure 4.7).

Thus, the current practice of laying DH pipelines under roads was captured in the

routing. The weights of the edges were formulated as shown in Equation 4.8, such that

the potential revenues of the DH that was going to be supplied were more favorable and

that CAPEX and OPEX (CInv and CMaint) and the renovation of recently installed or

upgraded road and gas infrastructure were less favorable.

Weight = −CInv − CMaint +Revenues ± FactorRoads ± FactorGas (4.8)

In the extension of the DH network, short-path extensions were limited to a length of 2

km; subsequent new clusters were connected to the existing network, and unprofitable

clusters were discarded.
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Figure 4.7: Examples of residential building clusters and representative profiles of space
heating and heating of domestic hot water.

4.2 Scenarios

Two different scenarios were assessed, whereby the DH pipeline routing model was run

by setting different goals.

1. Demand-driven scenario: The extended DH network was routed such that all build-

ings within a cluster and within 30 meters of future DH pipelines could connect to

the DH network.

2. Predicted-demand-driven scenario: The extended network was routed such that

only buildings with a connection probability of more than 50% and within 30

meters of future DH pipelines connected to the DH network.

It is worth noting that, in the former scenario, only buildings with more than 50%

probability of connection did connect to the extended network; thus, it is these buildings

that were considered in the assessment of the profitability of network extension in the

demand-driven scenario. The extension of the DH network was considered over a five-

year period.
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4.3 Results

The results section is structured as follows: In the first section, the model predictions

are compared with data on the actual DH production profile in the investigated city. In

the second section, the outcome of the predictive model is analyzed and the probability

of connection to future DH pipelines quantified. In the third section, the results of the

DH extension scenarios (demand-driven and predicted-demand-driven) are illustrated.

4.3.1 Impact of individual behaviors on heat demand prediction

Figure 4.8 compares the actual and predicted hourly heat demand in the city for the year

2017. It can be seen that there is good qualitative agreement between the predictions

and measurements, and the predictions captured well the trends that are seen in the

measurements. Quantitatively, the predictions had over- and under-shoots compared to

the measurements; the mean difference between the predictions and measurements over

the year was -4.8%.
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Figure 4.8: Comparison of the actual and predicted hourly heat demand in the city for
the year 2017.

Figure 4.9 compares, for a three-day period in winter 2017, the actual and predicted

hourly heat demand in the city. The predictions from three variants of the heat demand

model:
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• without agent-based modeling (NA): in this scenario, only weather data varied over

time, while heat fluxes that depended on occupants behavior were constant over

time and only a seasonal trend was applied on DHW demand;

• with modeling behavior of occupants (OB): in this scenario, the impact of occupants

behavior on the heat fluxes was modeled; no storage of DHW was modeled; and

• with OB and storage of domestic hot water (DHWS)

are shown. Also highlighted in Figure 4.9 are the overnight decrease in heat demand

and the morning peak in heat demand, which are respectively indicated by the arrows

numbered 1 and 2. It is evident from the comparison that, while the heat demand model

without agent-based modeling (NA) did account for the time-varying weather conditions,

this variant of modeling heat demand did not capture as well the variations in actual heat

demand that were due to the behavior of the occupants of buildings. On the other hand,

the heat demand models OB and DHWS did capture these variations better. Indeed,

the overnight minima in heat demand, highlighted by arrow 1, that were observed in the

measurements were qualitatively captured by both ABMs. However, quantitatively, both

models overestimated the magnitude of the minima. It is thought the overestimation

arose as, in newer buildings with better insulation, a nighttime setback temperature

need not to be used, whereas in the present work 80% of all buildings were assumed to

use a nighttime setback temperature. The increase in heat demand due to the morning

ablutions of the occupants of buildings, highlighted by arrow 2, was captured by the

ABMs. The quantitative agreement in the magnitude of this morning heat demand was

substantially improved when the storage of domestic hot water was accounted for.

Hence, accounting for the behavior of building occupants improved predicted heat de-

mand; the ABMs were better able to capture the evening peak in demand, when building

occupants return home.
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Figure 4.9: Comparison of the actual and predicted hourly heat demand in the city for
a winter week in 2017. Predictions from three variants of the heat demand model are
shown: without agent-based modeling (NA); with behavior of occupants (OB); and with
behavior of occupants and storage of domestic hot water (OB and DHWS). Arrows 1
and 2 indicate the overnight decrease in heat demand and the morning peak in heat
demand, respectively.

Table 4.6 summarizes the test statistics of the three variants of the heat demand model

in terms of the root mean square deviation, the Pearson’s correlation coefficient, and

the mean relative error. The root mean square deviation, which was normalized by

the range of the measured data, and the correlation coefficient were reported for each

season, whereas the mean relative error was reported for the whole year. The correlation

coefficients showed that, for all seasons, the ABMs yielded a more precise representation

of the dynamics of the heat demand. Indeed, the ABM that accounted for both the

behavior of occupants and storage of domestic hot water had correlation coefficients

greater than 82% for spring, fall, and winter. As less space heating is required in the

summer, the correlation coefficient of 53%, while larger than for the ABM that accounted

only for the behavior of occupants, indicated that the modeling of the demand for
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domestic hot water in the summer can be further improved. One possible improvement

is to account for the fact that less domestic hot water is required in summer. The root

mean square deviations quantified that the ABMs more accurately simulated the hourly

heat demand. This improved modeling was most evident in spring, fall, and winter,

which accounted for 94% of the annual heat demand. Overall, it can be seen that the

magnitude of the annual mean relative error of -4.8% in the ABM that accounted for both

the behavior of occupants and storage of domestic hot water was a 25% improvement

over the heat demand model without agent-based modeling.

Table 4.6: Comparison of the test statistics of the three variants of the heat demand
model: without agent-based modeling (NA); with occupants’ behavior (OB); and with
behavior of occupants and storage of domestic hot water (OB and DHWS).

Annual

Mean

Relative

Error

[%]

Normalized

Root Mean Square Deviation

[%]

Pearson’s correlation

coefficient

[-]

Spring Summer Fall Winter Spring Summer Fall Winter

NA 6.5 16.2 13.2 13.9 15.6 0.73 0.42 0.81 0.60

OB -4.8 18.8 25.8 16.1 14.3 0.80 0.44 0.84 0.78

OB and

DHWS
-4.8 15.6 14.3 13.3 11.3 0.82 0.53 0.89 0.84

Furthermore, the -4.8% annual mean relative error of the ABM that accounted for both

the behavior of occupants and storage of domestic hot water was substantially smaller

than the errors in the range of 7% to 21% for other urban building energy models [116].

The good qualitative and quantitative agreement between predictions and measurements

that are presented above validate our novel agent-based simulation methodology.

4.3.2 Findings on likelihood of connection of buildings to district heat

network

As shown in Table 4.7, based on the characteristics of buildings in the city, the build year,

the building’s type of heating system, the installation year of the heating system, and the

ownership of the building were identified as being the most relevant explanatory variables

that quantified the likelihood of a building being connected to the DH network. These

most relevant characteristics were identified using the predictive agent-based building

model, with exclusion criteria of p-value and covariance being respectively greater than

5% and 0.5 being used in each step of the model.
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In a first step, all characteristics of buildings included in the digital twin (Table 4.2) were

considered to be potentially relevant and evaluated in the regression. Besides properties

that were directly related to heat demand calculation (i.e., building type, build year, and

heated surface), data on multi-utility customers (i.e., annual heat consumption, heating

system type, and installation year of the heating system) and on building ownership

were included in the regression. Despite the expected redundancy of some parameters

(for instance, building heated surface and annual heat demand), the approach chosen

was to let the regression model confirm or deny the unsuitability of these parameters

in forecasting a future connection. This was achieved by running a stepwise regression

where, in each step, a predictive variable was (re-)considered for addition or elimination

from the set of considered predictive variables. The characteristics of buildings excluded

from the regression are reported in Table 4.7 as well.

Table 4.7: Candidate and most relevant explanatory variables used and identified in the
predictive agent-based building model.

Variable
First Step Last Step

Bi
p-value

[%]
Covariant Bi

p-value

[%]
Covariant

Building type, X1 -1.15 1 None Removed

Build year, X2 -2.35 <0.01 None 2.58 <0.01 None

Heated surface, X3 2.16 <0.01 B4 Removed

Annual heat demand, X4 -1.55 0.01 B3 Removed

Type of heating system, X5 1.76 <0.01 None 1.60 <0.01 None

Installation year of heating system, X6 -2.76 <0.01 None -2.50 <0.01 None

Ownership of building, X7 -1.55 <0.01 None -1.31 <0.01 None

The most relevant explanatory variables were used to quantify the likelihood of each

building in the city being connected to an expanded DH network. Figure 4.10 shows an

example of the probability of connection for buildings in a part of the city. The probabil-

ities varied as a function of the characteristics of the buildings. For example, in Figure

4.10, Building A had a 100% probability of connection, as this publicly owned building

had a 35-year-old heating system. On the other hand, the privately-owned, residential

Building B that had a 5-year-old heat pump had a 0% probability of connection.
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Figure 4.10: Distribution of predicted probabilities of connecting a building to an ex-
panded DH network of the city.

4.3.3 Financial consequences of routing of new district heat pipelines

Figure 4.11 compares the 2025 expanded DH networks of the demand-driven and the

predicted-demand-driven scenarios, respectively. It can be seen that the DH network

was more extended in the demand-driven scenario, for which the routing of the extended

network did not account for the likelihood of a building being connected. In the demand-

driven scenario, the network was extended by 14.3 km, whereas the extension was 11 km

in the predicted-demand-driven scenario. This difference in extension could be explained

with regard to the different distributions of residential buildings with large demand,

which are often located outside the city center. In the predicted-demand-driven scenario,

a building with large heat demand was only considered if its probability of connection

was high as well. As a consequence of the smaller extension of the DH network in the

predicted-demand-driven scenario, fewer building clusters (depicted by the filled black

circle symbols in Figure 4.11) were not connected to the DH network.
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Figure 4.11: Comparison of the expanded DH network in the demand-driven scenario
(upper plot) and the predicted-demand-driven scenario (lower plot). The red squares
highlight the areas where the expanded DH networks are substantially different.
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The CAPEX and OPEX costs associated with the network expansion are summarized

in Figure 4.12. It can be seen that the more extended network of the demand-driven

scenario did not always generate larger CAPEX costs than the less extended network of

the predicted-demand-driven scenario. This is because the CAPEX accounted both for

the length of the installed DH pipelines and the type of road under which the pipelines

were laid. Moreover, the CAPEX costs increased in relation to the distance from the DH

plant, because larger drops in pressure must be overcome. Since OPEX costs depended

on the amount of DH that was supplied, the predicted demand-driven scenario generally

had larger OPEX costs. The larger OPEX costs did not necessarily imply lower prof-

itability, as the expected larger revenues of the predicted demand-driven scenario could

compensate for the larger OPEX costs.
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Figure 4.12: Comparison of the annual CAPEX and OPEX for the expanded DH net-
works in the demand-driven and predicted-demand-driven scenarios.

Figure 4.13 compares the annual profits and IRR of the DH networks in the demand-

driven and predicted-demand-driven scenarios. Negative IRRs are not shown in Figure

43. In the assessment of profitability, the new network was considered; moreover, as is

common for infrastructure projects, the financial metrics were evaluated over a 50-year

time horizon. For the demand-driven and predicted-demand-driven scenarios, the annual

profits increased from 0.01 million Swiss Francs in 2020 to respectively 1.03 and 1.18
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million Swiss Francs in 2025. The maximum IRRs were respectively 5.3% and 6.7%,

and the IRRs were positive from 2023 and 2021, respectively. The lower IRR in the

former scenario could be explained as follows: In the demand-driven scenario, the DH

network was expanded to buildings that were theoretically profitable, but possibly ex-

pensive, to reach; however, the investment costs were less compensated by the revenues,

as the buildings did not necessarily get connected to the expanded DH network. On the

other hand, in the predicted-demand-driven scenario, the DH network was expanded to

buildings that were likely to be connected; therefore, the revenues compensated for the

investment costs. Thus, the predicted-demand-driven scenario provided a more com-

pelling business case, as the expanded DH network was more profitable and yielded a

25% higher return on investment.
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Figure 4.13: Comparison of the annual profits (left) and IRR (right) of the DH network
in the demand-driven and the predicted-demand-driven scenarios.



Chapter 5

Case Study: Electricity

The increased penetration of e-mobility and the decarbonization of the building stock

through the usage of heat pumps will have a direct impact on the distribution grid.

Moreover, future population dynamics and urban transformations, such as an increasing

and aging population and the creation of new one-person dwellings, will entail changes

in the electricity demand, both in magnitude and in time. To ensure a stable operation

of the network, power flow simulations can determine whether the current distribution

grid layout will be able to cope with these changes in the future.

A bottom-up electricity demand model, in combination with the developed bottom-

up heat and e-mobility demand models, has been developed and used to assess future

scenarios. The motivation for its development was twofold: (i) such a model gives

the necessary spatial and temporal resolution to quantify the increase in load at the

neighborhood level and its impact on the local distribution grid, and (ii) the usage of

ABMs allows the integration of behavioral and cultural patterns that, upon calibration,

could deliver more realistic results compared to an approach only based on architectural

norms and standards.

The results indicate that the implementation of location-specific behavioral patterns

improves the overall demand predictions and that a bottom-up ABM is more suitable to

assess the impact of the energy transition compared to a top-down-based approach. The

results also identify areas of the city where the distribution grid experiences the largest

increases in load.

The methodology of the electricity demand model was partly developed by the present

author and partly developed by D. Haegel during a semester project supervised by the

present author, as reported in Chapter “Student Projects Supervised”.
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5.1 Methodology

Similarly to the case of the heat demand model, the outcomes of the ABMs were used as

the main inputs of the electricity demand model. Likewise, elements of the digital twin

of the built infrastructure were used to further characterize the electricity demand of

buildings. An overview is presented in Table 5.1. Moreover, the outcome of the agent-

based daily activities model was extended by a set of activities taking place at home,

such as sleeping, cooking, and washing. Their implementation is detailed below.

Table 5.1: Outcomes of agent-based and elements of digital twin used by the electricity
demand model

Source Attributes

Agent-based population model Households’ size, structure, and household members’ ages

Job, workplace location

Agent-based daily activities model
Agents’ presence time at home and at the workplace, as
well as characterization of other daily activities (leisure,
education, shopping, or business)

Digital twin of built infrastructure 3D building model, building end-use, energy-consuming area

Electricity distribution grid

The electricity demand of a building was obtained by modeling its base and peak (or

activated) load. The base load is the electricity consumption produced by electrical

appliances and building services with automated control systems, such as fridges, and was

therefore independent of building occupants’ behavior. The variable load is electricity

consumption caused by devices that are actively switched on by occupants, such as

electric stoves, and was therefore dependent on occupants’ behavior.

The approach chosen to model the activated load in the electricity demand model is

twofold:

• For residential and office buildings, the electricity demand was mainly modeled

using an agent-based physical approach – that is, the daily activities of the agents

were directly converted into electricity demand. The correlations between agent

daily activities and electricity demand were believed to be clearer for residential

[117] and office buildings [118] than for other building types. Moreover, the demand

patterns across residential and office buildings were assumed to be more homoge-

neous. Therefore, physical models have been developed and tested for these two

building categories.

• For other building types, the results of the smart meter data analysis – in partic-

ular, the typical normalized power demand profiles and the distributions of base
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load demand reported in Section 2.3.3 – were utilized together with standard values

from architectural norms to estimate the electricity demand.

The final result was the electricity demand of each building with a quarter-hourly time

resolution.

It is worth noting that the electricity demand for residential buildings alone accounts for

33% of the Swiss [119] and 29% of the EU’s [120] electricity demand. The service sector

accounts for 27% of the Swiss [119] and 27% of the EU’s electricity demand [120], with

office buildings covering one of the largest shares of it [121]. The electricity demand

breakdown for residential and office buildings located in Switzerland is presented in

Figure 5.1 and Figure 5.2, respectively. The agent-based modeling of the different energy

end-uses in residential and office buildings is explained in detail in Sections 5.1.1 and

5.1.2, respectively.

Figure 5.1: Percentage breakdown by end-use of electricity demand in a multi-family
residential building in Switzerland – without (left) and with (right) electric space and
hot water heating system. Source: [122]
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Figure 5.2: Percentage breakdown by end-use of electricity demand in an office building
with electric space and hot water heating system. Source: [123]

5.1.1 Agent-based model of electricity demand of residential buildings

The electricity demand of a single-family or multi-family residential building was com-

puted according to Equation (5.1). The demand for lighting, cooking, washing & drying,

other uses, and heat depended on the occupant’s behavior and included ABMs and was,

therefore, time dependent. The demand for building services was solely dependent on

the number of dwellings of a building (30W/dwelling [122]).

PResidential(t) =
∑

Dwellings

(
Plight,dwelling(t)+Pcooking,dwelling(t)+Pwashing−drying,dwelling(t)

+ Pother uses,dwelling(t)

)
+ PHeat(t) + PBase (5.1)

The modeling of Plight, Pcooking , and Pwashing−drying is detailed below. Pother uses ac-

counted for the electricity consumption of various appliances, such as entertainment

devices, laptops and phone chargers, computers, vacuum cleaners, and hair dryers. It

was modeled by linearly scaling a standard variable load of 1.0 W per square meter of

energy-demanding area [103] by the share of household members at home and awake.
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For residential buildings with electric SH or DHW system, PHeat was obtained from the

heat demand model (Section 4.1).

Demand for lighting in residential buildings

The activation of artificial lighting inside a residential building depended on the indoor

natural light intensity (ELI), which was measured in lux. The external solar radiation,

obtained from the WRF model [106], was converted into indoor natural light intensity

using Equation (5.2)(Igawa’s luminous efficiency model [124]), which accounted for the

photosensitivity of the human eye to different light wavelengths. In Equation (5.2), h is

the time- and location-dependent solar zenithal angle, Irr is the external solar radiation

in W/m2, and DH is a factor that accounts for the number of windows and the cardinal

direction of rooms. DH was assumed to be 5% for all buildings [125].

ELI = ((9 ·h+ 210) · Irr0.9 + (−11 ·h4 + 54 ·h3− 102 ·h2 + 90 ·h− 29) · Irr1.1) ·DH
(5.2)

Artificial lighting was required when ELI dropped below a threshold of 400 lux [126, 127].

For the increase in demand for lighting to gradually decrease with ELI, the factor flight
was introduced (Equation (5.3))

flight(t) = CDF

((
3− 6

100

)
· (ELI(t)− 400)

)
(5.3)

where CDF is the standard normal cumulative distribution function.

The demand for lighting was the multiplication of the averaged installed lighting capacity

of a building (0.8 W/m2 [126, 127]) by a factor related to the building occupancy at a

given time (foccupancy), times factor flight , Equation (5.4).

Plight,dwelling(t) = flight(t) · foccupancy(t) · 0.8
W

m2
·Aeca (5.4)

Figure 5.3 illustrates the relation between the external solar radiation Irr and factor

flight for two different geographic locations.
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Figure 5.3: Relation between external solar radiation and factor flight for two geographic
locations with different azimuth angles. Source: [128]

Demand for cooking in residential buildings Electricity demand for cooking in

residential buildings accounts, on average, for about 20% of building demand (16% if the

building has an electric heating system) and is responsible for demand peaks around noon

and in the evening, even though its relative importance on the overall residential demand

is decreasing [128]. In the modeling of demand for cooking, the following assumptions

were made:

• The entire household cooked daily, at maximum, once for lunch and once for dinner.

For European households, this assumption was justified [129].

• Cooking demand only accounted for occupants’ behavior and not for building prop-

erties [130].

• The average power of an electric stove, which is the most widely used cooking

device in Europe [131], was 1300 W [132].

The building’s total demand for cooking was calculated by accounting for the behavior

of the occupants of each dwelling, according to Equation (5.5):

Pcooking,dwelling(t) = 1300 W · cookingAF, dwelling(t) (5.5)

In Equation (5.5), cookingAF, dwelling is a binary activation factor for cooking demand

that modeled the behavior of the different dwellings of a building. Its value was 1 if all
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conditions of Table 5.2 were true; otherwise, it was 0. The probabilities of eating at a

restaurant or of eating a cold dish were taken from surveys [133].

Table 5.2: List of conditions that need to be true for the activation of electricity demand
for cooking

Condition
From agent-based

daily activities
From statistics

From electricity

demand model

Lunch or dinner time •

No lunch or dinner before •

At least an adult at home •

No meal at restaurant • •

No cold dish •

If all conditions were true, a time window for cooking was opened. Its duration was

set according to the daily activities of the adults living at the simulated dwelling, or

randomly between conventional meal times if the agents were at home for the entire day.

Once cooking had started, electricity was supplied for 30 minutes [135].

Demand for washing and drying in residential buildings

Washing machines and tumblers account, on average, for about 17% of building demand

(13% if the building has an electric heating system). Due to their high electricity con-

sumption, a dedicated model for washing and drying demand has been developed. In

the modeling of demand for washing and drying, the following assumptions were made:

• Washing and drying demand only accounted for occupants’ behavior and not for

building properties, like cooking.

• The average power of a washing machine (EU energy label from A+++ to A) was

set to 910 W [130]; the average power of a tumbler was set to 2800 W (EU energy

label A and B) [130].

The building’s total demand for washing and drying was calculated by accounting for

the behavior of the occupants of each dwelling, according to Equation (5.6)

Pwashing−drying,dwelling (t) =

910 W · washingAF, dwelling (t) + 2800 W · dryingAF, dwelling (t) (5.6)

In Equation (5.6), washingAF, dwelling and dryingAF, dwelling are binary activation fac-
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tors for washing and drying demand, respectively, that modeled the behavior of the

different dwellings of a building. The value of washingAF, dwelling is was 1 if all condi-

tions of Table 5.3 are were true; otherwise, it is was 0.

The first condition accounted for the fact that, in Swiss multi-family houses, washing is

generally not allowed during nighttime. The reservoir-based control variable gradually

increased over time with a rate that was dependent on the household size. Once washing

had started, electricity was supplied for 1 hour and 45 minutes [134]. Of all EU house-

holds, 20.6% use a tumbler to dry the laundry [135]. For these households, the value of

dryingAF, dwelling turned to 1 after washingAF, dwelling went back to zero. Once drying

had started, electricity was supplied for 30 minutes [136].

5.1.2 Agent-based model of electricity demand of office buildings

The electricity demand of office buildings was computed according to Equation (5.7).

POffice (t) = PLighting (t)+ PEquipment (t)+ PHeat (t)+PBase+PV entilation+ PAC (5.7)

As for electricity demand for residential buildings, the relations between occupants’

activities and electricity demand follow relatively clear patterns. Therefore, the demand

for ventilation, AC, lighting, and equipment was modeled by including ABMs and it

was, therefore, time dependent. For office buildings, no agent-based heat demand model

had been developed. PHeat was obtained from yearly measurements and scaled with the

ambient temperature at a simulated point in time (PHeat (t) ∼ Text(t)).

Electric demand due to ventilation (PV entilation) and AC systems (PAC) were modeled

using normed standard values that referred to the energy-demanding area: namely, 0.4

W/m2 for ventilation and 1.5 W/m2 for AC, as specified in architectural norms [103].

The base load (PBase) of office buildings was set to 1.9 W/m2 [126].

Table 5.3: List of conditions that need to be true for the activation of electricity demand
for washing

Condition
From agent-based

daily activities
From statistics

From electricity

demand model

Not nightime •

At least an adult at home •

Reservoir-based

control variable is full
•
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Demand for lighting in office buildings

The modeling of demand for lighting in office buildings was similar to that of residential

buildings. The differences were as follows:

• Artificial lighting was required when ELI dropped below a threshold of 500 lux

instead of 400 lx [127, 126], meaning that, in offices, lights are turned on earlier in

the evening.

• The averaged installed lighting capacity of a building was increased to 2.5 W/m2

[126].

• Factor foccupancy,office, related to the building occupancy at a given time, was

hereby defined as the ratio of employees at work divided by the total number of

employees, according to agent-based daily activities.

These changes resulted in the adapted Equation (5.8)

flight,office(t) = CDF ((3− 6/100) · (ELI(t)− 500)) (5.8)

Plight,office(t) = flight,office(t) · foccupancy,office(t) · 2.5 W/m2 ·Aeca

Demand for equipment in office buildings

This electricity demand is caused by the usage of several electric appliances, such as

computers, screens and printers, coffee machines, and other kitchen appliances. The

power rating of the equipment items in a standard European office building, according

to Menezes et al. [137], is reported in Table 5.4. The number of appliances available

was estimated based on the number of employees.

Table 5.4: Power rating and number of electric appliances per employee in an office
building. Source: [137]

Appliance
nappliances
nemployees

Pappliance[W ]

PC 1 45

Screen 1 30

Printer 0.03 220

Coffee machine 0.02 350
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Hence, PEquipment could be calculated according to Equation (5.9):

PEquipment(t) = foccupancy,office(t) · nemployees · 88.6W (5.9)

5.1.3 Smart meter- and norms-based model of electricity demand of

other building types

The electricity demand of buildings that were neither residential nor office buildings was

not modeled using agent-based simulations. Instead, this demand was modeled using

the outcomes of the smart meter data analysis (Section 2.3.3). The typical profile of

the normalized power demand of a certain building type (nDF ) was combined with the

average electricity consumption value from architectural norms (pbuilding), reported in

Table 5.5 for different building types.

Table 5.5: Average electricity consumption in W/m2 by building type according to
architectural norms [126, 127]

Building type Average electricity consumption [W/m2]

Education 1.17

Wholesale, Retail 1.77

Health 2.40

Accommodation 1.61

Traffic 1.32

Manufacturing/Industrial 10.6

Entertainment, Recreation, Arts 3.40

The second outcome of the smart meter data analysis, which was the distribution of

base load demand normalized to surface area in m2, was used to improve the calibration

of the model.

Hence, the time-dependent demand of this third category of buildings was calculated

according to Equation (5.10).

PBuilding(t) = nDF (t) · pbuilding · ECA (5.10)

5.2 Energy Transition Scenario

The impact of the energy transition was assessed by comparing two full-year simulations

of the electricity demand in the city and by assessing the impact on the grid of the change



5.3 Results 106

in demand through power flow simulations. The two scenarios were defined according

to Table 5.6. Data reported for the year 2030 were the outcomes of the agent-based

population and mobility simulations.

Table 5.6: Summary of attributes of scenarios ”Base-case” (2019) and ”Energy transi-
tion” (2030) assessed applying the electric mobility, heat, and electricity demand models

Scenario Name Year
City

population

Residents’

average

age

Households

Average

household

size

Base-case 2019 80,079 41.1 38,315 2.07

Energy transition 2030 87,890 43.3 43,228 2.03

Scenario Name Year
EV penetration

[%]
SH and DHW heating systems

Base-case 2019 0.3 As they are

Energy transition 2030 20

Complete replacement of oil-fired

heating systems and

electric ohmic systems

through DH (where available)

and heat pumps

where DH is not available

To simulate the technological development, an increase in the efficiency of EVs, EV

chargers, and SH and DHW systems, as well as the renovation of older buildings, was

implemented.

5.3 Results

The first part of the results section analyses the outcomes of the calibration and vali-

dation of the electricity demand model. Based on the results of power flow simulations

(Section 2.3.4), two representative low-voltage transformers were selected to calibrate

the model and four transformers to validate the calibrated model. To ensure that the

model is able to model various electricity demand patterns, the selection of the calibra-

tion and validation transformers was based on the characteristics of the set of buildings

that each transformer supplied.



5.3 Results 107

Table 5.7: Characterization of yearly electricity demand, according to power flow simu-
lation of low-voltage grid, at 6 low-voltage transformers (2 calibration and 4 validation
transformers)

Prevailing

building

end-use

Transformer
Number of

buildings

supplied

Demand

[MWh/year]

[Share of transformer total demand]

Residential Office
Third Largest

Demand Sector

Residential

Calibration

Gellerstrasse
270 2400 (86%) 232 (8%)

Culture

96 (3%)

Validation

Rotmonten
302 3074 (85%) 174 (5%)

School

327 (9%)

Office

Calibration

Turnhalle

St. Leonhard

30 135 (3%) 3216 (74%)
Culture

420 (10%)

Validation

Mövenweg
47 142 (3%) 1194 (27%)

Industrial

3051 (69%)

Validation

Waaghaus
79 922 (15%) 4651 (78%)

Other

288 (5%)

Mixed-Use
Validation

Spelteriniplatz
44 527 (40%) 352 (27%)

Education

296 (23%)

The selected transformers and the characterization of the supplied electricity demand

by building end-use are reported in Table 5.7.

For each transformer, the calibration process was executed by assessing an average win-

ter1 week from 2019 to account for the impact of SH and DHW heat demand on the

total demand. Thereby, heat demand for residential and non-residential buildings was

calculated by using temperature measurements from 2019. In the validation process, an

average winter week and an average summer2 week were assessed.

The second part of the results section presents the assessments of the “Base-case” and

“Energy transition” scenarios and draws conclusions on the impact of the energy tran-

sition on the distribution grid infrastructure.

1December-March
2May-September
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5.3.1 Impact of individual behaviors on electricity demand prediction

Demand of residential buildings

Figure 5.4 illustrates a comparison between the predictions of the electricity demand

model and the measurement data at transformer Gellerstrasse, which was used as the cal-

ibration transformer for residential buildings’ electricity demand. The results shown for

an average winter day were obtained by simulating 120 winter days (December–March)

in 2019.

Figure 5.4: Comparison between measurements and uncalibrated bottom-up electricity
demand model at transformer Gellerstrasse (residential buildings) for an average winter
day.

The results demonstrate that the uncalibrated model can predict results within the order

of magnitude of the measurements. Moreover, the night peak in demand is captured by

the model. The error quantification, also reported in Table 5.8, resulted in a mean

absolute error of 15.0 kWh (over a day), a normalized root mean square deviation of

20%, and a correlation coefficient of 0.52.

It is clear from Figure 5.4 that the nighttime electricity consumption that peaks at

midnight and gradually decreases until the early morning was not captured by the model.

It was assumed that the offset is due to the hot water preparation during the night, which,

in Switzerland, involves heating by an electric boiler, regardless of the SH technology

used.
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Table 5.8: Comparison of the error metrics of the calibration process for electricity
demand in residential buildings (transformer Gellerstrasse)

Transformer Gellerstrasse

Before Calibration After Calibration

Mean Absolute Error [kWh] 15.0 9.42

Normalized RMSD

[%]
20 11.7

Correlation Coefficient [-] 0.52 0.70

The following location-specific calibrations, which are related to the behavior of build-

ings’ occupants, have been implemented to improve the modeling of residential demand:

• An improved model for DHW preparation and storage was integrated into the heat

demand model. Hot water for morning showers and other draws was prepared up to

five hours in advance. The hot water temperature was set to 60°C in multi-family

houses and 50°C in single-family houses. These limits were set due to hygiene

regulations. The external water temperature was assumed to be constant as it is

drawn from a large reservoir.

• To reduce the amplitude of the evening peak, the practice of many real estate

administrations to prohibit the use of washing machines and dryers starting at

22:00 has been considered. Moreover, the share of households using a tumbler was

increased from the EU average (20.6%) to the CH average (33%).

The applied base load values for residential buildings, presented in Section 5.1.1, un-

derwent a calibration process. Thereby, two different base load values, for single- and

multi-family buildings, respectively, were introduced. A reduction factor for electricity

demand for cooking, to account for the lower propensity of urban households to cook

elaborate dishes at lunch, was also assessed. 350 permutations of these factors were run;

the permutation that yielded the best agreement with measurements is reported in Table

5.9. In Table 5.9, the results of the smart meter data analysis are also reported: The

calibrated values are more in line with smart meters data than the initial values taken

from norms.

Figure 5.5 presents a comparison between the predictions of the electricity demand model

after calibration and the measurement data at transformer Gellerstrasse for an average

winter day and an average winter week.
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Figure 5.5: Comparison between measurements and results of the bottom-up electricity
demand model at transformer Gellerstrasse (residential buildings) for an average winter
day (above) and an average winter week (below) after the calibration of demand base
loads and the integration of behavioral patterns.
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Table 5.9: : Results of the calibration of base load values and of a reduction factor for
demand for cooking for residential demand (transformer Gellerstrasse)

Transformer Gellerstrasse

Before Calibration After Calibration Smart Meters

Base load single-family
residential buildings
[W/m2]

1 1.35 1.4 - 2.3

Base load multi-family
residential buildings
[W/m2]

1 2.5 1.4 - 2.3

Reduction factor for de-
mand for cooking

0% -25% -

Figure 5.6 illustrates a comparison between the predictions of the calibrated electricity

demand model and the measurement data at validation transformer Rotmonten for an

average winter week. The mean absolute error over the week was 10.3 kWh, the nor-

malized root mean square deviation was 12.3%, and the correlation coefficient was 0.51.

The simulated trend follows the magnitude and the dynamics of the measurements; an

overshooting of demand in the evening, as well as an undershooting of demand for some

days, were found. Table 5.10 reports the error metrics evaluated over the week for both

transformers, Gellerstrasse and Rotmonten; for the sake of completeness, error metrics

are also reported for an average summer week.

Table 5.10: Comparison of the error metrics of the calibration and validation process for
electricity demand in residential buildings (transformers Gellerstrasse and Rotmonten)

Gellerstrasse

(Calibration)

Rotmonten

(Validation)

Winter

Week

Summer

Week

Winter

Week

Summer

Week

Mean Absolute Error [kWh] 9.42 12.0 10.3 18.0

Normalized RMSD [%] 11.7 18.1 12.3 30

Correlation Coefficient [-] 0.70 0.62 0.51 0.52
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Figure 5.6: Comparison between measurements and bottom-up electricity demand model
at transformer Rotmonten (residential buildings) for an average winter week as validation
of the electricity demand model for residential buildings.

Demand of office buildings

Figure 5.7 presents a comparison between the predictions of the electricity demand model

and the measurement data at transformer Turnhalle St. Leonhard, which was used as

the calibration transformer for office buildings’ electricity demand.

It is evident from Figure 5.7 that the model was able to simulate the right order of mag-

nitude of demand of office buildings and that the day-to-day pattern was also correctly

captured, with peak demand reached during office working hours. However, the model

significantly underestimated the peak-to-base ratio. Moreover, the demand drop over

weekends was not captured.
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Figure 5.7: Comparison between measurements and uncalibrated bottom-up electricity
demand model at transformer Turnhalle St. Leonhard (office buildings) for an average
winter day.

The following calibrations, which are related to the behavior of office building occupants,

have been implemented to improve the modeling of demand:

• A share of the base load demand and of demand for ventilation/AC in offices

was implemented as a function of office opening hours. The opening hours were

inferred from the daily activities of agents who worked in such buildings; when

more than 7% of the workforce was physically present in the building, the office

was considered open.

• The applied base loads were differentiated between weekdays and weekends.

The demand base load values for office buildings, presented in Section 5.1.2, underwent a

calibration process. Thereby, two different base load values (for weekdays and weekends,

respectively), as well as opening-hours activated shares of base demand and demand

for lighting and ventilation, were assessed. Additionally, as demand for equipment is

believed to be highly location specific, an increase factor for demand for equipment was

also calibrated. 2,133 permutations of these factors were run; the permutation that

yielded the best agreement with measurements is reported in Table 5.11.
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Table 5.11: Results of the calibration of base load values, of opening-hours activated
shares of demand for base, lighting, and ventilation demand, and of an increase factor
for demand for equipment (transformer Turnhalle St. Leonhard)

Transformer Turnhalle St. Leonhard

Before

Calibration

After

Calibration

Base load on weekdays [W/m2] 1.9 0.4

Base load on weekends [W/m2] 1.9 0.2

Base load for weekdays during opening hours
[W/m2]

0 1.4

Base load for weekends during opening hours
[W/m2]

0 0.4

Base demand for lighting [W/m2] 2.5 0.3

Base demand for lighting during opening hours
[W/m2]

0 1.4

Base demand for ventilation [W/m2] 0.4 0.8

Base demand for ventilation during opening
hours [W/m2]

0 1.9

Increase factor for demand for equipment 0% +90%

From Table 5.11, it appears that demand for equipment and for ventilation were un-

derestimated and demand for lighting overestimated in the uncalibrated model based

on norms. These findings are consistent with the percentage breakdown by end-use of

electricity demand in an office building (Figure 5.2).

Figure 5.8 presents a comparison between the predictions of the electricity demand model

after calibration and the measurement data at transformer Turnhalle St. Leonhard for an

average winter week. Besides the overall better agreement, particularly during weekends,

the peak-to-base ratio of 2.8/1 is more consistent with the results of the smart meter data

analysis (3.4/1 according to Table 2.7).

Figure 5.9 illustrates a comparison between the predictions of the calibrated electricity

demand model and the measurement data at validation transformer Mövenweg for an

average winter week. The mean absolute error over the week was 15.9 kWh, the nor-

malized root mean square deviation was 17.1%, and the correlation coefficient 0.93. The

simulated trend closely follows the magnitude and the dynamics of the measurements.
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Figure 5.8: Comparison between measurements and results of the bottom-up electricity
demand model at transformer Turnhalle St. Leonhard (office buildings) for an average
winter week after the calibration of demand loads and the integration of behavioral
patterns.

Figure 5.9: Comparison between measurements and results of the bottom-up electricity
demand model at transformer Mövenweg (office buildings) for an average winter week
as validation of the electricity demand model for office buildings.
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The model was also tested in a central area of the city, at validation transformer

Waaghaus (Figure 5.10). By observing the considerable demand underestimation of

the model compared to measurements, it appears clear that something peculiar char-

acterizes the demand at this transformer. The transformer is located in the historic

city center, where many office buildings have shops and restaurants on the ground floor.

These energy-intensive economic activities are not sufficiently considered by the model,

which models their energy consumption as if they were offices. This finding reiterates

the importance of a realistic and highly resolved digital twin.

Figure 5.10: Comparison between measurements and results of the bottom-up electricity
demand model at transformer Waaghaus (office buildings in the city center) for an
average winter week as validation of the electricity demand model for office buildings.

Table 5.12 reports the error metrics evaluated over the week for transformers Turnhalle

St. Leonhard, Mövenweg, and Waaghaus; for the sake of completeness, error metrics are

also reported for an average summer week.
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Table 5.12: Comparison of the error metrics of the calibration and validation process for
electricity demand in office buildings (transformers Turnhalle St. Leonhard, Mövenweg,
and Waaghaus)

Turnhalle St. Leonhard

(Calibration)

Mövenweg

(Validation)

Waaghaus

(Validation)

Winter

Week

Summer

Week

Winter

Week

Summer

Week

Winter

Week

Summer

Week

Mean Absolute Error [kWh] 10.5 12.5 15.9 34.1 82.6 75.1

Normalized RMSD [%] 11.5 13.6 17.1 36.8 55.1 55.1

Correlation Coefficient [-] 0.96 0.94 0.93 0.64 0.77 0.80

Finally, Figure 5.11 illustrates a comparison between the predictions of the calibrated

electricity demand model and the measurement data at validation transformer Spel-

teriniplatz for an average summer week. Thereby, the ability of the model to simulate

the electricity demand in a mixed-use area is verified: The mean absolute error was 5.79

kWh, the normalized root mean square deviation 16%, and the correlation coefficient

0.83.

Figure 5.11: Comparison between measurements and results of the bottom-up electricity
demand model at transformer Spelteriniplatz (mixed-used area) for an average summer
week as validation of the electricity demand model mixed-used buildings.
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Bottom-up calculation vs. top-down distributions

Figure 5.12 compares the bottom-up electricity demand model with measurements at

transformer Spelteriniplatz for an average week in 2019. In the same graphics, the

demand profiles that were obtained by a top-down allocation of 2019 electricity demand

in Switzerland to the supply area of transformer Spelteriniplatz are also included. In

one approach, the demand was allocated according to the number of agents and jobs

located in the supply area, according to agent-based population simulations, divided

by the total number of agents and jobs in Switzerland. In the second approach, the

demand was allocated according to the surface areas of residential, office, and industrial

buildings, according to Open Street Maps, located in the supply area and divided by the

aggregated surface sizes at the country level. This second approach was previously the

EnerPol demand modeling approach prior to this work.

Figure 5.12: Comparison between measurements, results of the bottom-up electricity de-
mand model, and demand distribution according to two top-down models at transformer
Spelteriniplatz (mixed-used area). Source: [128]

It is clear from Figure 5.12 that top-down approaches do not provide the necessary

spatial and temporal resolution to carry out assessments of the distribution grid and,

more generally, of energy transitions at a city level. The behavioral patterns of building

occupants, the characteristics of agents, and the granularity of the built infrastructure

are not well captured by the tested top-down approaches.
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5.3.2 Impact of energy transition on distribution grid

Figure 5.13 displays the electricity demand of the entire city for an average winter week

of 2019, as predicted by the electricity demand model. The predicted average demand

was 44.6 MW, the base load 29.4 MW, and the maximum peak demand 58 MW. If

extrapolated over the full year, this gives a predicted electricity consumption of 390

GWh/year. This value includes all electricity demand related to the building stock and

does not, for example, include electricity demand for transport.

Figure 5.13: Electricity demand of the entire city as predicted by the electricity demand
model for an average winter week in 2019.

For the sake of completeness, the breakdown of electricity consumption by building end-

use is provided in Figure 5.14. From the figure, it is evident that the smaller demand

on Mondays compared to the other weekdays can be attributed to the industrial sector.
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Figure 5.14: Breakdown of by end-use of the electricity demand of the entire city as
predicted by the demand model for an average winter week in 2019.

Figure 5.15 shows the electricity demand of the entire city for an average winter week

in 2019 for the base-case scenario and in 2030 for the energy transition scenario, as

predicted by the electricity demand model. The general increase in electricity demand

due to the electrification of mobility, the decarbonization of the building stock, and the

increasing population outnumbers the efficiency improvements. For the energy transition

scenario, the predicted average demand was 52.1 MW (+16.8%), the base load 37.1 MW

(+26.2%), and the maximum peak demand 67 MW (+15.5%). If extrapolated over the

full year, this gives a predicted electricity consumption of 455 GWh/year (+11.7%).
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Figure 5.15: Electricity demand of the entire city as predicted by the electricity demand
model for the scenarios “Base-case” and “Energy transition”.

The impact of the electricity demand on the distribution grid was assessed by running

power flow simulations of the low-voltage distribution grid. The results are visualized in

Figure 5.16 for 2019 and 2030, respectively. The line load, normalized with the maximum

line capacity, is depicted for the entire city domain at 12:00 on a weekday.

Because of the increase in electricity demand due to the energy transition, the number

of lines whose line load exceeds 50% increased from 1 line in 2019 to 20 lines in 2030.

The lines that experienced an increase in load are mainly located in the city center and

in the northern city districts. If grid upgrades are needed, they are likely to happen in

these areas of the city.
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Figure 5.16: Line loading as % of the maximum line thermal limit in the city low-voltage
distribution grid at 12:00 on a weekday in 2019 (above) and 2030 (below).



Chapter 6

Conclusions

6.1 Concluding Remarks

In this work, the integrated bottom-up simulation framework EnerPol has been ex-

tended, improved, and applied to assess the role of individuals in a city-scale energy

transition. The major contribution of this work is the development of three comprehen-

sive demand models that simulate electricity, heat, and electric mobility demand. All

three models are bottom-up, integrated, and based on physical principles. This work’s

main novelty is the inclusion of individuals’ behavioral patterns in all developed models

by making extensive use of large-scale agent-based simulations.

These extensions allowed the author to simulate the consequences of an energy transition

for a city, setting a particular focus on the role of individuals. Thereby, the newly devel-

oped models have been assessed in terms of their accuracy and performance compared

to previous models.

Three case studies have shown how real-scale bottom-up agent-based models (ABMs)

are superior to other approaches and how important the inclusion of individuals’ char-

acteristics (such as behavioral models and cultural patterns) is in the assessments.

Due to the use of ABMs, the novel simulation approach has several advantages over prior

studies. First, the ABMs distinguish the characteristics and behaviors of all individuals

in the population. Second, the ABMs can account for the interactions between agents,

between agents and the infrastructure, and between agents and the environment. Finally,

unlike models based on past statistical data, which do not account for future changes,

future changes can modify agents’ behaviors in the agent-based framework.

Moreover, the demand models have been integrated into a developed comprehensive

digital twin of urban infrastructure – that is, a real digital twin of a city, with a level of
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detail that has never before been applied in EnerPol. The integration of all models into

a single framework enabled a holistic interpretation of the results that converged into a

final scenario, where the impact of the decarbonization of both the building stock and

private mobility on the low-voltage distribution grid was assessed.

The presented results have been used by the multi-utility to support their decision-

making process, improve business models, increase social acceptance of future invest-

ments, and improve their practice with databases and enhance their data quality. For

example, the multi-utility company has already been using the heat case study results

to write a business plan to extend the local DH network. This business plan was used

to provide arguments for approving the credit for the district heating network extension

in a popular referendum held in November 2017 [54]. This real-world application of this

work’s outcomes demonstrates the suitability of such data-based predictive models for

increasing the social acceptance of future infrastructural projects related to an energy

transition.

6.2 Summary of Accomplishments

The main contributions of the electric mobility case study are as follows:

• Agent-based population and mobility models are used to simulate, respectively,

the activities of individual agents and the agents’ travel between his/her locations

of activity.

• A priori, for current and future EV penetrations, the users of EVs are most often

unknown. We have developed a stochastic model of EV users, such that realistically

plausible distributions of EVs in a population can be generated, and, therefore,

uncertainties related to EV adoption can be accurately assessed. Thus, even in

the absence of EV use or EV ownership surveys, or in locations where there is not

yet penetration of EVs, our novel simulation approach may be used to plan EV

charging infrastructure.

• Human patterns of EV charging behavior are stochastically modeled. Thus, by

running multiple simulations while varying charging behavior, both the average

impact and the uncertainties due to specific behavioral patterns can be established.

• To accurately assess the population and mobility, all individuals in the country’s

population, including the city’s inhabitants and commuters, are modeled using

agent-based simulations. For the first time, using a recently developed GPU mo-

bility simulator, large-scale agent-based simulations are combined with the high-
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resolution digital twin of a DSO’s infrastructure to assess the technological and

financial impacts of the deployment of EVs from the perspective of a DSO, with

a focus on the consequences of varied customer behavior. Furthermore, this novel

methodology has been validated using measurement data.

The main findings of the electric mobility case study are as follows:

• For a DSO that plans to deploy public chargers, the revenue from parking fees

is greater than the revenue from power sales. Thus, a business model based on

revenue from parking fees has a much shorter time to break even. However, revenue

from parking fees is more sensitive to EV users’ charging behavior and preferences.

• For the investigated case study, at today’s EV penetration of 0.3%, the break-even

of the existing public charger infrastructure of the DSO is, at best, 10 years, when

the business unit manages all charging infrastructure (that is, from charging at

home, work, and public chargers). Otherwise, break-even can only be reached if

the EV penetration is 4% or greater. Moreover, competition in the public charging

marketplace can substantially decrease revenue, up to a 35% decrease in load

factor at an EV penetration of 2% in the present test case. Thus, participants in

the marketplace have substantial financial exposure when penetrations of EVs are

low.

• Charging at home and at work are the largest sources of additional electricity

demand due to EV charging. While charging at work is characterized by sharp

peaks in electricity demand at morning peak hours, charging at home has less

distinctive peaks with maxima during evenings.

• For a 20% EV penetration, local increases in the grid loads may reach 78% during

peak hours, whereas the increase in grid load averaged over the city may be only

6%. Thus, to reliably identify what particular upgrades are required in the distri-

bution grid, it is essential to use a digital twin of the existing built infrastructure.

The main contributions of the heat case study are as follows:

• For the first time, large-scale ABMs of both population and building stock are

combined with a fully bottom-up heat demand model. A detailed synthetic pop-

ulation is generated for an entire country, and the daily activities of each person,

household, and dwelling are modeled. The simulated daily activities allow for the
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modeling of the occupancy and activities of the occupants of the buildings. Fur-

thermore, the heat demand is determined for each household, ensuring that the

model captures the spatial and temporal differences in the heat demand across the

building stock.

• A physical bottom-up thermodynamic demand model was developed and used to

calculate the hourly building heat demand over a year-long period. The model uses

the characteristics of individual buildings and dwellings to quantify the heat fluxes

across each building, as well as each building’s thermal inertia. The predicted heat

demand is validated with measurements.

• In a novel holistic approach, the extension of the DH network of a mid-sized city in

Switzerland has been evaluated. District heat pipelines should be built in city areas

where buildings have both large heat demand and a good likelihood of connecting to

the future network and generating revenues to guarantee economic sustainability.

Therefore, the agent-based heat demand simulation framework has been coupled

with (i) a predictive model to determine the likelihood of a building connecting

to the extended network and (ii) a routing model that optimally connects new

buildings to the existing DH network.

The main findings of the heat case study are as follows:

• Accounting for building occupants’ behavior through ABMs improves the quantita-

tive prediction of the magnitude and dynamics of the time-resolved heat demand;

this improves the model predictions, which yield an annual error less than the

magnitude of error in other urban building energy models.

• In quantifying the likelihood that a building would connect to an extended DH

network, the building characteristics of build year, type of heating system, instal-

lation year of heating system, and building ownership were found to be the most

statistically relevant.

• In assessing the extension of a DH network, a novel holistic approach that accounts

both for the likelihood of a building being connected to the extended network and

that the heat demand of the building will be profitable is considered. For the

test case of a mid-sized city in eastern Switzerland, these considerations yielded a

maximum internal rate of return of the infrastructure that was 25% higher than if

such considerations were not made.



6.2 Summary of Accomplishments 127

The main contributions of the electricity case study are as follows:

• A physical bottom-up electricity demand model was developed and used to cal-

culate the quarter-hourly building electricity demand of the entire building stock.

The characteristics of individual buildings and households were used to quantify

the electricity demand at the resolution of individual buildings. The predicted

electricity demand was calibrated and validated with measurements.

• Demand at residential and office buildings was modeled applying a purely agent-

based approach; smart meter measurements were used to model and calibrate the

demand predictions. A sensitivity analysis on the normed values of electricity con-

sumption reported in architectural standards indicated which demand components

varied the most from norms.

• Power flow simulations of the low-voltage grid were run for the first time in the

investigated city to assess the impact on the electricity distribution grid of the mo-

bility and the building sector’s decarbonization; population dynamics were thereby

taken into account.

The main findings of the electricity case study are as follows:

• Accounting for the behavior of building occupants, through the usage of agent-

based simulations, and for cultural patterns in the modeling of electricity demand

improved the predictions of both the magnitude and the dynamics of the time-

resolved electricity demand. In mixed-use areas, the model predicted the elec-

tricity consumption with a normalized root mean square deviation of 16% and a

correlation coefficient of 0.83.

• The accuracy of the predictions of the developed bottom-up model is superior to

those of the previously applied top-down approaches, as these do not sufficiently

capture the granularity of the built infrastructure and the building occupants’

behavior and are, therefore, not suitable for modeling the energy transition at the

distribution grid level.

• The impact of the energy transition on the electricity demand has been quanti-

fied. The predicted electricity consumption for 2030 is 11.7% larger than today’s

demand; in particular, the baseload demand increases by +26.2%.
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6.3 Other Accomplishments

In the development of the digital twin, the following achievements were made, which

were of great importance for the multi-utility sgsw regarding their practice with the

database:

• Automatic processing programs were developed such that future updates can be

automatically implemented into EnerPol, assuring data quality.

• Links between GIS and SQL database were established, which improved sgsw data

quality. For historical reasons, these links were previously missing.

• Deficiencies in GIS features or inconsistencies in sgsw databases were identified.

The developed models are fully integrated into the EnerPol framework and coupled with

previously existing and newly developed models. Notably, the methodology developed

in this work is applicable to any geographic location. The robustness of the developed

framework has been proven and enhanced by applying the framework to a range of

different geographical domains.

6.4 Future Work

In this work, the EnerPol has been applied on a city-scale dimension for the first time.

The bottom-up agent-based approach has proved to enable an assessment of the future

impact of ongoing trends on the infrastructure. In a bottom-up physical framework,

the assessments’ quality and correctness are strongly related to the available amount

of infrastructure and customers’ personal data. Since the developed methodologies are

based on agent-based mobility, population, heat, and electric demand simulations, highly

detailed data and high-performance computing resources are required. In future work,

the capabilities and the performance of the developed models can be enhanced by working

on the four pillars of EnerPol (Section 2.1).

6.4.1 Database improvement

High-quality and highly resolved data lay the foundation of bottom-up models. ABMs

require even more data because each individual entity (e.g., people, buildings, vehicles)

needs to be characterized. Sensitive data on energy consumption or buildings’ financial

parameters are particularly precious and generally not accessible to a broad audience. In

this project, a large proprietary database was made accessible, extended with data from

open-source databases, and integrated into the EnerPol database. In the future, the
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possibility to access new or more complete datasets would further validate and improve

the developed models and the conducted assessments (here in order of importance):

• Smart meter data: A considerable share of smart meter time series needed to be

discarded due to quality issues, which significantly reduced the number of available

measurements for private households. Households’ consumption patterns present

a large variance because of different family structures, daily routines, or installed

electric appliances. Smart meter measurements could be geo-referenced and linked

to a specific building but, due to privacy policy, not to a specific dwelling, result-

ing in reference load profiles that might not capture the exact dwelling’s demand

dynamics. Access to a more detailed and accurate classification of smart meter

measurements and generally higher data quality would enable better capturing of

different demand dynamics. Additionally, if available, smart meter measurements

of heat, gas, or EV demand would allow for further development of the respective

models (any sensor able to measure an individual item with a temporal resolution

of at least a quarter of an hour can be considered a smart meter).

• Data for district heat routing algorithm: When running the routing algorithm

for future DH pipelines, the infrastructure along which the new district heating

pipelines will be installed should be known in detail. In particular, recent or

imminent planned work on the road surface must be considered. In this work, this

information was assumed, as data on road quality was not shared.

• Data on usage of electric vehicle public chargers: At the time of writing, EVs

were not widespread in the investigated city. Given that most EV drivers prefer

to charge at home, the usage of public chargers is limited. Therefore, more avail-

able datasets would guarantee better statistical representativity, particularly when

deducing charging patterns and preferences.

• Distribution grid data: To run power flow simulations, the network topography

needs to be univocally defined. In practice, the connections between the different

elements of the network must be parameterized. The parametrization was accom-

plished by extensively pre-processing the available data, which came from different

sources and were not necessarily interconnected. However, because databases are

often not aligned, some grid elements could not be identified and subsequently

characterized. These issues should be carefully addressed and clarified in future

work to ensure that the project’s time efficiency is not affected.

• Historical data on real estate: When training the predictive model that determines
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the building’s probability of connection to future DH pipelines, historical data

regarding the development of the real estate, which has already been connected

to the DH network, is needed. Each building’s history was not made available,

which may have impaired the model’s prediction capability. For future work, the

importance of complete traceability of a building’s history is crucial.

6.4.2 Model improvement

The EnerPol framework was extended by new models and digital tools. All presented

models were developed in this project and represent a paradigm shift compared to the

previous top-down approach of EnerPol. The following three extensions of the models

for electricity, heat, and mobility demand are suggested:

• Electricity network simulations: The power flow simulations presented in this work

start from middle voltage substations, which feed the whole city and go down

to low-voltage distribution boxes and low-voltage branches. Cables connecting

distribution boxes or direct house connections are assumed to be continuous. In

reality, many low-voltage wires lead off from the main power line and connect to

individual buildings. The wire is not continuous at these locations and should be

modeled accordingly to correctly simulate the voltage drop along the cables.

• Heat demand model : The developed heat demand model simulates the heat demand

of the residential sector. The demand for industrial and commercial buildings

is not simulated, but rather extracted from customer databases; this partially

undermines the work’s bottom-up nature. Attempts to simulate the heat demand

for such buildings in a bottom-up manner have been carried out. Nevertheless,

a clear link between agent-based simulation and the associated heat demand has

not been established (e.g., in an office building). It remains clear that a complete

bottom-up extension of the heat demand model is yet to be implemented.

• Electric mobility demand model : In the developed model, EV users decide whether

to charge or not charge their vehicle each time they finish one of their modeled

daily activities. That means that charging “on the way”, such as while driving to

work, is not modeled. This limitation does not, for example, capture the demand

of long-distance drivers or tourists. Moreover, the choice of the public charger

location (e.g., a parking lot or a supermarket) should be modeled considering the

vehicle and driver characteristics. In future work, the model should be extended

accordingly.
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6.4.3 Suggested scenarios

• Business model : The “what-if ” scenario assessments and optimizations presented

in this work always addressed both the technical and economic consequences of the

energy transition. The results of the economic assessments were often presented as

calculations of net present value or internal rate of returns, which were generally

quantified by modeling CAPEX, yearly OPEX, and yearly revenues over a certain

number of years. However, the decision of whether an investment must be done

or not should consider other financial aspects and suggest an investment strategy

and an investment timeline. In future work, a business model should be integrated

into the developed models by default.
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average winter week as validation of the electricity demand model for

office buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 Comparison between measurements and results of the bottom-up electric-

ity demand model at transformer Waaghaus (office buildings in the city

center) for an average winter week as validation of the electricity demand

model for office buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.11 Comparison between measurements and results of the bottom-up electric-

ity demand model at transformer Spelteriniplatz (mixed-used area) for

an average summer week as validation of the electricity demand model

mixed-used buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.12 Comparison between measurements, results of the bottom-up electricity

demand model, and demand distribution according to two top-down mod-

els at transformer Spelteriniplatz (mixed-used area). Source: [128] . . . . 118

5.13 Electricity demand of the entire city as predicted by the electricity demand

model for an average winter week in 2019. . . . . . . . . . . . . . . . . . . 119



LIST OF FIGURES 142

5.14 Breakdown of by end-use of the electricity demand of the entire city as

predicted by the demand model for an average winter week in 2019. . . . 120

5.15 Electricity demand of the entire city as predicted by the electricity demand

model for the scenarios “Base-case” and “Energy transition”. . . . . . . . 121

5.16 Line loading as % of the maximum line thermal limit in the city low-

voltage distribution grid at 12:00 on a weekday in 2019 (above) and 2030

(below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



List of Tables

2.1 Description of the geo-referenced database included in the digital twin of

the investigated city to model the city’s real estate . . . . . . . . . . . . . 30

2.2 Description of the geo-referenced database included in the digital twin of

the investigated city to model the city’s mobility infrastructure . . . . . . 30

2.3 Description of the geo-referenced database included in the digital twin of

the investigated city to model the city’s electricity infrastructure . . . . . 31

2.4 Description of the geo-referenced database included in the digital twin of

the investigated city to model the city’s DH infrastructure . . . . . . . . . 31

2.5 Categorization and quality assessment of smart meter data delivered by

St. Gallen and EKZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Assessment of representativity of typical normalized power demand pro-

files obtained from smart meter data analysis – by customer category . . . 40

2.7 Results of the analysis of smart meter measurements: (i) Peak-to-base ra-

tios for weekdays and weekends, and (ii) baseload distribution’s mean and

standard deviation values for customers categories whose typical power

demand load profiles have been implemented in the electricity demand

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Outcomes of agent-based and elements of digital twin used by the electric

mobility demand model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Summary of probabilities of charging at home, work, or public chargers

when an agent with comfort-driven behavior has an opportunity to charge

his/her EV. k is scaling factor. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Modeled charging elements and associated investment and maintenance

costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Characteristics of electric vehicles. Sources: [92, 93] . . . . . . . . . . . . 55



LIST OF TABLES 144

3.5 Prices for EV charging at public chargers in Switzerland for three of the

main national providers (rated power at AC chargers: 22 kW; at DC

chargers: 150 kW). Roaming fees and subscriptions are not included.

Source: [95] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Summary of the impact of EV penetration on optimized public EV charg-

ing infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Outcomes of agent-based population model used to characterize the oc-

cupants of buildings in the heat demand model . . . . . . . . . . . . . . . 75

4.2 Characteristics of buildings used by the heat demand model . . . . . . . . 75

4.3 Example conduction resistances used in the agent-based heat demand

model [55] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Shares of buildings relative to the behavior of building occupants [112]. . 80

4.5 Summary of type and share daily consumption of domestic hot water.

Source: [115] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Comparison of the test statistics of the three variants of the heat demand

model: without agent-based modeling (NA); with occupants’ behavior

(OB); and with behavior of occupants and storage of domestic hot water

(OB and DHWS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Candidate and most relevant explanatory variables used and identified in

the predictive agent-based building model. . . . . . . . . . . . . . . . . . . 91

5.1 Outcomes of agent-based and elements of digital twin used by the elec-

tricity demand model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 List of conditions that need to be true for the activation of electricity

demand for cooking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 List of conditions that need to be true for the activation of electricity

demand for washing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Power rating and number of electric appliances per employee in an office

building. Source: [137] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Average electricity consumption in W/m2 by building type according to

architectural norms [126, 127] . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Summary of attributes of scenarios ”Base-case” (2019) and ”Energy tran-

sition” (2030) assessed applying the electric mobility, heat, and electricity

demand models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Characterization of yearly electricity demand, according to power flow

simulation of low-voltage grid, at 6 low-voltage transformers (2 calibration

and 4 validation transformers) . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Comparison of the error metrics of the calibration process for electricity

demand in residential buildings (transformer Gellerstrasse) . . . . . . . . 109



LIST OF TABLES 145

5.9 : Results of the calibration of base load values and of a reduction factor

for demand for cooking for residential demand (transformer Gellerstrasse) 111

5.10 Comparison of the error metrics of the calibration and validation process

for electricity demand in residential buildings (transformers Gellerstrasse

and Rotmonten) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.11 Results of the calibration of base load values, of opening-hours activated

shares of demand for base, lighting, and ventilation demand, and of an in-

crease factor for demand for equipment (transformer Turnhalle St. Leon-

hard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.12 Comparison of the error metrics of the calibration and validation pro-

cess for electricity demand in office buildings (transformers Turnhalle St.
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