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Abstract Current control systems regulate the behavior of
dynamic systems by reacting to noise and unexpected dis-
turbances as they occur. To improve the performance of
such control systems, experience from iterative executions
can be used to anticipate recurring disturbances and proac-
tively compensate for them. This paper presents an algo-
rithm that exploits data from previous repetitions in order
to learn to precisely follow a predefined trajectory. We adapt
the feed-forward input signal to the system with the goal
of achieving high tracking performance—even under the
presence of model errors and other recurring disturbances.
The approach is based on a dynamics model that captures
the essential features of the system and that explicitly takes
system input and state constraints into account. We com-
bine traditional optimal filtering methods with state-of-the-
art optimization techniques in order to obtain an effective
and computationally efficient learning strategy that updates
the feed-forward input signal according to a customizable
learning objective. It is possible to define a termination con-
dition that stops an execution early if the deviation from the
nominal trajectory exceeds a given bound. This allows for
a safe learning that gradually extends the time horizon of
the trajectory. We developed a framework for generating ar-
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bitrary flight trajectories and for applying the algorithm to
highly maneuverable autonomous quadrotor vehicles in the
ETH Flying Machine Arena testbed. Experimental results
are discussed for selected trajectories and different learning
algorithm parameters.
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1 Introduction

1.1 Goal & motivation

Over the last century, controls of dynamic systems have ex-
panded from mechanical and analog-electronic controllers
for limited subproblems (such as course stabilization of
ships) to digital control of fully autonomous systems (such
as unmanned aerial vehicles). This trend has been enabled
by technical advancements in sensors, actuators, and dig-
ital computing components, as well as by significant de-
velopments in the theoretical foundations of control. Like
their early counterparts, current control systems usually reg-
ulate the behavior of dynamic systems by reacting to noise
and unexpected disturbances in the measured system output.
Typically, they are based on a mathematical model of the
system dynamics. The performance of this approach is lim-
ited by the accuracy of the dynamics model and the causal-
ity of the control action that is compensating only for dis-
turbances as they occur. Unfavorable effects of these limita-
tions are observed especially in regimes where feedback is
not able to react in time and the dynamic behavior is difficult
to identify or understand. To achieve high performance in
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Fig. 1 The general iterative learning framework considered in this pa-
per: A complete trial uj (t), t ∈ [t0, tf ] is performed. Based on the
output error ỹj (t), a new input uj+1(t) is calculated and applied dur-
ing the next trial

such cases, we propose data-based control approaches that
are able to store and interpret information from past execu-
tions, and infer the correct actions or control laws for future
experiments.

The objective of this paper is to explore the field of data-
based high performance control by developing algorithms
that enable systems to precisely track predefined trajecto-
ries. We propose an iterative learning scheme with the goal
of achieving high tracking performance—even under the
presence of model errors, parameter uncertainties, and other
recurring disturbances. Figure 1 depicts the general idea of
the algorithm. Data is collected through a repeated execu-
tion of the same task and the performance is improved from
trial to trial by identifying recurring disturbances and adapt-
ing the feed-forward input signal accordingly. We leverage
a model of the system’s key dynamics to increase the effi-
ciency of the learning and the speed of convergence. Thus,
our approach applies to any underlying dynamic system for
which a nominal model is available. Since the correcting ac-
tion is executed only after a complete run of the trajectory,
the approach is not restricted by slow feedback rates or large
system latencies. Furthermore, it is not limited to a causal
action, which reacts only to disturbances after they occurred.
Instead, recurring disturbances (mainly due to modeling er-
rors) are anticipated and proactively compensated for before
they occur. This approach is thus suitable for performing ag-
gressive trajectories.

We apply the algorithm to quadrotor vehicles in the ETH
Flying Machine Arena. Quadrotor vehicles offer exceptional
agility in the rotational and translational degrees of freedom
due to the large torques generated by the off-center mounted
propellers and the high thrust-to-weight ratio. When operat-
ing these vehicles at high speeds, complex dynamic effects
such as aerodynamics, battery behavior, and motor dynam-
ics have a significant impact on the vehicle behavior. These
effects are difficult to model but can be compensated for by
an iterative execution.

Due to recent technological advances in aerial robotics,
interest in using micro aerial vehicles for industrial appli-
cations, including exploration and surveillance, inspection

and monitoring, and transportation and entertainment has
grown. As such, precise trajectory tracking will become rel-
evant for operations where the tracking performance of the
system determines the quality of the experimental result. It-
erative learning will be applicable if repetition is inherent to
the required task. Examples include inspection of civil in-
frastructure (such as bridges, highways and dams), environ-
mental monitoring (of forest, rivers, lakes, etc.) or filming
a scene with a camera mounted on a robot. Common to all
these examples is that ‘measurements’ must be taken along
pre-computed paths.

We have developed a framework for the generation and it-
erative learning of flight trajectories for quadrocopters. Fea-
sible flight trajectories are generated based on user input that
defines the shape of the desired flight path in the vertical
plane. We restrict ourselves to two-dimensional trajectories
for the sake of simplicity (though all derivations generalize
to 3D trajectories). Trajectory feasibility is considered with
respect to the corresponding first-principles model of the
vehicle and sensor/actuator constraints. Based on the same
model, the proposed learning scheme is derived, which it-
eratively improves the trajectory tracking performance by
adapting the feed-forward input signal. This adaptation does
not change the underlying dynamics of the vehicle, and thus
has an advantage over stiff and switching controllers, which
may cause non-smooth motions and undesirable transients
(especially in cases where the underlying model of the sys-
tem is inaccurate).

1.2 Related work

Research in aggressive flying and trajectory tracking of au-
tonomous quadrocopters has made considerable progress
over the last decade, and strategies for both generating refer-
ence trajectories and for designing effective and robust con-
trol algorithms have improved. Since quadrotor vehicles are
inherently unstable nonlinear systems, and because they ex-
hibit exceedingly complex behavior at high speeds, one ap-
proach is to extend classical control methods with sophis-
ticated adaptation and learning schemes designed to cope
with the complicated system dynamics, unavoidable model
uncertainties and external disturbances.

Examples of classical control approaches used to track
trajectories with quadrocopters are PID schemes (Zhou et al.
2010a), backstepping control techniques (Bouabdallah and
Siegwart 2005; Mokhtari and Benallegue 2004; Zuo 2010;
Madani and Benallegue 2006; Lee et al. 2009; Raffo et
al. 2008) and feedback linearization (Zhou et al. 2010b;
Al-Hiddabi 2009). Other common strategies are trajectory
linearization control (Zhu and Huo 2010), constrained finite-
time optimal control (Alexis et al. 2010), LQ optimal so-
lutions (Bauer et al. 2009) or Model Predictive Control
(Castillo et al. 2007). Such control schemes fall in the area
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of causal controllers. Applying one of these approaches and
performing the same trajectory over and over again, results
in the same tracking error in each trial (on average). These
schemes are not designed to exploit past experience in order
to improve future performances.

Other research on the control of flying vehicles has fo-
cused on learning schemes. In Waslander et al. (2005),
where altitude control of quadrocopters is studied, integral
sliding mode control and reinforcement learning techniques
are compared. Neural networks and output feedback are
used in Dierks and Jagannathan (2010) to learn the complete
dynamics of the vehicle online. Work in Nicol et al. (2011)
and Diao et al. (2011) utilizes adaptive control to achieve
both, adaption to unknown payloads and robustness to dis-
turbances. While most of these approaches are concerned
with near-hover operations, the goal of our approach is to
track fast trajectories. As shown in Sect. 4, we generate ref-
erence trajectories that minimize execution time.

Other learning strategies have been developed for fast
quadrocopter aerobatics. A method to learn high-speed
quadrocopter multi-flips was introduced in Lupashin et al.
(2010), which uses a policy gradient method to iteratively
learn parameterized flip primitives. Similar approaches are
used in Mellinger et al. (2010), Lupashin and D’Andrea
(2011), Ritz et al. (2011) to achieve various high-speed,
high-performance maneuvers. When comparing those ap-
proaches to the approach presented in this paper, the main
difference is the level of specificity of the desired reference
trajectory. While we aim to follow a continuous trajectory,
work in Lupashin et al. (2010), Mellinger et al. (2010), Lu-
pashin and D’Andrea (2011), Ritz et al. (2011) compares
the actual and desired states only at specific key frames.

The approach presented in this paper can be characterized
as an iterative learning control (ILC) technique and is based
on our previous work in Schoellig and D’Andrea (2009).
ILC became a popular research topic beginning with Ari-
moto et al. (1984), and has since proven to be a very power-
ful method for high performance reference tracking (a recent
overview of ILC with an extensive bibliography is available
in Bristow et al. 2006 and Ahn et al. 2007). Yet methods
from optimal control theory have only recently been applied
to the design of ILC laws. Based on a so-called ‘lifted’ do-
main representation, cf. Phan and Longman (1988), Moore
(1998), Amann et al. (1996), LQG-type solutions have been
proposed by Lee et al. (2001), Cho et al. (2005), Tousain
et al. (2001), Rice and Verhaegen (2010), Ahn et al. (2007)
for estimating the tracking error and minimizing a quadratic
cost function. Work in Bristow et al. (2006), Chin et al.
(2004), Cho et al. (2005), Barton et al. (2011) has shown
that ILC can be applied to systems with underlying feed-
back loops. The real-time feedback component is intended
to reject non-repetitive noise while the ILC adjusts to the
repetitive disturbance.

In practice ILC has been applied to repetitive tasks
performed by stationary systems, such as wafer stages,
chemical reactors, and industrial robots. Applications to
autonomous vehicles are more rare. There is one exam-
ple where ILC was applied to quadrocopters: Purwin and
D’Andrea (2009) introduce a least-squares based learning
rule to improve on horizontal point-to-point motions. The
work presented in this paper can be viewed as an extension
of the results in Purwin and D’Andrea (2009), and addresses
the issues referred to as ‘open questions’ in Purwin and
D’Andrea (2009). We consider a larger class of motions—
namely, arbitrary trajectories in the vertical plane—and
a generalized two-step learning framework, which is dis-
cussed in more detail below. Input and state constraints of
the system are explicitly incorporated in our learning rule.

1.3 Contribution to the field of feed-forward based
trajectory learning

The contribution of this paper to the field of feed-forward
based trajectory learning is twofold:

First, we develop an algorithm that structures the trajec-
tory learning problem around a disturbance estimation and
input update step, see Fig. 1. Both steps rely on a nominal
model of the underlying system. Estimation and input up-
date are clearly separated, which allows for a flexible com-
bination of different approaches for both steps. More impor-
tant from a practical point of view, the clear separation al-
lows for an intuitive tuning of the overall learning scheme. In
the first step, we design a time-varying Kalman filter, which
estimates the model error along the trajectory. The estimated
error serves as the input to the following control step. The
Kalman filter explicitly takes noise characteristics into ac-
count, which can be adjusted to improve the convergence
of the estimation and, thus, of the overall learning. In the
second step, the control objective is formulated as a con-
vex optimization problem (Boyd and Vandenberghe 2004).
Here, in contrast to least-squares approaches or LQG de-
sign (Lee et al. 2001; Cho et al. 2005; Tousain et al. 2001;
Rice and Verhaegen 2010; Ahn et al. 2007), input and state
constraints can be explicitly incorporated. Different (nonlin-
ear) performance objectives can be defined by choosing ap-
propriate vector norms and adequate scaling and weighting
of the error vector. Moreover, derivatives of the input can be
included into the objective function to reduce jittering in the
control inputs and, consequently, improve the robustness of
the learning. The definition of a termination condition justi-
fying the linearization of the system dynamics is unique in
the area of ILC and results in a learning process that better
meets the need for safe and efficient operation.

Second, the derived learning scheme is thoroughly ap-
plied to quadrocopters to achieve fast and accurate trajectory
tracking. The paper presents an entire unified process, in-
cluding the generation of feasible reference trajectories, the
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application to real quadrotor vehicles, and a detailed exper-
imental study characterizing both the influence of different
learning parameter settings as well as features of the exper-
imental setup and the quadrotor vehicles.

The theoretic approach, as well as the application of the
algorithm to real quadrotor vehicles, makes this work an
original contribution to the field.

1.4 Outline

The paper is organized as follows:
In Sect. 2, we present the iterative learning algorithm in

its general form. The learning scheme is introduced as a two-
step process of first estimating the unknown repetitive dis-
turbance (Sect. 2.2) and later compensating for it (Sect. 2.3).
The approach is based on a dynamic model of the system
(Sect. 2.1) and includes the unique feature of gradually in-
creasing the trial horizon (Sect. 2.4).

In the second part of the paper, Sects. 3–7, we apply
the algorithm to quadrotor vehicles, and develop a com-
plete framework tailored towards generating and learning
arbitrary flight trajectories in the vertical plane. A model of
the quadrocopter dynamics and constraints is derived first,
in Sect. 3, and a method for generating feasible reference
trajectories is presented in Sect. 4. The experimental setup
and implementation details are illustrated in Sect. 5. Finally,
Sect. 6 presents the quadrocopter’s learning behavior in ac-
tual experiments.1 We conclude with a discussion on the
limitations of the proposed approach in Sect. 7 and sum-
marize the presented results in Sect. 8.

2 The learning algorithm

The basic idea of the proposed learning scheme is to use
iterative experiments to teach a dynamic system how to
precisely follow a trajectory. By exploiting the experience
gained from previous trials, the system learns to anticipate
recurring disturbances (that are mainly due to modeling er-
rors) and to compensate for them in a non-causal way. We
execute a learning update after each trial by combining a
priori knowledge about the system’s dominating dynamics
with real measurements from experiments.

The basic procedure is depicted in Fig. 1 and is described
as follows: We assume that we can derive a model that cap-
tures the key dynamics of the underlying system. This model
is used to calculate the nominal input and state trajectories.
Moreover, by linearizing the system about the nominal tra-
jectory and discretizing the resulting equations, we can de-
rive a static map that describes the system dynamics during

1The accompanying video is found at http://tiny.cc/QuadroLearns
Trajectory.

one trial (Sect. 2.1). The learning algorithm builds upon this
lifted model when interpreting the data of one trial and up-
dating the feed-forward input signal for the next trial. These
two steps are clearly separated. We use a Kalman filter to
interpret the measurement of the last trial and to incorpo-
rate the measurement into the current estimate of the dis-
turbance (Sect. 2.2). The input update step takes the current
disturbance estimate and returns a more adequate input for
the next trial by solving a constrained optimization problem
(Sect. 2.3). The input serves as a feed-forward reference sig-
nal to the underlying system. After each iteration the system
is reset to the initial state. Safe and gradual learning is en-
sured by including a predefined termination condition that
stops a trial whenever the actual trajectory diverges from the
desired one by an unacceptable amount (Sect. 2.4).

Key concepts including the system representation, dis-
turbance estimation, input update, and extending horizon
learning are presented first. The main steps of the algorithm
from an application perspective are summarized in Sect. 2.5,
where we also highlight important prerequisites of the ap-
proach. Finally, in Sect. 2.6 we analyze the computational
complexity of the approach.

2.1 Model of dynamics and lifted-domain representation

We assume that we can derive a model that captures the key
dynamics of the physical system under consideration. In the
general case, the system dynamics are modeled by a set of
time-varying nonlinear differential equations,

ẋ(t) = f
(
x(t),u(t), t

)
,

y(t) = g
(
x(t), t

)
,

(1)

where u(t) ∈ R
nu denotes the system input, x(t) ∈ R

nx the
system state, and y(t) ∈ R

ny the output. The vector fields f
and g are assumed to be continuously differentiable in x and
u. Constraints on the state x(t), the input u(t), and respective
time derivatives are represented by

Zq(t) ≤ qmax, (2)

where

q(t) =
[

x(t), u(t), ẋ(t), u̇(t), . . . ,
dm

dtm
x(t),

dm

dtm
u(t)

]
(3)

and qmax ∈ R
nq . The inequality is defined component-wise

where nq is the total number of constraints, and Z is a con-
stant matrix of appropriate dimensions. Equation (2) allows
the incorporation of constraints on any linear combination
of x(t), u(t), and their time derivatives, for example,

x(t) ≤ qx,max and au(t) + bu̇(t) ≤ qu,max, a, b ∈ R.

(4)

http://tiny.cc/QuadroLearnsTrajectory
http://tiny.cc/QuadroLearnsTrajectory
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The goal of our learning algorithm is to track an a priori
determined output trajectory y∗(t) over a finite-time inter-
val t ∈ T = [t0, tf ], tf < ∞. We assume that the desired
trajectory y∗(t), t ∈ T , is feasible with respect to the nomi-
nal model (1), (2). That is, there exists a triple

(
u∗(t), x∗(t), y∗(t)

)
, t ∈ T , (5)

satisfying (1) and (2). For some applications, the desired
output trajectory y∗(t) may be known ahead of time. How-
ever, it may also be the result of an optimization problem as
shown in Sect. 4.

Below, we derive a system representation of (1)–(5) that
facilitates the derivation and implementation of the learning
algorithm. First we assume that the motion of the system
stays close to the generated reference trajectory (5) during
the learning process. (Note that this can be enforced by the
extending horizon feature introduced in Sect. 2.4.) We lin-
earize the dynamics around the reference trajectory. Consid-
ering only small deviations (ũ(t), x̃(t), ỹ(t)) from the de-
sired trajectory (5),

ũ(t) = u(t) − u∗(t), x̃(t) = x(t) − x∗(t),

ỹ(t) = y(t) − y∗(t),
(6)

the system’s behavior (1) can be approximated by a first-
order Taylor series expansion about the reference trajectory
(5) (cf. Lee et al. 2001) resulting in the following linear,
time-varying system

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t),

ỹ(t) = C(t)x̃(t), t ∈ T ,
(7)

where the time-dependent matrices A(t), B(t), C(t) are the
corresponding Jacobian matrices of the nonlinear functions
f and g with respect to x and u. The input-output relationship
as given by (7) is fundamental to the model-based learning
scheme proposed subsequently. On the real system, how-
ever, inputs are sent at discrete times, and measurements are
available only at fixed time intervals. To capture this fact,
we derive a discrete-time representation of the plant dynam-
ics (7), cf. Ahn et al. (2007), Bristow et al. (2006), Chen
and Wen (1999), and references therein. Converting (7) to
a discrete-time system results in the following linear, time-
varying difference equations,

x̃(k + 1) = AD(k)x̃(k) + BD(k)ũ(k),

ỹ(k + 1) = CD(k + 1)x̃(k + 1),
(8)

where k ∈ K = {0,1, . . . ,N − 1}, N < ∞, denotes the
discrete-time index and N is the trial length in discrete-time
steps, N = tf /Δt with Δt being the sampling time and tf

assumed to be a multiple of Δt . That is, the desired trajec-
tory (5) is represented by an N -sample sequence

(
u∗(k), x∗(k + 1), y∗(k + 1)

)
, k ∈ K, (9)

with given initial state x∗(0).
Other associated signals, e.g. (6), are discretized analo-

gously. The constraints (2) are similarly transformed,

Zq̃(t) ≤ qmax − Zq∗(t) := qmax(t) (10)

where q̃(t) is the deviation of q(t) from the corresponding
nominal values q∗(t) defined analogously to (6). Discretiz-
ing the above equation results in

Zq̃(k) ≤ qmax(k), (11)

where the derivative components in q̃(k) are replaced by
a discrete approximation. For example, Δũ(k) = (ũ(k) −
ũ(k −1))/Δt may be used as an approximation for the input
derivative. The values of the vector qmax(k) ∈ R

nq depend
on the discretization method.

Introducing the lifted vector representation, cf. Bamieh et
al. (1991),

u = [ ũ(0), ũ(1), . . . , ũ(N − 1)
]T ∈ R

Nnu,

x = [ x̃(1), . . . , x̃(N)
]T ∈ R

Nnx,

y = [ ỹ(1), . . . , ỹ(N)
]T ∈ R

Nny,

(12)

the dynamics (8) of a complete trial are captured by a static
mapping

x = Fu + d0,

y = Gx,
(13)

where the lifted matrix F ∈ R
Nnx×Nnu is composed of the

matrices F(l,m) ∈ R
nx×nu , 1 ≤ l,m ≤ N ,

F =
⎡

⎢
⎣

F(1,1) · · · F(1,N)

...
. . .

...

F(N,1) · · · F(N,N)

⎤

⎥
⎦ , (14)

with

F(l,m) =
⎧
⎨

⎩

AD(l − 1) · · ·AD(m)BD(m − 1) if m < l,

BD(m − 1) if m = l,

0 if m > l.

The matrix G is block-diagonal and analogously defined by

G(l,m) =
{

CD(l) if l = m,

0 otherwise,
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where G(l,m) ∈ R
ny×nx . Vector d0 contains the free response

of the system (8) to the initial deviation x̃(0) = x̃0 ∈ R
nx ,

d0 =
[
(
AD(0)x̃0

)T
,
(
AD(1)AD(0)x̃0

)T
, . . . ,

(
N−1∏

i=0

AD(i) x̃0

)T ]T

.

This lifting technique is well-suited for the analysis and syn-
thesis of iterative learning schemes, where the system is as-
sumed to operate in a repetitive mode, cf. Phan and Long-
man (1988), Tousain et al. (2001), Moore (1998), Amann
et al. (1996). The static linear mapping (13) captures the
complete time-domain dynamics of a single trial by map-
ping the finite input time series ũ(k), k ∈ K, onto the cor-
responding output time series ỹ(k + 1), k ∈ K. The goal of
the iterative learning scheme is to use data gathered during
previous executions to improve the system’s performance
from iteration to iteration by updating the feed-forward sig-
nal u, cf. (12), after each trial. The dynamics of the learning,
i.e., the dynamic behavior of a sequence of consecutive tri-
als, can be described in the lifted domain by introducing a
subscript j indicating the j th execution of the desired task,
j ∈ {1,2, . . .}.

The evolution of the system over several iterations is
modeled by

xj = Fuj + dj + Nξξj ,

yj = Gxj + Nυυj ,
(15)

with

dj = dj−1 + ωj−1. (16)

Here, j denotes the j th trial. The signals ξj and υj account
for process and measurement noise, respectively. These
noise signals vary from iteration to iteration and are assumed
to be trial-uncorrelated sequences of zero-mean Gaussian
white noise. The vector dj can be interpreted as a repet-
itive disturbance component that is subject only to slight
changes from iteration to iteration, cf. (16) with ωj being
another trial-uncorrelated sequence of zero-mean Gaussian
white noise. The vector dj captures model errors along the
trajectory, including repeating disturbances (Norrloef and
Gunnarsson 2002), and repeated nonzero initial conditions
(Longman 2000), which were previously represented by d0,
cf. (13). The zero-mean noise component of the initial con-
dition is part of the random variable ξj .

In the model (15)–(16), the state deviation xj from the
reference trajectory x∗, x∗ = [x∗(1), . . . , x∗(N)]T , is af-
fected by two different noise sources: a trial-uncorrelated
zero-mean component ξj , and a ‘random walk’ component
dj . This versatile noise model includes the stochasticity of

the process noise ξj and the repetitive nature of the mod-
eling errors dj , which can vary between trials due to the
influence of ωj , see also Rice and Verhaegen (2010), Lee
et al. (2001), Chin et al. (2004). In particular, the vector dj

captures all non zero-mean noise effects along the desired
trajectory x∗. It may also be interpreted as a vector repre-
sentation of all unmodeled dynamics along the desired tra-
jectory x∗. As a result, dj may depend on the applied input
u(t) = u∗(t) + ũ(t), t ∈ T . The ultimate goal of the subse-
quent derivations is to estimate and optimally compensate
for the disturbance dj by updating the input trajectory ap-
propriately.

To complete the lifted representation (15)–(16), the con-
straints (11) are transformed appropriately. Note that all en-
tries in q̃(k) can be expressed by linear combinations of the
vectors x and u defined in (12). Introducing q = [x,u]T and
stacking the bounds qmax(k) in a vector as

qmax = [qmax(0), qmax(1), . . . , qmax(N)
]T ∈ R

(N+1)nq ,

(17)

constraints (11) read as

Lq ≤ qmax, (18)

where L is a constant matrix of appropriate dimensions.
Subsequently, the representation of the model dynamics

in the lifted domain by (15), (16), and (18) allows for the
derivation and the execution of operations in the trial-time
domain.

2.2 Disturbance estimation

We consider our learning algorithm to be a two-step update
law, cf. Fig. 1. First, we estimate the modeling error dj along
the desired trajectory using optimal filtering techniques (An-
derson and Moore 2005). Then, in order to optimally com-
pensate for the estimated vector d̂j , we provide a new feed-
forward input uj+1 ∈ R

Nnu .
We propose an iteration-domain Kalman filter that retains

all available information from previous trials (namely the
output signals y1, y2, . . . , yj ) in order to estimate the current
error dj . Combining (15) and (16), we obtain a discrete-time
system that fits into the standard Kalman filter approach, cf.
Chui and Chen (1998):

dj = dj−1 + ωj−1,

yj = Gdj + GFuj + μj ,
(19)

where, consistent with the previous definitions, the noise
term μj , μj = GNξξj + Nυυj , is assumed to be zero-mean
Gaussian white noise with covariance Mj : μj ∼ N (0,Mj ).
The noise characteristics of ωj are given by ωj ∼ N (0,Ωj ).
Both stochastic inputs, ωj and μj , are trial-uncorrelated and



Auton Robot (2012) 33:103–127 109

assumed to be independent; that is, for i, j ∈ {0,1,2, . . .},
E
[
ωiω

T
j

]= E
[
μiμ

T
j

]= 0 if i �= j,

E
[
ωiμ

T
j

]= 0 ∀i, j.
(20)

E[·] denotes the expected value.
For the above system (19)–(20), the Kalman filter returns

an unbiased disturbance estimate d̂j for j ≥ 1 that mini-
mizes the trace of the error covariance matrix

Pj = E
[
(dj − d̂j )(dj − d̂j )

T
]

(21)

trial j taking measurements ym, 1 ≤ m ≤ j , into account.
Given initial values for d̂0 and P0, the Kalman filter up-

date equations for the specific problem read as:

⎧
⎨

⎩

Sj = Pj−1 + Ωj−1,

Kj = SjG
T
(
GSjG

T + Mj

)−1
,

Pj = (I − KjG)Sj ,

(22)

where I ∈ R
Nnx×Nnx represents the identity matrix. Based

on the optimal Kalman gain Kj , and taking into account the
previous estimate d̂j−1 and the actual measurement yj , the
disturbance estimate d̂j is calculated by

d̂j = d̂j−1 + Kj

(
yj − Gd̂j−1 − GFuj

)
. (23)

Note that the matrices in (22) and, especially, the Kalman
gains Kj (necessary for an appropriate online update of the
error estimate d̂j ) can be calculated prior to the experiment
as long as we know the initial value P0.

Design parameters The performance of the estimation can
be adjusted by four design parameters:

– The covariance matrix Ωj , ωj ∼ N (0,Ωj ), indicates the
likely change of the disturbance dj from iteration to it-
eration. The vector dj captures the effect of unmodeled
dynamics and, hence, may depend on uj . The input uj

changes significantly during the first iterations of the
learning, but converges for an increasing number of tri-
als. This may also be true for dj . To account for these
changes, one possible definition of the covariance Ωj is

Ωj = εj I, εj > 0, (24)

where the scalar εj is chosen to be larger during the first
iterations to guarantee a fast initial adaptation of the dis-
turbance estimate d̂j , and chosen to be smaller as j in-
creases in order to avoid adapting to outliers and non-
repetitive noise.

– The covariance matrix Mj , where μj ∼ N (0,Mj ), com-
bines the covariance of the process and measurement
noise. It is possible to obtain a value for the covariance by
carrying given sensor noise characteristics and the known

process disturbances of the real system from the original
model description (1) through to the lifted domain repre-
sentation (15). However, modeling Mj as

Mj = ηj I, ηj > 0, (25)

is often sufficient. The ratio between εj and ηj deter-
mines how much we trust the measurement vs. the pro-
cess model, cf. (19). Often this ratio is varied by chang-
ing εj only and keeping ηj constant; that is, ηj = η for all
j ∈ {1,2, . . .}. Experimental results discussing the choice
of ηj and εj are shown in Sect. 6.6.

– The initial value d̂0 is another design parameter. Most of
the time, d̂0 = 0 is a reasonable first guess.

– With the starting value P0 = E[(d0 − d̂0)(d0 − d̂0)
T ], the

initial error variance is specified. Choosing P0 to be a di-
agonal matrix with large positive elements on the diago-
nal, results in larger changes of d̂j at the beginning of the
learning.

Note that the entries of dj and yj , and consequently of
ωj and μj , represent different quantities with different units
(e.g. position, velocity, etc.), whose nominal values may dif-
fer by orders of magnitude. To account for this, it may be
beneficial to introduce scaling matrices SΩ and SM , and de-
fine

Ωj = SΩ(εj I )ST
Ω, Mj = SM(ηj I )ST

M. (26)

To summarize, the advantage of the above approach lies
in its explicit incorporation of noise characteristics and its
model-based update rule (23), which provides an optimal
estimate d̂j in the context of the a priori tunable param-
eters (namely the covariances of the disturbances ωj and
μj , and the initial values P0 and d̂0). The algorithm for
the disturbance estimation takes all available information
y1, y2, . . . , yj into account. In addition, the modeling error
along the desired trajectory d̂j may lead to a better system
understanding and may be re-used to update the dynamic
model (1) or when learning a different reference trajectory.

Based on the disturbance estimate d̂j , the feed-forward
input signal can be adapted in order to compensate for
the estimated disturbance, resulting in an improved perfor-
mance in the next trial.

2.3 Input update

The learning algorithm is completed by the subsequent
learning update. Making use of the information provided by
the estimator, cf. Sect. 2.2, we derive a nonlinear model-
based update rule, which calculates a new input sequence
uj+1 ∈ R

Nnu in response to the estimated disturbance d̂j .
The objective of the update step is to find an input uj+1,

which optimally compensates for the identified disturbance
d̂j . In the context of (15), this means finding an input uj+1
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that minimizes the deviation from the nominal trajectory
in the next trial. More precisely, we consider the expected
value of xj+1 given all past measurements,

E
[
xj+1

∣
∣y1, y2, . . . , yj

]= Fuj+1 + d̂j . (27)

The constraints (18) are explicitly taken into account when
solving for the optimal uj+1. We approximate the future
state xj+1 in qj+1, cf. (18), by (27), resulting in a constraint
inequality that depends only on the decision variable uj+1.

The update rule can be expressed by the following opti-
mization problem:
{

min
uj+1

∥∥S(Fuj+1 + d̂j )
∥∥

	
+ α‖Duj+1‖	

subject to Loptuj+1 ≤ qmax,
(28)

where α ≥ 0 weights an additional penalty term, which was
included into the objective function as a means of directly
penalizing the input. Via the matrix D, the input itself or
discrete approximations of its time derivatives can be penal-
ized. This may be beneficial if one wants to enforce smooth-
ness of the optimal input. In Sect. 6.6, an appropriate choice
of D and α is discussed in the context of the quadrocopter
example. Note that high α values may corrupt or even de-
stroy the learning performance since more emphasis is put
on achieving a small (or smooth) input than on minimizing
the error along the trajectory.

The matrix S ∈ R
Nnx×Nnx in (28) allows the original er-

ror signal (27) to be scaled, and serves several objectives:
equalizing the magnitude of the different physical quantities
in the lifted domain, penalizing deviations of certain states
more than others, or weighting specific parts of a trajectory
(e.g. the first part).

The vector norm 	, 	 ∈ {1,2,∞}, of the
minimization (28) affects the convergence behavior and
the result of the learning algorithm. For a vector
p = (p(1), p(2), . . . , p(np)) ∈ R

np , the one norm (	 = 1), the
Euclidean norm (	 = 2), and the maximum norm (	 = ∞),
are defined as

‖p‖1 =
np∑

i=1

∣∣p(i)
∣∣, ‖p‖2 =

√
pT p,

‖p‖∞ = max
i∈{1,2,...,np}

∣∣p(i)
∣∣.

The update law defined by (28) can be transformed into a
standard convex optimization problem. More precisely, we
obtain a linear program for 	 ∈ {1,∞} and a quadratic pro-
gram for 	 = 2, cf. Boyd and Vandenberghe (2004). Details
on the transformation are provided in the Appendix.

Linear and quadratic programs can be solved very effi-
ciently using existing software packages such as the IBM
ILOG CPLEX Optimizer (2012) (see also comments in
Sect. 2.6). Further, if the optimization problem is feasible

(i.e., if there exist uj+1 that satisfy the constraints), then
there exists a local minimum that is globally optimal. Fur-
thermore, we formulated the update law as a convex opti-
mization problem so that we could incorporate the input and
state constraints explicitly. Such constraints are present in
any existing real system and have a notable influence on the
dynamic behavior of the system. In particular, when learning
high performance maneuvers, constraints often represent the
limiting factor for further improvement and should, as such,
be taken explicitly into account. Relevant constraints of the
quadrotor vehicles and their effects during the learning ex-
periments are illustrated in Sect. 3 and following sections.

Design parameters Four different design parameters allow
for an adaptation of the optimization problem (28):

– The norm 	 defines the overall performance objective of
the learning algorithm. While 	 = ∞ minimizes the max-
imum deviation from the desired trajectory, the one norm
and Euclidean norm minimize the “average error”; that
is, they minimize the sum of the deviations along the
reference trajectory, where the Euclidean norm weights
large errors more than the one norm does. In Sect. 6.6, the
learning performance of different norms is experimentally
evaluated for the quadrotor tracking problem.

– For an intuitive design, the scaling matrix S may be de-
composed into three diagonal matrices,

S = TWSWSx, TW ,SW ,Sx ∈ R
Nnx×Nnx . (29)

First the state scaling matrix Sx scales the lifted state vec-
tor such that all entries of the scaled vector representation
xs , xs = Sxx, are within the same range of magnitude.
The state-weighting matrix SW puts emphasis on specific
states of the original system (1) by penalizing their devi-
ations from the reference trajectory more than the devia-
tions of the other states. The matrices Sx and SW are usu-
ally defined via vectors sx and sW of length nx, which are
repeatedly placed along the corresponding matrix diago-
nal. Finally, the matrix TW allows us to weight particular
parts of the trajectory more than others, i.e. to change the
scaling along the trajectory.

– When aiming to penalize the input u directly, the matrix
D is chosen as the identity matrix, where the lifted vector
u represents the deviation from the nominal input trajec-
tory (12). Another option is to consider the rate of change
of u or its curvature by choosing Du such that the kth
component is given by

(Du)(k) = ũ(k + 1) − ũ(k)

Δt
or (30)

(Du)(k) = ũ(k + 2) − 2ũ(k + 1) + ũ(k)

(Δt)2
, (31)

representing the discrete approximation of the first or sec-
ond derivative of u, respectively.



Auton Robot (2012) 33:103–127 111

– The scalar α balances the influence of the state deviation
component and the input component in the objective func-
tion (28). In Sect. 6.6 design criteria for α are discussed
in the context of the quadrocopter tracking experiment.

In brief, the above parameters enable us to enforce a specific
learning behavior, and thus meet individual performance cri-
teria.

2.4 Extending horizon

Now that we have familiarized the reader with the main
ideas of the algorithm in question (namely, the disturbance
estimation and input update), we wish to introduce a means
of gradually extending its time horizon such that only small
deviations from the desired trajectory are guaranteed.

We earlier assumed that each trial uj , j ∈ {1,2, . . .}, is
performed over the full time horizon T = [t0, tf ]. However,
all derivations in Sects. 2.2 and 2.3 build upon the lifted do-
main representation, which was the result of a linearization
of the system dynamics about the nominal trajectory. The
linearization can only be justified if the actual trajectory of
the system stays close to the desired one. From a different
perspective, it is important that the lifted matrices F and G

are valid first-order approximations of the system dynamics
as this guarantees a proper interpretation of the measure-
ment (estimation step) and a correct input adaptation (up-
date step). In this section, we introduce a termination con-
dition that stops a learning trial whenever the deviation be-
tween the real and the desired trajectory grows too large.
This guarantees that previous derivations are valid and lead
to successful learning.

The general idea of the method is as follows: A new trial
is started with an input uj ∈ R

Nnu . During the execution, the
actual trajectory may begin to diverge from the reference tra-
jectory; if the deviation exceeds a certain boundary (as spec-
ified by the termination condition), the trial is stopped. In
this case the learning algorithm, cf. Sects. 2.2 and 2.3, con-
siders only the first part of the execution (until the premature
ending at Nj < N ) and returns an updated input for the first
part of the trajectory. The updated input segment is then ex-
tended by the last values of the reference input u∗(k), cf. (9),
and a new trial (j + 1) is executed. In general, the following
trial (j +1) performs better during the initial segment of the
trajectory and is terminated at a later stage Nj+1 ≥ Nj . That
is, the time horizon of the learning algorithm is gradually
extended.

The termination condition is defined on the system’s out-
put deviation ỹ(k) ∈ R

ny , cf. (6),

h
(
ỹ(k)

)≥ γ (k), (32)

where h(·) maps the system output at time k to the relevant
termination variables, whose critical values are defined by

γ (k) ∈ R
nγ . If condition (32) is satisfied for some k, the

trial j is stopped and Nj := k.
Assuming that Nj ≥ Nj−1, the input update is per-

formed for the subproblem, uj ∈ R
Nj nu and yj ∈ R

Nj ny ,
such that only the effective length of execution is consid-
ered. A current estimate of the modeling error d̂j ∈ R

Nj nx

is obtained from (22)–(23). In addition to the recent in-
put and output, uj and yj , the estimation takes advantage
of the previous estimate d̂j−1 ∈ R

Nj−1nx and covariance
Pj−1 ∈ R

Nj−1nx×Nj−1nx . However, because of the extended
time horizon Nj , these values must be extended for the cur-
rent estimation using the initial conditions P0 and d̂0: with
l,m ∈ {1,2, . . . ,Nj },

(c)P
(l,m)
j−1 =

{
P

(l,m)
j−1 for l,m ∈ {1, . . . ,Nj−1},

P
(l,m)
0 otherwise,

(33)

where P (l,m) ∈ R
nx×nx represents the (l,m)th entry in P and

(c)P denotes the adaptation to the current length Nj ; simi-
larly,

(c)d̂
(m)
j−1 =

{
d̂

(m)
j−1 for m ∈ {1, . . . ,Nj−1},

d̂
(m)
0 for m ∈ {(Nj−1 + 1), . . . ,Nj },

(34)

where d̂(m) ∈ R
nx .

The matrices G,F,Ωj−1, and Mj are adapted analo-
gously. The resulting estimate d̂j from the estimation step is
used in (28) to calculate the updated input (f )uj+1 ∈ R

Nj nu

for the first part (f ) of the trajectory. This input is continued
by the last entries of the nominal input; that is,

u
(m)
j+1 =

{
(f )u

(m)
j+1 for m ∈ {1, . . . ,Nj },

0 for m ∈ {Nj + 1, . . . ,N}, (35)

where u(m),0 ∈ R
nu and 0 is a zero vector. The input is ap-

plied to the system during the following trial. If the (j +1)th
trial is stopped earlier again, the input uj+1 is cropped ac-
cordingly, such that uj+1 ∈ R

Nj+1nu . If Nj+1 < Nj , the al-
gorithm falls back to time horizon Nj+1 and all variables
are cropped correspondingly. Measurement information for
times k larger than Nj+1 (obtained from earlier iterations) is
discarded.

This method of extending the horizon not only guaran-
tees the validity of the linearization in Sect. 2.1, but also
responds to safety requirements during the learning process
by guaranteeing only small deviations from the desired tra-
jectory.

Design parameters This part of the learning algorithm fea-
tures the following design parameters:

– The termination function h(·) defines critical variables
originating from either the nonlinearity of the system



112 Auton Robot (2012) 33:103–127

equations (1) or from the safety requirements. The choice
of h(·) is very specific to the problem under considera-
tion. One example is to put constraints on the states that
introduce the nonlinearity to the system.

– The bound γ (k) may vary along the trajectory. Its size is
crucial for the convergence of the learning. When γ (k) is
too small, the learning might never reach the final length
N , since the system is not able to achieve these small de-
viations everywhere along the trajectory; if γ (k) is too
large, it may lead the system into regions where the lin-
earization approximation is not accurate enough.

Even though most papers on ILC are based on a linear sys-
tem representation, the issue of staying in the region where
the linearization is an acceptable approximation, has not
been a focus of consideration, see e.g. Rice and Verhae-
gen (2010). The idea of gradually extending the trial time
is novel to our approach.

Examples for reasonable termination conditions are
given in Sect. 6.5 for the quadrocopter experiments. Sec-
tion 6.5 also shows an example where Nj+1 < Nj . Note,
however, that the majority of experiments shown in Sect. 6
were performed without a termination condition and still
showed learning convergence.

2.5 Summary of the algorithm

The proposed learning algorithm requires a dynamic model
of the physical system under consideration (see Fig. 1). This
nominal model serves two main purposes: (i) given a de-
sired trajectory, it is used to obtain an initial guess of the
feed-forward input, and (ii) it provides the direction for feed-
forward corrections in the input update step. Thus, the nom-
inal model needs to approximate the system dynamics (in
the proximity of the desired trajectory) to first order. Note
that any physical system, including systems with underlying
feedback control, can be considered as long as a nominal
model is available. Ideally, the desired trajectory is feasible
with respect to dynamics, input and state constraints of the
physical system.

The learning algorithm consists of several preparation
steps that are performed offline prior to experiment, and an
iterative correction step executed online after each run of the
experiment. We summarize the algorithm as follows:

Prerequisites Derive a dynamics model of the system such
that it captures key dynamic effects and relevant input and
state constraints.

Offline preparations

(a) Define a desired trajectory and find the corresponding
nominal input based on the dynamics model.

(b) Linearize the model about the nominal trajectory, dis-
cretize, and build lifted system representation.

(c) Choose design parameters of the estimation and update
step. Optional: define a termination condition.

(d) Calculate the Kalman filter gains Kj .
(e) Set j = 1 and apply the nominal input, i.e. u1 = 0.

Online refinement through experiments

(a) Run experiment with uj . Check if termination condi-
tion is satisfied.

(b) Stop if the termination condition is satisfied or if the
task is completed.

(c) Update the disturbance estimate d̂j based on the mea-
surement yj .

(d) Solve the optimization problem using d̂j and obtain the
next input uj+1.

(e) Set j = j + 1, go to (a).

2.6 Computational complexity

Each of the steps of the learning algorithm highlighted above
are of different computational complexity. Below, we pro-
vide a brief overview on the complexity of the key steps of
the algorithm. We distinguish between offline preparation
steps and calculations that are performed online after each
iteration.

Recall that the length of the desired trajectory (number
of discrete time steps) is denoted by N , where N = tf /Δt

increases when extending the duration of the trajectory or
when reducing the sampling time.

Offline preparations The offline cost is dominated by the
computation of the Kalman filter gains Kj according to (22)
for j = 1, . . . , Jmax, where Jmax denotes the total number of
iterations. The computational complexity of calculating the
Kalman filter gains is of order O(JmaxN

3(n3
x + n3

y)).

Online refinement The online cost comprises two steps:
updating the disturbance estimate according to (23) and
solving the optimization problem (28). The disturbance es-
timate update requires O(N2nxny) arithmetic operations.
The optimization problem has the form of an inequality-
constrained linear or quadratic program, see Sect. 2.3. Prob-
lems of this type can be solved by interior-point methods.
The complexity is given by the total number of Newton steps
required for the solution of the optimization problem multi-
plied by the cost of one Newton step. Under mild assump-
tions, Boyd and Vandenberghe (2004) show that the worst-
case number of Newton steps is of order O(Nc logNc) (and
O(

√
Nc) for a particular choice of parameters), where Nc

is the total number of constraints. The cost of one Newton
iteration is a polynomial function of the problem dimen-
sions. For (28), the total number of constraints is of order
O(N(nc + nx + nu)) for the 1- and ∞-norm, and of order
O(Nnc) for the 2-norm (see Appendix), where nc denotes
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the number of constrained quantities. For completeness, the
number of decision variables in the optimization problem is
O(Nnu) for the 2- and ∞-norm and O(N(2nu + nx)) for
the 1-norm. In practice, convex optimization problems are
tractable for a large number of decision variables and con-
straints. As an example, cf. Boyd and Vandenberghe (2004),
a linear program with “hundreds of variables and thousands
of constraints” can be solved “on a small desktop computer,
in a matter of seconds.” In Sect. 6.7, we provide specific
computations times for the quadrocopter example.

3 Quadrocopter dynamics and constraints

We now apply the iterative learning algorithm to quadrotor
vehicles, with the objective of precisely tracking trajecto-
ries that are defined in the vertical plane. Considering two-
dimensional trajectories only allows for the use of a more
concise quadrocopter model (for both, trajectory generation
and learning), while the corresponding learning results still
highlight the key characteristics of the proposed algorithm,
cf. Sect. 6. The subsequent derivations generalize to 3D tra-
jectories and are equally tractable for this class of problems,
see Sect. 6.7.

A two-dimensional model of the quadrocopter dynamics
is derived from first principles under the assumption that the
out-of-plane dynamics, including vehicle yaw, are stabilized
separately (Fig. 2). The equations of motion that define the
evolution of horizontal position y, the vertical position z and
the quadrocopter’s roll angle φ are

z̈ = (fa + fb + fc + fd) cosφ − g, (36)

ÿ = −(fa + fb + fc + fd) sinφ, (37)

Ixxφ̈ = ml(fa − fc), (38)

where m denotes the mass of the vehicle, g represents the
gravitational constant, l is the distance from the center of
mass of the vehicle to a propeller, Ixx is the moment of in-
ertia about the out-of-plane principal axis, and fa and fc

are the thrust forces produced by the two in-plane rotors
normalized by the mass of the vehicle (Fig. 3). The mass-
normalized forces of the other two rotors, fb and fd , are
used to stabilize out-of-plane motion and are nominally set
to the average of fa and fc,

fb = fd = (fa + fc)/2. (39)

In the two-dimensional scenario, the inputs to the quadro-
copter are the collective acceleration produced by the four
motors,

fcoll = fa + fb + fc + fd = 2(fa + fc), (40)

Fig. 2 Schematic drawing of a quadrocopter moving in the vertical
yz-plane with relevant coordinates (y, z, and φ) and control inputs
(fcoll and ωx )

and the roll rate ωx , cf. Fig. 2. The resulting dynamics are

z̈ = fcoll cosφ − g,

ÿ = −fcoll sinφ,

φ̇ = ωx,

(41)

where x = (y, ẏ, z, ż, φ) and u = (fcoll ,ωx) in the frame-
work of (1). Consequently, the feed-forward input correc-
tions of the learning step are applied at the level of thrust and
rate. In (41), we assume that the roll rate φ̇ can be controlled
directly. In reality, an underlying high-bandwidth controller
on board of the vehicle tracks the commanded rates us-
ing feedback from gyroscopes, cf. Sect. 5.2. Because the
quadrocopters can achieve exceptionally high angular accel-
erations (typically on the order of several hundred rad/s2),
and thus can respond very quickly to changes in the desired
rotational rate, this is a valid approximation for the learn-
ing algorithm and trajectory generation. We also assume that
the collective thrust can be changed instantaneously. True
thrust dynamics are as fast as the rotational dynamics, with
propeller spin-up being faster than spin-down. We can—
directly or indirectly—measure all five states; that is y = x
in (1).

The mass-normalized single motor thrusts fa and fc are
related to the input u by the following equations:

fa = 1

4
fcoll + Ixx

2ml
ω̇x, fc = 1

4
fcoll − Ixx

2ml
ω̇x. (42)

The first-principles model presented above neglects nu-
merous aerodynamic effects, such as drag, blade flap-
ping (Pounds et al. 2006), or changes in the angle of attack
of the propellers (Huang et al. 2009), which may have a sig-
nificant effect on the dynamic behavior of the quadrocopter,
especially at high speeds. These effects are difficult to model
and are presumed to be compensated by the iterative learn-
ing scheme.

The system is subject to several constraints that result
from both limited actuator action and limited range of sensor
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Fig. 3 The control inputs of the quadrocopter are the body rates ωx ,
ωy , and ωz , and the collective thrust fcoll . These inputs are converted
by an onboard controller into motor forces fi, i ∈ {a, b, c, d}

measurements. First, the thrust that each motor can provide
is limited by

fmin ≤ fi ≤ fmax, i ∈ {a, b, c, d}. (43)

Second, due to the motor dynamics, the rate of change of the
thrust is also limited:
∣∣ḟi

∣∣≤ ḟmax, i ∈ {a, b, c, d}. (44)

Equation (43) imposes a constraint on the maximum feasible
angular acceleration via (38),
∣∣φ̈
∣∣≤ φ̈max. (45)

Furthermore, the onboard rate gyroscopes have a limited
measurement range. Taking into account an additional safety
margin for the onboard control, a sufficiently conservative
constraint on the angular velocity is derived as:
∣∣φ̇
∣∣≤ φ̇max. (46)

Note that the above constraints implicitly constrain the in-
puts (fcoll ,ωx) via (42). Later, in the input update of the
learning algorithm, we consider upper and lower bounds on
the input, its derivatives, and on fa and fc. Note that this
constraint definition contains some redundancy. In practice,
computation time (cf. Sect. 6.7) can be reduced by constrain-
ing only fa,fc and ωx . Derivative constraints are usually
satisfied because of the time discretization of the input sig-
nal.

4 Trajectory generation for quadrocopters

The goal of this section is to plan feasible quadrocopter
trajectories (with respect to the constraints introduced in
Sect. 3) that track arbitrary user-defined shapes in the ver-
tical plane.

As described in Sect. 2, a feasible state trajectory with its
corresponding nominal input is the starting point, and hence

Fig. 4 Initial and optimized motion profiles. The support points are
distributed equally over time and their λ values are the optimization
variables

a prerequisite of the proposed learning scheme. In this sec-
tion, we describe an approach for generating feasible state
trajectories starting with minimal information on the geom-
etry of the desired state evolution. Once the state trajectory
is known as a function of time, the corresponding input is
computed from the quadrocopter model in Sect. 3.

This approach is similar to Hoffmann et al. (2008), Cowl-
ing et al. (2007), Bouktir et al. (2008), where the trajectory
generation problem is split into two parts. First, the trajec-
tory’s geometry is defined using a set of basis functions
such as splines or polynomials. The trajectory’s geometry
or shape (hereafter referred to as ‘path’) does not contain
any time information. In the second step, a motion profile is
assigned to the path. This profile is chosen such that the re-
sulting time-parameterized trajectory satisfies the feasibility
constraints.

In the following, both the path and its motion profile are
defined by splines (cf. Curve Fitting Toolbox Splines and
MATLAB Splines 2012; Zhang et al. 2010; Lin and Lian
2005; Piazzi and Guarino Lo Bianco 2000), and the trajec-
tory generation is posed as a constrained optimization prob-
lem with the objective of minimizing the trajectory’s end
time.

The trajectory generation algorithm for two-dimensional
quadrocopter maneuvers comprises the following steps:

(a) Define the shape of the trajectory, referred to as ‘path’,
by specifying Np points in the yz-plane,

{
p(1), . . . , p(Np)

}
with p(i) ∈ R

2, i ∈ {1,2, . . . ,Np}.
(47)

(b) Each point p(i) is assigned a chord-length parameter
λ(i),

λ(i) = i − 1

Np − 1
, i ∈ {1,2, . . . ,Np}, (48)
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resulting in an ordered sequence (λ(i),p(i)), which de-
fines the shape of a spline P . In other words, a continu-
ous path in the yz-plane is obtained as a mapping from
λ, λ ∈ [0,1], to points in R

2:

P : [0,1] → R
2, (49)

where P (λ(i)) = p(i), i ∈ {1, . . . ,Np}. That is, the
spline P passes through the previously defined points
(47). The motion profile along the path is defined by
λ(t), a monotonically increasing function of time:

λ : [0, tf ] → [0,1], (50)

where tf represents the end time of the trajectory. The
function λ(t) is itself a spline defined by Nλ support
points (t(k), σ (k)), such that

λ
(
t (k)
)= σ (k), k ∈ {1, . . . ,Nλ}. (51)

The first and the last time point are fixed,

(
t (1), σ (1)

)= (0,0),

(
t (Nλ), σ (Nλ)

)= (tf ,1),
(52)

and the time instances t (k), k ∈ {1, . . . ,Nλ}, are equally
distributed over [0, tf ],

t (k) = k − 1

Nλ − 1
tf . (53)

The (Nλ − 2) interior support points,

Σ := {σ (i)|i = 2, . . . ,Nλ − 1
}
, (54)

define the curvature of the λ profile and act as the deci-
sion variables in the optimization problem described in
the next step, see Fig. 4. We can write λ(t) = λ(t, tf ,Σ)

to make the dependency on the parameters tf and Σ ex-
plicit.

(c) We find a feasible motion profile by solving the con-
strained minimization problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{tf ,Σ} tf

subject to
∂

∂t
λ(t, tf ,Σ) ≥ 0, t ∈ [0, tf ],

P (λ) feasible.

(55)

The objective is to find interior support points Σ , see
(54), such that the corresponding motion profile in-
creases monotonically and yields feasible state trajecto-
ries. Feasibility for the special case of the quadrocopter
is discussed at the end of this section. An important ad-
vantage of this approach is that the number of decision
variables in the optimization problem is relatively small.

It is equal to the number of interior support points of
the motion profile λ plus the final time tf , i.e. in total,
Nλ − 1. Moreover, the number of decision variables is
independent of the number of path points Np . Generally,
the constraints in (55) are non-convex. Thus, the opti-
mization problem lacks any useful characteristics that
would guarantee global optimality. Consequently, a so-
lution of (55) is only locally optimal and depends on the
initial values of the decision variables {tf ,Σ}.

(d) The solution of (55) yields a set of locally optimal inte-
rior support points Σ∗ and a locally optimal end time t∗f .
These values uniquely define the motion profile λ(t) =
λ(t, t∗f ,Σ∗), which, in turn, determines the state tra-
jectories P (t) = (y(t), z(t)), t ∈ [0, t∗f ], cf. Fig. 4. The
nominal inputs are computed via an inversion of the sys-
tem dynamics (41). Note that time derivatives of y, z can
be computed analytically since the nominal state trajec-
tories are given by splines; that is, by piece-wise poly-
nomial functions.

In the remainder of this section, we derive constraints
that guarantee the feasibility of the trajectories P (λ). First,
constraints result from the assumption that the quadrocopter
starts and ends in hover; that is, we derive conditions that
ensure the continuity of the states and inputs at the start and
end of the trajectory. We then consider constraints on the
input and its first derivative.

(a) Continuity of the states at the start and end point. Hov-
ering is characterized by

ẏ = ż = 0, ÿ = z̈ = 0, φ = φ̇ = φ̈ = 0. (56)

Conditions (56) are satisfied if

∂i

∂t i
λ(t)

∣∣∣∣
t∈{0,tf }

= 0, i ∈ {1,2,3,4}. (57)

(b) Continuity of the inputs at the start and end point. The
condition (57) implicitly guarantees the continuity of the
inputs at the start and end of a trajectory; that is, if (57)
holds so do the following input conditions:

fcoll(t)
∣∣
t∈{0,tf }= g, ωx(t)

∣∣
t∈{0,tf }= 0, (58)

where g denotes the gravitational constant.
(c) Input constraints. Input constraints are taken into ac-

count directly in the form (43)–(46).

The numeric values of the parameters used in the trajec-
tory generation process are summarized in Table 1. In or-
der to leave room for learning, we have chosen restrictive
constraint bounds for the trajectory generation.

Considering (43)–(46) again, we observe that single
thrust input trajectories fa,c(t) must be continuous, whereas
their first derivatives ∂/∂t fa,c(t) are allowed to have steps.
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Table 1 Quadrocopter parameters used for the trajectory generation
and learning

Trajectory generation Learning

l 0.17 m 0.17 m

m 0.468 kg 0.468 kg

Ixx 0.0023 kg m2 0.0023 kg m2

fmax 4.5 m/s2 5.5 m/s2

fmin 0.4 m/s2 0.25 m/s2

ḟmax 27 m/s3 51 m/s3

φ̇max 22 rad/s 25 rad/s

φ̈max 150 rad/s2 200 rad/s2

According to (42), fa,c(t) are functions of ∂/∂t ωx(t),
which in turn depends on the fourth derivative of the de-
sired trajectory, ∂4/∂t4y(t) and ∂4/∂t4z(t). This statement
is supported by (41) and is especially relevant in the in-
version step of the previous algorithm. Thus, in order for
fa,c(t) to be continuous, the fourth derivatives of y(t) and
z(t) (with respect to time) must be continuous. This is guar-
anteed by describing the {y, z}-trajectories and the λ-profile
by splines that are at least quintic, i.e. of order 5. However,
we chose the λ-spline to be of order 9; this leaves us with
8 free parameters needed to satisfy the 8 constraints given
by (57).

We implemented the algorithm in MATLAB, and solved
the optimization problem with MATLAB’s fmincon rou-
tine (The Mathworks Optimization Toolbox 2012).

5 Experimental setup

5.1 The testbed

We have demonstrated the algorithm in question on custom
quadrocopters operated in the ETH Flying Machine Arena
(FMA), a dedicated testbed for motion control research.
The setup is similar to How et al. (2008), Michael et al.
(2010): The space is equipped with an 8-camera motion cap-
ture system that, for any properly marked vehicle, provides
millimeter-accurate position information and degree-precise
attitude data at 200 Hz. The localization data is sent to a
PC, which runs the control algorithms (including the itera-
tive learning algorithm), and which in turn sends commands
to the quadrocopters. The flying vehicles are based on the
Ascending Technologies Hummingbird platform described
in Gurdan et al. (2007), with custom wireless communica-
tion and central onboard electronics. More details about the
test environment can be found in Lupashin et al. (2010) and
on the FMA webpage.2

2www.FlyingMachineArena.org.

5.2 Quadrocopter control

Each vehicle accepts four inputs: three angular rate com-
mands (ωx,ωy,ωz), see Fig. 3, and a mass-normalized col-
lective thrust command fcoll . These inputs are usually pro-
vided by off-board controllers.

For the experiments, we use two different modes for con-
trolling the vehicle. The first mode, referred to below as
(C1), is used to stabilize the quadrocopter at the start and
end position of the trajectory. It is also used to return the
quadrocopter to its initial position before starting a new trial.
In this mode, the off-board controller takes desired vehicle
positions as an input and closes the loop based on the cam-
era information. The off-board controller calculates all four
commands and sends them to the vehicle.

To fly and learn the desired trajectory, we use a different
control mode called (C2). In this mode, the iterative learning
scheme provides the collective thrust command fcoll and the
roll rate command ωx . The inputs ωy and ωz are used to
stabilize the vehicle in the vertical plane. These two inputs
are computed by a separate off-board feedback controller
that uses position and attitude information of the vehicle.

An onboard controller does high-rate feedback control on
the angular rates (ωx,ωy,ωz) using rate gyro information.
No feedback is done on the thrust command.

In summary, for (C2) the out-of-plane dynamics are sta-
bilized using camera information; the in-plane dynamics
are driven by the feed-forward input signals of the iterative
learning scheme, fcoll and ωx . The onboard controller closes
the loop on the roll rate input ωx to guarantee that the com-
manded value is actually achieved.

5.3 Implementation of learning algorithm

In order to test the proposed learning scheme on the real ve-
hicles, we developed a software framework that manages the
learning process, and allows for efficient and reliable opera-
tion of the quadrocopters. The program manages the opera-
tions of flying the quadrocopter to a defined initial position,
triggering the learning trajectory, and stabilizing the vehi-
cle at the end of the trajectory. At the core of this setup lies
the learning algorithm of Sect. 2. This is implemented in
C++ using boost uBLAS libraries (Boost—Basic Linear Al-
gebra Library 2012) for matrix operations and the CPLEX
optimizer (IBM ILOG CPLEX Optimizer 2012) to solve the
convex optimization problem.

We designed the overall program as a state machine con-
sisting of two main states, the WAIT and RUN mode, and
a transition state called AUTOSTART, cf. Fig. 5. The gen-
eral procedure is as follows: first, the desired trajectory and
the corresponding nominal input are loaded from a mat file
(generated by the algorithm presented in Sect. 4) and the
settings and parameter values of the learning algorithm are

http://www.FlyingMachineArena.org


Auton Robot (2012) 33:103–127 117

Fig. 5 Flow diagram of the implemented learning procedure

read from an XML file. Second, based on the nominal model
(Sect. 3), the lifted-domain representation and the Kalman
gains are computed. After these preliminary steps, the sys-
tem enters the WAIT mode, where the quadrocopter hovers
at a given initial point with (C1), see Sect. 5.2. As soon as the
user decides to start the experiment, the AUTOSTART mode
is activated. The system switches to a more aggressive con-
troller of type (C1) for more precise hover performance. The
goal is to achieve accurate initial conditions for the learn-
ing trajectory. As soon as the quadrocopter satisfies a set
of predefined start conditions, a new iteration is triggered.
In the experiments presented herein, the start conditions are
defined on the translational velocity of the quadrocopter, its
attitude, and the rate of change of the attitude:

|ẋ|, |ẏ|, |ż| < 0.01 m/s,

|ψ |, |θ |, |φ| < 0.05 rad, (59)

|ψ̇ |, |θ̇ |, |φ̇| < 0.2 rad/s,

where ψ,θ,φ are the yaw, pitch and roll angles that en-
tirely define the vehicle attitude (in z–y–x Euler angle no-

tation). The position is not considered because the quadro-
copter motion is invariant with respect to the initial posi-
tion. The actual initial position is simply subtracted from all
following position measurements. Once the start conditions
(59) are satisfied, the RUN mode is activated and the de-
sired trajectory is performed with (C2) using the most recent
feed-forward inputs of the learning algorithm, see Sect. 5.2.
A trajectory is either fully completed or is terminated prema-
turely if the termination condition of the extending horizon
condition is activated and satisfied. After an iteration, the
system enters the WAIT mode, which performs two tasks
simultaneously: returning the quadrocopter to the initial po-
sition, and executing the online update step of the learning
algorithm (which computes a new input trajectory to be ap-
plied in the next iteration).

The program allows the execution of an arbitrary number
of iterations and stores all log data.

6 Results

This section shows the experimental results of the proposed
learning scheme applied to quadrotor vehicles. We consider
two different trajectories: a diagonal trajectory and an S-
shaped trajectory. Both were generated by the method pro-
posed in Sect. 4. With a set of default learning parameters
introduced in Sect. 6.1, the trajectories are learned after five
to six iterations and tracked with an accuracy as high as
the stochastic noise level of the system allows (Sect. 6.3
and Sect. 6.4). In Sect. 6.5, we apply the extending horizon
method to the diagonal trajectory using two different ter-
mination conditions. The influence of different learning pa-
rameters is shown in Sect. 6.6, where we evaluate the learn-
ing performance for different objective function norms, as
well as for different input penalty terms and varying noise
model parameters. In order to provide insight into the com-
putational cost associated with the approach, we specify
the computation times of the different algorithmic steps in
Sect. 6.7.

A video of the experiments presented herein is available
online,3 and as an electronic appendix to this article.

6.1 Default learning parameters

As highlighted in Sects. 2.2–2.4, the iterative learning
scheme includes several design parameters. The default pa-
rameter values used in the subsequent experiments are sum-
marized in Table 2.

The applied state scaling factors sx are empirical values
that map the deviations of x = (y, ẏ, z, ż, φ) to similar mag-
nitudes. Here, the position was scaled by a factor of 2 and

3The accompanying video is found at http://tiny.cc/QuadroLearns
Trajectory.

http://tiny.cc/QuadroLearnsTrajectory
http://tiny.cc/QuadroLearnsTrajectory
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Table 2 Default learning parameters for the quadrocopter experiments
(in SI units)

Value Description

Δt 0.02 Sampling time in seconds

εj [0.5,0.3] Process noise variance

η 0.05 Measurement noise variance

d0 0 ∈ R
Nnx Initial disturbance estimate

P0 I Initial variance of disturbance

	 2 Norm of input update

sx [2,1,2,1,5] State scaling factors

sW [1,0.1,1,0.1,0] State weighting factors

TW I Trajectory weighting matrix

α 0.08 1-norm input penalty factor

5e−5 2-norm input penalty factor

0.05 ∞-norm input penalty factor

the angle by a factor of 5 as compared to the velocities. The
state weighting sW in Table 2 penalizes deviations of certain
components in x more or less than others. We aim for a very
precise position tracking. Achieving the desired velocities is
less important, however, and angular errors are completely
neglected in the input update rule (28). It is reasonable to pri-
oritize between position and angular error. When an impre-
cise model is used in the trajectory generation, it may be im-
possible to follow the position trajectories while also track-
ing the nominal angle trajectory. We use the 2-norm as the
default objective function norm. In the objective function,
we use a penalty on the input’s second derivative, according
to (31), to obtain smooth inputs. As described in Sect. 2.2,
we keep the measurement variance constant (ηj = η). We
choose a larger process noise covariance εj during the first
iterations and choose a smaller noise covariance as the num-
ber of iterations increases. The default value for the first five
iterations is εj = 0.5, j ∈ {1,2,3,4,5}. For all subsequent
iterations, j > 5, εj = 0.3 is used.

The choice of parameters is discussed in detail in Sect. 6.6,
where experimental results are shown for various parameter
combinations.

6.2 Learning performance measure

In order to quantitatively evaluate and compare the learning
performance of different iterations and experiments, we in-
troduce a weighted error function, which reflects the objec-
tive function (28) of the learning algorithm (not considering
the input penalty term):

ew,j = ∥∥Syyj

∥∥
	
, 	 = {1,2,∞}, (60)

where yj denotes the lifted-domain output vector (12),
whose entries are the measured deviations from the refer-
ence output trajectory. The matrix Sy weights the output

such that it best reflects the defined learning objective (28).
For this experiment, all states x = (y, ẏ, z, ż, φ) are mea-
sured (cf. Sect. 3) and Sy = S is chosen, cf. (28). Note that
yj denotes the lifted output vector, while y is the horizontal
position of the quadrocopter. The weighted error is obtained
by scaling and weighting the measured output error by the
same scaling and weighting matrices that were used in the
objective function of the learning routine. In addition, the
same norm 	 as in the input update (28) is used in (60), re-
flecting the main objective of the learning scheme. In the fol-
lowing, we also refer to the weighted error (60) as ‘weighted
state error’.

This type of performance measure, however, depends on
the norm 	. In order to compare the learning performance
for different choices of 	 (Sect. 6.6), we introduce another
intuitive performance measure for the quadrocopter experi-
ments. We use the average position error along a trajectory:

epos,j = 1

N

N∑

k=1

√
Δy(k)2 + Δz(k)2, (61)

where Δy(k) ∈ R denotes the deviation of the quadro-
copter’s horizontal position (from the desired trajectory) at
the discrete time k and, similarly, Δz(k) ∈ R is the vertical
deviation. Since epos is independent of the objective func-
tion’s norm, it is used to compare the learning performance
of the algorithm for different objective function norms in
Sect. 6.6.

6.3 Experiment 1: Diagonal trajectory

The desired trajectory of the first experiment is a diagonal
motion in the yz-plane, see dashed black line in Fig. 6. Chal-
lenging for this and all subsequent motions is the coupling
of the inputs. Both inputs, fcoll and ωx , have an influence
on both quadrocopter coordinates, the horizontal and verti-
cal position. Second, the quadrocopter is required to hover at
the beginning and the end of the trajectory. That is, the ac-
celeration and de-acceleration phases at the beginning and
end of the trajectory must be learned precisely.

In the first iteration, we apply the nominal input (ob-
tained from the method presented in Sect. 4) to the quadro-
copter. As depicted in Fig. 6, the resulting trajectory is far
off. Despite the large initial discrepancy, the vehicle learns
to track the reference trajectory over the next four itera-
tions. Figure 7 shows the corresponding evolution of the
tracking error and Fig. 8 highlights the convergence of the
feed-forward input corrections. Although the feed-forward
input converges, the corresponding trajectories in Fig. 6 vary
around the desired trajectory, resulting in non-zero tracking
errors (Fig. 7). These variations reflect an important char-
acteristic of feed-forward based learning approaches. The
feed-forward input that is adapted during the learning pro-
cess (see Fig. 8) is only able to compensate for repetitive
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Fig. 6 Experiment 1: Learning a diagonal trajectory. The quadrocopter
position in the yz-plane is depicted for different iterations. The dashed
black line shows the desired trajectory. The trajectories of iterations
1–4 are drawn in black, iterations 5–10 are shown in grey color

Fig. 7 Experiment 1: Error convergence for the diagonal trajectory.
The error is computed according to (60). The dashed line illustrates
the standard deviation of the tracking error when applying the same
diagonal-trajectory input to the vehicle and observing the variations in
the performed trajectories. It can be viewed as a measure of the noise
level in the experimental setup

disturbances while any non-repetitive noise directly affects
the tracking performance. More precisely, the tracking ac-
curacy is lower-bounded by the level of stochastic (i.e. non-
repetitive) noise that acts on the system output.

In order to measure the non-repetitive noise level of our
system, we repeatedly apply the same diagonal-trajectory
input and observe the variations in the output. Figure 9
shows the corresponding state trajectories. We calculate the
respective tracking errors and compute their standard devi-
ation. This value characterizes the system noise level and
serves as a lower bound for the achievable tracking error,
illustrated in Fig. 8 by the dashed horizontal line.

The tracking error in Fig. 8 reaches magnitudes that are
in the range of the non-repetitive variability of the system.
Consequently, the visible variations of the output trajectories
(Fig. 6, grey solid lines) are due to non-repetitive noise and

Fig. 8 Experiment 1: The thrust input converges for an increasing
number of executions of the diagonal trajectory. The roll rate input
converges similarly

Fig. 9 Quadrocopter state trajectories for the same feed-forward input
(applied repeatedly to the vehicle). Note that the system output varies
for identical inputs due to non-repetitive noise acting on the system

are comparable in size to Fig. 9. We conclude that the learn-
ing algorithm is able to effectively compensate for repetitive
disturbances and achieves the best possible tracking perfor-
mance for the given overall system setup.

Moreover, this experiment proves the robustness of the
proposed learning algorithm to modeling errors (reflected
by the large initial tracking error). Based on the simplified
model of Sect. 3, the algorithm is able to learn the desired
trajectory in a few iterations.

Statistical information for the proposed learning scheme
(including mean and variance of the errors in Fig. 7) are pre-
sented in Sect. 6.6 and derived from performing the same
learning experiment several times. In Sect. 7, we discuss
possibilities to decrease the system noise level and conse-
quently improve the tracking performance.

6.4 Experiment 2: S-shaped trajectory

The proposed framework enables us to define and learn arbi-
trary trajectories in the vertical plane. In the second experi-
ment, we consider an S-shaped trajectory, cf. Fig. 10 dashed
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Fig. 10 Experiment 2: Learning an S-shaped trajectory. The quadro-
copter position in the yz-plane is depicted for different iterations. The
black dashed line shows the desired trajectory. The trajectories of iter-
ations 1,2,5,10 are drawn in black, iterations 3,4,6–9 are shown in grey
color

Fig. 11 Experiment 2: Error convergence for the S-shaped trajectory.
The error is computed according to (60). The dashed line illustrates
the standard deviation of the tracking error when applying the same
S-shaped trajectory input to the vehicle and observing the variations in
the performed trajectories. It can be viewed as a measure of the noise
level in the experimental setup

line. The experimental results show the same system char-
acteristics as discussed in Sect. 6.3 and are summarized in
Figs. 10, 11, 12: Starting from a poor initial performance, the
tracking accuracy improves quickly, but is bounded by the
system’s inherent stochastic variability. Moreover, despite
the two outliers at iteration 5 and 10, the feed-forward cor-
rections converge (Fig. 12) to values that best compensates
for the occurring repetitive disturbances. The Kalman filter,
which provides the disturbance estimate, handles outliers ef-
fectively by averaging them out rather than over-adapting.
The outliers may be caused by the more challenging motor
actuation required for the S-shaped trajectory, which implies
larger changes and change rates in the single motor thrusts.
In brief, the experiment highlights the algorithm’s robust-
ness to outliers caused by non-repetitive noise.

Fig. 12 Experiment 2: The input trajectories converge for an increas-
ing number of executions of the S-shaped trajectory. The roll rate input
converges similarly

6.5 Experiment 3: Extending horizon

An additional component of the presented learning algo-
rithm is the extending horizon feature. This feature termi-
nates a trial as soon as a predefined termination condition is
satisfied, cf. Sect. 2.4, and is a means of guaranteeing that
the actual motion stays close to the desired trajectory. The
following types of termination conditions (TC) are tested in
experiments:

– TC1: Terminate the current trial if

|Δz| ≥ 0.1 m. (62)

– TC2: Terminate the current trial if

√
(Δy)2 + (Δz)2 ≥ 0.2 m. (63)

The same diagonal reference trajectory as in Sect. 6.3
is considered again. Figures 13 and 15 show learning re-
sults using (62) and (63), respectively. In both examples, the
horizon is gradually extended until, in iteration 5, the entire
trajectory is flown within the prescribed bound. Figures 14
and 16 show the corresponding error trajectories. Note that
in the second experiment (Fig. 15 and Fig. 16), the time
horizon of iteration 3 is shorter than the one of iteration 2.
In this case, the online learning update is performed only
for the first part of the trajectory, until the termination time
of iteration 3, and all measurement information for larger
times (from earlier iterations) is discarded. For the particu-
lar bounds (62) and (63), extending horizon learning takes a
similar amount of iterations to converge as learning without
a termination condition, cf. Sect. 6.3. If smaller bounds are
used, however, the learning may take many more iterations
or may not even converge. This is particularly the case if
the bounds are smaller than the noise level of the system, cf.
Sect. 6.3.
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Fig. 13 Experiment 3, TC1: Learning of the diagonal trajectory with
extending horizon and termination condition: |Δz| ≥ 0.1 m. The learn-
ing horizon is gradually increased from iteration to iteration. The black
dashed line depicts the desired trajectory of the vertical quadrocopter
position over time, the shaded area represents the extending horizon
bound, and the black dots show the end of an executed trajectory

Fig. 14 Experiment 3, TC1: Learning of the diagonal trajectory with
extending horizon and termination condition: |Δz| ≥ 0.1 m. The solid
black lines illustrate the z-position error and the black dots show the
end of an iteration. The shaded area represents the termination condi-
tion (62). The vertical dashed-dotted line marks the end of the desired
trajectory

6.6 Influence of different learning parameters

We now discuss the influence of different parameter settings
on the learning performance. We use the diagonal trajectory
as desired trajectory throughout this section, allowing us to
compare the subsequent experiments with previous results in
Sects. 6.3 and 6.5. We also give more insight into the typical
characteristics of the proposed learning scheme, and attempt
to justify the choice of the default parameters (Table 2).

Unless otherwise stated, the parameter values given in
Table 2 apply.

Choice of input penalty factor α When solving the opti-
mization problem (28) with α = 0, the feed-forward correc-
tions we obtain are highly non-smooth and jitter within the

Fig. 15 Experiment 3, TC2: Learning of the diagonal tra-
jectory with extending horizon and termination condition:√

(Δy)2 + (Δz)2 ≥ 0.2 m. The black dashed line shows the de-
sired trajectory in the yz-plane, the shaded disks represent the
extending horizon bound, and the black dots show the end of an
executed trajectory

Fig. 16 Experiment 3, TC2: Learning of the diagonal tra-
jectory with extending horizon and termination condition:√

(Δy)2 + (Δz)2 ≥ 0.2 m. The black solid lines illustrate the
distance error evolution and the black dots show the end of an
iteration. The shaded area represents the termination condition (63).
The vertical dashed-dotted line marks the end of the desired trajectory

allowed bounds (43)–(46). This effect is observed even in
noise-free simulations. One reason may be the discretiza-
tion that is inherent in the lifted model used in the optimiza-
tion problem. Figure 17 shows the input trajectories that are
obtained in experiments after one execution of the learning
step with α = 0. Comparing Fig. 8 (α = 5e−5) to Fig. 17
illustrates the positive effect of adding a penalty on the sec-
ond derivative of the input (31). Smooth inputs are particu-
larly beneficial because they increase the repeatability of the
experiment, and thus the effectiveness of the learning. The
system noise level is usually much higher when driving a
system by fast changing inputs.

For the 2-norm optimization problem, the smallest α

value still yielding smooth inputs is α = 5e−5 (cf. Table 2).
For larger values, the learning performance may be cor-
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Fig. 17 Iteration 1: The nominal input trajectory. Iteration 2: Input
trajectory obtained from the input update (28) after the first iteration.
No input penalty term was active, i.e. α = 0 in (28). The jittering in the
inputs is significant

rupted as more emphasis is put on minimizing the input’s
second derivative than on learning to track the desired tra-
jectory. Smaller values of α result in non-smooth inputs,
which have a fatal effect on the learning performance. Fig-
ure 18 shows the statistic error convergence for different val-
ues of α.

Choice of input penalty matrix D The matrix D is used
to penalize either the input or its approximate first or sec-
ond derivative, cf. (28) and Sect. 2.3. When performing
and learning the diagonal trajectory with the quadrocopter,
it is possible to obtain smooth inputs with either of those
choices. Interestingly, all three types of input penalty terms
result in similar learning performances, as illustrated in
Fig. 19. It is, however, reasonable to penalize the input’s sec-
ond derivative since jittering corresponds to large absolute
values of the second derivative.

Choice of input update norm For the objective function
(28), three different norms 	 ∈ {1,2,∞} can be chosen. The
diagonal trajectory is learned successfully by all three input
update rules as illustrated in Fig. 20. In order to compare the
learning performance of different norms, we used the aver-
age position error of the quadrocopter defined by (61). All
three norms show fast error convergence.

Choice of noise covariances The performance of the dis-
turbance estimation has a large influence on the learning
behavior. Lying at the heart of the Kalman equations (22),
the noise model (19) is characterized mainly by the process
variance εj and the measurement variance η, cf. (24) and
(25). Both are assumed to be constant over iterations, i.e.
εj = ε. The ratio ε/η expresses the belief in the Kalman fil-
ter measurement model versus the process model (19). Since
the Kalman filter uses a very simple process model and the

Fig. 18 Learning performance for different input penalty factors α.
The error is computed according to (60). The figure shows the average
error and its standard deviation obtained from five independent learn-
ing experiments. Using very small α values leads to jittering in the
input which corrupts the learning performance, see dotted line

Fig. 19 Learning performance for different choices of input penalty
matrices D in (28). The error is computed according to (60). For each
iteration, we show the average error and its standard deviation ob-
tained from five independent learning experiments. Penalizing the sec-
ond derivative of the input results in small average and standard devia-
tion values

motion capture system provides accurate measurement data,
it is obvious to choose ε/η  1. The larger the ratio ε/η,
the more emphasis is placed on the measurements. More-
over, a large value of ε allows the estimated disturbance to
change rapidly. Therefore, a large ratio ε/η should result in
a fast convergence of the disturbance estimate and, as a con-
sequence, of the tracking error. As expected, the larger the
ratio ε/η, the faster the error converges, cf. Fig. 21.

6.7 Computation times

The objective of this section is to relate the theoretic com-
plexity analysis (Sect. 2.6) to real computation times and
develop an intuition for the computational cost of the al-
gorithm. As an example, we use the diagonal trajectory of
Sect. 6.3. The trajectory comprises N = 113 discrete steps
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Fig. 20 Learning performance for different objective function norms
	. Shown is the position error as defined by (61). For each iteration,
we show the average error and its standard deviation obtained from ten
independent learning experiments. All norms show reasonable conver-
gence behavior. We observe fast convergence and small standard devi-
ations for the 1- and 2-norm with increasing number of iterations

Fig. 21 Learning performance for different noise settings. The values
ε and η are constant over iterations. The error is computed according
to (60). For each iteration, we show the average error and its standard
deviation obtained from five independent learning experiments. The
larger the ratio ε/η, the faster the error convergence and the smaller
the standard deviation

(tf = 2.26 s and Δt = 0.02 s). We recall that the number
of inputs is nu = 2, the number of states is nx = 5, and the
number of constrained quantities is nc = 6, where for each
constrained quantity an upper and lower bound is defined.
We run the algorithm on a standard desktop PC (Windows
7, 64-bit; quad-core processor with 2.8 GHz; 4 GB RAM)
for Jmax = 10 iterations and solve the optimization prob-
lem with CPLEX Version 11.2. As summarized in Table 3,
the computation times are in the range of seconds, even for
solving the optimization problem with hundreds of decision
variables and thousands of constraints.

Table 3 Computation times in seconds for the diagonal trajectory

1-norm 2-norm ∞-norm

Offline preparation

Kalman gains 1.5 1.5 1.5

Online refinement

Estimate update 0.028 0.028 0.028

Input update/Optimization 1.34 0.17 0.87

Number of decision variables 1018 226 228

Number of constraints 2938 1356 2938

7 Advantages & limitations

The experiments in the previous section demonstrated the
effectiveness of the proposed learning. The tracking error
was reduced to a level defined by the non-repetitive noise in
the system, while any repetitive disturbances were compen-
sated for by proper acausal input corrections. The learning
algorithm proved to be robust to the choice of learning pa-
rameters, cf. Sect. 6.6. The separation of disturbance estima-
tion and input update allowed for an intuitive interpretation
and tuning of the learning algorithm parameters.

Limitations of the approach are caused by: (i) the pre-
requisites that must be fulfilled for applying the proposed
learning approach, and (ii) the requested quality of the fi-
nal tracking performance. Prerequisites of the approach are
a model of the system dynamics and a method for generating
feasible trajectories given the model and constraints. Refer
to Sect. 2.5 for more details.

The tracking performance that can be achieved with the
proposed method depends on the level of noise that corrupts
the system output. Non-repetitive noise cannot be compen-
sated for by the proposed feed-forward learning strategy and
directly affects the tracking performance. A measure of the
system noise level is the variance of the system output when
repeatedly applying the same input. In order to increase the
repeatability of the system and decrease the effect of non-
repetitive noise, one may choose to introduce underlying
feedback loops, cf. Bristow et al. (2006), Chin et al. (2004),
Cho et al. (2005), Barton et al. (2011).

For the quadrocopter example, we defined the system
inputs on the level of thrusts and rates, which implied a
high level of non-repetitive noise resulting mainly from im-
perfect initial conditions, unpredictable motor dynamics,
and environmental noise like wind gusts during flight. Ex-
periments in the FMA have shown that the measured tra-
jectories of a quadrocopter differ significantly, even if the
same input is applied, cf. Fig. 9. The variability of the
observed trajectories increases towards the end of the tra-
jectory, which is caused by the fact that the entire trajec-
tory is flown without feedback on position or attitude. An-
gle errors at the beginning of the trajectory, for instance,
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Fig. 22 Measured quadrocopter position at the start of the diagonal
trajectory when not using an AUTOSTART mode, cf. Sect. 5.3. The
entire trajectory is influenced by the initial state

Fig. 23 Measured quadrocopter position at the start of the diagonal
trajectory for more restrictive start tolerance values enforced by the
AUTOSTART mode, cf. Fig. 5. This start procedure increases the re-
peatability of the system

influence all subsequent angle values and inevitably add
up over an iteration. Thus, achieving an accurate initial
state is crucial. To this end, we introduced start condi-
tions (see AUTOSTART mode in Sect. 5.3), which allow
the quadrocopter to start an iteration only if the initial state
lies in the bounds (59). These start conditions significantly
improve the repeatability of the system, cf. Fig. 22 and
Fig. 23, and are essential for the experimental investigations
in Sect. 6.

The quadrocopter experiment can be viewed as a proof-
of-concept example, where thrust and roll rate serve as in-
puts for two reasons: (i) for the sake of simplicity (the
nominal model is straight-forward to derive), and (ii) to
show the limiting case where no global measurements from
the cameras are used during a trajectory execution. To ob-
tain a more versatile learning scheme for the quadrocopters
and to lower the effect of non-repetitive noise on the sys-
tem output, a next step may be to close feedback loops
on position and attitude. The input and corresponding feed-

forward corrections may then be defined on the level of po-
sition and attitude. Experiments in the FMA have shown
that for this setup, the trajectory variations, when repeat-
edly applying the same input, lie within one to two centime-
ters.

In practice, we expect the proposed learning scheme to
be used for quadrotor vehicles that have access to (possi-
bly rare) position and/or attitude measurements (for exam-
ple from GPS), and that use this information for feedback.
As mentioned in Sect. 1.1, feed-forward adaptation is espe-
cially beneficial if feedback is available with low rate only.
In this case, feedback is not able to react fast enough to al-
low for precise tracking but can still be used as correcting
action in a feed-forward based approach. Such a setup may
be used for practical applications including the ones stated
in Sect. 1.1.

8 Conclusion

This paper presents an optimization-based iterative learning
approach for trajectory tracking. Optimality is achieved in
both the estimation of the recurring disturbance and the fol-
lowing input update step, which optimally compensates for
the disturbance with an updated feed-forward input signal.
While the first method is borrowed from classical control
theory, the latter originates from mathematical optimization
theory and uses a computationally efficient state-of-the art
convex optimization solver. Input and state constraints are
explicitly taken into account. Depending on the problem un-
der consideration, the overall learning behavior can be con-
trolled by changing the noise characteristics in the estima-
tion step or the optimization objective, or by assigning dif-
ferent weights on different states and different parts of the
trajectory.

The approach was successfully applied to quadrotor ve-
hicles. It has been shown that trajectory tracking can be
achieved by pure feed-forward adaptation of the input sig-
nal. The accuracy of the tracking is limited by the level of
non-repetitive noise. In future research, the final tracking
accuracy can be increased by incorporating feedback from
position and/or attitude measurements (refer to Sect. 7).
Furthermore, the approach is equally feasible for trajec-
tories in three dimensions, especially when one consid-
ers that none of the calculations must be done in real
time. In the 3D case, the number of inputs and constrains
doubles and the number of states increases from five to
nine.
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Appendix: Input update as convex optimization
problem

The update law defined in (28) can be transformed into a
convex optimization problem of the form:

min
z

(
1

2
zT V z + vT z

)
subject to Wz ≤ w, (64)

where z represents the vector of decision variables and V

is a symmetric positive semi-definite matrix. The number
of constraints is defined by the length of w. We call (64)
a ‘linear program’ if V is zero and a ‘quadratic program’
otherwise, cf. Boyd and Vandenberghe (2004).

For simplicity, we consider α = 0 in the following deriva-
tions. However, similar arguments can be made for arbi-
trary α > 0. In case of norms ‖ · ‖	, 	 ∈ {1,∞}, which
are inherently nonlinear, non-quadratic functions, (28) is
re-formulated by extending the original vector of decision
variables uj+1 and adding additional inequality constraints.
Thus, in case of the 1-norm, the objective function in (28) is
replaced by

min
uj+1,e

I
T e subject to − e ≤ S(Fuj+1 + d̂j ) ≤ e, (65)

where e ∈ R
Nnx and I represent a vector of ones, I =

[1,1,1, . . .]T ∈ R
Nnx . Similarly, for the maximum norm, the

extended equation reads as

min
uj+1,e

e subject to − eI ≤ S(Fuj+1 + d̂j ) ≤ eI (66)

with e ∈ R. In both cases, the constraints in (28) must still
be satisfied. The 2-norm results in the following objective
function:

min
uj+1

(Fuj+1 + d̂j )
T ST S(Fuj+1 + d̂j ). (67)
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