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ABSTRACT 

This thesis presents a comprehensive collection and analysis of multiple electrophysiology 

experiments using high-density microelectrode arrays (HD-MEAs). The motivation of this 

work was to explore the advantages, offered by high-resolution extracellular 

electrophysiology, and the use of HD-MEAs in the fields of (i) single-cell electrical 

stimulation, (ii) phenotype characterization of healthy and diseased cell lines and (iii) neural 

stem-cell maturation. 

Compared to other state-of-the-art electrophysiology techniques, such as patch clamp, calcium 

imaging or the use of genetically-encoded voltage indicators, microelectrode arrays allow for 

long-term, non-invasive and non-phototoxic monitoring of single cells and entire neuronal 

networks. Additionally, the recent integration of microelectrode arrays in CMOS technology 

enables the simultaneous recording from thousands of closely-spaced electrodes so that action 

potentials of even subcellular compartments of neurons can be monitored. Moreover, new HD-

MEA applications, such as single-cell electrical stimulation and detailed action-potential 

waveform and action-potential propagation analysis, became possible.  

After an introduction (Chapter 1), this thesis presents new, optimized ways to perform single-

neuron stimulation, relying on the 17.5 µm electrode center-to-center distance. This small 

electrode-to-electrode distance enables to find the most effective stimulation locations of the 

targeted neurons and to select low-amplitude and efficient stimulation waveforms, while 

reducing the stimulation artifact. In Chapter 2, multiple stimulus waveforms, durations and 

amplitudes were analyzed for both, voltage- and current-stimulation modes. The axon initial 

segment was demonstrated to be the most effective stimulation site and its maturation in culture 

over time correlated with a decrease of the stimulation amplitude that was necessary to elicit 

an action potential. 

Chapters 3 and 4 of the thesis include two studies that present new electrophysiological 

parameters or metrics that can be used to assess phenotypes and maturation states of different 

cell lines and to analyze compound effects. To date, electrophysiological differences and drug 

effects are still mostly studied by using standard metrics, such as the number of recorded bursts 

or action potentials, which do not take full advantage of the available high resolution of CMOS-

based HD-MEAs.  
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In Chapter 3, commonly used and new network, single-cell and subcellular electrophysiology 

parameters and metrics are presented. These metrics were used to successfully characterize and 

compare different human induced pluripotent-stem-cell (iPSC)-derived dopaminergic and 

motor neuron lines and the corresponding isogenic disease lines for Parkinson’s disease (PD) 

and amyotrophic lateral sclerosis (ALS). Additionally, the metrics were used to analyze 

compound-dosage effects with high reproducibility. 

In Chapter 4, neural stem cells were differentiated during 2, 4 and 7 months into mature 

neuronal networks and transferred simultaneously onto HD-MEAs. Additional metrics to the 

ones presented in Chapter 3, combined with single-cell RNA sequencing, allowed for 

successful distinction of the three maturation stages (2, 4 and 7 months) at network, single-cell 

and subcellular levels. 

The thesis concludes with an outlook on potential applications of HD-MEAs in the field of 

high-content drug screening (Chapter 5). 
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RIASSUNTO 

In questa tesi viene presentata un’esaustiva raccolta di vari esperimenti elettrofisiologici che 

fanno uso di array di microelettrodi ad alta risoluzione (dall’inglese high-density 

microelectrode arrays, HD-MEAs). L’obiettivo di questo lavoro è stato quello di voler 

esplorare i vantaggi offerti dall’elettrofisiologia extracellulare ad alta risoluzione e l’uso degli 

HD-MEAs nelle applicazioni di (i) stimolazione di singolo neurone, (ii) caratterizzazione del 

fenotipo di linee cellulari che presentano o meno una data manipolazione genetica correlata ad 

una patologia neurologica e (iii) studi sulla maturazione e lo sviluppo in vitro di colture cellulari 

neuronali. 

Comparati con altre tecnologie di elettrofisiologia tipiche dello stato dell’arte, come il patch 

clamp, il calcium imaging e l’uso dei genetically-encoded voltage indicators, gli array di 

microelettrodi garantiscono il monitoraggio di singole cellule e interi network di neuroni per 

lungo tempo, in modo non invasivo e non fototossico. Inoltre, la recente integrazione degli 

array di microelettrodi nella tecnologia CMOS (complementary metal-oxide semiconductor) 

ha fatto sì che migliaia di elettrodi ravvicinati potessero registrare i potenziali d’azione 

neuronali anche da compartimenti subcellulari. Sono così divenute possibili nuove applicazioni 

nel campo degli HD-MEAs, come la stimolazione elettrica di singoli neuroni e lo studio 

dettagliato della forma d’onda e della propagazione del potenziale d’azione. 

Dopo un’introduzione (Capitolo 1), vengono presentate modalità di stimolazione elettrica del 

singolo neurone nuove e ottimizzate, grazie ad una distanza di soli 17.5 µm tra gli elettrodi. 

Questa breve distanza permette di trovare il sito ottimale di stimolazione nel neurone e di 

selezionare ampiezze basse e forme d’onda efficaci, riducendo l’artefatto da stimolazione. Nel 

Capitolo 2, diverse forme d’onda, durate e ampiezze sono state analizzate sia per la 

stimolazione in tensione, che per quella in corrente. L’axon initial segment è stato dimostrato 

essere il sito di stimolazione più efficace e la sua maturazione nel tempo è andata di pari passo 

con il decremento dell’ampiezza necessaria per evocare un potenziale d’azione. 

I Capitoli 3 e 4 della tesi presentano due studi su nuovi parametri elettrofisiologici, o metriche, 

che possono essere usati per determinare il fenotipo e gli stadi di maturazione di linee neuronali 

cellulari differenti e per analizzare gli effetti di farmaci. Ad oggi, differenze elettrofisiologiche 

e effetti di farmaci sono per lo più studiati facendo uso di metriche standard, come il numero 

delle oscillazioni di un network neuronale o il numero di potenziali d’azione registrati, che non 
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consentono analisi dettagliate come l’alta risoluzione fornita dagli HD-MEAs a tecnologia 

CMOS. 

In particolare nel Capitolo 3 sono presentati parametri elettrofisiologici, sia nuovi che 

comunemente usati, per lo studio di network, singoli neuroni e compartimenti subcellulari. 

Queste metriche sono state usate per caratterizzare e comparare efficacemente linee cellulari 

umane di neuroni dopaminergici e motoneuroni, derivate da cellule staminali pluripotenti 

indotte (dall’inglese induced.pluripotent stem cell, iPSC). La stessa caratterizzazione è stata 

fatta per le corrispettive linee isogeniche che rappresentano il Parkinson e la sclerosi laterale 

amiotrofica. Le metriche sono state infine usate per caratterizzare gli effetti di diversi dosaggi 

di un farmaco in modo altamente riproducibile. 

Nel Capitolo 4 è presentato lo studio di cellule staminali neurali differenziate per 2, 4 e 7 mesi 

fino a raggiungere lo stadio di network maturi di neuroni. Le cellule sono poi state traferite su 

HD-MEAs. Metriche aggiuntive, rispetto a quelle presentate nel Capitolo 3, sono state 

utilizzate per caratterizzare i tre stati di maturazione (2, 4 e 7 mesi) dal punto di vista del 

network, del singolo neurone e dei compartimenti subcellulari. La caratterizzazione è stata 

completata grazie a ulteriori analisi a mezzo del sequenziamento dell’RNA a singola cellula. 

La tesi si conclude con prospettive future riguardanti l’utilizzo degli HD-MEAs nel campo 

dello screening di farmaci ad elevato contenuto di informazioni. 

  



 11 

ACKNOWLEDGEMENTS 

I would like to thank Prof. Andreas Hierlemann for the opportunity to conduct a PhD in his 

group. But mainly, I would like to thank him for the scientific trust he has placed in all of us 

over the years: he was able to create a great working environment, where everyone is free to 

develop ideas and work independently. I was very happy during my PhD studies here. 

I am deeply grateful to Dr. Michele Fiscella. I was lucky to receive the most selfless support 

from a scientific and personal point of view, in every step of the way. I appreciated all the 

experiments, discussions, lessons, feedbacks. One day, if I will ever mentor somebody, I will 

try to resemble the professional and human role model you were for me.  

I would like to thank Camilla Marchetti, as she cared for me before caring for the project itself 

and her friendship and enthusiasm were fundamental in the period we spent together.  

I would like to thank Claudia Anibaldi, you have been a strong, motivated, sweet and respectful 

student and I hope that our lives here will be full of happy pizza evenings together. 

I would like to thank Julia Boos, my friend and office-mate from day zero to today and for the 

future. I enjoyed all our dinners, our Rory and Lorelai nights, our first Michelin-star restaurant. 

You kept me in the “right path” and you helped me to “stick together” always, for four years, 

as you promised me in Barcelona. Julia and Silvia had a deal, and then the deal became a true 

friendship for life. 

I would like to thank Shayan Ravaynia, my funny, caring, true friend. With you I felt home 

and I am grateful I could find a friend like you. Your energy and joy make you a great person, 

and I am sure that our friendship will always be strong. 

I would like to thank Patrick Misun and Christian Lohasz, for the good time we spent together 

at every KaffeeMittagessenCool breaks and for being amazing and caring colleagues. 

I would like to thank all my friends in Basel, and mostly Arne, Maike, Nicola, Giulio and 

Guglielmo, who contributed making Basel feeling like home.  

I would like to thank all my friends from Italy, for the continuous support that started when we 

were 14 years old and never ended. I miss you every day. 

Lastly, at most importantly, I would like to thank my two families. My parents and my brother 

Francesco, for the daily presence and for their sincere support over my entire life. And my new 

family, Philipp: there hasn’t been a day without your strong support, our laughs, your fantastic 

ideas, our believing in each other or, in other words, happiness. 

 



 12 

This work was supported by the European Community through the European Research Council 

Advanced Grant 694829 “neuroXscales” and the corresponding proof-of-concept Grant 

875609 “HD-Neu-Screen,” the Swiss Project CTI-No. 25933.2 PFLS-LS “Multi-well 

electrophysiology platform for high-throughput cell-based assays”, and through the Swiss 

National Science Foundation under contract 205320_188910/1.  

 

  



 13 

AUTHOR CONTRIBUTIONS 

Dr. Alessio Paolo Buccino 

Chapter 3: Contributed to spike sorting data and to the algorithm to compute the action 

potential propagation velocity. 

Dr. Michele Fiscella 

Chapter 2: Contributed to experimental design, technical support, manuscript revision and 

project supervision. 

Chapter 3: Coordinated and conceived the project, contributed to work design and data 

interpretation and wrote the manuscript.  

Dr. Urs Frey 

Chapter 2: Contributed to experimental design and manuscript revision.  

Prof. Dr. Andreas Hierlemann 

Chapter 2: Contributed to experimental design, project idea, wrote the manuscript and 

supervised the project.  

Chapter 3: Coordinated and conceived the project and contributed to writing the manuscript. 

Chapter 4: Contributed to writing the manuscript. 

Dr. Marian Hruska-Plochan 

Chapter 4: Conceived the project, contributed to experimental design, performed and 

analyzed experiments, wrote the manuscript.  

Dr. Sreedhar Saseendran Kumar 

Chapter 3: Contributed to statistical analysis. 

Camilla Marchetti 

Chapter 2: Performed experiments and data analysis. 

Dr. Jan Müller 

Chapter 2: Contributed to experimental design, technical support, electrical stimulation scripts 

and manuscript revision. 

Gustavo Prack 

Chapter 3: Contributed to perform experiments and to action potential velocity computation.  

Silvia Ronchi 

Chapter 2: Contributed to experimental design, performed experiments and data analysis, wrote 

the manuscript. 

Chapter 3: Contributed to the work design, performed and planned the experiments, analyzed 

and interpreted data, wrote the manuscript. 



 14 

Chapter 4: Performed experiment, data analysis, statistical analysis and wrote the manuscript. 

Dr. Manuel Schröter 

Chapter 3: Contributed to writing the manuscript. 

Dr. Vijay Viswam 

Chapter 2: Contributed to experimental and technical support for the impedance measurements. 

 

  



 
 

1 INTRODUCTION 

1.1 Neuron and electrophysiology  
The nervous system comprises of two broad categories of cells: neurons, which are specialized 

in electrical signal generation and processing, and neuroglia, which serve as support for 

nervous-system development and repair[1]. The neuron morphology features three main 

compartments: dendrites, soma and axon. Dendrites receive and process synaptic inputs from 

other neurons. The soma and the axon initial segment (AIS) are the neuron’s signal integration 

sites. Axons conduct electrical signals to presynaptic terminals. Via chemical synapses the 

signals are then passed on to postsynaptic neurons[2]. The neuron membrane consists of a lipid 

bilayer[2]. The lipid bilayer is impermeable to ion movements. Ions can move across the lipid 

bilayer through ion channels, macromolecular pores made up of protein subunits that filter 

different ion types. Ions may move passively 

across the membrane via non-gated ion 

channels, which allow for ion movement at all 

times. Alternatively, ions can move across the 

membrane through either ligand- and signal-

gated channels (molecule-induced opening) or 

voltage-gated ion channels, which open upon 

electric-potential differences[3]. Due to the 

always open potassium channels (potassium 

ions continuously diffuse down their 

concentration gradient out of the cell and leave 

behind negative uncompensated charges), 

there is a net positive charge in the extracellular 

space and a net negative charge in the cytosol, 

which gives rise to a resting membrane 

potential 𝑉! = 𝑉"# − 𝑉$%& = −70	𝑚𝑉 (Figure 

1). This potential opposes potassium 

diffusional efflux, and a dynamic equilibrium is established. 

Neurons generate electrical signals, through changes in ion densities across the neuron 

membrane. The electrical signal, called action potential (AP), is generated in proximity of the 

cell body, specifically at the AIS, a region of high ion-channel density. During the first AP 

Figure 1. Membrane potential at resting 
conditions. The image, adapted from 
Principles of Neural Science, shows the net 
ion distribution across the neuron membrane. 
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phase (Figure 2), the neuron membrane depolarizes, voltage-gated Na+ channels open, and an 

inward Na+ current results, which in turn causes further membrane depolarization. During the 

further course of depolarization, voltage-gated Na+ channels are gradually inactivated, and 

voltage-gated K+ channels open. The resulting outward K+ current repolarizes the membrane. 

The repolarization phase is, in most cases, followed by a hyperpolarization phase with potential 

values lower than the resting membrane potential. Ion channel inactivation causes a refractory 

period during which no AP can be elicited. Initiated APs propagate unidirectionally along the 

axon[2].  

 
The arrangement of neurons in networks and their information processing characteristics have 

been intensely studied to understand how a human brain may function. Neuroscience seeks to 

understand physiological and pathological features of neurons and the respective networks. 

Electrophysiology studies the generation and propagation of electrical signals that are 

generated by neurons but also other cells like cardiomyocytes. 

The electrophysiology techniques that allow for recording and studying neuronal activity can 

be classified in (i) intracellular recordings (e.g., patch clamp), (ii) extracellular recordings (e.g., 

microelectrode arrays), (iii) optical imaging (e.g., fluorescent indicators) and (iv) methods for 

large-scale recordings (e.g., electroencephalography)[4].  

Patch clamp, the gold standard of intracellular recording techniques, includes a family of 

different approaches and recording scenarios, some of which include puncturing the neuron 

membrane with a glass micropipette, filled with an electrolyte solution. As the micropipette 

electrode is in direct contact with the cytosol, and as there is a reference electrode in the 

Figure 2. Action potential phases. The image shows the 
three phases: depolarization, repolarization and 
hyperpolarization, typical of an AP. The picture was 
adapted from Raghavan et al., 2019.   
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surrounding buffer, it is possible to measure transmembrane potentials, currents mediated by 

ion channels and kinetics of ion channel gating[5]. Subthreshold events, such as excitatory and 

inhibitory postsynaptic potentials can also be recorded. Despite the big advantage of direct 

electrical coupling with the neuron, this technology has limitations concerning the invasive 

nature and associated low recording duration (max. ~2h), as well as low throughput[6], which 

render it  unsuitable for signal-propagation and network-connectivity studies. 

Genetically-encoded voltage indicators (GEVIs) are an optical technology that makes use of 

light-emitting protein sensors to monitor neuron membrane potentials[6–8]. Differently from 

patch clamp, GEVIs can be used to monitor entire neuronal networks, while the temporal 

resolution allows for detection of subthreshold events from dendritic spines and dendrites. 

GEVIs also overcome the time-resolution limitations of calcium imaging, as the membrane 

voltage deflections are faster than the calcium dynamics. However, GEVI application requires 

fluorescent indicators and exposure to intense light as well as extensive spatial and temporal 

averaging to detect associated signals. The resulting photodamage and phototoxic effects limit 

exposure times and observation frequency and intervals[7].  

Microelectrode arrays (MEAs) comprise of small, densely-packed electrodes that record 

changes in extracellular ion concentrations, which result from electrical activity of neurons 

adjacent to the electrodes[4,6]. In contrast to intracellular recordings and optical techniques, 

MEAs offer access to entire neuronal networks over extended time periods (months), as they 

are not invasive. Additionally, high-density MEAs can also record APs of subcellular neuronal 

compartments and enable analysis of AP waveform and AP propagation. 

 

1.2 High-density MEAs for electrical stimulation of neurons 
In-vitro MEAs, first proposed in the 1970s[9–11] as arrangements of a few tens of thin-film metal 

electrodes, have seen rapid technology advances. Passive-transducer devices, silicon-based 

biosensors[12] and linear transistor arrays[13] opened the route for modern CMOS-based 

MEAs[14–20], which feature thousands of electrodes at high spatial density (pitch < 30µm). 

MEAs have been widely used to study the electrical activity of neurons in culture[21–23], brain 

slices[24,25], retina preparations[26] and organoids[27]. MEA technology is bi-directional and can 

be used for monitoring electrical neuronal signals and for manipulation of neurons via electrical 

stimulation[28].  

Electrical stimulation has been extensively used to treat brain diseases[29,30], to study neuronal 

networks[28,31] and to enhance moto-rehabilitation[32,33]. Electrical stimulation initiates a 
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neuronal response by delivering charges via electrodes into the vicinity of neurons that then 

are depolarized[34]. The extracellular ion distribution changes upon application of a potential or 

a current through the stimulation electrode. The electrode-electrolyte interface can be 

schematically modeled as a capacitor (double layer capacitor) in parallel with a resistor 

(potential charge transfer). For example, a negative charge applied to the metal electrode would 

cause a redistribution of ions in the solution[35]. Positive ions would be attracted towards the 

electrode, and negative ions would be repelled. This ion redistribution would cause a change 

in the electrical potential, which - if large enough - could cause a depolarization of the neuron. 

If the electrical potential across the membrane 𝑉! = 𝑉"# − 𝑉$%& reaches values of about -55 

mV due to the ion redistribution, an AP is evoked in the neuron. 

Taking advantage of thousands of electrodes at high spatial density, electrical stimulation 

performed with CMOS-based HD-MEA has reached unprecedented precision. In fact, thanks 

to the electrodes’ small pitch, size and spacing, it is possible to stimulate individual axonal 

compartments[36,37]. However, a major limitation of HD-MEA electrical stimulation is the so-

called stimulation artifact. As the stimulation amplitudes (mV) are three orders of magnitude 

larger than the extracellularly measured AP amplitudes (µV), the recording amplifiers may 

saturate upon stimulation, which may preclude AP readout. Optimization of the stimulation 

circuitry and experimental protocols [38,39] as well as signal post processing[40,41] are some of 

the currently used methodologies to reduce the stimulation artifact[42]. Still, many HD-MEA 

systems are unable to record neuronal responses from or near the stimulation electrode.  

In this thesis, we tested multiple stimulation-signal durations, waveforms, and amplitudes, in 

voltage and current modalities to reduce the stimulation artifact. However, we did not aim at 

recovering the signal on the stimulation electrode itself. Optimizing the stimulation protocols, 

we were able to detect APs on the electrodes neighboring the stimulation electrode. 

 

1.3 High-density MEAs for recording from iPSC-derived neurons 

and phenotyping 
Induced pluripotent stem cells (iPSCs)[43] have revolutionized the field of stem-cell research, 

giving access to a large variety of human-derived cell types. As embryonic stem cells (ESCs), 

iPSC can differentiate into all derivatives of the three germ layers (mesoderm, ectoderm and 

endoderm)[44]. Induced pluripotent stem cells are generated from somatic cells by transient 

over-expression of transcription factors, which allows for developing models for diseases, drug 

screening and stem cell-based therapy. In fact, iPSCs offer the opportunity to integrate 
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genomics landscapes seen in humans that are often difficult to fully recapitulate in animals[45]. 

Additionally, owing to gene-editing techniques, it is possible to induce a disease phenotype by 

knocking out specific genes or to correct mutations that are causative to a disease[46]. 

The research in neurodegenerative diseases has been revolutionized by the advent of iPSCs 

and gene editing technologies. For example, iPSC-derived neurons from patients can be used 

to model neuronal disease degenerations, which would be impossible to study in a living 

patient. Studying neuronal electrophysiological properties is of great importance to understand 

neuronal disease mechanisms. In this context, HD-MEA electrophysiology offers the 

advantage of providing an in-vitro platform to investigate disease progression and phenotype 

over extended time. 

In this thesis, we investigated the electrophysiology of iPSC-derived dopaminergic and motor 

neuronal lines and the corresponding isogenic lines modelling amyotrophic lateral sclerosis 

and Parkinson’s disease. A set of network, single-cell and subcellular-resolution metrics were 

used to characterize and differentiate the cell lines. The high spatiotemporal resolution of 

CMOS-based HD-MEAs, enabled to establish new metrics, such as AP-propagation velocity, 

to characterize healthy and diseased lines. AP propagation velocity is difficult to extract using 

other electrophysiology techniques. 

 

1.4 Scope and structure of the thesis 
The focus of this thesis is on showing how the high-resolution of HD-MEAs opens a route to 

unprecedented extracellular-electrophysiology applications and readouts. First, we exploited 

the HD-MEA spatial resolution to perform precise single-cell stimulation. We optimized the 

stimulation parameters to minimize the stimulation artifact and to maximize the readout signal. 

Then, we used HD-MEAs to characterize the phenotypes of healthy and diseased iPSC-derived 

neuronal cell lines, exploring single-neuron and network metrics. Last, we describe an outlook 

to an application in the field of iPSC-derived neuron maturation, which relies on comparing 

the results of electrophysiology readouts and single-cell sequencing. 

The thesis includes two publications (1, 2) and an extract of an article in preparation in 

collaboration with the Polymenidou group of University of Zurich (3): 

 

1. Ronchi, S., Fiscella, M., Marchetti, C., Viswam, V., Müller, J., Frey, U., & Hierlemann, 

A. (2019). Single-cell electrical stimulation using CMOS-based high-density 

microelectrode arrays. Frontiers in Neuroscience, 13, 208. 
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2. Ronchi, S., Buccino, A. P., Prack, G., Kumar, S. S., Schröter, M., Fiscella, M., & 

Hierlemann, A. (2021). Electrophysiological phenotype characterization of human 

iPSC‐derived neuronal cell lines by means of high‐density microelectrode 

arrays. Advanced Biology, 2000223. 

 
3. TDP-43 proteinopathy in human neural networks explored at the single-cell level, 

in preparation. 
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1.5 Summary of major results 
Optimized single-cell-resolution stimulation 

Different stimulation waveforms, durations and 

amplitudes were tested in voltage and current modes. 

Upon optimization of the stimulation parameters, 

individual-neuron stimulation was achieved and 

confirmed by combining high-density electrical 

recordings of single-neuron APs with 

immunostaining and confocal microscopy. Efficient 

stimulation amplitudes of few picoCoulombs of 

charge and the possibility of targeting the AIS helped 

to improve single-cell stimulation. 

 

 

 

 

Electrical stimulation and dependence on maturation 

We studied the correlation of the axon 

initial segment maturation with the 

neuron stimulability during cell 

development. Identified isolated 

neurons were followed optically and 

electrophysiologically over several 

days by combining live-staining, 

confocal microscopy and HD-MEA 

readouts. Results showed a decrease in 

stimulation amplitudes, needed to 

evoke APs, which was correlated to 

AIS growth. 
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Phenotypic characterization of healthy and diseased human iPSC-derived neuronal cell 

lines 

We studied electrophysiological properties and functional 

phenotypes of human iPSC-derived neuronal lines (motor 

neurons and dopaminergic neurons) and related disease-

model lines (amyotrophic lateral sclerosis and 

Parkinson’s disease). We recorded from hundreds of 

neurons simultaneously. Single-neuron metrics (e.g., 

spike rate, AP amplitude, AP velocity) and network 

metrics (e.g., burst rate) were analyzed and compared. 

Results showed significant differences between the 

respective cell lines for many of the analyzed metrics. 

HD-MEA technology was demonstrated to hold great 

potential for studying disease mechanisms and 

performing functional characterization. 

 

 

Characterization of drug effects at high resolution 

Retigabine, a potassium channel 

opener, is known to decrease neural 

activity. Here, electrophysiology 

metrics were analyzed to evaluate 

compound effects. The percentage of 

active electrodes, the number of spikes 

per minute, or the inter-burst intervals 

were significantly altered upon 

administration of different retigabine 

doses. The large number and high 

spatial density of electrodes, and the possibility to select the location of the 1’024 

simultaneously recorded electrodes entailed higher reliability and precision in monitoring 

retigabine effects. 
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Effects of differentiation time and maturation of neural stem cells on their 

electrophysiological properties 

Neural stem cells, differentiated during 2, 4 and 

7 months and cultured into mature neuronal 

networks, were plated on the HD-MEAs and 

recorded from simultaneously. 15 network, 

single-cell and subcellular-resolution metrics 

were used to successfully discriminate the 

different maturation times. Differences in the 

electrophysiological characteristics were then 

compared with results from single-cell RNA 

sequencing. 
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2.1 Abstract 
Non-invasive electrical stimulation can be used to study and control neural activity in the brain 

or to alleviate somatosensory dysfunctions. One intriguing prospect is to precisely stimulate 

individual targeted neurons. Here, we investigated single-neuron current and  

voltage stimulation in vitro using high-density microelectrode arrays featuring 26’400 

bidirectional electrodes at a pitch of 17.5 µm and an electrode area of 5 × 9 µm². We determined 

optimal waveforms, amplitudes and durations for both stimulation modes. Owing to the high 

spatial resolution of our arrays and the close proximity of the electrodes to the respective 

neurons, we were able to stimulate the axon initial segments (AIS) with charges of less than 2 

picoCoulombs. This resulted in minimal artifact production and reliable readout of stimulation 

efficiency directly at the soma of the stimulated cell. Stimulation signals as low as 70 mV or 

100 nA,with pulse durations as short as 18 µs, yielded measurable action potential initiation 

and propagation. We found that the required stimulation signal amplitudes decreased with cell 

growth and development and that stimulation efficiency did not improve at higher electric 

fields generated by simultaneous multi-electrode stimulation. 

 

2.2 Introduction 
Electrical stimulation[1,2] is a consolidated technique that has been widely used to study 

neuronal networks[3,4], to treat brain diseases[5,6] and somatosensory dysfunctions[7–13], and to 

enhance moto-rehabilitation[14,15]. Electrical stimulation was combined with prosthetic 

implants in a variety of in vivo applications[16,17]. For example, epiretinal implants feature 

electrodes that deliver an electric signal to neurons located in the retina, in close proximity to 

the optic nerve. The purpose of eye implants is to artificially substitute non-functional retina 

layers that fail to transduce light into electrical signals for the brain[7–11]. Electrical stimulation 

is employed as well in cochlear implants, where electrodes are used for hearing restoration by 

stimulating specific cochlear areas depending on sound frequency[12,13,18]. Neural stimulation 

has been used in the field of prosthesis embodiment for paralyzed patients to restore sensations 

in upper and lower limbs[14,15]. Furthermore, deep brain electrical stimulation of the 

subthalamic nucleus is used in Parkinson’s treatment[5,6] to reliably suppress and control the 

patients’ tremor.  

Although a large variety of electrical stimulation-based prostheses exists, a major limitation of 

these devices is their low spatial resolution in delivering stimulation signals and the difficulty 

to locally constrain the electrical field to attain accurate and precise stimulation of preferably 
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individual single cells. Indeed, blurred images, low sound resolution, inaccurate proprioceptive 

sensations, and adverse neurocognitive effects may be the results of imprecise electrical 

stimulation. The described shortcomings motivated us to explore stimulation parameters and 

regimes and to develop methods for accurate and precise charge injection. In vitro technologies 

enable to explore a large set of parameters to electrically stimulate neurons in cultures and 3D 

tissues or slices. Results and findings of in vitro studies of electrical stimulation can potentially 

be translated and optimized for in vivo applications (e.g., epiretinal implants and cochlear 

implants).  

In vitro high-density microelectrode arrays (HD-MEAs) facilitate electrical-signal readout and 

stimulation of multiple neurons simultaneously at high-spatiotemporal resolution[19]. 

Traditional microelectrode arrays have been used since 1970s[20] for extracellular 

electrophysiology. Several studies have been carried out to investigate electrical stimulation 

parameters in neuronal cultures with the aim to find the most efficient way to elicit neuronal 

responses[9,21,22]. Although the principles of electrical stimulation have been established, the 

large electrode size and pitch did not allow to perform stimulation at subcellular resolution and 

to demonstrate reliable single-neuron targeting.  

The introduction of HD-MEAs in complementary-metal-oxide-semiconductor (CMOS) 

technology for in vitro applications[23–29] enabled to obtain high spatial resolution and a large 

overall sensing area. Hundreds of researchers worldwide at universities, research institutes and 

pharmaceutical industry are currently using different CMOS-based HD-MEAs for their studies. 

CMOS-based HD-MEAs are also commercially available from several suppliers, including 

Multichannel Systems (Germany), 3Brain (Switzerland) or MaxWell Biosystems 

(Switzerland). With the advent of neurons derived from human induced pluripotent stem cells 

(hiPSCs), the interest in HD-MEAs is rapidly growing, as such devices are suitable to assess 

hiPSC functionality of healthy and disease phenotypes. In this study, we used a 26’400-

electrode CMOS chip[23], with a sensing area of 3.85 × 2.10 mm², an electrode pitch of 17.5 

µm and an electrode size of 5 × 9 µm2, which provided subcellular resolution for readout and 

stimulation. The device enabled targeting of the axon initial segment (AIS) for stimulation, 

which was demonstrated to ensure efficient and accurate stimulation[30,31], and the device 

enabled signal readout upon stimulation in direct proximity to the cell soma of the very same 

cell.  

An important issue with electrical stimulation through microelectrodes in densely packed 

arrays is the so-called “stimulation artifact”, which is characterized by saturation of the 

recording amplifiers that are connected to the stimulation electrode itself and the surrounding 
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electrodes during hundreds of µs or longer. This saturation is a consequence of the large 

stimulation signal amplitudes, ~50-100 mV, while the readout amplifiers feature microVolt 

sensitivity. Different from other approaches[32], we did not aim at recovering the signal on the 

stimulation electrode itself, as the large density of electrodes, present in our array, allows for 

recording from different electrodes, still spanning under the same neuron of interest. Moreover, 

we did not use any strategy to suppress artifacts in this study, as our interest was to compare 

the different stimulation strategies and parameters also with respect to artifact generation. 

Electrodes at a distance of only 17.5 µm from the stimulation electrode were already available 

for readout in all cases, partially due to the comparably low stimulation-signal amplitudes that 

we could afford owing to accurate targeting of the stimulation-sensitive AIS[30]. The artifact 

depends on the stimulation signal amplitude, the applied waveform, and its duration. Therefore 

it is crucial to identify the stimulation signal that produces the lowest artifact while still reliably 

inducing an action potential (AP).  

This study was targeted at finding optimal stimulation modalities, i.e., to achieve the most 

efficient stimulation of neurons with our HD-MEAs at minimal artifacts, by comparing 

different stimulation waveforms, amplitudes and durations, both in voltage and current mode. 

We used biphasic and monophasic rectangular waveforms for stimulation in voltage mode[22], 

and charge-balanced biphasic and triphasic rectangular waveforms for stimulation in current 

mode[9,22,32]. We compared the efficacy of the voltage and current stimulation regimes, 

characterized the influence of the electrode impedance, and measured stimulability during 

cell growth and development in culture. Finally, we simulated and tested different multi-

electrode configurations and compared the obtained results.  

 

2.3 Materials and Methods 

2.3.1 Animal use 
All experimental protocols were approved by the Basel Stadt veterinary office according to 

Swiss federal laws on animal welfare and were carried out in accordance with the approved 

guidelines. 

 

2.3.2 High-density microelectrode arrays 
A CMOS-based HD-MEA[23] was used for in vitro stimulation and recording. The device 

features 26’400 Pt electrodes (each 5 × 9 µm² at a pitch of 17.5 µm) occupying a sensing area 

of 3.85 × 2.10 mm². The HD-MEA system includes 1’024 configurable readout channels that 
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can be used to record simultaneously. The readout-channel noise is 2.4 µVrms in the band 

between 300 Hz and 10 kHz and 5.4 µVrms in the band between 1 Hz and 300 Hz. The readout 

channels’ gain is programmable up to 78 dB, depending on the application. Additionally, the 

device features 32 stimulation units that can be used in both, current or voltage mode. The 

sampling frequency is 20 kSamples/s, and the overall power consumption is 75 mW. Gold 

bond wires connect the chips to printed circuit boards (PCBs) and are protected from saline 

solutions (e.g., culture medium) using epoxy (Epo-Tek 353ND, 35ND-T, Epoxy Technology 

Inc., Billerica, MA, USA). The electrodes were coated with Pt-black, the chips were then 

sterilized for 40 min in 70% ethanol and rinsed 3 times with deionized (DI) water before every 

cell plating. 

 

2.3.3 Platinum black deposition 
A porous Pt-black layer was deposited on the electrodes to increase the surface area and 

decrease the electrode impedance, which improves the signal-to-noise ratio (SNR) of recorded 

signals. A 2 mL solution of chloroplatinic acid hexahydrate (7 mM, Sigma Aldrich, Saint 

Louis, MO, USA) and lead acetate (0.3 mM, Honeywell, Morris Plains, NJ, USA) in DI water 

was pipetted onto the exposed region of the HD-MEA chip. A Pt reference electrode was 

immersed in the solution and current of 550 µA was applied to the array electrodes for 1.30 

min. 

 

2.3.4 Cell cultures 
Prior to culturing cells, the HD-MEA electrode area was treated with 20 µL of 0.05% (v/v) 

poly(ethyleneimine) (Sigma Aldrich) in borate buffer (Thermo Fisher Scientific, Waltham, 

MA, USA) at 8.5 pH, for 40 min at room temperature. This step improves cell adhesion and 

makes the substrate more hydrophilic. We rinsed the chips three times with DI water. Next, we 

added 8 µL of 0.02 mg ml−1 laminin (Sigma Aldrich) in Neurobasal medium (Gibco, Thermo 

Fisher Scientific) to support the growth and differentiation of the cells. The chips were 

incubated with laminin for 30 minutes at 37 °C. During this time, we dissociated cortices of 

Wistar rats at embryonic day 18 in trypsin with 0.25% EDTA (Gibco). After 20 minutes of 

digestion, the cortices were washed twice with plating medium, then triturated, and the cells 

were counted. We counted with a hemocytometer by diluting the cells in 0.4% Trypan blue 

stain solution (Gibco). We then seeded between 15’000 to 25’000 cells over an active area of 

approx. 8 mm2. The chips were afterwards incubated at 37 °C for 30 min before adding 1.5 mL 
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of plating medium. The plating medium consisted of 450 mL Neurobasal (Invitrogen, Carlsbad, 

CA, USA), 50 mL horse serum (HyClone, Thermo Fisher Scientific), 1.25 mL Glutamax 

(Invitrogen), and 10 mL B-27 (Invitrogen). After 76 h, we changed 50% of the plating medium 

to growth medium, which consisted of 450 mL D-MEM (Invitrogen), 50 mL Horse Serum 

(HyClone), 1.25 mL Glutamax (Invitrogen) and 5 mL sodium pyruvate (Invitrogen). The 

procedure was repeated twice a week. The chips were kept inside an incubator at 37 °C and 

5% CO2. Every chip was equipped with a lid, and additional DI water in a 35-mm-Ø petri-dish 

was added to prevent evaporation. All the experiments were conducted between days in vitro 

(DIVs) 10 and 30. 

 

2.3.5 Microscopy and stainings 
We used NeuroFluor NeuO (Stemcell Technologies, Vancouver, Canada) live staining to 

locate neurons on the array before the stimulation experiments. The cells were incubated for 1 

h at 37 °C with 2 mL growth medium containing 0.15% NeuO. The chips were then washed 2 

times with growth medium.  

We also performed neuron fixation after stimulation experiments by using 4% 

paraformaldehyde (Life Technologies, Thermo Fisher Scientific). Sample permeabilization 

and blocking of non-specific antibody binding were done using a PBS 1X solution containing: 

10% normal donkey serum (NDS) (Sigma Aldrich), 1% bovine serum albumin (BSA) (Sigma 

Aldrich), 0.02% Na-Az (Sigma Aldrich), 0.5% Triton X (Sigma Aldrich). Primary and 

secondary antibodies were diluted in a PBS 1X solution containing: 3% normal donkey serum 

(NDS), 1% bovine serum albumin (BSA), 0.02% Na-Az, 0.5% Triton X. We used antibodies 

against MAP2 (Abcam, Cambridge, UK), Ankyrin G (Santa Cruz Biotechnology, Dallas, TX, 

USA), and the fluorescent dye Hoechst (Invitrogen) to stain neurons, axonal initial segments 

(AIS), and nuclei. We imaged cells on the HD-MEA chip with a Nikon NiE upright confocal 

microscope, with a Yokogawa W1 spinning disk scan head, 6 laser lines and a fluorescence 

recovery after photobleaching (FRAP) unit.  

 

2.3.6 Stimulation and data analysis 
Electrical stimulation was controlled via an on-chip digital analog converter (DAC) and 

software programmable through a Python application programming interface (API).  

We used both, voltage and current stimulation modalities. In both, a charge is applied to the 

stimulation electrode. Ideally, only charge redistribution in the double-layer capacitor, formed 
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at the electrode/electrolyte interface, occurs and charge transfer and redox reactions involving 

electron transfer at the electrode surface (Faradaic processes) are avoided. Using current 

stimulation, the charge can directly be controlled, while the voltage may assume large values 

depending on the specific current path. High electrode voltages may produce unwanted 

electrochemistry (Faradaic processes), tissue damage, or electrode degradation. In the case of 

voltage stimulation, one can control the voltage, while the injected current depends on the 

electrode impedance (Figure S1), which may vary considerably due to fabrication variation or 

aging. Precisely controlling the applied voltage helps to prevent electrolysis, which may occur 

outside the water window and may damage the electrodes or cause cell death.  

We used a randomized voltage stimulation protocol including four different waveforms: 

biphasic cathodic-anodic, biphasic anodic-cathodic, monophasic anodic, monophasic cathodic, 

see also Figure 2A[22]. The protocol included four durations of 50, 100, 150 and 200 µs per 

phase and six stimulation signal amplitudes (40, 80, 120, 160, 200 and 240 mV peak-to-peak). 

For current stimulation, we applied a randomized protocol of two waveforms, biphasic anodic-

cathodic and triphasic anodic-cathodic-anodic, both charge balanced[9], five durations of 10, 

15, 18, 20 and 50 µs per phase, and eight stimulation signal amplitudes (42, 63, 84, 105, 126, 

147, 168 and 189 nA). Every individually shaped stimulation pulse of both modalities was 

repeated 30 times during the entire protocol in a randomized way in order not to evoke neuronal 

plasticity processes. The stimulation frequency was 1 Hz for both modalities, as stimulation in 

the frequency band between 0.2 and 1 Hz was reported not to entail significant changes in the 

AIS position[33]. We selected 1 Hz, the upper bound, to limit overall time needed for the 

stimulation experiments. 

A custom-made software was used to visualize and record the extracellular signals from the 

electrodes. The extracellular action potential (EAP) spatial distribution or “electrical footprint” 

of a neuron, which is the voltage-signal distribution over the multiple electrodes, was 

reconstructed using spike sorting algorithms (UltraMegaSort, [34]). The software identifies the 

spikes with a threshold of 4.5 times the standard deviation of the noise. Using this software, 

we then could identify and select the stimulation electrodes based on the EAP amplitudes. 

The collected data was analyzed in MATLAB. To verify the presence of an evoked APs, we 

set a threshold of four times the standard deviation of the noise, together with a temporal 

window of 1.5 ms. An automatic script registered the EAPs for the 30 repetitions of every sent 

waveform, and rendered a visual record that could be inspected to verify the counting. Cases 

where the artifact partially covered the EAPs were classified as “missing EAP” during 
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automatic registration. In these cases, we applied visual inspection and manual correction as 

appropriate. 

 

2.3.7 Impedance characterization 
To characterize electrode impedances, we applied a readout gain of 2 and 20 repetitions of a 

biphasic anodic-cathodic current stimulation pulse with a duration of 1 ms per phase and an 

amplitude of 140 nA to bright Pt electrodes and with a duration of 2.5 ms per phase and an 

amplitude of 560 nA to Pt-black electrodes. Such low gain in the readout channels avoided DC 

voltage saturation of the stimulation channel. The lower waveform durations and amplitudes 

avoided channel saturation in case of bright Pt, because of the higher impedance. 

To determine the electrode impedance, we fitted the voltage readout on the stimulation 

electrode with equations derived from the Gouy-Chapman-Stern model of an electrode[35] 

(Figure S2). We added a constant equivalent input impedance 𝑍"# for the recording channel 

input impedance in parallel to the electrode equivalent circuit. The electrode equivalent circuit 

had two unknown values, the charge transfer resistance, Rct, and the double layer capacitance, 

Cdl. These values were computed by fitting the obtained experimental data in MATLAB using 

the following equation: 

𝑉(𝑡) =
𝐼'&"!𝑅(& .1 − 𝑒

) &
*!"+#$1

1 + 𝑅(&𝑍"#
.1 − 𝑒)

&
*!"+#$1

	 (1) 

In this equation V is the readout voltage and 𝐼'&"! the applied stimulation current. We defined 

initial values for Cdl and Rct by referring to values reported in literature[35–40].  

To confirm the simulation results with a larger number of electrodes, we applied a sine-wave 

voltage stimulation on the reference electrode surrounding the array and recorded the 

corresponding signals through electrode sets of the array. The sine wave had a frequency of 1 

kHz and an amplitude of 50 mVpp (peak-to-peak). The recording channels and circuits are 

characterized by a finite and constant input impedance, which should ideally be high for neural 

applications and higher than the electrode impedance to ensure signal integrity [19]. We 

compared the obtained electrode impedances with the input impedances of the recording 

channels for the whole array to characterize impedance homogeneity across the array. We also 

performed impedance measurements on three stimulation electrodes in PBS, before and after 

conducting a full set of stimulation experiments in current and voltage mode. After the 
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experiment, the impedance varied in average by 0.07 nF (~ 5% of the average electrode 

impedance value for Pt black). 

 

2.3.8 COMSOL simulations 
We simulated the stimulation pulse extension across the array of the used multi-electrode 

configurations in COMSOL Multiphysics 5.3a. The model includes 4 main components 

(libraries): geometry, materials, electric currents, and mesh. For the geometry, we used a 

configuration of 36 planar electrodes, with a 5 × 9 µm² surface area for each electrode and a 

pitch of 17.5 µm, which is consistent with the HD-MEA electrode characteristics. An external 

block of 500 × 500 × 100 µm³ was added as the electrolyte solution. Four reference electrodes 

(dimensions of 5 × 245 µm²) were placed around the electrode array. The electrodes were 

simulated assuming platinum as electrode material, while the electrolyte solution was a saline 

solution with an electrical conductivity of 0.7 Sm-1. For the electrical characterization, we 

simulated voltage stimulations. We used a biphasic anodic-cathodic waveform with an 

amplitude of 100 mV and a duration of 100 µs per phase. The electric-current library was used 

to simulate the voltage and electric field distributions upon voltage stimulation. 

 

2.3.9 Multi-electrode stimulation 
To implement multi-electrode stimulations in voltage mode, we used a custom-made Python 

script to control two DACs to stimulate two electrodes at the same time. In a first configuration, 

we applied a biphasic waveform on one electrode and the same waveform but with opposite 

sign on a neighboring electrode. This configuration limited the charge flow across the array, 

which decreased the artifact extension and spreading. In a second configuration, we applied a 

biphasic waveform to one electrode and connected the neighboring electrode to ground with 

the intention to limit the electric field and artifact extension. External reference electrodes 

remained always connected. 

 

2.3.10 Availability of materials 
Adapted MATLAB scripts and COMSOL model scripts, used for the analysis of the data in 

Figs. 2, 3, 4, 5 and 6 are available at the following repository: [link]. Moreover, we can provide 

raw data sets (total of 10 TB) at reasonable request. 
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2.4 Results 

2.4.1 Artifacts of current and voltage stimulation 
A major limitation of any electrical stimulation is the resulting artifact, which obscures the 

EAP readout likewise in current and voltage modes. To compare artifacts generated during 

voltage and current stimulation of cortical neurons, we plated ~ 15,000 cortical neurons on the 

array and labeled them neurons with NeuroFluor NeuO live-staining (Figure 1A) to identify 

individual neurons. We determined the most suitable electrode and the smallest stimulation 

signal amplitude that could evoke EAPs with 90% success rate over 30 repetitions. We used 

biphasic waveforms in both modalities and compared cases with similar artifact shapes. The 

duration was set to 100 and 20 µs per phase for voltage and current stimulation, respectively. 

The different durations were a consequence of the high efficiency of the stimulation buffers in 

current mode, which showed a reliable charge injection for durations longer than 18 µs (Figures 

S3, S4). In current mode, the stimulation buffers could deliver a sharp charge injection 

regardless of the electrode impedance. In voltage mode, however, the shortest efficient pulse 

duration was found to be > 50 µs (Paragraph 2.4.2, Figure S4), due to the different stimulation 

buffers’ design[23].  

Since the artifact duration is governed primarily by the stimulation pulse duration, shorter 

current pulses produced shorter, more easily detectable and distinguishable AP artifacts than 

the voltage pulses. This is shown in Figures 1B and C. For the latter, not only were the nearby 

extracellular APs obscured, but the artifact amplitudes were also significantly larger. In voltage 

mode, the evoked EAPs were shifted with respect to the baseline, in comparison to spontaneous 

EAP activity, so that they could not always be easily detected by using a negative amplitude 

threshold (four times the standard deviation of the noise) for spike detection. Only the neurons 

producing high-amplitude EAPs could be detected by using a negative voltage threshold while 

the other neurons were not used for analysis. 

Owing to the high-density electrodes, the short current stimulation pulse enabled a signal 

readout and determination of stimulation success already on the next neighboring electrode, 

17.5 µm away from the stimulation site (Figures 1B-1C, center and right). Upon stimulating 

axonal compartments, like the AIS, it was possible to measure signals at the corresponding cell 

soma of the same neuron, which enabled to unambiguously determine stimulation success. 
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Figure 1. (A) (from left to right) PCB-mounted HD-MEA chip, photomicrograph of the chip, 
and enlargement of a subsection of the array including about 100 electrodes with live-stained 
neurons highlighted in green. The stimulation electrode used in B is highlighted in red. The 
picture was taken using an immersion 60X-magnification lens at the periphery of the array, 
where the cell density is lower. (B) Illustration of the neuron, labeled in A, and corresponding 
electrode locations, with superimposed measured signals. (Left) Spontaneous EAPs obtained 
after spike sorting. (Center) EAPs after current stimulation of the selected neuron. (Right) 
EAPs after voltage stimulation. Current stimulation entailed a biphasic anodic-cathodic 
waveform of 20 µs per phase. Voltage stimulation entailed a biphasic anodic-cathodic 
waveform of 100 µs per phase. The smallest stimulation signal amplitudes that still evoked 
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APs 27 times during 30 repetitions (90% efficiency) were used. (C) Signals from three of the 
readout electrodes in A and B (numbered boxes). (Left) Extracellular signals recorded during 
spontaneous neuronal activity composed of  >100 detected EAPs. (Center and right) 
Extracellular signals recorded from the same electrodes during 30 repetitions of current and 
voltage stimulation. 
 

2.4.2 Effect of durations, amplitudes and waveforms, in voltage and current 

stimulation modes 
Although we noticed that the HD-MEA produced smaller artifacts in current mode, we wanted 

to study the relevant parameters to efficiently evoke APs in both, current and voltage modes. 

Current stimulation is preferred and used for many in vivo applications[15], due to the fact that 

the injected charge can be determined independently of the impedance. However, voltage 

stimulation offers the advantage to precisely control the voltage and avoid electrode or 

cell/tissue damage as a consequence of electrolysis (for a more detailed discussion see Section 

2.3.6). In line with previous electrical-stimulation studies in vitro (Wagenaar, Pine, and Potter 

2004; Grosberg et al. 2017; Hottowy et al. 2012), we investigated different parameters for both, 

current and voltage modes. Our strategy was to efficiently stimulate neurons in the region of 

the AIS and to then read out the corresponding evoked action potentials at the cell soma and 

several other locations, which was possible due to the availability of a large number of 

electrodes at high density, the small signal amplitudes needed to stimulate at the AIS, and the 

possibility to deliver short and efficient stimulation pulses (≥ 18 µs). For voltage stimulation, 

we used biphasic cathodic-anodic, biphasic anodic-cathodic, monophasic anodic and 

monophasic cathodic waveforms. The stimulation protocol included four durations for every 

waveform and six amplitudes in a randomized sequence (40, 80, 120, 160, 200 and 240 mV 

peak to peak). Neurons were stimulated between DIV 10 and 30. Stimulation electrodes were 

selected after identifying the spatial distribution or electrical footprint of extracellular EAPs of 

individual neurons.  Electrodes recording the highest amplitudes of single-neuron action 

potentials were selected as stimulation electrodes, as they were presumably located under the 

neuronal compartments that are most sensitive to stimulation[30,31]. The compartment producing 

the largest-amplitude extracellular action potentials and being most sensitive to stimulation has 

been recently identified as the AIS (Radivojevic et al. 2016; Bakkum et al. 2018). The results 

are displayed in Figure 2A: The stimulation results of two different neurons upon applying four 

stimulation voltage waveforms with different amplitudes and waveform durations are shown. 

The monophasic cathodic waveform was found to be the most efficient waveform in evoking 

APs in the voltage mode, followed by the biphasic anodic-cathodic waveform. The monophasic 
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anodic and the biphasic cathodic-anodic waveform featured lower efficiency. Another result 

we observed is that a phase duration of 50 µs was not sufficient to reliably evoke APs, whereas 

there was no major difference for phase durations longer than 100 µs. In Figure 2B, recorded 

voltage waveforms and close-ups of successful (AP was elicited, black) and unsuccessful (no 

AP, green) stimulations are shown to demonstrate how EAPs look like in the presence of 

stimulation artifacts. To consolidate the stimulation results in 2A, we repeated the randomized 

protocols with 16 additional neurons (Figure 2C). We determined the peak-to-peak voltage 

(Vpp), which was needed to evoke APs in 90% of the stimulations over 30 repetitions for those 

cells. Two phase durations, 50 µs (gray) and 100 µs (green), were used and compared. At the 

top of the graph, the percentages of failure in evoking APs, while using the 4 waveforms up to 

a maximum amplitude of 240 mV are given for the 2 different durations. The obtained results 

confirmed the aforementioned low efficacy of 50 µs phase duration. For using a phase duration 

of 50 µs, one should, for a successful stimulation, deliver the same charge as for using 100 µs, 

but the settling time of the stimulation buffers and the electrode impedance imposed limits on 

the stimulation efficacy with such short phase durations (see Figure S4).  

To confirm that the selected neurons were effectively stimulated, we superimposed the 

“electrical footprints” of spontaneous activity after spike sorting (using UltraMegaSort) with 

the spatial distribution of stimulation-evoked extracellular action potentials. The spontaneous 

activity was recorded using a high-density block of electrodes in the region of interest during 

at least one minute (> 100 EAP). The superposition shows a spatial and temporal match of 

spontaneous and stimulation-triggered EAPs. However, the amplitudes of the superimposed 

EAPs are not so easy to compare as a consequence of the stimulation artifact (Figure 2D). A 

clear identification of the neuron could be performed by using its electrical “footprint”, the 

spatial distribution of extracellular APs in conjunction with upright confocal microscopy.  

Using these features and methods, we could prove that, indeed, the neuron of interest was 

stimulated in its perisomatic region as EAP readout of the very same neuron was possible, e.g., 

in an axonal branch nearby. Stimulation was very selective, and individual neurons could be 

stimulated without eliciting EAPs in neighboring neurons. 

After execution of the electrical stimulation protocols, selected neurons were stained for 

correlating neuron morphologies with their EAP spatial distribution, recorded through the 

electrodes. In particular, we investigated which neuronal compartment was closest to the 

stimulation electrode. We observed that the most efficient stimulation electrode was located in 

close proximity to the AIS (green AnkyrinG staining), confirming previous reports[30,31] (Figure 

2E).  
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Figure 2. (A) Results from voltage stimulation of two neurons. At the top, the four different 
waveforms that were used are displayed. The figure shows that lower voltage amplitudes are 
sufficient to evoke APs when using monophasic cathodic and biphasic anodic-cathodic 
waveforms. A phase duration of 50 µs was less efficient than phase durations of 100, 150 and 
200 µs. We applied 30 repetitions for every waveform, duration and amplitude in a randomized 
manner. (B) Recorded voltage signals including stimulation artifact for successful and non-
successful voltage stimulations are displayed for the four stimulation waveforms in A. No 
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measures were taken to suppress the artifact. The close-ups show the region, in which the 
neuron’s response eventually occurred. The voltage signal (artifact only) recorded during/after 
a stimulation that did not evoke an AP is displayed in green, voltage signals (artifact plus 
superimposed neuronal response) recorded during a successful stimulation are displayed in 
black. (C) Voltage stimulation results of 16 neurons. The points represent the smallest voltages 
(Vpp) that evoked APs in 90% of the stimulations during 30 repetitions; the signal duration 
was 100 µs per phase (green dots) or 50 µs per phase (gray dots). At the top, the percentages 
of failure in evoking APs upon using the 4 waveforms with amplitudes of up to 240 mV are 
given for the 2 different durations. (D) Overlay of the spike-sorted spontaneous activity of a 
neuron (green) and its response (grey) upon voltage stimulation through the electrode marked 
with a black star (*). (E) Neuron stainings; nuclei were stained in blue (Hoechst), neuronal 
structures in red, (anti-MAP2) and the AIS in green (Ankyrin G). The stimulation electrode is 
indicated with a rectangle (white). In the right picture, the electrode array is visible below the 
stimulated neurons. Scale bar: 35 µm. 
 

In a second set of experiments, we used similar protocols for the current stimulation mode, 

where we investigated the effect of two different waveforms, namely biphasic anodic-cathodic, 

and triphasic anodic-cathodic-anodic (amplitude ratio 2:3:1). We used five phase durations and 

eight signal amplitudes in a randomized sequence (42, 63, 84, 105, 126, 147, 168 and 189 nA). 

Monophasic waveforms were not used to not compromise charge balancing. The results of two 

different stimulated neurons in Figure 3A show that the two waveforms provide similar 

efficiency in stimulating the targeted neurons for different phase durations and amplitudes. In 

Figure 3B, recorded voltage waveforms and close-ups of successful (AP was elicited, black) 

and unsuccessful (no AP, red) stimulations are shown to demonstrate how EAPs look like in 

the presence of stimulation artifacts. The results can be compared with panel 2B, showing the 

signals for the voltage stimulation mode. For the voltage stimulation mode, the AP always is 

superimposed on the artifact, whereas, in current mode, the evoked EAP is temporally more 

clearly separated from the artifact and much easier to detect. This better detectability is, to 

some extent, a consequence of the shorter duration of the stimulation signal in the current mode. 

To consolidate the stimulation results, we repeated the same randomized protocol with 20 

additional neurons with a phase duration of 20 µs. Several HD-MEAs were used in parallel to 

speed up experiments. The obtained results are shown in Figure 3C. All current stimulation 

events delivering charges of up to 3 pC were successful. 

As in the case of voltage stimulation, an overlay of the spatial distribution of spontaneous-

activity EAP signals and the current stimulation-induced EAP was used to confirm the identity 

and successful stimulation of the targeted neurons. Spontaneous and stimulated EAPs match 

temporally, spatially and amplitude-wise (Figure 3D). Additionally, readout electrodes very 

close to the stimulation electrode also provided clearly detectable signals. The result in Figure 
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3D can be compared to Figure 2D for voltage mode, where an amplitude comparison was not 

possible as a consequence of the large artifact. 

 
Figure 3. (A) Results from current stimulation of two neurons. At the top, the two waveforms 
that were used are displayed. The efficacy in evoking APs is almost the same for both 
waveforms. 30 repetitions were used for every waveform, phase duration and stimulation signal 
amplitude in a randomized manner. (B) Recorded voltage signals including stimulation 
artifacts for successful and non-successful current stimulations are displayed for the two 
stimulation waveforms in A. No measures were taken to suppress the artifact. The close-ups 
show the region, in which the neuron’s response eventually occurred. The voltage signal 
(artifact only) recorded during/after a stimulation that did not evoke an AP is displayed in red, 
voltage signals (artifact plus superimposed neuronal response), recorded during a successful 
stimulation, are displayed in black.  (C) The current stimulation results of 20 neurons are 
displayed. The points represent the smallest charges that evoked APs in 90% of the stimulations 
during 30 repetitions; the signal duration was 20 µs per phase. (D) Overlay of the spike-sorted 
spontaneous activity of a neuron (red) and its response (grey) upon current stimulation through 
the electrode marked with a black star (*).   
 

To summarize, the most efficient stimulation in voltage mode can be achieved by using 

monophasic cathodic and biphasic anodic-cathodic waveforms with a duration of 100 µs per 
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phase. In current mode, biphasic and triphasic waveforms show the same efficacy, but the 

biphasic waveform is shorter than the triphasic waveform, which facilitates EAP readout. 

Durations of 18-20 µs per phase have proven to be efficient (Figure S3). Additionally, we 

noticed that artifact amplitudes are larger for monophasic voltage stimulation and biphasic 

current stimulation waveforms. In the case of the commonly used voltage stimulation mode, a 

biphasic anodic-cathodic waveform should be used, as it represents a good combination of 

stimulation efficacy and artifact duration. 

 

2.4.3 Impedance measurements to compare voltage and current stimulation 
As mentioned in Section 3.2, both voltage and current stimulation are widely used to stimulate 

neuron. Voltage stimulation offers the advantage to reliably obviate Faradaic processes by 

precisely controlling the electrode voltage and keeping it significantly below 0.8 - 1 V to 

obviate water electrolysis and cell and electrode damage (Weiland, Anderson and Humayun 

2002; Wagenaar, Pine, and Potter 2004). However, the injected charge cannot be controlled 

and is a function of the electrode impedance. On the other hand, the voltage cannot be 

controlled upon using current stimulation, so that high electrode voltages can occur in case of 

high impedance, which may entail unwanted electrochemistry, tissue damage, or electrode 

degradation. Yet, the charge delivered by the electrode (not the charge path in the preparation) 

can be precisely controlled, and potentially short current stimulation durations entail short 

artifacts and fast recovery to baseline values.  

To better compare efficacies and differences of current- and voltage-controlled stimulation 

modes in depolarizing neuronal membranes (from -70 mV to ∼ -55 mV) and evoking APs, it 

is necessary to also consider the delivered charge. To this end, we established a method to 

determine electrode impedances, so that charge injection of voltage and current pulses could 

be calculated and compared. 

We applied a biphasic current pulse to an electrode and used a low gain (G = 2) for reading out 

the voltage signals of the same electrode (see Paragraph 2.3.7). We then fitted the voltage 

readout from the stimulating electrode with a theoretical electrode model (Figure S2, Figure 

4A) by using only the first half of the biphasic anodic-cathodic waveform. The charge transfer 

resistance, Rct, and the double layer capacitance, Cdl, were kept as unknown values. After 

examining (n=10) bright Pt and Pt-black electrodes, we found that the Cdl was 0.077 ± 0.0138 

nF for bright Pt electrodes and 1.44 ± 0.15 nF for Pt-black electrodes (Figure 4B). The results 

were obtained with an electrode area of 5×9 µm².  
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Figure 4. (A) Fitting of an electrode model to 
the experimental data of measured voltage 
values upon applying a current stimulus to an 
electrode. For bright Pt (Pt), a current 
stimulation was performed with a biphasic 
anodic-cathodic waveform with an amplitude 
of 140 nA, a duration of 1 ms per phase and a 
readout amplifier gain of 2. For Pt-black (PtB) 
the amplitude was 560 nA, the duration 2.5 ms 
per phase, and the readout amplifier gain was 
equal to 2. The different waveforms durations 
and amplitudes are due to the readout channel 
saturation in case of bright Pt as a consequence 
of the higher impedance. In both cases, only the 
first half of the waveform, i.e., the positive part 
was used for the fits and is displayed. (B) 
Capacitance values of 10 Pt and PtB electrodes 
are presented. The values were computed as a 
result of the fitting in A by setting the 
capacitance as an unknown value. (C) Charges 
required for efficient voltage and current 
stimulation of the same neuron. For current 
stimulation, the waveform had a duration of 20 
µs per phase, while the duration for voltage 
stimulation was 100 µs per phase. The 
stimulation protocol included 30 repetitions of 
every stimulation amplitude in a randomized 
manner. For current stimulation, the charge 
was computed as 𝑞 = 𝐼 × 𝑡, i.e., the product of 
applied current and time. For voltage 
stimulation, the charge was computed as 𝑞 =
𝐶 × ∆𝑉, i.e., the product of the computed 
capacitance and the voltage change upon 
stimulation.  

 

To extend these results to a larger number of 

electrodes, we applied a sine-wave stimulation to 26’400 electrodes and proved that their 

impedance (in terms of voltage readout) was homogeneous over the array (see histograms in 

Figure S5). This allowed us to use the mean capacitance value of 1.44 nF for Pt-black to 

compare current and voltage stimulation. Based on the obtained capacitance values, we 

calculated the charge associated with voltage stimulation and compared it to current stimulation 

for the same neuron (Figure 4C). We used biphasic waveforms in both modalities, with a 

duration of 20 µs per phase in current mode and 100 µs per phase in voltage mode. We used a 
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randomized stimulation protocols including 30 repetitions of every stimulation signal 

amplitude. Using the common capacitor formula C= ,
∆.

, we found that, for the very same 

neuron, the charge delivered through voltage stimulation is two orders of magnitude larger than 

the one needed to achieve the same results or stimulation efficiency in current stimulation mode 

(Figure 4C). Our results show that current stimulation, characterized by a constant rate of 

charge injection, displays higher efficiency in eliciting neuronal responses with respect to 

voltage stimulation, which is characterized by an exponential decrease in charge injection (see 

also Figure S1).  Results of 3 more neurons confirm the same orders of magnitudes and charge 

differences for current and voltage stimulation (Figure S6). The stimulation efficacy in current 

and voltage mode is also largely depending on the stimulation buffer implementation[23]. 

 

2.4.4 Multi-electrode stimulation  
An array of densely distributed electrodes enables to apply different stimulation configurations, 

either by using the standard single-electrode stimulation approach, or by selecting several 

electrodes at the same time for applying signals or for grounding. Normally, all unused array 

electrodes are left floating and do not have a defined potential. The use of neighboring 

electrodes as stimulation and reference or ground electrodes can produce a locally larger 

electric field strength, which, in turn, could lead to lower voltages required for stimulation in 

voltage mode. Moreover, it is possible to stimulate with opposite-sign waveforms on adjacent 

electrodes to reduce and limit stimulation artifacts. 

Using COMSOL Multiphysics, we simulated the voltage and electric field distribution on the 

array for different candidate electrode configurations to see if an increase in electric field 

strength could increase neuron stimulability and decrease the artifact lateral extension. Three 

configurations were selected (Figures 5A, B): (i, iv) stimulation with a biphasic voltage 

waveform (±100 mV) through one electrode against a global reference electrode in solution; 

(ii, v) stimulation with two neighboring electrodes, using biphasic voltage waveforms (±100 

mV) with opposite signs; (iii, vi) stimulation with a biphasic waveform (±100 mV) applied to 

one electrode, while the neighboring electrode was grounded. All other array electrodes were 

left floating.  

To assess if one of the two chosen configurations with local ground or opposite-sign 

stimulation signal could improve stimulation efficiency by entailing higher local voltage drops 

or electric-field strengths, we simulated two probe locations at the right and left side of 

electrode E1 (Figure 5A), at a height of 1µm above the electrode plane. For configuration (i), 
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one stimulation electrode against a global reference electrode, the voltage drop left and right 

of the electrode was identical, because the global reference electrode is far away and positioned 

outside the electrode array. In configuration (iii), the grounded neighboring electrode slightly 

modified the voltage drop at the right probe location. In configuration (ii), however, the 

application of a signal to the neighboring second electrode induced a voltage drop decrease at 

the location of the right probe, as a result of the applied opposite-sign voltages (Figure 5C). 

However, the electric field between the two electrodes was increased (v) (Figure 5C). 

Nevertheless, looking at the voltage distribution around the stimulation electrodes suggests 

comparable results for all configurations, with even a possible decrease in stimulation efficacy 

for axons that would run through the center region between the two electrodes with opposite-

sign waveforms. 

To verify the simulation, we then tested the efficacy of these three configurations in evoking 

APs in neuronal cultures on the HD-MEA. We stimulated six different neurons, after having 

determined the most reliable electrodes in evoking APs at the respective AISs. First, a 

randomized voltage stimulation protocol was applied to one electrode, using the global 

reference electrode at the periphery of the array. A biphasic anodic-cathodic voltage 

stimulation waveform, evidenced to be efficient (Section 2.4.2), was used with a phase duration 

of 100 µs and an amplitude range between 40 and 160 mV. We then repeated the same 

stimulation protocol by using a grounded reference electrode close to the stimulation electrode 

to increase the electric field. Finally, we used two electrodes delivering opposite waveforms 

for stimulation, which further increased the local electric field and, additionally, reduced the 

lateral extension of the artifact (Figure S7). In all the modalities, also the reference electrodes 

at the sides of the array were left connected. We found differences in the voltage required to 

evoke activity in the different neurons (range between 60-120 mV, Figure 5D), however, we 

did not find major differences for using the three stimulation scenarios explained, simulated 

and displayed in Figures 5B, C. 

This experimental result is in line with the simulations in Figure 5C, which shows comparable 

extracellular voltage levels for all three configurations. Consequently successful stimulation 

and APs initiation is not much influenced by applying the three different configurations. 



 47 

 
Figure 5. (A) Simplified HD-MEA geometry for COMSOL simulations: 36 planar electrodes 
at a pitch of 17.5 µm and featuring an area of 5 × 9 µm²; 4 reference electrodes were placed at 
the borders of the array. E1 and E2 denote the electrodes that were used for the simulations in 
panel B. prb1 and prb2 denote two probe locations, at the right and at the left side of electrode 
E1, that were used to compute the voltage and the electric-field values for the three 
configurations in B. The two probe locations were chosen so as to compare the effect of using 
a second array electrode. (B) The simulation was performed in voltage mode, and an amplitude 
of ±100 mV was used. The voltage and electric field distributions after stimulating with one 
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electrode against a global reference electrode in solution are represented in panels (i) and (iv), 
those for a stimulation with two neighbored electrodes with synchronized waveforms of 
opposite signs are represented in (ii) and (v), and those for applying a biphasic waveform to 
one electrode, while the neighboring electrode was grounded are represented in (iii) and (vi). 
The electric field (EF norm) was calculated as 8𝐸/0 + 𝐸10 + 𝐸20. (C) Voltage (i, ii, iii) and 
electric-field (iv, v, vi) distributions at the probe locations in the respective configurations (i-
vi) of B. The voltage drop, which is responsible for the AP initiation by electrical stimulation, 
is comparable in all the cases, except for the two-electrode stimulation (ii), where it is 
somewhat decreased. The electric field is stronger in the case of the two-electrode stimulation 
(v). (D) Stimulation with a biphasic voltage waveform of six different neurons using the three 
configurations simulated in COMSOL in B. There were differences in the voltage required to 
evoke activity in the different neurons (range between 60-120 mV), however, there were no 
major differences for using the three stimulation scenarios explained and displayed in B.  

 
2.4.5 Stimulability across cell development increases in early stages of neuronal 

growth and development 
To assess if the ability to stimulate neurons is correlated to cell culturing time and AIS growth, 

we observed and stimulated single neurons during different DIVs. The experimental time 

points were 14, 17, 20 and 23 DIV. We used NeuroFluor NeuO to do live-staining of neurons 

(Figure 6A). To ensure staining effectiveness, we repeated the staining before every 

experiment. Isolated cells were identified and three to six stimulation electrodes were used for 

stimulation. We chose the most efficient stimulation electrode, which was the electrode with 

the highest extracellular voltage readout (AIS), to execute the stimulation protocol. We used a 

randomized current stimulation protocols to avoid neuronal adaptation [33]. The use of current 

stimulation was motivated by the reduced artifact (Paragraph 2.4.1) and the more reliable AP 

readout (Paragraph 2.4.2). A biphasic anodic-cathodic waveform was used with a duration of 

20 µs per phase. We observed that, over 10 DIVs, the neurons moved by a maximum of two 

electrode distances, which is equal to 35 µm. In case that the neurons moved by one electrode 

distance or more, the stimulation electrode was also changed. If the neurons did not move, the 

most efficient stimulation electrode remained the same (Figure 6A). The movement was 

evaluated by using the electrical “image and simultaneous upright confocal imaging. We 

monitored the soma position with respect to the stimulation electrode position during the 

experiment days. The results show that the stimulation amplitudes, required to evoke APs, 

decreased during the first half of the experiment (from DIV 14 to DIV 20), and stabilized 

around DIV 20 and 23 (Figures 6B-C). An increase in stimulation amplitudes was mostly due 

to neuron movement and change of the relative position with respect to the stimulation 

electrode as evident, e.g., in Figure S8 for day 20.  
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Figure 6. (A) Superimposed fluorescence image and electrical footprint of the same neuron at 
DIVs 14, 17, 20. The stimulation electrodes used for the analysis are indicated with a red box. 
The stimulation electrode changed position with the neuron movements during the experiment. 
The signals recorded on the different electrodes are displayed in white (electrical footprint). 
Horizontal scale bar: 50 µm, vertical scale bar: 100 µV. (B) Current stimulation activation 
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curves of the neuron in A over time (DIVs). The stimulation amplitudes necessary to evoke 
APs decreased between DIV 14 and 20. (C) Stimulability experiments for N=8 neurons. For 
every neuron, the stimulation amplitudes were normalized to the highest amplitude that was 
necessary to evoke APs 90% of times over 30 repetitions during the DIVs 14-23. The 
stimulability varied from neuron to neuron. We observed a trend of decreased stimulation 
amplitudes between DIV 14 and 20 that then stabilization between DIV 20 and 23. The average 
relative stimulation current amplitude is represented with black dots. (D) Sample microscopy 
stainings showing fixed neurons at DIV 10, 14, 17, 20, 23. The nuclei are represented in blue, 
the neurons in red and the AISs in green. The 5 neurons are represented as black dots in panel 
E. Scale bar 35 µm. (E) AIS lengths and length distribution over time: DIVs 10, 14, 17, 20, 23. 
The average length tends to slightly increase over time in vitro (N=40). 

 

We also recorded and compared the EAPs of spontaneous neuronal activity over the different 

DIVs so as to ensure the identity of the respective neurons. To verify if the increase in 

stimulability was correlated with an AIS growth, we stained neurons at DIV 10, 14, 17, 20 and 

23 and we computed the length of N=40 AIS. We found that there is the tendency of an AIS-

average-length increase with increasing DIVs (Figure 6D). 

 

2.5 Discussion 
In this study we showed that it is possible to selectively and reliably stimulate individual 

neurons by applying current and voltage pulses through the 26’400 electrodes of an HD-MEA. 

We tested different stimulation waveforms, durations and amplitudes in voltage and current 

mode. We demonstrated that we were able to stimulate individual neurons by combining high-

density recording of single-neuron action potentials with immunostaining and confocal 

microscopy. Previous studies (Wagenaar, Pine, and Potter 2004) reported that, in voltage mode, 

the biphasic anodic-cathodic waveform was most efficient for selective stimulation, followed 

by the cathodic-anodic one. We found that the most efficient stimulation waveform is the 

monophasic cathodic waveform, followed by the biphasic anodic-cathodic, by comparing the 

Vpp for the same pulse width (Figure 2). It is, however, important to note that we used 

significantly lower stimulation voltages (80 mVpp), as we could target the most sensitive region 

of a neuron, the AIS, for stimulation. Moreover, we used much smaller electrodes with respect 

to the 30 µm diameter electrodes in the study by Wagenaar et al, 2005. In current mode, we 

confirmed that the triphasic waveform is an efficient stimulation signal that produces a 

comparably smaller artifacts than the biphasic one[9]. In comparison to previous findings, we 

were able to improve selectivity due to the high electrode density and the inherent possibility 

of directed targeting of neurons and their AISs[30]. We, hence, could stimulate with comparably 
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low charges of a few picoCoulombs (Figure 3). Moreover, the small electrodes provided 

sufficient stimulation charge density also for small applied voltages. 

In comparing current and voltage stimulation parameters for our HD-MEA, we found that a 

waveform duration of 100 µs per phase was required to efficiently evoke EAPs in voltage 

mode. In current mode, instead, a duration of only 20 µs per phase was required, which entailed 

a shorter artifact duration. However, it needs to be mentioned that the possible shorter signal 

duration in current mode was also a consequence of the settling time of our stimulation buffers. 

According to our measurements, current stimulation is the preferable stimulation modality, 

which is in line with reports in literature[8,9]. By using current stimulation it was possible to use 

already the next neighboring electrodes, at 17.5 µm pitch from the stimulation electrode, for 

EAP recording (Figure 1, 2). Owing to the high spatial resolution and dense electrode packing 

of the array, it was possible to read out electrical activity at the cell soma while stimulating the 

axon initial segment of the very same cell, so that it was possible to accurately estimate 

stimulation success and efficiency. 

Based on our experiments, we estimated current stimulation to be more efficient than voltage 

stimulation in evoking APs using our HD-MEA. To further test this assumption, we determined 

the electrode impedances by measuring and modeling the voltage readout upon applying 

current stimulation[35]. The fit of the measurement data to the model returned capacitance 

values of ~1.4 nF for Pt-black and ~0.07 nF for bright Pt electrodes. We used these capacitance 

values to compare voltage and current activation curves, and found that the charge needed to 

evoke APs in current mode is, indeed, by two orders of magnitude lower than in voltage mode 

(Figure 4). The stimulation efficacy in current and voltage mode is also depending on the 

stimulation buffer implementation[23]. 

We then compared different electrode configurations, which provided increased electric field 

strengths, as compared to using a single electrode against a global reference electrode in 

solution. As shown in Figure 5D, the stimulation efficacy, however, was found to be in the 

same range for different neurons.  

Capitalizing on the short artifact duration upon using current mode, we finally studied neuron 

stimulability during cell development and growth. Our hypothesis was that the AIS 

development over time would increase neuron stimulability. We combined live stainings and 

electrical recordings/stimulation to follow neuronal development over several days. The most 

challenging procedure during the experiments was to identify more or less isolated neurons on 

the array and in the culture and to then track them over several days during the experiments. 

Several neurons had to be discarded as a consequence of cell death during the experiments or 
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because we could not track them over the experiment time. Nevertheless, we observed a 

decrease in stimulation amplitudes to evoke APs, which was correlated to AIS growth in length 

(Figure 6). 

In summary, this work presents a comprehensive study on electrical stimulation with 

microelectrodes of HD-MEAs and shows ways to realize single-neuron stimulation. Selecting 

optimal stimulation parameters could prove to be powerful for other in vitro applications, such 

as the control of neural-network bursting through electrical stimulation[42], or for ex vivo 

stimulations, for example, in retinal preparations or brain slices. We think that in vivo 

stimulation methods (epiretinal implants) could also benefit from findings of this paper in order 

to implement targeted stimulation of individual neurons. The delivered charges to depolarize 

neuronal membranes amounted to 0.02 pC/µm² with our HD-MEA, while, for example, retinal 

implants currently work with 3.5 pC/µm²[43]. A small size of electrodes and their dense packing 

may prove beneficial to stimulate neurons and could improve stimulation accuracy of 

prosthetic implants while enabling lower power consumption. 
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2.10 Supplementary Material 

 

Figure S1. Stimulation pulses used for voltage (left) and current (right) mode are shown in the 
top row. Below a representation of the injected charges in voltage (left) and current (right) 
mode. The negative charge that evokes APs is displayed in red. In voltage mode, the charge 
features exponential decays and is a function of the electrode impedance, while it stays constant 
in current mode.  
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Figure S2. Equivalent circuit model of the stimulation and readout channel. In yellow, the 
electrode equivalent circuit including the double-layer capacitance 𝑪𝒅𝒍 and the charge transfer 
resistance 𝑹𝒄𝒕 is shown along with the solution resistance 𝑹𝒔. 𝒁𝒊𝒏 represents the input 
resistance to the readout amplifiers. To read out extracellular APs, a gain of 512 was used (3 
gain stages: 16×16×2). For impedance measurements, instead, the first two amplifier stages 
were bypassed, while the third one was set to a gain of 2. The low gain enabled a voltage 
readout on the stimulation electrode. 

  



 58 

 

 

 

Figure S3. Activation curves as a result of current stimulation with a biphasic waveform. The 
label q indicates the points, where the delivered overall charge is the same. While the efficacy 
is almost the same for 20 and 18 µs phase duration, for 15 µs it starts to decrease. This behavior 
can be explained with the fact that the stimulation buffers cannot efficiently deliver signals of 
very short duration. 
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Figure S4. Simulated voltage (green) and current (red) output signals of the stimulation 
buffers. The settling time of the stimulation buffers in voltage mode is ~50 µs to reach the 
applied voltage value, while in current mode, the applied value is reached almost 
instantaneously. The difference is due to the different stimulation buffers’ design.  The 
simulations were performed considering an equivalent electrode model with 𝑪𝒅𝒍 = 1.5 nF, 𝑹𝒄𝒕 
= 100 MΩ and 𝑹𝒔 = 10 kΩ. 
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Figure S5. Histograms of the impedance distribution of all 26’400 electrodes to demonstrate 
the impedance homogeneity (a bright Pt, b Pt-black). A sinusoidal waveform was used for 
stimulation.  
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Figure S6. Charges required for efficient voltage and current stimulation of three different 
neurons. For current stimulation, the waveform had a duration of 20 µs per phase, while it was 
100 µs per phase for voltage stimulation. The stimulation protocol included 30 repetitions of 
every stimulation-signal amplitude in a randomized manner.  
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Figure S7. Recordings from high-density blocks of electrodes to compare the stimulation 
artifact spread in cell-culture medium. Three configurations were used: one stimulation 
electrode against a global reference electrode in solution (left), two neighboring electrodes with 
opposite-sign waveforms (center), and one stimulation electrode, while the neighboring 
electrode was grounded (right). The configuration with two electrodes delivering waveforms 
of opposite signs seemingly produced the smallest artifact on the array. The artifact was 
computed as the peak-to-peak voltage readout of every electrode. The measurements were done 
in growth medium. The voltage stimulation amplitude was 140 mV, and the duration 100 µs 
per phase. N=1. Scale bar 50 µm.  
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Figure S8. (A) Superimposed fluorescence image and electrical footprint of another neuron at 
DIVs 14, 17, 20, 23. This neuron significantly moved during the initial measurements between 
DIVs 14 and 20 so that the stimulation threshold increased. The stimulation electrodes used for 
the analysis are indicated with a red box. The stimulation electrode remained the same during 
the whole experiment. The signals recorded on the different electrodes are displayed in white 
(electrical footprint). Horizontal scale bar: 50 µm, vertical scale bar: 250 µV. (B) Current 
stimulation activation curves of the neuron in A over time (DIVs). The stimulation efficacy 
varied and increased between DIV 20 and 23. The initial decrease is due to neuron movement. 
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3.1 Abstract 
Recent advances in the field of cellular reprogramming have opened a route to studying the 

fundamental mechanisms underlying common neurological disorders. High-density 

microelectrode-arrays (HD-MEAs) provide unprecedented means to study neuronal 

physiology at different scales, ranging from network through single-neuron to subcellular 

features. In this work, we used HD-MEAs in vitro to characterize and compare human induced-

pluripotent-stem-cell (iPSC)-derived dopaminergic and motor neurons, including isogenic 

neuronal lines modeling Parkinson’s disease and amyotrophic lateral sclerosis. We established 

reproducible electrophysiological network, single-cell and subcellular metrics, which were 

used for phenotype characterization and drug testing. Metrics, such as burst shape and axonal 

velocity, enabled the distinction of healthy and diseased neurons. The HD-MEA metrics could 

also be used to detect the effects of dosing the drug retigabine to human motor neurons. Finally, 

we showed that the ability to detect drug effects and the observed culture-to-culture variability 

critically depend on the number of available recording electrodes.    

 
3.2 Introduction 
The advent of efficient cellular reprogramming protocols has revolutionized stem cell research 

and enabled access to a large variety of human cell lines[1]. Induced-pluripotent-stem-cell 

(iPSC)-technology has been used to establish 2D and 3D human cell and tissue models[2] and 

to study organ genesis for, e.g., liver[3], lungs[4], heart[5] and brain[6]. Today, iPSC technology 

allows to obtain cells and tissue samples from both, healthy individuals and patients and to 

develop in-vitro disease models[7]. Genetically-defined human iPSC-derived neurons have 

been generated to investigate physiological aspects and mechanisms underlying common 

neurological disorders[8] and for usage in in-vitro platforms for systematic drug testing[9,10].  

Functional phenotype characterization and drug-effect assessment of human neurons can be 

performed in vitro by using optical methods (e.g., calcium imaging[11]), patch-clamp 

techniques[12], or by using microelectrode arrays (MEAs)[13]. MEAs feature a set of metal 

electrodes to record electrical activity simultaneously from several hundreds to thousands of 

cells and have been used to study brain disorders and to detect differences between normal and 

pathological conditions[14,15].  

Passive MEA devices[16–18] without active circuit elements feature 10-100 electrodes per mm2 

and have been used to electrically characterize human neuronal phenotypes[9,10,14]. 

Complementary-metal-oxide-semiconductor (CMOS)-based high-density microelectrode 
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arrays (HD-MEAs)[19–24] feature active circuit elements and electrode densities of tens to 

thousands of electrodes per mm2 and have been used in first experiments to characterize 

electrical properties of healthy human iPSC-derived neurons[25]. However, to the best of our 

knowledge, CMOS-based HD-MEAs have not been yet used to comprehensively characterize 

and compare electrical phenotypes of human neuronal line across scales including network, 

single-neuron and subcellular features and to assess the effects of neurological disorders.  

Among neurodegenerative disorders, Parkinson’s disease and amyotrophic lateral sclerosis 

have been extensively studied by using iPSC technology in order to understand basic disease 

mechanisms at molecular and functional levels and for finding new cures[26–30]. 

Parkinson’s disease (PD) is among the most common neurodegenerative diseases, with a 

prevalence increasing from 2.5 million patients in 1990 to 6.1 million patients in 2016[31], and 

projections indicating that more than 12 million people will be affected by 2050[31]. PD is 

characterized by the death of dopaminergic neurons within the substantia nigra, which causes 

progressive motor and cognitive dysfunctions, such as tremor, rigidity and dementia[32]. The 

distinctive hallmark of PD is the accumulation of intracellular α-synuclein, which forms protein 

inclusions, known as Lewy bodies and Lewy neurites[32]. Human iPSC-derived neurons 

modeling PD have been studied in vitro and showed compromised neuronal morphology[33], 

synaptic connectivity[34] and different electrophysiological characteristics including, e.g., the 

shape of action potential waveforms[35].  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, characterized by a 

progressive degeneration of upper and lower motor neurons, followed by muscle degeneration, 

paralysis, and respiratory failure[36]. ALS incidence is reported to be between 0.6 and 3.8 per 

100 ’000 persons/year[37]. Human iPSC-derived neurons, developed to model ALS, featured an 

intrinsic membrane hyperexcitability phenotype[10], which was used to test compounds that 

lowered neurons’ electrical hyperexcitability. The study of Wainger et al., which relied on 64 

microelectrodes, placed at a pitch of 200 mm in a 12-well platform, led to clinical testing of 

retigabine in human patients[10].  

Combining human iPSC-derived neurons with large-scale electrophysiological techniques, 

such as HD-MEAs, provides a powerful and scalable platform to study neurological disease 

mechanisms and offers the potential to assess disease-induced phenotypic alterations.  

Here, we used CMOS-based high-density microelectrode arrays (HD-MEAs) to characterize 

and compare the electrical phenotypes of four iPSC-derived neuronal cell lines: human 

dopaminergic neurons (hDNs), dopaminergic neurons carrying the A53T α-synuclein 

mutation, linked to PD (hDNs-PD), motor neurons (hMNs), and motor neurons carrying the 
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TDP-43 Q331K mutation, linked to ALS (hMNs-ALS). We found significant functional 

phenotype differences across the studied iPSC lines at different spatiotemporal scales, ranging 

from network level to characteristics of individual axons. We then used HD-MEA-based 

readouts to quantify the effect of the drug retigabine on motor neurons (hMNs)[10,38] and we 

showed that high-spatiotemporal-resolution sampling of neuronal activity by means of HD-

MEAs provides very reproducible readouts in assessing the effects of neuroactive compounds. 

 

3.3 Results 
3.3.1 Human iPSC-derived neurons develop spontaneous activity on HD-MEA 

chips 
Before probing the developing neurons and neuronal networks, we confirmed the presence of 

characteristic cell-type specific neuronal markers for each iPSC line. Human iPSC-derived and 

rat primary neuronal cultures, used for benchmarking, showed electrical activity across the 

entire HD-MEA chip electrode area (Figure 1a). The electrically active areas contained mature 

neurons as confirmed by microscope imaging of MAP2-positive cells (Figure 1b). The 

presence of astrocytes in the cell cultures was confirmed immunohistochemically by 

GFAP[39,40] and S100-b[40] staining (Figure 1c). An anti-GFAP antibody was used as a reactive 

astrocyte marker for rat primary cultures, which underwent the isolation procedure. An anti-

S100-b antibody was used as astrocyte marker for human cell lines, as its efficiency was 

already demonstrated with human lines[41]. Furthermore, we visualized motor and 

dopaminergic neurons on the HD-MEA chips using the motor-neuron marker SMI-32[39] 

(Figure 1c, central panel) and the dopaminergic-neuron marker TH[42] (Figure 1c, right panel). 

Human and rat neurons were all electrically active and showed spontaneous action-potential 

signals, which systematically crossed the detection threshold (Figure 1d).  
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Figure 1. Electrical and optical imaging of neuronal cultures. (a) HD-MEA electrical image 
showing 2D spatial distribution maps of the electrode firing rate (eFR, see Methods, HD-MEA 
Metrics) as recorded across the entire HD-MEA chip surface from 6’600 electrodes at DIV 21, 
for rat primary cortical neurons (rPCNs), human motor neurons (hMNs) and human 
dopaminergic neurons (hDNs). (b) Microscope image of MAP-2 positive (red) stained neurons 
on HD-MEA chips. Cells were fixed and stained on the HD-MEA chips at DIV 21. (c) Cell-
type specific stainings of cultures on HD-MEA chips shown in Figure 1b. Cell nuclei are shown 
in blue (Hoechst positive), motor neurons (SMI-32 positive) and dopaminergic neurons (TH 
positive) in yellow, astrocytes (GFAP, S100-b positive) in green. White insets with rectangles 
and grids schematically represent electrode sizes and spacing. (d) Example voltage traces 
showing extracellular action potentials (spikes) recorded by two electrodes at DIV 21. The 
displayed traces are taken from electrodes recording action potentials with comparably large 
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amplitudes. A close-up of an averaged action potential waveform is displayed in the red 
rectangles. Left panel: rat primary cortical neurons. Central panel: human motor neurons. Right 
panel: human dopaminergic neurons. 
 

3.3.2 Electrical phenotype characterization of human iPSC-derived neurons 

across development 
To compare the electrophysiological properties across the four human iPSC-derived neuronal 

cell lines, we first examined and compared the mean firing rate (MFR), mean spike amplitude 

(MSA), mean inter-spike interval (ISI) coefficient of variation (ISIcv) and the percentage of 

active electrodes (pAE). Changes in metrics as the firing rate are hallmarks of neuronal 

development[10], but they can also be indicative of a specific neuron type[43] or pathology[10]. 

We also compared the iPSC-derived cell lines electrophysiological properties with the ones of 

rat primary cortical neurons (rPCNs), the most commonly used neuronal cells in the MEA field 

and an established in-vitro culturing system, across development (for details, see Figure S1). 

Both, motor (hMN) and dopaminergic (hDN) neuronal lines showed a significant increase (7 

fold and 1.9 fold) in the mean firing rate from DIV 7 to DIV 21 (Figure 2a, 2b), similar to 

rPCNs (Figure S1c). 

hMNs featured a higher mean firing rate, mean spike amplitude and percentage of active 

electrodes compared to hDNs (Figure 2b). In particular, at DIV 21, the hMN mean firing rate 

(1.98 ± 1.30 Hz) was 3.5 times higher (p < 0.001, Wilcoxon rank-sum test) than the hDN mean 

firing rate (0.57 ± 0.10 Hz). The hMN mean spike amplitude and percentage of active 

electrodes were 1.5-fold and 1.7-fold higher than that of the hDN line (Figure 2b). However, 

the mean ISI coefficient of variation did not vary significantly across development between 

hMNs and hDNs, which showed a similar behavior in neuron-firing-rate evolution over 

development.  

Both, hMNs and hDNs showed significantly lower mean spike amplitudes in comparison to 

rPCNs at DIV 21. rPCNs had an average mean spike amplitude of 95.01 ± 8.96 µV, whereas 

hMNs and hDNs featured mean spike amplitudes of 44.23 ± 14.62 µV and 29.17 ± 2.78 µV, 

respectively (Figure S1c and Figure 2b). Furthermore, the variation in the mean spike 

amplitude across development was less in hMNs and hDNs than that of rPCNs (Figure S1c and 

Figure 2b). Human iPSC-derived neuronal lines were also characterized by an almost constant 

ISI coefficient of variation across development, in contrast to the increase in rPCNs (Figure 

S1c and Figure 2b).  
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Figure 2. Electrical phenotype characterization of human iPSC-derived neurons across 
development. (a) Exemplary 2D spatial distribution maps (6’600 electrodes) of electrode 
firing rates for motor neurons (top) and dopaminergic neurons (bottom), at DIVs 7, 14 and 21, 
respectively. (b) Bar plots comparing the mean firing rate (MFR), mean spike amplitude 
(MSA), mean ISI coefficient of variation (ISIcv) and percentage of active electrodes (pAE) of 
12 hMN cultures (blue) and 17 hDN cultures (red) at DIVs 7, 14 and 21. (c) Bar plots 
comparing the mean firing rate, mean spike amplitude, mean ISI coefficient of variation and 
percentage of active electrodes of 12 hMN cultures (blue) and 15 hMN-ALS cultures (light 
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blue) at DIVs 7, 14 and 21. (d) Bar plots comparing the mean firing rate, mean spike amplitude, 
mean ISI coefficient of variation and percentage of active electrodes of 17 hDN cultures (red) 
and 16 hDN-PD cultures (orange) at DIVs 7, 14 and 21. Each dot represents one HD-MEA or 
well. Bar heights indicate distribution mean values, and error bars indicate standard deviations. 
Pair-wise comparisons were carried out using the two-tailed Wilcoxon rank-sum test. The 
black stars indicate p values: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
 

Comparing healthy (WT) and diseased (ALS) motor neuron lines, the hMN-ALS neuronal cells 

featured a 0.5-fold (p < 0.05) lower mean firing rate than hMNs at DIV 14 (Figure 2c). Similar 

results were found by comparing the two dopaminergic neuron lines, which showed a 0.8-fold 

(p < 0.01) lower mean firing rate of hDN-PDs in comparison to hDNs at DIV 21 (Figure 2d). 

Analysis of the mean spike amplitudes showed no significant differences between hMN and 

hMN-ALS neurons. In contrast, the two dopaminergic neuron lines, hDN and hDN-PD, 

showed significant differences in the mean spike amplitude at DIV 7 (p < 0.05) (Figure 2c). 

The mean ISI coefficient of variation evidenced a more regular firing of the hMN line at DIV 

7 in comparison to the hMN-ALS line (Figure 2c). Conversely, the disease line hDN-PD 

featured a more regular firing at DIV 21 in comparison to the healthy hDN line (Figure 2d). 

Finally, by comparing the percentage of active electrodes across development, we did not find 

significant differences between hMN and hMN-ALS or hDN and hDN-PD lines; however, 

pAE data generally were very disperse, suggesting that potential differences in MFR between 

cell types could also be a consequence of the ability of the specific cell line to form functional 

neuronal networks (Figure 2b-d). 

 

3.3.3 Network burst characterization of human iPSC-derived neurons across 

development 
Neuronal networks are often characterized by synchronous activity (bursts), which may give 

rise to network oscillations[44]. These bursts emerge as a result of recurrent synaptic 

connections that form as neuronal networks mature. In primary cortical neurons, the bursts are 

often irregular even in mature networks[45,46] (Figure S2). The nature and properties of the 

associated oscillations may vary for different pathological conditions [47] or in co-cultures with 

different cell types[43].   

Here, we assessed the characteristic properties of human healthy and diseased cell lines by 

using network-burst metrics including mean burst duration (BD), mean inter-burst interval 

(IBI), mean IBI coefficient of variation (IBIcv), number of bursts per minute (B/min) and burst 

shape (see Methods, HD-MEA Metrics). 
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All human iPSC-derived neuronal cultures showed robust and reproducible network 

oscillations at DIV 14 and 21 (Figure 3a, Figure S2). hMNs and hDNs featured significant 

differences in IBI, IBIcv and B/min at both DIVs 14 and 21 (Figure 3b). hDNs featured a 2.4-

fold increase (p < 0.0001, Wilcoxon rank-sum test) in time between consecutive bursts 

compared to hMNs at DIV 21 (Figure 3b). hDNs displayed more regular bursts than hMNs, 

which is shown by a 0.3-fold decrease (p < 0.001) in IBIcv between consecutive bursts at DIV 

21 (Figure 3b). Furthermore, at DIV 21 hDNs showed in average 2.2-fold less bursts per minute 

(p < 0.0001) than hMNs (Figure 3b). 

Comparing motor-neuron lines, we found that hMN-ALS neurons featured a longer burst 

duration of 16.56 ± 5.44 s than hMNs (3.91 ± 2.59 s) at DIV 21 (Figure 3c). Converse results 

were found for the healthy and isogenic diseased dopaminergic-neuron lines, where hDN-PDs 

showed a 0.5-fold decrease (p < 0.0001) of the burst duration at DIV 21 compared to hDNs 

(Figure 3d). 

By comparing the inter-burst interval times of healthy and diseased lines at DIV 21, we found 

that the hMN-ALS line had a 3.2-fold longer IBI (p < 0.0001) than the healthy hMN line 

(Figure 3c), while the hDN-PD line showed a 0.6-fold shorter IBI (p < 0.0001) than the healthy 

hDN line (Figure 3d). 

An analysis of the IBI coefficients of variation yielded no significant differences between hMN 

and hMN-ALS lines (Figure 3c). However, the dopaminergic neuron lines showed a small 

difference at DIV 21 (p < 0.05) (Figure 3d). 

Comparing the number of bursts per minute recording (B/min) of healthy and diseased lines, we 

found that hMNs featured a 3-fold higher (p < 0.0001) number of bursts per minute than hMN-

ALSs at DIV 21 (Figure 3c). Instead, hDNs featured a 0.62-fold lower (p < 0.0001) number of 

bursts per minute than the diseased line at DIV 21 (Figure 3d).  
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Figure 3. Network burst characterization of human iPSC-derived neurons across 
development.  (a) Population spike time histograms simultaneously recorded by 1’024 
electrodes from hMN (blue), hMN-ALS (light blue), hDN (red) and hDN-PD (orange) neurons 
at DIV 21. (b) Bar plots comparing mean burst duration (BD), mean inter-burst interval (IBI), 
mean IBI coefficient of variation (IBIcv) and bursts/min (B/min) of 9 hMN cultures (blue) and 
18 hDN cultures (red) at DIVs 14 and DIV 21. Each dot represents one HD-MEA or well. (c) 
Bar plots comparing mean burst duration, mean IBI, mean IBI coefficient of variation and 
bursts/min of 9 hMN cultures (blue) and 10 hMN-ALS cultures (light blue) at DIV 14 and DIV 
21. Each dot represents one HD-MEA or well. (d) Bar plots comparing mean burst duration, 
mean IBI, mean IBI coefficient of variation and bursts/min of 18 hDN cultures (red) and 16 
hDN-PD cultures (orange) at DIV 14 and DIV 21. Each dot represents one HD-MEA or well. 
Bar heights indicate distribution mean values, and error bar indicate standard deviations. Pair-
wise comparisons were carried out using the two-tailed Wilcoxon rank-sum test. The black 
stars indicate p values: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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3.3.4 Network-burst shape can be used to characterize human iPSC-derived 

neurons lines   
By inspecting the population spike time histograms (Figure 4a), we noticed that each human 

iPSC-derived neuronal line featured a characteristic burst shape across every activity peak (see 

also Figure S2). Therefore, we assessed the ability to discriminate hMN and hMN-ALS or hDN 

and hDN-PD neurons by their network burst shape at a given day in vitro. For this purpose, we 

computed the linear correlations between every single recorded network burst and the 

corresponding network burst templates generated by averaging over many electrodes and HD-

MEAs or wells harboring the same cell line at the specific DIV (see Methods, HD-MEA 

Metrics). In Figure 4b, we show the network burst template for hMNs at DIV 14 and DIV 21 

(see Methods, HD-MEA Metrics). When we linearly correlated single recorded hMN bursts at 

DIV 14 to the DIV14 hMN template, we obtained an average Pearson Correlation Coefficient 

(PCC) of 0.97 ± 0.01, which indicated a high similarity between the burst template and the 

single bursts. However, upon correlating single DIV14 hMN-ALS bursts to the DIV14 hMN 

template, the average PCC decreased to 0.89 ± 0.06 (Figure 4b) and to 0.71 ± 0.12 for 

correlating DIV21 hMN-ALS bursts to the DIV21 hMN template (Figure 4b).  

In Figure 4d, we used the network burst templates of hDNs at DIVs 14 and 21. The DIV 14 

hDN template yielded an average Pearson Correlation Coefficient (PCC) of 0.98 ± 0.01 upon 

application to single hDN recorded bursts at DIV 14. Upon using the DIV14 hDN template for 

single hDN-PD bursts recorded at DIV 14, the average Pearson Coefficient decreased to 0.96 

± 0.03 (p < 0.001, Wilcoxon rank-sum test) (Figure 4d). At DIV 21, the application of the 

DIV21 hDN template for DIV21 hDN-PD bursts yielded a further decreased PCC of 0.89 ± 

0.03 (Figure 4d).  

In Figure 4c and 4e, the inverse correlations by using the hMN-ALS and hDN-PD disease line 

templates are shown. Expectedly, the correlations are stronger between the disease-line 

templates and the respective disease line bursts at both DIVs as compared to bursts of the 

healthy lines. As the disease lines featured a somewhat larger burst shape irregularity, the 

discrimination by using the disease line templates was less efficient in comparison to the 

healthy line templates. 
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Figure 4. Network burst-shape characterization of human iPSC-derived neurons across 
development. (a) Population spike time histograms simultaneously recorded by 1’024 
electrodes from (from left to right) hMN (blue), hMN-ALS (light blue), hDN (red), hDN-PD 
(orange) neurons at DIV 14 (top) and DIV 21 (bottom). At the left of each panel, an average 
network burst template is shown for the specific DIV and related neuronal cell type. (b) Bar 
plots comparing the Pearson Correlation Coefficient (PCC) upon linearly correlating the 
recorded network bursts to the corresponding average templates represented in the top panel. 
The graph represents the PCC upon linearly correlating burst of healthy motor neurons (N=9) 
and ALS motor neurons (N=10) to the template obtained from the healthy motor neurons at 
DIVs 14 and 21. Each dot represents one HD-MEA or well. Box plots indicate distribution 
mean value and standard deviation. (c) PCCs for correlating the hMN-ALS template to bursts 
of hMN (N=9) and hMN-ALS (N=10) lines. (d) PCCs for correlating the hDN template to 
burst of hDN (N=18) and hDN-PD (N=16) lines. (e) PCCs for correlating the hDN-PD template 
to bursts of hDN (N=18) and hDN-PD (N=16) lines. Pair-wise comparisons were carried out 
using the two-tailed Wilcoxon rank-sum test. The black stars indicate p values: * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001. 
 

3.3.5 Axonal action potential propagation in healthy and diseased human iPSC-

derived neurons 
The HD-MEA chip used in this work allows for reading out neuronal electrical activity at 

subcellular resolution[48–50]. Measurements of action potential propagation velocities and 

potential alterations can be used to functionally differentiate neuronal cell types[51], to study 
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axonal development[52,53] and to get indications of axon degeneration[54]. Here, exploiting the 

high spatiotemporal resolution of HD-MEAs, we determined action-potential propagation 

velocities by tracking the AP propagation in space and time simultaneously across multiple 

electrodes (Figure 5a-5c and Figure S3). Action potentials are initiated at the AIS[49], which 

produces the largest extracellular voltage signal[49], and then propagate along the axon, while 

AP amplitudes decrease (Figure 5b).  

To test if axonal-action-potential-propagation velocities differed between healthy and diseased 

cell lines, we estimated (see Methods, Action Potential Propagation Velocity) the respective 

velocities of healthy motor neurons and ALS motor neurons and over several DIVs (14, 28 and 

42). Results showed differences in velocities during more mature stages, i.e., at DIV 42 (Figure 

5d). At DIV 42, hMNs featured an average velocity of 480 ± 190 mm/s, while hMN-ALS 

neurons featured a significantly higher average axonal AP-propagation velocity of 560 ± 200 

mm/s (p < 0.01, Wilcoxon rank-sum test).  

The same measurements were conducted for healthy dopaminergic neurons and PD 

dopaminergic neurons. However, in contrast to motor neurons, healthy and diseased 

dopaminergic neurons did not show any significant difference in axonal propagation velocity 

(hDNs: 230 ± 80 mm/s, hDN-PDs: 280 ± 120 mm/s at DIV 42). The hDN lines featured 

comparably small signal amplitudes, which yielded less neurons that could be identified in the 

recordings. Although the spike sorting parameters were adjusted to also include neurons with 

smaller amplitudes (see Methods, Spike Sorting), only few hDN neurons satisfied the 

propagation-velocity conditions described in Methods (Action Potential Propagation Velocity) 

and could be used to assess axonal propagation speeds.  
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Figure 5. AP propagation velocity computed for different human iPSC-derived neuron 
lines. (a) Spatial distribution of action potential (AP) waveforms of sample neurons of (top to 
bottom) hMN, hMN-ALS, hDN, hDN-PD neuronal lines. Each trace represents a cutout of 6 
ms of extracellular voltage signal recorded on the respective electrode at DIV 28. The red traces 
indicate the waveforms on the electrode featuring the largest signal amplitude. The plots are 
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also displayed in Figure S3 at larger magnification. (b) AP propagation in time and space, after 
temporal alignment of the signals of selected readout electrodes represented in (a). Points 
indicate the voltage minima of the recorded traces. The traces are ordered with respect to delay 
from top to bottom with the top trace featuring the longest delay and coming from the electrode 
that is most distant to the axonal initial segment (AIS). (c) Linear regression interpolation to 
compute the AP propagation velocity for the neurons represented in (a) and (b). (d) Bar plots 
comparing the AP propagation velocity of (left) healthy motor neurons and ALS motor neurons 
and of (right) healthy and PD dopaminergic neurons, at DIVs 14, 28 and 42. Each dot represents 
one HD-MEA or well. Bar heights indicate distribution mean values, and error bars indicate 
standard deviations. Pair-wise comparisons were carried out using the two-tailed Wilcoxon 
rank-sum test. The stars indicate p values: ** p < 0.01. The number (N) of hMNs for which 
velocities were determined at DIVs 14, 28 and 42 is 40, 165 and 80, respectively. The number 
(N) of hMN-ALSs for which velocities were determined at DIV 14, 28 and 42 is 11, 92 and 
76, respectively. The number (N) of hDNs for which velocities were determined at DIVs 28 
and 42 is 11 and 17, respectively. The number (N) of hDN-PDs for which velocities were 
determined at DIVs 14, 28 and 42 is 3, 19 and 14, respectively.  
 

3.3.6 The effects of retigabine on spontaneous neuronal activity at network, 

single-cell and subcellular levels 
Retigabine is an anticonvulsant drug used for epilepsy treatment. It opens neuronal K(v) 7.2-

7.5 (formerly KCNQ2-5) voltage activated K(+) channels that generate the M-current, a 

subthreshold K(+) current needed to stabilize the membrane potential and control neuronal 

excitability[55]. The effects of retigabine dosage have been analyzed by monitoring neuron 

spiking rates using a 64-electrode MEA, which were found to significantly decrease[10,38,56]. 

Moreover, retigabine was also reported to decrease spontaneous electrical activity in neuronal 

cortical cultures by decreasing the mean burst rate[57]. Here, we explored the effects of 

retigabine on the inter-burst interval and number of active electrodes in cultures of healthy 

motor neurons at DIV14 (Figure 6), at DIV 21 (Figure S4a) and of diseased motor neurons at 

DIV 14 (Figure S4b). Additionally, we investigated how the spiking rate estimation may be 

influenced by the number of readout electrodes.  

An analysis over the entire HD-MEA electrode array showed a significant reduction in the 

fraction of active electrodes one minute after applying concentrations 5 µM (p < 0.017, Kruskal-

Wallis test, followed by Dunn-Sidák multiple-comparison test) and 10 µM (p < 0.001) (Figure 

6a, 6b).  

Using simultaneously 1’020 electrodes in the active regions, we assessed the number of 

spikes/min (see Methods, Drug Administration), which was reduced to 79 ± 7% upon applying 

a concentration of 1 µM, to 19 ± 9% upon applying concentrations of 5 µM (p < 0.017), and to 

6 ± 4% using 10 µM (p < 0.001) (Figure 6f, left), compared to the baseline recordings without 
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retigabine treatment. This activity reduction was expected, as retigabine hyperpolarizes the cell 

membrane by opening potassium channels.  

We also determined the mean inter-burst intervals, which increased 3.5-fold upon 

administration of 5 µM of retigabine (Figure 6c, 6d). The inter-burst interval also increased 

upon applying 10 µM retigabine, albeit the effect was more difficult to assess, as some HD-

MEAs did not record any burst over the whole recording duration of 5 min. 

Although retigabine caused significant changes in network firing properties and network 

bursting, retigabine doses of 1 µM and 5 µM did not significantly change the velocity of the 

propagating action potentials along axons (Figure 6e). Retigabine could potentially have 

altered AP propagation velocity along axons, as KCNQ channels are also present on dendrites 

and axon[58]. A very small decrease in conduction velocity was reported after retigabine 

administration in rat sciatic nerves[59,60]. 

We also studied the effects of retigabine dosage at a different day in vitro and conducted the 

same drug experiment on hMNs at DIV 21. Results are reported in Figure S4a. Dosage of 10 

µM retigabine decreased the spikes/min to 30 ± 15 % (p < 0.017) and the pAE to 42 ± 17 % (p 

< 0.001). Despite a trend similar to the results at DIV 14, retigabine dosage had less effects on 

the measured metrics, and the data variation was higher. 

Moreover, we tested if retigabine also decreased spontaneous electrical activity in the isogenic 

diseased line hMN-ALS at DIV14. Results are shown in Figure S4b. Dosage of 10 µM 

retigabine decreased the spikes/min to 12 ± 7 % (p < 0.001) and the pAE to 17 ± 10 % (p < 

0.001). The overall decrease in spontaneous activity of the diseased cells, however, was lower 

than that observed with healthy hMNs. 

In a next step, we tested the influence of the number and configuration of used electrodes on 

the obtained spiking and IBI. In addition to the standard configuration comprising the 1’020 

most active electrodes at a minimum pitch of 35 µm, we used configurations of 64 electrodes 

(grids of 8×8 electrodes at 200 µm pitch) and 16 electrodes (4×4 grid at 200 µm pitch), see 

also Figure S5a. By using the 64-electrode configuration, we found similar relative changes 

in spikes/min for concentrations of 5 µM (p < 0.017) and 10 µM (p < 0.017), however, we 

noticed an increased variation of this metric across different cultures, as the number of spikes 

became very low upon dosage of larger concentrations of retigabine and some electrode 

configurations could not detect any spike (Figure 6f, center). Using 16-electrode 

configurations, arranged in a 4×4 grid, we obtained significant differences just between the 

control sample and 10 µM retigabine dosage (p < 0.017) (Figure 6f, right), as the scattering of 
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the measured values was comparably large. Also in this case, some electrode configurations 

could not detect spikes at higher drug concentrations. As can be expected, a larger number of 

recording electrodes or sampling points provides more reliable results.  

To compare the variability in the measurement data and to see in how far local effects may 

influence the results, we applied 6 different configurations of 8×8 and 4×4 electrodes across 

4 HD-MEAs for control and 1 µM concentration and 5 HD-MEAs for 5 µM and 10 µM 

concentrations (Figure S5b, S5c). For the metric spikes/min, we could confirm a higher well-

to-well variability with respect to the configuration with 1’020 electrodes (Figure S5b), while 

for the metric IBI, we could not find significant differences between vehicle control and any 

drug concentration for the 64-electrode and the 16-electrode configurations (Figure S5c).  

 
Figure 6. Retigabine effect on motor neurons on spikes/m, IBI and active electrodes. (a) 
2D spatial distribution maps of electrode spike rates recorded from four exemplary HD-MEAs 
at DIV 14. Signals from 6’600 electrodes per HD-MEA were recorded before drug 
administration (top row) and one minute after drug administration (bottom row) for different 
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retigabine concentrations. (b) Bar plots representing the relative change (percent) in active 
electrodes for each applied retigabine concentration and for the vehicle control with respect to 
pre-treatment conditions. Each dot represents one HD-MEA or well. Bar heights indicate 
distribution mean values and error bars indicate standard deviations. The dashed gray line 
marks the values (100%) before drug treatment. The number of HD-MEAs or wells included 
N=4 for vehicle control and 1 µM retigabine concentration and N=5 for 5 µM and 10 µM 
retigabine concentrations. (c) Population spike time histograms of four representative HD-
MEAs, recorded before (top row) and after drug administration (bottom row) for different 
retigabine concentrations. (d) Bar plots representing the relative change in the mean IBI for 
each applied retigabine concentration and for the vehicle control, normalized to pre-treatment 
conditions. (e) Bar plots representing the relative change in axonal velocity upon exposure to 
the vehicle control (N=8 neurons), 1 µM of retigabine (N=10 neurons) and 5 µM of retigabine 
(N=9 neurons), normalized to pre-treatment conditions. (f) Spikes/min-values computed as 
relative change with respect to the situation before drug administration. Plots show spikes/min-
values for using signals from the 1’020 most active electrodes at a minimum pitch of 35, µm 
selected from the overall array of 26’400 electrodes (left), and configurations of 64 electrodes 
(center) and 16 electrodes at 200 µm pitch (right). For more details, see also Figure S5a. To 
compare multiple groups, we used the Kruskal-Wallis test, followed by the Dunn-Sidák 
multiple-comparison test. The individual pair-wise test was conducted at the Sidák-corrected 
a value of 0.017. The black stars indicate p values with respect to vehicle control: * p < 0.017, 
** p < 0.001. 
 

3.4 Discussion and Conclusion 
We presented an investigation of the electrical phenotypes of several human iPSC-derived 

neuronal cell lines using HD-MEAs. We showed that HD-MEA technology - despite the low 

signal amplitudes of the hiPSC-derived neurons of approx. 30 µV to 45 µV - enables a reliable 

discrimination of the electrical activity of different neuronal lines at different developmental 

stages and across several levels, ranging from whole-network activity levels to subcellular 

structures. As more and more human iPSC-derived neuronal lines become available[61], the 

possibility to extract and compare a multiparametric set of physiological features across 

different functional levels will improve (i) the functional characterization of those neuronal 

lines in healthy and diseased states and (ii) the evaluation of drug effects upon administration 

in vitro. 

As a first step, we characterized all cell lines by investigating metrics, such as mean firing rate 

(MFR), mean inter-spike interval (ISIcv), mean spike amplitude (MSA) and percentage of 

active electrodes (pAE) (Figure S1 and Figure 2). In a next step, we extracted features from 

network bursts of neuron cultures on MEAs, including burst structure, oscillatory behavior and 

synchronicity[62] (Figure 3 and 4). Finally, we characterized neuronal lines by investigating 

axonal propagation velocities (Figure 5). In contrast to passive MEA devices that feature fixed 

electrode configurations, CMOS-based HD-MEAs offer the possibility to extract all 
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aforementioned metrics from several active regions within a culture[23,63]. This feature enabled 

a reliable distinction of rPCNs from hDNs and hMNs based on the MFR, ISIcv, MSA, and 

pAE. (Figure S1 and Figure 2). Electrophysiological differences between rat primary cultures 

and human cell lines, especially for their firing rate, can possibly be explained by (i) the 

different neuronal maturation status[13], (ii) the different astrocyte maturation status[64], or/and 

(iii) the different astrocyte concentration[64], as has been reported by other authors. 

As for healthy and diseased motor neurons, hyperexcitability was reported in iPSC-derived 

motor neurons harboring A4V SOD1 mutations[10] and C9ORF72 repeat expansions[65]. In 

studies with motor-neuron-like cell lines, transfected with mutant Q331K TDP-43, the authors 

found that the TDP-43 mutation increased the firing frequency of action potentials[66,67]. In our 

characterization of motor neuron electrical activity, we did not find a higher mean firing rate 

or mean spike amplitude in hMN-ALS neurons as compared to control hMNs (Figure 2). In 

contrast, we found that the hMN-ALS burst duration was 4.2-fold longer (16 sec) than that of 

control hMNs at DIV 21 (Figure 3). 

As for healthy and diseased dopaminergic neurons, a higher network-bursting activity of A53T 

α-synuclein PD neurons, in comparison to a human control line, was reported by Zygogianni 

et al.[68], while other studies of network properties of PD neurons with mutations in the LRRK2 

gene found that diseased neurons lacked synchronous network bursting activity[69]. Here, we 

found an increased frequency in synchronized population bursting activity for PD neurons, 

which is in agreement with the findings of Zygogianni et al.[68] (Figure 3). Furthermore, we 

found that PD neurons featured shorter burst duration and more variable inter-burst intervals 

compared to healthy dopaminergic neurons (Figure 3), which, again, is in agreement with the 

findings of Zygogianni [68].  

Comparing the healthy and diseased lines by their AP propagation velocity, we found an 

increased axonal AP-conduction velocity in Q331K TDP-43 neurons (Figure 5), which could 

be correlated with altered axonal excitability properties reported in previous ALS studies[70,71]. 

Human motor-neuron lines feature larger AP spike amplitudes than dopaminergic-neuron lines, 

so that a more reliable extraction of axonal signals and differences in axonal propagation 

velocity between cell lines at different DIVs was possible. However, it is important to notice 

that the commercially available human iPSC-derived lines, used in this study, do not contain 

100% motor neurons or 100% dopaminergic neurons (see Methods, Cell Lines) (Figure 1), so 

that caution is advised in the interpretation of the data. Moreover, it is important to mention 

that only one line of h-iPSC derived neurons was used in each study group and that donor-to-
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donor differences, somatic mutations and experimental conditions greatly affect the 

electrophysiological properties of h-iPSC-derived neurons. 

For a reliable comparison of subcellular features of genetically defined cell lines it is necessary 

to make sure that only neurons of the specified genetic type are characterized, which can be 

achieved by using the following experimental techniques or combinations thereof: (1) 

purification of neuronal lines by FACS sorting and subsequent plating[10]; (2) activation and 

identification of genetically-defined neurons in a mixed population by expression of opto- and 

chemogenetic markers, driven by cell-type-specific promoters[72]; (3) identification of cell 

types by extraction and classification of extracellular AP waveform features[73,74].    

In a prototype drug dosage experiment, we evaluated the drug effects upon administration in 

vitro (Figure 6). We used retigabine, a potassium channel opener, which decreases neural 

activity. As expected, retigabine significantly decreased the percentage of active electrodes, 

the number of spikes per minute, and increased the inter-burst interval with increasing 

concentration (Figure 6). Experiments were performed at DIV 14, as cultures were stable and 

characterized by network synchronous activity. Additionally, we investigated the effect of 

retigabine at DIV 21 and recorded similar compound effects. However, retigabine dosage had 

less effects on the measured metrics at DIV 21, and the data variation was larger than at DIV 

14.  

We did not find significant changes in AP propagation velocity across axonal arbors upon 

increasing drug dose (Figure 6). Nevertheless, owing to the high spatial resolution of the HD-

MEA, we could reliably monitor the same neurons and their axonal arbors before and after 

drug treatment, so that we propose to include this new metric in the assessment of compound 

effects. We found that the number and density of used electrodes strongly influence the nature 

and number of metrics that can be used to assess drug effects (Figure 6). In particular, the 

availability of a comparably large number of electrodes (1’020 electrodes simultaneously) 

enabled to capture the dynamics of multiple neurons, which increases the reliability of 

extracted metrics, such as recorded spikes/min. Additionally, our results showed that the use 

of a large number of flexible recording sites entailed a significantly lower intra-culture and 

culture-to-culture fluctuation as compared to applying fixed electrode configurations. By 

selecting readout electrodes, we could target areas, where active neurons were located, while 

fixed-grid arrangements do not offer this possibility. However, the results reported on here 

cannot be used to directly conclude on the performance of commercially available MEAs 

featuring less electrodes, as the electrode size also plays a role (averaging effect, see, e.g., 

reference[75]), which was not taken into account here. 
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In conclusion, HD-MEA technology enables to conduct non-invasive assays and to extract 

highly reproducible metrics, such as mean firing rate, mean spike amplitude and burst shape, 

for studying disease mechanisms at a functional level for a multitude of human neuronal 

lines[76]. In addition, HD-MEA technology provides accurate readouts at single-cell and 

subcellular levels, which can be used as complementary metrics for assessment of drug effects 

in human neuronal cultures[77].  

 

3.5 Methods 

3.5.1 High-Density Microelectrode Arrays 
CMOS-based HD-MEAs[23,63] were used to record the extracellular signals of human iPSC-

derived and rat primary neurons. The HD-MEA features 26’400 electrodes organized in a 120 

´ 220 grid within a total sensing area of 3.85 ́  2.10 mm2. The electrode area is 9.3 × 5.45 µm2, 

and the center-to-center electrode distance (pitch) is 17.5 µm, which allows for recording of 

cell electrical activity at subcellular resolution. A user-selected configuration of 1’024 

electrodes can be simultaneously recorded from (see also Methods, HD-MEA Recordings). The 

HD-MEA features noise values of 2.4 µVrms in the action potential band of 0.3 - 10 kHz and 

has a programmable gain of up to 78 dB. The sampling frequency is 20 kHz. We used the 

MaxOne HD-MEA produced by MaxWell Biosystems AG (www.mxwbio.com) and the 

laboratory version of the same HD-MEA[63], which only differs in the design of the printed 

circuit board (PCB).  

 

3.5.2 Cell Lines 
Human iPSC-derived neurons and astrocytes (iCell® DopaNeurons, iCell® Motor Neurons, 

iCell® DopaNeurons A53T, iCell® Motor Neurons Q331K, iCell® Astrocytes) were purchased 

from FCDI (FUJIFILM Cellular Dynamics International, Madison, USA). We used two 

dopaminergic-neuron cell lines: a mixed population of healthy A9 and A10 subtype human 

dopaminergic neurons (hDNs), which have been demonstrated to express relevant midbrain 

dopamine neuronal markers (see also Figure 1), and an isogenic variant harboring the early-

onset mutation A53T α-synuclein (hDN-PD) as a disease line. The A53T α-synuclein mutation 

renders α-synuclein susceptible to aggregation, which has been proposed as contributor to PD 

pathology[78].  
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We used healthy human spinal motor neurons (hMNs) with expression of characteristic motor 

neuron markers (e.g. SMI-32), and an isogenic diseased motor neuron cell line carrying the 

TDP-43 Q331K mutation (hMN-ALS). Dominant mutations in the RNA/DNA-binding protein 

TDP-43 have been linked to amyotrophic lateral sclerosis (ALS)[79].  

We used co-cultures of human motor neurons (hMN: 93% Tuj+ / Nes--, 93% Isl1/2+1 at 14dPT 

by flow cytometry) and astrocytes (98% CD44+/S100b+, 74% GFAP+, 2% Tau+, by flow 

cytometry) and co-cultures of human dopaminergic neurons (hDN: 92% Map2+ / Nes, 81% 

FoxA2+, 89% TH+ by flow cytometry) and astrocytes at a ratio of 5:1. Astrocytes were added, 

as they support neuronal functioning in cultures, enhance the culture development[80] and 

mediate network synchronicity[81]. In particular, healthy astrocytes, co-cultured with healthy 

and diseased cell lines, help to achieve stable cultures and enable to correlate observed 

electrophysiological phenotypes to specific neuronal types. 

Rat primary neurons were obtained from dissociated cortices of Wistar rats at embryonic day 

18, using the protocol described in Ronchi et al., 2019[82]. All animal experimental protocols 

were approved by the Basel-Stadt veterinary office according to Swiss federal laws on animal 

welfare and were carried out in accordance with the approved guidelines.  

 

3.5.3 Cell Plating 
Prior to cell plating, HD-MEA chips were sterilized using 70% ethanol for 30 minutes. Ethanol 

was then removed, and the chips were rinsed three times with sterile tissue-culture-grade water. 

The HD-MEA chips were coated with chemicals to render the surface more hydrophilic. We 

adopted two different coating protocols suggested by the FCDI guidelines, depending on the 

cell type: for the motor-neuron plating, we treated the surface poly-D-lysine (PDL, 20 µL, 0.1 

mg/mL) (A3890401, Gibco, ThermoFisher Scientific, Waltham, USA) for 1 hour at room 

temperature; for the dopaminergic-neuron plating, we used poly-L-ornithine (PLO, 20 µL, 0.05 

mg/mL) solution (A-004-C, Sigma-Aldrich, St. Louis, USA) for 2 hours in a 5% CO2 cell 

culture incubator at 37 °C. The PDL and PLO solutions were then aspirated, and the electrode 

surfaces were rinsed three times with sterile water. 

On the plating day, extracellular-matrix-protein solutions were added to promote cell adhesion. 

Before plating the motor neurons, Geltrex extracellular-matrix solution (10 µL, 0.16 mg/mL) 

(A1569601, Gibco) was pipetted onto the array and left for 1 hour at room temperature. Before 

plating the dopaminergic neurons, Laminin solution (10 µL, 80 µg/mL) (L2020-1MG, Sigma-

Aldrich) was pipetted onto the array for 30 minutes at 37 °C. 
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Frozen neuron and astrocyte vials were thawed for 3 minutes at 37 °C in a water bath, 

thereafter, 7 mL of medium was added to dilute the dimethyl sulfoxide (DMSO). The vials 

were then centrifuged for 5 minutes at 1600 rpm. Neurons and astrocytes were resuspended in 

medium to the desired ratio of 100’000 neurons and 20’000 astrocytes and then plated onto the 

HD-MEA chips in a 10 µL medium drop. The cells on the HD-MEA chips were incubated in 

a 5% CO2 cell-culture incubator at 37°C for 1 hour. After cell adherence to the HD-MEA-chip 

surface, each well was filled with 0.6 mL of maintenance medium (see below). A 50% medium 

exchange was performed one day after plating, followed by 33% medium exchanges twice a 

week. 

Maintenance medium consisted of Brainphys (05790, STEMCELL Technologies, Vancouver, 

Canada), supplemented with 2% iCell neural supplement (type B for dopaminergic neurons, 

type A for motor neurons) (FCDI), 1% iCell nervous-system supplement (FCDI), 1% of 100X 

N-2 supplement (17502048, Gibco), 0.1% laminin (L2020-1MG, Sigma-Aldrich) and 1% of 

100X penicillin-streptomycin (15140122, Gibco). 

During the first week in vitro, motor-neuron medium was supplemented with 5 µM DAPT 

(D5942, Sigma-Aldrich) to prevent outgrowth of proliferative cells. 

E18 rat primary cortical neurons were isolated, plated and maintained according to protocols 

described previously[82]. 

 

3.5.4 HD-MEA Recordings 
Recordings were performed weekly, starting from DIV 7. The recording setup was placed 

inside a 5% CO2 cell-culture incubator at 37 °C, which entailed a stable pH-value of the cell 

culture medium. We used the “Activity Scan Assay” and “Network Assay” modules, featured 

in the MaxLab Live software (MaxWell Biosystems AG, Zurich, Switzerland), to monitor and 

record neuronal electrical activity. Seven electrode configurations, including a total of 6’600 

electrodes at a pitch of 35 µm (every second electrode in x and y), were used to map 

spontaneous neuronal electrical activity across the entire HD-MEA chip. Each electrode 

configuration was recorded during 120 seconds (“Activity Scan Assay”). After scanning the 

entire HD-MEA, we selected 1’024 electrodes from the identified active electrodes and 

recorded network electrical activity for 300 seconds (“Network Assay”). Active electrodes 

were identified based on their firing rate, and among those the 1’024 electrodes featuring the 

highest firing rates were selected. The number of used HD-MEAs per condition (N) is always 

indicated in the figures in the Results section. 
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3.5.5 Data Analysis 
Data analysis was performed using custom-written codes in MATLAB R2019a and Python 

3.6.10.  

HD-MEA Metrics 

To characterize and compare the neuronal cultures, we used two categories of metrics: 

electrode metrics and well metrics. Metrics were first computed at electrode level. Then, the 

electrode metrics were averaged to represent a single HD-MEA chip or well. A spike was 

defined as a negative voltage deflection, whose amplitude exceeded 5 times the standard 

deviation of the baseline noise. Metrics indicated with asterisks (*) were adapted from Tukker 

et al., 2018[43] and Cotterill et al., 2016[46]. The following parameters and metrics were used to 

assess neuronal characteristics. 

1. Electrode firing rate (eFR) was defined as the number of spikes	𝑛"
': observed in a pre-

defined time interval T, recorded on a single electrode i: 

𝑒𝐹𝑅" =	
𝑛"
':

𝑇
	 (1) 

2. Well mean firing rate* (MFR) was defined as the mean of the eFR computed over the most 

active (electrodes with highest eFR) 1’024 electrodes (N = 1’024), simultaneously 

recorded: 

𝑀𝐹𝑅 =
1
𝑁B𝑒𝐹𝑅"

;

"<=

	 (2) 

3. Electrode spike amplitude (eSA) was defined as the 90th percentile of the recorded spike 

amplitudes on a single electrode i: 

𝑒𝑆𝐴" =
90
100	× 𝑀" 	 (3) 

where Mi is the length of the corresponding spike-amplitude vector, with amplitudes sorted 

from the smallest to the largest value. 

4. Well mean spike amplitude (MSA) was defined as the mean of the eSA, computed over the 

most active 1’024 electrodes (N = 1’024), simultaneously recorded: 

𝑀𝑆𝐴 =
1
𝑁B𝑒𝑆𝐴"

;

"<=

	 (4) 

5. Electrode inter-spike interval coefficient of variation (eISIcv) was defined as the inter-spike 

interval (ISI) standard deviation, divided by the ISI mean (𝜇𝐼𝑆𝐼), where the ISI is the time 

difference between two consecutive spikes times 𝑡>, recorded on a single electrode i: 
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𝜇𝐼𝑆𝐼" =	
1

𝑁': − 1
B J𝑡>?= − 𝑡>K

;%&)=

><=

	 (6) 

𝑒𝐼𝑆𝐼𝑐𝑣" =

O 1
𝑁': − 1

× ∑ QJ𝑡>?= − 𝑡>K − 𝜇𝐼𝑆𝐼"Q
0;%&)=

><=

𝜇𝐼𝑆𝐼"
	 (7)

 

6. Well inter-spike interval coefficient of variation* (ISIcv) was defined as the mean of the 

eISIcv, computed over the most active 1’024 electrodes (N = 1’024), simultaneously 

recorded: 

𝐼𝑆𝐼𝑐𝑣 =
1
𝑁B𝑒𝐼𝑆𝐼𝑐𝑣"

;

"<=

	 (8) 

7. Well percentage of active electrodes (pAE) was defined as the percentage of electrodes with 

eFR > 0.1	Hz	and eSA < −15	µV, per well. All electrode metrics described above (1-6) 

and all well metrics described below (8-11) were only computed for electrodes satisfying 

these two conditions for active electrodes (eFR > 0.1	Hz	and eSA < −15	µV). 

8. Well mean burst duration* (BD) was defined as the average duration of the network 

oscillations (bursts), recorded in a well: 

𝐵𝐷 =
1
𝑁@

BJ𝑡A,C − 𝑡',CK
;'

C<=

	 (9) 

where 𝑁@ is the number of bursts, 𝑡A represents the burst end point and 𝑡' the burst starting 

point as illustrated in Figure S6. The fast Fourier transform (FFT) was used to compute the 

main oscillation frequency and to correct for false positives as a consequence of high oscillation 

frequencies within each burst. 

9. Well mean inter-burst interval* (IBI) was defined as the average time between the starting 

points of consecutive network bursts per well: 

𝐼𝐵𝐼 =
1

𝑁@ − 1
B J𝑡',C?= − 𝑡',CK
;')=

C<=

	 (10) 

10. Well mean inter-burst interval coefficient of variation* (IBIcv) was defined as the inter-

burst interval standard deviation, divided by the inter-burst interval mean (𝐼𝐵𝐼) per well: 

𝐼𝐵𝐼𝑐𝑣 =
b 1
𝑁@ − 1

× ∑ QJ𝑡',C?= − 𝑡',CK − 𝐼𝐵𝐼Q
0;')=

C<=

𝐼𝐵𝐼 	 (11)
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11. Well bursts/min* (B/min) was defined as the average number of bursts per one-minute time 

interval: 

𝐵/!"# =
𝑁@
𝑡!
		 (12) 

where tm represents the total recording time in minutes. 

12. Well Pearson correlation coefficient (PCC) was defined as the average linear correlation 

between the network bursts of a well and a network burst template representing a specific 

cell type: 

𝑃𝐶𝐶C =
1

𝑁, − 1
Bd

𝑏, − 𝜇@
𝜎@

gh
𝑡𝑒𝑚𝑝, − 𝜇&A!:

𝜎&A!:
j

;(

,<=

	 (13) 

𝑃𝐶𝐶 =
1

𝑁@ − 1
B 𝑃𝐶𝐶C

;')=

C<=

	 (14) 

where 𝑃𝐶𝐶C represents the PCC between a single burst b (of mean 𝜇@ and standard deviation 

𝜎@) and a template temp, 𝑁, the number of observations in the burst and PCC the mean of all 

𝑃𝐶𝐶C values computed in a specific well. 

To characterize cell types according to their burst shape, eight templates were created, covering 

all cell types (hMN, hMN-ALS, hDN, hDN-PD) and each recorded DIV (14 and 21). The 

templates (𝑡𝑒𝑚𝑝) were obtained by averaging all recorded bursts in a well (𝑡𝑒𝑚𝑝E) and across 

wells of the same cell type and DIV[83]: 

𝑡𝑒𝑚𝑝E =
1
𝑁@

B𝑏C

;'

C<=

,			𝑡𝑒𝑚𝑝 = 	
1
𝑁E

B 𝑡𝑒𝑚𝑝E

;)

E<=

	 (15) 

where 𝑁@ is the number of bursts per well, 𝑏C denotes a single burst in a well, and 𝑁E is the 

total number of wells featuring a specific cell type and DIV. 

Spike Sorting 
Spike sorting was performed to identify single units in the extracellular recordings. We ran 

spike sorting on the recordings, with which we covered the entire chip area (“Activity Scan 

Assay”) by using seven configurations of 960 electrodes (35 µm electrode pitch). We used the 

Kilosort2[84] software within the SpikeInterface[85] framework and the corresponding default 

parameters. Due to the large number of recordings, we automatically curated the spike sorting 

output according to the following criteria: for motor neurons, we removed clusters with less 

than 100 spikes, an ISI violation rate[86] above 0.3, and a signal-to-noise ratio (SNR) below 5; 

for dopaminergic neurons featuring less activity and lower signal amplitudes (Figure 3b), we 
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removed clusters with less than 50 spikes and an SNR below 3 (the threshold on ISI violation 

rate was the same). Automatic curation was performed using the SpikeInterface package[87]. 

Action Potential Propagation Velocity 

Spike sorted and curated units were used to estimate the propagation velocity of action 

potentials. We discarded units with a small spatial extension template (averaged extracellular 

waveforms), and only kept units whose template covered at least 10 electrodes with an 

amplitude of more 10% of the maximum amplitude of the given unit. With these templates, we 

used a graph-based approach to find distinct neuronal branches. For each template, we 

considered the electrodes featuring a signal with an amplitude of at least 5% of the maximum 

amplitude and with a kurtosis value above 0.3 to filter out channels without a distinct signal 

peak. We then sorted the selected electrodes according to the time difference of the signal peak 

occurrence on that electrode with respect to the signal peak occurrence on the electrode 

showing the maximum signal amplitude, which most likely was close to the axon initial 

segment[49]. We then built a graph with the selected electrodes as nodes (Figure S7). Starting 

from the nodes with latest peak occurrence times (largest time difference)[88], each node was 

connected with edges to the three nearest electrodes with an earlier peak time. These three 

electrodes then formed the next set of nodes from which the procedure continued. Once the 

graph with all edges and nodes was built, we looked for the shortest paths along the nodes from 

each node to the electrode where the initial signal occurred, again starting from the electrodes 

with latest peak times or largest time differences. If an electrode formed already part of a path, 

it could not be used for another path. Finally, we removed duplicate paths by discarding the 

paths, where 50% of the nodes were in close proximity (<50 µm) to nodes of other paths. For 

the selected branches, distances were computed as the cumulative distance of all nodes between 

the initial electrode and the end of the path, while the peak times at the nodes included the 

differences between the peak time at the respective electrode and that at the initial electrode. 

Velocities were then estimated using a linear regression on the peak time differences and 

cumulative distances. We discarded branches with an r2<0.9, and in cases that the algorithm 

found more than one branch for a template, we kept only the one with the highest r2. 

 

3.5.6 Statistical Analysis 
Statistical comparisons between two populations were performed by using the non-parametric 

Wilcoxon rank sum test. Given two populations, the null hypothesis states that for randomly 

selected values A and B, drawn from each population, the probability of A being larger than B 
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is equal to the probability of B being larger than A. To compare samples from more than two 

populations, we used the Kruskal-Wallis H test. Its null hypothesis is that the distribution of 

the dependent variables is the same across the considered populations. In case the null 

hypothesis was rejected, we performed a post-hoc Dunn test with Sidák correction for multiple 

comparisons (Dunn-Sidák multiple-comparison test). 

Statistical analysis was performed in MATLAB R2019a. Sample sizes and data presentation 

methods are indicated in the legends of each figure. 

 

3.5.7 Drug Administration 
Retigabine (90221, Sigma-Aldrich), dissolved in DMSO (D2650, Sigma-Aldrich) was applied 

at concentrations of 1 µM, 5 µM and 10 µM to a co-culture of healthy human motor neurons 

and astrocytes, similar to the experimental procedures reported by Wainger et al., 2014[10]. The 

vehicle control consisted of culture medium and DMSO (D2650, Sigma-Aldrich).  

We performed recordings of motor neurons on each HD-MEA immediately before retigabine 

administration. We then conducted measurements one minute after drug administration. Data 

recorded after drug administration were normalized to data recorded before drug administration 

as (Parameterexposure / Parameterbaseline) ×100[89]. Hereafter, the ratio was normalized in 

reference to the values obtained with vehicle control[89]. 

Drug effects were quantified about one minute after dosage by using the following metrics: 

spikes/min (𝑆/!"#), percentage of active electrodes (pAE) and mean inter-burst intervals (IBIs) 

(see Methods, HD-MEA Metrics).  

The metric spikes/min (Figure 6b) for 1’024, 64 and 16 electrodes was computed as: 

𝑆/!"# =
𝑛':

𝑡 	 (16) 

Where 𝑛': is the total number of spikes recorded from all the recording electrodes during the 

recording time 𝑡 in minutes. The resulting metric value, obtained from a drug-treated HD-MEA 

chip, was then normalized to the corresponding metric value, obtained from an untreated HD-

MEA chip, in order to obtain a relative metric change (percent change) induced by the addition 

of the compound. 

 

3.5.8 Microscopy and Staining 
Neurons on HD-MEAs were fixed using a 4% paraformaldehyde solution (FB001, 

ThermoFisher Scientific). Fixation prevented cell necrosis and autolysis and preserved the 
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cellular constituents. Samples were then permeabilized and blocked using a BPS 10´ 

(AM9625, ThermoFisher Scientific) solution containing 10% normal donkey serum (NDS) 

(017-000-001, Jackson ImmunoResearch, West Grove, USA), 1% bovine serum albumin 

(BSA) (05482, Sigma-Aldrich), 0.02% Na-Az (S2002, Sigma-Aldrich) and 0.5% Triton X 

(93443, Sigma-Aldrich). Permeabilization facilitated antigen access to the cell, while blocking 

prevented non-specific binding of antibodies to the tissue. Primary and secondary antibodies 

were diluted in a PBS solution containing 3% NDS, 1% bovine serum albumin (BSA), 0.02% 

Na-Az and 0.5% Triton X[82]. The used antibodies are listed in Table 1. 

We imaged cells on the HD-MEA chip with a Nikon NiE upright confocal microscope, with a 

Yokogawa W1 spinning-disk scan head. 

 

Table 1. Antibodies. The table describes primary and secondary antibodies used in this work. 
 
Antibody Supplier Ratio Binds to Catalogue # 
Anti MAP2 EnCor 1:500 Microtubules CPCA-MAP2 
Anti TH Pel Freeze 1:1000 Tyrosine hydroxylase 

enzyme 
P60101-150  

Anti GFAP Abcam 1:500  GFAP Ab7260 
Anti S-100 Abcam 1:200 Zn Ab52642 
Anti Smi-32 Abcam 1:500 Neurofilaments Ab7795 
Hoechst Thermofisher 

Scientific 
1:500 DNA H3570 
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3.10 Supporting Information 
Figure S1. Characterization of rat primary cortical neurons across development 

To have a comparison for the electrical activity patterns of the human iPSC-derived neuronal 

lines, the developmental stage of which may greatly vary, and for the metrics described in the 

Methods section, we measured the electrical activity of rat primary cortical neurons (rPCNs), 

the most commonly used neuronal cells in the microelectrode-array field and an established in-

vitro culturing system, across development. We plated rPCNs on 5 HD-MEAs, and we 

followed their development from DIV 7 to DIV 21. 

The electrical activity of the rPCNs was assessed by recording spontaneous neuronal action 

potentials across the whole HD-MEA-chip active area and by then computing the following 

metrics: (1) mean firing rate (MFR), (2) mean spike amplitude (MSA), (3) mean inter-spike 

interval (ISI) coefficient of variation (ISIcv) and (4) percentage of active electrodes (pAE) (see 

Figure S1a, S1b and Methods, HD-MEA Metrics). rPCN cultures showed a 3.8-fold increase 

in the mean firing rate (p < 0.025, Kruskal-Wallis test, followed by Dunn-Sidák multiple-

comparison test) from DIV 7 (0.54 ± 0.07 Hz) to DIV 21 (2.07 ± 0.99 Hz), as well as a 5.6-

fold increase in the percentage of active electrodes (p < 0.025) from DIV 7 (8.6 ± 2.0 %) to 

DIV 21 (48.6 ± 15.7 %) (Figure S1c). The mean spike amplitude increased 1.5 fold from DIV 

7 (64.9 ± 7.6 µV) to DIV 14 (95.7 ± 7.7 µV) and then stabilized between DIV 14 and DIV 21 

(95.0 ± 9.0 µV) (Figure S1c). The mean ISI coefficient of variation increased 2.16 fold (p < 

0.025) during culture development, with values of 1.53 ± 0.08 at DIV 7 and 3.31 ± 0.26 at DIV 

21, which indicated that the firing rate in rat neurons became less regular during development 

(Figure S1c). Overall, rPCNs showed an increase in mean firing rate and percentage of active 

electrodes across development, as well as an increase in mean spike amplitude and irregularity 

of neuronal spiking (Figure S1c), as has been reported in other studies characterizing the 

electrical activity of neocortex neurons by MEA technology[46,73]. 
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Figure S1. Electrical phenotype characterization of rat primary cortical neurons across 
development. 
(a) Exemplary 2D spatial distribution maps of electrode firing rates (eFR), electrode spike 
amplitudes (eSA), electrode ISI coefficients of variation (eISIcv) and active electrodes across 
a total of 6’600 electrodes (see Methods, HD-MEA Metrics). The colors in each map represent 
the measured value of the given metric. The four maps have been acquired from one rPCN 
HD-MEA chip at DIV 21. (b) Exemplary distributions of metrics for one rPCN HD-MEA chip 
at DIV 21: first panel: distribution of eFRs; second panel, distribution of eSAs; third panel, 
distribution of eISIcvs; fourth panel, distribution of pAEs. Distribution means are indicated by 
red vertical lines. (c) Bar plots comparing mean firing rate (MFR), mean spike amplitude 
(MSA), mean ISI coefficient of variation (ISIcv) and percentage of active electrodes (pAE) of 
5 different rPCN HD-MEAs (N = 5) at DIVs 7, 14 and 21 (see Methods, HD-MEA Metrics). 
Each red dot represents one HD-MEA or one well. The bar heights indicate the distribution 
mean values, and error bars indicate standard deviations. To compare multiple groups, we used 
the Kruskal-Wallis test, followed by the Dunn-Sidák multiple-comparison test. Data of DIV 7 
were compared to those of DIV 14 and DIV 21. The individual pair-wise test was conducted 
at the Sidák-corrected a value of 0.025. The black stars indicate p values: * p < 0.025.  
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Figure S2. Burst reproducibility across samples and HD-MEAs.  
Population spike time histograms simultaneously recorded from 1’024 electrodes of hMN 
(blue), hMN-ALS (light blue), hDN (red), hDN-PD (orange) and rPCN (black) cultures at DIVs 
7 (first column), 14 (second column), 21 (third column). Bars at the left of the graphs in the 
third column indicate the spiking frequency. 
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Figure S3. Single-neuron action potential spatial distributions. 
Spatial distribution of action potential (AP) waveforms of sample neurons of hMN (top left), 
hMN-ALS (bottom left), hDN (top right), hDN-PD (bottom right) neuronal lines. Each trace 
represents a cutout of 6 ms of extracellular voltage signal, recorded on the respective electrode 
at DIV 28. The red traces indicate the waveforms on the electrode featuring the largest signal 
amplitude. The plots are identical with those in Figure 6a and are enlarged for better visibility. 
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Figure S4. Retigabine dosage at different DIVs to healthy and diseased hMN lines. . 
(a) Results of drug dosage to hMNs at DIV 21. Metrics Spikes/min (left) and pAE were used 
to assess the effects of retigabine upon dosage of concentrations of 1 µM, 5 µM and 10 µM. (b) 
Results of drug dosage to hMN-ALSs at DIV 14. Metrics Spikes/min (left) and pAE were used 
to assess the effects of retigabine upon dosage of concentrations of 1 µM, 5 µM and 10 µM.  
To compare multiple groups, we used the Kruskal-Wallis test, followed by the Dunne-Sidák 
multiple-comparison test. The individual pair-wise test was conducted at the Sidák-corrected a 
value of 0.017. The black stars indicate p values with respect to vehicle control: * p < 0.017, 
** p < 0.001. 
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Figure S5. Retigabine well-to-well variability as a function of recording electrodes. 
(a) Electrode configurations to assess retigabine effects described in Figure 6d and 6f. For the 
first configuration (left), 1’020 electrodes at a minimum pitch of 35 mm were selected from 
the active regions across the whole HD-MEA, i.e., the 1’020 electrodes recording the highest 
firing rates. We also used 8×8 (center) and 4×4 (right) electrode grid configurations with 200 
mm electrode pitch. Each electrode configuration was measured before and after retigabine 
dosage to assess the drug effects. (b) Six different configurations of 8×8 and 4×4 electrodes 
were selected for each HD-MEA used for the drug dosage experiments (N = 4 HD-MEAs for 
vehicle control and 1 mM concentration, N = 5 HD-MEAs for 5 mM and 10 mM concentrations) 
and were used to assess variability of the spikes/min results, obtained with the fixed electrode 
configurations across a culture, with respect to variations from culture to culture and to see in 
how far local effects may influence the results obtained with those low-density configurations. 
The measurement points originating from low-density electrode configurations in the same 
culture are indicated in the same color. Bar plots represent the relative change in spikes/min 
upon exposure to vehicle control, 1 µM, 5 µM and 10 µM of retigabine, normalized to pre-
treatment conditions. Bars indicate distribution mean values, and error bars indicate standard 
deviations. The dashed gray line marks the values (100%) before drug treatment. (c) The 
configurations displayed in panel (b) were used to assess variability of the IBI results obtained 
with the fixed electrode configurations across a culture with respect to variations from culture 
to culture. The measurement points originating from low-density electrode configurations in 
the same culture are indicated in the same color. Bar plots represent the relative change in mean 
IBI upon exposure to the vehicle control, 1 µM and 5 µM of retigabine, normalized to pre-
treatment conditions.  
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Figure S6. Burst duration computation.  
Representative spike time histogram recorded by 1’020 electrodes. The burst duration was 
computed by fixing a threshold (dashed line) at 50% of the maximum burst amplitude (red). 
Start (green) and end points (blue) were placed at the intersection of spike time histogram and 
threshold. 
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Figure S7. Axonal propagation velocity algorithm. 
(a) Original template of a neuron obtained after spike sorting. (b) Selection of a subset of 
electrodes to obtain a “clean” template based on 3 criteria: (i) spike amplitude on a selected 
electrode >	5% of the maximum signal amplitude of the respective neuron; (ii) the signal 
kurtosis on a selected electrode > 0.3 (in order to filter out electrodes without a clear peak); 
and (iii) the peak time point of a selected electrode must occur after the peak time of the 
electrode with the highest amplitude (initial electrode). (c) The nodes of the graph 
correspond to the electrodes selected according to the procedure in (b). Starting from the 
nodes with latest peak occurrence times (largest time difference), each node was connected 
with edges to the three nearest electrodes with an earlier peak time within a distance of 50 
µm. These three electrodes then formed the next set of nodes from which the procedure 
continued. If an electrode formed already part of a path, it could not be used for another path 
(d-e). Duplicate paths removal by discarding the paths, where 50% of the nodes were in close 
proximity (<50 µm) to nodes of other paths. (f) Velocity estimation using a linear regression 
on the peak time differences and cumulative distances. Branches with an r2 < 0.9 were 
discarded, and in cases that the algorithm found more than one branch for a template, only 
the one with the highest r2 was kept. 
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4 TDP-43 PROTEINOPATHY IN HUMAN NEURAL 
NETWORKS EXPLORED AT THE SINGLE-CELL LEVEL 

Manuscript in preparation in collaboration with the Polymenidou group of University of 

Zurich (UZH). 
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4.1 Introduction 
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder, characterized by 

the degeneration of both upper and lower motor neurons[1–3]. ALS is predominantly sporadic 

with approx. 90% to 95% of individuals developing a form of the disease with unknown 

causative mutations [4]. The other 5-10% of cases are caused by a mutation in one of the many 

ALS-associated genes and, thus, have a familial history with the disease[4]. ALS is 

characterized by a fast clinical progression, it starts with muscular degeneration, which results 

in paralysis and ultimately leads to death within 3-5 years since onset, most commonly due to 

respiratory problems[4]. TAR DNA-binding protein 43 (TDP-43) is a predominantly nuclear 

protein that plays an important role in RNA biogenesis, including pre-mRNA splicing, RNA 

transport and miRNA biogenesis[5]. While many mutations in TARDBP itself lead to familial 

ALS, cytoplasmic mislocalization, post-translational modification[3] (hyperphosphorylation, 

ubiquitination) and subsequent aggregation of TDP-43 in affected neurons have been identified 

as important features of both sporadic and familial ALS[5–9]. This results in the so-called TDP-

43 proteinopathy, which can be found in approx. 97% of all ALS cases and other 

neurodegenerative diseases, such as frontotemporal dementia, LATE (late-predominant age-

related TDP-43 encephalopathy) or as a concomitant pathology in Alzheimer’s disease.  

Human induced-pluripotent-stem-cell[10,11] (iPSC)-derived neurons and astrocytes have been 

used in the past years to evaluate ALS genetic factors[12] and exposure to compounds[4,13]. iPSC 

technology offers unprecedented possibilities to study neurodegenerative diseases in vitro, 

recapitulating aspects of the disease that are present in humans, but not in animal models. 

Electrophysiology techniques have been employed to study iPSC maturation[14] and to 

characterize disease phenotypes. Recent studies on human iPSC-derived motor neurons[15] 

explored the electrophysiological effects of a mutation in the gene TARDBP, which encodes 

for the protein TDP-43. Results from voltage and current clamp analysis showed an initial 

neuronal hyperexcitability, followed by a loss in synaptic activity and generation of action 

potentials. 

Similarly, all-optical electrophysiology studies on the ALS SOD1 mutation showed an increase 

in neuronal spontaneous activity[16]. Other researchers, making use of microelectrode arrays 

and patch clamp, demonstrated the hyperexcitability of motor neurons in the ALS SOD1 

mutation and reduced it by dosing the potassium channel opener retigabine. 
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However, to the best of our knowledge, there is no precedent electrophysiology study, aimed 

at following the disease in vitro over time, which explores network, single-cell and subcellular 

electrophysiological parameters.  

In this study, we used high-density microelectrode arrays (HD-MEAs)[17], in-vitro long-term 

and non-invasive platforms for high-resolution and high-content electrophysiology. We used 

HD-MEAs that feature 26’400 electrodes, placed at a center-to-center distance of 17.5 µm, and 

that allow for monitoring of entire neuronal networks as well as for recording 

electrophysiological features at subcellular resolution. We first characterized the maturation of 

neural-stem-cell (NSC)-derived neuronal networks, comparing the electrophysiology of NSCs 

differentiated during 2, 4 and 7 months at multiple time points. Using HD-MEAs, we detected 

differences between the different maturation stages at 2, 4 and 7 months, at network and 

subcellular levels. 

To model TDP-43 pathology in our human neural networks, we transduced 2-months-old 

cultures with lentiviral vectors coding for inducible expression of human wild-type TDP-43 C-

terminally tagged with an HA-tag (TDP-43-HA). TDP-43-HA expression was then induced, 

so that it would be expressed for 2 or 4 weeks when the transduced networks were 3 months 

old. At this point, the networks were dissociated into a single-cell suspension and processed 

for a) HD-MEA plating; b) single cell RNA sequencing (scRNAseq) and c) plated onto imaging 

plates for immunofluorescence assays. Our scRNAseq data demonstrated very high 

reproducibility with our previous single-cell sequencing of wild-type human neural networks, 

with cells clustering into neuronal and glial clusters. However, the mildly TDP-43-HA 

overexpressing neurons (total TDP-43 levels at 1.7x when compared to the non-transduced 

cells) ended up in a new and specific cluster (consisting of approx. 2% of total neurons), which 

allowed us to both, confirm the TDP-43-specific pathology, and to identify novel associated 

genes (data not shown). Both scRNAseq and IF showed that TDP43-HA+ neurons die over 

time and that this decay is associated with a spread of the pathology within the entire network 

as demonstrated by increasing number of TDP-43 p403+ neurons (data not shown). Using HD-

MEAs, we functionally characterized the 2- and 4-weeks-transduced cultures (data not shown). 

 

4.2 Methods 

4.2.1 High-Density Microelectrode Arrays 
CMOS-based HD-MEAs[17,18] were used to record the extracellular action potentials of human-

derived neuronal networks and single neurons differentiated from neural stem cells. The HD-
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MEA features 26’400 electrodes, organized in a 120 ´ 220 grid within a total sensing area of 

3.85 ´ 2.10 mm2. The electrode area is 9.3 × 5.45 µm2, and the center-to-center electrode 

distance (pitch) is 17.5 µm, which allows for recording of cell electrical activity at subcellular 

resolution. Up to 1’024 electrodes can be simultaneously recorded from in user-selected 

configurations. The HD-MEA features noise values of 2.4 µVrms in the action-potential band 

of 0.3 - 10 kHz and has a programmable gain of up to 78 dB. The sampling frequency is 20 

kHz.  

 

4.2.2 Neural Stem Cell Differentiation 
75000 cells/cm2 NSCs were plated in NSC medium (see below) on 0.15 mg/ml Matrigel-coated 

(354234, Corning Inc., New York, USA) 6 well plates and left to recover and proliferate to 

reach ~95% confluency. NSC medium was switched to differentiation medium (see below), 

supplemented with 5 μM Forskolin (AG-CN2-0089-M050, Adipogen AG, Liestal, 

Switzerland), 1 μM synthetic retinoid Ec23 (AMS.SRP002-2, AMS Biotechnology Ltd, 

Abingdon, UK) and 500 nM Smoothened agonist SAG (5666600, Millipore, Merck, 

Darmstadt, Germany) for the first 5 days. On the days 6-10, Ec23 was increased to 2 μM. On 

days 11-25, Ec23 was decreased to 10ng/ml, SAG to 50nM and BDNF (450-02, PeproTech, 

London, UK), GDNF (450-10, PeproTech) and CNTF (C-240, Alomone labs, Jerusalem, 

Israel) were added at 20 ng/ml. From day 26 on, only BDNF, GDNF and CNTF were added. 

Medium was changed daily and completely for the first 10 days. Afterwards, only 2/3 of 

medium was changed 3 times a week.  

NSC medium consisted of DMEM/F12 (21331046, Gibco, Thermo Fisher Scientific, Waltham, 

USA), supplemented with 0.5X B-27 supplement (12587-010, Gibco), 0.5X N-2 supplement 

(17502-048, Gibco), 1X GlutaMAX (35050-061, Gibco), 20 ng/ml bFGF (PHG0261, Gibco). 

Differentiation medium consisted of DMEM/F12 (11330032, Gibco), 0.5X B-27 supplement 

(17504-044, Gibco), 1X N-2 supplement (17502-048, Gibco), 1X GlutaMAX (35050-061, 

Gibco) and 1X Penicillin/Streptomycin (P4333-100ML, Sigma-Aldrich, Merck, Darmstadt, 

Germany). 

 

4.2.3 HD-MEA Plating 
HD-MEAs were sterilized for 40 minutes in 70% ethanol. HD-MEAs were washed three times 

with sterile deionized water (dH2O) and then dried. After sterilization, HD-MEAs were coated 

with 20 µL of poly-D-lysine (P6407, Sigma-Aldrich) (diluted to 50 mg/mL in dH2O) for 1 hour 
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at room temperature to render the surface more hydrophilic; each HD-MEA was then washed 

three times with sterile dH2O and dried. Thereafter, HD-MEAs were coated with 10 µL 

Matrigel (354234, Corning Inc.), previously diluted in plating medium (see below) in a 1:10 

ratio and incubated at 37°C for 2 hours. 

Cells were centrifuged at 188 G-Force for 5 min, supernatant was aspirated, and plating 

medium was added to the cell pellet to reach the desired cell density (200’000 cells/HD-MEA).  

Matrigel was aspirated from HD-MEAs, and cells were plated in a 10 µL drop on the HD-

MEAs. 0.9 mL of medium were added after 2-hour incubation at 37°C. 

50% of plating medium was exchanged one day post plating and subsequently twice a week. 

Plating medium consisted of BrainPhys (05790, Stem Cell Technologies, Vancouver, Canada), 

supplemented with 2% B-27 Supplement (12587-010, Gibco), 1% N-2 Supplement (17502-

048, Gibco), 1% Penicillin/Streptomycin (P4333-100ML, Sigma-Aldrich), 0.25% Glutamax 

(35050-061, Gibco), 20 ng/mL BNDF (450-02, PeproTech), 20 ng/mL GDNF (450-10, 

PeproTech), 20 ng/mL CNTF (C-240, Alomone labs), 20 ng/mL NT-3 (450-03, PeproTech), 

10 µM cAMP (D0260, Sigma Aldrich), 20 ng/mL IGF-1 (78022, Stem Cell Technologies), 5 

µM Forskolin (AG-CN2-0089-M050, Adipogen AG). 

 

4.2.4 HD-MEA Recordings 

The recording setup was placed inside a 5% CO2 cell-culture incubator at 37 °C. Recordings 

were performed using the “Activity Scan Assay” and “Network Assay” modules, featured in 

the MaxLab Live software (MaxWell Biosystems AG, Zurich, Switzerland), as previously 

described[19]. The spontaneous neuronal activity across the whole HD-MEA was recorded 

using 6’600 electrodes in 7 electrode configurations at a pitch of 35 µm for 120 seconds. The 

most “active” 1’024 electrodes were then used to record network electrical activity for 300 

seconds. Active electrodes were identified based on their firing rate, and, among those, the 

1’024 electrodes featuring the highest firing rates were selected.  

 

4.2.5 HD-MEA Metrics 
We used metrics similar to those described in Section 3.5.5, HD-MEA Metrics, to characterize 

and compare the neuronal cultures; we used network, single-cell and subcellular-resolution 

metrics. As network metrics we used the burst duration (BD), inter-burst interval (IBI), inter-

burst interval coefficient of variation (IBIcv), described in Ronchi et al., 2021[19]. As single-

cell metrics we used the mean firing rate (MFR), mean spike amplitude (MSA), inter-spike 
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interval coefficient of variation (ISIcv)[19]. Additionally, we included the following 

extracellular waveform metrics, extracted from SpikeInterface[20], an open-source Python-

based framework to enclose all the spike sorting steps: 

1. Half width half maximum (HWHM), half width of trough of AP wave at half amplitude. 

2. Peak trough ratio (PTr), ration of peak amplitude with respect to amplitude of trough. 

3. Peak to valley (PtV), time interval between peak and valley. 

4. Repolarization slope (RepS), slope between trough and return to baseline. 

5. Recovery slope (RecS), slope after peak towards recovery to baseline. 

As subcellular-resolution metrics, we extracted the action potential velocity (Vel), as described 

in Section 3.5.5, Action potential propagation velocity, and the branch length (BL). 

The percentage of active electrodes (pAE) was also computed to measure the overall number 

of electrodes that could detect action potentials[19]. 

 

4.2.6 HD-MEA Data Analysis 
Data analysis was performed using custom-written codes in MATLAB R2019a and Python 

3.6.10.  

Spike sorting was performed to identify single units in the extracellular recordings. We used 

the Kilosort2[21] software within the SpikeInterface[20] framework and the corresponding 

default parameters. We automatically curated the spike sorting output using the following 

parameters (link): 

1. Inter-spike interval violation threshold (ISIt) = 0.5 

The ISIt takes into account the refractory period, which follows every AP. The assumption is 

that if two APs occurs too close in time, they come from two different neurons. 

2. Firing rate threshold (FRt) = 0.05 

The FRt sets the minimum firing rate for a neuron to be considered as “good” unit. 

3. Signal-to-noise ratio threshold (SNRt) = 5 

The SNRt takes into account the ratio between the maximum amplitude of the mean AP 

waveform and the noise characteristics of the specific channel. 

4. Amplitude cutoff (ACt) = 0.1 

The ACt takes into account the false-negative rate, thus the fraction of spikes per unit with an 

amplitude below the detection threshold. 

5. Nearest neighbors hit rate (NNt) = 0.9 
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After computing the principal component for a unit, the NNt is used to check on the fraction 

of the nearest neighbors that fall into the same cluster. 

 

4.2.7 HD-MEA Statistical Analysis 
Statistical comparisons to compare samples from more than two populations were performed 

using the Kruskal-Wallis H test. In case the null hypothesis was rejected, we performed a post-

hoc Dunn test with Sidák correction for multiple comparisons (Dunn-Sidák multiple-

comparison test). 

Statistical analysis was performed in MATLAB R2019a.  

 

4.3 Results 
Several studies reported the use of human iPSC-derived neurons to analyze and model 

neurodegenerative diseases in vitro[15,22–25]. One of the major challenges of differentiating 

iPSCs into neurons is their maturation stage, as iPSC-derived neurons often resemble fetal 

neurons and lack mature synaptic markers[26]. Here, we used HD-MEAs to characterize the 

electrophysiology of NSCs, differentiated into mature neuronal networks for 2 (2mD), 4 (4mD) 

and 7 (7mD) months, respectively (Figure 1a and 1b). One month before recordings, we plated 

the differentiated neurons onto the HD-MEAs. Recordings were performed on the same day in 

vitro (DIV) for all conditions. At first, we compared the three different maturation stages by 

looking at the network properties. We analyzed the metrics burst duration (BD), inter-burst 

interval (IBI), IBI coefficient of variation (IBIcv) and bursts per minute (Bu/min). Results 

showed a significant decrease in BD between 2mD and 4mD (p=0.014) months and between 

4mD and 7mD months (p=0.001) (Figure 1d and 1e). Interestingly, the IBIcv at 2 months was 

1.5-fold more irregular than at 4 months. Some 2mD HD-MEAs could not be used for network 

analysis, as bursts were not detectable (Figure 1c-e). The percentage of active electrode (pAE) 

increased 2.25-fold between 4mD and 7mD (Figure 1d and 1e). Next, we compared the single-

cell properties of the three different maturation stages after spike sorting of the data using the 

software Kilosort2 (see Methods 4.2.6). Results showed a lower firing rate (MFR) at 2mD with 

respect to 4mD and significant differences in the neuron branch length (BL) between 2mD and 

4mD (p=0.02), suggesting a different maturation stage of the two conditions (Figure 1f-h).  

After analyzing 15 HD-MEA metrics across scales, we have first evidence that the burst 

duration, the higher irregularity of inter-bust interval, the mean firing rate and the shorter 

branching may constitute potential indicators of the maturation stage. 
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Figure 1. Electrophysiological characterization of NSCs maturation stages. (a) HD-MEA 
used for electrophysiology recordings, with cell-culture chamber and electrode array in the 
center. (b) Timeline of experimental procedures. NSC were differentiated for 7, 4 and 2 months 
before recordings with HD-MEAs were conducted. Plating on HD-MEAs was performed 1 
month before recordings. (c) (top) Population spike-time histograms simultaneously recorded 
by ~1000 electrodes from 2mD (left), 4mD (center) and 7mD (right) cultures. (Bottom) Raster 
plots represent the APs recorded from ~1000 electrodes simultaneously (y-axis) during one-
minute recordings (x-axis) from 2mD (left), 4mD (center) and 7mD (right) cultures. Every 
black dot represents an AP. Vertical darker lines indicate a burst, which represents neuronal 
network synchronous activity. (d) Heatmap representing the % change of network metrics of 
2mD and 7mD cultures with respect to metrics of 4mD cultures. (e) Box plots representing the 
burst duration (left) and % of active electrodes (right) of 2mD (left, N=5 for undetected BD 
and N=7 for pAE), 4mD (center, N=7) and 7mD (right, N=7) cultures. Each dot represents one 
HD-MEA. (f) Heat map representing the % change of single-cell and subcellular metrics of 
2mD and 7mD cultures with respect to metrics of 4mD cultures. (g) Box plots representing the 
firing rate (top) and branch length (bottom) of 2mD (left, N=7), 4mD (center, N=7) and 7mD 
(right, N=7) cultures. Each dot represents one HD-MEA. (h) HD-MEA electrical image or 
«footprint» showing the 2D spatial distribution maps of the electrical activity of three neurons 
of 2mD (left), 4mD (center) and 7mD (right) cultures. To compare multiple groups, we used 
the Kruskal-Wallis test, followed by the Dunn-Sidák multiple-comparison test. The individual 
pair-wise test was conducted at the Sidák-corrected a value of 0.02. The black stars indicate p 
values with respect to 4mD: * p < 0.02. 
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5 CONCLUSIONS AND OUTLOOK 

5.1 Conclusions 
High-density microelectrode arrays enable to record the spontaneous activity of single neurons 

and entire neuronal network at high spatiotemporal resolution and for extended time periods. 

In this thesis we presented applications, which exploited the high resolution of the HD-MEAs 

to develop new high-content functional readouts.  

 

5.1.1 Precise single-neuron electrical stimulation 
Electrical stimulation[1,2] in voltage and current modes is typically used to modulate neuronal 

activity. For many in-vivo applications, like retina[3–8] or deep brain stimulation[9,10], 

stimulation precision is key to avoid unwanted side effects. A confined and precise electrical 

stimulation can be achieved by using the most efficient stimulation waveforms in terms of 

amplitude, waveform and overall stimulation time. Previous studies[5,11,12] included 

comparisons between stimulation waveforms in current and voltage mode to optimize 

stimulation efficacy and avoid the stimulation of neighboring neurons or nearby axon bundles. 

However, the used electrode arrays did not allow for subcellular-resolution stimulation and 

readouts. 

In Chapter 2 we proposed stimulation protocols in both, current and voltage mode and explored 

multiple waveforms, durations and amplitudes; we targeted the AIS to ensure the highest 

stimulation efficacy. In voltage mode, we found that the monophasic cathodic and the biphasic 

anodic-cathodic waveforms were most efficient. In current mode, we found that the triphasic 

waveform was the most efficient one. Targeting of the AIS [13,14] allowed us to reach 

stimulation at unprecedented low injection of charges of a few picoCoulombs and with short 

pulses of few microseconds. Additionally, we could reliably read evoked APs through 

electrodes that were only a few micrometers away from the stimulation electrodes. 

Furthermore, we tested the hypothesis that neuron stimulability is dependent on the AIS 

maturation and growth. Following single neurons across development, using optical 

microscopy techniques and HD-MEAs, we found a correlation between the AIS maturation 

and necessary stimulation amplitudes. 

We showed that the selection of optimal stimulation parameters and locations is an effective 

means to ensure single-neuron stimulation and to reduce stimulation artifacts. Ex vivo 

applications (e.g., retinal preparations or brain slices) or in vivo applications (e.g., epiretinal 
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implants) will also benefit from parameter optimization and small electrode dimensions that 

help to reduce unwanted stimulation effects and enhance stimulation precision. 

 

5.1.2 Functional phenotype characterization of healthy and diseased iPSC-

derived neurons 
Electrophysiology has been used to characterize iPSC-derived neurons[15], their maturation[16] 

and their phenotypes[17]. Differently from other electrophysiology techniques, HD-MEA 

technology allows for long-term, non-invasive and high-resolution recordings of spontaneous 

neuronal activity[18,19]. Using HD-MEAs, subcellular-resolution, single-cell, as well as 

neuronal-network metrics can be extracted, with the potential of improving functional 

characterization of healthy and diseased iPSC-derived neuronal lines. 

In Chapter 3 we characterized and compared electrophysiological properties and functional 

phenotypes of human iPSC-derived neuronal lines (motor neurons and dopaminergic neurons) 

and related disease-model lines (Parkinson’s disease and amyotrophic lateral sclerosis). 

Targeting the “highly active” regions within the cultures on the HD-MEAs, we could reliably 

find differences between healthy and diseased motor neurons with respect to metrics such as 

burst duration, inter-burst interval and axon velocity; this finding can be caused by an altered 

neuronal excitability of the diseased cell line[20,21]. Healthy and diseased dopaminergic neurons 

differed in metrics, such as mean firing rate, inter-burst interval and burst duration. Newly 

developed metrics for burst-shape and axon-velocity analysis were reliably used to distinguish 

the phenotypes of the cell lines.  

We also exploited the HD-MEA high resolution to evaluate drug effects on human iPSC-

derived neurons (Chapter 3). We used retigabine, which is a potassium channel opener and is 

known to decrease neural activity[17]. Retigabine decreased the percentage of active electrodes, 

the number of spikes per minute and increased the inter-burst interval, while it did not alter 

AP-propagation velocity. A last finding in Chapter 3 included that the number and density of 

recording electrodes may have a considerable influence on the reproducibility of the results 

when performing a drug experiment. 

In Chapter 4, additional HD-MEAs metrics (e.g., branch length, repolarization slope, peak-

trough ratio) were used to analyze different maturation stages of NSC-derived neuronal 

networks. We found that longer burst duration, higher irregularity of inter-bust interval, lower 

mean firing rage and shorter branch length are typical of cultures which are 2 months in 
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differentiation, with respect to cultures that are 4 months in differentiation. These metrics 

represent potential hallmarks of early maturation stages. 

Chapter 3 and 4 show that HD-MEA technology provides reliable and reproducible results and 

can be used to perform high-content electrophysiology. Phenotyping and drug screening 

applications could benefit from previously inaccessible new metrics (e.g., axon velocity) or 

from the simultaneous characterization of network and single-cell features. 

 

5.2 Outlook 
Robust phenotypic and drug assays comprise of suitable (i) cell models, (ii) screening platforms 

and (iii) data analysis strategies. In this thesis, we mainly used human iPSC-derived neurons 

as a cell model. iPSCs have been proposed as a powerful system for drug discovery on different 

phenotypes[22] and they allow for discriminating between effective and non-effective drug 

treatments for different patients and pathologies. Using iPSC, neurological diseases are 

modelled using the patient’s genetic background, which increases patient stratification and 

allows for studying sporadic occurrences of diseases and the disease development[22,23]. 

However, 2D culturing may affects many cellular functions in comparison to 3D systems. 3D 

culture systems, such as brain organoids, may represent a better model to recapitulate cellular 

interactions and microenvironments. 

We used HD-MEAs as screening platform. HD-MEAs can be used to reliably detect small 

changes in neuron electrophysiology. Additionally, they allow for long-term and non-invasive 

monitoring of entire neuronal networks, which is different from imaging-based approaches that 

entail phototoxic effects. HD-MEAs also provide neuron-morphology and subcellular-

electrophysiology information. However, the use of single wells strongly limits phenotypic or 

drug screening applications, where hundreds of wells are typically used simultaneously. The 

combination of HD-MEAs and multi-well approaches holds great potential for prediction of 

drug efficacy and toxicity, as it features all advantages offered by high-resolution techniques, 

while allowing for parallel screenings and decreased experimental times. 

HD-MEA experiments have the drawback that they yield a large volume of data that are 

complex to analyze, which makes the interpretation of the results difficult. In this thesis, we 

performed large-scale data analysis using custom-made MATLAB and Python scripts. 

Machine-learning algorithms, instead, will introduce relationships between the collected data 

and possible predictions[24], which may simplify data analysis methodologies. Supervised 

machine learning makes use of a priori knowledge to train algorithms to recognize patterns in 
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unexplored datasets. Unsupervised machine learning, instead, can be used to create models 

based on patterns in recorded data, when the a priori knowledge is not available (e.g., screening 

of a new compound). 

We envision that multi-well HD-MEAs hold the potential for reliable predictions of drug 

efficacy and toxicity, which, along with a suitable cell model system with broad patient 

stratification and machine-learning algorithms for fast data interpretation, could facilitate the 

development of drugs for neurological disorders and help the understanding of the 

corresponding mechanisms of action.  
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