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Abstract. Information on soils’ composition and physical, chemical and biological properties is paramount to
elucidate agroecosystem functioning in space and over time. For this purpose, we developed a national Swiss
soil spectral library (SSL; n= 4374) in the mid-infrared (mid-IR), calibrating 16 properties from legacy mea-
surements on soils from the Swiss Biodiversity Monitoring program (BDM; n= 3778; 1094 sites) and the Swiss
long-term Soil Monitoring Network (NABO; n= 596; 71 sites). General models were trained with the inter-
pretable rule-based learner CUBIST, testing combinations of {5,10,20,50, and 100} ensembles of rules (com-
mittees) and {2, 5, 7, and 9} nearest neighbors used for local averaging with repeated 10-fold cross-validation
grouped by location. To evaluate the information in spectra to facilitate long-term soil monitoring at a plot level,
we conducted 71 model transfers for the NABO sites to induce locally relevant information from the SSL, using
the data-driven sample selection method RS-LOCAL. In total, 10 soil properties were estimated with discrimina-
tion capacity suitable for screening (R2

≥ 0.72; ratio of performance to interquartile distance (RPIQ)≥ 2.0), out
of which total carbon (C), organic C (OC), total nitrogen (N), pH and clay showed accuracy eligible for accurate
diagnostics (R2 > 0.8; RPIQ≥ 3.0). CUBIST and the spectra estimated total C accurately with the root mean
square error (RMSE)= 8.4 gkg−1 and the RPIQ= 4.3, while the measured range was 1–583 gkg−1 and OC
with RMSE= 9.3 gkg−1 and RPIQ= 3.4 (measured range 0–583 gkg−1). Compared to the general statistical
learning approach, the local transfer approach – using two respective training samples – on average reduced the
RMSE of total C per site fourfold. We found that the selected SSL subsets were highly dissimilar compared to
validation samples, in terms of both their spectral input space and the measured values. This suggests that data-
driven selection with RS-LOCAL leverages chemical diversity in composition rather than similarity. Our results
suggest that mid-IR soil estimates were sufficiently accurate to support many soil applications that require a large
volume of input data, such as precision agriculture, soil C accounting and monitoring and digital soil mapping.
This SSL can be updated continuously, for example, with samples from deeper profiles and organic soils, so that
the measurement of key soil properties becomes even more accurate and efficient in the near future.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Soils provide a manifold of functions within terrestrial
ecosystems, many of which are vital for humankind. To
quantify these functions from the soils’ composition and
properties, one typically relies on physical, chemical and bio-
logical laboratory analytical measurements. Doing this con-
sumes both financial resources and time. For example, re-
peated measurements are needed to describe soil function-
ing in changing environments, for example in response to
agronomic management. Soil visible (vis) and infrared (IR)
spectroscopic measurements and modeling have become in-
dispensable tools to gather quick, relatively accurate and
inexpensive estimates of soil properties, both on the field
and in the laboratory (Nocita et al., 2015; Viscarra Rossel
et al., 2016, 2017). Once soil chemical and physical prop-
erties are calibrated to the spectra, a single mid-IR (mid-
infrared; 4000–500 cm−1; 2500–25 000 nm) or vis-NIR (vis-
ible near infrared; 25 000–4000 cm−1; 400–2500 nm) mea-
surement can be used to estimate multiple soil properties of
new samples. Soil is a complex matrix with many organic
and mineral components. This yields spectra with absorp-
tions that overlap and contain many and often highly cor-
related variables. Hence, to successfully develop calibrations
and make predictions for attributes related to soil composi-
tion on more samples, statistical learning methods are needed
to find and use relationships between these variables and
measured attributes. It is important to consider that the di-
versity in spectral characteristics typically reflects the soils’
chemical and physical composition. Since the soil compo-
sition is influenced by the soil-forming factors – soil par-
ent material, climate, topography, organisms and age of soils
(Dokuchaev, 1899; Jenny, 1941) – these factors provide fur-
ther means of causally interpreting and judging the applica-
bility of the method for a particular set of soils. Compared to
the NIR, mid-IR offers a more accurate characterization of
soils’ chemistry, since this region contains the fundamental
vibrations with more defined peaks (Janik et al., 1998; Vis-
carra Rossel et al., 2006).

A soil spectral library (SSL) can be defined as a well-
ordered and harmonized collection of soil samples, their
spectra, analytical reference measurements, contextual in-
formation and additional metadata on samples and methods
used. A central question behind the development of large
SSLs is how to achieve accurate local predictions based on
established collections of soil information – for example,
within a new landscape, ecosystem, farm, field, or plot in a
new region – where reference data of only a few observa-
tions are available. More recently, SSLs that span large geo-
graphical extents are being developed (Sila et al., 2016; Vis-
carra Rossel et al., 2016; Padarian et al., 2019b; England and
Viscarra Rossel, 2018; Briedis et al., 2020; Angelopoulou
et al., 2020; Dangal et al., 2019). These efforts are moti-

vated by the prospect that soil spectroscopy can supplement
many conventional methods of soil analysis. A range of pre-
dictive modeling strategies and algorithms have been tested
for soil spectral analysis, among others involving tools from
chemometrics (e.g., partial least squares, PLS, regression;
Janik and Skjemstad, 1995) and traditional machine learn-
ing (e.g., regression tree methods; Viscarra Rossel and Web-
ster, 2012) to convolutional neural networks (CNNs; Padar-
ian et al., 2019a, b; Tsakiridis et al., 2020).

There are two main strategies for estimating properties of
new soils using spectra. The first one is to calibrate one gen-
eral or global model that is applied to predict new samples,
and the other is to derive local calibrations by conditioning
on a specific set of observations and features of the SSL to
new data based on soil knowledge and/or algorithms. How-
ever, empirical evaluations of local and global methods are
needed in different contexts where data on soil attributes are
needed (i.e., soil studies and soil mapping projects). Such
studies or applications should consider the “no-free-lunch”
theorems for machine learning and optimization (Wolpert,
1996; Wolpert and Macready, 1997); i.e., there is no single
algorithm or algorithm combination that works best under all
situations or applications.

General statistical learning makes use of all available train-
ing data to construct one parametric model. In contrast, local
learning methods combine different learning methods, super-
vised and/or unsupervised and, together with domain knowl-
edge, produce more modular forms of learning (Solomatine,
2008). The available training set can be a subset and algo-
rithmic submodels can, thereby, be optimized to more accu-
rately predict new single observations or groups of them. Lo-
cal learning has also been termed transfer learning. Transfer
learning is a general expression for adapting previous knowl-
edge gained from existing data (i.e., model representation)
for a new prediction case (Pratt et al., 1993; Pratt and Thrun,
1997; Thrun and Pratt, 1998). It has been defined as a trans-
fer from knowledge in the source task(s) or domain(s) – here
an SSL – to a target domain (Pan and Yang, 2010) and, thus,
comprises soils from new locations in this case.

The soil spectroscopy community has suggested several
approaches to achieve local calibrations based on an estab-
lished SSL and its feature space. One example is augment-
ing (spiking) SSLs with a few unweighted (Guerrero et al.,
2010; Seidel et al., 2019) or extra-weighted (Guerrero et al.,
2014, 2016) local samples. Other studies calibrated separate
models on partitions of training data that were derived from
applying certain criteria (i.e., geographical region, terrain at-
tributes, parent material, soil type, land use and spectra-based
clustering; Sila et al., 2016; Ogen et al., 2019). Still oth-
ers used memory-based learning based on spectral similar-
ity, extracting useful information from compositional relat-
edness of soils (Ramirez-Lopez et al., 2013; Clairotte et al.,
2016; Hong et al., 2019; Dangal et al., 2019) or addition-
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ally geographic proximity (Tziolas et al., 2019). These all
produce individual models for each sample to be predicted.
Memory-based learning combines both lazy learning, where
a subset of stored samples are only retrieved and modeled
when new samples are predicted, and local learning prin-
ciples, where modeled subsets define points within a local
neighborhood (Dietterich et al., 1993). The spectrum-based
learner developed by Ramirez-Lopez et al. (2013) is a promi-
nent memory-based method for which each new prediction
sample forms its own target domain. The selection of source
instances is governed by spectral similarity. Therefore, the
spectrum-based learner is also considered a transfer learning
method. Another approach used by Padarian et al. (2019a)
was retraining weights within specific layers of a deep CNN
using local (target) sets, which were spectral soil data sets
per country (parameter transfer approach). Finally, the selec-
tion of matching SSL samples, using the resampling-based
selection RS-LOCAL algorithm, has also been used (Lob-
sey et al., 2017). Lobsey et al. (2017) showed that this
data-driven transfer approach outperforms most other cur-
rent methods for deriving local estimates. Still, despite these
promising learners, transferring the useful information con-
tained within large and diverse SSLs and their resulting cali-
brations onto new, local target areas with unique soil charac-
teristics remains challenging due to soil complexity.
RS-LOCAL obtains locally relevant information by select-

ing specific rows (instances) from the training set and trans-
ferring them to the prediction set. RS-LOCAL is an example
of an instance or sample transfer approach. It heavily relies
on sampling and performance-driven reduction of the library,
yielding a subset of samples that can accurately estimate the
properties of soils in the local target task. We wanted to in-
vestigate this promising new method for local soil estimation
and monitoring in Switzerland because it makes no prior as-
sumptions on which samples from the library could be useful.
This makes it potentially more accurate and also more flexi-
ble to new local soil contexts than when creating constraints
with similarity measures. A further advantage for large SSLs
is that it removes samples that might be spectrally similar but
cause inaccurate calibrations (i.e., erroneous measurements
or spectra with confounding effects). Such a local approach,
however, requires a well-established and sufficiently diverse
SSL in order to extract useful soils that are locally relevant.

Thus, our first goal was to develop a national mid-IR SSL
with reference measurements for Switzerland to deliver 16
key chemical and physical soil proxies. This SSL includes
soils and their analysis data from the long-term Swiss Soil
Monitoring Network (NABO; 71 agricultural sites with time
series measurements; n= 596) and the Swiss Biodiversity
Monitoring (BDM) network (1094 grid locations; n= 3778).
This is the first operational SSL for Switzerland in the mid-
IR that allows means for spectral estimation with sufficient
existing soil diversity. The second goal was to develop gen-
eral rule-based models for all available soil properties using
the CUBIST algorithm. Furthermore, we wanted to infer im-

portant spectral regions in the models and their chemical as-
sociations, which we illustrated with the estimation of total
carbon (C) contents.

For soil monitoring and also for determining C stocks, it
is crucial to obtain locally accurate spectral estimates of key
soil properties, such as organic C contents, from high soil
variability in large SSLs and over time. This was our motiva-
tion to design a predictive transfer workflow that was adap-
tive to soils’ composition and properties for each long-term
monitoring site. Hence, our third goal was to leverage the
SSL with its spatial and temporal variability in soils to de-
rive local calibrations by transfer learning with RS-LOCAL.
Specifically, we aimed at showing local models’ capacity to
reproduce time series measurements (starting from 1985) of
soil C at the Swiss agricultural long-term monitoring sites
based on spectral analyses and two calibration samples per
site. To the best of our knowledge, there is no study yet
that has evaluated the usefulness of a large and diverse SSL
for systematic soil monitoring. We, therefore, wanted to de-
sign a local calibration strategy using transfer learning, that
would be effective in reducing (conditional) errors at moni-
toring plots compared to the general rules derived in the first
aim. Furthermore, we had a strong interest in identifying the
mechanisms, considering both soil knowledge and data dis-
tributions, of how such a local transfer would induce locally
adaptive soil estimation.

In brief, our work addresses the following three objectives:
(1) developing a national SSL, (2) building general predic-
tion models using CUBIST and (3) building site-specific (lo-
cal) prediction models using RS-LOCAL.

2 Material and methods

2.1 Soils and data sets

To establish the Swiss SSL, we obtained soil samples and ref-
erence data from two different sources, i.e. (1) the Swiss Soil
Monitoring Network (NABO) and (2) the Swiss Biodiversity
Monitoring (BDM) program (BAFU, 2014, Fig. 1). NABO
currently consists of 108 sites where soils have been contin-
uously measured every 5 years since 1985 for long-term soil
monitoring. Out of the 108 sites, we selected 71 sites under
agricultural management – comprising arable land (33 sites),
permanent grassland (26 sites) and special crops (11 sites;
horticulture) – and one protected area. For the mid-IR SSL,
we used 596 NABO soil samples from six campaigns con-
ducted between 1985 and 2015.

The plots at the NABO sites covered 10 m× 10 m each.
These were repeatedly sampled for 0–20 cm soil depth. In
total, four replicate samples were taken by stratified ran-
dom sampling and bulking 4× 25 cores from 100 subareas
of 1 m2 to account for small-scale soil variability. Desaules
et al. (2010) and Gubler et al. (2019) detailed the sample col-
lection and data harmonization process of the measurements.
The soils of the BDM were sampled at 0–0.2 m depth from
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Figure 1. Map of Switzerland with sampling locations of the mid-
IR spectral library, including the sites of the Biodiversity Moni-
toring program (BDM; 6× 4 km; n= 1094) and the National Soil
Monitoring Network (NABO; n= 71). In total, 71 NABO sites
(10 m× 10 m) were sampled with a grid-based stratified design, and
1094 BDM samples were obtained from single sampling events.
The NABO sites have been continuously sampled and measured in
5-year intervals since 1985.

positions on a regular grid of 6 km× 4 km laid over Switzer-
land (a total of 1094 locations). The points that were not sam-
pled were inaccessible; these were mostly in the alpine re-
gions. Each sampled location included four subsamples that
were taken at the intersection of the four cardinal directions
from the center point and the circumference of a circle with
a radius of 3 to 3.5 m (Meuli et al., 2017). Due to its de-
sign which covers all major geographic regions in Switzer-
land – the Jura Mountains, the Central Plateau and the Alps
– the BDM sampling campaign comprises a major part of the
biogeochemical diversity of soils and predominant land use
types in Switzerland. The wide coverage of soil conditions
are an important source of soil chemical variability.

2.2 Chemical reference analysis

Data on chemical and physical soil properties were previ-
ously measured and provided by the NABO group. All lab-
oratory soil analyses for the 16 properties were based on the
protocols of the Swiss standard method (Agroscope, 1996).
Mineral elements were determined by extraction with 1 : 10
ammonium acetate–EDTA solution (AAE10; method follow-
ing Agroscope, 1996). The measured properties were total C,
organic C (OC), total nitrogen (N), pH (CaCl2), CaCO3, clay,
silt, sand, CECpot, P(AAE), K(AAE), Ca(AAE), Mg(AAE),
Cu(AAE), Zn(AAE) and Fe(AAE). For samples of BDM and
for the more recent NABO sampling campaigns five and six
(years 2009–2014), the total C and N measurements were
done with dry combustion (LECO TruSpec). For campaigns
one through four (years 1985–2014), the OC contents deter-
mined with wet oxidation using a modified Walkley–Black

method were transformed into dry combustion equivalents,
using site-specific robust linear regressions (complementary
data of campaigns five and six; Gubler et al., 2018). Car-
bonates were determined by volumetric calcimetry, using hy-
drochloric acid (HCl) for digestion. Organic C was obtained
by the difference in total C and carbonate C when pH was
greater than 6.5. Inorganic (carbonate) C was calculated with
0.12×CaCO3. The texture was determined by the pipette
method. The pH was measured in CaCl2, using a 1 : 2 vol-
umetric ratio of soil to water. For CECpot, the exchangeable
elements were extracted with a 0.05 N–0.025 N HCl-H2SO4
solution, which was buffered with triethanolamine for soil
samples with pH > 5.9. All soil properties were referenced
to dry weight by water correction after drying at 105 ◦C. All
chemical analyses of NABO soils were done on four bulked
replicates per site and sampling event. For BDM locations,
four spatial replicates were measured each.

2.3 Measuring and processing spectra

All milled soil samples from the NABO and the BDM
archive (n= 4374; with a particle size below 100 µm)
were measured with the VERTEX 70v Fourier transform
spectrometer from Bruker (Bruker Optik GmbH, Ettlin-
gen, Germany) at ETH Zurich, using a high-throughput ac-
cessory (HTS-XT) and custom 24-well plates tailored to
diffuse reflectance measurements. The mid-IR spectrome-
ter was equipped with a KBr beam splitter and a mer-
cury cadmium telluride (MCT) detector, which was perma-
nently cooled with liquid nitrogen during the measurements.
The reflectance spectra were acquired between 7500 cm−1

(1333.3 nm) and 600 cm−1 (16 666.7 nm) at an effective res-
olution of 2 cm−1 and trimmed to the mid-IR range between
3996 and 600 cm−1 before further processing (see below).

Each soil sample was measured twice. The soil surface
was flattened evenly and without compression by the thin,
round middle part of the spatula. The first measurement po-
sition of the 24-well plate contained a gold (Au) reference
surface, which produced a single reflectance spectrum for
normalizing the reflectance of the 23 following soil mea-
surements. The “atmospheric compensation” routine, imple-
mented in the Bruker OPUS software, was used to eliminate
unwanted absorptions of H2O vapor continuum and CO2 gas
in the measurement chamber, based on the single channel
reference spectrum measured once on each plate. All single
channel reflectance spectra were obtained by averaging 32
internal measurements.

The resulting reflectance spectra (R; background refer-
enced) were converted to apparent absorbance (A) by A=

log10(1/R). Then, an average spectrum per sample was pro-
duced by calculating the mean of all spectral variables for
the measured replicates. Finally, the spectrum offset and fur-
ther scatter effects were reduced, and the features were trans-
formed with a Savitzky–Golay (Savitzky and Golay, 1964)
first derivative smoother using a window size of 35 vari-
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ables (70 cm−1) and third-order polynomial fit. Finally, we
selected every eighth spectral variable to reduce redundancy
in the spectra (collinearity) and produce more parsimonious
spectral estimates of soil properties. This resulted in 209 vari-
ables between 634 and 3962 cm−1, which formed the predic-
tors for the subsequent general and local transfer modeling.

2.4 Data processing and statistical computing

All spectral and reference data were processed and modeled
with the R software environment for statistical computing
and graphics (version 3.6.0; R Core Team, 2019). We used
the caret (Kuhn, 2020) R package to streamline the statisti-
cal learning process. Basic data transformations, such as data
preparation and aggregation, were done using the tidyverse
(Wickham, 2019) set of packages and data.table (Dowle and
Srinivasan, 2019). The spectral data were handled and pro-
cessed with the simplerspec (Baumann, 2019) and prospectr
(Stevens and Ramirez-Lopez, 2013) packages.

2.5 General soil estimation: rules for the entire SSL

The general soil estimation was done by rules trained with
the CUBIST (Quinlan, 1993) learner, separately developed
for each analytical soil measure. We chose this algorithm be-
cause it has shown excellent performance for modeling soil
information and developing SSLs with rather large soil vari-
ability and multicollinear spectral variables (Bui et al., 2006;
Viscarra Rossel and Webster, 2012; Stevens et al., 2013;
Miller et al., 2015; Peng et al., 2015; Viscarra Rossel et al.,
2016; Dangal et al., 2019; Padarian et al., 2019b), and be-
cause its interpretation is mechanistically more intuitive as
it is a form of data partitioning (simple conditions and lin-
ear equations). CUBIST first forms model trees, using ba-
sic mechanisms of M5 (Quinlan, 1992). CUBIST is a form
of a rule-based decision tree with piecewise linear models.
Wang and Witten (1996) outlined detailed principles behind
the construction of the model trees and derivation of rules,
and Viscarra Rossel and Webster (2012) described it for soil
spectroscopic modeling.

A CUBIST prediction rule is a unique set of conditions,
i.e., “if, then” logical statements, together with the associ-
ated ordinary linear regression model. During training, the
condensed regression equations are made for samples in the
terminal nodes. All preceding split variables are potentially
allowed for regression in a final node; however, some of them
are pruned or combined in the rules. The smoothed regres-
sion equations with the selected variables allows one to pre-
dict an individual, new observation. CUBIST features two
empirical parameters that can improve predictions, namely
committees and neighbors. Committees are ensembles of
rules that are created by successive construction of trees,
which correct predictions of preceding rules and, thereby,
lower predictive errors by averaging. When neighbors are
used (maximum nine), a new training sample is predicted,

using both unweighted or weighted averages of the measured
values of the nearest neighbors, using all features in the train-
ing set and the prediction of the new sample using the train-
ing rule(s).

2.5.1 Model development and validation

We tested a full-factorial combination of {5,10,20,50,

and100} committees of rules and {2,5,7, and9} neighbors to
tune the CUBIST models. To obtain realistic estimates of the
models’ general performance, we defined a grouped 10-fold
cross-validation scheme that treated the entire site (e.g., for
total C: NABO – 71 sites; BDM – 1079 sites) as independent
in the modeling data sets. This made all observations from a
site the unit of prediction, making the procedure equivalent
to external cross-validation.

To reduce the bias variance trade-off in the assessment,
we repeated the grouped 10-fold cross-validation (CV) pro-
cedure five times (Friedman et al., 2008; Kuhn and Johnson,
2013). The division into training and validation proportions
of the data was done in consistent and repeatable manner
(pseudo random number generation). We considered this site
grouping factor as prior information when cross-validation
segments were created, so that samples from a particular
site were only present within one segment (fold) of a cross-
validation split. This grouped assignment prevented the re-
lationships from being trained on the model fitting sets and
prevented a particular site from leaking into the testing seg-
ments, yielding reliable generalization errors.

We tested the correspondence of mid-IR and model-
derived predictions (x̂i) and measured standard reference
measurements (xi) with common regression metrics. We
cross-validated the inaccuracy of the models with the root
mean square error (RMSE). The mean squared error (MSE)
was further decomposed into mean error (ME) or bias and
the standard deviation of the error (SDE) or imprecision, so
that RMSE2

=ME2
+SDE2 (Viscarra Rossel and McBrat-

ney, 1998). To describe the linear dependency between mea-
surements and modeled values and give a relative goodness
of fit, the coefficient of determination (R2) from linear re-
gression was also reported. All metrics were aggregated from
five estimates from independent resampling repeats. We re-
ported mean values and standard deviations to provide uncer-
tainties of the estimates.

2.5.2 Deriving important spectral variables

The importance of each spectral variable was assessed based
on its usage in the rule conditions and the model for
CUBIST. We used the recursive feature elimination (RFE)
method, a backwards variable selection algorithm described
by Guyon et al. (2002), to test whether the modeling can be
simplified and to find most important spectral features. Soil
reflectance spectra typically contain many correlated and po-
tentially redundant variables. Therefore, constraining them to
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relevant subsets that feed into the modeling can further im-
prove predictive accuracy and reduce computation time and
storage for model updates. We recursively eliminated subsets
of variables with low CUBIST variable importance, calcu-
lated as the average relative usage frequencies of a partic-
ular variable in split conditions and regressions. This step-
wise variable reduction was based on the following prede-
fined subset sizes Si , starting with the full set at i = 1 and
ending with the most important predictor at i = 30:

Si ={209,150,120,105,90,75,60,50,40,35,30,25,

20,17,14,12,11,10,9,8,7,6,5,4,3,2,1}. (1)

The dropped variables at each specific reduction step re-
ceived identical importance ranks, from 30 (least important
variables) to 1 (most important variable). Importance ranks
were determined with a step-wise variable reduction because
the model-based importance of a given input variable can
change substantially when some correlated variables occur
more frequently than others. Otherwise, using the CUBIST
importance measure on the entire spectrum would confound
the importance of relevant but highly correlated variables.
Since RFE is a wrapper method of variable selection, exter-
nal test sets (resampling) were needed to exclude selection
bias in estimating subset performance (RMSE; Kuhn and
Johnson, 2013). For this purpose, we nested another inner
layer of resampling for RFE within the 10-fold CV scheme
repeated five times. Importance ranks of variables and outer
test RMSEs were averaged from the 50 CV folds. To de-
crease computation time, we conducted the RFE with five
CUBIST committees. The RFE procedure and the resam-
pling setup is explained further in the Appendix.

2.6 Local soil estimation for plot-level monitoring

We defined a local soil estimation scenario where a new long-
term monitoring site was initiated at time zero (t0). Each one
of the 71 NABO sites was assumed to be novel, while the
remaining ones were established with spectral and reference
data records. We, therefore, conducted 71 separate sample
selections from the SSL, each yielding different transfer sub-
sets of the SSL, to test spectral-based soil monitoring using
the Swiss mid-IR SSL presented here. We calibrated mod-
els at each site using two local samples per given site and a
relevant subset of the remaining Swiss SSL (see description
below).

The two local samples were chosen from pooled samples
at t0 (first two out of a maximum of four replicates) or in
addition at t1 if there was only one sample in t0. Figure 2 il-
lustrates the local modeling workflow. All other samples per
given site besides the two chosen during calibration (in other
words, the successive time series measurements at a monitor-
ing plot) were used as local validation samples (Nsite). The
respective samples from the remaining SSL included spec-
tra and reference measurements from all BDM samples and

NABO samples, excluding the ones from the respective tar-
get site. We used only two calibration samples per NABO
site to capture the predictive mechanisms at site level be-
cause we wanted to avoid overoptimistic local assessment;
both local calibration and validation samples were repeated
soil measurements, and are otherwise – if not adequately han-
dled in the calibration sampling strategy – at risk of overfit-
ting when soils’ composition and relevant properties show
constant trends over time.

For each of the 71 sites, the spectral relevant samples
from the remaining Swiss SSL were selected using the
RS-LOCAL algorithm (see Lobsey et al., 2017). The site-
specific samples (msite) denote local calibration samples
from a NABO plot. The recursive reductions of the initial
training data, which determined the finally yielded subsets
(Ksite ), were driven by model performance (RMSE) for the
two local calibration samples. For each NABO site, the cor-
responding Ksite set was spiked with the two local calibration
samples. On this combined msite+Ksite data set, a final partial
least squares regression (PLSR) model, locally adapted for
the monitoring plot by optimization on the calibration sam-
ples, was developed using 10-fold cross-validation. Finally,
the local validation spectra (Nsite) were predicted using the
most accurate calibration model.

The search algorithm RS-LOCAL has three empirical pa-
rameters to control the samples that are selected for the lo-
cal transfer from the SSL (Lobsey et al., 2017). Parameter k

is both the number of samples drawn from the original and
reduced library without replacement and the number of sam-
ples of the returned SSL subset. Parameter b is the number
of times k samples are randomly drawn from the remaining
data at iteration i of the performance-driven library reduc-
tion. Parameter r is the proportion of samples, which are
consistently in weakest models, that are removed at it each
reduction step. The configuration of the RS-LOCAL search
was optimized for each NABO site. For each site, we ran sep-
arate RS-LOCAL runs, testing a full-factorial combination of
empirical parameter sets k = {30,50,150}, b = {10,20,50}
and r = {0.05,0.1,0.2}. The RS-LOCAL procedure is based
on the PLSR (Wold et al., 1983). For the RS-LOCAL tuning
during the subset selection procedure and final calibrations,
we tested 1 to 10 PLSR components. The finally selected op-
timal subset per site yielded the smallest RMSE on the two
local calibration samples and was therefore used to predict
the local validation samples.

2.6.1 Uncertainty of spectral monitoring uncertainty:
CUBIST vs. RS-LOCAL transfer

To compare the performance of the CUBIST approach and
RS-LOCAL transfer, errors and concordance of both meth-
ods were conditionally assessed per individual NABO (n=
71) site. For CUBIST, grouped cross-validation holdouts
were used. Thereby, the two respective local calibration sam-
ples msite were excluded so that the test configuration was
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Figure 2. Conceptual scheme illustrating the transfer of the soil spectral library (SSL) to a long-term monitoring site using the RS-LOCAL
approach. The local calibration samples and a subset of the SSL are used to calibrate a partial least squares regression (PLSR) model, which
predicts the local validation samples.

identical to the local transfer scenario. In addition to the men-
tioned assessment statistics, the ratio of performance to in-
terquartile distance (Bellon-Maurel et al., 2010; RPIQ; 75th
and 25th percentiles) was used for relative comparisons be-
tween the local transfer and rule-based model because it is
robust to non-normal and skewed distributions of measured
values.

2.6.2 Evaluating the predictive mechanisms behind the
local transfer

For each of the 71 statistical transfers at a plot level, we quan-
tified the similarity between the selected data sources Ksite
(from SSL) and the respective local target domain {Nsite} (lo-
cal validation) by multivariate distances across the spectral
input variables. The distance of single observations within
{Ksite;Nsite} was referenced to the center of all data, which
led to two respective distributions of distance measures for
these sets of points and per site. This procedure involved two
steps, namely (1) compressing the input data to reduce the
“curse of dimensionality” (Bellman, 1961) and being able to
discriminate similarity with spectra (with many dimensions,
distance to nearest neighbor becomes similar to distance to
farthest neighbor) and (2) calculating the Mahalanobis dis-
tance using a robust method (see below; Varmuza and Filz-
moser, 2016) so that the location and scatter were influenced
by the main data rather than by atypical observations.

To condense the spectral information over the entire SSL,
Savitzky–Golay preprocessed spectra that included all obser-
vations with C elemental measurements were mean centered,
scaled and then transformed by principal component analysis
(PCA) using singular value decomposition. Dimensionality
reduction was necessary to avoid computationally singular
values during the subsequent calculation of the covariance
matrix (for the Mahalanobis distance). The first 10 principal

components that explained 86.5 % of the variation in prepro-
cessed spectra were kept for distance calculations. Finally,
the Mahalanobis distance of all the observations to their cen-
ter was computed with robust estimates for both the center
and the covariance matrix of the selected PCA scores, us-
ing the minimum covariance determinant (MCD) estimator
(Rousseeuw, 1984; Hubert and Debruyne, 2010).

3 Results

3.1 Summary of reference measurements

The samples from the Swiss Soil Monitoring Network
(NABO) exhibited the highest variability across samples for
total C and OC (n= 592; Table 1). Organic C ranged from
1 to 583 gkg−1. The texture of the soils varied considerably.
The pH had values between 3.5 and 7.6, and the soils were
slightly acidic overall, with a median of 5.8. Compared to
the NABO data set, the soils from the BDM program cov-
ered a wider set (n= 3723 for total C) and range of measured
soil properties. The measured range of total C for BDM (1–
583 gkg−1) extended further than that of NABO. The dis-
tribution of pH values was similar in the NABO and BDM
sets. The BDM data also included the available cations ex-
tracted by AAE (see Table 1). The median CECpot (potential
cation exchange capacity) was almost equivalent to the value
of the NABO sites (24 vs. 23 cmol(+) kg−1). Exchangeable
Ca showed the largest coefficient of variation (CV= 1.56)
among the measured properties of the BDM set. All soil
properties, except pH and CECpot, were positively or neu-
trally (sand) skewed for both NABO and BDM data sets, re-
spectively.
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Table 1. Summary statistics of the measured soil properties of the Swiss soil spectral library derived from the sample archive of the Swiss
Soil Monitoring Network (NABO) and the Swiss Biodiversity Monitoring (BDM) program. Total C is total carbon, OC is organic carbon
and CECpot is potential cation exchange capacity.

n No. of Min Max Median Mean SD Skewness
locations

NABO

Total C (gkg−1) 572 71 11 273 33 40 35 3.84
OC (gkg−1) 592 71 11 273 30 37 34 4.03
N (gkg−1) 572 71 1.1 19.9 3.2 3.6 2.6 3.12
pH 574 71 3.5 7.6 5.7 5.8 0.9 0.09
Clay (gkg−1) 80 55 30 590 220 231 105 0.73
Silt (gkg−1) 81 55 150 800 380 397 125 0.95
Sand (gkg−1) 80 55 40 820 400 371 166 0.01
CECpot (cmol(+) kg−1) 121 58 7 136 23 26 17 4.10

BDM

Total C (gkg−1) 3723 1079 1 583 41 55 49 4.04
OC (gkg−1) 3652 1068 0 583 37 50 48 4.55
N (gkg−1) 3724 1079 0.0 26.4 3.2 3.8 2.5 2.91
pH 3765 1094 2.6 8.0 5.6 5.6 1.3 −0.10
CaCO3 (gkg−1) 1565 455 0 885 36 107 144 1.80
Clay (gkg−1) 787 785 5 602 194 213 108 0.71
Silt (gkg−1) 787 785 105 708 303 309 95 0.74
Sand (gkg−1) 787 785 5 817 419 411 168 −0.08
CECpot (cmol(+) kg−1) 674 190 0 94 24 26 12 1.39
P(AAE) (gkg−1) 417 417 1 1047 19 40 77 7.99
K(AAE) (gkg−1) 417 417 22 1255 106 136 115 4.06
Ca(AAE) (mgkg−1) 417 417 141 96 250 3927 12 226 19 127 2.20
Mg(AAE) (mgkg−1) 417 417 16 3196 161 232 259 5.35
Cu(AAE) (mgkg−1) 417 417 2 73 6 8 5 5.32
Zn(AAE) (mgkg−1) 417 417 1 131 4 6 9 8.52
Fe(AAE) (mgkg−1) 417 417 84 1640 342 387 194 1.93

3.2 General soil estimation with CUBIST modeling

For most of the properties, minimal cross-validated er-
rors were achieved with 100 committees and nine neigh-
bors. The rule-based models explained a large propor-
tion of the variation (R2 > 0.9) in properties that typically
have a strong link to total C (organic C and N; Table 2;
Fig. 3). Clay was accurately estimated (RMSE= 47 gkg−1;
RPIQ= 3.0; range= 0–602 gkg−1), whereas sand and silt
were less accurately estimated. The pH was accurately es-
timated (RMSE= 0.3; RPIQ= 6.5). Our models discrimi-
nated a large proportion in the measured variation of Ca and
Mg (ammonium acetate–EDTA) in the mid-IR (R2

= 0.97
and 0.79; RPIQ= 2.4 and 1.2). Reference values of potential
cation exchange capacity ranged from 0 to 136 cmol(+) kg−1

and were modeled with an RMSE of 7 cmol(+) kg−1 (R2
=

0.72; RPIQ= 2.0). However, the extractable nutrients P, K,
Cu and Zn were insufficiently explained by mid-IR spec-
tral rules (R2

= 0.05–0.1; RPIQ= 0.4–0.9). Nonetheless, the
rules achieved nearly unbiased property estimates over all

measurements. We found marginal local bias at the largest
values, mostly for variables with positively skewed distribu-
tions, such as total C (Table 2; Fig. 3).

Overall, out of the 16 available soil properties, total C, to-
tal N, total CaCO3, Ca and Mg (ammonium acetate–EDTA),
OC, CECpot, pH, sand and clay (10) were modeled with rel-
atively good discrimination capacity in the measured ranges
(Fig. 3).

Model interpretation and filtering with variable importance

Figure 4 shows that the test RMSE of total C first slightly
decreased and then steadily increased from all (209) to less
spectral variables using CUBIST and RFE. The lowest er-
ror (RMSEtest= 8.10 gkg−1 total C) of spectroscopic esti-
mation was achieved with the spectra with 105 variables.
For the subsequent variable reduction steps, model per-
formance steadily dropped until one wavenumber was left
(RMSEtest= 18.8 gkg−1 total C).
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Table 2. Cross-validated mid-IR estimates of 18 soil properties derived from rule-based CUBIST models that were developed using all
available data. The 10-fold cross-validation procedure was grouped by the site and repeated five times to achieve many test–train data
combinations and provide a realistic model assessment with generalization. C and N denote the number of committees and neighbors for
CUBIST. Total C is total carbon, OC is organic carbon, N is total nitrogen and CECpot is potential cation exchange capacity.

n Range C N No. of RMSE ME SDE R2 RPIQ
rules

Total C (gkg−1) 4295 1–583 100 9 6–26 8.4± 0.1 0.3± 0.0 8.4± 0.1 0.97± 0.00 4.3± 0.0
OC (gkg−1) 4244 0–583 100 9 4–24 9.3± 0.2 0.0± 0.0 9.2± 0.2 0.96± 0.00 3.4± 0.1
N (gkg−1) 4296 0.0–26.4 100 9 9–21 0.55± 0.00 0.00± 0.00 0.55± 0.00 0.95± 0.00 4.3± 0.0
pH 4339 1.0–8.0 100 9 4–18 0.3± 0.0 0.0± 0.0 0.3± 0.0 0.93± 0.00 6.5± 0.0
CaCO3 (gkg−1) 1565 0–885 10 9 1–5 6.6± 0.0 0.1± 0.0 6.6± 0.0 0.79± 0.00 2.6± 0.0
Clay (gkg−1) 867 5–602 100 9 2–6 47± 1 1± 0 47± 1 0.81± 0.00 3.0± 0.0
Silt (gkg−1) 868 100–800 100 9 1–14 71± 1 −0± 0 71± 0 0.51± 0.01 1.7± 0.0
Sand (gkg−1) 867 5–820 100 9 1–6 89± 1 −1± 0 89± 1 0.72± 0.00 2.8± 0.0
CECpot (cmol(+) kg−1) 795 0–136 50 9 1–10 7± 0 0± 0 7± 0 0.72± 0.01 2.0± 0.0
P(AAE) (mgkg−1) 417 1–1047 50 9 1–8 77± 1 −3± 1 77± 1 0.05± 0.00 0.4± 0.0
K(AAE) (mgkg−1) 417 1–1255 100 9 1–12 111± 2 −3± 1 111± 2 0.10± 0.01 0.8± 0.0
Ca(AAE) (mgkg−1) 417 1–96250 100 9 6–14 3326± 121 −60± 56 3325± 121 0.97± 0.00 2.4± 0.1
Mg(AAE) (mgkg−1) 417 1–3196 100 9 1–13 123± 5 4± 1 123± 5 0.79± 0.02 1.2± 0.0
Cu(AAE) (mgkg−1) 417 1–73 50 9 1–7 5± 0 −0± 0 5± 0 0.10± 0.01 0.9± 0.0
Zn(AAE) (mgkg−1) 417 1–131 100 9 1–13 9± 0 −0± 0 9± 0 0.06± 0.01 0.4± 0.0
Fe(AAE) (mgkg−1) 417 1–1640 50 5 1–7 167± 3 1± 1 167± 3 0.28± 0.02 1.2± 0.0

Figure 3. Agreement between measured and mid-IR predicted values that were obtained from CUBIST models. Models’ performance was
assessed by site-grouped cross-validation holdouts (five times repeated 10-fold). The lines obtained with local regression (LOESS) smoothing
indicate the trends in predictions. Models of soil properties with R2

≥ 0.72 are shown (see Table 2 for more detailed model summaries).
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Figure 4. (a) Root mean square error (RMSE) of mid-IR estimates of total C that CUBIST produced at the respective subsets of spectral
variables. The performance profile was obtained with a recursive feature elimination (RFE) procedure. The error bars represent the standard
deviations of the test RMSE derived with nested cross-validation (n= 50). (b) Average importance ranks across the spectrum. Lower rank
values indicate higher importance for the estimation of total C. Ranks were determined with RFE. (c) Mid-IR absorbance spectra of the
Swiss soil spectral library (n= 4295; with corresponding total carbon (C) measurements determined by dry combustion). The unprocessed
absorbance spectra are annotated with the 17 most influential spectral variables (wavenumbers) in the CUBIST model (average importance
rank < 15); these had the highest mean importance ranking determined by the recursive feature elimination procedure.

The spectral feature between 1786 and 1754 cm−1 was
the most important one for the estimation of total C with
CUBIST (Fig. 4). The 12 spectral variables with the best
importance ranks across all RFE iterations and test sets de-
rived from the subset sizes were (starting with the best) 1754
(mean(rank)= 1.04), 1786, 1770, 2010, 2506, 1850, 1370,
2522, 1818, 1866, 2058 and 1386 cm−1 (mean(rank)= 12.7;
Fig. 4).

3.3 Accuracy of the local transfer models compared to
the general model

For the example site 65 COR, the best performance of
RS-LOCAL was achieved with 55 samples from the SSL

(K), 10 sampling events (B) of size K at each iteration
and 10 % reduction (r) at each iteration (Fig. 5). There-
fore, 55 transfer samples from the SSL were combined with
two site calibration samples previously used to supervise
the selection from the data source, to form a PLSR cali-
bration model for the estimation of the site validation sam-
ples (see Fig. 5a; right). Compared to the target observa-
tions from the site (right part of Fig. 5a and b; measured
range= 11.9–16.0 gkg−1 C), the selected instances were het-
erogeneous with regard to their characteristic patterns in raw
spectra, their preprocessed feature space and their measure-
ments (range= 8.7–97.7 gkg−1 C). The selected instances
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covered a significant proportion of the first two components
in the feature space of the entire SSL.

The RMSE on the site validation samples (RMSENsite ) at
the final subsets varied between 0.01 and 10.73 gkg−1 C and
for all tuning parameter combinations and sites and between
0.01 and 3.02 gkg−1 C for the best subsets per site (Fig. A1).

The local approach reduced the error of the
rule-based approach on average by factor 4.4
(Fig. 6; mean(RMSERS-LOCAL)= 0.7 g kg−1 C;
mean(RMSECUBIST)= 3.1 gkg−1 C). The local transfer
was more accurate for the majority of NABO sites (69 out
of 71 sites). The linear dependency between modeled and
measured values was higher for the local transfer com-
pared to the general model (53 out of 71 sites). Moreover,
RS-LOCAL produced on average 1.3 times less biased
estimates of total C per site for 52 out of 69 sites in terms
of absolute values (|ME | = 0.1 gkg−1 C vs. 0.5 gkg−1 C).
The ratio of performance to interquartile distance (RPIQ)
confirmed that local learning in the mid-IR was able to better
discriminate developments of total C over time, relative to its
measured distribution. Overall, local learning with two local
calibration samples and targeted SSL selections allowed for
better estimations than the generic CUBIST approach on
average (RPIQ= 3.08 vs. 1.00; RPIQ larger for 66 out of
71 sites). Across all validation data points of the NABO set,
the RS-LOCAL transfer was 5.6 times more accurate for
total C than the general rules in terms of RMSE and RPIQ
(RMSE= 0.9gkg−1 C; RPIQ= 31.7)

Predictive mechanisms behind the local transfer

The samples used for the transfer process (RS-LOCAL data)
of the example site COR 65 showed high spectral dissimilar-
ity along the first 2 PCs (principal components), explaining
39.8 % of the preprocessed spectral variance (Fig. 5). Com-
pared to the entire SSL with total C measurements avail-
able (the source domain prior selection; range of PC1 from
−41.4 to 13.0; range of PC2 from −19.0 to 30.0), the se-
lected transfer samples of this site occupied a region of ma-
jor variation in the PC space (range of PC1 from −15.4 to
11.4; range of PC2 from −10.2 to 10.9). The two local cal-
ibration samples and the 12 validation samples in the upper
right corner were close to each other in the PC1–PC2 sub-
space (Fig. 5a; left and right; range of PC1 from 9.2 to 11.0;
range of PC2 from 4.9 to 7.5). Not only the absorbance spec-
tra but also the corresponding C reference values were highly
variable compared to the exemplary NABO site (Fig. 5b;
7.3–117.8 gkg−1 C for KRS-LOCAL and 11.9–16.0 gkg−1 C
for the plot of this site). This particular target monitoring site
indicated that RS-LOCAL selected soils from the SSL with a
relatively large spectral diversity and a wide range of total C.

The instances selected by RS-LOCAL filled a substan-
tial proportion of the SSL’s feature space (Fig. 7), confirm-
ing the trend of site 65 COR. We found that RS-LOCAL
yielded quite a wide selection of relevant samples from the

SSL with reference to both the total C range and a wide
coverage of spectral features expressed with robust multi-
variate locations. The spectral estimations of the site valida-
tion sets that resulted from RS-LOCAL-based transfers nei-
ther showed trends in the mode or spread for distributions
of C measurements nor in the ones from their spectral dis-
tances. The measured distributions of Ksite SSL subsets and
Nsite local validation samples for further key soil properties
related to the chemical composition (OC, pH, CECpot, clay
and CaCO3) were also markedly different, confirming the lo-
cal transfer of quite heterogeneous soils (Table 3). For exam-
ple, standard deviations of the 0 %, 25 %, 50 % and 75 % per-
centile differences between the transfer sets selected the SSL
and the samples from the respective NABO site were on av-
erage between 18 and 66 gkg−1 for measured C and OC, re-
spectively. Furthermore, the measured clay and CaCO3 con-
tents were markedly different between the RS-LOCAL se-
lection and the local validation sets (mean absolute median
differences of 85 gkg−1 clay and 89 gkg−1 CaCO3). These
findings correspond with the dissimilar selection compared
to the local target samples found in the PCA space of prepro-
cessed spectra.

4 Discussion

4.1 General soil estimation with the Swiss SSL

Many of the chemical properties with distinct links to
soil organic matter and the key minerals (e.g., clays and
quartz) were discriminated well with mid-IR CUBIST mod-
els (Table 2; Fig. 3). Specifically, the models estimated
total C, OC, N, pH, texture, AAE10-Ca and AAE10-Mg
with R2 > 0.7. This suggests that the majority of devel-
oped models are useful for applications that require soil
proxies in order to manage land resources. For example,
CECpot (RMSE= 7.0 cmol(+) kg−1) and pH (RMSE= 0.3)
have high ecological importance for nutrient availability in
ecosystems. In agriculture, both measures are key factors for
soil fertility and nutrient recommendations.

The accuracy of our estimates for the properties that have
direct chemical links, through compound-associated absorp-
tions, were mostly comparable to established continental or
country-specific mid-IR SSLs. For example, Clairotte et al.
(2016) achieved RMSE= 2 gkg−1 for OC using mid-IR and
the spectrum-based learner for local predictions, while Sila
et al. (2016) reported RMSE= 4 gkg−1. The accuracy of
our general OC estimates was lower (RMSE= 9.3 gkg−1;
RPIQ= 3.4), which we explain with the relatively large
range of measured values and variable mineralogy (Stenberg
and Rossel, 2010). We found that total C had more CUBIST
rules per committee than OC (Table 2), indicating that total
C, which also included inorganic C (mostly CaCO3), lever-
ages more chemical constituents and latent absorptions for its
estimation. In spite of lower parsimony, slightly more accu-
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Figure 5. Illustration of the site-specific transfer modeling of total carbon (C) using RS-LOCAL for the example site 65 COR of the
Swiss Soil Monitoring Network (NABO). Panel (a) contains the principal components subspace (PC1 and PC2) of the Savitzky–Golay first
derivative mid-IR spectra, and panel (b) outlines the corresponding absorbance spectra (unprocessed for illustration), which are colored by
the total C content. The left subplots show the SSL transfer samples (n= 55) that were selected from the soil spectral library (n= 4281;
excluding all NABO calibration samples). This subset was most accurate when predicting the two calibration samples under the mechanisms
RS-LOCAL and their optimal tuning configuration for the site ({K = 50;B = 10;r = 0.1}). The right panels shows the time series data for
the validation samples of the NABO site called 65 COR.

Table 3. Standard deviations (SDs) of the absolute differences in percentiles (P0,P25,P50,P75, and P100) of final RS-LOCAL subsets
(Ksite) and corresponding site validation samples (Nsite) the across 71 long-term monitoring sites. The aggregated values for six measured
soil properties are shown. Total C is total carbon, OC is organic carbon and CECpot is potential cation exchange capacity.

SD(|PX(Ksite)−PX(Nsite)|)

SD(|1P0|) SD(|1P25|) SD(|1P50|) SD(|1P75|) SD(|1P100|)

Total C (gkg−1) 18 22 25 31 61
OC (gkg−1) 25 23 22 22 66
pH 0.8 0.7 0.5 0.6 0.9
CECpot (cmol(+) kg−1) 9.8 10.3 10.6 10.6 23.1
Clay (gkg−1) 110 97 85 68 90
CaCO3 (gkg−1) 74 79 89 98 178

rate estimates of total C were achieved (RMSE= 8.4 gkg−1;
RPIQ= 4.3).

The majority of soil properties were most accurately es-
timated with the maximum tested 100 committees and nine
neighbors. Instance-based correction with similar data in the

training set, (nearest) neighbors, yielded considerably higher
accuracy for total C (e.g., RMSE= 8.9 gkg−1 for 20 commit-
tees and two neighbors vs. RMSE= 8.1 gkg−1 for 20 com-
mittees and nine neighbors; model evaluation across cross-
validation folds; results not shown). The number of rules give
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Figure 6. Model assessment of the estimated total carbon (C) of 71 NABO sites for the general learning with CUBIST (y axis) vs. local
learning transfer with RS-LOCAL (x axis). The four panels depict the root mean square error (RMSE), the mean error (ME), the ratio of
performance to interquartile distance (RPIQ) and R2. The 1 : 1-line emphasizes the difference between the two approaches.

a first proxy for model complexity and the complementary of
spectral features that are involved in prediction. The range
in number of rules across the ensembles was widest for total
C (6–26), similar for OC (4–24), medium wide for CECpot
(1–10) and very narrow for CaCO3 (1–5), to give specific
examples. Viscarra Rossel and Webster (2012) report com-
parably fewer rules (medium – 21; range of all properties –
5–64) for OC and relatively similar number of rules for CEC
(15). Nonetheless, such comparisons have to be done with
care because the NIR range has a less pronounced represen-
tation of functional groups than the mid-IR range and be-
cause temperate soils have fundamental differences in chem-
ical composition compared to more weathered tropical soils.
For our mid-IR SSL, we were surprised that the rules for OC
were complex, similar to the ones for total C; in fact, we also
could not find any clear partitioning in the rules with respect
to measured ranges and spectral patterns (exploratory anal-
ysis not shown), which is in contrast to Viscarra Rossel and
Webster (2012). In fact, this is different from the general pat-
terns found by Viscarra Rossel and Webster (2012), where
the rules clearly partitioned the data into distinct measured
distributions. Last but not least, the diversity in rules for to-
tal C and OC of the general estimation approach makes the

soil diversity selected from the library and what we found for
site-specific local transfer even less exotic (see Sect. 4.2).

The variable importance assessment of the spectroscopic
models revealed five major regions of features with particu-
larly high predictive influence for total C, i.e., 2890, 2522,
2010, 1754 and 1370 cm−1 (Fig. 4). We attribute the two
absorption peaks near 2890 cm−1 to C−H stretching vibra-
tions of organic matter (Skjemstad and Dalal, 1987), which
were also relatively important for estimating C in other stud-
ies (e.g., Janik and Skjemstad, 1995; Viscarra Rossel and
McBratney, 1998). The important variable at 2522 cm−1 is
indicative of C=O absorption due to the carbonyl group
present in carbonates (e.g., calcite; Nguyen et al., 1991;
Soriano-Disla et al., 2014). The three important absorptions
between 2010 and 1786 cm−1 result from three consecutive
Si−O−Si (overtone and combination) absorptions, which
are indicative of quartz. However, the most important ab-
sorptions near 1754 cm−1 showed no distinct peak but an
edge feature. This is in accordance with Sila et al. (2016),
who identified this region as being most relevant for estimat-
ing total C with a (general) random forest model developed
from the SSL of the Africa Soil Information Service. This re-
gion is close to the C=O stretching vibration of the carboxyl
group that occurs around 1725–1720 cm−1 (Madari et al.,

https://doi.org/10.5194/soil-7-525-2021 SOIL, 7, 525–546, 2021



538 P. Baumann et al.: Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring

Figure 7. Analyzing the mechanisms behind the individual adaptive transfer realized with RS-LOCAL. (a) The left horizontal bars show the
root mean square error (RMSE) of mid-IR predictions of the temporal validation set Nsite of time series of total carbon (C) for each of the
71 NABO sites, which was calculated without the two respective calibration samples. The blue density plots depict the distribution of the
site-specific validation samples, and the brown vertical bars show the measured values of C for the final subsets of SSL used for the transfer
(Ksite). (b) The distribution of the robust distances from the PCA center of the Savitzky–Golay preprocessed spectra of the entire soil spectral
library compared to the subset of instances involved in the individual transfer modeling (Ksite) and validation samples (Nsite; similarity in
site-specific vs. final RS-LOCAL selection) computed with the minimum covariance determinant (MCD) estimator.

2006), which is further confirmed by the high importance
of these vibrations found by Janik and Skjemstad (1995).
The last relatively important region around 1370 cm−1 was
also an edge feature with no distinctly visible peak of chem-
ical group assigned, which, however, might be influenced
by the adjacent carboxylate (COO−) or −CH absorptions
at 1400–1350cm−1 of aliphatic compounds such as humic

acids (Madari et al., 2006; Parikh et al., 2014). In summary,
the CUBIST–RFE variable importance analysis enabled us
to link characteristic absorptions of typically prominent func-
tional groups of soil organic and inorganic C compounds, as
well quartz absorptions as indirect correlative features of pre-
dictive relevance, with our general model-based estimates of
total C.
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Because the rule-based models we developed can estimate
10 soil properties reasonably well (R > 0.6; RPIQ > 2.0;
Fig. 3), the Swiss SSL will be useful for new soils when
new reference measurements for model adaptation are rel-
atively scarce or not available. Thereby, the Swiss SSL will
be cost and time efficient for characterizing soils of similar
composition in the near future. The new predictions can fur-
ther be augmented with straightforward model interpretation,
which allows the chemical inference of pedological aspects
to provide means of model applicability. Although the com-
bined BDM and NABO set comprises a large soil variability
in Switzerland, the diversity of subsoils at depths greater than
20 cm – mostly in terms of the mineral composition – and
peat and forest soils are probably not yet represented suffi-
ciently in the SSL. We must therefore continuously update
the present SSL with more and deeper soil horizons in the
near future.

4.2 Local transfer from the SSL for soil monitoring at
plot scale

The local estimates of total C that were derived with
RS-LOCAL selection were substantially better on average
(RMSE= 0.7 gkg−1 C) than those derived using all of the
data and general CUBIST models (RMSE= 3.1 g kg−1 C;
Fig. 6). The data-driven estimation at plot scale further con-
siderably reduced bias and increased R2 compared to the
general CUBIST rules.

Our third goal was to analyze the characteristics of soils
that were selected from the SSL and used for establishing
locally adaptive models tailored to the respective long-term
monitoring sites. Surprisingly, the RS-LOCAL subsets se-
lected from the SSL had rather dissimilar spectra in the ro-
bust PCA space (Figs. 5 and 7); their distances to the center
had a wide distribution compared to the local samples. The
Ksite subsets accordingly covered a large proportion of the
spectral input space. The likely dissimilar chemical composi-
tion of soils was also reflected in the reference measurements
of total C. We conducted a broader analysis to interpret the
soil context of the selected samples with further soil com-
positional covariates (OC, pH, CECpot, clay and CaCO3),
which also did not resemble the soil characteristics of the
local monitoring sites (see Fig. 3). These findings, together
with the accurate validation results, clearly indicate that dis-
similarity and diversity in soils can also provide the means
for fitting locally adaptive models.

Nevertheless, we can yet only speculate about how and
why such diverse calibration sets are able to leverage accu-
rate local calibrations. One hypothesis is that, by increasing
the range of and variability in spectral variables and measure-
ments, a model can become quite stable in the central range
of local reference measurements because a larger range of in-
put variables is considered; thereby, the RS-LOCAL subsets
that are selected from the SSL and used for PLSR would sta-
bilize and reduce the errors of the local samples. We imag-

ine that we leverage a similar mechanism as in simple lin-
ear regression, where narrowing the range of the independent
variable (x) in the training samples would decrease the accu-
racy of intermediate values of the independent variable. We
therefore need to look further into the details of spectral dis-
similar learning and, for example, also investigate the rele-
vance of specific spectral features for local spectral transfers.
The inherent working principles of RS-LOCAL are in con-
trast to the spectrum-based learner (SBL) or other forms of
memory-based learning that utilize similar samples to infer
sample-specific predictions based on existing training data
(Lin and Vitter, 1994; Ramirez-Lopez et al., 2013). Our ap-
proach could describe a data-driven phenomenon, which im-
plies that spectra can help to estimate a set of unrelated new
soils. Another possibility is that there is in fact a pedological
explanation that could be elucidated with more soil covari-
ates, such as mineralogy.

Local soil characterization is simpler, quicker and cheaper
when a large proportion of properties of new soils are esti-
mated by spectroscopy. Our results suggest the importance
of optimizing the transfer of relevant information present in
large SSLs to minimize the required amount of conventional
laboratory analyses of new soils. Soil chemical and physi-
cal heterogeneity can be substantial in large SSLs. Therefore,
such data variation can be beneficial for future predictions of
the properties of soils. However, the machine learning of a
single general model over a heterogeneous training set, and
obtaining parameter estimates optimized with a global mea-
sure of goodness of fit, can introduce bias and inaccuracy to
local (soil) estimation (Hand and Vinciotti, 2003; Ramirez-
Lopez et al., 2013; Lobsey et al., 2017). Although the high-
est estimation accuracy could be achieved only with soils of
the target study area (Stenberg and Rossel, 2010; Guerrero
et al., 2016), it is impractical and inefficient to derive a single
spectral prediction model with those. It requires (1) a large
volume of reference measurements for a reasonably accurate
multivariate calibration, and (2) it does not utilize already ex-
isting soil information.

Currently, the Swiss long-term soil monitoring uses a spa-
tially representative sampling and then bulks the soils into
four replicates for reference measurements (Desaules et al.,
2010; Gubler et al., 2019). When the long-term monitoring
would be augmented with mid-IR spectroscopy, one could
make spectral measurements on all subsamples, rather than
only on bulked samples, which would deliver spatially ex-
plicit information and reduce nuisance factors from different
sampling conditions. If not constrained economically (sep-
arate drying, sieving and milling of subsamples), a spectral
workflow could thus allow one to account for small-scale soil
variability and reduce bias in measurements to robustly esti-
mate temporal soil changes. For example, there is currently
a relatively large variability in C measurements between the
bulked replicate samples at one point in time (Gubler et al.,
2019). Our results suggest that unbiased spectral measure-
ments eventually mediate such inconsistencies. Although
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Gubler et al. (2019) reported only minor changes for the en-
semble of permanent cropland or cropland–meadow moni-
toring sites (30), there were four sites with declining trends
and nine sites with increasing trends in OC (−11 % to+16 %
relative change per decade, respectively). Here, the trend of
spectroscopic predictions could be investigated with respect
to specific research questions on agronomic management-
induced changes, also with further physicochemical soil
characterization (e.g., OC fractions).

Relatively precise and unbiased geographically local esti-
mates of soil properties from diverse and large SSLs can be
achieved by a handful of data-driven statistical approaches
that are currently popular in the soil science community (Vis-
carra Rossel and Webster, 2012; Ramirez-Lopez et al., 2013;
Guerrero et al., 2014; Lobsey et al., 2017; Tsakiridis et al.,
2020). Among the methods, we tested RS-LOCAL Lobsey
et al. (2017) in our local soil monitoring scenario. Com-
pared to memory-based learning, such as SBL (Ramirez-
Lopez et al., 2013), RS-LOCAL does not precondition the
choice of useful subsets based on similarity in the input di-
mensions, here spectra, when performing the selection of
SSL samples. The RS-LOCAL method is applied to exhaus-
tively sample instances from the SSL without replacement,
while it preferably selects those that perform well on the lo-
cal target set, using PLSR. An advantage of the method is
that it can deal better with erroneous spectra, and inaccurate
and imprecise analytical reference measurements in the SSL,
because it filters them as irrelevant instances. Besides chemo-
metric and classical machine learning approaches, convolu-
tional neural networks are being popularized for modeling
SSLs with large soil variability (e.g., Liu et al., 2018; Padar-
ian et al., 2019a, b; Tsakiridis et al., 2020). There seems to
be a small performance gain of a multi-output CNN with a
similarity-based error correction using neighbors compared
to the SBL (Tsakiridis et al., 2020; RMSE= 11 gkg−1 vs.
12 gkg−1 for OC). Despite the current development of in-
terpretation methods in deep learning, CUBIST and PLSR
modeling employed in both in the SBL and RS-LOCAL of-
fer easier interpretation with comparable accuracy to CNNs.

Transfer learning or local learning introduces a new
paradigm to supervised learning, i.e., model building that is
governed by the intended model application and thus coupled
to it (Hand and Vinciotti, 2003). This contrasts with the gen-
eral model application, where the inference process is sepa-
rated from the prediction of new data. Including local sam-
ples and their local data characteristics is necessary so that a
combined search and learning algorithm has a chance to cap-
ture predictive mechanisms. At the same time, the selection
process and the partial data dependence within the predictive
unit, the site, requires a careful assessment scheme to prevent
a potential selection bias in the assessment of the approach.
To account for this, we kept the respective site-specific lo-
cal tuning and calibration set – whose holdout performance
directed the iterative search process and the reduction of the
SSL – at minimum size of two observations at t0 or, in addi-

tion, t1 when only one measurement was available from the
first sampling (see Fig. 2).

4.3 Future applications and updates of the SSL

We found that data-driven modeling with a selection of spec-
trally dissimilar soils (see Fig. 7) is accurate for inducing lo-
cal predictions of total C (Fig. 6). Hence, there is the need to
further improve the data-driven selection using RS-LOCAL,
i.e., by further optimizing the current version of the algo-
rithm. To address this need, we could use combined memory-
based or lazy learning strategies (Stanfill and Waltz, 1986;
Lin and Vitter, 1994; Ramirez-Lopez et al., 2013) to opti-
mize with more data-driven transfer methods (Pan and Yang,
2010) in terms of reducing the time needed to evaluate suit-
able subsets of the SSL for a new application. To give an
example, some similarity criteria or clustering before doing
calibration sampling could be used as prior information for
reducing the SSL size to obtain the final subsets. In princi-
ple, the sample reduction could also be done with algorithms
that can deal with nonlinear relationships between spectra
and soil properties, such as random forest or CUBIST. An-
other extension is to further filter spectral features and to do
data compression to make the local modeling faster and even
more adaptive to local conditions.

Our results showed that a transfer of the SSL to individ-
ual monitoring sites yielded very low bias and was accu-
rate. This indicates that mid-IR spectroscopy and SSLs have
the potential to give quick and relatively precise soil prop-
erty estimates for soil monitoring. Nevertheless, the sites of
the NABO long-term monitoring program has not undergone
substantial changes in OC (Gubler et al., 2019). Up to now,
although major changes in C content and organic composi-
tion should yield a spectral response, spectral changes in OC
have mostly been reported along chronosequences (i.e., Aw-
iti et al., 2008) and only rarely for changes within individ-
ual plots over time (Deng et al., 2013). Hence, to address
this, we propose to further investigate to what extent mid-IR
spectroscopy can detect changes of OC, considering small-
scale variability and different agronomic management prac-
tices. This could, for example, be achieved with a study using
soils from a long-term field trial that shows sufficient tempo-
ral changes to be detected with spectroscopy.

The current SSL includes soils that contain between 0 and
583 gkg−1 total C and OC (Table 1). Because organic soils
can have up to 500 gkg−1 OC, and because more than 98 %
of the samples are mineral soils, organic soils are underrepre-
sented in the current Swiss SSL. For this reason, Helfenstein
et al. (2021) evaluated the present Swiss SSL for a regional
transfer based on new organo–mineral soils from two peat-
land regions in Switzerland. Although the range of total C
measured was large (14–520 gkg−1 C) and the soils were di-
verse, as few as 5 or 10 site-specific tuning samples were suf-
ficient to estimate the validation samples with reasonable ac-
curacy (RMSE=< 30 gkg−1 C; RPIQ > 3.4); this was com-
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parable to a local-only calibration with 50 samples. Helfen-
stein et al. (2021) found considerably lower conditional pre-
diction errors (< 10 gkg−1) when considering measurements
of < 100 gkg−1; this suggests that increasing the amount
and compositional complexity of organic soils in the library
has potential for more accurately characterizing diverse soil
ecoregions with soils that have high organic matter contents.

Our results suggest that the present mid-IR SSL has great
potential for applications that require soil data in high tem-
poral and spatial coverage (i.e., for deriving quantitative in-
dicators of soil quality for spatial planning or for soil-related
environmental research). Mid-IR spectral modeling was able
to estimate many soil properties accurately with a rather
large variation in measurements being explained (Fig. 3),
making them suitable for agronomic diagnosis and the as-
sessment of soil functions in various landscapes. Currently,
fine-grained soil information on the properties and functions
across agricultural lands in Switzerland is still scarce and of-
ten challenging to harmonize (i.e., measurement methods)
because legacy maps are at varying levels of detail and qual-
ity (Keller et al., 2018; Grêt-Regamey et al., 2018). For ex-
ample, only 13 % (127 000 ha) of soil in agricultural land
has been mapped with soil attributes of sufficient quality
to evaluate its potential for crop production (Rehbein et al.,
2020). Soil properties are also insufficiently mapped nation-
wide from points into space, depth and over time to region-
ally model soil processes or to evaluate site-specific effects of
agricultural practices on soils (i.e., soil C dynamics). There-
fore, we suggest coupling infrared spectral estimations with
traditional soil surveys and digital soil mapping to speed up
the collection of soil information in Switzerland and else-
where. This will offer the means to test and further extend
this SSL so that only minimal amounts of costly and time-
consuming traditional laboratory analyses will be needed for
characterizing and mapping soils’ properties and functions in
the next decades.

5 Conclusions

We developed the Swiss mid-IR SSL (n= 4374), using
legacy soils and reference measurements of 16 proper-
ties, from 71 long-term monitoring sites (National Soil
Monitoring Network; NABO) and 1094 locations sam-
pled from a regular grid over Switzerland (Biodiversity
Monitoring program; BDM). The trained CUBIST mod-
els – a general modeling approach using all data – were
able to explain a relatively large proportion (R2

≥ 0.72;
RPIQ≥ 2.0) of measured variance for 10 of the proper-
ties. Total C, OC, total N, pH, CECpot and clay content
were estimated with high discrimination capacity (R2 > 0.8;
RPIQ > 3.0). Total C was estimated with a cross-validated
RMSE= 8.4 gkg−1 at a measured range of 0–583 gkg−1 and
OC with RMSE= 9.3 gkg−1 at the same measured range.
Compared to the general CUBIST approach, the local trans-
fer yielded on average 4.4 times more accurate estimates of
total C with the mean RMSE= 0.7 gkg−1 C, which is a sub-
stantial improvement on local estimates at plot scale. Our
similarity analysis revealed that local learning with subset se-
lection based on RS-LOCAL produced a chemically diverse
calibration set rather than narrowing down soil diversity for
local modeling, as it is, for example, the case in memory-
based learning. The developed national mid-IR SSL offers
rapid soil estimates which are key inputs for many applica-
tions requiring soil information, such as digital soil mapping,
agronomic diagnostics and precision farming, soil C account-
ing and monitoring, etc. The created mid-IR SSL and both lo-
cal and general models can be updated with new soil records,
which will us allow to cover more soils conditions and will
require fewer and fewer soil laboratory reference measure-
ments in relation to spectral measurements for monitoring,
mapping and modeling new soils.
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Appendix A: Figures and tables in Appendices

A1 Recursive feature elimination for interpreting general
soil estimation with CUBIST

The recursive feature elimination (RFE) procedure started
with the initial set of S1 = 209 predictive variables that re-
sulted after processing the spectra (see Sect. 2.3). The fol-
lowing subset sizes Si representing the number of spectral
variables that are retained after each ith variable elimination
step were defined and evaluated within the RFE procedure:

Si ={209,150,120,105,90,75,60,50,40,35,30,25,

20,17,14,12,11,10,9,8,7,6,5,4,3,2,1}. (A1)

The first variable elimination step (i= 1) started with
tuning a full CUBIST model derived from S1 = 209 pos-
sible predictors using 10-fold cross-validation, calculating
the CUBIST model usage statistics for all predictors, sort-
ing all predictors from highest to lowest importance and,
lastly, dropping S1− S2 = 59 of the least important predic-
tors. For the next iteration (i = 2) and the following ones, we
repeated this model fitting and variable reduction procedure
with S2 = 150 predictors and the preceding subsets until the
most important predictive variable (S30 = 1) was left at the
last iteration (i = 30).

Variable selection is, in addition, prone to overoptimistic
model assessment when resampling subsets (i.e., cross-
validation) are used for two purposes, namely model building
and selection. This selection bias due to data leakage is well
documented for so-called wrapper methods of variable selec-
tion, like RFE (Ambroise and McLachlan, 2002; Kuhn and
Johnson, 2013), and occurs if these two tasks are not suffi-
ciently separated by using independent data sets for each of
them; this becomes especially more important when many
predictive variables in relation to relatively few observations
are used, as it the case for our spectra.

To provide realistic predictive generalization of the RFE
method, the aforementioned iterative selection procedure
was done within an internal cross-validation scheme so
that independent data were used to test the performance
of the variable selection on the outer data segments. These
outer cross-validation segments served external validation.
To quantify the uncertainty of the models using the reduced
variable sets and, specifically, variable selection, the outer
cross-validation layer that served as cross-validation was re-
peated five times, leading to five independent estimations per
sample.

A2 Tuning profile of the RS-LOCAL parameters for local
predictive transfers

The most relevant samples from the SSL at each respec-
tive NABO long-term monitoring plot were empirically se-
lected at the RS-LOCAL configuration that yielded the low-
est RMSE on two calibration samples per plot (Fig. A1; per-
formance profile). The time series validation on the remain-
ing samples of each site was separated from the optimization
in the transfer workflow (see Fig. 2).

Figure A1. Performance profile of the 27 empirical parameter com-
binations of RS-LOCAL tested on each of the 71 NABO sites. The
root mean squared error (RMSE) of the plot-level transfer was as-
sessed with the first two calibration samples for each time series of
total carbon (C; see Fig. 1 for an illustration of the setup of the local
predictive transfer).
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