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We prove analytically that there exist delay equations admitting rapidly oscillating
stable periodic solutions. Previous results were obtained with the aid of comput-
ers, only for particular feedback functions. Our proofs work for stiff equations
with several classes of feedback functions. Moreover, we prove that for nega-
tive feedback there exists a class of feedback functions such that the larger the
stiffness parameter is, the more stable rapidly oscillating periodic solutions there
are. There are stable periodic solutions with arbitrarily many zeros per unit time
interval if the stiffness parameter is chosen sufficiently large.

KEY WORDS: Delay differential equations; rapidly oscillating solutions; sta-
ble periodic solutions.

1. INTRODUCTION

In this paper, we consider the delay equation

1
µ
ẋ=−x+f (x(t−1)), (1)

where f models either positive feedback, i.e. signf (x)= signx, or nega-
tive feedback, i.e. signf (x)=− signx.

If f is monotone the dynamics of (1) is relatively well understood.
For positive feedback Krisztin, Walther and Wu [5] show that under weak
assumptions on f there is a compact invariant set for the flow of (1). This
invariant set becomes a global attractor provided some additional restric-
tions are imposed on f and the damping constant µ, cf. Krisztin and
Walther [4]. It was also proved that stable periodic motion cannot occur,
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cf. [5]. For negative feedback Mallet-Paret and Walther [6] show that if f
is monotone there do not exist rapidly oscillating stable periodic solutions.

If f is not monotone the behaviour of (1) is more intricate. It was
very surprising when Ivanov and Losson [3] showed that for a specific
choice of µ and a negative feedback function f the delay equation (1)
admits a rapidly oscillating stable periodic solution. Later, Schulze–Halberg
[9] found an example of a positive feedback function f for which there is a rap-
idly oscillating stable periodic solution. Aschwanden, Schulze-Halberg and
Stoffer [1] simplified the computer-assisted proofs of Ivanov and Losson [3]
and Schulze-Halberg [9] and they presented a new type of rapidly oscillating
stable periodic solutions motivated by numerical computations in [9].

In this paper, we prove analytically the existence of rapidly oscillating
stable periodic solutions for classes of functions f which in the case of
negative feedback include the particular function taken by Ivanov and
Losson. Our proofs work for stiff equations, i.e. we state that there exists
µ0 such that for all µ>µ0 Eq. (1) admits a rapidly oscillating stable periodic
solution. Our proof does not guarantee that µ0 is smaller than the
particular value of µ chosen by Ivanov and Losson. For positive feed-
back we give conditions on f which include the function considered by
Aschwanden et al. [1].

Let us introduce some notions used in this paper. A solution of
Eq. (1) is a continuous function x: [−1,∞)→R, differentiable for positive
arguments and satisfying (1) for t > 0. Let C be the space of continuous
functions defined for [−1,0]. C is endowed with the maximum norm. For
any ϕ∈C there is a unique solution x with initial condition ϕ=x|[−1,0]. It
may be computed recursively using the variation-of-constant formula

x(t+1)=x(t0 +1)e−µ(t−t0)+µ
∫ t−t0

0
e−µ(t−t0−s)f (x(t0 + s)) ds . (2)

For a solution x and t�0 define xt ∈C by xt : s �→x(t+ s), s ∈ [−1,0].
We give an outline of the paper. In Section 2, we consider Eq. (1)

with positive feedback functions f of the kind as in Fig. 1. We consider
the case a > 1> b > 0 considered in [1]. We give conditions on a and b

(which we believe also to be necessary) under which Eq. (1) admits a rap-
idly oscillating stable periodic solution for all sufficiently large µ.

In Section 3, we consider Eq. (1) with negative feedback functions f
as shown in Fig. 5 with a > b > 1 and d > c > 1. We give conditions on
the parameters a, b, c, d of f implying the existence of a rapidly oscillat-
ing stable periodic solution if µ is sufficiently large.

In Section 4, we investigate a new type of rapidly oscillating solutions
for odd negative feedback functions f with a > 1> b > 0. In this situa-
tion, Eq. (1) admits periodic solutions with a particularly simple structure.
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Figure 1. A typical function f ∈F+
ε .

For odd n ∈ N there are explicitely known numbers µn(a) such that for
all µ>µn(a) Eq. (1) admits rapidly oscillating stable periodic solutions of
period τ ∈ [2/n,2/(n−1)]. This states the existence of stable periodic solu-
tions with an arbitrary large number of oscillations per unit time interval
if the stiffness parameter µ is sufficiently large. We believe that our condi-
tions on the parameters µ, a and b are sharp.

In the final Section 5, we make some comments on the results
obtained and report on some numerical investigations. This leads to some
conjectures concerning the case of (positive or negative) feedback func-
tions f with a>1>b>0.

2. DELAY EQUATIONS WITH POSITIVE FEEDBACK

In this section, we consider delay equations with positive feedback func-
tions f , as depicted in Fig. 1. More precisely, define ϑ1,2 :=−1 ∓ ε, ϑ3,4 :=
∓ε, ϑ5,6 :=1∓ε for a small positive constant ε and let a, b be constants sat-
isfying a>b>0. Let F+

ε denote the set of all functions f ∈C1
b (differentiable

functions with bounded derivative) satisfying |f (x)|�a for x ∈R and

f (x)=

⎧⎪⎨
⎪⎩

−b, x ∈ (−∞, ϑ1) =: I1,

−a, x ∈ (ϑ2, ϑ3) =: I2,

a, x ∈ (ϑ4, ϑ5) =: I3,

b, x ∈ (ϑ6,∞) =: I4.

We denote the set of these functions by F+
ε because they model positive

feedback. In this section, we restrict our considerations to the case a>1>



204 Stoffer

−1 −0.8 −0.6 −0.4 −0.2 0

−1.5

−1

−0.5

0

0.5

1

1.5

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

ϑ
1

ϑ
2

ϑ
3

ϑ
4

ϑ
5

ϑ
6

u

σ
1

time t

y=
φ(

t)
,  

y=
ψ

(t
)

Figure 2. An initial function ϕ ∈�.

b> 0. If x(t)∈ Ij for t ∈ [t0, t1] then f (x(t)) is constant and by the varia-
tion-of-constant formula (2) it follows that

x(t+1)= c+ (x(t0 +1)− c)e−µ(t−t0)

holds for c=f (x(t))∈ {−a,−b, b, a}. We say that x is of exponential type
with limit c in the interval [t0 + 1, t1 + 1]. Let T1 := 1

µ
log a+ε

a−ε be the time
needed for a function of exponential type with limit a to increase from
ϑ3 = −ε to ϑ4 = ε. We introduce the following set of initial conditions,
cf. Fig. 2

� :={ϕ ∈C|there is u∈ (0,1) such that

• ϕ(−1)=ϑ3,
• ϕ is of exponential type with limit a in [−1,−1+u],
• ϕ(−1+u)>ϑ6,
• For t ∈ [0, T1] : ϕ(−1 + u + t) = ϕ(−1 + u)e−µt +
µ
∫ t

0 e
−µ(t−s)f (−a+ (ε+a)e−µs) ds > ϑ6,

• ϕ is of exponential type with limit −a in [−1+u+T1,0],
• ϕ(0)<ϑ1}.

We define the map S :�→ R, ϕ �→ S(ϕ) := u. By definition of � the
map S is injective. Hence, the solution x of (1) with initial function ϕ∈�
is uniquely determined by the single real number u. For such a solution let
t1 =−1<t2<t3<. . . be the consecutive times for which x(ti)∈{ϑ1, . . . , ϑ6},
define the numbers Ti := ti+1 − ti and let xi := x(ti + 1), i= 1,2, . . . In the
next lemma we state that the set � may serve as Poincaré section.
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Lemma 1. Let the constants a, b satisfy a>1, b>0, b<2/a−a and
let I = [ 1

4 ,
3
4 ]. Then there is µ0>0 and ε0>0 such that for µ>µ0, ε∈ (0, ε0)

and f ∈F+
ε the following holds:

1. For every u∈ I there is ϕ ∈� with S(ϕ)=u.
For any solution x(t) with initial function ϕ satisfying S(ϕ)∈ I the following
holds:

2. x(t)<ϑ1 for t ∈ [0, t2 +1].

3. x(t) is of exponential type with limit a for t ∈ [t2 +1, t3 +1].

4. ϑ4<x(t)<ϑ5 for t ∈ [t3 +1, t8 +1].

5. x(t) is of exponential type with limit −a for t ∈ [t8 +1, t9 +1].

6. ϑ2<x(t)<ϑ3 for t ∈ [t9 +1, t14 +1].

7. x(t) is of exponential type with limit a for t ∈ [t14 +1, t15 +1].

8. ϑ6<x(t) for t ∈ [t15 +1, t16 +1].

9. x(t) is of exponential type with limit −a for t ∈ [t16 + 1, τ ]
for τ := t17 +1.

10. xτ ∈�.

Remark

1. Figure 3 shows a sketch of a solution as described in Lemma 1.
2. Let the assumptions of Lemma 1 be satisfied and µ and ε be cho-

sen according to Lemma 1. Then we define the set �0 :=S−1(I ).

Proof: Proof of Assertion 1. The graph of the initial function ϕ consists
of three arcs. The first one exists for a time interval of length u, starts
with ϕ(−1)= ϑ3 = −ε, is of exponential type with limit a and thus lies
entierly below x=a. The second arc has a time interval of length T1 and
by definition of � also lies below x = a. The third arc is of exponen-
tial type with limit −a, has a time interval of length 1 − u− T1� 1

4 − T1
and begins with an x-value below a. Therefore it is sufficient to require
that a function of exponential type with limit −a decays from a to
ϑ1 = −1 − ε in a time interval of length � 1

4 − T1. This leads to the con-
dition µ�4 log 2a(a+ε)

(a−1−ε)(a−ε) . Note that this condition also guarantees that
the first arc satisfies the condition ϕ(−1+u)>ϑ6.

For the proof of Assertions 2. – 10. we make some preliminary
remarks. For the solution x with initial function ϕ∈� remember the defi-
nition of ti , Ti , xi introduced just before Lemma 1.

We first compute x1 =ϕ(0) for ϕ ∈�0. We have

ϕ(−1+u)=a+ (ϑ3 −a) e−µu=a+ δ−1



206 Stoffer

−1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u u

σ
0

σ
2

σ
1

σ
3

t
1,2

+1

t
3,4

+1 t
7,8

+1

t
9,10

+1
t
13,14

+1

t
15,16

+1

t
17

+1

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

t
12

t
13

t
14

t
15

t
16

t
17

t
18

t
19

t
20

time t

y=
x(

t)

Figure 3. Sketch of a solution as described in Lemma 1. Note that the bold points within
the small circles actually represent very small arcs of the solution, the t–coordinate of the
starting point and the end point being denoted by t1,2 +1, t3,4 +1,... Note that xi =x(ti +1),
i=1, . . . ,17.

with δ−1 =−(a+ ε) e−µu. Then by definition of ϕ ∈� we get

ϕ(−1+u+T1) = (a+ δ−1)
a− ε
a+ ε

+µ
∫ T1

0
e−µ(T1−s)f (−a+ (ε+a) e−µs) ds (3)

= a+K0 + δ0 .

with K0 = −2aε/(a + ε) + µ
∫ T1

0 e−µ(T1−s)f (−a + (ε + a) e−µs) ds = O(ε)

being independent of u and with δ0 = a−ε
a+ε δ−1 =−(a−ε) e−µu (as to K0 we

used T1 = 1
µ
O(ε)).

Here and in the following we consider x1, x2, . . . , δ1, δ2, . . . as func-
tions of u with parameters ε and µ. We use the small-o notation in the
following very specific sense:

Writing g(u)= o means: g=O(e−µu+ e−µ(1−u)) and Dug=O(µ(e−µu
+ e−µ(1−u))) for u∈ [ 1

4 ,
3
4 ], ε→0 and µ→∞.

Since we shall need derivatives with respect to u we emphasize that
every time we use the small–o notation one has to make sure that the
estimated expression has a derivative with respect to u of size O(µ(e−µu+
e−µ(1−u))).
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Since ϕ is of exponential type with limit −a in [−1 + u+ T1,0] we
obtain by (6), (2), (3) and the definition of T1

x1 = −a+ (ϕ(−1+u+T1)+a) e−µ(1−u−T1)

= −a+ (2a+K0 +o) a+ ε
a− ε e

−µ(1−u)

or

x1 =−a+ δ1, δ1 = (2a+L1 +o) e−µ(1−u) . (4)

Note that in (4) the o-symbol represents a multiple of δ0 =−(a−ε)e−µu
and therefore has derivative with respect to u of order O(µ(e−µu +
e−µ(1−u))).

The numbers xi may be determined recursively. By the variation-of-
constant formula (2) we have

xi+1 =xie−µTi +µ
∫ Ti

0
e−µ(Ti−s)f (x(ti + s)) ds . (5)

If i is even then f (x(ti+s)) is constant for s ∈ [0, Ti ], say f (x(ti + s))=
ki ∈ {−a,−b, b, a}. Then x(t) is of exponential type with limit ki in
[ti+1, ti+1 +1] and (5) simplifies to

xi+1 =ki + (xi −ki) e−µTi , (i even) . (6)

We show that the functions xi =xi(u) have a specific structure.

Claim A. For i = 1,2, . . . ,17 there are constants ci , Ki , di , Li such
that

xi = ci +Ki + δi
with

δi = (di +Li +o) e−µu or (di +Li +o) e−µ(1−u)

and where

ci and di are independent of u, ε and µ,

Ki =C(ε) and Li =C(ε).
The notation g = C(ε) means: g is independent of u and satisfies

g=O(ε) for ε→0, µ→∞.
Below we shall recursively compute the constants ci , di . To simplify

the computations we already remark that whenever the solution crosses
one of the small intervals [ϑ1, ϑ2], [ϑ3, ϑ4] or [ϑ5, ϑ6] it is of exponential
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type with limit a or −a, cf. Fig. 3, as will be confirmed in the course of
the subsequent computations. It follows that if i is odd, then

Ti = 1
µ

log
a+ϑk+1

a+ϑk , e−µTi =1+C(ε) (i odd) (7)

for k=1, 3 or 5. We thus easily get

Claim B. If Claim A holds for all j�i and if i is odd then Claim A
also holds for i+1 with ci+1 = ci and δi+1 = (1+C(ε))δi .

Proof of Claim B. From (5) we get

xi+1 = (ci +Ki + δi)(1+C(ε))+
∫ Ti

0
µe−µ(Ti−s)f (x(ti + s)) ds . (8)

Assume by induction that the function x(ti+ s) is of exponential type with
limit a or −a and is starting at some ϑj . It follows that the integral Inti in
(8) does not depend on u and since Ti = 1

µ
C(ε) we have Inti =C(ε). Split-

ting xi+1 = (ci+1 +Ki+1)+ δi+1 we get ci+1 +Ki+1 = (ci +Ki)(1 +C(ε))+
Inti , δi+1 = (1+C(ε))δi . From δi+1 = (1+C(ε))δi we also get that Duδi+1 =
Du(di+1 + Li+1 + o)=Du(1 + C(ε))(di + Li)+ o=O(µ(e−µu + e−µ(1−u)))
and Claim B follows at once.

In the following, we successively prove the assertions of Lemma 1
together with the corresponding part of Claim A.

Proof of Assertion 2. We compute the constants ci , di for odd i using
(6). From (4) and Claim B we already know

c1 = c2 =−a, δ1 = (2a+C(ε)+o) e−µ(1−u), δ2 = (2a+C(ε)+o) e−µ(1−u) .
(9)

Hence x(t)=−a+O(ε)+o holds for t ∈ [0, t2 +1]. If ε is sufficiently small
and µ is sufficiently large then obviously statement 2 of Lemma 1 holds.

Proof of Assertion 3. With

e−µT2 = a−ϑ5

a−ϑ4
= a−1+ ε

a− ε = a−1
a

+C(ε) (10)

we find with (6)

x3 =a+ (−2a+K2 + δ2)
(a−1

a
+C(ε)

)

leading to

c3 = c4 =2−a, δ3 =
(a−1

a
+C(ε)

)
δ1, δ4 =

(a−1
a

+C(ε)
)
δ1 .
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Note that K3, K4 are of the required form although we do not com-
pute them explicitely. Since by assumption a ∈ (1,√2) note that x3, x4 ∈
[ϑ4, ϑ5] if ε is sufficiently small and if µ is sufficiently large. Hence t2 +1<
t11<t12<t13<t14<t3 + 1 and the solution x crosses the intervals [ϑ1, ϑ2],
[ϑ3, ϑ4] where x is of exponential type with limit a, cf. Fig. 3. The for-
mulas for δ3, δ4 immediately imply the estimates for the derivative with
respect to u. This proves statement 3 of Lemma 1.

Proof of Assertion 4. Note that the solution arc corresponding to
t ∈ [t3 + 1, t4 + 1] is covered by Claim B, i = 3. Next we discuss the time
interval [t4 +1, t6 +1]. We define the numbers

σ0 := 1
µ

log
a+ϕ(−1+u+T1)

a+ϑ6
, σ1 := 1

µ
log

a−x2

a−ϑ1
. (11)

σ0 is the time needed for x to decrease from ϕ(−1+u+T1) to ϑ6 and σ1
is the time in which x increases from x2 to ϑ1, cf. Fig. 3. We now obtain

T4 = (u−T1 −T2 −T3)+T1 +σ0 =−T2 −T3 +σ0 +u (12)

and therefore, see (10), (7), (3)

e−µT4 =
( a

a−1
+C(ε)

)
(1+C(ε))

(a+1
2a

+C(ε)+o
)
e−µu .

It is easily verified that the derivative of the third bracket ( ) is of order
O(µ(e−µu+ e−µ(1−u))). Equation (6) yields

x5 =b+ (c4 −b+K4 + δ4)
( a+1

2(a−1)
+C(ε)+o

)
e−µu

and hence

c5 = c6 =b, δ5 =
( (2−a−b)(a+1)

2(a−1)
+C(ε)+o

)
e−µu, δ6 = (1+C(ε))δ5 .

The derivative Du of the term o in the expression for δ5 is of order
O(µ(e−µu + e−µ(1−u))). Note that the solution remains in I3. We discuss
the time interval [t6 +1, t8 +1]. We have

e−µT6 = a+ ε
a+1− ε = a

a+1
+C(ε) ,

x7 =a+ (b−a+K6 + δ6)
( a

a+1
+C(ε)

)
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leading to

c7 = c8 =a b+1
a+1

, δ7 =
( a

a+1
+C(ε)

)
δ5, δ8 = (1+C(ε))δ7 . (13)

The inequality c7<1 is equivalent to a(b+1)<a+1 or ab<1 which is sat-
isfied since by assumption ab< 2 − a2< 1. We conclude that all the num-
bers x4, x5, x6, x7, x8 lie in the interval [ϑ4, ϑ5] if ε and 1/µ are sufficiently
small. Taking into account that the arcs of exponential type are monotone
this proves assertion 4 of Lemma 1.

Proof of Assertion 5. Noting that e−µT8 = e−µT2 yields with (10), (13)

x9 =−a+
(
a
b+1
a+1

+a+K8 + δ8

)(a−1
a

+C(ε)
)

leading to

c9 = c10 =−2−ab+b
a+1

, δ9 =
(a−1
a+1

+C(ε)
)
δ5, δ10 = (1+C(ε))δ9 .

Assertion 5 of Lemma 1 holds.

Proof of Assertion 6. We show c9 ∈ [ϑ2, ϑ3]. Note that 0<2−ab+b<2
and a+ 1> 2 imply c9 ∈ (−1,0). Hence x9, x10 ∈ [ϑ2, ϑ3] if ε and 1/µ are
sufficiently small. In addition we conclude t8 + 1< t15 < t16 < t9 + 1. Note
that also here the solution arc crossing [ϑ3, ϑ4] is of exponential type with
limit −a. We continue with

T10 = (1−u−T1 −σ0 − (T5 +· · ·+T9))+T1 +σ1

= −(T5 +· · ·+T9)+ (σ1 −σ0)+ (1−u) (14)

implying

e−µT10 =
(a+1
a−1

+C(ε)
) (

1+C(ε)+o) e−µ(1−u)

and compute

x11 =−b+ (c10 +b+K10 + δ10)
(a+1
a−1

+C(ε)+o
)
e−µ(1−u)

leading to

c11 = c12 =−b, δ11 =−
(2(1−ab)

a−1
+C(ε)+o

)
e−µ(1−u), δ12 = (1+C(ε))δ11 .

Note that the o in the expression for e−µT10 and x11 only involve δ0 and
δ2 which have small derivatives as required. We conclude that the solution
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remains in the interval (ϑ2, ϑ3) if ε and 1/µ are sufficiently small. Similarly
as for x7 we get

e−µT12 = e−µT6 = a

a+1
+C(ε) ,

x13 =−a+ (−b+a+K12 + δ12)
( a

a+1
+C(ε)

)

implying

c13 = c14 =−a b+1
a+1

, δ13 =
( a

a+1
+C(ε)

)
δ11, δ14 = (1+C(ε))δ13 . (15)

Since c13 =−c7 we have c13>−1 and we conclude that the solution x(t)

remains in the interval (ϑ2, ϑ3) for t ∈ [t9 + 1, t14 + 1]. This verifies Asser-
tion 6.

Proof of Assertion 7 and 8. In order to determine T14 and T16 and u

we need the numbers

σ2 := 1
µ

log
a+x8

a+ϑ4
, σ3 := 1

µ
log

a−x14

a−ϑ3
. (16)

σ2 is the time needed for x to decrease from x8 to ϑ4 and σ3 is the
time in which x increases from x14 to ϑ3, cf. Fig. 3. We remark that for
i=0,1,2,3 one has eµσi = const +C(ε)+o where all o–terms have small
derivative. We find, cf. Figure 3

T14 = (T2 −σ1 −T11 −T12 −T13)+T3 +T4 +T5 +T6 +T7 +σ2

and with (12) and

T11 =T5, T12 =T6, T13 =T7 (17)

we get

T14 =u+σ0 −σ1 +σ2 . (18)

We thus get

e−µT14 = (const +C(ε)+o) e−µu

and

x15 =a+ (c14 −a+K14 + δ14)(const +C(ε)+o) e−µu

leading to

c15 = c16 =a, δ15 = (d15 +C(ε)+o) e−µu, δ16 = (1+C(ε))δ15
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for some constant d15. All o–terms denote expressions with derivatives
with respect to u of order O(µ(e−µu + e−µ(1−u))). We find x15, x16 > ϑ6
if ε and 1/µ are sufficiently small. We conclude t14 + 1< t17 < t18 < t19 <

t20<t15 +1. This implies that the solution arc crossing the intervals [ϑ3, ϑ4]
and [ϑ5, ϑ6] is of exponential type with limit a. Assertions 7 and 8 hold,
cf. Fig. 3. Note that if f is odd then K2 =−K0, K14 =−K8 holds.

Proof of Assertion 9 and 10. We set τ := t17 +1, u := (t15 +1)− t17 and
verify that ϕ :=xτ ∈� with S(ϕ)=u.

• ϕ(−1)=x(t17)=ϑ3.
• x(t) being of exponential type with limit a in [t17, t15 + 1] we con-

clude that ϕ is of exponential type with limit a in [−1,−1 + u].
With (18) we get

u = (t15 +1)− t17 = (t15 − t14)− (t17 − (t14 +1))=T14 −σ3,

u = u+σ0 −σ1 +σ2 −σ3 . (19)

• ϕ(−1+u)=x15>ϑ6 holds if ε and 1/µ are sufficiently small.
• By (5) we get ϕ(−1 + u + t) = ϕ(−1 + u)e−µt + ∫ t

0 e
−µ(t−s)f (−a+

(ε+ a)e−µs) ds for t ∈ [0, T1] since T15 = T1 and since x is of expo-
nential type with limit −a in [t15, t16].

• ϕ(t) > ϑ6 for t ∈ [−1 + u,−1 + u+ T1] if ε and 1/µ are sufficiently
small.

• ϕ is of exponential type with limit −a in [−1+u+T1,0] since x is
of exponential type with limit −a in [t16 + 1, t17 + 1]. This verifies
assertion 9.

• ϕ(0)=x17. It remains to compute x17. We have T16=(T8−σ2−T15)+
T9 + T10 + T11 + T12 + T13 + σ3 and with the formula (14) for T10
and the relation (17) we get T16 = 1 − u− σ0 + σ1 − σ2 + σ3 − T15.
Using that T15 and the σi are of order O(1/µ) we get T16 =1−u+
O(1/µ). We thus obtain

x17 =−a+ (x16 +a)e−µT16 =−a+o .

Thus ϕ(0)=x17<ϑ1 holds if ε and 1/µ are sufficiently small. We conclude
that ϕ ∈�.

This completes the proof of Lemma 1. ��
Lemma 1 states conditions on a, b, µ and ε such that for every solu-

tion x of the delay Eq. (1) with initial condition ϕ ∈�0 there is a return
time τ such that P :ϕ �→ϕ :=xτ ∈�. This Poincaré map P induces a map
� :=S ◦P ◦S−1: I→R, u �→u :=�(u) :=S(ϕ). We call this map the reduced
Poincaré map.
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Lemma 2. Let the constants a, b satisfy a>1, b>0, b<2/a−a and let
I = [ 1

4 ,
3
4 ]. Then there is µ0> 0 such that for µ>µ0 there is ε= ε(µ) such

that for f ∈F+
ε the reduced Poincaré map � admits a unique fixed point

u∗ ∈ I . Moreover, the fixed point u∗ is attractive.

Remark
3. If in Lemma 2 f is odd then ε does not depend on µ: Under

the given assumptions there is ε> 0 and µ0 such that for every f ∈F+
ε ∩

{f |f (−x)=−f (x)} and µ>µ0 the assertion of Lemma 2 holds: � admits
a unique attractive fixed point u∗ ∈I . This follows from the fact that in the
proof below K0 =−K2, K8 =−K14 holds if f is odd. �

Proof. Equation (19) together with (11) and (16) gives a formula for
the map �:u �→u. We find with (3), (9), (13), (15), ϑ6 =−ϑ1, ϑ4 =−ϑ3

eµ(u−u) = eµ(σ0−σ1+σ2−σ3) (20)

= a+ϕ(−1+u+T1)

a+ϑ6

a−ϑ1

a−x2

a+x8

a+ϑ4

a−ϑ3

a−x14

= 2a+K0 + δ0

2a−K2 − δ2

a+b+2+ a+1
a
K8 + (1+C(ε))δ5

a+b+2− a+1
a
K14 − (1+C(ε))δ11

= 1+C(ε)+ ( 1
2a +C(ε)+o)δ0 + ( 1

a+b+2 +C(ε)+o)δ5

1− ( 1
2a +C(ε)+o)δ2 − ( 1

a+b+2 +C(ε)+o)δ11

= 1+C(ε)+ [( 1
2a +C(ε)+o)δ0 + ( 1

a+b+2 +C(ε)+o)δ5
]

+[( 1
2a +C(ε)+o)δ2 + ( 1

a+b+2 +C(ε)+o)δ11
]
. (21)

Inserting the expressions for δ0 and δ5 we find that the expression in the
first bracket [ ] in (21) is equal to

1
2

[ (2−a−b)(a+1)
(a+b+2)(a−1)

−1+C(ε)+o
]
e−µu =

[ 2−a2 −ab
(a+b+2)(a−1)

+C(ε)+o
]
e−µu

and that the expression in the second bracket [ ] is equal to
[ −2(1−ab)
(a+b+2)(a−1)

+1+C(ε)+o
]
e−µ(1−u) =

[
− 4−a−a2 −b(3a−1)

(a+b+2)(a−1)

+C(ε)+o
]
e−µ(1−u) .

We thus have

eµ(u−u)=1+C(ε)+ (p0 +C(ε)+o)e−µu− (p1 +C(ε)+o)e−µ(1−u) (22)
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with

p0 = 2−a2 −ab
(a+b+2)(a−1)

, p1 = 4−a−a2 −b(3a−1)
(a+b+2)(a−1)

.

Note that if f is odd then the first C(ε) in (22) vanishes. This follows from
the fact that for symmetric f one has K2 =−K0, K14 =−K8.

We show that p0 and p1 are positive. p0>0 follows immediately from
the assumption b< 2

a
−a. p1 is positive if

b<
4−a−a2

3a−1
.

It is therefore sufficient to show that

2
a

−a< 4−a−a2

3a−1
.

This is equivalent to each of the following inequalities (we use a>1)

−3a3 +a2 +6a−2 < 4a−a2 −a3,

0 < 2(a3 −a2 −a+1),

0 < (a−1)2(a+1) .

This yields that p1 is positive.
We show that �: u �→ u is a contraction in I if ε and µ are chosen

appropriately. From (22) we obtain for u∈ I

�(u)=u+ 1
µ

log
(
1+C(ε)+ [p0 +C(ε)+o]e−µu− [p1 +C(ε)+o]e−µ(1−u))

(23)

implying

�′(u) = 1− [p0 +C(ε)+o]e−µu− [p1 +C(ε)+o]e−µ(1−u)) < 1

for ε and 1/µ sufficiently small. Since I is compact we conclude that �
is uniformly contracting in I with a contraction factor smaller than 1. To
show �(I)⊂I it is sufficient to verify �(1/4)>1/4, �(3/4)<3/4. For given
sufficiently small µ it is possible to find ε>0 such that equation (23) yields
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�

(
1
4

)
= 1

4
+ 1
µ

log (1+C(ε)+ [p0 +C(ε)+o

−(p1 +C(ε)+o)e−µ/2]e−µ/4
)
>

1
4
,

�

(
3
4

)
= 3

4
+ 1
µ

log (1+C(ε)− [p1 +C(ε)+o

−(p0 +C(ε)+o)e−µ/2]e−µ/4
)
<

3
4
.

Note that if the first C(ε) in both equations vanish then ε may
be chosen independently of µ. By the contraction mapping principle the
map � admits a unique fixed point u∗ ∈ I . This completes the proof of
Lemma 2. ⊥

We now define the initial function ϕ∗ ∈� by setting ϕ∗ := S−1(u∗).
Since �(u∗)=u∗ it follows that P(ϕ∗)=ϕ∗ and hence ϕ∗ generates a peri-
odic solution x∗ of (1). We now show that x∗ is an attractive, periodic
solution in the space C.

Theorem 3. Let the constants a, b satisfy a>1, b>0 and b<2/a−a.
Then there is µ0>0 such that for µ>µ0 there is ε=ε(µ) such that for f ∈
F+
ε the following holds: The delay equation (1) admits a rapidly oscillating

orbitally asymptotically stable periodic solution x∗. Moreover, for every ϕ ∈
�0 there is δ>0 such that every ψ ∈C with |ψ−ϕ|<δ generates a solution
tending orbitally to x∗.

Remark

4. We again point out that if f is odd then in Theorem 3 ε does not
depend on µ: Under the given assumptions there is ε>0 and µ0
such that for every f ∈F+

ε ∩ {f |f (−x)=−f (x)} and µ>µ0 the
assertion of Theorem 3 holds.

5. If f is odd then the first term C(x) in (23) vanishes. It follows
that for odd f the estimate u∗ = 1

2 +O( 1
µ
) holds. �

Proof. From Lemma 2 we already know that there is a periodic solu-
tion x∗ with initial function ϕ∗. From the proof of Lemma 2 we also know
that the reduced Poincaré map � is a contraction in I . It follows that
x∗ orbitally attracts every solution with initial condition ϕ ∈�0. Assume
|ψ − ϕ| < δ for a small constant δ still to be determined. We denote
the solution with initial condition ψ by x̂, the one with initial condi-
tion ϕ ∈�0 by x. We define ϑ̂1,2 :=ϑ1,2 ∓ δ, ϑ̂3,4 :=ϑ3,4 ∓ δ, ϑ̂5,6 :=ϑ5,6 ∓
δ. Let t̂1 = −1< t̂2 < · · ·< t̂10 be the consecutive times such that ϕ(t̂i)=
x(t̂i ) ∈ {ϑ̂1, . . . , ϑ̂6}, cf. Figure 4. By construction we have t̂i = ti +O(δ),
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Figure 4. The functions ϕ and ψ .

i = 2,3, . . . ,10, and for t ∈ [t̂i , t̂i+1], i = 2,4,6,8, the identity f (x̂(t)) =
f (ψ(t)) = f (ϕ(t)) = const holds, cf. Fig. 3. We conclude x̂(t̂i + 1) =
x(ti + 1)+O(δ), i = 1,2, . . . ,10 and that x̂ is of exponential type in the
intervals [t̂i + 1, t̂i+1 + 1], i= 2,4,6,8. For i= 11,12, . . . let t̂i be the con-
secutive positive times such that x̂(t̂i )∈ {ϑ1, . . . , ϑ6} and set x̂i := x̂(t̂i + 1),
i=1,2, . . . ,. We also find x̂i =xi +O(δ) for i=11,12, . . . ,17. Since x̂2<ϑ1
and x̂3 ∈ (ϑ4, ϑ5) if δ is small enough we conclude t̂2 + 1< t̂11< t̂12< t̂13<

t̂14 < t̂3 + 1. For small δ we also find x̂i ∈ (ϑ4, ϑ5) for i = 4,5, . . . ,8 and
x̂i ∈ (ϑ2, ϑ3) for i=9,10, . . . ,14, etc., quite similarly as for xi . Analogously
as in the proof of Lemma 1 we get that ψ := x̂τ̂ ∈� for τ̂ = t̂17 + 1. Since
S(ϕ) is in the interior of I and since |S(ϕ)− S(ψ)| =O(δ) we conclude
that S(ψ)∈ I if δ is chosen sufficiently small. This completes the proof of
Theorem 3. ��

3. DELAY EQUATIONS WITH NEGATIVE FEEDBACK

In this section we consider the delay equation (1) with negative feed-
back function f . Since we also want to consider the feedback function
used by Ivanov and Losson [3] we also include asymmetric functions in
the definition of F̂−

ε . Let ϑi, i=1, . . . ,6 be defined as in Section 2 and let
a>b>0>−c>−d. We denote by F̂−

ε the set of all functions f ∈C1
b sat-

isfying f (x)∈ [−d, a] for x ∈R and
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Figure 5. A function f ∈ F̂−
ε modelling negative feedback.

f (x)=

⎧⎪⎨
⎪⎩

b, x ∈ (−∞, ϑ1) = I1,

a, x ∈ (ϑ2, ϑ3) = I2,

−c, x ∈ (ϑ4, ϑ5) = I3,

−d, x ∈ (ϑ6,∞) = I4.

In this section, we restrict the considerations to the case a>b>1 and
d >c>1, as in the particular case treated in [3]

We first review the considerations of Section 2. The key computa-
tions are contained in the proofs of Lemma 1 and 2, where the numbers
ci and di were computed, c.f. Claims A and B. Remember that ci and di
determine the leading terms in the asymptotic expansion of xi =xi(u) for
µ→ ∞. For the proof it is essential that the numbers ci and di do not
depend on ε. These numbers may also be computed for the limiting equa-
tion obtained by setting ε= 0. This simplifies the computations consider-
ably. Since we already know how the xi depend on ε we compute the ci , di
for ε=0 and infer the results for ε small. A solution of Eq. (1) for f ∈ F̂−

0
is a continuous function x: [−1,∞) �→R which is piecewise of exponential
type for t >0 and satisfies (1) in each open interval of exponential type.

For the type of solutions considered in this section we need a new set
of inital functions. Let T6 := 1

µ
log c+1

c
be the time needed for a function of

exponential type with limit −c to decrease from 1 to 0. For the following
definition see also Fig. 6.

� := {ϕ ∈ C| there are (small) numbers κ >0, σ >0 and t1 = −1< t2<
· · ·<t8<−T6 −κ such that
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Figure 6. An initial function ϕ ∈� for negative feedback.

• ϕ(t1)=0,
• ϕ is of exponential type with limit −c in [t1, t2 +κ],
• ϕ(t2)=−1,
• ϕ(t)�−1−σ for t ∈ [t2 +κ, t3 −κ],
• ϕ is of exponential type with limit a in [t3 −κ, t5 +κ],
• ϕ(t3)=−1, ϕ(t4)=0, ϕ(t5)=1,
• ϕ(t)�1+σ for t ∈ [t5 +κ, t6 −κ],
• ϕ is of exponential type with limit −c in [t6 −κ,−T6],
• ϕ(t6)=1, ϕ(t7)=0, ϕ(t8)=−1,
• ϕ is of exponential type with limit −d in [−T6,0]} .

Similarly as in Section 2, we define a map S :�→ R
2, ϕ �→ S(ϕ) :=

(u, v) := (t4 − t1, t7 − t4). It is easy to see that for a function ϕ ∈ �
the expression f (ϕ(t)) only depends on u, v, t . More precisely, f (ϕ(t))=
f (ψ(t)) holds if S(ϕ)= S(ψ). It follows that if ϕ ∈� then for t > 0 the
solution x of (1) is uniquely determined by (u, v)= S(ϕ). For such solu-
tions let t1 = −1< t2 < t3 < . . . be the consecutive times such that x(ti)∈
{−1,0,1}. Note that for i = 1, . . . ,8 the numbers ti coincide with the ti
defined before. Moreover, define the numbers Ti := ti+1 − ti and let xi :=
x(ti+1), i=1,2, . . . Note that the definition of the numbers ti slightly dif-
fers from the one in Section 2 since we have put ε=0. In the next lemma
we state that the set � still may serve as Poincaré section, c.f. Fig. 7.
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Figure 7. A solution of (1) with negative feedback.

Lemma 4. Let the constants a, b, c, d satisfy a>b>1>−1>−c>−d,
a(c+1)>c(c2 +1)+d(c−1), a(a−1)b>2a+ (a+1)d and let I := [ 1

6 ,
5

12 ]×
[ 1

6 ,
5

12 ].
Then there is µ0>0 such that for µ>µ0 the following holds.

1. For every (u, v) ∈ I there is ϕ ∈� with S(ϕ)= (u, v). If f ∈ F̂−
0

then any solution x(t) with initial condition ϕ satisfying S(ϕ)∈ I
has the following properties:

2. x(t) is of exponential type with limit a for t ∈ [0, t2 +1].
3. x(t2 +1)>1.
4. x(t) is of exponential type with limit b for t ∈ [t2 +1, t3 +1].
5. x(t) is of exponential type with limit a for t ∈ [t3 +1, t4 +1].
6. x(t) is of exponential type with limit −d for t ∈ [t4 +1, t5 +1].
7. x(t5 +1)>1.
8. x(t) is of exponential type with limit −c for t ∈ [t5 +1, t6 +1].
9. x(t6 +1)<−1.

10. x(t) is of exponential type with limit −d for t ∈ [t6 +1, t7 +1].
11. xτ ∈� for τ := t7 +1.

Proof.
1. The larger µ is, the closer are the numbers t1, t2, the numbers t3, t4, t5
and the numbers t6, t7, t8 and the existence of some ϕ ∈� is guaranteed
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for sufficiently large µ (e.g. it is sufficient to choose µ�12 max{log(c/
(c−1)), log(a/(a−1))}, this guarantees that t2<t3, t5<t6, t8<−T6 ).

2.–3. We first compute x1 = ϕ(0). Since by definition of � we have
ϕ(−1+u+v)= 0 and ϕ is of exponential type with limit −c in [−1 + u+
v,−T6] we get x0 :=ϕ(−T6)=−c+ c e−µ(1−u−v−T6)=−c+(c+1) e−µ(1−u−v).
The function ϕ being of exponential type with limit −d in [−T6,0] we get

x1 = ϕ(0)=−d+ (x0 +d) e−µT6

= −d+ (−c+d+ (c+1) e−µ(1−u−v))
c

c+1

= −c
2 +d
c+1

+ δ1 with δ1 = c e−µ(1−u−v).

Since for ε=0 the feedback function f is piecewise constant the for-
mula (6) holds for all i=1,2, . . . We thus get with e−µT1 = (c−1)/c

x2 = a+ (x1 −a) e−µT1

= a

c
− (c2 +d)(c−1)

c(c+1)
+ δ2 with δ2 = c−1

c
δ1.

All the numbers δ1, δ2, . . . are exponentially small with respect to µ. Thus,
x2>1 holds if the condition

a

c
− (c2 +d)(c−1)

c(c+1)
> 1

is satisfied and if µ is sufficiently large. This condition is equivalent to the
assumption a(c+1)>c(c2 +1)+d(c−1).

4.–7. We proceed with

x3 = b+ (x2 −b) e−µT2

= b+ δ3 with δ3 = (x2 −b) c

c−1
a+1
a

e−µu,

x4 = a+ (x3 −a) a

a+1

= a
b+1
a+1

+ δ4 with δ4 = a

a+1
δ3,

x5 = −d+ (x4 +d) a−1
a

= (a−1)
b+1
a+1

− d

a
+ δ5 with δ5 = a−1

a+1
δ3.

We conclude that Assertion 7 holds for µ large enough if

(a−1)
b+1
a+1

− d

a
> 1 .
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This is equivalent to the assumption a(a−1)b>2a+ (a+1)d.
8.–11. We continue with

x6 = −c+ (x5 + c) e−µT5

= −c+ δ6 with δ6 = (x5 + c) a

a−1
c+1
c

e−µv

and similarly as for x1 we get

x7 = −d+ (x6 +d) e−µT6 =−c
2 +d
c+1

+ δ7 with δ7 = c

c+1
δ6 .

It follows that xτ ∈� for τ = t7 +1. ��
We conclude from Lemma 4 that the hyperplane H :={ϕ∈C |ϕ(−1)=

0} ⊃� may serve as Poincaré section. For every solution x of the delay
equation (1) with initial condition ϕ ∈�0 there is a Poincaré return time
τ such that P :ϕ �→ϕ :=xτ ∈�⊂H . Also in this case we may reduce P to
a finite dimensional map. For any w= (u, v)∈ I there is ϕ∈� with S(ϕ)=
(u, v). We have already mentioned that for t > 0 the solution x with ini-
tial function ϕ only depends on (u, v). It follows that ϕ :=P(ϕ) is uniquely
determined by (u, v)∈I . We thus may define the so called reduced Poincaré
map � by �: I→R

2, w= (u, v) �→w= (u, v) :=�(u, v) :=S(ϕ).
Lemma 5. Let the constants a, b, c, d satisfy a>b>1>−1>−c>−d,

a(c+1)>c(c2 +1)+d(c−1), a(a−1)b>2a+ (a+1)d,

a−bc
c(c−1)

>
c2 +d
c(c+1)

+ ac−d
a(a−1)

+ b+1
a+1

(24)

and let I := [ 1
6 ,

5
12 ]× [ 1

6 ,
5

12 ].
Then there is µ0 > 0 such that for µ > µ0 and f ∈ F̂−

0 the reduced
Poincaré map � admits a unique fixed point w∗ = (u∗, v∗)∈I . Moreover, w∗
is attractive.

Proof. With the same notation as in the proof of Lemma 4 we get

u = 1−u−v+ 1
µ

log
(a−x1

a

)
, (25)

v = t13 − t10 = (t4 +1)− t10 + (t5 − t4)+ (t13 − t5 −1)

= u− 1
µ

log
(a−x1

a

)
+ 1
µ

log
( a

a−1

)
+ 1
µ

log
(c+x5

c

)
.
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For the the derivatives of � we get

Du� =
(

−1+ 1
µ
Du log(a−x1)

1− 1
µ
Dv log(a−x1)+ 1

µ
Du log(c+x5)

)
,

Dv � =
(

−1+ 1
µ
Dv log(a−x1)

− 1
µ
Dv log(a−x1)+ 1

µ
Dv log(c+x5)

)

with
1
µ
Du log(a−x1) = 1

µ
Dv log(a−x1)=− c

a−x1
e−µ(1−u−v)=:−ρ,

1
µ
Du log(c+x5) =

(
− 1
c+x5

a−1
a+1

(x2 −b) c

c−1
a+1
a

+o
)
e−µu=:−δ,

1
µ
Dv log(c+x5) = o2

using the o-notation to denote terms of order O(e−µu + e−µ(1−u−v)). We
therefore have

�(w) =
(

1
0

)
+
(−1 −1

1 0

)
w+�(w)

with �(w)=O(1/µ) and D�(w)=O(e−µu+ e−µ(1−u−v)) for w∈ I . It eas-
ily follows that � has a unique fixed point w∗ = (1/3,1/3)+O(1/µ) in I .
It remains to show that w∗ is attractive. It is sufficient to show that the
eigenvalues of the Jacobian D� at the fixed point have magnitude smaller
than 1. We already know

D� =
( −1−ρ −1−ρ

1+ρ− δ ρ+o2

)

with ρ and δ introduced above. The characteristic polynomial of D� is
PD�(λ)= λ2 + (1 + o2)λ+ (1 + ρ− δ+ o2). The zeros of PD� have magni-
tude smaller than 1 iff δ−ρ >0. We have

δ−ρ= (a−1)c(x2 −b)+o
a(c−1)(c+x5)

e−µu
∗ − c

a−x1
e−µ(1−u∗−v∗).

According to (25) one has e−µ(1−u∗−v∗)= a−x1
a
e−µu∗

. This yields

δ−ρ=
[
(a−1)(x2 −b)
(c−1)(c+x5)

−1
]
c

a
e−µu

∗
.

We thus have δ−ρ >0 if

x2 −b
c−1

>
c+x5

a−1



Rapidly Oscillating Stable Periodic Solutions 223

or

a

c(c−1)
− c2 +d
c(c+1)

− b

c−1
>

c

a−1
+ b+1
a+1

− d

a(a−1)
+o .

We conclude that for sufficiently large µ the fixed point is attractive if the
condition (24) holds. ��

As we have mentioned in the beginning of this section the results may
be tranfered to the case with small ε>0.

Theorem 6. Let the constants a, b, c, d with a>b>1>−1>−c>−d
satisfy the conditions

a(c+1) > c(c2 +1)+d(c−1), (26)

a(a−1)b > 2a+ (a+1)d, (27)
a−bc
c(c−1)

>
c2 +d
c(c+1)

+ ac−d
a(a−1)

+ b+1
a+1

. (28)

Then there is µ0 > 0 such that for µ>µ0 there is ε= ε(µ) such that
for f ∈ F̂−

ε the following holds: the delay equation (1) admits an orbitally
asymptotically stable periodic solution x∗ (of the type as depicted in Fig. 7).

Proof. Let ϕ ∈� be such that S(ϕ)= (u∗, v∗). Then set ϕ∗ := P(ϕ).
The function ϕ∗ generates a periodic solution x∗. Similarly as in the proof
of Theorem 3 one can show that if ψ ∈ C is sufficiently close to ϕ∗ then
P(ψ)∈� holds with P(ψ) arbitrarly close to ϕ∗. By Lemma 5 such ini-
tial functions generate solutions tending orbitally to x∗. ��

4. VERY RAPID OSCILLATIONS

In this section, we consider Eq. (1) with an odd negative feedback
function f . For simplicity we only consider the case ε= 0 and thus take
f ∈ F−

0 := F̂−
0 ∩ {f |f is odd}. We leave it to the reader to transfer the

results to the case with small ε > 0. As in Section 2, we choose a and b

to satisfy the conditions

a>1>b>0, b<
2
a

−a .

These conditions lead to periodic solutions of a particularly simple struc-
ture. The periodic solution restricted to one period consists of only four
arcs of exponential types.

We first report on numerical experiments and show plots for a= 1.2
and b= 0.3. Figure 8 shows a plot of a stable periodic solution with 7
“humps” per unit time interval (more precisely: per time interval of length
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Figure 8. A solution with n=7 humps.
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Figure 9. Periodic solutions for µ close to µ7 and for µ=µ7.

l ∈ [1 + 1
2µ log 2,1 + 1

µ
log 2] ) for µ= 30. We call a hump the restriction

of the solution between two consecutive zeros. We distiguish two types of
humps. We call a hump x(·)|I of type A if maxt∈I |x(t)|> 1 and of type
B if maxt∈I |x(t)|�1, respectively. The solution of Fig. 8 has consecutive
humps of type A,B,A,B, . . .

We gradually decrease µ. For µ= 17 the stable periodic solution is
shown in the first plot of Fig. 9. One can observe that the maximum of
|x(t)| is only slightly larger than 1 for a hump of type A and only slightly
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smaller than 1 for a hump of type B. As µ approaches some limit value
µ7 the shape of the two types of humps look more and more the same,
and the stable periodic solution approaches the function shown in the sec-
ond plot of Fig. 9. This limiting function consists of arcs of exponential
type with limit a increasing from −1 to 1 and of arcs of exponential type
with limit −a decreasing from 1 to −1. It is not difficult to determine µ7
such that if the first hump begins at t=−1 then the 7th hump attains its
maximum at t=0. In this section, we prove that if

µ>µn(a) := (n−1) log
a+1
a−1

+ log
a

a−1
(29)

for n odd then there exists a stable periodic solution with n humps per
time interval of length 1+O(1/µ). We believe that condition (29) is sharp,
i.e. that for µ�µn(a) there is no stable periodic solution with n humps per
time interval of length 1+O(1/µ).

Our proof is organized as follows. In Section 4.1, we first prove the
existence of rapidly oscillating periodic solutions with an arbitrarily high
number of oscillations per unit time interval. Then in Section 4.2, we show
that the constructed periodic solutions are stable.

4.1. Existence of Rapidly Oscillating Periodic Solutions

We construct rapidly oscillating periodic solutions as follows. We first
consider a slowly oscillating periodic solution of (1) with humps of type
A,B,A,B, . . . By rescaling the time we obtain rapidly oscillating periodic
solutions of arbitrarily high frequency.

Lemma 7. If t �→ p̂(t) is a τ̂–periodic solution of (1)µ̂ then for m∈ N

the function t �→p(t) := p̂((1+mτ̂)t) is a τ–periodic solution of (1)µ with

τ = τ̂

1+mτ̂ , µ= µ̂(1+mτ̂) .

Proof. We verify that p is a solution of (1)µ. We get

1
µ
ṗ(t) = 1

µ̂(1+mτ̂)
d

dt
p̂((1+mτ̂)t)

= 1
µ̂

˙̂p((1+mτ̂)t)
= −p̂((1+mτ̂)t)+f (p̂((1+mτ̂)t−1)) .

Using the τ̂–periodicity of p̂ we get

p̂((1+mτ̂)t−1)= p̂((1+mτ̂)t−1−mτ̂)= p̂((1+mτ̂)(t−1))=p(t−1)
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and we therefore have

1
µ
ṗ(t)=−p(t)+f (p(t)) .

��
We next compute our slowly oscillating periodic solution.

Lemma 8. Let f ∈F−
0 with 0<b<1<a, b< 2

a
−a and let µ̂>µ1(a) :=

log a
a−1 . Then, up to time shifts, Eq. (1)µ̂ admits a unique slowly oscillating

periodic solution p̂ with mint p̂(t)>−1 and maxt p̂(t)>1. The period τ̂ (µ̂)
of p̂ tends to 2

µ1(a)
log a+1

a−1 as µ̂ tends to µ1(a).

Proof. Let p̂ be the solution of (1)µ̂ with initial function ϕ̂(t)= a−
ae−µ̂(t+1), t ∈ [−1,0]. To show that p̂ has the desired properties we com-
pute the solution, cf. Fig. 10.

As in Section 3, we introduce the numbers t1 =−1< t2< . . . of con-
sequtive times such that p̂(ti)∈ {−1,0,1}, the numbers Ti := ti+1 − ti and
x∗
i := p̂(ti +1). We have

x∗
1 = p̂(0)=a−ae−µ̂ >a−ae−µ1(a)=1

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
a =1.2,  b =0.3,  µ =3

t
1

t
2

t
3

t
4

t
5

x
1

x
2

x
3

x
4

x
5

time t

y=
x(

t)

Figure 10. The slowly oscillating periodic solution.
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and limµ̂→µ1(a) x
∗
1 =1. We further get with e−µ̂T1 = (a−1)/a

x∗
2 = p̂(t2 +1)=−a+ (x∗

1 +a)e−µ̂T1

= −(2−a)− (a−1)e−µ̂ ∈ (−1/a,−(2−a))

and limµ̂→µ1(a) x
∗
2 =−1/a. We continue with

x∗
3 =−b+ (x∗

2 +b)e−µ̂T2 .

Since x∗
2 <−b the solution p̂ is monotonically increasing in [t2+1,

t3 +1] and since limµ̂→µ1(a) T2 =0 we have x∗
3 ∈(−1/a,−b) with limµ̂→µ1(a)

x∗
3 =−1/a. We compute

x∗
4 =−a+ (x∗

3 +a) a

a+1
∈
(

−1,−a b+1
a+1

)

and limµ̂→µ1(a) x
∗
4 =−1. After t4 +1 the solution p̂ is of exponential type

with limit a. It admits the next zero at t5 and is of exponential type with
limit a until t5 +1. It follows that p̂ is periodic with period

τ̂ = t5 +1=1+ 1
µ̂

log
a+x∗

1

a
+1+ 1

µ̂
log

a−x∗
4

a
. (30)

For µ→µ1(a) we therefore have

lim
µ̂→µ1(a)

τ̂ (µ̂)=2
(

1+ 1
µ1(a)

log
a+1
a

)
= 2
µ1(a)

log
a+1
a−1

.

��
We are ready to prove the existence of our rapidly oscillating periodic

solutions.

Lemma 9. Let f ∈F−
0 with 0<b< 1<a, b< 2

a
− a, for m∈N let n=

2m+1 and let µ>µn(a) := (n−1) log a+1
a−1 + log a

a−1 . Then there is µ̂>µ1(a)

such that µ= µ̂(1+mτ̂) where τ̂ is the period of the slowly oscillating peri-
odic solution p̂ constructed in Lemma 8. The function pn(t) := p̂((1+mτ̂)t)
is a rapidly oscillating periodic solution of period τn= τ̂/(1+mτ̂)∈ [ 2

n
, 2
n−1 ].

Remark
6. A rapidly oscillating periodic solution as described in Lemma 9 is plot-
ed in Fig. 8 for m=3. �

Proof. Consider the function

h: µ̂ �→h(µ̂)= µ̂(1+mτ̂(µ̂)), µ̂>µ1(a) .
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Since by Lemma 8 we know that limµ̂→µ1(a) τ̂ (µ̂)= 2
µ1(a)

log a+1
a−1 it follows

that

lim
µ̂→µ1(a)

h(µ̂)=2m log
a+1
a−1

+ log
a

a−1
=µn(a)<µ .

Since τ̂ (µ̂) > 2 by (30) one has h(µ̂) > µ̂(1 + 2m)>µ if µ̂ is sufficiently
large. We conclude that there is µ̂ such that h(µ̂)= µ̂(1 +mτ̂)=µ holds.
Now Lemma 7 asserts that pn is a rapidly oscillating periodic solution of
(1)µ of period τn= 2

2m+2/τ ∈ (2/(2m+1),2/(2m)
)
. ��

4.2. Stability of Rapidly Oscillating Periodic Solutions

For odd n= 2m+ 1 we define a set �n of initial functions appropri-
ate to introduce a reduced Poincaré map �n. Note that �n contains the
rapidly oscillating periodic solutions pn constructed in Section 4.1.

�n :={ϕ ∈C|there are numbers t1 =−1<t2< · · ·<t2n <0 such that

• ϕ is of exponential type with limit a in [t1, t2],
• ϕ(t1)=0, ϕ(t2)=1,
• ϕ(t)�1 for t ∈ (t2, t3),
• ϕ is of exponential type with limit −a in [t3, t4],
• ϕ(t3)=1, ϕ(t4)=0,
• −1<ϕ(t)�0 for t ∈ [t4, t5],
• ϕ is of exponential type with limit a in [t5, t6],
• ϕ(t5)=0, ϕ(t6)=1,
• . . .
• −1�ϕ(t)�0 for t ∈ [t2n−2, t2n−1],
• ϕ is of exponential type with limit a in [t2n−1,0],
• ϕ(t2n−1)=0, ϕ(t2n)=1 .

For ϕ∈�n we define S(ϕ) :=u= (u1, u2, . . . , un−1) with uj = t2j+2 − t1
for odd j and uj = t2j+1 − t1 for even j , j = 1, . . . , n− 1 = 2m, cf. Fig. 8.
Also here we find that f (ϕ(t)) only depends on t and u=S(ϕ) for ϕ∈�n.
It follows that if ϕ ∈�n then for t > 0 the solution x of (1) is uniquely
determined by u= S(ϕ). For a solution x with initial function ϕ ∈�n let
t1 = −1< t2< t3< . . . be the consecutive times such that x(ti)∈ {−1,0,1}.
Also here the set H :={ϕ∈C|ϕ(−1)=0} may serve as Poincaré section. We
denote the initial function of the periodic solution pn defined in Lemma
9 by ϕ∗

n :=pn(·)|[−1,0] and the corresponding u–vector by u∗
n :=S(ϕ∗

n).

Lemma 10. Let f ∈ F−
0 with 0< b < 1< a, b < 2

a
− a, for m ∈ N let

n= 2m+ 1 and let µ>µn(a). Then there is a neighbourhood �0
n ⊂�n of
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ϕ∗
n=pn(·)|[−1,0] such that for any solution x : t �→x(t) with initial ϕ∈�0

n the
inclusion xτ ∈�n holds for τ := t5 +1.

Proof. In order to prove the assertion we compute the solution x up
to τ := t5 +1. We first compute x1 =ϕ(0). Since by definition of �n we have
ϕ(−1+un−1)=0 and ϕ is of exponential type with limit a in [−1+un−1,0]
we get

x1 = a−a e−µ(1−un−1) .

We have e−µT1 = (a−1)/a and thus get

x2 = −a+ (x1 +a) a−1
a

= −(2−a)− (a−1) e−µ(1−un−1).

If the neighbourhood �0
n of ϕ∗

n is taken sufficiently small then x2 is
so close to x∗

2 ∈ (−1,0) such that x2 ∈ (−1,0). Remember that x∗
2 , x

∗
3 , . . .

are the numbers computed in the proof of Lemma 8. We proceed with

x3 = −b+ (x2 +b) e−µT2

= −b− (−b−x2)
a+1
a−1

e−µu1

= −b− (a+1)(2−a−b)
a−1

e−µu1 − (a+1) e−µ(1−un−1)e−µu1 ,

x4 = −a+ (x3 +a) a

a+1
,

x4 = −a b+1
a+1

− a(2−a−b)
a−1

e−µu1 −a e−µ(1−un−1)e−µu1 . (31)

We conclude that if �0
n is taken sufficiently small then x3, x4 and

x5 are close enough to x∗
3 , x∗

4 and x∗
5 , respectively, to guarantee x3, x4 ∈

(−1,0) and x5>1. It follows that xτ ∈�n for τ = t5 +1. ��
We conclude from Lemma 10 that the hyperplane H :={ϕ∈C |ϕ(−1)=

0}⊃�n may serve as Poincaré section. For every solution x of the delay
equation (1) with initial condition ϕ ∈�0

n there is a Poincaré return time
τ such that P : ϕ �→ ϕ := xτ ∈�n ⊂H . Since xτ ∈�n we may reduce P

to a finite dimensional map. For any u∈U := S(�0
n) there is ϕ ∈�0

n with
S(ϕ)=u. We have already mentioned that for t >0 the solution x with ini-
tial function ϕ only depends on u. It follows that ϕ := P(ϕ) is uniquely
determined by u∈U . We thus may define the reduced Poincaré map �n by
�n :U → R

n−1, u �→ u :=�n(u) := S(ϕ). Simple considerations, cf. Fig. 8,
lead to the following formulas for the map �n :u �→u
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uj = uj+2 −u2, j =1, . . . , n−3, (32)

un−2 = 1−u2 +σ1, (33)

un−1 = 1−u2 +u1 +σ2, (34)

where

σ1 = 1
µ

log
a+x1

a
, σ2 = 1

µ
log

a−x4

a
(35)

are the time needed for the solution x to decrease from x1 to 0 and the
time needed for the solution x to increase from x4 to 0, respectively. We
compute the Jacobian of the reduced Poincaré map �n. We get (written
here for n=7)

D�n=

⎛
⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1
0 −1 0 0 0 −A

1−B −1 0 0 0 C

⎞
⎟⎟⎟⎟⎟⎠
, (36)

where we used the following abreviations (and we already introduce D for
later use):

A = −Dun−1σ1 = a e−µ(1−un−1)

a+x1
,

B = −Du1σ2 =
2−a−b
a−1 e−µu1 + e−µ(1−un−1) e−µu1

a−x4
a

,

C = Dun−1σ2 = e−µ(1−un−1) e−µu1
a−x4
a

,

D = B−A+AB .

(37)

The aim is to show that the spectral radius of the Jacobian D�n,
evaluated at the fixed point u∗

n, is smaller than 1. We consider the char-
acteristic polynomial

PD�n(λ)=det

⎛
⎜⎜⎜⎜⎜⎝

−λ −1 1 0 0 0
0 −1−λ 0 1 0 0
0 −1 −λ 0 1 0
0 −1 0 −λ 0 1
0 −1 0 0 −λ −A

1−B −1 0 0 0 −λ+C

⎞
⎟⎟⎟⎟⎟⎠

of D�n. In order to simplify the matrix we subtract the λ–fold of the
(2(m−j)+1)th and the (2(m−j)+2)th column from the (2(m−j)−1)th
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and the 2(m− j)th column first for j =1, then for j =2 and so on up to
j =m−1. This eliminates all λ-s in the first 2m−2 rows. We get

PD�n(λ)=det

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0
0 −1 0 1 0 0
0 −1 0 0 1 0
0 −1 0 0 0 1

−λ3 −1−Aλ2 −λ2 −Aλ −λ −A
1−B −1−λ3 +Cλ2 0 −λ2 +Cλ 0 −λ+C

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We add the 3rd, the 4th, . . . , the (n− 1)st column to the second. Then
the determinant reduces to the determinant of the 2 × 2-matrix consisting
of the first two elements in the last two rows. We thus have

PD�n(λ) = det
( −λm −(1+A)(λm−1 +· · ·+1)

1−B −λm− (1+C)(λm−1 +· · ·+1)

)

= λ2m+ (1+C)λm λ
m−1
λ−1

+ (1+A)(1−B) (λ
m−1)
λ−1

.

Multiplying PD�n by λ− 1 and using (1 +A)(1 −B)= 1 −D by definition
(37) yields

(λ−1)PD�n(λ) = λ2m+1 − [Cλ2m+ (D−C)λm+ (1−D)]. (38)

Lemma 11. If a polynomial P is given by

(λ−1)P (λ) = λ2m+1 − [Cλ2m+ (D−C)λm+ (1−D)]

with 0<C<D<1 then all zeros of P lie in the interior of the unit circle.

Proof. We show that P(λ) �= 0 for any λ with |λ|�1. We distinguish
several cases.

1. |λ|= r >1.
We have

|(λ−1)P (λ)| � r2m+1 − [Cr2m+ (D−C)rm+ (1−D)]
� r2m+1 − [C+ (D−C)+ (1−D)]r2m= r2m(r−1)>0 .

2. |λ|=1, λm �=1.
We have

|(λ−1)P (λ)| � 1− ∣∣Cλ2m+ (D−C)λm+1−D∣∣
> 1− (C+ (D−C)+1−D)=0.
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3. λm=1, λ �=1.
We have

(λ−1)P (λ) = λ2m+1 − [C+ (D−C)+1−D]= (λm)2λ−1=λ−1 �=0.

4. λ=1.
For λ �=1 we have

P(λ) = λ2m+1 −1
λ−1

− (D+Cλm)λ
m−1
λ−1

.

Taking the limit λ→1 leads to

P(1) = 2m+1− (D+C)m>2m+1−2m=1 .

��
We now prove

Lemma 12. Let f ∈F−
0 with 0<b<1<a, b< 2

a
−a, for m∈N let n=

2m+ 1 and let µ>µn(a). Let u∗
n be a fixed point of the reduced Poincaré

map �n.

Then all zeros of the characteristic polynomial of the Jacobian D�n(u∗
n) lie

in the interior of the unit circle.

Proof. By Lemma 11 it is sufficient to show that the constants C,D
given in (37) satisfy 0<C<D<1. Note that by definition 37 the constants
A,B,C are positive. We first prove C<D. By (32) we find that at the fixed
point u=u∗

n the following equations hold

u2j+1 = ju2 +u1, j =0,1, . . . ,m−1,

u2j = ju2, j =1,2, . . . ,m .

Now (33) implies (m− 1)u2 + u1 = 1 − u2 + σ1 or u1 = 1 −mu2 + σ1 = 1 −
un−1 + σ1. Multiplying this equation by µ and taking exponentials yields
by definition (35) of σ1

eµu1 = eµ(1−un−1)(a+x1)

a
.

It follows from the definition of A that A= e−µu1 holds at the fixed point
u∗
n. By definition (37) the following inequalities are equivalent

D > C,

B−C−A+AB > 0,
2−a−b
a−1 e−µu1

a−x4
a

−A+AB > 0.
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Using that e−µu1 =A, deviding by A and multiplying by a−x4
a

we get

2−a−b
a−1

− a−x4

a
+ 2−a−b

a−1
e−µu1 + e−µ(1−un−1)e−µu1 > 0.

By the definition (31) of x4 this is equivalent to

2−a−b
a−1

− a+b+2
a+1

> 0.

Multiplying by (a + 1)(a − 1) and deviding by 2 we get the equivalent
inequality 2

a
−a−b>0 which is satisfied by assumption.

It remains to prove D<1. This is equivalent to the following inequal-
ities

B−A+AB < 1,

B(A+1) < A+1,

B < 1,
2−a−b
a−1

e−µu1 + e−µ(1−un−1)e−µu1 <
a−x4

a
.

Using the definition (31) of x4 this inequality is equivalent to

0 <
a+b+2
a+1

,

which is obviously satisfied. ��
We thus have proved the following result.

Lemma 13. Let f ∈ F−
0 with 0< b < 1< a, b < 2

a
− a, for m ∈ N let

n= 2m+ 1 and let µ>µn(a). Then the reduced Poincaré map �n admits
an orbitally attractive fixed point u∗

n.

Similarly as at the end of Sections 2 and 3 one may infer the result to

Theorem 14. Let f ∈F−
0 with 0<b<1<a, b< 2

a
−a, let n be an odd

integer and let µ>µn(a).

Then the delay equation (1)µ admits an orbitally asymptotically stable peri-
odic solution pn of period τn ∈ [ 2

n
, 2
n−1 ].

5. FINAL REMARKS

In this last section, we discuss the obtained results and we report on
numerical experiments. We proved analytically that delay equations with
positive or negative feedback may admit orbitally asymptotically stable,
rapidly oscillating periodic solutions. In the case of negative feedback this
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was first shown by Ivanov and Losson [3]. Their proof was computer-
assisted. They showed, that for a particular feedback function there exists
a stable, rapidly oscillating periodic solution. In the setting of Section 3
their feedback function corresponds to the parameter values a=5.41935...,
b = 2.32258..., c = 1.49032... and d = 5.22580... It is easily verified that
the assumptions of Theorem 6 are satisfied for these parameter values. It
hence follows that in the particular case of the feedback function of Iva-
nov and Losson stable, rapidly oscillating periodic solutions exist for all
sufficiently large µ. In contrast, the paper by Ivanov and Losson covers
the case µ= 7.75. Moreover, we have an explanation why the eigenvalues
of the Jacobian of the Poincaré return map have modulus very close to 1.
Our computations show that the modulus of both eigenvalues are expo-
nentially close to 1 as µ→∞.

We report that in addition we did the computations for symmetric
positive feedback functions in the case a > b > 1 considered by Schulze–
Halberg [9]. We found that under the conditions

0 < 2−b(a−1),

0 < a3(b+1)−a2(6b2 −3b−1)−a(3b3 +5b2 −10b+4)+b3 +5b2 +4b−8

there are stable, rapidly oscillating periodic solutions of the type described
by Schulze–Halberg for all sufficiently large µ. In this case, too, we were
able to explain why one of the two eigenvalues is so close to 1.

Assume that for negative feedback f ∈F−
ε is symmetric with a>b>1.

Now reconsider the hypotheses of Theorem 6. The first two conditions
(26), (27) which guarantee the existence of a periodic solution reduce to

a >
b(b2 +1)

2
,

(a−1)(b−1) > 4 .

The third condition (28) for stability reads

a2 −ab(b2 +1)+2b2 −1 > 0 .

In Fig. 11, we show for which parameter values the three conditions are
satisfied.

Surprisingly, numerical experiments indicate that no Hopf bifurcation
occurs when transitions from the stable to the unstable region are con-
sidered. For given a and large fixed µ, e.g. the following seems to hold.
There is b0 such that if b is slightly smaller than b0 then there is an attrac-
tive fixed point w of � with a neighbourhood U independent of b in its
domain of attraction. If b is slightly larger than b0 then the fixed point of
� becomes repelling and every trajectory starting in U −{w} leaves U .
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Figure 11. Domain for stable, rapidly oscillating, periodic solutions for negative feedback
function and a>b>1.

There do not only exist the rapidly oscillating stable periodic solu-
tions discussed in Section 4. We assume f ∈F−

0 being symmetric. Let us
consider solutions with n humps in a time interval of length 1 +O(1/µ)
and let us therefore assume µ>µn(a). For the initial function ϕ an arbi-
trary sequence of n humps of types A and B may be chosen. As can eas-
ily be seen the following holds as long as the width of the humps are
close enough to 1/n and µ is sufficiently large. If the kth hump is a hump
of type A then the (k+ n)th hump is a hump of type B and vice versa.
In other words: a hump of type A at time t generates a hump of type
B at time t + 1 +O(1/µ). We considered many such initial functions for
n= 3,5,7,9 and computed the corresponding solutions. Surprisingly, we
observed that all these solutions tend to a stable periodic solution of the
corresponding type. Let �=γ1γ2 . . . γn be a block of length n of symbols
γk ∈ {A,B}. Let ϕ be an initial function consisting of humps of type as
described by �. The solution x with initial function ϕ then has humps of
types ���� . . . where �=γ 1γ 2 . . . γ n with A=B and B=A. If x is a peri-
odic solution, then we say that it is of type �. All these considerations
lead us to the following

Conjecture 1. Let a > 1>b> 0 satisfy b< 2/b− a, let f ∈F−
0 , and let

n�3 be an odd integer.

1. If µ>µn(a) then for any � ∈ {A,B}n there exists a rapidly oscil-
lating stable periodic solution of type �.
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Figure 12. A rapidly oscillating periodic solution of type AAAABBA with period T .

2. If µ�µn(a) then equation (1) does not admit a rapidly oscillating
stable periodic solution with n humps per time interval of length 1+
O(1/µ).

To illustrate Conjecture 1 we have plotted a periodic solution with 7
humps of type �=AAAABBA in Fig. 12.

Similar considerations can be done for Eq. (1) with positive feedback
function f ∈F+

0 . For positive feedback functions rapidly oscillating stable
periodic solutions consist of an even number of humps in a time interval
of length 1+O(1/µ). In Fig. 13, we have plotted a periodic solution with
6 humps of type AAABBA. We conjecture

Conjecture 2. Let a > 1>b> 0 satisfy b< 2/b− a, let f ∈F+
0 , and let

n�2 be an even integer.

1. If µ>µn(a) then for any � ∈ {A,B}n there exists a rapidly oscil-
lating stable periodic solution of type �.

2. If µ�µn(a) then Eq. (1) does not admit a rapidly oscillating sta-
ble periodic solution with n humps per time interval of length
1+O(1/µ).

Let us discuss the number of stable periodic solutions with n humps per
time interval of length 1 +O(1/µ). Consider, e.g. the block �=AAABA.
Conjecture 1 states that for f ∈F−

0 , µ>µ5 Eq. (1) admits a stable peri-
odic solution with humps of types AAABA BBBAB AAABA B . . . (this
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Figure 13. A rapidly oscillating periodic solution of type AAABBA for positive feedback.

sequence of symbols is called a binary n–stage shift register sequence,
cf. Golomb [2]). Now consider phase shifts of this periodic solution of
shift lengths of 1, 2, 3,. . . humps. The resulting stable periodic solutions
are of type AABAB, ABABB, BABBB, . . . ,BAAAB. We call two blocks
� and �′ of length n equivalent if �′ occurs in the sequence ���. Let a(n)
denote the number of essentially different blocks (the number of equiva-
lence classes) of length n. For negative feedback (n odd) we found a(3)=2,
a(5)= 4, a(7)= 10, a(9)= 30 and for positive feedback (n even) a(2)= 1,
a(4)= 2, a(6)= 6, a(8)= 16. In Sloane and Plouffe [10] we found the fol-
lowing formula for a(n)

a(n)=
∑

d odd, d|n

ϕ(d)2n/d

2n
, (39)

where ϕ denotes the Euler function. With the methods of Colomb [2] it is
not difficult to prove (39).

Note that with x also −x is a solution of (1) since f is assumed to be
an odd function. We show that if x is a periodic solution of type � then
it is not possible that −x is a time shift of the solution x. The proof is by
contradiction. Without loss of generality let us assume that the first hump
of x is positive. The symbol sequence of x is ���� · · ·=γ1γ2γ3 . . . with

γj+n=γ j . (40)
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Assuming that −x(t)=x(t+ τ) implies that there is an odd integer p such that

γj+p=γj . (41)

Let k ∈ N be the smallest natural number such that n|kp, hence kp= ln

for some l∈N. Clearly, k and l are relatively prime. Assume l to be even.
Then k is odd and kp �= ln since kp is odd and ln is even. Thus l has to be
odd and (40) implies γln+1 =γ 1. On the other hand (41) implies γkp+1 =γ1
which is a contradiction to kp= ln. This implies that for every type � there
are precisely 2 periodic solutions of type �, one starting with a positive
hump, the other with a negative hump.

We thus have the following
Result 14. If Conjectures 1 and 2 are true then for a > 1>b> 0 with

b< 2/b− a and for µ>µn(a) the following holds. If n is even and f ∈F+
0

or if n is odd and f ∈F−
0 then, up to phase shifts, there are 2a(n) different

rapidly oscillating stable periodic solutions with n humps per time interval of
length 1+O(1/µ).

We are very pleased to report that in her Diploma Thesis M. Rupflin [7]
was able to show that also for positive feedback functions f ∈F+

0 there are
stable periodic solutions with arbitrary high frequency. Her proof works if µ
is taken sufficiently large. See also Rupflin [8] for related results concerning
rapidly oscillating heteroclinic connections of periodic solutions.
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