
ETH Library

A survey of road feature extraction
methods from raster maps

Review Article

Author(s):
Jiao, Chenjing; Heitzler, Magnus; Hurni, Lorenz 

Publication date:
2021-12

Permanent link:
https://doi.org/10.3929/ethz-b-000502089

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Transactions in GIS 25(6), https://doi.org/10.1111/tgis.12812

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0453-8743
https://doi.org/10.3929/ethz-b-000502089
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1111/tgis.12812
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


2734  |  	﻿�  Transactions in GIS. 2021;25:2734–2763.wileyonlinelibrary.com/journal/tgis

DOI: 10.1111/tgis.12812  

R E V I E W  A R T I C L E

A survey of road feature extraction methods from 
raster maps

Chenjing Jiao  |   Magnus Heitzler  |   Lorenz Hurni

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which 
permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no 
modifications or adaptations are made.
© 2021 The Authors. Transactions in GIS published by John Wiley & Sons Ltd.

Institute of Cartography and 
Geoinformation, ETH Zürich, Zürich, 
Switzerland

Correspondence
Chenjing Jiao, Institute of Cartography and 
Geoinformation, ETH Zürich, Stefano-
Franscini-Platz 5, CH-8093 Zürich, 
Switzerland.
Email: cjiao@ethz.ch

Abstract
Maps contain abundant geospatial information, such as 
roads, settlements, and river networks, to name a few. The 
need to access this information to carry out analyses (e.g., 
in transportation, landscape planning, or ecology), as well 
as advances in software and hardware technologies, have 
driven the development of workflows to efficiently extract 
features from maps. The aim of this article is to provide a 
comprehensive overview of such methods to extract road 
features from raster maps. The methods are categorized 
based on the classes of techniques they employ (e.g., line 
extraction), as well as their subclasses (e.g., line tracing, 
Hough transform), the amount of user intervention required 
(e.g., interactive, automatic), the required data (e.g., scanned 
maps, contemporary vector data) and the produced results 
(e.g., raster-based predictions, vector-based results, attrib-
utes). Additionally, recent road extraction methods from 
overhead imagery, together with evaluation methods that 
will possibly benefit road extraction from raster maps, are 
reviewed. Furthermore, the evolution of this research field 
is analyzed over the past 35 years and the limitations of the 
current techniques, as well as possible future directions, are 
discussed.
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1  | INTRODUC TION

Nowadays, a large number of scanned raster maps of different ages are available in digital map archives. Yet the 
wealth of cartographic information, such as roads, building footprints, hydrography, and so forth, is still locked in these 
maps and therefore cannot be directly analyzed or used in GIS (Chiang, Duan, Leyk, Uhl, & Knoblock, 2020; Chiang, 
Leyk, & Knoblock, 2011). Therefore, there is a high demand for effective and efficient feature extraction methods.

Cartographic information on road data has a particularly broad application domain. Long-term historical road 
data are used to analyze the evolution of the road networks. For instance, the development of the Swiss road and 
railway network during the period of 1950–2000 is investigated by Erath, Löchl, and Axhausen (2009). Swiss road-
based accessibility since 1,850 is reported by Axhausen, Fröhlich, and Tschopp (2011) to understand the impact of 
transport investment on the economy and land use patterns. Strano, Nicosia, Latora, Porta, and Barthélemy (2012) 
reported the analysis of the evolution of the road networks for almost 200 years in a large area located north of 
Milan. Masucci, Stanilov, and Batty (2014) studied the growth of London's street networks over 224 years by mod-
eling the networks in dual representation and analyzing their topological properties, such as degree, connectivity, 
average path length, and so forth. Zhao, Jia, Qin, Shan, and Jiao (2015) statistically analyzed the evolution of the 
OpenStreetMap (OSM) road network for Beijing. Casali and Heinimann (2019) studied the growth of the road 
network from 1955 to 2012 in Zürich, Switzerland. Wang et al. (2019) analyzed the evolution of the road network 
in Changchun, China from 1912 to 2017. Road data extraction from historical maps is a prerequisite of the stud-
ies on road evolution that cover a long time span. Furthermore, historical road data are also used to realistically 
reconstruct streetscapes of the past for education, entertainment, and research purposes (https://ai.googl​eblog.
com/2020/10/recre​ating​-histo​rical​-stree​tscap​es.html). Moreover, especially in geoscience, one application is geo-
spatial data integration as road features exist across various geospatial data sources. For example, maps and remote 
sensing imagery covering the same area can be aligned through utilizing the extracted common road intersection 
points from these two spatial data sources as control points or “glue” (Chen, Knoblock, & Shahabi, 2008; Chen, 
Knoblock, Shahabi, Chiang, & Thakkar, 2004). Chiang, Knoblock, Shahabi, and Chen (2009) use road intersection 
templates containing the information of the positions, connectivity, and orientations of the road intersections ex-
tracted from raster maps to extract roads from remote sensing imagery, so that these two data sources are inte-
grated. In addition, the extracted road features can be applied for improving the extraction results themselves. For 
instance, in the study by Chiang et al. (2009), a template is constructed based on each extracted road intersection. 
Subsequently, the localized template matching (LTM) method (Chen et al., 2008) is utilized to adjust the intersec-
tion points to the precise location, thereby improving the accuracy of the extracted road intersections in terms of 
position, connectivity, and orientation. Another study reported by Chiang and Knoblock (2009a) used the identi-
fied road pixels to generate a road template to find road pixels that cannot be detected by the Hough transform 
(Ballard, 1987). Furthermore, up-to-date road data are essential to update the existing road database, including 
fitting the existing road data to the real landscape, improving the planimetric accuracy, and deriving the height of 
the road centerlines (Eidenbenz, Käser, & Baltsavias, 2000; Fortier, Ziou, Armenakis, & Wang, 2001; Zhang, 2003), 
and timely road maps are crucial in applications including disaster management, urban planning, car navigation 
(Baltsavias & Zhang, 2005; Itonaga, Matsuda, Yoneyama, & Ito, 2003), intelligent transportation systems (Zhang, 
Baltsavias, & O'Sullivan, 2005), and impervious surface extraction (Wang, Song, Chen, & Yang, 2015).

Despite the wide application domains of road data, the extraction of road features from raster maps can be 
challenging due to the similarity of road symbols to those of other features (e.g., isolines, streams), the long length of 
some features (e.g., highways spanning whole countries), the adjacency of other map elements with the same color 
(e.g., buildings), and the marginal differences between the symbols representing different classes of roads (e.g., main 
roads, country roads) (Herold, 2015). Especially paper maps that have been printed decades or even centuries ago 
may suffer from poor quality. The reasons might be inaccurate printing technologies as well as chemical and physical 
deterioration (e.g., bleaching, fractures, paper distortion). Furthermore, blurring and color aliasing may be induced 
by the scanning process (Leyk, Boesch, & Weibel, 2005; Liu, Xu, & Zhang, 2019). Additionally, map readers interpret 
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the maps by checking the map context, such as road labels or map legends, which is a challenging task for machines 
(Chiang et al., 2009). To overcome these problems, researchers have developed numerous approaches, such as line 
tracing, morphological operation, color image segmentation (CIS), machine learning, and so forth.

This article aims to review the studies on road feature extraction and vectorization from raster maps, as well 
as analyzing the development and progress of these road extraction techniques. Also road extraction methods, as 
well as evaluation metrics from overhead imagery, that will possibly benefit the task for raster maps are reviewed, 
aiming to bring inspiration from the field of remote sensing. Both interactive and automatic road extraction meth-
ods from raster maps are reviewed in this article. Although there already exist surveys on feature extraction and 
vectorization from topographic maps (Chiang, Leyk, & Knoblock, 2014; Liu et al., 2019), they aim to cover map fea-
ture extraction methods in general and thus lack information on the special case of road feature extraction, such 
as interactive road extraction methods. Interactive or semi-automatic methods refer to the process in which a 
user collaborates with a computer. Interactive methods take advantage of a computer's ability to precisely delimit 
a feature and to combine it with a user's high-level understanding of the map image (Moučka, 2018). Originally, 
interactive methods worked on paper maps or binary raster map images, and roads were extracted together with 
other linear features (e.g., counter lines) (Eikvil, Aas, & Koren, 1995; Kennie, 2014; Stevenson, 1994). Recently, 
interactive methods have generated promising road extraction results from color map images and have the capa-
bility to segment road features with other linear features. Until now, interactive road extraction has still played 
an important role in data acquisition. However, in comparison with interactive methods, automatic approaches 
nowadays clearly dominate the field of road extraction from raster maps. Automatic methods largely reduce man-
ual intervention during the extraction process. But they require the road features to be consistent within the data 
source. Moreover, a set of rules or parameters usually must be pre-defined before the automatic extraction and 
vectorization of road features (Stevenson, 1994). Although the degree of automation and accuracy of feature ex-
traction has been continuously improving in recent decades, fully automatic extraction of road features still can-
not be achieved because human inspection of the raster maps is necessary to achieve reliable map interpretation 
results (Bin & Cheong, 1998; Chiang et al., 2014; Suzuki & Yamada, 1990; Yang, An, & Huang, 2012). For example, 
an interactive correction step is necessary to extract unrecognized and remove falsely recognized features. Apart 
from this, in the existing surveys, the evolution of road extraction techniques is rarely investigated. Thus, a brief 
analysis of the development and progress of road extraction techniques is given to review the research trends 
over the past decades, as well as to indicate possible future research directions. Furthermore, a novel categoriza-
tion scheme is proposed to classify the methods, based on the concrete techniques applied and their purposes. In 
this categorization scheme, detailed technique characteristics of each method are presented. Classical and gen-
eral techniques for line extraction (e.g., Hough transform, morphological operations), image segmentation (e.g., 
histogram technique, K-means), noise filtering (e.g., conventional filters like mean-shift), and so forth are listed in 
Table 1 and expounded in the corresponding text. The remainder of this article is structured as follows. Section 2 
first shows the categorization scheme, and reviews road extraction methods from raster maps. Selected road ex-
traction methods and evaluation methods from overhead imagery are reviewed in Section 3. Section 4 reports the 
analysis of the development and progress of the road extraction methods, followed by a discussion of the current 
technical limitations and future technology trends. Section 5 concludes.

2  | ROAD FE ATURE E X TR AC TION FROM R A STER MAPS

2.1 | Categorization

This section presents a detailed review of the road extraction methods based on raster maps. The methods are 
categorized in a novel hierarchical categorization scheme shown in Table 1. The methods are first characterized 
and classified according to the applied techniques, whether user intervention is required, the input data, and the 
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results they produce. Furthermore, the techniques are classified based on their goals, including line extraction, 
image filtering, and CIS. To clearly show the procedure of each method, numbers are used to indicate the orders 
of the techniques applied in the method. Whether user intervention is required is indicated by “i” (interactive) or 
“a” (automatic) (e.g., “i, 1” means the technique is the first one in the method and is used in an interactive way; “a, 
2” means the technique is used automatically and secondly). The methods in the table are ordered according to 
publication year, so the evolution and development trend of the methods can be explicitly shown, based on which 
the development and progress of the road extraction methods is analyzed in Section 4. Methods with the same 
techniques and technique orders, as well as the same input and output, are clustered and shown in the same color.

Line extraction directly yields lines and usually operates in the image space. It includes the techniques of line 
tracing, parallel characteristic extraction, and Hough transform. Image filtering yields pixel-based results and car-
ries out operations in the image space. The image space is defined by the height and width of the image as well as 
its channels. The channels typically contain three components, one for each of the primary colors red, green, and 
blue. Sometimes an alpha channel as a fourth component is present.

Image filtering-based road extraction techniques encompass conventional filters, morphological operations, 
and convolutional neural networks (CNNs). The term “conventional” is used to distinguish from CNNs. A CNN is 
considered an image filter-based technique since its convolutional layers, which are probably the most important 
layer type, essentially make use of a multitude of image filters to modify an input image.

CIS yields pixel-based results and operates in the color space. The color space consists of the following dimen-
sions: one for each color red, green, and blue. Sometimes an alpha channel is added as a fourth dimension. In rare 
cases, these dimensions are transformed into an alternative color space, such as L*u*v. The width and height of the 
image do not play a role in the color space, which distinguishes it from the image space. CIS-based road extraction 
techniques comprise the histogram technique, K-means, other clustering techniques, and support vector machine 
(SVM).

Moreover, the input and output of each method are also included in this categorization scheme. As input to the 
methods, paper maps refer to hard copies of printed maps and raster maps refer to maps that exist in raster form, 
which is typically obtained via scanning. As for the output, if a method only extracts road pixels without a subse-
quent vectorization step, the output in the table is “road pixels.” Otherwise, if a method is specifically developed 
for extracting road centerlines in vector form, the output is “road centerlines.” But if the method is developed to 
extract centerlines of all kinds of linear features (e.g., roads, contour lines, streams), its output is “centerlines.” 
In this way, a detailed and comprehensive characterization of the methods is presented and the techniques are 
explicitly associated with their goals.

2.2 | Line extraction-based road extraction

2.2.1 | Line tracing

Interactive line tracing
A large portion of the graphical elements on maps is composed of line features. Thus, researchers have imple-
mented many approaches to extract and vectorize linear features, including roads (Kennie, 2014; Stevenson, 1994). 
Interactive line tracing vectorizes linear features through following the lines and recording line points every few 
pixels. It is a popular and intuitive approach that gives the operator an opportunity to guide the process and utilize 
human knowledge (Eikvil et al., 1995).

In line tracing, the operator interactively identifies a section of the scanned raster map image, zooms into 
the selected area, places the screen cursor on the linear feature, and determines the direction of the line. Then, 
the software takes over and automatically traces the linear features by following and drawing along the lines. 
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The x and y coordinates of points on the line are recorded at a preset interval. When some complicated features 
are reached, such as the end point of a line or a potential intersection, the program waits for operator input. A 
potential intersection is recognized by a sudden increase in line width. Some line tracing programs have the capa-
bility for dashed line recognition, line intersection straightening, line generalization, and so forth (Kennie, 2014; 
Stevenson, 1994).

More advanced tools and algorithms emerged later to improve the extent of automation for line tracing. Eikvil 
et al. (1995) implemented an interactive tool for binary map image vectorization. With this tool, linear features 
are extracted and vectorized through tracing the contours at both sides of the lines. The course of the contours 
is stored as they are traced. The midpoint between the current two contour points is computed at short intervals, 
and stored to represent the line. Moreover, curvatures and corners are detected by checking whether the direc-
tion of the contour segments changes. For intersections, the type of intersection is determined by the user before 
subsequent line tracing. The tracer may determine the direction of the traced segments. Otherwise, the tracer 
stops and asks for user interaction.

Even until recently, interactive line tracing was still widely used and further developed, as it brings line trac-
ing under human control and provides the ability to correct the data immediately if required. Yang et al. (2012) 
proposed a local adaptive segmentation method based on a sliding window to extract linear features, followed 
by a sequential line tracing process. Specifically, the starting point and an initial direction of the line to be traced 
are specified by the user, based on which a sliding window is created. The color image in the sliding window 
is converted into a gray-scale image. Then, K-means clustering is used to segment the linear feature in a small 
neighborhood in the center of the sliding window. Subsequently, directional region growth is performed in the 
whole sliding window to segment the linear feature. A thinning operation is applied to the segmentation results. 
Sequential line tracing and vectorization are performed by moving the sliding window along the linear feature until 
an endpoint or an intersection is met. Automatic line tracing stops at an intersection point, and the next point is 
manually provided. The method may not work for tracing linear features symbolized by dashed lines.

In summary, due to the complexity of linear features (e.g., intersected road lines, dashed lines), interactive 
line tracing guided by a human operator is a practical and effective way of vectorization. Interactive line tracing 
is much more efficient and economic than manual line tracing, and more practical than automatic line tracing, as 
fully automatic extraction and vectorization of linear features is still far from being mature enough to be univer-
sally applicable. Usually, interactive line tracing works on binary raster maps. However, Howman and Woodsford 
(1977) point out that interactive line tracing works more effectively for single lines (e.g., road features symbolized 
with single lines, contour lines) than for double lines (e.g., road features symbolized with parallel lines).

Automatic line tracing
Single line tracing methods are developed to trace either the medial lines of linear features (roads, railways, and 
water areas) or the line segment array generated through a map vectorization process, thereby extracting road 
features from maps. Suzuki, Kosugi, and Hoshino (1987) traced and extracted the medial lines of road features 
by assuming that road features have the same width and small curvatures. Later, Suzuki and Yamada (1990) pro-
posed an algorithm to trace the medial lines of road features by searching a line segment array that is obtained 
through vectorization. The array records the starting and ending points of each line segment, and line branches 
that contain the segment. Nonetheless, in these two studies, the vectorization process that generated the medial 
lines through the thinning operation may lead to distortion and lower the accuracy of the medial lines. Moreover, 
if road features have the same width as other linear features (e.g., railways, contours), these two methods may 
fail in distinguishing these features. A similar approach that traces and recognizes road features based on the line 
segment list is designed by Amin and Kasturi (1987). The line tracing algorithm is developed to order line segments 
constituted of connected pixels into lines based on geometrical constraints like segment length and orientation. 
Subsequently, road features are recognized through analyzing the line segment list. When a query is requested, 



     |  2743JIAO et al.

the image processing routines are triggered. Then, operations such as skeletonization and line tracking are used 
to extract and display all the lines representing the queried roads. Similar methods to trace road lines are imple-
mented in Alemany and Kasturi (1988), Kasturi and Alemany (1988), and Kasturi, Fernandez, Amlani, and Feng 
(1989). Nevertheless, the application of the algorithms is limited to simple maps, and several parameters have to 
be manually specified. Despite the effectiveness of the single line tracing approaches, the thinning operation that 
produces the medial lines of linear features often leads to line distortion, especially around road intersections 
(Chiang & Knoblock, 2008). More importantly, the single line tracing methods usually neglect the parallel charac-
teristic of road lines, which is the most prominent characteristic of road features (Bin & Cheong, 1998; Liu, 2002), 
as the parallel characteristic has been lost in the vectorization process. In addition, most single line tracing meth-
ods did not take advantage of the color information of raster maps.

Many other methods employ the parallel characteristic of road lines to extract road features from map 
images. Miyatake (1985) proposed a parallel line extraction method to extract road features. Specifically, the 
spacing width between the parallel lines is computed. The length of each connected component is set as the 
length of its surrounding rectangle. The pixels with labeled width and length values in a given range are re-
garded as the space between parallel lines. Next, the pixels adjacent to the space are extracted as parallel lines. 
Furthermore, road intersections are extracted through an expansion and contraction process. The medial lines 
of the extracted parallel lines are obtained with the tracing method proposed by Kakumoto, Miyatake, Shimada, 
and Ejiri (1983). With this method, road features of different widths and road intersections can be extracted. 
Nevertheless, several parameters—like the range of the spacing width between the parallel lines—have to be 
set manually. Moreover, an interactive step to correct the road extraction results and to connect the discon-
nected lines is required. Nakajima, Agui, and Iituka (1985) defined and used parallel vector tracers to extract 
road features. The tracers have two pairs of connecting vectors that move along the parallel edges of the road 
features. This algorithm succeeds not only in tracing the parallel edges, but also the intersections. Nonetheless, 
the starting points of the vector tracers and the initial length of each vector cannot be automatically deter-
mined. Liu (2002) introduced an algorithm named the “rolling ball” method, which can recognize and vectorize 
raster map features simultaneously. Specifically, parallel road curb lines are traced with the rolling ball method, 
in which a ball that always touches the two parallel road lines moves along the road branches. The center points 
of the rolling ball are the road centerline points. Namely, the centerlines of road branches are obtained with 
this method. Furthermore, an adaptive road inter-junction detector is developed to detect road intersections. 
Subsequently, road networks are constructed based on the road centerlines and the center points of the road 
intersections. Although this method generates promising road extraction results, it may fail in recognizing road 
branches symbolized with dashed lines, as the rolling ball always needs continuous road lines. Later, Chiang, 
Knoblock, and Chen (2005) proposed an approach that can automatically distinguish single- or double-line 
road features by varying the road width from 0 to 10 pixels for parallel pattern tracing. In this process, the 
road width can be automatically obtained for double-line road features. The foreground pixels that do not have 
the parallel properties for the given road width are removed. Moreover, road intersection points are detected 
by using the interest operator (Chen et al., 2004) and filtered with the criterion of a connectivity (the number 
of lines intersecting at an intersection) of more than two. Nonetheless, there is distortion around each road 
intersection due to the morphological operation. Thus, this approach was improved by Chiang and Knoblock 
(2008) and Chiang et al. (2009). In Chiang and Knoblock (2008), road orientations are computed by tracing the 
road medial lines. Road intersection templates are then generated based on the road orientations to refine the 
positions of the road intersections. In Chiang et al.  (2009), LTM (Chen et al., 2008) is utilized to enhance the 
accuracy of the position, connectivity, and orientation of the extracted intersections. Specifically, a double-line 
road intersection template or a single-line template is constructed for each extracted road intersection. Then, 
the position of the intersection point is adjusted with this template based on LTM. Although the approaches 
achieve promising results in various maps, it seems that they may not work for road features symbolized with 
dashed lines, as the properties employed in parallel pattern tracing did not cover the condition of dashed lines. 
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The studies reviewed above fully employ the parallel characteristic by tracing the parallel road lines and can ob-
tain the width of road features. Nonetheless, many of the methods may not work for road features symbolized 
with dashed lines. Apart from this, most of them did not employ the color information of raster maps. These 
are the possible reasons why the parallel line tracing methods have rarely been developed and applied to road 
extraction in recent years.

Parallel characteristic extraction
Some other studies take advantage of the parallel characteristic of road lines to extract road features, although 
they do not directly trace the parallel lines, as the parallel tracers may stop where other features like characters 
cut off the road lines (Nagao, Agui, & Nakajima, 1988). To alleviate this problem, Nagao, Agui, and Nakajima (1990) 
proposed a skip-scan method to automatically extract the medial lines of parallel line road features. Specifically, 
a map is scanned by horizontal and vertical scan lines of constant intervals, respectively, so all the intersection 
points of a scan line and parallel lines are obtained. The middle points of these intersection points are connected to 
form the medial lines of road features. Experiments show that more than 90% of road features can be successfully 
extracted. Nevertheless, the width of road features has to be known before processing, and the location precision 
of the extracted medial lines is dependent on the interval of the scan lines. Moreover, it is not accurate to simply 
use straight lines to connect the broken road lines resulting from the elimination of characters.

Bin and Cheong (1998) developed a system to extract and generate road networks from urban maps. In this 
system, parallel lines are obtained through parallel grouping. Subsequently, road medial lines are extracted based 
on the parallel lines and topologically connected to construct the road networks. Despite the successful ex-
traction and generation of road networks, it seems that the method did not automatically remove the medial lines 
resulting from either the parallel lines of building edges, or the building edges parallel with the road lines. Nishijima 
and Watanabe (1998) reported a study that applies the generation and verification paradigm of hypotheses to 
road extraction from urban maps. In this method, road networks are extracted and constructed by searching out 
pairs of successive parallel line segments. Similarly, in Watanabe and Oshitani (2001), the inferred road fragments 
are verified by searching pairs of parallel line segments. In the study by Dhar and Chanda (2006), road features 
represented by parallel lines are extracted by applying the Hough transform. This technique is further elaborated 
in the next section.

2.2.2 | Hough transform

The Hough transform can be used to detect lines in images by detecting intersection points between the sinusoidal 
curves in the Hough space (Ballard, 1987). In the study demonstrated by Dhar and Chanda (2006), the Hough trans-
form is used in the pre-processing step to compute the orientations of lines obtained from the thinning operation, 
which contributes to joining the broken lines. Apart from this, the Hough transform is applied to distinguish different 
road classes represented by a solid single line, two parallel solid lines, and two parallel dashed lines by finding two 
maxima at the same angle, but at slightly different positions regarding the distance to the image center.

Chiang and Knoblock (2009a) applied the Hough transform to identify Hough lines from the color layers seg-
mented from the user label image through CIS. The user label image is a small rectangle labeled by the user, which 
covers a road intersection or a road segment on the input map image. Then, the colors in the color layers where 
the average distance between the detected Hough lines to the image center is within a threshold are selected as 
road colors. Nevertheless, a limitation of the Hough transform in this method is that its effectiveness relies on the 
number of detected Hough lines. If a color layer has only a small number of road pixels, the corresponding color 
will not be selected as road color. Thus, an alternative technique has to be used to extract road pixels from the 
color layer. The method is also applied in Chiang and Knoblock (2009b, 2013).
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2.3 | Image filtering-based road extraction

2.3.1 | Conventional filters

An image filter or kernel is a small matrix used to carry out a convolution operation on an image in order to change 
its appearance. In this way, different effects, such as sharpening, blurring, embossing, edge detection, and so forth 
can be obtained. Conventional image filters can be used to remove noise. Liu (2002) applied median filtering to 
reduce map image noise in the pre-processing step. In the study by Chiang et al. (2011), noise in the road layer 
identified based on a user label and CIS is removed by employing proper image processing filters and generating 
parameter sets identified through incorporating user-provided “noise samples.”

Conventional filters play an important role in CIS. Yin and Huang (2001) employed the median filter to smooth 
the segmented images representing different classes of roads. The images are segmented through a gray-scale 
histogram. Chiang and Knoblock (2009a, 2009b) applied the mean-shift technique to reduce the number of colors 
in the input image. The mean-shift filter merges two colors into one if their distance in the RGB color space and the 
spatial distance of the corresponding pixels in the image space are both within the preset thresholds. Considering 
that a Gaussian or median filter may result in a substantial loss of information about the position of the roads and 
their edges, Callier and Saito (2011) selected mean-shift to reduce the number of colors and noise in the input 
map image. Similarly, in Chiang and Knoblock (2013), mean-shift is used to reduce noise and the number of colors 
but to preserve the edges of map features (e.g., road lines). Mean-cut is then applied to further reduce the number 
of colors to 1,024 at most. The color cluster boxes in the HSL space are continuously divided at the median until 
the total number of boxes is smaller than the desired number of colors. The colors in the same color box are then 
represented by their median color.

Conventional filters can also be used as auxiliary techniques in machine learning methods to extract road features. 
In the study reported by Saeedimoghaddam and Stepinski (2020), to enlarge the training dataset, a Gaussian filter is 
used to provide tiles with low graphical qualities for data augmentation. To analyze the effect of sharpness or blurri-
ness of the input map image to the prediction results, a Laplacian filter is employed to compute the minimal blurriness.

2.3.2 | Morphological operations

A morphological operation is conceptually defined by moving a window (e.g., a shifting window of 3 × 3 pixels) 
over the image, in such a way that it is eventually centered over every image pixel where a local logical operation is 
performed (Bovik, 2009). The most commonly used morphological operations in image processing tasks are binary 
operations, to which the input is a binary image. When the image is “scanned” by the shifting window, these mor-
phological operations generate binary results based on the hit-or-miss transform. Eventually, the morphological 
operation creates a new binary image. Fundamental binary operators include erosion and dilation. The erosion op-
eration removes small-scale details from a binary image but simultaneously reduces the size of regions of interest, 
too. The dilation operation has the opposite effect to erosion. It adds pixels to both the inner and outer boundaries 
of regions. Many morphological operations are represented as combinations of the erosion and dilation operators, 
such as opening and closing. The opening operation can open up a gap between objects connected by a thin bridge 
of pixels. The closing operation fills holes in the regions while keeping the initial region sizes. Especially the thin-
ning operation is useful for producing the skeleton of a group of foreground pixels, and thus is often applied for 
extracting the centerlines of road areas (Chiang et al., 2014).

Morphological operations are frequently applied in road feature extraction from map images, in order to get 
the road centerlines (Ahn, Kim, Rhee, & Lee, 1997; Chiang et al., 2009; Chiang & Knoblock, 2009a, 2009b, 2013; 
Itonaga et al., 2003), to reduce noise (Ahn et al., 1997; Chiang & Knoblock, 2013; Linton, 2009; Liu, 2002), to re-
connect broken road lines (Chiang & Knoblock, 2009a, 2009b, 2013; Chiang et al., 2009; Dhar & Chanda, 2006), 
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and to refine the extracted road areas or road intersections (Ahn et al., 1997; Chiang & Knoblock, 2013). In these 
methods, morphological operations are used as auxiliary techniques.

The studies that employ a morphological operation as a main technique to extract road features were initiated 
by Yamada, Yamamoto, Saito, and Matsui (1991). They proposed a concept of multi-angled parallelism (MAP), 
which unifies the two concepts of non-isotropic neighbors for feature orientation and directional elements. Each 
pixel of the map image is composed of multiple directional elements (e.g., 8 or 16 directions). The authors then 
define a set of MAP operations based on conventional erosion and dilation to extract linear features. The opera-
tions are performed upon multiple directional elements of the pixels. Specially, a directional erosional operation is 
performed to extract the road lines. Road areas are extracted using fan-shaped dilation operations, as road areas 
can be regarded as an overlapped region of expansion from two parallel lines. Nevertheless, the extracted linear 
features are separated at the curved sections, as in this method “line” was defined as a straight line segment. Thus, 
Yamada, Yamamoto, and Nakamura (1990) solved this problem by connecting the line segments of long linear 
features using a set of directional dilation operations. Moreover, the broken parts in the long linear features are re-
stored by using dilation operations. Road features are extracted using the directional dilation of facing directions 
as they consist of parallel lines. Nonetheless, some roads in the downtown areas are wrongly extracted as hatched 
regions (e.g., buildings). Therefore, Yamada, Yamamoto, and Hosokawa (1993) improved this method to solve the 
problem by using directional dilation to restrict the directional operation.

MAP may detect all parts of linear features at the expense of misclassifying segments of characters as linear 
features (Pezeshk & Tutwiler, 2010). Therefore, Pezeshk and Tutwiler (2011) demonstrated an approach to solve 
this problem. Specifically, they defined four primary directions instead of eight directions, as the strict direction-
ality imposed by MAP results in over-fragmentation of lines into many short segments (Pezeshk & Tutwiler, 2010). 
Furthermore, line segment pixels that have neighbors in at least two of the adjacent primary directions are se-
lected as seed pixels. These pixels are located in areas where the local direction of a linear feature is changing. The 
whole linear feature is obtained through seed growth and linking the line segments. The length criteria are used 
to separate linear features from character segments. Experiments show that the approach generates promising 
road extraction results from U.S. Geological Survey (USGS) maps. Based on this approach, a system for automatic 
extraction of various map features and recognition of the text content from scanned topographic maps is devel-
oped by Pezeshk (2011). Nonetheless, some straight segments of large characters were still misclassified as linear 
features.

Additionally, Itonaga et  al.  (2003) developed an approach for automatic extraction of road networks from 
urban planning maps. First, road areas are recognized by stochastic relaxation based on the geometrical prop-
erties of the areas. Then, a thinning operation is applied to the recognized areas to extract road centerlines. But 
the thinning operation results in geometrical distortion in the extracted centerlines, especially around the line 
intersections. To solve this problem, the position of the intersection point is updated based on the angle of a short 
line segment connected to the intersection area. Next, piecewise linear approximation is applied based on the 
corrected road centerlines, and the road network is constructed. Nonetheless, this method may not work for areas 
where road features are intersected with overpasses, labels, and so forth. Moreover, the quality of the extracted 
road networks depends on the setting of parameter values, which may make the method map-specific.

In summary, morphological operations are commonly used to modify image contents to facilitate the ex-
traction of linear features. Usually, CIS is carried out on the map image to obtain a set of binary images represent-
ing individual map layers before the application of binary morphological operations. Nonetheless, they have some 
drawbacks. First, morphological operations (e.g., the thinning operation) may distort the geometry of the original 
linear features, especially around line intersections. Thus, alternative techniques need to be developed to correct 
the geometric distortion (Chiang et al., 2014). Moreover, some parameter values (e.g., the operation iteration, the 
length of line segments) usually have to be determined manually based on the attributes of the maps or through 
experiments. This makes the morphological methods map-specific. Additionally, morphological operations may 
work less well for extracting road lines symbolized by dashed lines.
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2.3.3 | Convolutional neural network

Machine learning methods provide an effective way to extract features from raster map images because of their 
excellent performance in classification. Some early machine learning methods are developed to obtain a set of fea-
ture values based on the training images to facilitate the extraction of road features. The road extraction method 
proposed by Yin and Huang (2001) computed the geometrical feature values of the map title box and the legend 
index table (e.g., the ratio of the longer side to the shorter side of the legend index table) from the training map 
images. Recently, CNNs—especially deep CNNs—have exerted their superiority in automated feature extraction 
from images. Deep CNNs contain tens or hundreds of successive layers that gradually extract complex features 
from an input image, and then predict the probability with which a certain area (e.g., whole image, single pixel, 
rectangles within an image) depicts a certain class. A deep CNN architecture usually consists of convolutional 
layers, different activation functions (e.g., rectified linear units), and pooling layers (e.g., max or average pooling) 
(Saeedimoghaddam & Stepinski, 2020).

One of the advantages of CNNs lies in their generality compared with other machine learning models for image 
feature recognition like SVM. CNNs have the capability to recognize different types of map features, or the same 
type of features represented by different symbols (e.g., different classes of roads represented by different symbols) 
(Duan et al., 2017). Yet, CNNs require a large amount of training data to perform sufficiently well. Thus, it is laborious 
and time-consuming to manually create the training data. To alleviate this problem, Duan et al. (2017) proposed an 
algorithm that automatically generates training data to facilitate the subsequent extraction of railroad features from 
USGS historical maps using CNNs. The algorithm automatically and accurately aligns contemporary railroad vector 
data with the corresponding railroad features on the maps. Later, Duan, Chiang, Leyk, Uhl, and Knoblock (2020) 
presented another automatic vector-to-raster alignment algorithm to generate training data for the extraction of 
road features from USGS historical maps. This algorithm models the alignment problem using the reinforcement 
learning framework to precisely annotate the locations of road features on the maps. Nonetheless, the algorithm did 
not move the adjacent vector road segments as a group, resulting in losing geometric and topological information of 
intersections, or distorting the road orientation. To compare the impact of CNN architectures on feature extraction 
accuracy from raster maps, Chiang et al. (2020) presented a set of experiments for railroad extraction from USGS 
historical maps. Although the railroad features are successfully recognized from the map images, the experiment 
results show a limitation of CNNs, that is, the convolutional and pooling layers included in CNNs make it difficult to 
recover the detailed spatial locations of map features, especially the locations of small features.

A study that employs deep CNNs for road intersection extraction is reported by Saeedimoghaddam and 
Stepinski (2020). They adopted the faster region-based deep convolutional neural network (RCNN) framework 
to extract road intersections from USGS historical maps. Specifically, the faster RCNN framework first uses a 
deep CNN to extract the feature maps of the map image, followed by an implementation of a region proposal 
network (RPN) in order to select excellent candidates from the feature maps. Then, the selected candidates are 
fed into two fully connected layers to compute the probability of the candidates being a road intersection and 
to refine their bounding boxes. In this study, the authors used a pre-trained deep CNN to reduce the training 
time. Moreover, as data size is the key factor in deep CNN performance, the authors enlarged the training 
dataset using data augmentation techniques. Experimental results demonstrate that road intersections repre-
sented as both single lines and double lines can be successfully extracted. Nonetheless, road branches cannot 
be extracted.

Despite the rapid development and superiority in feature recognition and extraction of CNNs, there exist up 
to now only limited numbers of studies that apply CNNs to road feature extraction from raster maps. It should be 
explored how CNNs can be fully applied to the problem of road extraction, including how the parameters of the 
CNN architecture affect the road extraction results, how the characteristics of the map images (e.g., color diver-
sity, blurriness) impact the road extraction accuracy (Saeedimoghaddam & Stepinski, 2020), and how to use CNNs 
for generating large amounts of high-quality training data.



2748  |     JIAO et al.

2.4 | CIS-based road extraction

CIS separates thematic map layers based on homogeneous color information, as thematic layers in maps—such 
as road networks, hydrography, vegetation, and so forth—are normally represented by a distinct color (Leyk & 
Boesch, 2010). CIS is of critical importance since the outcome directly determines the image processing methods 
to be applied in all subsequent stages of map feature extraction (Chiang et al., 2011; Leyk, 2009).

2.4.1 | Histogram technique

The histogram technique can be used in automatic CIS, aimed at separating the different color layers in a map 
without user intervention (Chiang et al., 2014). In a study by Ebi, Lauterbach, and Anheier (1994), the scanned 
raster maps are segmented into color layers before the recognition of map features. First, the RGB data of the 
map image are transformed into the uʹvʹ chromaticity plane (L∗u∗v∗ color space), and the uʹvʹ histogram is gener-
ated. The peaks and ridges are detected in the histogram, from which the color cluster centers are derived. The 
map image is then segmented using the cluster centers based on chromaticity and lightness criteria. Subsequently, 
region growth techniques are applied to correct the defects caused by overprinting with other layers (e.g., black 
tree symbols printed over a green forest region). After obtaining the color-homogeneous layers, the geometric 
properties of map features are used to detect whether a layer contains mainly region or line structures. The line-
based layers (e.g., the road layer) are thinned and vectorized to produce the medial line. The methods succeed in 
distinguishing road features from contour lines, as road features are in the black layer, while contour lines are in 
the brown layer. Nevertheless, if road features and contour lines have similar color and are segmented in the same 
layer in the CIS process, the methods may fail in distinguishing them.

Another approach that utilizes histogram-based CIS is demonstrated by Yin and Huang (2001). In this approach, 
based on the histogram of the gray-level map image, the gray-level distributions of map features are analyzed 
using the multilevel thresholding technique, so different classes of roads (e.g., national highways, county roads) 
are segmented into separate layers. The extracted road features are vectorized, followed by a post-processing to 
restore the broken road lines by analyzing their slopes and the endpoint locations.

Histogram analysis is used to separate the foreground from the background pixels in the input map image 
(Chiang et al., 2005, 2009; Chiang & Knoblock, 2008). The authors analyze the shape of the grayscale histogram. 
First, the largest luminosity cluster in the histogram is identified as the background cluster. Then, other clusters 
are classified as either background clusters or foreground clusters based on the number of pixels in the clusters.

A color histogram segmentation approach is reported by Henderson and Linton (2009) to extract road pixels 
from USGS maps. First, the color usage information (e.g., the number of pixels of the same color) is retrieved 
from the map legend, based on which different color layers are segmented. Furthermore, geometric properties—
including spatial proximity, continuity, and closure—are employed in a tensor voting method to find roads and 
intersections in the segmented layers. Nevertheless, this approach requires specific knowledge about the use of 
colors in the maps (e.g., the RGB value of each color) as the basis for a color histogram segmentation. Moreover, 
the parameter used in tensor voting depends on the size of road features, which seems too map-specific. The 
approach only analyzed a set of 200 × 200 sub-images from USGS raster maps. Similar approaches are presented 
by Linton (2009) and Henderson, Linton, Potupchik, and Ostanin (2009). Another similar color histogram-based 
map image segmentation approach is demonstrated by Henderson (2014). In order to generate an initial feature 
extraction result, the histogram model of the feature is created as a set of sample histograms representative of 
the feature class from the map legend. This is a pre-processing step for the subsequent analysis by tensor voting. 
More importantly, this study made a detailed comparison between the techniques of histogram-based classifica-
tion as well as the techniques for extracting road features from the road curve map produced by the tensor voting 
process. The curve map gives the likelihood of the presence of a road curve passing through each pixel. The study 
also discussed how to approximate ideal parameter values for tensor voting.
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Another study that employs histogram-based CIS is reported by Callier and Saito (2011) to extract road fea-
tures from tourism maps. First, the mean-shift is used to reduce the total number of colors in the raster map. The 
method then searches for possible lines for each pixel in the 15 × 15 shifting window centered at the pixel. If a line 
is found to have almost the same color, then it is considered as a possible linear feature. Pixels with high probability 
of being a road are selected as seed points and seeded region growing is applied to find other possible road pixels. 
To extract complete road features, two three-dimensional histograms of the colors of the detected road pixels and 
the background pixels are created. The colors corresponding to the main peaks in the road pixel histogram are se-
lected as road color. Based on this color, the undetected road pixels in the previous steps are retrieved. But it can 
be challenging to find reliable parameters for determining the same color and selecting pixels with high probability 
of being a road, and the parameter values vary between different types of maps.

The histogram technique is frequently used in automatic CIS that contributes to the successful extraction 
of road features in subsequent image processing and feature recognition steps, but assumes high levels of ho-
mogeneity within color layers (Chiang et al., 2014). Automatic CIS techniques may be map-specific, as it can be 
challenging to choose the number of color clusters and the values of other parameters. Moreover, the histogram 
technique usually requires combination with other image processing techniques.

2.4.2 | K-means

K-means is an unsupervised machine learning method that is aimed at classifying the dataset into k pre-defined 
clusters. K-means repeatedly divides the data into k clusters according to a certain distance function until an op-
timization function reaches convergence.

In the study by Dhar and Chanda (2006), K-means is applied to Indian survey maps to separate different color 
layers (e.g., red layer for man-made structures like roads). Specifically, K-means clusters the RGB colors of the 
image pixels. Nonetheless, in the clustering process, k is preset to five, which can be map-specific. Henderson 
et al. (2009) reported a study that employs K-means to segment semantic classes (e.g., roads) in raster maps. In 
the method proposed by Chiang and Knoblock (2009a, 2009b), K-means is applied to the map image processed 
by mean-shift to further reduce the number of colors to not larger than the preset k value. Similarly, Chiang and 
Knoblock (2013) applied K-means to the image processed by mean-shift and median-cut to further merge similar 
colors. Yang et al. (2012) applied K-means clustering to a small neighborhood (5 × 5) to segment foreground pixels 
from background pixels. To facilitate the alignment of contemporary vector data to the features on historical 
maps, Duan et al. (2020) used K-means to group the pixel colors into clusters to detect the dominant pixel colors 
overlapping with vector segments. The clusters are used to formulate the reward function in the reinforcement 
learning framework. If a cluster center is not within the color range of the target map feature (e.g., road, water 
body), the reward for the segment is 0; otherwise, it is 1.

K-means is a simple and unsupervised technique in CIS. Sometimes, it requires other techniques as pre-
processing steps, like median-cut to reduce the runtime (Chiang & Knoblock, 2013) and image enhancement to 
reduce color variations (Dhar & Chanda, 2006). Nonetheless, limitations of K-means include that it may be difficult 
to forecast the number of clusters, namely the value of k, and that the clustering result is highly influenced by the 
original input (e.g., the value of k). With a small k value, K-means may merge different semantic features (e.g., roads 
and text), as it considers only the color space (Chiang & Knoblock, 2009b).

2.4.3 | Other clustering techniques

Other techniques can also be used in CIS, and CIS can be developed as an interactive procedure, because it re-
quires user input to indicate the colors of road pixels. Ahn et al. (1997) demonstrated a road extraction method 
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based on interactive CIS for Korean topographical maps. The user needs to manually specify points that contain 
the colors of road features, and the center of the color cluster is calculated. The pixels that have the shortest dis-
tance to the center in the color space are segmented from the map image into a separate layer, which is a binary 
image. For example, contour lines and roads are colored in red. Thus, they are segmented into one layer. Next, 
opening and thinning operations are applied to remove contour lines and obtain centerlines of road features, re-
spectively. Vectorized road data are obtained by tracing the centerlines. Nevertheless, this method did not correct 
the distortion around road intersections resulting from the thinning operation.

To alleviate the parameterization problem in CIS methods and the color variation problem in USGS maps, Leyk 
(2009) proposed a two-stage color sampling approach. The first stage is implemented for the derivation of the 
color value centroid in the color layer based on color value sampling. With these color centroids, homogeneous 
regions are extracted based on their minimum distance to the centroid in the color space. The black layer contains 
thematic objects such as road infrastructure, buildings, administrative boundaries, and characters. But the color 
centroids for black areas can be very different from those of black linear features. For example, buildings and road 
lines both belong to the black layer but appear in different color tones due to color bleaching and aliasing of the 
historical maps. Thus, the second stage is aimed at classifying the parts that suffer from color deviation by resam-
pling of color values for the adjustment of the color centroids obtained in the first stage. Then, a post-processing 
step is implemented to generate a cartographic representation of road features.

Chiang and Knoblock (2009a) developed a supervised method that requires user input for extracting road 
pixels from raster map images. After the number of colors in the input image is reduced, the user needs to 
provide a user label for each road color in the map. Subsequently, each user label is processed by employing 
the Hough transform and a template matching technique, so that a color filter with all identified road colors is 
generated. Next, all the road pixels are extracted using the identified road colors. Despite the successful ex-
traction of road pixels, the method is considered incomplete, as the geometry of road features is not extracted 
and vectorized. Thus, the method is improved in Chiang and Knoblock (2009b). In the improved method, mor-
phological operations are applied to generate road centerlines based on the extracted road pixels. A problem of 
using the morphological operators is that the thinning operator usually distorts the lines near the intersections. 
For correcting the distortion and generating accurate road vector data, the authors detect the intersections 
of the thinned lines and trace the lines outside the distorted areas to generate accurate road orientations and 
intersection positions. Similarly, in the method reported by Chiang et al. (2011), a user provides a “road sample” 
through labeling a sample area centered on a road line, so that the features in the same color as the labeled road 
lines are automatically recognized. The recognized results are refined by employing user labels that provide 
samples of road and noise pixels to remove the non-road pixels through image processing filters. Subsequently, 
the refined road features are vectorized. Nonetheless, the refined road features still contain some undesired 
pixels (e.g., grid lines, characters) and broken road lines, which indicates that a further refinement step or 
manual post-processing is needed. Moreover, the quality of the CIS results relies on the parameter value of the 
number of desired map layers.

Chiang and Knoblock (2013) demonstrated a general road vectorization approach by integrating and improving 
the approaches reported in their earlier work (Chiang et al., 2009; Chiang & Knoblock, 2009a, 2009b). Specifically, 
road pixels are extracted using interactive CIS (Chiang & Knoblock, 2009a). The authors improved the time com-
plexity of the parallel pattern tracing algorithm reported by Chiang et al. (2009) and developed a single-pass par-
allel pattern tracing algorithm to detect the road width and road format. Next, morphological operations are used 
to generate road centerlines based on the detected road width and road format. As the thinning operator usually 
distorts the lines near the intersections, the method then traces the road lines outside the distorted areas (Chiang 
& Knoblock, 2009b). The locations of the road intersections are updated using the traced lines. Subsequently, 
to generate the road vector data, the road centerlines are traced based on the accurate positions of the road 
intersections (Chiang & Knoblock, 2009b). Nevertheless, one limitation of the method is that the vectorization 
process relies on the width of the majority of road features. As a result, some small road branches are eliminated 
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by mistake, as their width is smaller than the width of the majority of roads. Moreover, a post-processing step is 
required to reconnect the broken road lines.

The clustering techniques in CIS generate a color filter for the subsequent map feature extraction. Usually, 
other image processing techniques (e.g., Hough transform, morphological operations) are required in the subse-
quent steps to refine the results of CIS and extract the geometry of target features.

2.4.4 | Support vector machine

SVM is a machine learning method which is used for the separation of map layers based on color information or 
the separation of foreground and background pixels. SVM was first proposed for classification and regression 
analysis. SVM solves classification problems by finding an optimal hyperplane for linearly separable data, and 
is extended to non-linearly separable data by transforming the original data to a higher-dimensional space with 
kernel functions (Ben-Hur, Horn, Siegelmann, & Vapnik, 2001).

Chiang and Knoblock (2006) reported a study that employs SVM in combination with discrete cosine transfor-
mation (DCT) coefficients to extract road pixels from raster maps. First, foreground pixels are separated from the 
background through generating the DCT coefficients for pixels on the input raster map. Based on the property 
of consistent color in the background, pixels with low DCT coefficients are classified as background. The second 
stage is to classify road and character pixels among the foreground pixels. As characters are generally more com-
plex than road lines, the DCT coefficients of character pixels are higher than those of road lines. Thus, the authors 
generate the DCT coefficients for each foreground pixel and send them to the SVM for classification. The authors 
use two street maps from Google Maps and one from ViaMichelin as road training data and manually remove 
the characters from them. The misclassified pixels are corrected by performing connected component analysis. 
Nonetheless, as the foreground pixels include other map features than road lines and characters, the approach 
still needs refinement.

In summary, CIS plays a key role as a pre-processing step in the whole workflow of road extraction. However, 
CIS may fail in separating thematic layers if different map features share the same color. For example, brown pixels 
in the USGS topographic maps are used for both the contour lines and roads. Thus, many of the road extraction re-
sults include contour lines (Chiang & Knoblock, 2009a). Moreover, semi-automatic CIS requires the user to provide 
enough user labels to cover each road color in the raster map. Usually, the user label has to cover a road segment 
or intersection and should be located at the center of—or just a few pixels from the center of—a road segment or 
intersection (Chiang et al., 2011; Chiang & Knoblock, 2009a, 2009b, 2013).

3  | ROAD FE ATURE E X TR AC TION FROM OVERHE AD IMAGERY

In this section, road extraction methods from overhead imagery which can possibly benefit road extraction from 
raster maps but have not yet been applied to raster maps are reviewed. As a reference for enhancing road ex-
traction performance from raster maps, this section mainly focuses on the new methods and achievements from 
2014, as since 2014 special attention has been shifted to deep learning in the remote sensing community (Ma 
et al., 2019). Furthermore, as criteria to evaluate road extraction results, evaluation methods are also reviewed. 
Compared with the monotonous evaluation metrics for road extraction from raster maps, there are various met-
rics for the overhead imagery, which will inspire researchers to possibly apply and tailor the metrics to raster maps.

Roads in overhead imagery and in raster maps are long, extended slender areas (Chen, Papandreou, Schroff, 
& Adam, 2017; Sun, Di, Che, Liu, & Wang, 2019; Wang et al., 2016; Zhou, Zhang, & Wu, 2018). Ideally, roads 
should be extracted as continuous, connected, and intersected long lines that can form a network. However, 
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it is usually challenging to preserve the continuity and topology of road features, as in the overhead imagery, 
roads are occluded by trees and shadows (Wang et al., 2016), and in the raster maps, roads are interrupted by 
labels and other features (e.g., water bodies, railroads). Thus, different strategies are proposed and applied to 
address this issue.

3.1 | Machine learning architectures

Some studies adapt machine learning architectures in order to enhance their abilities to solve the discontinuity 
issue of road extraction. Zhou et al. (2018) propose an encoder–decoder neural network structure, named D-
LinkNet, which inserts dilated convolution layers between the encoder and the decoder to address the challenge 
of road extraction from high-resolution satellite imagery by using dilated convolution to enlarge the receptive 
field of filters. The dilated convolution layers are stacked both in cascade mode and parallel mode in order to take 
advantage of and combine multi-resolution features. ResNet34 (He, Zhang, Ren, & Sun, 2016) pre-trained on the 
ImageNet (Deng et al., 2009) dataset is deployed as the encoder, as it is found that transfer learning can accelerate 
the convergence of the network and make it perform better. D-LinkNet achieved top performance in the CVPR 
DeepGlobe 2018 Road Extraction Challenge. Nonetheless, the discontinuity issue of the extracted road features 
is not completely addressed (Abdollahi, Pradhan, Shukla, Chakraborty, & Alamri, 2020).

Inspired by the U-net (Ronneberger, Fischer, & Brox, 2015) and atrous spatial pyramid pooling (ASPP) (Chen 
et al., 2017) approach, He, Yang, Wang, Wang, and Li (2019) integrated ASPP into U-net in order to grasp multi-
scale road characteristics such as local corners, textures, macroscopic lines, and global network structures, as 
atrous convolution is capable of adjusting the receptive field of the filter. Specifically, the ASPP module used in 
this article consists of one 1 × 1 convolution and three parallel 3 × 3 convolutions with atrous rates of 6, 12, and 
18, respectively, in combination with an image-level pooling layer. Placed after the bottleneck of the encoder–
decoder network, ASPP is applied to the feature map produced by the encoder, and the resulting feature map is 
fed into the decoder. Nonetheless, the pooling layer may reduce the resolution of center feature maps and drop 
spatial information.

Tao, Qi, Li, Wang, and Li (2019) designed a spatial information inference structure (SIIS), enabling them to 
extract and transmit not only local road characteristics, but global and contextual road information in four direc-
tions. The SIIS is inserted after the bottleneck of the DeepLabV3+ network (Chen, Zhu, Papandreou, Schroff, & 
Adam, 2018). Specifically, the input of SIIS is a set of feature maps produced by the encoder. The feature map set 
is split into chunks along two dimensions, and the chunks are fed into a 3D convolutional recurrent neural network 
(Conv3d-RNN) one by one. The Conv3d-RNN is developed by replacing all the matrix operations in the traditional 
RNN unit with 3D convolution. Despite the effectiveness and robustness of the SIIS-Net, it may fail in extracting 
some very narrow country roads.

3.2 | Alternative loss functions

Another way to preserve the continuity and topology of roads is to adapt and improve the loss function, as 
the normal loss functions—such as cross-entropy—assign equal weights to each pixel, thus ignoring the spatial 
and topological information when evaluating the similarity between the predictions and the ground truth (He 
et al., 2019; Mosinska, Marquez-Neila, Koziński, & Fua, 2018).

Wei, Wang, and Xu (2017) propose a road structure-based loss function that incorporates the geometric infor-
mation of road features in cross-entropy loss through imposing a large penalty of loss on the pixels close to road 
regions while imposing a small penalty on pixels far from road regions.
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Mosinska et al. (2018) propose the topology loss as a supplementary term to the binary cross entropy (BCE) 
loss, which is aware of the higher-order topological characteristics (e.g., connectivity, continuity) of linear features. 
The feature maps obtained from several layers of a pre-trained VGG19 network (Simonyan & Zisserman, 2014) 
are used as a description of the higher-order characteristics. The topology loss tries to minimize the differences 
between the VGG19 description of the ground truth and the corresponding prediction. Experiments show that 
the prediction performance is increased by using this new loss function without having to change the network 
architecture.

He et al.  (2019) proposed the structural similarity loss that evaluates the similarity between two images by 
comparing their luminance, contrast, and structure. The luminance is compared based on the mean intensity of 
pixel values, the contrast compared by using the standard deviation, and the structure information compared by 
computing the correlation (inner product) of the normalized pixel values. The statistics of the local structural sim-
ilarity are calculated by using a square sliding window. The structural similarity is added as a term to the BCE loss 
and the obtained loss is used to train the network. Nonetheless, the hand-designed metrics and the topology loss 
computed based on the pre-trained VGG19 may be hard to generalize.

3.3 | Data fusion

One common problem of machine learning methods lies in the fact that it is usually time-consuming and tedious 
to manually label and sample the training data. Thus, some studies fuse other data as the complement to the over-
head imagery for training. Wang et al. (2015) used a vector-guided sampling strategy for generating training data 
for road extraction. Specifically, in the step of preparing the training data, cubic B-splines are employed to refine 
the vector road lines, so the road polylines visually match with the roads on the aerial imagery. Sample points, 
centered on which the image patches are to be extracted, are classified according to whether they locate in road 
areas and the angle of the road segment. A local image patch is extracted based on the location of a sample point 
and the angle information of the point. Then, the labeled image patches are fed into a DNN for road pattern rec-
ognition and a finite state machine (FSM) is used for tracking the roads on the imagery. Nonetheless, the tracking 
process is manually triggered by selecting an initial position and orientation for the tracker.

Sun et al. (2019) proposed fusing GPS data with aerial imagery for road extraction. Specifically, the GPS data 
are rendered as new input layers and fed together with the RGB channels of the imagery into the encoder–
decoder network. To overcome over-fitting, a novel way of data augmentation is applied to the GPS data, includ-
ing subsampling, resolution reducing, random perturbation, and data omitting. Instead of the conventional 3 × 3 
transpose convolution filters, 1D transpose convolution is used in the decoder, as the 1D filters are more aligned 
with road shapes, thus contributing to reducing gaps in the road extraction results.

Zhang, Hu, Li, and Ai (2020) used GPS trajectories of floating car data as training data to extract roads from 
high-resolution remote sensing imagery, which avoids the tedious and time-consuming manual labeling process. 
Specifically, the GPS trajectory data are first rasterized and then denoised with morphological operations. Next, 
the trajectory data are matched to the road in the remote sensing imagery in terms of resolution and road width. 
The results show that roads occluded by buildings or trees are extracted, verifying that the method is able to pre-
serve the continuity of road features to some extent.

Nevertheless, machine learning methods still cannot completely tackle the challenges in road extraction. 
Highly accurate road extraction results are still not achieved. Issues like fuzzy boundaries as well as small and 
dispersed false positives still remain challenging, as CNNs mainly count on texture and spectral features, and the 
mixed pixels in road borders lead to misclassification. Moreover, many roads extend a far distance in the imagery, 
which demands high-level semantic information (e.g., multi-scale features) to preserve their completeness and 
continuity. Furthermore, pre- and post-processing operations are still necessary to achieve satisfactory results 
(Abdollahi et al., 2020).
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3.4 | Shape descriptors

Shape descriptors can be used to describe accurately road-specific geometric properties (e.g., narrowness, the par-
allel characteristic of road edges), thereby effectively recognizing roads from the overhead imagery. Nonetheless, 
there are only limited numbers of studies that utilize shape descriptors to extract roads from raster maps. Thus, 
the methods that use shape descriptors for road extraction from overhead imagery are reviewed.

For many years, shape descriptors have played an important role in road extraction from overhead imagery 
(e.g., Mayer & Steger, 1998; Steger, 1998, 2000). Recently, shape descriptors have served as a supplementary 
technique in machine learning. Li, Hu, and Ai (2018) define two shape descriptors to automatically recognize roads 
and filter outliers from the results obtained through superpixel segmentation. Specifically, deviation of parallelism 
(DoP) is defined as the deviation of the width of a superpixel to describe the parallel characteristic of road edges, 
and narrow rate (NR) as the ratio of the length and width of the superpixel to describe the long and narrow char-
acteristic of roads. Despite the effectiveness of this method, it may be difficult to obtain proper parameter values. 
Moreover, it may be challenging to precisely describe roads so as to quickly and accurately extract roads (Wang 
et al., 2016). Nonetheless, usually raster maps are less complicated than remote sensing imagery. Therefore, shape 
descriptors can still play a role in road extraction from raster maps.

3.5 | Evaluation metrics

Standard evaluation metrics for road segmentation results include recall, precision, quality, and so forth. The 
computation of the metric values is based on the number of correctly or wrongly segmented pixels, namely true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Recall that the percentage of TP 
over all target pixels, namely TP plus FN, describes how completely roads are extracted. Precision, defined as the 
percentage of TP over all extracted pixels, namely TP plus FP, evaluates how correctly roads are detected. If the 
predicted road pixels as well as the ground truth are skeletonized or vectorized as road centerlines, completeness 
and correctness are more suitable than recall and precision, as they take into account the buffer of the centerlines 
and are therefore regarded as relaxed variants of recall and precision (Mosinska et al., 2018). If the ground-truth 
centerline lies within a buffer of the predicted centerline, it is deemed TP, and FN otherwise. The lengths of TP and 
FN are used to compute completeness, which is TP∕ (TP + FN). If the predicted centerline lies within a buffer of 
the ground-truth centerline, it is TP, or FP otherwise; and correctness = TP∕ (TP + FP) (Cardim, Silva, Dias, Bravo, 
& Gardel, 2018; Wang et al., 2015; Wegner, Montoya-Zegarra, & Schindler, 2013; Zhang et al., 2020). Quality and 
F1 score, regarded as combinations of recall and precision or completeness and correctness, reflect the overall 
performance (He et al., 2019; Li et al., 2018; Mosinska et al., 2018; Saeedimoghaddam & Stepinski, 2020; Tao, Qi, 
Li, Wang, & Li, 2019). Quality is estimated as TP∕ (TP + FP + FN), and F1 score as 2TP∕ (2TP + FP + FN).

Accuracy is an intuitive metric that refers to the ratio of the number of correctly classified pixels to the number 
of all pixels (Wei et al., 2017; Wulamu, Shi, Zhang, & He, 2019). But if there are only a few target pixels on the 
image, the value of accuracy may not coincide with the effectiveness of the segmentation results. An alternative 
for accuracy is “intersection over union” (IoU), which, also known as the Jaccard index, refers to the intersection of 
the prediction and the ground truth divided by the union of the prediction and the ground truth (Sun et al., 2019; 
Tao et al., 2019; Wulamu et al., 2019; Zhang et al., 2020; Zhou et al., 2018).

The above mentioned metrics may fail in evaluating the continuity and topology of the extracted road fea-
tures. Thus, to evaluate the continuity, Tao et al. (2019) compute the number of road breaks, which represents the 
number of false fractures in the predictions compared with the ground truth. To evaluate topology, Mosinska et al. 
(2018) and Wegner, Montoya-Zegarra, and Schindler (2015) randomly and repeatedly sample pairs of connected 
points in the ground truth as well as in the predicted road network, and compare their path lengths. Incorrect 
gaps in the extracted network cause too long paths, or they disconnect the network into disjoint parts with no 
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connection at all. Incorrect shortcuts result in too short paths. A tolerance parameter is pre-defined to account for 
geometric uncertainty. Paths with length difference smaller than the tolerance are regarded as correct. The point 
pairs are sampled until the percentages of these three error types have converged.

There exist similarities and differences between road extraction from overhead imagery and raster maps. A 
raster map is an electronic map image made up of pixels, which serves as a symbolic depiction of the geograph-
ical objects on the land surface. Raster maps can be made by scanning paper maps or by cartographic software. 
Overhead imagery refers to the images of the earth surface captured by imaging sensors. Features on raster maps 
are depicted by abstract symbols with various shapes, colors, and so forth, while features on overhead imagery 
are presented in their natural form. Texture, spectral, and (potentially) 3D information is captured in overhead 
imagery. Especially, roads are slender, long, and intersected areas in overhead imagery. Roads are recognized and 
distinguished from other geographical objects mainly by the shape and spectral information. Roads can be long, 
extended, and intersected areas or lines on raster maps, and are distinguished by symbolic and color information. 
Roads can be occluded by trees, shadows, and interchanges on overhead imagery, while they can be interrupted 
by labels and point symbols (e.g., triangulation points). Line tracing works for road extraction from both data 
sources (Chiang & Knoblock, 2013; Wang et al., 2015). Multi-scale spatial information will benefit both tasks, and 
the same evaluation metrics, as well as vectorization methods, can be shared by them.

4  | DISCUSSION

4.1 | An analysis of the development and progress of the road extraction methods of 
raster maps

The problem of road extraction from raster maps has gained much attention, and the relevant studies and meth-
ods have experienced steady development over the past 35 years. Up to 2020, 47 different road extraction meth-
ods based on raster maps have been identified. The total citation count of the 47 papers is 1,415 in Google Scholar. 
Figures 1a,b present yearly paper counts and yearly citation counts, respectively. Figure 1 shows consistency 
between the paper counts and the citation counts. The paper count experienced two peaks in the late 1980s and 
around 2010, respectively. Accordingly, the citation count has two peaks in the 1990s and 2010s, as the citation 
count is lagging behind the paper count.

Interactive line tracing methods dominated the road extraction methods before the emergence of automatic 
methods. From the order of the techniques applied in the early methods, it is found that line tracing or parallel 
characteristic of road lines was directly applied without pre-processing like color segmentation, as in early times 
raster maps were black and white or gray-scale images. For example, the methods that only use interactive line 
tracing are clustered and colored pink in Table 1. Later, automatic line tracing methods were intensively studied 
in the late 1980s and early 1990s. For example, the cluster of the methods that first applies line tracing and then 
morphological operations is colored yellow in Table 1. In these methods, connected pixels are traced, so that line 
segments are obtained. Then, roads are recognized through an analysis of the line segment list. Especially, the 
authors implemented a road query function, in which the thinning operation is used to skeletonize the roads, so 
that the thinned line is displayed as the query result (Alemany & Kasturi, 1988; Amin & Kasturi, 1987; Kasturi & 
Alemany, 1988; Kasturi et al., 1989). In recent years, line tracing methods were not frequently studied, probably 
due to the complexity of the line tracing process as well as the emergence and development of other automatic 
methods. Interestingly, the studies that use morphological operations to extract road features from raster maps 
emerged in the early 1990s, with the concept of MAP proposed by Yamada's research group. This method clus-
ter is colored orange in Table 1. Based on conventional erosion and dilation, the authors define a set of MAP 
operations to extract linear features (Yamada et al., 1990, 1991, 1993). These methods were further improved 
by Pezeshk and Tutwiler in the early 2010s, mainly to tackle the problem of misclassifying character segments as 
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linear features by reducing the number of primary directions of MAP as well as selecting pixels where the direc-
tion of a line changes as seed pixels. The whole linear feature is then obtained through seed growth and linking 
the line segments. Subsequently, the length criteria are used to filter linear features (Pezeshk,  2011; Pezeshk 
& Tutwiler, 2010, 2011). This cluster of methods is colored purple in Table 1. On the one hand, the progress of 
the methods indicates that the previous studies provide directions and lay foundations for the later studies. On 
the other hand, the studies that mainly use morphological operations seem to be limited to MAP. Importantly, 

F I G U R E  1   (a) Yearly counts of papers on road extraction from raster maps; and (b) citation counts of these 
papers. The search was conducted on September 27, 2020 using Google Scholar
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morphological operations are frequently used in road extraction because of their versatility. They can be used for 
noise removal in pre-processing, for reconnecting broken road lines, for skeletonizing the recognized road areas, 
and so forth. Conventional filters, like the median filter, were used for pre-processing the images in the early 
2000s, as they work for noise removal and image smoothing. Later, CIS, especially the histogram technique and 
K-means, became more popular for pre-processing than conventional filters. For example, a set of CIS methods 
was presented by Henderson and Linton, in which different colored layers are first separated based on the color 
usage information retrieved from the map legend, and then geometric properties (spatial proximity, continuity, 
and closure) are used to detect roads and intersections in the separated layers (Henderson, 2014; Linton, 2009). 
This cluster is colored bright green in Table 1. With the emergence and development of modern algorithms, vari-
ous techniques are applied in one method to get promising road extraction results. For instance, the methods pro-
posed by Chiang's group involve four different techniques, including the histogram technique as a pre-processing 
step to segment the foreground pixels from the background pixels, parallel pattern tracing to detect road pixels, 
morphological operations to reconnect adjacent road pixels, and skeletonizing the road areas (Chiang et al., 2005, 
2009; Chiang & Knoblock, 2008). This cluster of methods is colored gray in Table 1. In recent years, machine 
learning has become a study hotspot and dominates the road extraction methods. Machine learning methods are 
used either for road feature extraction or automatically producing training data that facilitate subsequent road 
feature extraction. Usually, CNNs are applied without any pre-processing. CNNs stand out in these methods, 
owing to their superiority in feature recognition and extraction from images, as well as the wide and intensive 
attention paid to CNNs. In early times, there were often clusters of very similar road extraction methods. From 
2010, there are rarely clusters of methods with the emergence of more modern techniques, indicating a trend of 
road extraction methods developing in a diverse way. Although machine learning has become a research hotspot, 
different techniques are applied, different inputs are required, and different goals (e.g., to extract road pixels, to 
generate road training data) are achieved.

Notably, more attention has been paid to historical maps since around 2009. Historical maps have become 
an important data source of the study on map interpretation and spatial feature extraction. However, the poor 
quality of historical maps and the demand for increasing feature extraction accuracy make it urgent to propose 
more advanced methods for recognizing road features and small objects (e.g., dashed line segments) (Chiang 
et al., 2020). For instance, due to the spatial distortion inherent to historical maps, there usually exists a shift 
between the same road feature on the map sheets of different years. How to automatically recognize the same 
road with flexible tolerance remains unsolved. Additionally, historical map sheets are published every few years. 
The current methods did not address the problem of predicting the road features in the time between publication 
years. Also, further and wider applications of machine learning to road feature extraction from historical maps 
deserve exploration. For example, due to the spatial distortion, the extracted road data need correcting. How to 
apply machine learning to correct the extracted road data remains unsolved. Further, the corrected road data can 
be used to correct other map features that have already been extracted, like the alignment of buildings to road 
lines, as buildings are usually located along roads. The process of alignment could be modeled using a machine 
learning framework.

4.2 | Current limitations and technology trends

There still exist limitations in the current techniques. Roads are represented by long, slender, and intersected lin-
ear features on raster maps. It will benefit road extraction performance by employing high-level semantic informa-
tion, like multi-scale spatial information. However, current techniques may fail in recognizing and taking advantage 
of high-level semantic information (e.g., road network structures) (He et al., 2019). Moreover, despite the superior-
ity of machine learning methods, up to now it still remains challenging to automatically generate large amounts 
of high-quality training data to replace the tedious manual labeling tasks. Usually, machine learning methods are 
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developed only to extract road pixels. Thus, vectorization is performed in a following separate step. It deserves 
exploration to develop a complete machine learning workflow to directly obtain road vector data from raster maps 
[e.g., the method that combines the DNN and FSM proposed by Wang et al. (2015), the multi-scale machine learn-
ing framework developed by Lu et al. (2019)]. Moreover, the obtained road vector data should be topologically 
correct to construct road networks. These limitations, however, point to future technology trends, like combining 
different data sources or using machine learning to automatically generate training data (Duan et al., 2020). In 
addition, image inpainting involves filling in missing regions of an image (Nazeri, Ng, Joseph, Qureshi, & Ebrahimi, 
2019). Thus, it can be used to address the quality defects in the historical maps. Furthermore, evaluation metrics 
that can accurately estimate the topology and continuity of the extracted road features are to be designed. Some 
methods from the remote sensing domain are hopefully beneficial to address these limitations [e.g., to enable 
machine learning models to grasp global contextual information by adjusting the receptive field of filters using 
dilated convolution (Zhou et al., 2018), ASPP (He et al., 2019), or SIIS (Tao et al., 2019); to automatically generate 
road training data from GPS trajectories (Zhang et al., 2020); to evaluate the connectivity and topology of the 
extracted roads by comparing the lengths of the corresponding paths in the ground truth and the predictions 
(Wegner et al., 2015)].

5  | CONCLUSIONS

This article provides a detailed review of the studies on road feature extraction from raster maps, which helps 
to gain a thorough understanding of the existing methods. A novel categorization scheme is proposed to classify 
the road extraction methods, which associates the image processing techniques with their goals. Moreover, the 
road extraction methods are characterized by the techniques. Particular attention has been paid to interactive 
road extraction methods, as they have still been used until recently, but are largely neglected by existing surveys. 
Furthermore, it has been clarified how the methods in the existing studies have been developed and improved 
with the continuous advancement of technologies, as well as with the diverting of research hotspots. The issues 
and directions of further development of road extraction methods are discussed. Machine learning dominates the 
recent studies. Future research endeavors need to be made to retrieve the accurate and detailed spatial locations 
of road features. Moreover, it is necessary to pay special attention to the recent progress in road extraction from 
overhead imagery, as many such approaches can be tailored and applied to extract features from historical maps.
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