
DISS. ETH NO. 27602

H A R D W A R E S Y S T E M S F O R LO W- L AT E N C Y

A U D I O P R O C E S S I N G : E V E N T- B A S E D A N D

M U LT I C H A N N E L S Y N C H R O N O U S S A M P L I N G

A P P R OA C H E S

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

I LYA K I S E L E V

M.Sc. in Applied Mathematics and Physics,

Moscow Institute of Physics and Technology

born on 08.09.1978

citizen of Russia

accepted on the recommendation of

Prof. Dr. Shih-Chii Liu

Prof. Dr. Richard Hahnloser

Prof. Dr. Jörg Conradt

2021

Ilya Kiselev: Hardware systems for low-latency audio processing: event-based and multi-

channel synchronous sampling approaches © 2021

A B S T R A C T

Neuromorphic technology is slowly maturing with a variety of useable event-

driven spiking sensors and hardware implementations of spiking neural networks.

Sensory processing algorithms are still under investigation and their usefulness in

natural environments are still relatively unexplored compared to algorithms using

conventional sensors and digital hardware.

We developed hardware test beds that allow us to explore event-based sensory

processing algorithms and regular sampling based algorithms in real-world con-

ditions. The goal of my thesis is three-fold: 1) to develop a hardware test bed for

implementing spiking networks together with spiking sensors to study a possibility

of using multiple sensors of different modalities to improve classification perfor-

mance in real-world conditions; 2) to implement a local automatic gain control

mechanism to increase the input dynamic range of a spiking cochlea operating

in natural environments where the sound dynamic range can be greater than

60 dB; 3) to implement a multi-microphone hardware platform that can be used for

real-time beamforming as part of a wireless acoustic sensor network.

The first part of the thesis describes development of a real-time hardware system

that fuses information from neuromorphic spiking sensors of different modalities.

The core of the system is a general purpose accelerator for spiking Deep Neural

Networks (DNN) implemented on a Field-Programmable Gate Array (FPGA). We

demonstrate the performance of the system on an audio-visual sensor fusion task

using a Dynamic Vision Sensor (DVS) and a Dynamic Audio Sensor (DAS) spiking

sensors for classification of digits from the Modified National Institute of Standards

and Technology (MNIST) dataset augmented with specific audio tones for each

digit.

We demonstrate that reliable classification is possible with just a fraction of spikes

produced by the sensors. On the other hand, processing the full stream of spikes

increases the computational demand of the system proportionally to the increase of

the spike rate. In addition, the spike rate of the audio sensor depends on the input

signal amplitude, which makes it difficult to train classifiers to be invariant to input

signals with a wide dynamic range. However, it is known that biological audio and

visual processing systems can accommodate to input signals that differ by orders

of magnitude, while maintaining a moderate neuron spike rate.

The second part of the thesis addresses the problem of increasing spike rates in

response to high amplitude signals in the spiking silicon cochlea by developing a

local spike-based gain control algorithm, that constantly monitors the spike rate at

the output of each channel and adapts the corresponding channel gain, so that its

spike rate would not exceed a predefined threshold. We implemented this algorithm

in hardware for the Dynamic Audio Sensor Low Power (DASLP) silicon cochlea

and studied its performance on synthetic tests and real audio classification problem.

The third part of the thesis work is carried out within a multi-partner European

project, COCOHA (COgnitive COntrol of a Hearing Aid, www.cocoha.org), that

iii

www.cocoha.org

aimed to develop a system for attention decoding from electroencephalogram (EEG)

signals for directing the speech of an attended talker to the user of a hearing aid

device. The goal of this work is to construct a synchronized distributed multi-

microphone platform which can be used for general auditory scene analysis. The

developed platform is composed of multi-microphone modules which can perform

synchronized audio sampling at different parts of the room and transmit the

audio streams with low latency to a central processing unit, where the samples

from different microphones can be aligned with a sub-microsecond precision.

Synchronized sampling across the ad-hoc distributed microphone array enables

a variety of algorithms to be used for further processing, e.g. for tasks such as

beamforming, source separation or speech enhancement. The platform was used

for testing a set of beamforming algorithms in the wild.

All three parts serve a common goal of enabling application of novel auditory

sensing technology in practically relevant settings, by coping with challenges of

real-world deployment.

Z U S A M M E N FA S S U N G

Die neuromorphe Technologie reift stetig mit einer Vielzahl anwendbarer ereig-

nisgesteuerter Spike-Sensoren und Hardware-Implementierungen von gepulsten

neuronalen Netzen (engl. Spiking Neural Networks). Sensorische Verarbeitungsalgo-

rithmen werden derzeit untersucht und ihre Nützlichkeit in natürlichen Umgebun-

gen ist im Vergleich zu Algorithmen mit konventionellen Sensoren und digitaler

Hardware noch verhältnismässig unerforscht. Wir haben Hardware-Prüfstände

entwickelt, mit denen wir ereignisbasierte sensorische Verarbeitungsalgorithmen

und reguläre samplingbasierte Algorithmen unter realen Bedingungen untersu-

chen können. In meiner Thesis verfolge ich drei Ziele: 1) Die Entwicklung eines

Hardware-Prüfstands zur Implementierung von Spiking-Netzwerken zusammen

mit Spiking-Sensoren, um die Möglichkeit zu untersuchen, mehrere Sensoren mit

unterschiedlichen Modalitäten zu verwenden, um damit die Klassifizierungsleis-

tung unter realen Bedingungen zu verbessern; 2) Implementierung eines lokalen

automatischen Verstärkungsregelungsmechanismus zur Erhöhung des Eingangs-

dynamikbereichs einer Spike-Cochlea, die in natürlichen Umgebungen arbeitet, in

denen der Schalldynamikbereich größer als 60 dB sein kann; 3) Implementierung

einer Hardwareplattform mit mehreren Mikrofonen, die als als Teil eines drahtlosen

akustischen Sensornetzwerks zur Echtzeit-Strahlformung verwendet werden kann.

Der erste Teil der Arbeit beschreibt die Entwicklung eines Echtzeit-Hardware-

systems, das Informationen von neuromorphen Spike-Sensoren unterschiedlicher

Modalitäten zusammenführt. Der Kern des Systems ist ein Allzweckbeschleuniger

für tiefe neuronale Netze (engl. Deep Neural Networks), welcher auf einem FPGA

(engl. Field Programmable Gate Array) implementiert ist. Wir demonstrieren die

Leistung des Systems anhand einer audiovisuellen Sensorfusionsaufgabe eines

Sensors unter Verwendung eines DVS- (engl. Dynamic Vision Sensor) und eines

DAS- (engl. Dynamic Audio Sensor) Spike-Sensors zur Klassifizierung von Ziffern

aus dem Datensatz des Modified National Institute of Standards and Technolo-

gy (MNIST), ergänzt um spezifische Audiotöne für jede Ziffer. Wir zeigen, dass

eine zuverlässige Klassifizierung mit nur einem Bruchteil der von den Sensoren

erzeugten Pulsen (Spikes) möglich ist. Andererseits erhöht die Verarbeitung der

gesamten Pulsraten den Rechenaufwand des Systems proportional zur Erhöhung

der Spitzenrate. Darüber hinaus hängen die Spitzenraten des Audiosensors von der

Amplitude des Eingangssignals ab, was es schwierig macht, Klassifizierer so zu

trainieren, dass sie für Eingangssignale mit großem Dynamikbereich geeignet sind.

Es ist jedoch bekannt, dass biologische Audio- und visuelle Verarbeitungssysteme

Eingangssignale verarbeiten können, die sich um Größenordnungen unterscheiden,

während eine moderate Neuronenspitzenrate beibehalten wird. Der zweite Teil der

Arbeit befasst sich mit dem Problem der Erhöhung der Spikeraten in Reaktion auf

Signale mit hoher Amplitude in der Spiking Silicon Cochlea durch die Entwicklung

eines lokalen Algorithmus zur Regelung der Verstärkung auf Spike-Basis, der die

Spike-Rate am Ausgang jedes Kanals ständig überwacht und die entsprechende Ka-

v

nalverstärkung anpasst, so dass ihre Spikerate einen vordefinierten Schwellenwert

nicht überschreitet. Wir haben diesen Algorithmus für die DASLP (engl. Dynamic

Audio Sensor Low Power) Silicon Cochlea auf Hardwarebasis implementiert und

seine Leistung anhand von snytethischen Tests und realen Audioklassifizierungs-

problemen untersucht.

Der dritte Teil der Thesis wird im Rahmen eines europäischen Multi-Partner-

Projekts, COCOHA (COgnitive COntrol of a Hearing Aid, www.cocoha.org), durch-

geführt, mit dem Zweck ein System zur Aufmerksamkeitsdekodierung aus Elek-

troenzephalogrammsignalen (EEG) zu entwickeln, um die Sprache eines Redner,

auf welchen die Aufmerksamkeit gerichtet ist, an den Benutzer eines Hörgerätes zu

lenken. Das Ziel dieses Projekts ist es, eine synchronisierte, verteilte Multi-Mikrofon-

Plattform aufzubauen, die für die allgemeine Analyse von Hörszenen verwendet

werden kann. Die Plattform muss Multimikrofonmodule unterstützen, die synchro-

nisiertes Audio-Sampling an verschiedenen Stellen des Raums durchführen und die

Audio-Streams mit geringer Latenz an eine Zentraleinheit übertragen können, wo

die Samples von verschiedenen Mikrofonen mit einer Genauigkeit von weniger als

einer Mikrosekunde ausgerichtet werden können. Die synchronisierte Abtastung

über das ad-hoc-verteilte Mikrofonarray, ermöglicht die Verwendung einer Vielzahl

von Algorithmen zur weiteren Verarbeitung, z.B. für Aufgaben wie Strahlformung

(engl Beamforming), Quellentrennung oder Sprachverbesserung. Die Plattform

wurde zum Testen einer Reihe von Beamforming-Algorithmen in freier Wildbahn

verwendet.

A C K N O W L E D G M E N T S

Having done this work and looking back at the path I walked through I realize that

it would not be possible without endless support and considerable guidance of my

supervisor Prof. Dr. Shih-Chii Liu. I am boundlessly grateful to her for giving me

an opportunity to accomplish this work, for her encouragement during the times

when I was about to give up, and for her limitless patience and understanding. I

am also grateful to my co-supervisor Prof. Dr. Richard Hanloser and co-examiner

Prof. Dr. Jörg Conradt for their time and efforts.

I owe special thanks to my co-authors Daniel Neil and Enea Ceolini. Daniel

designed and implemented the Minitaur spiking neural network accelerator, which

was an inspiration and became a prototype for the new n-Minitaur system. He

also provided the trained neural networks for the MNIST classification task. Enea

implemented the software pipeline for data collection from WHISPER modules,

packet level synchronization algorithm and all beamforming algorithms running

on the WHISPER platform.

I appreciate contributions of Matthew Rahtz, who conducted latency measure-

ments of Wi-Fi network for the WHISPER platform, and Chen-Han Chien, who

implemented the code for DWM1000 data transfer testing. I thank Dr. Minhao Yang

for answering all my questions about the DASLP cochlea chip, and Luca Longinotti

for guiding me through his FPGA code for the DASLP board.

I was happy to be a member of the Sensors group, co-led by Prof. Dr. Tobi

Delbruck, who could always give valuable feedback on my ideas and inspired

me with his fascinating projects. I also appreciate his support with disentangling

convoluted dependencies in the jAER software.

It was a great pleasure working along with all the passionate researchers at

Institute of Neuroinformatics in a cosy and collaborative environment. Actually,

INI became my second home for a substantial period of my life, and I am grateful

to all the people who made the institute such a comfortable place to work at.

My friends — Peter Dziennik, Yulia Sandamirskaya, Alexey Illarionov, Hongjie

Liu, Diethelm Raff, Valeriy Petrunin, Olga Krivets were encouraging me at different

stages of my work and life.

And finally, I am thankful to my soulmate and girlfriend Zhenya, who supported

and motivated me over the last year of this project. Zhenya, I would not be able to

finish this work without your permanent care, love and patience.

vii

C O N T E N T S

1 introduction 3

1.1 Background on Spiking Sensors and Event-driven Hardware 3

1.2 Background on Local AGC . 4

1.3 Background on Multi-microphone Platform for Ad-hoc Network . . 6

1.4 Thesis Outline . 8

2 event-driven hardware system for sensor fusion 11

2.1 Introduction . 11

2.2 Methods . 12

2.2.1 Setup . 12

2.2.2 Networks . 13

2.2.3 Input Stimuli . 14

2.3 n-Minitaur Architecture . 17

2.4 Results . 18

2.4.1 n-Minitaur Performance Measurements 18

2.4.2 Hardware Inputs . 19

2.4.3 Single Sensor and Sensor Fusion Experiments 20

2.5 Discussion . 21

3 automatic gain control with spiking cochlea 25

3.1 Introduction . 25

3.2 Methods . 26

3.2.1 DASLP Silicon Cochlea . 26

3.2.2 Gain Switching Transient Response 28

3.2.3 Sensor Features . 31

3.2.4 Dataset Preparation . 31

3.3 Event-driven AGC Algorithm and Hardware Implementation 32

3.3.1 Spike-driven Local AGC Algorithm 32

3.3.2 FPGA AGC Implementation 34

3.4 Results . 36

3.4.1 Dependence of Analog Filter Output on Input Amplitude . . 36

3.4.2 AGC Steady-state Spike Response Measurements 44

3.4.3 Spike Frequency Responses for non-AGC and AGC Cases . . 46

3.4.4 AGC Transient Measurements to Speech 52

3.4.5 Input Features and Classifier 55

3.4.6 Voice Activity Detection Classification Task 55

3.5 Discussion . 58

3.5.1 Improvements of Local AGC Mechanism 59

4 multi-microphone platform for ad-hoc network 61

4.1 Background . 61

4.1.1 Challenges of Platform Development 62

contents 1

4.2 WHISPER platform . 64

4.2.1 WHISPER Hardware . 64

4.2.2 WHISPER Prototype Hardware 67

4.2.3 FPGA Logic and Software . 67

4.2.4 Communication and Network 68

4.3 Platform Synchronization . 70

4.3.1 Background of Synchronization Algorithms 70

4.3.2 Synchronization Algorithm of the WHISPER Prototype Hard-

ware . 70

4.3.3 Synchronization for the Final Hardware 72

4.4 Beamforming Experiments with WHISPER 78

4.4.1 Experiments with Prototype 1 78

4.4.2 Speech Separation Experiments with final WHISPER 82

4.5 Discussion . 83

5 d iscussion and conclusion 85

5.1 Summary . 85

5.2 Outlook . 86

a appendix 89

a.1 Supplementary Material to Chapter 2 89

a.1.1 n-Minitaur Implementation Details 89

a.2 Supplementary Material to Chapter 3 93

a.2.1 Input Signal Conditioning Circuit 93

a.2.2 Calibration of Input from Sound Card 93

a.2.3 DASLP FPGA Control Logic Structure 93

a.2.4 Implementation of ADC Data Transmission over Asynchronous

AER Bus . 94

a.2.5 Embedding the AGC Channel Gain Information into DASLP

Events . 99

a.2.6 jAER Control Panels and Biasgen Settings 100

a.2.7 Measurements of Channel Characteristic Frequencies of DASLP102

a.2.8 Effect of Local Gain Control on Responses to a Two-Frequency

Component Signal . 103

a.3 Supplementary Material to Chapter 4 104

a.3.1 WHISPER Platform Implementation Details 104

a.3.2 Phase Shift and Jitter of WHISPER Prototype 108

a.3.3 Alternative Data Transmission Module 109

bibliography 115

1 I N T R O D U C T I O N

Neuromorphic technology is based on the operating principles of the brain. Neu-

romorphic spiking sensors produce asynchronous streams of data in response to

changes in the scene while conventional sensors such as cameras produce uniformly

sampled image frames. Sensory processing algorithms that use neuromorphic spik-

ing sensors are under investigation and their usefulness in natural environments are

less explored in contrast to the more mature signal processing algorithms for uni-

formly sampled input. Testbeds for testing the networks and algorithms of sensory

processing systems and determining advantages of these systems over conventional

time-stepped systems would be needed for faster evaluation of the robustness of

these algorithms in the wild. This thesis presents two different testbeds, one for

evaluating neuromorphic spiking sensors and processors; and a second testbed for

multi-microphone network.

1.1 background on sp iking sensors and event-driven

hardware

Spiking sensor designs, in particular the DVS (Li, Brandli, et al., 2015; Lichtsteiner

et al., 2008; Posch et al., 2014) and DAS (Liu, Schaik, et al., 2014; Yang, Chien,

et al., 2016) have improved tremendously in recent years. The evolution of the

different designs capturing some functionality of the biological sensors can be

found in (Liu, Delbruck, et al., 2015). Hardware spiking vision systems that use

a DVS (Li, Brandli, et al., 2015; Lichtsteiner et al., 2008), including the spiking

convolutional neural network system called CAVIAR (Serrano-Gotarredona et al.,

2009), have demonstrated their low-latency responses for real-time vision tasks

such as tracking. There are fewer example systems that use a spiking cochlea sensor

such as the DAS and hardly any that use both the spiking vision and cochlea

sensors (Chan, Jin, et al., 2012). In the first part of the thesis work carried out in

2015-2016, deep networks were starting to be applied towards the output spiking

sensors and there were hardly any hardware test beds at the time to prototype

spiking Deep Neural Network (DNN) in combination with both sensor modalities.

One of the earliest successes in training a deep network, in this case, a Deep Belief

Network (DBN) so that it can be converted to a Spiking Neural Network (SNN), was

reported in (O’Connor et al., 2013). Newer conversion methods were then developed

for the networks that came later and used the Rectified Linear Unit (ReLU) transfer

function (Diehl et al., 2015). This work reported conversion methods for small

convolutional neural networks and full-connected multi-layer networks on the digit

recognition dataset called MNIST. (Neil et al., 2016) extended the study to include

not only vision datasets but also audio datasets such as TIDIGITs. These early

3

4 introduction

networks used high precision bit values for the weight and bias parameters but this

high precision is not available on many embedded platforms. A few groups started

to develop quantization methods on the network parameters during training while

still maintaining equivalent accuracy to the high-precision network on a specific

task became important. The accuracy of the converted spiking network on a lower-

precision hardware platform showed that the accuracy is equivalent to the accuracy

of the higher-precision time-stepped Artificial Neural Network (ANN) (Stromatias,

Neil, Pfeiffer, et al., 2015).

These converted spiking networks can be implemented on hardware spiking

network platforms such as SpiNNaker developed at the University of Manchester.

These networks performed well on a recognition task even with inputs coming from

a spiking DVS. The SpiNNakeR platform was used to implement a deep network

that was trained on a digit recognition task and uses as inputs, the spike outputs of

a DVS sensor (Stromatias, Neil, Galluppi, et al., 2015).

The SpiNNaker platform was built to support large scale spiking networks. To

evaluate smaller networks using more available embedded platforms, the authors

in (Neil et al., 2014) implemented a real-time event-driven FPGA-based (Spartan 6)

spiking hardware accelerator called Minitaur.

This accelerator could run a spiking deep network which achieves 19 million

postsynaptic currents per second and supports up to 65 K neurons per board. One

goal of the Minitaur hardware development was to implement a hardware system

that can implement the sensory fusion network in (O’Connor et al., 2013) and to

test its performance including latency when interfaced to the two sensor modalities.

The work to interface Minitaur to a spiking sensor before I took on this thesis work,

was still under development.

In this part of the thesis, I developed an improved spiking accelerator that works

with the spiking sensors and that could respond with low latencies. At that time,

there was little reported on the use of a sensor fusion system for an audio-visual

task. The results of this system development are described in Chapter 2 along

with the improvements made on the Minitaur architecture. We also conducted

experiments with this hardware system, also called n-Minitaur, to determine the

classification accuracy of the network on a well known digit dataset called MNIST.

The network received input spikes from the DVS which was presented with digits

from this dataset and spikes from the cochlea which was presented with an audio

tone unique for each digit. Experimental results were reported on the network

performance when only one modality is presented or both modalities are presented.

1.2 background on local agc

From the n-Minitaur experiments, it was difficult to operate the system under a

wide range of audio amplitudes typically encountered in the real world. Therefore,

we developed an automated gain control mechanism based on only the output

spikes of the cochlea. While a global Automatic Gain Control (AGC) circuit on the

microphone outputs (e.g. used on the DAS board (Liu, Schaik, et al., 2014)) helps

1.2 background on local agc 5

the system to operate in far microphone settings, using an external component has

certain drawbacks.

First of all, the external AGC consumes additional power and requires relatively

high supply voltage compared to recent low-power cochlea design DASLP (Yang,

Chien, et al., 2016), Acoustic Feature Extraction (AFE) frontend (Goux et al., 2020)

or Voice Activity Detection (VAD) chips (Oh et al., 2019; Yang, Yeh, et al., 2018).

E.g., the MAX98141 chip, used in (Liu, Schaik, et al., 2014) has ∼ 10 mW power

consumption and requires at least 2.7 V power supply, while the AFE of the DASLP

chip consumes only 55 µW at 0.5 V power supply and AFE of the VAD chip (Yang,

Yeh, et al., 2019) consumes under 1 µW at 0.6 V. So, for many applications involving

low-power acoustic sensors, such as VAD, Keyword Spotting (KWS), voice control,

anomaly detection and predictive maintenance (Coady et al., 2019), it would be

beneficial to have an on-chip low-power AGC.

Second, the global AGC estimates the power of the whole signal and amplifies or

attenuates all frequency bands by the same amount. However, in many applications

there could be significant amount of noise outside of the frequency band of interest.

In this case, the global AGC would attenuate both, the noise and the useful signal,

pushing the latter below a detection threshold.

Meanwhile, it has been known for a long time, that the outer hair cells in

biological cochleas have local gain control mechanism (Ruggero, 1992) that allows

animals to hear soft sounds in a presence of loud out-of-band noise. We suppose

that the artificial spiking cochlea will benefit from a local AGC mechanism similar

to one observed in biological cochleas. Various ASIC implementations of cochlea

with local AGC models have been reported (Wen et al., 2009) (Yang, Lyon, et al.,

2015) (Hamilton et al., 2008) (Moeys et al., 2015). Because of the complexity of local

AGC models and transistor mismatch, it is not easy to build an ASIC cochlea

circuit within a reasonable chip area and with good matching across multiple

filter channels. Other hardware implementations include one that implemented the

biomorphic Hopf model using discrete electronics (Vyver et al., 2003). Another recent

reported implementation was the FPGA implementation (Xu et al., 2018) of the

CAR-FAC model (Lyon, 2011) which incorporates recent findings on cochlear wave

mechanics. The latter two systems do not have to deal with transistor mismatch but

consume more power and are larger than the ASIC circuits.

In Chapter 3, we describe a new method for implementing the desired local AGC

mechanism applied to one of the spiking cochlea ASICs. In this case, we used the

more recent low-power binaural DAS called the DASLP (Yang, Chien, et al., 2016)

which has a very low power consumption of 55 µW from the analog filter bank

core and good matching across the 64 filter channels. The low power consumption

of this cochlea is partly due to the low power supply of 0.5 V for the analog filter

bank circuits. Because of this low power supply and the transistor operation to

implement the desired transfer function, the input signal dynamic range for the

circuits to behave well is quite small. However, the DASLP chip has an integrated

programmable attenuator and a Programmable Gain Amplifier (PGA) for each of its

64 channels. The combined gain of a channel ranges from 0 dB to about 40 dB. Also,

the DASLP provides a digital interface for altering the channel gain while operating,

1 https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf

https://datasheets.maximintegrated.com/en/ds/MAX9814.pdf

6 introduction

which is fast enough for using in a feedback loop. Thus, updating a channel gain

based on the current amplitude at the output of the filter would extend the dynamic

range by 40 dB. For comparison, the dynamic range of the aforementioned external

AGC chip MAX9814 is only 20 dB.

Because there is no direct access to the outputs of all the cochlea channels, the

signal amplitude at the output of a filter can only be estimated by the spikes

produced by the channel. We study how estimation through spike counting impacts

the stability of the control loop. We utilise the FPGA of the DASLP board for

implementation of our AGC algorithm, so no additional components are required

and the latency of the gain control loop is kept low. In a further study, we investigate

whether the spikes of the AGC-controlled cochlea can help improve the accuracy in

an example audio task of classifying speech versus noise.

1.3 background on multi-microphone platform for

ad-hoc network

The final part of this thesis covers the development of a multi-microphone acoustic

sensor platform called WHISPER, which belongs to conventional signal processing

domain involving uniform audio sampling. This work was done within a multi-

partner European project called COCOHA (COgnitive COntrol of a Hearing Aid).

The main objective of this project was to study the possibility of using EEG signals

from a hearing aid user in order to amplify the sound source of interest and

suppress all the other sounds to some extent. Therefore, a device that can selectively

amplify one of the sound sources from an auditory scene in real time was needed.

This objective also imposes a low-latency requirement because it is important to

switch between the sound sources promptly and deliver the selected sound with

minimal delay in order to preserve an audio-visual speech synchrony.

One way of amplifying the sound source of interest is through beamforming meth-

ods that are used to locate a sound source (e.g. a talker) using a set of microphones

(Van Veen et al., 1997). These methods usually depend on a good characterization

of the time difference of sound waves arriving at a set of microphones with a fixed

geometrical arrangement. The signal-to-noise ratio (SNR) of a source can also be

improved acoustically by placing the microphone closer to the source. However, a

distributed ad-hoc network of microphones provides the most flexible solution as in

distributed wireless acoustic sensor networks (WASN) (Bertrand et al., 2015) because

they impose less stringent restrictions on the microphone placement compared

to fixed microphone arrays or placing a separate microphone next to each sound

source.

Increasing SNR of the target source with a spatially distributed ad-hoc set of

microphones is especially useful for hearing aid devices that have only two to four

microphones that are spaced closely together; and for ambient intelligent space

monitoring.

In general, a WASN that supports as many distributed microphones as possible

within a space will allow more spatially coherent sources to be isolated with shorter

impulse responses (Benesty et al., 2007), and provide better rejection of diffuse

1.3 background on multi-microphone platform for ad-hoc network 7

noise (Levin et al., 2015). It is also more likely that at least one microphone will

be close to the target or to a major noise source that needs to be factored out.

Computation capabilities should be added at each node so that bandwidth usage is

reduced and the platform can support distributed processing algorithms. Each node

would then transmit a smaller number of processed signals instead of transmitting

all its microphone signals simultaneously to the processing node. It also means that

the network can be scaled up by adding more nodes without a noticeable impact

on the overall computational load and bandwidth usage of the system (Bertrand et

al., 2015).

With local computing power, a node can perform within-node processing on

the signals of their own microphones, and possibly together with signals received

from neighboring nodes. A node that "sees" a source with the best SNR could

“own” the source (Markovich-Golan et al., 2012) therefore allowing the source to be

cleaned before it is made available for other nodes. Within-node processing can also

benefit from signals transmitted from those nodes that own the noise source. Other

forms of within-node preprocessing include inter-stream correlation that achieves

a degree of compression of the signals and furthermore, once a filter solution has

been computed, each node then needs to transmit only one stream to others or to

the hearing aid (Bertrand, 2011). Thus, the network can deliver to the user’s ears a

signal with a better SNR than any individual microphone.

With current technology, one can construct a portable platform with enough

computational power for the aforementioned local processing by using devices such

as Field-Programmable Gate Array (FPGA) and embedded computers. We envision

the WHISPER platform to be a modular platform constituted by up to four identical

WHISPER-M4 modules carrying a CPU, an FPGA, four microphones and a wireless

connectivity module. Such a platform can then be used for prototyping real-time

sound processing algorithms such as spatial sound filtering, noise cancellation and

blind source separation. Some of these algorithms require synchronized microphone

samples from the network, therefore one of the main challenges in building a useable

WASN platform is the issue of sampling clock synchronization.

One viable solution that helps to avoid the synchronization issue is developed in

(Maat et al., 2014) for zebra finch songs recording from several individual birds at the

same time. It involves using analog microphones with Frequency Modulation (FM)

transmitters and a multi-channel Analog to Digital Converter (ADC) at the receiving

site. However, having 16 analog FM microphones and 16 radio receivers attached

to a multi-channel data acquisition system is more cumbersome than having 4

compact modules with 4 microphones each, that can form an ad-hoc Wi-Fi network

together with a laptop. So, we opted for a completely digital solution relying on

wireless synchronization.

Prior work in clock synchronization across multiple nodes of a distributed multi-

microphone network includes the realigning of the clocks based on acoustic cues,

wireless synchronization, GPS, or blind synchronization techniques (Girod et al.,

2006; Miyabe et al., 2015; Schörkhuber et al., 2014). One study tested the latter

method in an off-line multi-talker speech recognition task using an ad-hoc network

of smartphones and the cloud (Ochi et al., 2016). The solutions in (3D Audiosense

2014; Girod et al., 2006; Schörkhuber et al., 2014) reported synchronization precision

8 introduction

in order of tens of microseconds but none of them addressed low-latency data

transmission.

A big reason for developing the WHISPER platform was a necessity to have

a versatile and flexible testbed for prototyping multi-channel audio processing

algorithms and testing them in the wild. Although it is possible to simulate different

acoustic environments in an anechoic chamber and perform recordings with a set of

stationary microphones, such experiments are lengthy and costly. It is also difficult

to incorporate all the required equipment into a low-latency signal processing

pipeline with a feedback from the EEG based attention analysis. The secondary

goal was to build a portable wireless device which can be used in conjunction

with a traditional hearing aid to improve intelligibility of a speaker of interest and

suppress all surrounding noises. Hence the name of the platform, WHISPER stands

for "Wireless Hearing Improves Speech PERception".

In order to provide a test bed for developing and testing beamforming algorithms

on an ad-hoc WASN, we built the first prototype of the WHISPER platform from

the commercially available off-the-shelf (COTS) components only. The core of the

WHISPER-M4 module is comprised of a low-cost Raspberry Pi 3B+2 single board

computer (SBC), which has wireless capabilities, connected with a low-cost FPGA

board3. The main challenge was finding a synchronization algorithm that provides

small enough sampling clock phase differences across multiple modules even in an

ad-hoc arrangement. We developed a wireless synchronization method that utilizes

a separate transceiver module4 operating in industrial, scientific and medical (ISM)

frequency range.

Our solution for the wireless synchronization is described in Chapter 4. We

evaluate the accuracy of the sampling clock phase synchronization provided by

the proposed solution across four WHISPER-M4 modules and study the effect of

desynchronization on a quality of a beamforming algorithm on the ad-hoc array of

microphones.

1.4 thesis outline

Chapter 2 describes the FPGA-based hardware platform, also called n-Minitaur

(Kiselev, Neil, et al., 2016a), which we designed to process in real-time the spikes

from the DVS and DAS. It also describes the experiments that were carried out in a

sensory fusion task using the inputs from both modalities.

In this chapter, we show the following contributions:

• The first demonstration of a real-time hardware system consisting of an event-

driven spiking network FPGA implementation receiving input spikes directly

from both a DVS and a spiking Dynamic Audio Sensor cochlea.

• The first demonstration back in 2016 of using sensor fusion from spiking

audio and video sensors to improve classification accuracy of spiking deep

neural network in noisy conditions.

2 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

3 https://valentfx.com/logi-pi

4 https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus
https://valentfx.com/logi-pi
https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

1.4 thesis outline 9

Chapter 3 describes a system-level per-channel gain control loop mechanism

which uses the cochlea spikes to control the gain of the filter channel. Contributions

include:

• The first automated gain control mechanism using the spike outputs of the

frequency-specific filter channels of a Dynamic Audio Sensor spiking cochlea.

• Demonstration of improvement of accuracy of event driven classification task

over wide dynamic range when using local event based gain control with

frequency-specific time constants.

Chapter 4 describes the construction of a multi-microphone platform suitable

of a Wireless Acoustic Sensor Network (WASN) and the synchronization protocol

needed to guarantee low phase difference for the sampling clocks on all distributed

modules. The contributions include:

• One of the first real-time multi-microphone hardware platform for a wire-

less acoustic sensor network that synchronizes the audio sampling clock on

multiple spatially distributed modules through a wireless technique.

• The availability of this platform for evaluating multi-channel speech separa-

tion algorithms in the wild and results that show that this benchmarking is

possible in natural spaces.

2 E V E N T- D R I V E N H A R D W A R E S Y S T E M

F O R S E N S O R F U S I O N

This chapter presents a real-time multi-modal SNNsystem implemented on an

FPGA platform. The hardware DNN system, called n-Minitaur, demonstrates a

4-fold improvement in computational speed over the previous DNN FPGA system

— Minitaur (Neil et al., 2014). In addition, the system is interfaced directly to two

different event-based sensor modalities: a Dynamic Vision Sensor (DVS) and a

Dynamic Audio Sensor (DAS). The DNN for this bimodal hardware system is

trained on the MNIST handwritten digit dataset, which was augmented by adding

a unique audio tone for each class. When tested on the spikes produced by each

sensor alone, the classification accuracy is around 70% for DVS spikes generated

in response to displayed MNIST images, and 60% for DAS spikes generated in

response to a mixture of the tones assigned to the digits and noise. The accuracy

increases to 98% when spikes from both modalities are provided simultaneously. In

addition, the system shows a fast latency response of only 5 ms.

A large part of this chapter comes from a paper titled “Event-Driven Deep

Neural Network Hardware System for Sensor Fusion”) presented at the IEEE

ISCAS 2016 (Kiselev, Neil, et al., 2016a) (Kiselev, Neil, et al., 2016b). The author has

only used the text related to the work contributed by the author in the papers.

2.1 introduction

Hardware systems implementing spiking Deep Networks such as Convolutional

Neural Network (CNN), Restricted Boltzmann Machines (RBM), and DBN have

been demonstrated on hardware platforms including FPGAs (Neil et al., 2014;

Zamarreno-Ramos et al., 2013), SpiNNaker (Furber et al., 2014), and TrueNorth (Tsai

et al., 2016). Some of these systems have been tested on recordings from event-

driven DVS (Lichtsteiner et al., 2008) to demonstrate the advantages of event-driven

computing. Hardware spiking vision systems interfaced directly to a DVS have

been demonstrated for real-time applications. Although there are a few systems

that are interfaced to a spiking cochlea sensor such as the Dynamic Audio Sensor

(DAS) (Liu, Schaik, et al., 2014; Yang, Chien, et al., 2016) and to both visual and

auditory modalities (Chan, Jin, et al., 2012; O’Connor et al., 2013), no system at the

time had used a spiking DNN hardware in combination with both modalities.

This paper describes a real-time multi-modal DNN hardware system interfaced

to two event-based sensors of different modalities. A spiking DNN was previously

implemented on Minitaur, an event-driven FPGA-based (Spartan 6) spiking neural

accelerator system. With this system, one can implement a spiking deep network

which achieves 19 million postsynaptic currents per second (Neil et al., 2014) and

supports up to 65 K neurons per board. We describe the improvements made

on the Minitaur architecture so that the new system called n-Minitaur is able to

11

12 event-driven hardware system for sensor fusion

Figure 2.1: n-Minitaur system interfaced directly to both DVS and DAS sensors.

receive spikes in real-time from up to three event-based sensors. We conducted

experiments using spiking DNNs implemented on this platform and demonstrated

the classification accuracy on the MNIST dataset based on 1) the inputs from the

two modalities separately and 2) the fusion of inputs from both modalities.

The setup is described in Section 2.2 followed by descriptions of two experi-

ments using this platform for visual and visual-auditory tasks in Section 2.4 and a

discussion in Section 2.5.

2.2 methods

In this section we describe the system setup consisting of an auxiliary board that

holds an FPGA and interfaces to up to three different event-based sensors, two

spiking network architectures, and input stimuli used in this work.

2.2.1 Setup

The system consists of a Spartan-6 FPGA board (ZTEX USB 1.15d1) and an auxiliary

board with three Address Event Representation (AER) ports for direct interfacing

to three spike-based sensors (Fig. 2.2). In this work, a DVS (Lichtsteiner et al.,

1 https://www.ztex.de/usb-fpga-1/usb-fpga-1.15.e.html

https://www.ztex.de/usb-fpga-1/usb-fpga-1.15.e.html

2.2 methods 13

FPGA

ZTEX

FPGA board

Custom made

auxiliary

board

AER interfaces

Yet another AER interfacePMOD digital IO

Figure 2.2: n-Minitaur interface board. Design from S-C. Liu and T. Delbruck.

2008) and a DAS (Liu, Schaik, et al., 2014) are connected to two of these ports.

The sensors communicate with n-Minitaur using an asynchronous AER protocol.

Since one FPGA board handles the events from all the sensors in the order they

arrive, timestamping of the events is not required at the sensors, and hence, no time

synchronization is needed across the sensors in this setup.

The DVS128 retina, with a resolution of 128 × 128 pixels, produces events (spike

addresses) only when a pixel senses local brightness changes. The pixels output

ON and OFF events which encode both positive and negative changes in log-

intensities respectively. The DAS board used in this work (DAS Ams1b) holds two

microphones, a custom AEREAR2 binaural cochlea chip, and digital chips to handle

the communication between the cochlea and the Personal Computer (PC). The

board also has an external AER interface, which was adapted to the purpose of this

work by modifying the AER acknowledge circuit, so that acknowledging an AER

event generated by DAS would be possible from an external device. Each cochlea

on the binaural AEREAR2 chip is modeled by a 64-stage cascaded second-order

filter bank followed by a half-wave rectifier which models the inner hair cell and an

integrate-fire neuron model which models the spiral ganglion cells.

2.2.2 Networks

Two DNNs are trained on the MNIST dataset following the training algorithm

described in (O’Connor et al., 2013). The first visual network (DNN1) of size 784-

500-500-10 (shown in Fig. 2.3a) is trained on the 60, 000 digit training set from the

MNIST database. The second multi-modal network (DNN2) has additional 100

audio input neurons connected to the associative layer (Fig. 2.3b). These neurons are

driven by the spikes of the DAS. The 64 cochlea channels of the DAS are mapped

14 event-driven hardware system for sensor fusion

Figure 2.3: Network architecture of (a) the visual DNN1 and (b) the multimodal DNN2.

to the 100 neurons in the audio layer following the mapping scheme in (O’Connor

et al., 2013), which is described in the next subsection. Both networks are trained as

DBNs, and then converted to feed-forward spiking neural networks (SNNs) for the

classification task according to the algorithm proposed in (O’Connor et al., 2013).

The DNN1 network has 1794 Leaky Integrate-and-Fire (LIF) neurons with a total of

647, 000 synapses. The DNN2 consists of 1894 neurons with 697, 000 synapses. The

LIF neuron model in the spiking DNN has a membrane potential decay time of 17.2

ms and a refractory period of 0.8 ms, as it was found to give the best performance

for a practical range of the input event rates.

2.2.3 Input Stimuli

We describe next the two sets of test stimuli used in this work. The first set consists

of artificial spike trains generated from the visual MNIST test dataset of 10, 000

digits. In order to convert the static digit images to events, first, a number of the

event addresses is generated with a probability proportional to the intensity of

the pixel in the image of the digit. Then, for each event address a timestamp is

generated uniformly within a defined time interval. The resulting events are sorted

in a time increasing order and streamed to the hardware DNN over USB interface.

A total of 1000 spikes are produced within 10 ms window for each digit. Thus, the

average simulated spike rate is 100 kEvents/s

The second set consists of spikes streamed directly from the DVS and DAS

sensors without a PC in the loop. The goal of this setup is to have a complete

spiking DNN hardware system which performs the classification in real-time from

the sensor spikes streamed directly to n-Minitaur. The setup is shown in Fig. 2.4.

For the visual spikes, the DVS128 is placed in front of an LCD display with

an LED backlight. The LED backlight is preferable for the DVS compared to the

fluorescent lamp backlight, because high frequency flicker of the lamp can create

2.2 methods 15

Cochlea

Spikes

DVS

Spikes
Current Accuracy

(96%)

Speaker

AMS1b Cochlean-Minitaur

Recognized Digit

Presented

Digit

DVS128

Camera

Figure 2.4: Setup of sensor fusion experiment.

additional events. The digits are presented on the screen at a frame rate of 30 Hz.

Each digit is presented 8 times with each presentation alternating with a black

screen.

For the audio spikes, a specific audio frequency is assigned to each digit similarly

to (Neil et al., 2014), but with slightly different frequency values (Table 2.1) for each

digit for simpler on-FPGA computation – the frequencies are distributed in such

a way that the corresponding periods are spaces linearly. Similar to the method

in (O’Connor et al., 2013), we preprocessed the DAS spikes on an FPGA with an

event-based interspike interval (ISI) histogramming method where we built 100 ISI

bins that were distributed linearly between 1.078 and 3.125 ms (320− 928 Hz). Every

input neuron in the Audio Layer (Fig. 2.3b) is assigned to one of the histogram

bins. The corresponding neuron in this layer is stimulated when its assigned ISI

bin receives an ISI value associated with a spike from any of the 4 output neurons

within any DAS filter channel. An example of the spike sequence generated for an

input stimulus for digit ’3’ is given in Fig. 2.5.

Both the audio tone and the image of a digit are presented simultaneously in the

sensory fusion experiments, and the output spikes from both sensors are recorded

at the same time via USB. The classification label is determined by the output

neuron with the most spikes for each combination of tone and video digit.

Freq. (Hz) 352 371 385 414 444 470 552 588 670 720

Digit 0 1 2 3 4 5 6 7 8 9

Table 2.1: Tone-digit pairs in a multi-sensory fusion task.

16 event-driven hardware system for sensor fusion

N
e
u

ro
n

 #

Time, μs

Figure 2.5: Audio stimulus events from the 100 neurons in the Audio Layer. Spikes are in
response to the tone assigned to digit ’3’.

In the real-time experiments described in Section 2.4, the hardware sensor spike

rate is about 50 kEvents/s for the DVS and about 5 kEvents/s for the DAS.

This spike rate exceeds the limit for real-time processing on n-Minitaur, which

is 8.6 kEvents/s for the DNN2 architecture (see the last row of the Table 2.2). In

order to achieve a real-time classification the spike rate is reduced by sending just

1 out of N input spikes to the DNN and dropping the rest N-1 spikes, where N

ranges from 1 to 16. Both video and audio inputs are decimated using N = 10 and

N = 4 respectively, to achieve an acceptable average event rate of approximately

6.5 kEvents/s. The decimated of the audio spikes is performed after mapping of

the cochlea spikes to the ISI bins, so computing of the interspike intervals is not

affected.

Because the accuracy of the DNN2 from just the DAS spikes is already close to

100% accuracy (see Table 2.4 5th row), an interfering frequency is added to the

audio stimuli in order to reduce the classification accuracy of the network. First,

the frequency for each digit d is selected randomly from a normal distribution

with a mean at the central frequency Fc(d) and a standard deviation of 1.7. Then, a

second interfering frequency is chosen from a uniform distribution ranging from

300 to 800 Hz except for a region of Fc(d) ± 50Hz. The two frequencies when

combined together produce an audio signal with a signal-to-noise ratio of 6 dB.

This set of audio stimuli corresponding to each digit produces significant error in

the classification (see Table 2.4 row no. 7 in Section 2.4).

2.3 n-minitaur architecture 17

Figure 2.6: Original Minitaur.

2.3 n-minitaur architecture

Minitaur (Neil et al., 2014) is implemented on a low-cost Xilinx Spartan-6 platform.

The full implementation is done on a ZTEX USB 1.15d board, which holds 128

MB of DDR2 RAM, a microSD card slot for storage, 128-kB flash memory for a

bootloader, and an FX2 chip for USB interfacing.

We improved the Minitaur architecture in Fig. 2.6 for lower system latency, higher

throughput and the necessity for handling AER events from up to three event-based

sensors. In order to process events arriving from multiple sensors, we modify the

interface block in Minitaur which previously could only receive spikes from the

DVS through a PC over USB2 bus (See the inset in Fig. 2.1.) The new architecture

(n-Minitaur) is shown in Fig. 2.7, and its specifications are given in Table 2.2 in

comparison with the original Minitaur.

The most significant improvements are described next. First, the USB interface

and Control block (called "Admin Proc" in the original Minitaur design, Fig. 2.6) is

redesigned completely. A pair of Xilinx Dual-Clock FIFOs is used to separate the

USB and the accelerator clock domains in order to reduce amount of the USB-clock

driven logic to a minimum. The Finite State Machine (FSM) controlling transmission

of events between n-Minitaur and a PC in both directions is optimised, leading to a

4-fold increase of the USB data transfer bandwidth up to 30 MBytes/s. The block

diagram (Fig. A.1), the FSM state transition diagram (Fig. A.2) and an example

of the state transitions and control signals (Fig. A.3) are given in the Appendix

section A.1.1.

Second, the state machines for the Spike Heap and Neurocore blocks and the

weight caching strategy are redesigned for a 2.6-fold improvement of performance

18 event-driven hardware system for sensor fusion

at the same frequencies (Table 2.3, 2nd row). The DDR2 RAM interface frequency is

increased by a factor of 2, up to 264 MHz. Weight storage in the RAM is optimized,

allowing uploading of a twice bigger network. Due to a linear arrangement of

the neuron weights in the memory it was possible to replace the weight caching

algorithm by weight prefetching using a burst mode of the DDR2 memory.

Third, by introducing the registered Parameter Bus, the design complexity and

congestion level are reduced, and the core frequency is increased from 75 MHz to

105 MHz, leading to a 4-fold overall increase of performance.

In addition, the input multiplexer, the ISI histogram computation and the event

decimation blocks are implemented, allowing real-time sensor fusion of different

event-based sensors. The classification result is displayed on a 7-segment LED

indicator attached to the PMOD connector of the interface board.

The n-Minitaur neural accelerator operates as follows. The input spikes are

timestamped at the input multiplexer and placed into a heap, which is sorted by

the timestamp. The spike with the smallest timestamp is taken from the top of

the heap and is sent to the connection rule lookup block. Meanwhile the heap

is updated such that the spike with the next smallest timestamp appears on the

top. The update time is proportional to the height of the heap. The spike carries

information about the neuron that generated this spike. The lookup table is searched

for the connection rule that has this neuron at the source side. The output side of

the connection rule represents a range of neurons in the subsequent layer that are

connected to the source neuron, so the membrane potential of these neurons has

to be updated when the source neuron emits a spike. When the connection rule

is found, the neurons of the range defined by this rule are distributed among 32

neurocores. Each neurocore computes a membrane potential decay based on the

time passed since the last membrane potential update of the neuron and adds a

value defined by the weight of its connection with the source neuron. Then the

membrane potential is compared to a threshold and if the threshold is exceeded,

the membrane potential is set to 0 and the spike is generated by the current neuron.

The new spike is timestamped and placed into the spike heap. The time of the

membrane potential update is stored in the State RAM along with the new value of

the membrane potential. When the update process is finished for all the neurons of

the aforementioned range the next spike is picked from the top of the heap and the

process repeats.

2.4 results

This section describes the specifications of the improved n-Minitaur implementation

and the sensor fusion classification experiments using n-Minitaur.

2.4.1 n-Minitaur Performance Measurements

The architecture improvements of n-Minitaur give 4-fold increase of the compute

speed compared to a previous version, while keeping the same classification ac-

curacy. Table 2.3 (2nd row) shows the architectural performance improvement of

2.4 results 19

Figure 2.7: New architecture of Minitaur (n-Minitaur).

n-Minitaur at the same operating frequency as Minitaur. The operation time on the

test set of the MNIST dataset is redused by a factor of 2.6. The new architecture

also allows to increase the operating frequencies of the Neurocores and the external

RAM to 105 MHz and 264 MHz, respectively, leading to a further 1.5-fold perfor-

mance improvement. Further increase of the core frequency up to 132 MHz does

not give much gain of performance due to a bottleneck in the external memory

interface, and in addition, it leads to a significant growth of the FPGA design

place-and-route time. Therefore, we decided to stick to 105/264 MHz Core/RAM

frequencies for all the following experiments.

2.4.2 Hardware Inputs

Although Minitaur is capable of processing events streamed separately from event-

driven visual and audio sensors using the USB interface, it was impossible to

combine events from different sensors in real-time because the USB stack intro-

duced unpredictable delays of hundreds of µs while events are captured with

1 µs precision. Moreover, the spike data have to be packetized for USB transaction,

so enough events have to be collected to initialize the data transfer. This intro-

duces additional delays. On the other hand, the hardware AER interface allows to

stream events from different AER sources into a processing module in real-time,

immediately at the time the events are generated.

To ensure that input spikes arrive to the network in the correct spatial arrange-

ment, the spikes from the first layer of the network are recorded and displayed (Fig.

2.8). The images show that the spikes are transmitted properly to the FPGA system.

20 event-driven hardware system for sensor fusion

Parameter
Original

(Minitaur)

Modified

(n-Minitaur)

Neural accelerator parameters

Number of neurocores 32 32

Max number of neurons 65536 65536

Max number of synapses 16.78 M 33.5 M

Max number of connection rules 128 256

Design statistics

Nets 173500 101255

Slice registers 17425 11669

Slice LUTs 23778 15137

Occupied slices 8845 5201

DSP blocks per neurocore 2 1

Timing specifications

Operating frequencies (Core/RAM) 75/132 MHz 132/264 MHz

USB download bandwidth 7.4 MB/s 30.3 MB/s

100 events download time 116 us 26 us

Min input to output (I-O) latency 293 us 238 us

I-O latency on MNIST DNN (mode) 9.2 ms 2 ms

Serial processing speed (updates/s) 0.59 Mupd/s 1.67 Mupd/s

Peak processing speed (updates/s) 18.9 Mupd/s 53.5 Mupd/s

Input spike processing rate on MNIST DNN 1.95 kSpikes/s 8.6 kSpikes/s

Table 2.2: Specifications of Minitaur and n-Minitaur.

FPGA logic

version

Clock (MHz) Operation

time (s)

Time per

digit (s)

Accuracy

(%)Core RAM

Original 75 132 5390 0.539 92.0

Modified

(original frequency)
75 132 2084 0.208 92.06

Modified

(stable result)
105 264 1372 0.137 92.08

Modified

(max frequency)
132 264 1359 0.136 92.04

Table 2.3: Performance of n-Minitaur with DNN1 on the MNIST dataset (10000 digits).

2.4.3 Single Sensor and Sensor Fusion Experiments

The hardware implementation of the DNN1 on n-Minitaur is first tested on artifi-

cially generated spike-trains from the MNIST database and led to an accuracy of

94.1% (Table 2.4, Expt No. 1) comparable with a software simulation of the same

2.5 discussion 21

Experiment description
% of correctly

labelled digits

1 DNN1, visual only, artificial MNIST spikes 94.1

2 DNN1, DVS spikes 89.9

3 DNN2, visual only, artificial MNIST spikes 81.5

4 DNN2, visual only, DVS spikes 70.0

5 DNN2, audio only, artificial spikes 99.9

6 DNN2, audio only, cochlea spikes 99.0

7 DNN2, audio only, cochlea + noise 60.0

8 DNN2, DVS + (cochlea + noise) 98.0

Table 2.4: Table of accuracies on the MNIST dataset and audio tones.

network (Neil et al., 2014). This accuracy decreased by 4.6% (Table 2.4, Expt No. 2),

when tested with DVS spikes streamed directly into n-Minitaur through the AER

interface. This decrease can be explained by a difference in the spike statistics

between artificially generated spikes and real DVS spikes. The multi-modal network

DNN2 is first tested on visual spikes using either the artificial visual spikes or the

DVS spikes (Table 2.4, Expts No. 3, No. 4). The accuracy of the DNN2 is much

lower than that of the DNN1 in this case. But the accuracy of the DNN2 using the

audio input alone (Table 2.4, Expts No. 5, No. 6) is around 99.9%, suggesting that

the DNN2 network learned to rely more on the audio input. Our hypothesis is that

it was partially due to over-simplified audio stimuli (pure tones) used to represent

the digits.

By adding an audio noise, the accuracy of the network with audio-only input

decreased to 60% (Table 2.4, Expt No. 7). However, by fusing spikes from the visual

and the audio sensors when the audio signal is mixed with the noise, classification

accuracy was restored to 98% (Table 2.4, Expt no. 8), demonstrating that sensory

fusion can help improve performance of the system which performs poorly with

only a single modality.

2.5 discussion

This work aims to create a complete spiking hardware DNN system capable of

processing spikes from event-based audio and visual sensors. This embedded

hardware system can be interfaced to a maximum of 3 AER sensors without a

PC in the data path. However the PC is still required for uploading the network

structure and coefficients, and for configuring the sensors. The need for a PC can be

eliminated by using modern System on a Chip (SoC) FPGAs, such as Xilinx Zynq

Ultrascale+, which has on-chip CPU cores.

The performance of the new DNN FPGA architecture (n-Minitaur) has been

improved by a factor of 4 along with a reduction in resource utilization of 35%.

The performance of the system in classifying the visual MNIST digits is of similar

accuracy to that of Minitaur (Neil et al., 2014). The hardware network implemen-

22 event-driven hardware system for sensor fusion

Figure 2.8: Spike histograms recorded from the first layer of the network connected to the
DVS via the hardware AER interface. Digits are presented to DVS as described
in Section 2.2.3. 1000 events are recorded for each digit.

Figure 2.9: Histogram of latencies from the first input spike to the first output spike based
on the 10000 test digits of the MNIST dataset.

2.5 discussion 23

tation shows a classification accuracy increase when using input events from two

event-based sensors of different modalities.

The measured latency between the 1st input spike and the 1st output spike is only

about 5 ms (Fig. 2.9), when tested on the MNIST digit spikes, showing a real-time

operation of the system. The first and the biggest mode of the latency distribution

is just around 2 ms. The 2nd and the 3rd modes, at ∼ 22 and ∼ 37 ms respectively,

are likely due to the fact that the input spikes for the latency measurement are

sent over USB. Although the latency measurement is performed on the FPGA,

interruption of the data uploading thread by the Windows task scheduler between

two USB transactions can cause the increase of the latency. If input spikes in the

first data packet has not elicited any output spikes, the accelerator has to wait for

the second packet, however, the latency measurement has already started at the

beginning of the first packet. Thus, the data transmission delay can be included

into the accelerator latency measurement leading to a heavy tail in the latency

distribution.

We developed a hardware event-driven system that achieves real-time classifica-

tion at event rates up-to 8.6 kEvents/s on the network with ∼ 700, 000 synapses.

The amount of computations in the developed accelerator is by design proportional

to the number of the network coefficients (synapses) and to the input spike rate.

For many low power applications it is difficult to fit a high performance accelerator

within a given power budget, and reducing the networks size usually leads to

the classification accuracy loss, so reducing a spike rate might be a viable option

for achieving a real-time performance. We demonstrated that high classification

accuracy can be achieved even when the spike stream from a sensor is decimated

by a factor of 10. However, the sensors are still generating lots of events within

this approach. Reducing the number of events transmitted from a sensor to a pro-

cessing device might further improve the power consumption of the system. In the

following chapter we study a possibility of reducing the event rate produced by the

DAS Low Power (DASLP) audio sensor by implementing a spike-based local gain

control.

3 A U TO M AT I C G A I N C O N T R O L W I T H

S P I K I N G C O C H L E A

This chapter presents a real-time automatic gain control (AGC) system which uses

the spiking output of a Dynamic Audio Sensor (DAS) to control gain settings of the

bandpass filter bank. A part of the chapter comes from a paper titled “Event-driven

Local Gain Control on a Spiking Cochlea Sensor” that will be presented at the 2021

IEEE ISCAS (Kiselev and Liu, 2021).

3.1 introduction

Application-Specific Integrated Circuit (ASIC) cochlea designs implement circuits

that model part of the functionality of biological cochleas Lyon et al., 2010. More

recent designs include circuits that generate asynchronous spiking outputs (Abdalla

et al., 2005; Chan, Liu, et al., 2007; Liu, Schaik, et al., 2014; Wen et al., 2009; Yang,

Chien, et al., 2016). Few designs have included the local automatic gain control

(AGC) properties of the outer hair cells in the biological cochlea (Hamilton et al.,

2008; Katsiamis et al., 2009; Wen et al., 2009). Local AGC allows the cochlea to

be operated in natural uncontrolled environments where sound amplitudes can

vary over a large amplitude range (Ruggero, 1992). Because of the complexity of

local AGC models and transistor mismatch, it is not easy to build an ASIC cochlea

circuit within a reasonable chip area and with good matching across multiple filter

channels. A design with over hundred filter stages can suffer from mismatch that

makes it less usable (Wen et al., 2009) or the resulting pixel size of each channel

prohibits the implementation of large number of channels on one chip (Katsiamis et

al., 2009).

Other hardware cochlea systems with AGC include the biomorphic Hopf cochlea

system implemented using discrete electronics (Vyver et al., 2003); and the FPGA

implementation (Xu et al., 2018) of the CAR-FAC AGC model (Lyon, 2011). These

systems, while not having to deal with transistor mismatch, consume more power

and are larger than the ASIC models.

Hardware spiking cochleas, e.g. the Dynamic Audio Sensor (Liu, Schaik, et al.,

2014), and software cochlea models are being tested as front-ends for audio tasks.

These tasks include the using of the spike timing for azimuthal source localization

(Anumula, Ceolini, et al., 2018; Finger et al., 2011; van Schaik et al., 2009), speech

recognition (Gao, Braun, et al., 2019; Wu et al., 2018), speaker verification, multi-

modal recognition (Kiselev, Neil, et al., 2016a) and keyword spotting (Ceolini,

Anumula, et al., 2019).

Spike features such as constant time bin and constant spike count features

(Acharya et al., 2018; Anumula, Neil, Delbruck, et al., 2018) are usually presented as

inputs to a machine learning classifier such as the SVM classifier (Li, Delbrück, et

al., 2012) or to deep neural networks (DNNs) such as recurrent neural networks.

25

26 automatic gain control with spiking cochlea

These features have been applied quite successfully on the spiking cochlea outputs

for real-time operation (Anumula, Neil, Li, et al., 2017; Gao, Braun, et al., 2019). The

spikes can also directly drive a converted spiking deep network (Kiselev, Neil, et al.,

2016a).

In these different application domains where the input amplitude range can vary

over 60 dB, the system will benefit from a local AGC mechanism in addition to a

global AGC circuit used on the microphone outputs (e.g. on the DAS board (Liu,

Schaik, et al., 2014)). This global AGC helps the system to operate in far microphone

settings, however it can cause unwanted attenuation of a useful signal in presence

of noise outside of the band of interest.

Because of the difficulty of including the local gain control circuits on-chip, this

chapter presents a system-level AGC mechanism that uses instead the spiking

activity of the individual filter channels on a DASLP (Yang, Chien, et al., 2016) to

adapt the local gain of the filters. Although there are various methods that could

be used to implement a negative feedback control algorithm, we focus on the

possibility of implementing a local AGC mechanism that does not need floating or

even fixed point arithmetic. The AGC mechanism proposed in this chapter needs

only counters and adders thereby making it possible for future implementation

in an ASIC. In this chapter, we describe the AGC experiments using the DASLP

cochlea and a classification experiment of speech versus noise to evaluate whether

adding a local gain control mechanism to a spiking cochlea cochlea will help to

increase the classification accuracy of a classifier trained on the spike features

compared to non-AGC case.

We describe first in Section 3.2, details of the DASLP cochlea architecture and

bias control settings, the sensor features and the dataset preparation for the audio

classification task. Section 3.3 presents the AGC algorithm and the corresponding

implementation on the FPGA hardware platform that interfaces to the cochlea.

Measurements of the analog and spiking responses of a filter channel with AGC are

presented in Section 3.4 along with a classification experiment of speech vs noise

for a large range of sound amplitudes.

3.2 methods

3.2.1 DASLP Silicon Cochlea

The DASLP spiking cochlea used in this work is the latest low-power (LP) ASIC

binaural design with 64 frequency channels per side and asynchronous spiking

outputs (Yang, Chien, et al., 2016). This cochlea design uses a parallel bank of 64

filters ranging from best characteristic frequencies of 20 Hz to 20 kHz. The best

frequency of each filter is generated by the 64 geometrically-scaled current block in

Fig. 3.1. The fourth-order bandpass filter (BPF) design in each channel consists of

two cascaded power-efficient second-order source-follower-based BPFs, followed by

an asynchronous delta modulator (ADM) with on-chip asynchronous arbitration

circuits for transmitting events off chip.

3.2 methods 27

64 geometrically scaled bias currents

Channel 0 (20 kHz)

Channel 1 (17.7 kHz)

Channel 63 (8 Hz)

DASLP Chip

A
E

R
 A

rb
it

e
r

FPGA

AER

Config

nReq

nAck

Event

ATT BPF
Threshold

Logic
PGA

Analog Output (to MUX)

Bias

Gain Gain

Figure 3.1: Architecture of the spiking cochlea DASLP. A simplified structure diagram of
one channel is shown in the bottom callout. The green and red arrows represent
ON and OFF spikes.

The filters model the functionality of the basilar membrane of the biological

cochlea. Each filter channel produces both ON and OFF spikes unlike other DAS

cochleas which do not produce the dual polarity spikes. The dual polarity spikes

are produced by the send-on-delta scheme used for generating the asynchronous

spikes. These spikes are transmitted off-chip through the asynchronous event

representation (AER) protocol. The AER block arbitrates among all the active

channels. The asynchronous handshaking signals Cack and Creq are used to transmit

the chosen channel address Addr to the external device. The analog block operates

on a power supply of 0.5 V and consumes only 55 µW. This design has good

matching properties of the quality factor, Q, of the filter across the different channels,

and Q > 10 can be achieved across the entire array (Yang, Chien, et al., 2016).

The DASLP board (Fig. 3.2) that holds the chip is similar to the DAS board (Liu,

Schaik, et al., 2014), except that it uses more modern USB3 interface and has a

bigger FPGA instead of a low-capacity CPLD for the chip control and data readout.

It is USB powered and interfaces to our Java-based jAER software (jAER Project

2007) for setting the chip biases, recording, and processing sensor output. It is also

equipped with a pair of on-board differential 18-bit ADCs (AD76911 from Analog

Devices) that sample input signal to the left and right channels of the cochlea chip

to allow direct comparison of the algorithms that use cochlea spikes versus the

algorithms that use regular or other types of sampling [(Huber et al., 2017, 2018)].

For the purpose of this work the input of the left channel ADC was rerouted to

the analog output of the chip. The filter output of any channel can be internally

multiplexed to this output, allowing measurement of the signal amplitude at the

output of the filter. The data samples from both ADCs are sent to a PC along with

the event data stream from the DASLP chip as described in the Appendix to the

Chapter 3.

1 https://www.analog.com/media/en/technical-documentation/data-sheets/ad7691.pdf

https://www.analog.com/media/en/technical-documentation/data-sheets/ad7691.pdf

28 automatic gain control with spiking cochlea

ADCs

DASLP chip

Differential

buffer

Mic and line-in

input board

Figure 3.2: DASLP chip and board view.

Each channel has an individual programmable attenuator (ATT) and a pro-

grammable gain amplifier (PGA). There are 8 levels of attenuation ranging from 0

to −18 dB and 8 levels of gain ranging from 18 dB to 38.5 dB available (measured

at the channel peak frequency with Q = 1). However, only 4 attenuation levels (−6

dB to −18 dB) were used in this work, because switching to the low attenuation

range in this design was too slow to be used in a feedback loop (see Sec. 3.2.2 "Gain

switching transient response", Fig. 3.5). By combining different attenuation and

gain levels the overall gain range of 0 − 32.5 dB can be achieved. Twelve levels of

gain were available for the AGC control loop (Table 3.1). The combinations of the

attenuator and PGA gains were chosen in such a way that each gain change step is

around 3 dB (Fig. 3.3). Thirty-six channels were used in this work, corresponding

to frequencies from 56 Hz to 4 kHz.

3.2.2 Gain Switching Transient Response

Loading a new gain and attenuation setting for every channel on the DASLP chip

takes about 0.5 ms. It takes additional time for the output signal to settle down to

the new amplitude level. We found that the time required for switching between the

attenuator settings depends on the number of attenuation levels between the initial

and final settings. In the case of rapid switching from setting #0 (−18 dB) to setting

#7 (0 dB), the attenuation even changes in the opposite direction starting from the

3.2 methods 29

0 2 4 6 8 10 12

Gain Index

0

5

10

15

20

25

30

35

G
a

in
,

d
B

Figure 3.3: Selection of the gain values available for AGC. The selected gain values are
marked with the filled circles, all other available gain values are shown with
the empty circles.

Gain index

(4 bit)

Total Gain,

dB

Gain, dB Bit Pattern

PGA ATT PGA ATT

0 0 18 −18 111 000

1 3 21 −18 100 000

2 6 18 −12 111 001

3 9 21 −12 100 001

4 12 18 −6 111 011

5 15 21 −6 100 011

6 17.7 26.2 −8.5 011 010

7 20.5 29 −8.5 010 010

8 23.5 32 −8.5 001 010

9 26.5 38.5 −12 000 001

10 30 38.5 −8.5 000 010

11 32.5 38.5 −6 000 011

15 Threshold crossing special code

Table 3.1: Gain settings available to AGC state machine and corresponding bit patterns for
the PGA and the input attenuator. The last Gain Index value (15) is used to indi-
cate a threshold crossing event for the corresponding channel (see Appendix A.2
Fig. A.11).

setting #4 (see the red circle in right plot of Fig. 3.4). Although the attenuation

does settle at the selected level, the time constant of this process is in order of

seconds. This effect is in part because the chip was not designed to support this

fast attenuation switching. This behaviour can lead to the gain oscillations, when

30 automatic gain control with spiking cochlea

the signal amplitude drops so low after increasing the attenuation, that the channel

would stop generating any events for a substantial time, and the AGC would have

to decrease the attenuation again. This problem is partially mitigated by using

a restricted set of the attenuation values as shown in Fig. 3.5), however, we still

observe such a behaviour in response to a sharp onset of a signal at the high

frequency channels.

0 5 10 15 20 25 30 35

Time, s

-50

-40

-30

-20

-10

0

A
tt
e
n
u
a
ti
o
n
,
d
B

Noise floor

1.6 1.8 2 2.2 2.4 2.6 2.8

Time, s

-20

-18

-16

-14

-12

-10

-8

-6

0

0

1

2

3
4

5

6

7

Figure 3.4: Stepwise switching between all attenuation settings from #0 to #7 and back.
The right plot shows zoomed-in response to the #0-to-#7 attenuation setting
stepwise transition. Actual attenuation value changes in the correct direction
up to the setting #3 and then goes in a wrong direction (marked with the red
circle) for a substantial time, making it impossible to use the settings #4 − #7 in
a fast feedback loop.

0 2 4 6 8 10 12

Time, s

-22

-20

-18

-16

-14

-12

-10

-8

-6

A
tt
e
n
u
a
ti
o
n
,
d
B

ATT #3

ATT #2

ATT #1

ATT #0

Figure 3.5: Stepwise switching between attenuation settings from #0 to #3 and back. When
the attenuation setting is switched rapidly from #0 to #2 or #3, the actual
attenuation value is below the specified level. Although this behavior may lead
to unnecessary increase of the PGA gain, it does not cause complete signal loss.
However, when the attenuation is switched in the opposite direction, the actual
attenuation value overshoots the specified level significantly, that can cause
temporary signal loss and hence, force the AGC to change the gain and the
attenuation in the opposite direction.

3.2 methods 31

3.2.3 Sensor Features

The DASLP implements an Asynchronous Delta Modulation (ADM) coding scheme

for each frequency channel, which means ON and OFF events are generated when

input signal exceeds positive or negative threshold with respect to the previously

encoded level. This scheme preserves the information about both frequency and

amplitude of the signal. The number of ON events on the rising slope of the signal

encodes the signal amplitude, and the time interval between ON events on two

consecutive rising slopes encodes the frequency (Fig. 3.6). Thus, the frequency of

the signal at each channel can be estimated with high accuracy when averaged over

several periods (Appendix A.2 Fig. A.18).

Figure 3.6: Spike generation with ADM

However, the output events of the DAS are often binned into time bins before

sending them to the further processing steps, like a recurrent neural network

classifier (Acharya et al., 2018; Anumula, Neil, Li, et al., 2017; Anumula, Neil,

Delbruck, et al., 2018; Gao, Braun, et al., 2019; Yang, Yeh, et al., 2018). This time-

binning process discards the ordering information of ON and OFF events, leaving

only total event counts per time bin per channel, which represents some mixture of

the frequency and amplitude of the signal at the channel. Adjusting the gain of a

channel in such a way that only one ON event per period is generated helps to keep

the frequency and the amplitude information separated even when time-binning is

applied. In this case the spike number in a time bin encodes signal frequency, and

the gain of the channel during this time bin encodes signal amplitude.

3.2.4 Dataset Preparation

Speech samples were taken from the TIMIT dataset (Garofolo et al., 1992) and noise

samples from both, MS-SNSD (Reddy et al., 2019) and MUSAN (Snyder et al., 2015)

datasets. Two hours of speech samples were taken from the TIMIT dataset (one hour

from the training set, one hour from the test set) and two hours of noise samples

consisting of environmental sounds and music were randomly selected from the

MS-SNSD and MUSAN datasets. The noise dataset was randomly spilt into equal

training and test sets, such that each audio file was included completely to either

train or test set. Each audio file was normalised individually, so that the root mean

square (RMS) amplitude of a signal at the input of the DASLP chip would be equal

to the defined amplitude. The audio samples were played to the cochlea through

a computer sound card. The schematic diagram for the input signal conditioning

circuit is given in the Appendix A.2.1. The training set was recorded with amplitudes

[5, 10, 15, 50, 80] mV. Ten different amplitudes – [2, 2.5, 5, 7, 10, 15, 20, 30, 50, 80] mV

32 automatic gain control with spiking cochlea

were used for the test set recordings. The maximal gain setting available to AGC

(32.5 dB) was used for the non-AGC recordings, so that there were a few spikes

even at the smallest signal amplitude. At this gain level the input attenuation is set

to −6 dB (Table 3.1), that reduces actual signal amplitude at the input of the PGA

by factor of 2.

3.3 event-driven agc algorithm and hardware imple-

mentation

3.3.1 Spike-driven Local AGC Algorithm

The local AGC algorithm presented in this work is intended to maintain an average

event rate of each channel within a certain range. The averaging time interval τch is

defined individually for each channel based on its best characteristic frequency Fch.

We use N periods of Fch for computing a running estimate of the event rate rch of the

channel, thus τch is computed as follows: τch = N/Fch. Since the DASLP channels

are spaced approximately exponentially within the range of 8 Hz to 20 kHz, we use

Eq. 3.1 to compute the channel characteristic frequency Fch, and hence τch (Eq. 3.2

and red curve in Fig. 3.7).

Fch = 8 · scaling_ f actor(63−ch) (Hz) (3.1)

τch = N/(8 · scaling_ f actor(63−ch)) (s) (3.2)

The scaling_ f actor is computed by substituting F0 = 20000 Hz and ch = 0 into

equation 3.1, scaling_ f actor ≈ 1.13224.

Channel: Fch

63: 8 Hz

ch: Fch

N = 4

τch = N/Fch

t

1: 17.7 kHz

0: 20 kHz

τch = N/(8·1.1322463-ch)

― ON-Spikes

― Threshold-checking Events

Figure 3.7: Spike rate averaging time intervals for different channels.

3.3 event-driven agc algorithm and hardware implementation 33

At the end of the averaging time interval (denoted by blue arrows in Fig. 3.7)

the measured average event rate is compared to two programmable thresholds: the

lower threshold Tl and the upper threshold Tu. These thresholds are the same for

all the channels. When the measured average spike rate does not fall into the range

defined by these thresholds, the AGC controller changes the channel gain to the

next possible value in the direction opposite to the exceeded threshold and starts

measuring the spike rate again. For example, in Fig. 3.7 the gain of the channel ch

was increased because there were no spikes in the previous averaging time interval

τch. In order to simplify implementation of the proposed algorithm on an FPGA, we

use spike counts scch over N periods of Fch instead of computing an average spike

rate per Fch period (rch) over N periods. We also specify the thresholds Tl and Tu as

a number of spikes within the averaging time interval τch.

In this work we use N = 8, the lower threshold Tl = 1 and the upper one Th = 16,

defining the acceptable range of spike rates as 0.125 − 2 spikes per Fch period on

average.

The described algorithm is shown in a more formal form in Alg. 1. The AGC

block diagram is shown in Fig. 3.9.

Algorithm 1: AGC control loop for one channel "Ch"

1 while True do

2 while Time counter[Ch] < Averaging T[Ch] do

3 if New event() and (Event address == Ch) then

4 Event count[Ch] ++
5 end

6 Every 100µs Time counter[Ch] ++

7 end

8 if (Event count[Ch] ≥ Upper threshold) and (Gain index[Ch] > 0) then

9 Gain index[Ch]−−
10 end

11 if (Event count[Ch] < Lower threshold) and (Gain index[Ch] < 11) then

12 Gain index[Ch] ++
13 end

14 Current gain[Ch] = Gain lookup table[Gain index[Ch]]
15 Time counter[Ch] = 0
16 Event count[Ch] = 0

17 end

The spike rate averaging time window τch also defines the AGC attack ta and

release tr time for the channel. These time periods are defined as a time needed

for the output signal to reach 90% of the change towards a new steady-state value

after a step increase or decrease of the input signal amplitude, as shown in Fig. 3.8.

With the proposed algorithm the Attack and Release times depend on the channel

frequency and on the input signal amplitude change.

In the DASLP cochlea design each event carries information about channel

number (6 bit) and polarity of the event (1 bit), which shows whether the event was

generated at the rising or falling slope of a signal (Fig. 3.6). The threshold for event

34 automatic gain control with spiking cochlea

generation is the same for all the channels, so the frequency components of the

same amplitude would generate the same number of spikes per period at different

channels. However, when local AGC is used, each channel can have different gain

at different moments. The current gain value can be used for estimation of the

amplitude of a frequency component corresponding to a channel in the input signal

at the moment when the spike is generated at the channel. So, we embed the current

gain setting for the channel that generated an event into this event. Since we have

12 gain settings, 4 bit are required to carry this information. Thus, each event carries

4 bit more information when the local AGC is enabled. The bit-structure of the

DASLP event is given in the Appendix A.2 Fig. A.10.

Threshold

8

7

6

5

4

3

2

1

0

Input signal

Output signal

Gain

t

Attack Release

A
m

p
l,

 m
V

;
G

ai
n

,
d

B

90%

Attack time Release time

90%

Figure 3.8: Definition of AGC Attack and Release time.

According to the given definition and assuming maximal gain change from

32.5 dB to 0 dB, the 90% of the amplitude change is reached between gain values

15 dB and 12.5 dB (Table 3.1), which results in 7 gain change steps for the attack

time: ta = 7 · τch. The maximal release time achieved in the case of gain changing

from 0 dB to 32.5 dB and equal to tr = 11 · τch, because about 25% of the total

amplitude change happens at the last step (from 30 dB to 32.5 dB).

3.3.2 FPGA AGC Implementation

Our FPGA implementation of the described AGC algorithm is completely counting

based and it uses integer arithmetic only, so it does not require any multipliers,

dividers or any other DSP resources of the FPGA (Table 3.2).
There are four memory registers associated with each AGC channel:

• 12-bit register for storing the length of the averaging window for a channel in

0.1 ms steps;

• 12-bit register for a counter which represents the time that passed from the

beginning of the current averaging window in 0.1 ms steps;

• 6-bit event counter;

• 4-bit current gain index for a channel.

3.3 event-driven agc algorithm and hardware implementation 35

ATT PGA

3 bit 3 bit

6 bit

FPGA

Cochlea Channel

ON-Spike

Counter

Upper Threshold

Lower Threshold

Gain Lookup Table

<

≥

Current Channel Gain Index

-3 dB +3 dB

Channel Time-bin Counter

ClearCompare

AGC Channel

Gain Update Queue

Chip Channel

Config FSM

A
E

R
 F

S
M

Channel Gain Channel Address

Other AGC Channels

4 bit

Channel Address6 bit

● ● ●

● ● ●

AER

Arbiter

● ● ●

Gain Config AER Bus

DASLP Chip

Event
Address

Gain

Event
Address

nReq

2 CLK
Delay

Figure 3.9: Block diagram for FPGA implementation of AGC algorithm.

In addition to these registers two memory bits per channel are used:

• Channel Enable bit – enables the AGC operation at the channel;

• Averaging Window End bit – indicates that the averaging time passed and

the channel event count has to be compared with the thresholds.

Thus, 36 bits of memory are used for one AGC channel. There is also a lookup

table that translates 4-bit channel gain index into 6-bit gain setting bit pattern

specified in Table 3.1. It is shared between all the channels.

By setting the time window counter resolution to 0.1 ms and using 12-bit registers,

the length of the averaging time window can be selected in a range from 0.1 ms

to 409.5 ms in steps of 0.1 ms. The length of the time window is programmed

separately for each channel from jAER software. The 6-bit event counter saturates

at the value 63, however it does not overflow – when it reaches its maximal value,

it stops counting and keeps this value until the end of the channel averaging

time window. At the end of this window, the event counter is compared to two

36 automatic gain control with spiking cochlea

thresholds. If the spike count is less than the lower threshold, the "gain increase"

event is generated, and if the spike count is greater or equal to the upper threshold,

the "gain decrease" event is generated. See Appendix A.2 Fig. A.11 for the gain

update event bit-structure.

When either of the gain update events is generated, it is injected into the AER

output FIFO immediately, however updating the gain settings of a channel in the

DASLP cochlea chip takes 0.5 ms, and several gain update requests can occur at the

same time or during the time when the system is updating the configuration of the

current channel. This would lead to missing of the gain updates for some channels.

In order to avoid this problem we had to implement a queue for the gain update

requests. The queue is implemented as a 128 × 12-bit FIFO, where 6 bits represent

the channel address and the other 6 bits represent the bit pattern for the new gain

setting. The FPGA resources occupied by the 64-channel AGC controller are shown

in Table 3.2.

LUT4 LUTRAM FF BRAM (18Kb) DSP

Available 66528 6804 49896 240 128

Used 5007 48 3217 1 0

Percentage 7.5% 0.7% 6.4% 0.4% 0%

Table 3.2: Resource utilization of AGC control logic on FPGA LATTICE LFE3-70EA.

3.4 results

This section presents experimental measurements of the cochlea responses in

the presence and absence of the proposed local automatic gain control (AGC)

mechanism. We first show in Sec. 3.4.1 the dependence of the filter channel output

amplitude over a range of input frequencies and how this frequency response varies

a range of input amplitudes. The effect of AGC on the steady-state spike responses

are then presented in Sec. 3.4.2.

3.4.1 Dependence of Analog Filter Output on Input Amplitude

A big reason why AGC is needed for the DASLP spiking cochlea is that first, the

chip analog core power supply is just 0.5 V, therefore the analog signal voltage

at any part of the circuit can never exceed this value. Second, to ensure that the

transistors circuits operate in the region needed to implement the intended filter

transfer function (Yang, Chien, et al., 2016), there is a constraint on the amount of

amplitude change (≈ 10 mV) of the input arriving at any filter, that is, in the case

of a sine wave input, the Root Mean Square (RMS) value should be approximately

smaller than 2.5 mV. Note that the filter circuits have differential inputs and outputs.

The output amplitude of the analog filters should be high enough to produce

spikes at the spike generating circuit, therefore if the input amplitude is too low,

the output amplitude might not be high enough to generate output events from the

channel even though the frequency of the input is within the passband of the filter.

3.4 results 37

AGC is then useful to amplify the input amplitude to a range so that events will be

generated. In contrast if the input amplitude is too large, the transistor circuits no

longer implement the filter transfer function, therefore AGC is useful in bringing

down the input amplitudes to the proper range.

In order to estimate the input amplitude range of the filters for linear operation

in the DASLP filter bank we measured the frequency response of several channels

at different gain settings and input amplitudes. The signals of different frequencies

were played from a PC to the DASLP cochlea through a sound card. The output

of the sound card was calibrated such that the frequency response was flat at the

input of the DASLP chip, as shown in Appendix A.2.2.

We sampled the input signal to the DASLP chip and the output signal of six

bandpass filters (channels 48, 42, 36, 30, 23, 13) with two differential onboard ADCs

described in the Section 3.2.1 at 44.1 kHz sampling rate. We used a set of 100

exponentially scaled frequencies for measuring the frequency response of each

channel. The frequency ranges are given in Table 3.3.

Ch # Fch, Hz Fm, Hz Freq sweep, Hz

13 3980 4550 400 − 8000

23 1150 1500 200 − 4000

30 482 640 100 − 2000

36 229 290 40 − 1000

42 109 133 40 − 1000

48 52 58 40 − 1000

Table 3.3: Parameters of the channels used for frequency response measurement. Fch — de-
signed channel frequency, Fm — measured peak frequency, Freq sweep — range
of exponentially spaced frequencies used for frequency response measurements.

The frequency response is computed as a ratio of the output and the input RMS

amplitudes. However, direct measurement of the output signal amplitude is not

possible at low amplitudes due to high noise level at high PGA gain and high Q

value (see Fig. 18 in Yang, Chien, et al., 2016). The noise RMS amplitude at the

highest PGA gain setting (38.5 dB) and Q ≈ 4 is around 4.5 mV which is on par

with the signal level at low amplitudes. In order to account for the noise in the

measured output signal, we measured the noise level of each channel at each gain

setting and subtracted the corresponding value from the measured signal RMS

amplitude using the following equation:

Ana =

√︂

A2
out − N(g)2 (3.3)

Where Aout is the measured RMS amplitude of the signal at the output of the

filter, N(g) is the measured noise level for the gain setting g, and Ana is the signal

amplitude adjusted for noise. An example of the noise recording for different gain

settings with computed RMS amplitudes of the noise is given in Fig. 3.10.

Thus, the gain of a channel is computed as follows:

G = 20 ∗ lg(Ana/Ain) (3.4)

38 automatic gain control with spiking cochlea

Where Ain is the RMS amplitude of the signal at the input of the DASLP chip.

Figure 3.10: Noise samples recorded at the output of the channel 30 at different PGA gains
(green). The blue line shows the RMS amplitude of the noise computed in
0.2 s bins. The average RMS amplitudes of the noise for each gain value are
0.4, 0.48, 0.52, 0.58, 1.04, 1.37, 1.98 and 4.42 mV, correspondingly.

The designed frequencies of the selected channels defined by Eq. 3.1 in Section 3.3

are 52, 109, 229, 482, 1150 and 3980 Hz correspondingly. However, the peaks of the

frequency responses measured at low amplitudes are shifted towards higher fre-

quencies as shown in Fig. 3.11. The measured values of the characteristic frequencies

are 58, 133, 290, 640, 1500 and 4550 Hz, correspondingly (Table 3.3).

The frequency responses for six channels are plotted in Fig. 3.11. The curves are

obtained for five different RMS amplitudes of 1, 3.5, 7, 10 and 14.2 mV. The transfer

functions from all six channels obtained with the lowest input amplitudes of 1 and

3.5 mV overlap significantly and has the highest measured gain at 32.5 dB and

above. The curves also show that because of transistor mismatch, the peak gains

for different channels vary between 32.5 dB and 38.5 dB. For input amplitudes

higher than approximately 7 mV RMS, the shape of the filter function changes

because the transistor circuits no longer implement the intended linear filter transfer

function. We see that the peak of the transfer function and the Q value decreases

for increasing amplitudes at every channel.

Fig. 3.12 shows the filter output of channel 23 as a function of frequency for

different input amplitudes. The gain setting of the filter is set at 32.5 dB. The

measurements show that an output amplitude of 23 mV and above is needed for

spikes to be produced. The output amplitude has to exceed 23 mV for spikes to be

generated at the channel. But as the input amplitude increases, spikes are generated

even at frequencies that are far away from the best center frequency because the

transfer function becomes non-linear when the input amplitude increases past 5 mV.

Fig. 3.13 shows the measurements again from channel 23 but at a lower gain

setting (around 9 dB). The curves at this lower gain setting for the same range of

input amplitudes show the transfer function stays linear for input amplitudes up to

20mV. As the input amplitude increases, the peak of the frequency response curves

3.4 results 39

start shifting towards lower frequencies indicating that the transistor circuits are

no longer linear. When the output signal approaches 300 mV (Fig. 3.13, blue plot

with square marks), the frequency peak is shifted by ∼ 25%. The bottom plot of

the accompanying gain values versus frequency shows a similar trend of the best

frequency moving towards the left as the input amplitude increases. It also shows

that the peak gain only changes by 1 dB across all input amplitudes.

Fig. 3.14 shows an example of the analog output of a channel when the circuit is

no longer linear. The output becomes a distorted form of the input sine wave. The

corresponding ON and OFF spikes are shown in the bottom-most curve.

Fig. 3.15 shows the non-idealities in the measured output amplitudes at a dif-

ferent channel (channel 30). We can see that for the range of presented inputs, the

corresponding output amplitudes again start saturating reaching a limit of 300 mV.

The equivalent gain curves are shown in Fig. 3.16. The measured gain curves in

Fig. 3.17 show that they can be maintained over a larger range of input amplitudes

when AGC is enabled.

40 100 200 400 1000 2000 4000 8000

Input Frequency, Hz

15

20

25

30

35

40

M
e
a
s
u
re

d
 g

a
in

,
d
B

Input Amplitude

 mV, rms

 1

 3.5

 7

 10

14.2

Figure 3.11: Frequency response of channels 48, 42, 36, 30, 23 and 13 (58, 133, 290, 640, 1500
and 4550 Hz, correspondingly) at different input amplitudes. ATT = −6 dB,
PGA gain is set to 38.5 dB. Total gain is 32.5 dB. Actual gain measurements
for small signal amplitudes show that the total gain varies from 32.5 dB at the
channel 13 to 38.5 dB at the channel 36 because of mismatch.

40 automatic gain control with spiking cochlea

200 400 1000 2000 4000

Input Frequency, Hz

 4

 10

 23

100

400

F
ilt

e
r

O
u

tp
u

t,
 m

V
 r

m
s

 22 dB

 linear

response

 range

 spike

threshold

Input Amplitude

 mV rms

 70

14.2

 7

 5

 3.5

 1.4

 0.7

 0.5

0.35

Figure 3.12: Amplitude frequency response of channel 23 at different input amplitudes for
total gain setting of 32.5 dB. Larger filled dots indicate points where spikes
were obtained.

3.4 results 41

Figure 3.13: Output amplitude and gain versus frequency measured at channel 23. The
different curves correspond to measurements for different input amplitudes
(mV), Q = 4. Gain setting = 9 dB.

42 automatic gain control with spiking cochlea

0 2 4 6 8 10 12 14 16
-50

0

50

m
V

Input signal

0 2 4 6 8 10 12 14 16
-500

0

500

m
V

Filter Out @ Channel 36

0 2 4 6 8 10 12 14 16

Time, ms

0

50

C
h
a
n
n
e
l

Channel 36 Events

Figure 3.14: Measured outputs of channel 48 spike response. Input RMS amplitude is 35
mV (50 mV p-p). Output amplitude is 430 mV p-p. Bottom most trace shows
the ON spikes (green) and OFF spikes (red) generated from the channel.

50 100 200 500 1000 2000 5000 8000

Input Frequency, Hz

 1

 2

 5

 10

 20

 50

100

200

500

 1V

 2V

 5V

O
u

tp
u

t
A

m
p

lit
u

d
e

,
m

V

 1

3.5

 7

 10

 35

 50

 70

Figure 3.15: Amplitude frequency response of channel 30 at different input RMS ampli-
tudes (see legend) with maximal gain setting (−6 dB ATT + 38.5 dB PGA =
32.5 dB total gain).

50 100 200 500 1000 2000 5000 8000

Input Frequency, Hz

-30

-20

-10

0

10

20

30

40

M
e

a
s
u

re
d

 g
a

in
,

d
B

 1

3.5

 7

 10

 35

 50

 70

Figure 3.16: Gain frequency response of channel 30 for different input RMS amplitudes.
Units in mV.

3.4 results 43

50 100 200 500 1000 2000 5000 8000

Input Frequency, Hz

-30

-20

-10

0

10

20

30

40

M
e

a
s
u

re
d

 g
a

in
,

d
B

0.7

 1

 2

3.5

 5

 7

 10

 20

 35

 50

 70

Figure 3.17: Gain frequency response of channel 30 when AGC is enabled. Curves corre-
spond to different input RMS amplitudes. Unit in mV.

44 automatic gain control with spiking cochlea

3.4.2 AGC Steady-state Spike Response Measurements

To demonstrate the change in the spike rates from the local AGC in response to

an input signal amplitude change, the input signal and the analog output of the

bandpass filter of one channel (#30, 642 Hz) is plotted in Fig. 3.23 (top) along with

the channel spike response to this signal (bottom). The gain change events (red

dots) shown in the lower plot of the figure indicate gain setting changes when the

spike count in the time window has exceeded one of the thresholds. The ordinate

of the dot shows a new gain value for the selected channel. When the channel gain

has its extreme values (0 or 32.5 dB) it does not change further in the corresponding

direction, thus one can see two gain change events at the same gain level in the

beginning of the plot. The blue dots indicate the cochlea ON-spikes at the selected

channel, their ordinate represents the current gain of the channel at the time when

the event was generated.

The plot shows that at the beginning, the channel produces no spikes because

there is no input signal, therefore the gain stays at the highest setting. When the

speech sample starts, the output amplitude is initially high because of the high

gain. Over a period of about 150 ms the gain value decreases in steps until the

spike count (yellow bars in Fig. 3.23) drops below two spikes per period. The spike

count represents the average number of the cochlea spikes per period of the channel

characteristic frequency within the averaging window. The width of the bars is

proportional to the length of the averaging time window. The gain setting stays

constant at 3 dB during the period of 0.2 − 0.5 s, when the spike rate fits within the

desirable range, and then gradually increases close to the maximal value during

the period of 0.56 − 0.68 s, when no spikes are produced at the channel 30.

Figure 3.18: Frequency-normalized spike rate of channel 30 ON-spikes for three cases:
without AGC, raw spike rate with AGC, and gain-adjusted spike rate with
AGC. The inset in the left top corner shows a zoom in of the same data for the
input range 0 − 10 mV.

3.4 results 45

Figure 3.18 shows the spike rate of a channel over a range of input amplitudes

from 0 mV to 100 mV when the AGC mode is enabled or disabled. A sine wave (F

= 500 Hz) with increasing amplitude was applied to the input. When the cochlea

operates in the non-AGC mode (red trace), the spike rate first increases with the

input amplitude, but then it quickly saturates when the filter goes out of small

signal operation. So, it is not possible to reconstruct the amplitude of the input

signal based on the spikes from one channel. When the AGC is enabled (blue trace),

the spike rate stays approximately constant over 40 dB range of input amplitude

(1 mV to 100 mV). However, there is an additional information transmitted with

the event — the current gain, Gch, of a channel. We can use this information to

estimate an amplitude of the input signal more accurately. Higher the channel gain

Gch, lower the input signal amplitude Ain needed to produce the same spike rate

rch at the channel, so in order to estimate input amplitude we need to divide the

spike rate by the gain of the channel (defined in terms of the output and input

amplitudes ratio).

Âin ∝ rch/10Gch/20 = rch · 10−Gch/20 (3.5)

where Âin is the estimated input amplitude and Gch is the gain of the channel

measured in dB.

For the non-AGC plot in Fig. 3.18 the channel gain is set to the maximal value

available to AGC Gmax = 32.5 dB, so in order to compare AGC and non-AGC cases

we use a coefficient 10Gmax/20 to equate the estimated spike rate for non-AGC and

AGC cases at small input amplitudes, when the AGC also uses the highest gain:

rga = 10Gmax/20 · rch · 10−Gch/20 = rch · 10(32.5−Gch)/20 (3.6)

The results show that the gain-adjusted spike rate rga (green trace) is linearly

proportional to the input amplitude in a wide range (40 dB) of input amplitudes.

The spiky glitches in the response are due to transient processes during switching

between some of the gain settings.

46 automatic gain control with spiking cochlea

3.4.3 Spike Frequency Responses for non-AGC and AGC Cases

In this section we study a possibility of single frequency detection based on channel

spike rate for non-AGC and AGC cases. It is clear from the description of the Send-

on-Delta sampling in Section 3.2.3 (Fig. 3.6) that the spike rate of a channel does

not represent the frequency of the input signal directly. Instead, it is proportional

to both, frequency and amplitude of the signal. Such an entanglement of frequency

and amplitude makes it difficult to use simple features, such as time-binned spike

counts of interspike intervals distribution, for training classifiers or other models

to be invariant to voice pitch or amplitude. We test a hypothesis that using local

AGC may help to disentangle these parameters – if we continuously tune the gain

of each channel such that only one spike per period is generated on average by the

channel, then the spike rate would represent the signal frequency and the gain of

the channel would be inversely proportional to the signal amplitude.

We played a set of 22 single tone sine waves with frequencies ranging from 40 Hz

to 8 kHz spaced approximately exponentially (40, 50, 70, 100, 150, 200, 300, 400,

500, 600, 800, 1000, 1200, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000 Hz)

at 6 amplitudes from 2 mV to 70 mV and recorded spike responses for every 3rd

channel starting from channel 0 for a total of 19 channels.

Each frequency was recorded for 9 sec. The mean and Standard Deviation (STD)

of the instantaneous firing rate (IFR) for each channel were computed over this

period. The IFR based on ON-spikes and its STD computed from the raw spikes

in the non-AGC case are displayed in Fig. 3.19. The mean spike rate correspond

to the mean of the IFRs. The six subplots correspond to the six input amplitude

levels. Each subplot has 19 response curves for the 19 channels. The frequencies

played are depicted as thin black horizontal lines, the instantaneous firing rates

are shown with color lines and the color represents the frequency that was played.

The shadowed regions are the standard deviations of the IFR. The IFRs of the raw

spikes are higher than the input frequencies because multiple spikes are produced

per cycle.

In order to estimate the input signal frequency by measuring interspike intervals

we implemented a spike filtering method, which leaves only the first spike of the

ON spike train and discards all subsequent ON spikes at the channel until the first

OFF spike is received. After such a filtering, only first ON spikes corresponding to

the signal rising slope of each period remain, leaving just one spike per input signal

period, and hence, making possible estimation of the signal frequency by averaging

IFRs of the filtered spike train. We see in Fig. 3.20 that the IFR now corresponds

to the played input frequencies (all color lines are aligned with the corresponding

black lines).

The plots show that as the input amplitude increases, more channels respond

even if the frequency is not within the passband of the channels. For a channel that

responds to a selected frequency at the lowest amplitude, the spiking rate of this

channel to the same frequency increases as expected.

When AGC is enabled, the IFR responses as computed from the raw spikes for

the 6 amplitudes are shown in the individual subplots of Fig. 3.21. The four high

frequency channels (0, 3, 6, 9) were excluded from the AGC algorithm because

the averaging windows for computing spike rates for these channels are too small

3.4 results 47

(see 3.2 in Section 3.3.1. This would lead to a large number of gain updates, which

take 0.5 ms each, slowing down AGC response at all other channels.

The outcome of the AGC is that the maximum mean spike rate stays approx-

imately below 80 kHz across the input amplitudes from 10 to 70 mV. There is a

higher variance in the computed mean spike rates because when the AGC enabled

because of instability in the AGC loop. The spike rates do not remain constant even

for a single frequency steady-state condition.

The corresponding IFR values computed from the filtered spikes are similar to

that obtained in the non-AGC condition that shown in Fig. 3.20, as seen in Fig. 3.22,

that is, the IFR corresponds to the played input frequencies. Additionally, when

comparing the resulting transfer functions with those of the non-AGC condition

(Fig. 3.20), we see that the number of channels that respond to a particular frequency

has decreased especially for the higher input amplitudes.

48 automatic gain control with spiking cochlea

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z
Input amplitude: 2 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 5 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 10 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 20 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 50 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 70 mV

Figure 3.19: Spike frequency response obtained from the raw ON spikes in the non-AGC
case. Gain setting = 32.5 dB. The mean spike rate is computed as a mean
of inverse of interspike intervals. Each color line shows responses of all the
channels to a single input frequency. The matching between the colors and the
frequencies is the same for Figures 3.19 – 3.22. It can be inferred from Fig. 3.20

where the color lines are lined up with the thin black lines, which show all
played frequencies. Shadowed regions represent the standard deviation (STD)
of the spike rates. The plots show that even at the smallest input amplitude
the spike rate does not represent the frequency played to the cochlea.

3.4 results 49

0 10 20 30 40 50

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 2 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

Input amplitude: 5 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 10 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

Input amplitude: 20 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 50 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k

8k

Input amplitude: 70 mV

Figure 3.20: Spike frequency response obtained from filtered ON spikes in the non-AGC
case. Gain setting = 32.5 dB. Filtering is done by keeping only the 1st spike
in a series of ON spikes and discarding all subsequent ON spikes until at
least one OFF spike is encountered. The resulting ON spike series is used for
computing mean spike rate and its standard deviation (shown with shadowed
regions). The plots show that after described filtering mean spike rate can be
used for estimation of the frequency of a signal, however, at high amplitudes
high frequency channels respond inadequately to low frequency signals (see
left bottom corners of 50 and 70 mV plots.) This may be caused by the fact
that the filters start to oscillate at their characteristic frequencies in a presence
of a high amplitude out-of-band signal. These oscillations are suppressed to
some extent by the AGC, as shown in Fig. 3.22.

50 automatic gain control with spiking cochlea

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z
Input amplitude: 2 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 5 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 10 mV

0 10 20 30 40 50

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 20 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k
8k

40k
80k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 50 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k
8k

40k
80k

Input amplitude: 70 mV

Figure 3.21: Spike frequency response obtained from raw ON spikes with AGC. These
plots are analogous to the plots in Fig. 3.19, but the local AGC is enabled. The
high frequency channels up to channel #13 are not measured because the gain
update frequency for these channels would be too high. The measured mean
spike rate is lower than in the non-AGC case, however the STD is higher as
displayed by the shaded regions. This is due to the fact that AGC can switch
the gain of the channel because of the noise at the channel output, even when
the input signal is stationary. The plots show that the frequency estimation
based on the spike rate averaging is still infeasible.

3.4 results 51

0 10 20 30 40 50

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z
Input amplitude: 2 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

Input amplitude: 5 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 10 mV

0 10 20 30 40 50

40

100

400

1k

4k

8k

Input amplitude: 20 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k

8k

M
e
a
n
 S

p
ik

e
 R

a
te

,
H

z

Input amplitude: 50 mV

0 10 20 30 40 50

Channel #

40

100

400

1k

4k

8k

Input amplitude: 70 mV

Figure 3.22: Spike frequency response obtained from filtered ON spikes in the AGC case.
These plots are analogous to the plots in Fig. 3.20 and the filtering is done
the same way. The plots show that AGC helps to suppress the oscillation at
the high frequency channels in response to high-amplitude low frequencies,
mentioned at the Fig. 3.20 caption, however, there is an increased variance of
the response at the low-frequency channels to a high-frequency signal, which
is indicated by the increased shadowed region at the diagonal, compared to
Fig. 3.20. This is due to the fact that spike rate is normalized not by actual
signal frequency, but by the characteristic frequency of the channel, so, when
even a low-amplitude high-frequency signal shows up at the low-frequency
channel, the spike rate easily exceeds the threshold, and the channel gain
is decreased to the level when the signal completely disappears. Then the
AGC has to increase the gain again, and the process repeats, causing gain
oscillations and increasing the variance of the spike rate.

52 automatic gain control with spiking cochlea

3.4.4 AGC Transient Measurements to Speech

To demonstrate the change in the spike rates from the local AGC in response

to dynamically changing input signal amplitudes for natural sounds like speech,

we plotted the input signal and the analog output of the bandpass filter of one

channel (#30, 642 Hz) in Fig. 3.23 (top) in response to a speech sample. The speech

spectrogram and the gain-corrected cochleagram for 36 out of the 64 channels are

plotted in the middle section. The channel spike count response and the gain change

events in response to this signal are plotted in the bottom section of Fig. 3.23. The

gain change events (red dots) indicate gain setting changes when the spike count

in the time window has exceeded one of the 2 thresholds. The ordinate of the dot

shows a new gain value for the selected channel. When the channel gain reaches

the extreme values (0 or 32.5 dB), it no longer changes, thus one can see two gain

change events at the same gain level at the beginning of the plot. The blue dots

indicate the cochlea ON-spikes at the selected channel, their ordinate represents the

current gain of the channel at the time when the event was generated.

This plot shows that at the beginning, the channel produces no spikes because

there is no input signal, therefore the gain stays at the highest setting. When the

speech sample starts, the output amplitude is initially high because of the high

gain. Over a period of about 150 ms, the gain value decreases in steps until the

spike count (yellow bars in Fig. 3.23) drops below two spikes per period. The

spike count represents the number of cochlea spikes per period of channel #30’s

characteristic frequency averaged over a window of 16.6 ms. The width of the bars

is equal to the length of the averaging time window. The gain setting stays constant

at 3 dB during the period of 0.2− 0.5 s, when the spike rate fits within the desirable

range, and then gradually increases close to the maximal value during the period

of 0.56 − 0.68 s, when no spikes are produced at this channel.

The spike responses of 8 other channels for the same speech sample are plotted

in Fig. 3.24. The fitted characteristic frequency for each channel is given next to each

plot. The fitting of the characteristic frequencies is described in Appendix A.2.7.

The top plot shows the input speech sample. The next plot shows the spectrogram

for 36 frequency bands. Channel #46 does not have any gain change events because

the amplitude of the signal at this frequency is low. The gain settings of the

next 2 channels decrease but do not reach the minimum value of 0 dB. The gain

setting for channel #24 decreases all the way to 0 dB as expected because of the

higher signal amplitude at this frequency. The gain setting increases again around

0.3 s corresponding to the decrease in the signal power at this frequency in the

spectrogram. The remaining channels see a similar trend in the decrease of the

gain setting at the beginning but they do not reach the minimum value because

of the reduced signal power at their frequencies. These channels respond faster to

the onsets and offsets of the speech sample because of the smaller averaging time

window.

These measurements show that this event-based AGC algorithm helps to keep

the input amplitude within the linear operating range of the amplifier.

3.4 results 53

Spectrogram, 36 Frequencies

-1500

-1000

-500

0

500

A
m

p
lit

u
d
e
,
m

V

Input Signal

Ch 30 non-AGC Output

Ch 30 AGC Output

Gain-scaled Cochleagram, 36 Channels

13 (4583)

20 (2073)

30 (642)

40 (172)

48 (60)

C
h
#
 (

F
re

q
u
e
n
c
y
,
H

z
)

-30
-20

-10

 -6

 -3

 0

d
B

AGC Gain and Spike Response

13 (4583)

20 (2073)

30 (642)

40 (172)

48 (60)

C
h
#
 (

F
re

q
u
e
n
c
y
,
H

z
)

0

20

40

60

80

S
p
ik

e
 C

o
u
n
t
/
P

e
ri
o
d

0

10

20

30

S
p
ik

e
 C

o
u
n
t
/
P

e
ri
o
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time, s

0

10

20

30

C
h
 #

3
0
 (

6
4
2
 H

z
)

G
a
in

,
d
B

Cochlea Event Gain

Gain Change Event

Actual Spike Rate

Effective Spike Rate

Figure 3.23: AGC response of channel #30 (642 Hz) to the speech sample "Power out" (male
voice) from the TIMIT dataset. Top: Waveform envelope for input signal (blue)
and channel output for non-AGC (red) and AGC (yellow) cases. The curves
are plotted at an offset for visibility. Middle: Spectrogram for 36 frequency
bands and gain-scaled cochleagram for 36 cochlea channels with the same
best frequencies. Cochlea spike counts are scaled according to the current
channel gain within each time bin. Bottom: AGC gain change events and spike
responses. Red dots indicate the new gain value after the gain setting was
updated. Blue dots represent ON-spikes, their y-axis value reflects the gain of
the channel when the spike was generated. The yellow bars show an average
number of spikes for one period of the channel’s characteristic frequency. The
width of the yellow bars is equal to the averaging window length. The thin
red line shows the spike rate that would be needed in the non-AGC case to
represent the channel’s output signal at the maximal gain, assuming no signal
clipping.

54 automatic gain control with spiking cochlea

-100

0

100

In

p
u
t
s
ig

n
a
l,
 m

V

#13 (4583)

#20 (2073)

#30 (642)

#40 (172)

#48 (60)
-20

-10

 -6

 -3

 0

d
B

0

10

20

30

0

10

20

30

#
4
6
 (

8
0
)

Cochlea Event Gain

Gain Change Event

Spike Count / Period

0

10

20

30

0

10

20

30

#
3
9
 (

1
9
5
)

0

10

20

30

0

10

20

30

#
3
4
 (

3
8
0
)

0

10

20

30

0

10

20

30

#
2
4
 (

1
3
2
0
)

0

10

20

30

S
p
ik

e
 C

o
u
n
t
/
P

e
ri
o
d

0

10

20

30

C
h
#
 (

F
re

q
u
e
n
c
y
,
H

z
)

G
a
in

,
d
B

#
2
0
 (

2
0
7
5
)

0

10

20

30

0

10

20

30

#
1
9
 (

2
3
2
0
)

0

10

20

30

0

10

20

30

#
1
6
 (

3
2
6
0
)

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time, s

0

10

20

30

#
1
5
 (

3
6
5
5
)

Figure 3.24: Gain change events and spike responses of 8 channels in response to the
speech sample in Fig. 3.23. The same notation is used in this figure. The top
plot shows the input speech sample. The next plot shows the spectrogram
for 36 frequency bands. The gain for each channel changes in a different way
following the signal amplitude at the corresponding frequency. The higher
frequency channels (#15 − 20) respond faster to the onsets and offsets in the
speech because of their shorter averaging window. The spike rates for all
channels remain low.

3.4 results 55

3.4.5 Input Features and Classifier

We evaluate the features generated from the spike activity of the silicon cochlea

output in a classification task of detecting speech versus noise. Different spike

features have been been proposed for driving the subsequent classifiers. These

features include constant time spike count, interspike interval histograms and

constant count features (Anumula, Neil, Delbruck, et al., 2018; Li, Delbrück, et al.,

2012).

In this work, we use inter-spike interval histogram and spike count features

similar to the features described in Li, Delbrück, et al., 2012. The features consist

of the 80-bin histogram of inter-spike intervals, event counts of 36 channels, and

36 values representing the average gain of each channel, all computed within a

400 ms frame without overlap. Inter-spike intervals for all channels are computed

separately and then combined into one histogram. Inter-spike intervals that are

greater than 150 ms are excluded before the histogram is computed. For the "non-

AGC" case, the 36 values representing the average gain of each channel are set to a

constant value. The resulting 152-dimensional feature vectors are then used to train

a binary Logistic Regression (LR) classifier.

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at 5 mV

 AGC

no AGC

Figure 3.25: Speech vs noise accuracy of a classifier trained on recordings at 5 mV input
and tested at other amplitudes.

3.4.6 Voice Activity Detection Classification Task

We compare the accuracy results for the LR classifiers trained on the spike responses

of the cochlea operated in either the AGC or the non-AGC mode. Figures 3.25 to 3.29

show the speech versus noise accuracy of the classifiers trained on the features

acquired at five different input amplitudes: [5, 10, 15, 50, 80] mV respectively. The

plots show that if the test data is acquired at the same signal amplitude as the train

56 automatic gain control with spiking cochlea

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at 10 mV

 AGC

no AGC

Figure 3.26: Speech vs Noise accuracy of a classifier trained on recordings at 10 mV input
and tested at other amplitudes.

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at 15 mV

 AGC

no AGC

Figure 3.27: Speech vs Noise accuracy of a classifier trained on recordings at 15 mV input
and tested at other amplitudes.

data, then the test accuracy is about the same for the AGC and the non-AGC cases.

However, when the test data is acquired at higher or lower amplitude, the accuracy

drop of the classifier for the non-AGC case is much higher than for the AGC case.

The only exception is observed at Fig. 3.25, where the 5 mV classifier accuracy for

the AGC case is lower than non-AGC accuracy, this can be caused by the transient

processes when the AGC switches between some attenuation levels, as described in

Sec. 3.2.2. The classifier trained for the AGC case achieves higher accuracy than one

3.4 results 57

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at 50 mV

 AGC

no AGC

Figure 3.28: Speech vs Noise accuracy of a classifier trained on recordings at 50 mV input
and tested at other amplitudes.

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at 80 mV

 AGC

no AGC

Figure 3.29: Speech vs Noise accuracy of a classifier trained on recordings at 80 mV input
and tested at other amplitudes.

trained for the non-AGC case, when tested over all input amplitudes. A summary

of the average accuracy improvement of the models trained at different input

amplitudes and tested over the full range of amplitudes is shown in Fig. 3.31. The

results show that running the cochlea in the AGC mode improves the accuracy

of the classifier by about 10% when the test and train amplitudes differ by just

3 dB, and the accuracy improvement grows further up to 40% when the difference

between train and test signal amplitudes increases.

58 automatic gain control with spiking cochlea

 2 2.5 5 7 10 15 20 30 50 80

Test amplitude, mV

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
,

%

Trained at All mV

 AGC

no AGC

Figure 3.30: Speech vs Noise accuracy of a classifier trained on recordings at all amplitudes
and tested at each amplitude separately.

3 9 15 21 27 33

Train/test amplitude ratio, |dB|

0

10

20

30

40

50

60

A
G

C
 V

S
 n

o
n

-A
G

C
 i
m

p
ro

v
e

m
e

n
t,

 %

Figure 3.31: Average accuracy improvement of speech/noise classifiers trained at different
input amplitudes for the AGC vs non-AGC case, when tested over a wide
range of input amplitudes.

3.5 discussion

The event-driven AGC algorithm described in this chapter can help to reduce

the event rate of a spiking cochlea by 4x over a wide range of input amplitudes

and ensures that the transistor circuits still function as the small-signal bandpass

filter function. It also therefore preserves more information which we demon-

strated through a classification task of speech versus noise. The results show that

a trained classifier shows higher accuracy performance on spike inputs from an

AGC-controlled spiking cochlea when tested over a wide range of input amplitudes.

We presume that AGC can help to preserve a shape of inter-spike intervals distribu-

3.5 discussion 59

tion of a channel in the presence of an interfering signal at the adjacent frequency

bands. Initial studies on this topic were carried out and the results are described in

Sec. A.2.8 of the Appendix. The preliminary study of how the shape of instanta-

neous frequencies histogram at one channel (channel 30, 480 Hz, 5 mV) changes

in the presence of a 1 kHz interfering frequency at two signal-to-interference (SIR)

levels: 0 and −6 dB is described in (Kiselev and Liu, 2021).

The benefits of using spike features from the AGC-controlled spiking cochlea can

be further demonstrated on a simple speech recognition task like the continuous

digit recognition system reported in (Gao, Braun, et al., 2019). In this system, the

spike count features are used as input to a delta Recurrent Neural Network on

during training. The RNN was implemented on an FPGA system therefore it will

be easy to include the gain information provided by the gain control mechanism

into the features using the same FPGA (Gao, Braun, et al., 2019; Gao, Rios-Navarro,

et al., 2020). The AGC digital circuits as implemented on the FPGA here can be

added to an ASIC chip targeted at audio edge applications, e.g, the Voice Active

Detection chip that combines a spiking cochlea filter bank together with a multi-

layer perceptron (Yang, Yeh, et al., 2019). It can be adapted for other spiking audio

front ends that generate spikes for a SNN hardware platform, e.g (Kiselev, Neil, et

al., 2016a; Tsai et al., 2016).

3.5.1 Improvements of Local AGC Mechanism

With the current mechanism, it is not possible to use it with high-frequency channels

because the gain update rate of these channels would be higher than is possible

with the current DASLP design. This can be mitigated by increasing the averaging

window length, but that would lead to increased attack and release times at low

frequency channels. One possibility is to try using measured interspike intervals in

the future.

We considered a possibility of using estimated signal frequencies for defining the

averaging windows for the channels, instead of using the fixed length windows

computed from the channel characteristic frequencies. However, each cochlea chan-

nel responds to a wide range of frequencies, especially when input signal amplitude

is high (see Sections 3.4.2, 3.4.3) and measuring of actual signal frequency at a

channel is complicated even in case of a single frequency signal. Even though it is

possible to measure the signal frequency by filtering spikes as described in Sec. 3.4.3,

it would give a subtle advantage for the AGC algorithm. For the low frequency

channels it would be possible to decrease the attack and release times, when a high

frequency interfering signal is present. However, using actual measured frequencies

does not eliminate the need for using time window counters for each channel,

because we have to stop the spike rate averaging at some point, when there are no

spikes at all at the channel. For the high frequency channels these averaging time

limits are much shorter than a potential interfering frequency period, so measuring

that period would be useless for the high frequency channels.

Other future studies can be carried out to determine how an increased spike-

rate averaging window and hence, increased attack and release times, affect the

AGC performance. Increasing the time averaging window would help to improve

60 automatic gain control with spiking cochlea

the AGC loop stability but increased attack and release times may deteriorate the

advantage given by AGC. The attack time can be reduced by continuous comparison

of the channel spike counts with the upper threshold and early interruption of the

averaging when the threshold is exceeded. However this approach requires more

FPGA resources and complicates routing. The proposed method renders the attack

and release times to be close to each other. If a longer release time is required this

can be accomplished by adding a low-threshold-breakout counter to each channel.

That would increase the release time by the factor specified in the counter.

Another possibility for improving AGC stability might be adjusting the upper

threshold for the spike rate, or making the threshold individual for each channel. It

can be even varying in time, e.g. decreasing the threshold in an absence of signal

would lead to a faster AGC response to the signal onset, and increasing the upper

threshold in a presence of the signal would eliminate unnecessary gain changes

during abrupt but short surges of the signal amplitude.

It is possible to implement the proposed AGC mechanism using two analog LIF

neurons — one for the upper threshold, the other for lower one. Computation of the

average spike rate over a time window can be represented by a membrane potential

of the LIF neuron with an excitatory synapse. When the membrane potential reaches

the upper threshold, the neuron elicits a spike, which indicates that the channel gain

has to be decreased. For the lower threshold a neuron with intrinsic spiking activity

and inhibitory synapse is needed. When this neuron receives enough spikes from

the channel output neuron, its intrinsic spiking activity is suppressed, however,

when it does not receive any spikes within a defined time period, it starts spiking,

indicating that the gain has to be increased. The time constants of these neurons

should be selected based on the channel characteristic frequency.

4 M U LT I - M I C R O P H O N E P L AT F O R M F O R

A D - H O C N E T W O R K

This chapter describes a distributed WASN platform called WHISPER that is ca-

pable of synchronous multichannel audio sampling at different spatial locations

with a sampling clock phase difference less than 200 ns and a jitter below 9 ns rms.

The platform comprises up to four data acquisition modules with onboard com-

puting capabilities, that can form an ad-hoc Wi-Fi network allowing an additional

processing module such as a laptop or a smartphone to be connected if needed.

Each acquisition module holds four digital Inter-IC Sound (I2S) microphones with

a total of 16 microphones for the entire system. Wireless synchronization of the

sampling clock on each platform is implemented using a separate wireless module

operating in the 902 − 928 MHz ISM band. Usage of this system is demonstrated in

a real-time application involving spatial sound filtering through a beamforming

algorithm.

A large part of this chapter comes from a paper titled “WHISPER: Wirelessly

synchronized distributed audio sensor platform” presented at IEEE SenseApp

2017 (Kiselev, Ceolini, et al., 2017a) and a co-authored paper titled “Evaluating

multi-channel multi-device speech separation algorithms in the wild: a hardware-

software solution” which is published in the IEEE Transactions on Audio, Speech,

and Language Processing journal (Ceolini, Kiselev, et al., 2020). The author has only

used the text related to the work contributed by the author in the papers.

4.1 background

The multi-channel acoustic sensor platform WHISPER was developed within a

multi-partner European project called "Cognitive Control of a Hearing Aid" or

COCOHA (www.cocoha.org). This project aims to help the hearing impaired in

difficult auditory scenes by using attentional cues extracted from EEG signals to

steer attended auditory sources by applying signal processing methods that are

based on microphone arrays. Besides using the microphones on the hearing aid

of a listener, an ad-hoc multi-microphone array is used for general acoustic scene

analysis as presented in Fig. 4.1.

At the start of project, there were not known ad-hoc multi-microphone arrays that

allow microphones to be placed randomly around a space. In many cases, the micro-

phones were placed in a fixed geometrical setting so that beamforming algorithms

can be applied easily because the geometry is known. The WHISPER multi-channel

platform assumes no geometrical constraints between the microphones, and that

sampled microphone signals from one module (WHISPER-M4) can be transmitted

wirelessly to a central processing unit or to each other. The platform development is

targeted at real-time low-latency spatial filtering with the aim for the use to speech

enhancement and to supplement hearing aid devices.

61

62 multi-microphone platform for ad-hoc network

WiFi ad-hoc

network

Processing

Unit

WHISPER-M4 WHISPER-M4

WHISPER-M4

Synchronisation

master-clock

generator

Hearing aid

WHISPER-M4

Speaker 1

Listener

Speaker 2

Noise sources

Figure 4.1: WHISPER platform usage scenario

4.1.1 Challenges of Platform Development

We made an early decision to design a platform that is composed of four spatially

separated modules which are placed within a 3 × 3 m2 space in a room, and the

modules would be connected through a wireless network. This design imposes the

following challenges involving sampling clock synchronization, synchronization of

packets received wirelessly from different modules, and wireless communication

latency.

Sampling clock synchronization across modules is an issue when processing audio

streams from nodes with different oscillators, because the time alignment between

the streams is unknown and even drifts with time. Synchronous microphone

sampling on different modules is important for algorithms such as blind source

separation (BSS), where previous work showed significant drops in performance

with non-synchronized microphones (Lienhart et al., 2003). Synchronization is also

crucial for source localization and segregation based on sensor array geometry.

The work in (Girod et al., 2006) reported a solution for time synchronization of

10 µs precision across multiple nodes, but the platform does not provide sampling

clock synchronization. The work in (Schörkhuber et al., 2014) uses a wireless

sampling clock synchronization method based on a sub-GHz ISM transmitter and a

subsequent Frequency Locked Loop (FLL) similar to the approach proposed in this

work, however their method provides only 20 µs precision in the sampling phase

synchronization. The prototype of a commercial acoustic sensor system announced

in (3D Audiosense 2014) is claimed to have a sampling clock synchronization across

the nodes, but without specifying any numbers. Another commercial product

(Lockit 2019) uses a proprietary network technology — ACN, developed by Ambient

4.1 background 63

Recording GmbH, and provides phase synchronization accuracy of 8 µs. Also, both

mentioned commercial solutions do not specify the latency of audio acquisition.

Due to the low-latency requirements of the intended platform, we cannot apply

the blind synchronization technique proposed in (Miyabe et al., 2015). It is also

impossible to use either Network Time Protocol (NTP) or Global Positioning System

(GPS) signals for the sampling clock synchronization because NTP does not provide

sufficient accuracy and GPS is not available inside buildings (Sazonov et al., 2010).

Latency of wireless transmission is also a critical factor. Ideally, transmitted

signals should arrive no later than propagated acoustic signals to avoid a time

difference between the transmitted sound and the direct sound. This is important

for people who have mild hearing loss at lower frequencies and use non-occluding

hearing aids (Winkler et al., 2016). If the transmitted signal arrives with a delay,

acoustically transmitted noise cannot be perfectly cancelled. Constraints of wireless

technology make this ideal of faster-than-sound transmission difficult to achieve,

and therefore one may need to settle for the lesser goal of minimizing the perceptual

mismatch between acoustic and visual cues. The estimation of a Point of Subjective

Simultaneity (PSS) and a just noticeable difference (JND) for audiovisual stimuli

varies in a wide range across different studies and types of stimuli. The JND ranges

from 20 ms in (Hirsh et al., 1961) up to around 100 ms in more recent studies

(Ipser et al., 2017; Kawase et al., 2016; Van Wassenhove et al., 2007; Vroomen et

al., 2010). Overall, results suggest that JND time for auditory stimuli delays is

higher for audiovisual stimuli of higher complexity, such as lip movements, words

and phrases, compared to flashes and beeps. So, in this work we are targeting

20 − 100 ms latency range for the whole data acquisition and processing pipeline.

While developing the WHISPER platform we investigated possible solutions for

three following challenges:

• Synchronization of sampling clock frequency and phase across different

modules of the platform. Our solution is presented in Section 4.3, in particular,

the final solution is described in subsection 4.3.3.

• Synchronization of wirelessly transmitted data packets at the processing

module. We investigated the use of Wi-Fi for wireless transmission of data

between modules. Because of its asynchronous transmission manner and

unpredictable data delivery latency, a packet level synchronization solution is

needed. We handle this problem by broadcasting the "Start of Acquisition"

signal to all the modules via the synchronization signal generator as described

in Sections 4.3.2-4.3.2.3.

• Minimization of transmission latency of audio data packets between the

modules of the platform. Measurements of the transmission latency using

Wi-Fi (presented in Section 4.2.4) show that another solution for wireless

data transmission is needed. The possible solution is discussed at the end of

Section 4.2.4.

64 multi-microphone platform for ad-hoc network

4.2 whisper platform

The WHISPER platform consists of up to four identical WHISPER-M4 modules

and a synchronization signal transmitter. Each of the WHISPER-M4 modules can

accommodate up to 4 digital microphones. All the modules perform synchronous

sampling of the audio signal and transmit the data streams wirelessly to a processing

device.

The distinct features of the WHISPER platform are: (i) its wireless modular

design; (ii) synchronous sampling of multiple spatially distributed microphones;

(iii) local processing capabilities (FPGA+software); (iv) potentially low latency

of data transmission; (v) relatively low power consumption; and (vi) extension

possibilities.

4.2.1 WHISPER Hardware

Two versions of the WHISPER-M4 modules are developed and used within this

work. The prototype version of the WHISPER hardware is built solely out of COTS

components, although, with little soldering required (see Appendix A.3 Fig. A.23).

It supports 12-bit SPI microphones PMODMIC31 from Digilent and sampling

frequencies 8 and 16 kHz. The final version supports 24-bit I2S microphones from

InvenSense2,3, which are not available in the Peripheral Module (PMOD) format,

so, a custom Printed Circuit Board (PCB) for holding the microphones is developed.

The final version can also support the old SPI microphones if needed. Both versions

were used for experiments described it the Section 4.4. First we describe the final

version of the hardware and later in Section 4.2.2 we specify in which aspects the

prototype version is different.

A block diagram of the WHISPER-M4 module is depicted in Fig. 4.3 with a

picture shown in Fig. 4.2.

The two basic building blocks are a CPU-based computing unit, the Raspberry Pi

3 Model B+4, and an FPGA board, namely the LOGI-PI-25 board from ValentF(x).

The most recent version of the Raspberry Pi (Raspberry Pi 4 Model B) can be

used as a drop-in replacement if more compute power is needed. The Raspberry

Pi was chosen because of the existence of LOGI-PI-2, an FPGA board which has

been developed specifically for interfacing to the Raspberry Pi. Both computing

platforms are necessary, because they provide a different and complementary set of

interfaces.

The FPGA is used to implement the synchronization algorithm and to extend

Input-Output (IO) capabilities of the Raspberry Pi board. It allows synchronous

sampling of an array of digital microphones, as well as other sensors with different

interfaces, e.g. accelerometers (Zohourian et al., 2016). The FPGA can also be used

to do some signal pre-processing, such as digital filtering, downsampling, digital

1 https://reference.digilentinc.com/_media/reference/pmod/pmodmic3/pmodmic3_rm.pdf

2 https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf

3 https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf

4 https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus

5 http://valentfx.com/logi-pi

https://reference.digilentinc.com/_media/reference/pmod/pmodmic3/pmodmic3_rm.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus
http://valentfx.com/logi-pi

4.2 whisper platform 65

Figure 4.2: WHISPER-M4 module for COCOHA system with attached custom digital I2S
microphones powered from a USB powerbank.

AGC, and data manipulation, such as compression, scrambling and error-correction

codes.

The Raspberry Pi runs an Operating System (OS) and offers a way of embedding

into the platform floating point computations, which would be harder to implement

on the FPGA. It also provides a set of network interfaces including Wi-Fi, Bluetooth

and Ethernet.

The remaining hardware components are custom-made digital microphones and

the Radio Frequency (RF) module. The digital microphones are based on 24-bit

MEMS microphone from InvenSense — ICS-434326 (Fig. 4.4d), but only 16 bits

[19:4] are used in this work. The microphone ICS-434347 is also supported. Both mi-

crophone models have high SNR of 65 dBA and sensitivity −26 dBFS. The custom

microphone schematic is given in Appendix A.3 Fig.A.22). Custom-made PMOD-

to-RJ45 adapter (Fig. 4.4c) allows to connect the microphones to the WHISPER-M4

module with standard Ethernet cables. The RF module is the MRF89XAM9A8

transceiver from Microchip Technology Inc. used for implementation of the syn-

chronization algorithm which is described in Section 4.3.

To implement wireless synchronization of data sampling across different mod-

ules of the platform, as described in challenge 1) in Section 4.1.1, we use the

MRF89XAM9A transceiver module operating in ISM 902 − 928 MHz frequency

band and providing up to 200 kbit/s data rate utilizing frequency-shift keying (FSK)

6 https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf

7 https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf

8 https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

66 multi-microphone platform for ad-hoc network

D
ig

it
a

l
I2

S
 M

ic
s

FPGA Board

LOGI-PI-2

I2S Raspberry Pi 3B+

Wi-Fi

4x core

CPU
Wishbone

Dual

FIFO

4 Mic Data

Clock/Sync

RF Sync

MRF89XAM9A

I2S

I2S

I2S

M
u

lt
ip

le
xe

r

S
P

I

Ethernet

Reference
clock

recovery

Clock

Data

Figure 4.3: Block diagram of the WHISPER-M4 module.

modulation. The schematic of the module is given in Appendix A, Fig. A.24. This

module, when operated as a transmitter, can transmit a continuous stream of data

via 2-wire interface consisting of DCLK (clock) and DATA signals. When operated

as a receiver, it allows access to the clock recovered from the transmitted data. This

recovered clock plays a crucial role in our synchronization algorithm. Most of the

other data communication modules only provide packetized data therefore precise

timing information is impossible to recover. Although the MRF89XA chip used in

the transceiver has both DATA and DCLK signals necessary for the continuous data

transmission mode, the MRF89XAM9A module does not provide a dedicated pad

for accessing the DATA signal, however this signal is routed to the R2 resistor, so it

can be accessed by soldering a wire to the resistor pad as shown in Appendix A.3

Fig. A.23.

The synchronization algorithm implemented using this transceiver is described

in Section 4.3. The transceiver can also be used for unidirectional low-bandwidth

data broadcasting from the synchronization master to all other modules.

There are three options for wireless connectivity: 2.4/5 GHz Wi-Fi (IEEE 802.11n/ac),

Bluetooth 4.2/BLE and Ultra-Wideband (UWB) 3.5− 6.5 GHz transceiver DWM10009

(IEEE 802.15.4). Wi-Fi and Bluetooth are implemented using Cypress CYW43455

chip integrated in the Raspberry Pi 3 model B+. DWM1000 (shown in Appendix A.3

Fig. A.26) is an external module from DecaWave connected to FPGA via Serial

Peripheral Interface (SPI) bus. It provides the data transmission rate up to 6.8

Mbit/s, which is enough to collect the data from 16 16-bit microphones sampled at

24 kHz. Although we investigated a possibility of using the DWM1000 module for

9 https://www.decawave.com/sites/default/files/resources/dwm1000-datasheet-v1.3.pdf

https://www.decawave.com/sites/default/files/resources/dwm1000-datasheet-v1.3.pdf

4.2 whisper platform 67

(a) (b) (c) (d)

Figure 4.4: Peripheral parts of the WHISPER module: a) Synchronizer module; b)
PMODMIC3 SPI microphone; c) custom PMOD to RJ45 adapter; d) custom I2S
microphone.

low-latency data transmission, it was not incorporated into the final version of the

hardware, because the COCOHA project was ended.

4.2.2 WHISPER Prototype Hardware

Using the COTS components for building a prototype of the WHISPER platform

allowed rapid prototyping of algorithms without need for development of any

custom hardware. The prototype is based on the earlier version of Raspberry Pi —

Raspberry Pi 3 Model B10, which has only single-band (2.4 GHz, IEEE 802.11b/g/n)

Wi-Fi chip — Broadcom BCM43438. We used PMODMIC3 digital microphones

(Fig. 4.4b) from Digilent, which hold analog MEMS microphones (Knowles Acous-

tics SPA2410LR5H-B) and 12-bit ADC from Texas Instruments11. The microphones

have SNR = 63 dB and sensitivity −38 dB @ 94 dB Sound Pressure Level (SPL).

4.2.3 FPGA Logic and Software

The FPGA is connected to the Raspberry Pi via a high-speed SPI bus. At software

level, the Wishbone interface is used, which is based on the standard Wishbone

libraries provided with the LOGI-PI-2 board. The maximal required data throughput

of this interface for four microphones sampled at 48 kHz and 16 bit resolution is

3.072 Mbit/s. In order to minimize the communication overhead and to achieve

such a data rate, we implemented a dual First In, First Out (FIFO) buffer in the

FPGA and used the burst mode of the Wishbone interface (see Appendix A.3

Fig. A.19 for the address space). Using the burst mode helps to avoid sending an

address every time we need to read a data word, but introduces some latency due

to the time needed for filling the buffer.

10 https://www.raspberrypi.org/products/raspberry-pi-3-model-b

11 https://www.ti.com/lit/ds/symlink/adcs7476.pdf

https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://www.ti.com/lit/ds/symlink/adcs7476.pdf

68 multi-microphone platform for ad-hoc network

Since we target low-latency applications, we have to use rather small data buffers

to minimize the latency of the data acquisition. However, it is difficult to achieve

hard real-time requirements for data readout with a small buffer size even in a

Linux-based OS. In order to reduce the latency introduced by the OS task scheduler

we used a boot option "isolcpus = 3" which excludes the CPU core #3 from the set of

cores available to the scheduler. Then we set the task that communicates to hardware

specifically to the core #3 with a command "taskset -c 3 ./hardware_task". We found

that we need at least 8 ms to reliably read the data from a program running in user-

mode on an isolated CPU core. The buffer size for four microphones in this case

equals to 0.008 · 4 · Fs 16-bit words, where Fs is sampling frequency. We round this

value to the next bigger power of 2, so we use 256-word FIFO for 8 kHz sampling

rate and 1024-word FIFO for 24 kHz.

The FPGA has two such FIFO buffers. While the FPGA is reading out the data

samples from the four microphones and storing them into one buffer, the other

buffer is available for reading out from the CPU side. If the CPU has not managed

to finish reading out the data within the specified time window, the whole next

data packet is dropped to ensure data consistency and prevent overwriting of a

partially read buffer with new data. We use polling of the status flag “Empty” in the

Wishbone address space (Appendix A.3 Fig. A.19, last row) to determine whether a

new data portion is available. Once the Empty flag is cleared, the CPU can issue a

burst read of the whole buffer via the Wishbone interface.

The Status Register bits [15 : 4] represent 12-bit packet counter, and bits [3 : 0]

are the [Empty & Stop & Stalled & Overflow] flags. When the Overflow flag is

set, it means that one or more packets were dropped after the current packet. The

exact number of the dropped packets can be calculated by comparison of the packet

counters of the current and the following packets (see Sec. 4.3.2.3).

4.2.4 Communication and Network

We investigated two ways of connecting the WHISPER–M4 modules as part of a

wireless network using: 1) the 2.4 GHz Wi-Fi (IEEE 802.11n) standard in ad-hoc

mode or 2) the DWM1000 transceiver with TDM media access. We excluded the

investigation of Bluetooth even though it was available on the Raspberry Pi. In

both cases, there are two topologies for the data transmission graph depending

on the algorithm used for data processing — a star topology for the centralized

algorithm and a full mesh for the distributed processing. When using Wi-Fi, the

data transmission graph topology is defined by software.

Although Wi-Fi 802.11n has a high data throughput, the latency of the data

transmission is unpredictable and varies a lot with the network load. Specifically,

an environment with a lot of access points using the same frequency bands would

cause a lot of conflicts thus increasing transmission delays. For real-time audio

processing applications, the whole data processing pipeline latency should not

exceed 20 to 50 ms (Keetels et al., 2012), therefore the data transmission latency

should be in the range of 10 to 20 ms.

We measured latencies of wireless data transmission over Wi-Fi in realistic

scenario with required data rates and packet sizes (Fig. 4.5) using a star topology

4.2 whisper platform 69

Figure 4.5: Measurement of Wi-Fi data transmission latency when four modules are trans-
mitting simultaneously. The latencies are measured for the data rate needed for
four 8 kHz microphones (left) and four 24 kHz microphones (right)

where data are sent from four WHISPER-M4 modules to a PC using User Datagram

Protocol (UDP) protocol. We found that in most of the cases the latencies are

unacceptably high, reaching hundreds of milliseconds in some cases. We presume

that this happens because of data collisions since all boards may transmit data at

the same time. This problem cannot be solved reliably by using 2.4 GHz Wi-Fi to

our knowledge. Even though the Wi-Fi data transmission order can be controlled

using custom firmware, there are always many other Wi-Fi enabled devices around

that operate independently and would interfere in busy environments.

To meet the low-latency requirement, we added the DWM1000 wireless transceiver

from DecaWave (IEEE 802.15.4 compliant). This transceiver provides direct con-

trol over transmission time allowing implementation of time-division multiplex-

ing (TDM) media access therefore addressing challenges 2) and 3) in Section II.

Since WHISPER-M4 modules are synchronized with sub-microsecond precision,

we can implement a “circular” data transmission scheme, where each module has

its dedicated time slot for data transmission and all other modules can receive data

during this time. This scheme naturally implements the full mesh topology and is

ideal for distributed data processing, although centralized processing also can be

implemented. In the latter case, one additional WHISPER-M4 module with wired

Ethernet connection to the processing unit is required to enable receiving data from

four acquisition modules.

The data transmission latency measurements for the DWM1000 module are

shown in Table 4.1. When all four WHISPER-M4 modules are used, these latency

numbers increase by a factor of 4, but even in this case, these numbers are compa-

rable with the acquisition time for this amount of data. Even though we evaluated

the data transmission with the DWM1000 module, the results presented in the

remainder of the paper are obtained by using Wi-Fi 802.11n.

70 multi-microphone platform for ad-hoc network

Table 4.1: Measurements for DWM1000 latency

Packet size (bytes) Packet length (µs) Latency (µs) Overhead (%)

128 150.5 318 113

256 301 542 80

512 602 828 37.5

1021 1201 1438 19.7

4.3 platform synchronization

4.3.1 Background of Synchronization Algorithms

The challenge to putting a WASN in operation in real-time so that Multi-channel

Audio Source Separation (MASS) algorithms can be deployed is not trivial.

Real-time online synchronization of the clocks on the local modules especially for

ad-hoc arrays in unconstrained spaces, is still an active topic of investigation. A short

review of various synchronization methods is given in (Schmalenstroeer et al., 2015).

Highly reliable synchronization solutions that operate across modules in an uncon-

strained physical space have been proposed in (Afifi et al., 2018; Schmalenstroeer et

al., 2015) but many of these algorithms rely on offline estimations.

Many reported methods use a 2-way message passing algorithm that is needed

because they estimate the propagation delays between modules in the network

in order to synchronize the clocks. Our synchronization algorithm uses only uni-

directional message passing where the reference clock signal is generated by a

master clock generator. This clock signal is broadcast wirelessly to all the data

acquisition modules. The receiving modules adjust the frequency and the phase of

their sampling clock to match the received reference clock. In our target scenario

of a medium-sized room (5 − 10 m on a side), we assume that the modules will

be placed within an area of 3 m × 3 m, thus the difference in the radio wave

propagation delay is only about 10 ns which is negligible compared to the audio

sampling clock period of ≈ 40 µs (24 kHz).

4.3.2 Synchronization Algorithm of the WHISPER Prototype Hardware

In order to sample audio signals at different spatial locations we need to have a

sampling clock signal with the same frequency and phase at these locations. Since

we are targeting a wireless handheld spatially distributed application scenario,

we cannot provide the sampling clock from one generator to all data acquisition

modules over a wire. In order to accomplish the sampling clock synchronization

across the spatially distributed acquisition modules we use a separate global clock

generator, which transmits the DCLK clock signal to all the acquisition modules

wirelessly (Fig. 4.6). This approach, however, requires precise clock recovery at the

receiving sites.

4.3 platform synchronization 71

200 kHz

125 Hz

Transmitter

Receiver 1
200 kHz

125 Hz

Receiver 2
200 kHz

125 Hz

DCLK

DATA

DCLK

DATA

DCLK

DATA

FPGA

FPGA

FPGA

24 kHz

24 kHz

Packet
Timestamp

Packet
Timestamp

Reference
Clock

Sync Packet

Sampling
Clock

Recovered
Reference Clock

Reference Clock Transmitter

Reference Clock Receivers

DCLK and DATA signals are aligned

across different acquisition modules

Sync

Sync

Sync Packet

Header Stuffing

And hence, the sampling

clocks are also aligned

Figure 4.6: Wireless synchronization principle.

4.3.2.1 Sampling Clock Synchronization

The synchronization algorithm is based on a Phase-locked Loop (PLL) idea. The

wireless transceiver MRF89XAM9A transmits the clock (DCLK) and DATA signals

to all modules of the WHISPER platform (Fig. 4.6). The clock signal recovered

from the data stream by the receiver is used to generate the sampling frequency.

The data signal carries information for the packet-level synchronization. Since the

transceiver supports a fixed number of data rates, it cannot transmit a clock signal

of an arbitrary frequency. The highest possible data rate of 200 kbit/s was chosen

because it gives the minimal jitter for the clock signal — about 150 ns.

In order to facilitate the clock recovery, the data stream has to have as many

0-to-1 and 1-to-0 transitions as possible. The data are structured into packets of

1600 bits that are transmitted continuously. The packets have 13-bit header and

7-bit packet counter, the rest of the packet is filled with alternating 0s and 1s. The

packet headers in this case follow with 8 ms intervals and are used to recover from

the clock misalignment condition, when one or several clock cycles are missing due

to a noise in the radio channel.

In order to generate a phase-locked sampling frequency from the received clock

signal, a digital PLL was implemented in the FPGA. This PLL generates a 48 kHz

clock which can be divided by 2, 3 and 6 to get sampling rates of 24 kHz, 16 kHz

and 8 kHz. If the sampling rates of 44.1 kHz and 22.05 kHz are needed, another

PLL has to be used.

4.3.2.2 Start of Acquisition Synchronization

The sampling rate synchronization is not sufficient to align the received data from

two modules. Due to random power-up times, different modules can start filling

their data buffers at different times. This gives a constant shift between data samples

coming from different modules at the receiving site. To avoid this misalignment, we

72 multi-microphone platform for ad-hoc network

need to start data acquisition at all modules simultaneously. The “start of acquisition

cycle” command is sent over the data channel of the synchronizer to all modules.

When modules receive this command they reset their internal time counter, flush

buffers and start data acquisition again. Each acquisition module counts the clock

cycles coming from the synchronizer and embeds this time information into each

data packet sent to the processing module so that data from all acquisition modules

can be aligned at the receiving site.

4.3.2.3 Packet-Level Synchronization

By using the synchronization algorithm described in the previous section, the

audio can be sampled from all the microphones synchronously. But when we use a

wireless network to collect the data from different modules at the processing unit,

the data packets might arrive scrambled and some packets could be missing. To

address this problem, we developed an algorithm that merges the data coming

from the multiple modules and that can deal with packets arriving from different

modules in a scrambled order. In this algorithm, packets from all modules will be

dropped, if one of them is too slow in transmitting the data.

Every module sends a packet which contains the packet ID pid ∈ [0, 4095] and a

module ID wid ∈ [0, K − 1] where K is the number of modules. The main structure

we used to collect the data is a FIFO queue implemented with two dictionaries. We

define the dictionary D1 as having the following (key, value) pairs:

D1 : (a, pid) (4.1)

where a is the arrival counter, which is updated every time a new pid is received

regardless of its wid. We also define the dictionary D2 as having the following (key,

object) pair:

D2 : (pid, [(l0, l1, ..., lK−1), n]) (4.2)

where lk is a byte array with the microphones samples from the module with index

k, and n is the number of modules that already sent the packets with the same pid,

in other words it is the number of non-zero elements in the list (l0, l1, ..., lK−1).

This solution with two dictionaries allows us to solve both the problem of having

scrambled packets and also the problem of the rollover in the numbering of the

packets. The latter is caused by the use of 12 bits to number the packets on the

FPGA, thus inducing a rollover in the numbering after every 212 packets. The

following examples will clarify the procedure used to ensure that we can process

all the received packets correctly.

4.3.3 Synchronization for the Final Hardware

4.3.3.1 Algorithm description for v2 hardware

The outline of the reference clock recovery algorithm on the receiving module is

described next: The first step is to recover the clock from the two signals (RFclock,

RFdata) transmitted by the RF module. In order to estimate the phase and frequency

4.3 platform synchronization 73

0-12: Start of Packet Pattern 20-1599: Bit Stuffing – 01010101...010113-19: Packet #

1600 Bit Sync Packet

Alternating sequence of 0's and 1's

7-bit Packet Counter

13-bit Barker Code

Figure 4.7: The synchronization packet structure.

Received clock

Generated clock

581 638 562 581 619 600 600

600 600 600 600 600 599 600

Accumulated

Phase Error

Error Threshold

Radio noise error

Phase error

Figure 4.8: Signals from the synchronization algorithm implemented on WHISPER. The
gray vertical lines delineate the period of the reference clock. The numbers
above the waveforms depict the individual cycle lengths measured by the
number of FPGA clock cycles.

of the reference clock, the RFclock is oversampled by the 120 MHz clock on the

FPGA (Received clock in Figure 4.8). The recovered clock has the correct frequency

and phase on average but the phase jitter of this clock is too high for our needs (see

Figure 4.9 panel (a).

In an earlier version of our synchronization algorithm (Kiselev, Ceolini, et al.,

2017a), the RFclock is used to generate the audio sampling clock directly. The new

algorithm described here introduces an additional step which first generates a

new clock (Generated clock in Figure 4.8) that is phase-locked with RFclock but

has much less jitter. This clock is then used to generate the audio sampling clock.

Because of the reduced jitter, the noise in the sampled audio is decreased with

respect to (Kiselev, Ceolini, et al., 2017a).

The synchronization algorithm needs to guarantee that there is no difference in

the frequency and little phase difference between the sampling clocks on different

modules. Having only a small phase difference between sampling clocks is essential

for algorithms that exploit knowledge of the relative positions of audio sources

and microphones. These algorithms require implicit spatial location estimation

with precision in the order of one degree. In order to fulfill this requirement, we

aim to achieve with our synchronization algorithm, an inter-module clock phase

74 multi-microphone platform for ad-hoc network

synchronization precision of less than 1 µs for a sampling frequency of 24 kHz. The

synchronization algorithm addresses two problems: The first is to maintain a phase

shift of less than one sampling clock cycle between clocks on different modules.

The second is to have low clock jitter across time on each module.

To show how synchronization is achieved, we first define ri and gi to be the

absolute times of the rising edges of the received and generated clocks respectively

on the ith reference clock cycle (see Figure 4.8 for an example) and further assume

that the frequency difference of these clocks is small.

By applying a quadratic loss function to the phase error of the generated clock

on the ith clock cycle, i.e, Ei = (ri − gi)
2, the accumulated phase error over the most

recent N clock cycles is described by

Li =
N−1

∑
j=0

Ei−j =
N−1

∑
j=0

(ri−j − gi−j)
2. (4.3)

We then estimate the phase shift, ϵ, needed for the generated clock so that the

accumulated phase error L is minimized:

Li(ϵ) =
N−1

∑
j=0

(ri−j − (gi−j + ϵ))2 (4.4)

ϵ̂i = argmin
ϵ
(Li(ϵ)) (4.5)

A simple derivation shows that

ϵ̂i =
N−1

∑
j=0

(ri−j − gi−j)/N (4.6)

This phase shift is simply a moving average of the phase difference between

received and generated clocks, which corresponds to a Finite Impulse Response

(FIR) filter with the memory length N. In order to reduce the memory usage of the

filter on an FPGA, we used an Infinite Impulse Response (IIR) filter that has similar

characteristics but requires just one register. Simulations show that qualitatively

there is no difference in the synchronization outcome. Thus, instead of computing

moving average, we compute an exponential moving average of the phase difference

over time:

ϵĩ = (ri − gi)k1 + ϵi−1(1 − k1) (4.7)

where k1 is the integration constant chosen to match a decay time equal to N clock

cycles. In our experiments, k1 = 1/N = 1/2048.

If this estimated phase shift ϵ̃ exceeds a half of the FPGA clock cycle, we make a

phase correction of the generated clock by one FPGA clock cycle. The correction

is done by either decreasing or increasing the length of the next generated clock

4.3 platform synchronization 75

cycle according to the sign of ϵ̃i at the time, therefore the next rising edge of the

generated clock is:

gi+1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

gi + r̃i + 1, ϵ̃i > 1/2

gi + r̃i − 1, ϵ̃i < −1/2

gi + r̃i, otherwise

(4.8)

where r̃i is a running estimate of the received clock period computed as an expo-

nential moving average r̃i = (ri − ri−1)k2 + r̃i−1(1 − k2) is an exponential moving

average of the received clock period. After the correction is done, the estimation of

ϵ starts anew. We set k2 = 1/65536, that corresponds to a 0.33 s averaging window.

The window determines the time taken to track the frequency drift of the RFclock.

This synchronization process is shown in Figure 4.8. The phase error between the

received master clock and the generated clock is accumulated over time. When the

accumulated phase error exceeds the threshold, one period of the generated clock

is corrected.

The described method provides the sampling clock frequency and phase syn-

chronization. In addition, the absolute time counters at the modules also need

to be synchronized in order to properly align in time the data collected at dif-

ferent modules. For this purpose, the data stream (RFdata) transmitted from the

synchronization master is used. The data is transmitted with the bitrate of the

reference clock, i.e. 200 kHz. The continuous data stream is logically divided into

1600-bit packets. Each packet has a header and a data payload. The header consists

of a 13-bit pattern known as a Barker code of length of 13, followed by a 7-bit

timestamp (Fig. 4.7). Because of its low-autocorrelation property, the Barker code is

used to detect the start of the packet reliably even in poor radio conditions. Each

slave module keeps track of the absolute time by counting received reference clock

cycles, and also by comparing its own time counter with the timestamp sent by

the synchronization master in the packet header. The data payload consists of a

sequence of alternating 1’s and 0’s. The execution of the algorithm on the platform

is described by Algorithm 2.

Algorithm 2: WHISPER synchronization algorithm

1: Synchronization master starts continuously transmitting the synchronization

data sequence

2: Slave module recovers the master reference clock from the data stream and

continuously estimates its period r̃i

3: Slave module generates its own clock gi with the period r̃i and measures its

average phase shift ϵ̃i with respect to the received reference clock ri

4: Slave module compares the average phase shift ϵ̃i with the threshold ±1/2 and

updates the length of the next generated clock cycle gi+1 according to Eq. 4.8

5: The average phase shift ϵ̃i is set to 0 and the step 2 repeats

76 multi-microphone platform for ad-hoc network

4.3.3.2 Measurements

We show measurement results from experiments that evaluated two aspects of the

synchronization algorithm. The first experiment measures the amount of synchro-

nization between the generated clock of a single module and the received master

clock. The second experiment measures the synchronization error between the

generated clocks on four different modules. The error is measured as the phase shift

between the clock of a reference module and the clocks of the other three modules.

The results from the first experiment are presented in Figure 4.9. We first show the

empirical distribution of the deviation of the received clock period length from the

master clock period length over 30 · 106 clock cycles in subfigure (a). Measurements

are done for three conditions, namely in the absence of radio noise (clean), and in

the presence of radio noise with two SNR levels (9 dB and 6 dB). The radio noise is

generated by another RF transmitter for which we can set the transmission power

and thus we can control the SNR. From these curves, we first see that the period

deviation is quantized because the clock frequency of the RF module (6.4 MHz) is

resampled using the faster FPGA clock which runs at 120 MHz. We also see that the

means of the distributions are all around zero (µa
clean = 0.0001%, µa

9dB = 0.0002%,

µa
6dB = 0.007%), while the standard deviations increase from (σa

clean = 1.35%) in the

clean case to (σa
9dB = 1.37%) and (σa

6dB = 1.40%) in the 9 dB and 6 dB SNR cases,

respectively. The small probabilities associated with the tails of the distributions

in the RF noise cases show the effect of the noise but do not compromise the

synchronization.

Figure 4.9 (b) shows the distribution of the phase difference between the generated

clock of the slave module and its received reference clock. The shape of this

distribution is due primarily to the phase jitter of the received reference clock

because the generated clock has substantially lower phase jitter (see Figure 4.11).

Similarly to panel (a), the means of the distributions in panel (b) are around 0

(µb
clean = 0.058%, µb

9dB = 0.057%, µb
6dB = 0.070%), and the standard deviations of

the probability distributions increase from (σb
clean = 1.27%) for the clean case to

(σb
9dB = 2.38%) and (σb

6dB = 5.96%) for the 9 dB and 6 dB SNR cases, respectively.

The results show that, even in noisy conditions when the jitter increases, the

synchronization algorithm is successful in keeping the average phase difference

between the reference and generated clocks around zero.

From the same experiment, we measured the accumulated phase error between

the received reference clock and the generated clock at one module (Figure 4.10). We

can clearly see that in both clean (blue) and noisy condition (green for 9 dB and red

for 6 dB), this accumulated phase error saturates quickly. The accumulated phase

error curve for the clean case looks flat because the variance is significantly smaller

(σclean = 0.1%) than the variance for all the other cases (σ9dB = 2.3%, σ6dB = 4.5%,

σgauss = 8.7%). We compare these measurements with the output of a simulated

scenario where the error distribution is the same as in the noisy condition with 9 dB

SNR, i.e, a Gaussian distribution with µ = 0% and σ = 2.38%. In the simulation,

the phase errors are independently drawn in sequence. In this case (gray curve in

Figure 4.10), the accumulated phase error grows over time. This difference seen

between the curves suggests that the errors in the received clock period of the

hardware platform are not independent because probably the errors cancel out over

4.3 platform synchronization 77

0.4

0.8

Clean 9dB 6dB

−18 −12 −6 0 6 12 18
Deviation from master clock period (%)

0.000

0.004

0.008P
ro

b
ab

ili
ty

(a)

−20 −10 0 10 20
Phase dif

0.0

0.1

0.2

0.3

P
ro

b
ab

ili
ty

Clean 9dB 6dB

ference (%)

(b)

Figure 4.9: Deviation of period and phase of the received reference clock in three conditions:
clean, RF noise with 9 dB SNR and RF noise with 6 dB SNR. (a) Deviation of
the received clock period with respect to the master clock period. The y-axis
is discontinuous in order to show the extremes of the distribution. (b) Phase
difference distribution between received and generated clock signals.

time. This shows that even in noisy conditions the error does not grow indefinitely

and can be corrected appropriately.

In the second experiment, we measure the level of synchronization between the

generated clocks of four modules placed in different spatial arrangements from

recordings of 1 minute. Figure 4.11 shows the measured phase shift and jitter of

the clocks of three modules with respect to the clock of a reference module for

four different spatial arrangements. The recordings are done in two rooms. The

measured distributions in Figures 4.11 (a)-(c) come from a room with fewer RF-

reflective surfaces than the room used for the measured data shown in Figure 4.11

(d).

For all spatial arrangements that we tested, the phase shift was less than 200 ns

which is well within our specifications for precise localization and beamforming. The

corresponding jitter, as measured by the standard deviation of the phase difference

distribution, was less than 9 ns for the spatial arrangements used in Figures 4.11

(a)-(c). The increased jitter in Figure 4.11 (d) is very likely due to the increased

RF-reflective material in the second room instead of the spatial arrangement of the

modules.

The jitter value of around 9 ns (which is 0.025% of the 24 kHz sampling clock

period) is low enough to guarantee that the sampling noise introduced by the jitter

yields high SNR of the sampled signal (Higgins, 1996).

4.3.3.3 Functionality range

The results from the experiments in this section indicate that WHISPER is expected

to work with most configuration of the nodes within a space of 3 m × 3 m, and

in the presence of in-band radio noise down to a SNR of 6 dB. Below this value,

the synchronization is not expected to work well, in particular, we assessed that

78 multi-microphone platform for ad-hoc network

0 100 200 300 400 500
Master clock cycles

0

10

20

30

40

50

A
cc

um
ul

at
ed

ph
as

e
er

ro
r

(%
)

Clean 9dB 6dB Simulated

Figure 4.10: Accumulated phase error between generated clock and received clock for the
simulated case of independent phase error (gray) and measured from the
hardware platform in the cases where RF noise is absent (blue) or present with
SNR of 9 dB (green) or 6 dB (red).

synchronization fails in the presence of 3 dB radio noise. The amount of RF reflective

material such as large metal and concrete surfaces (ITU-R Recommendation, 2015)

will also affect the synchronization quality. However, a synchronization signal on

the WHISPER module indicates in a short time whether the system works in a

chosen space.

Jitter and phase shift measurements for the first version of the synchronization

algorithm are given in the Appendix A.3 Fig. A.25

4.4 beamforming experiments with whisper

4.4.1 Experiments with Prototype 1

We report results from a particular beamforming algorithm applied to recordings

acquired with WHISPER in a conference room. The recordings were collected using

two WHISPER-M4 prototype modules placed on a conference table in front of two

loudspeakers as shown in Fig. 4.12. This configuration had eight SPI microphones,

four from each module. The recordings were done over a period of 1 min with

either two male or two female speakers reading audiobooks from two different

loudspeakers. To investigate effects of different SNR, we kept the volume of one

speaker constant while we varied the volume of the second speaker. We also

investigated the effect of placing a microphone close to either the desired source or

the interfering source. We kept the SNR at 10 dB and recorded a scenario where

one of the microphones was 20 cm from the loud source and a second scenario

where the microphone was 20 cm from the soft source.

4.4 beamforming experiments with whisper 79

−200 −100 0 100 200
Phase shift (ns)

0.00

0.02

0.04

0.06

P
ro

ba
bi

lit
y

Shift (ns) Jitter (ns)
75.4 6.3
-93.1 6.2
-70.1 7.8

Node2

Node3

Node4

(a)

−200 −100 0 100 200
Phase shift (ns)

0.00

0.02

0.04

0.06

P
ro

ba
bi

lit
y

Shift (ns) Jitter (ns)
-0.9 7.2
40.0 7.4
8.9 7.1

Node2

Node3

Node4

(b)

−200 −100 0 100 200
Phase shift (ns)

0.00

0.02

0.04

0.06

P
ro

ba
bi

lit
y

Shift (ns) Jitter (ns)
36.1 7.6
33.6 8.8
3.9 8.4

Node2

Node3

Node4

(c)

−200 −100 0 100 200
Phase shift (ns)

0.00

0.02

0.04

0.06

P
ro

ba
bi

lit
y

Shift (ns) Jitter (ns)
-56.7 14.1
-147.4 11.8
-2.3 12.8

Node2

Node3

Node4

(d)

Figure 4.11: Distribution of phase differences between the clock of a reference module and
the clock of other three modules for four spatial configurations. (a) Square
arrangement with an edge length of 2.5 m. (b) Line arrangement with a spacing
of 0.8 m between modules. (c) Random arrangement where all modules are
equidistant (1 m) from the transmitter. (d) Random arrangement within a
radius of 2 m. The data for panels (a), (b) and (c) was recorded in a room
with fewer RF-reflective surfaces than the room in which the data for panel
(d) was recorded. The mean (’Shift’) and standard deviation (’Jitter’) of the
distributions are reported within the panels.

80 multi-microphone platform for ad-hoc network

�����

������

�����

	

Figure 4.12: Experimental setup for the WHISPER dataset. Approximate relative positions
of speakers and microphones are shown. Data are transmitted to the laptop
wirelessly via Wi-Fi. The *-marked mic position is used for “10 loud” and
“10 soft” experiments.

We used the Linearly Constrained Minimum Variance (LCMV) algorithm (Frost,

1972; Van Veen et al., 1997) for our experiments. It is a spatial filtering method

widely used for speech enhancement. We used this algorithm to localize the sound

sources based on data coming from the microphones.

The basic idea of LCMV is to minimize the power of the filtered signal obtained

by summing the signal from each microphone after applying meaningful delays,

with a constraint. This constraint forces the filter to output power from a specific

location and the power minimization allows one to suppress the signals coming

from undesired locations.

To estimate the constraint matrix, we recorded additionally each speaker alone

for 15 seconds. The details of the algorithm applied for this setting are described in

(Kiselev, Ceolini, et al., 2017b).

The beamforming algorithm was applied in real-time on the data recorded from

two modules when the microphone sampling frequencies were either synchronized

or not synchronized across the modules. The results were obtained using a sampling

rate of 8 kHz and 256 samples in a window.

We evaluate the performance of the LCMV beamformer using two metrics: the

Signal-to-Interference Ratio (SIR) metric which is a classical evaluation measure

for blind source separation (Vincent et al., 2006) and the Short-Time Objective

Intelligibility (STOI), a measure of speech intelligibility. The SIR value is calculated

as described in (Vincent et al., 2006) and in Eq. 4.9. For this, we need to provide both

4.4 beamforming experiments with whisper 81

Figure 4.13: STOI scores computed from synchronized and non-synchronized samples for
four different signal-to-noise ratios of the microphone placement shown in
Fig. 4.12 and by placing a microphone close to the speaker with the louder
source (“10 loud”), and then to the speaker with the softer source (“10 soft”).

the separated signals ytarget = wtarget · x and yinter f = winter f · x which are obtained

by estimating speaker dependent weights wtarget and winter f ,

SIR = 10 · log10

||y2
target||

||y2
inter f ||

(4.9)

The STOI metric evaluates the quality of a speech signal with respect to ground

truth. The score ranges from 0 to 1 where 1 corresponds to a perfect separation (or

denoising) in which the separated signal from a mixture is as intelligible as the

original signal.

Figures 4.13 and 4.14 show the beamforming quality through STOI and SIR

scores of the separated signals when using either synchronized or non-synchronized

samples of the audio mixture recorded with two WHISPER-M4 prototype modules

in a conference room.

In particular, Fig. 4.13 shows that the average STOI score for synchronized

samples is almost 20% higher than the score for non-synchronized samples. Fig. 4.14

shows that the SIR scores for non-synchronized samples are not statistically better

than the SIR obtained by selecting the microphone with the best SNR out of all

the eight microphones. Both figures show the degradation in the quality of the

separated source when the samples are not synchronized. Additionally, we can see

that having a microphone very close to either the desired source or the interfering

source is beneficial for the beamforming. In particular having a microphone very

close to the desired source, which is 10 dB softer then the interfering source increases

the STOI by 3% and the SIR by 15%.

The results presented in this section are acquired with the first prototype of the

WHISPER platform, which has 12-bit SPI microphones, 8 kHz sampling rate and

higher jitter of the sampling clock – 150 ns vs 9 ns in the final version. However,

the long-term stability of the phase synchronization is already achieved in this

82 multi-microphone platform for ad-hoc network

Figure 4.14: SIR scores computed from samples which are synchronized and non-
synchronized for four different signal-to-noise ratios, compared with SIR
obtained from the best microphone, and by placing a microphone close to the
speaker with the louder source (“10 loud”), and then to the speaker with the
softer source (“10 soft”).

prototype, making the beamforming possible. Improved jitter, sampling rate and

resolution in the final version of the platform give better overall sound quality at

the output.

4.4.2 Speech Separation Experiments with final WHISPER

The previous experiments above were conducted using the first prototype of WHIS-

PER. The final WHISPER platform was used to benchmark multi-channel speech

separation algorithms in the wild (Ceolini, Kiselev, et al., 2020). This paper which

also included the details of the multi-channel platform, describes the speech separa-

tion experiments that were carried out using this platform. The author together with

his co-author, E. Ceolini, created the experimental setup by placing four WHISPER

modules at random positions around a conference table in a normal conference

room. The synchronization and desynchronization of the modules were checked

by both before the recordings were started. The data analysis on the beamforming

experiments was carried out by the co-author. The results from one of the speech

experiments are shown in Fig. 4.15. In this experiment, a single speaker is extracted

from a mixture of speakers (considered as noise). The speech of the single speaker

is extracted for three SNR levels of [0,−5,−10] dB. From this figure, we see the

benefits of increasing microphones from the increasing measured STOI. The trend

is similar for all three SNR conditions. Beamforming with the ad-hoc arrangement

is possible because of the synchronization algorithm described in the main text of

this chapter.

4.5 discussion 83

2 4 6 8 10 12 14 16
#Channels in ad-hoc array

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ST
O

I

Input SNR (dB)

0

-5

-10

Figure 4.15: STOI of enhanced speech in a speech enhancement scenario for an increasing
number of microphones and tested across three different input SNRs of speech
in noise. Adapted from (Ceolini, Kiselev, et al., 2020).

4.5 discussion

This work describes a distributed portable multi-microphone platform with capa-

bilities for acting as nodes in a wireless acoustic sensor network. This platform

addresses three main challenges for use in a WASN. The first is the synchronization

of the sampling clocks across different modules with 200 ns precision and a clock

jitter of less than 9 ns rms. The second is the synchronization of data packets

received from multiple modules and the third is the development of a wireless

transmission system that will ensure low latency transmission between the nodes

of the platform. Our beamforming results from the microphone samples in the

WHISPER dataset demonstrate that this tight synchronization of the sampling clock

on all modules is important for obtaining the best beamforming results and that

beamforming with this platform gave SNR results that are in line with the expected

outcome of the algorithm. The platform can be miniaturized in the future to further

reduce both the latency and power consumption, and keeping only the features

that are needed for the proposed solutions in this work.

5 D I S C U S S I O N A N D C O N C L U S I O N

5.1 summary

In this thesis, we developed hardware test beds that allow us to explore event-based

sensory processing algorithms and regular sampling based algorithms in real-

world conditions. The goal of the thesis was three-fold: 1) to develop a hardware

test bed for implementing spiking networks together with spiking sensors to

study a possibility of using multiple sensors of different modalities to improve

classification performance in a real-world conditions; 2) to implement a local

automatic gain control mechanism to increase the input dynamic range of a spiking

cochlea operating in natural environments where the sound dynamic range can be

greater than 60 dB; 3) to implement a multi-microphone hardware platform that can

be used for real-time beamforming as part of a wireless acoustic sensor network.

spiking sensor fusion system In Chapter 2, we created a complete spiking

deep network accelerator (n-Minitaur) that was capable of processing spikes from a

DVS and a DAS.

The n-Minitaur system achieved real-time classification at event rates up-to

8.6 kEvents/s on the network with ∼ 700, 000 synapses. However the event rate

from the sensors in a real environment in a MNIST recognition task was 5X higher

than the network could process in a real time, so we had to implement spike

decimation by a factor of 5 for real-time processing. The network was hardly

affected even with this decimation. Our experimental results with the hardware

sensory fusion system showed that the classification accuracy of the network in a

digit recognition task increased when input events from two sensors of different

modalities were used. The system at the time (2016) showed low-latency responses

in the order of 5 ms (time between 1st input spike and 1st output spike) in a

visual classification task, which is suitable for robotic and fast vision-based control

applications.

In short, we showed a first demonstration of a real-time hardware FPGA system

that implemented an event-driven spiking network receiving input spikes from

both a Dynamic Vision Sensor and a Dynamic Audio Sensor. This demonstration

completed in 2016 was the first study to use sensor fusion from spiking audio and

video sensors to improve classification accuracy of spiking deep neural networks in

noisy conditions. The latency can be improved even further with the availability of

newer embedded platforms. Since then, there are a few more examples of systems

that combine both spiking sensor modalities, e.g. for scene stitching around an

active talker with the sensors mounted on a pan-tilt unit (Klein et al., 2015), a robot

navigation task (Chan, Jin, et al., 2012), and word recognition using a lip-reading

spike dataset (Li, Neil, et al., 2019).

85

86 discussion and conclusion

agc One observation of the experiments with n-Minitaur is that there is a wide

range of spike rates from the spiking cochlea when the sound volume changes.

With the wide range of sound amplitudes in natural environments, the network will

not perform well because of the changing spike rates. Because the local AGC model

was difficult to implement in the ASIC spiking cochleas, we developed in Chapter

3, an alternate system-level local AGC mechanism that uses the output spike rates

of individual channels. This mechanism maintains a more constant spike rate per

channel across a wide range of input amplitudes.

The algorithm as implemented on an FPGA, increases the range of acceptable

input signal amplitudes f0r the DASLP cochlea by 32 dB and allows the cochlea to

operate over an input dynamic range of 54 dB while maintaining a bounded event

rate from the individual cochlea channels. We demonstrated that the output of the

AGC-controlled cochlea led to a better accuracy in a task of speech versus noise

classification when the sound volume is different in the training and the testing

datasets.

This work is the first reported implementation of an automated local gain control

mechanism that uses the spike outputs of the frequency-specific filter channels of a

Dynamic Audio Sensor spiking cochlea.

multi-microphone distributed platform for ad-hoc network Chapter

4 presented the work carried out this thesis to develop a real-time distributed

multi-microphone hardware platform for a wireless acoustic sensor network. This

platform was developed for evaluating speech separation algorithms in the wild.

It was used within a multi-partner European project COCOHA as a platform for

general audio scene analysis to combine audio speech separation algorithms with

EEG recordings form an active listener in order to stream the attended speech in a

cocktail party scenario to a hearing impaired person.

The results showed that we could construct a portable system which can be

powered on a 5 W battery power source and has the needed logic resources to

implement the algorithm to synchronize the sampling clocks across modules and

to do some simple on-board processing. Although the prototype of the WHISPER

platform provided decent sampling frequency and phase synchronization quality

(Kiselev, Ceolini, et al., 2017b), we had to develop a second prototype because the

sampling clock jitter on the first prototype was too high, introducing an audible

noise to the output audio signal. In order to eliminate this problem the synchro-

nization algorithm we improved the synchronization algorithm of the 1st prototype

and designed custom microphones based on digital microphones from InvenSense.

The system was used in a set of experiments in different rooms to demonstrate

that it was useful for evaluating beamforming and speech enhancement algorithms

in the wild (Ceolini, Kiselev, et al., 2020).

5.2 outlook

Hardware spiking cochleas (e.g. the Dynamic Audio Sensor (Liu, Schaik, et al.,

2014)) and software cochlea models are being tested in recent years as front-ends for

5.2 outlook 87

audio tasks such as source localization (Anumula, Ceolini, et al., 2018; van Schaik

et al., 2009), speech recognition(Wu et al., 2018), speaker verification, multi-modal

recognition (Kiselev, Neil, et al., 2016a) and keyword spotting (Ceolini, Anumula,

et al., 2019). Spike features such as constant time bin and constant spike count

features (Acharya et al., 2018; Anumula, Neil, Delbruck, et al., 2018) are usually

presented as inputs to a machine learning classifier such as the SVM classifier. A

few studies show that using such features instead of conventional features such as

log-filter banks or Mel Frequency Cepstral Coefficient (MFCC) features can lead to

similar accuracies for a speech recognition task. Some studies show the usefulness

of the spike outputs, e.g. the accuracy of a word recognition task using spiking

cochlea inputs, decreases at a slower rate with decreasing signal-to-noise (SNR)

input (Uysal et al., 2007; Zai et al., 2015).

Deep neural networks (DNNs) such as recurrent neural networks have been

applied quite successfully on the spiking cochlea outputs for various audio classi-

fication tasks (Anumula, Neil, Delbruck, et al., 2018; Neil et al., 2016) including a

demonstration of a hardware system with a DAS and DNN hardware in the real

world (Gao, Braun, et al., 2019; Kiselev, Neil, et al., 2016a).

The n-Minitaur event-driven neural network hardware system in Chapter 2 can

also be used to implement event-driven deep networks that have been trained to

perform simple speech recognition using the spiking cochlea input (Neil et al., 2016).

The trained deep networks can be converted into spiking networks with conversion

methods that use rate codes (Rueckauer, Lungu, et al., 2017) or temporal codes (Liu

and Douglas, 2004; Rueckauer and Liu, 2018).

The n-Minitaur system can only be interfaced to a maximum of 3 AER sensors

without a PC in the data path. However the PC is still required for uploading the

network structure and coefficients and for configuring the sensors. The need for a

PC can be eliminated by using modern SoC FPGAs, such as Xilinx Zynq Ultrascale+,

which has on-chip CPU cores.

The AGC algorithm in Chapter 3 can be enabled in the spiking cochlea and

then used to see if the performance accuracy will increase for networks trained

on audio tasks such as keyword spotting. For example, the impact of the AGC-

controlled cochlea can be determined for an audio classification task such as digit

recognition (Ceolini, Neil, et al., 2016; Neil et al., 2016; Uysal et al., 2008),speaker

verification and keyword spotting (Ceolini, Kiselev, et al., 2019).

The implemented AGC algorithm on FPGA can also be incorporated into real-

time FPGA hardware network accelerators e.g. EdgeDRNN (Gao, Braun, et al., 2019;

Gao, Rios-Navarro, et al., 2020) with spike information that includes the local gain

setting. Other approaches can be investigated in the future for implementing the

AGC control loop for e.g. through continuous spike integration.

The WHISPER platform in Chapter 4 can be minitaurized by using custom PCB

with Zync ultrascale (with FPGA and processor), and be extended to process other

sensor modalities. It can also be interfaced to the Dynamic Audio Sensor and would

allow future studies of using regular-sampled audio input versus the asynchronous

outputs of the cochlea for a specific audio task such as speech recognition, keyword

spotting.

A A P P E N D I X

a.1 supplementary material to chapter 2

a.1.1 n-Minitaur Implementation Details

Fig. A.1 shows logical interfaces of the USB clock domain decoupler, which provides

data transfer between USB2 (IFCLK = 48 MHz) and FPGA (sys_clk = 105 MHz)

clock domains as described in Sec. 2.3 (depicted as USB FIFO in Fig. 2.7). The USB2

interface chip FX21 has two FIFOs: IN and OUT, which share some control signals

(nSLRD — Slave Read, active 0; nSLWR – Slave Write, active 0). The FIFOADR[1:0]

signal defines which FIFO is currently controlled by these signals and connected

to the data bus FD[7:0]. The USB decoupler FSM shown in Fig. A.2 controls data

transfer between these external FX2 FIFOs and the internal Xilinx dual-clock FIFOs

usb_wr_fifo and usb_rd_fifo. The right-side interfaces of these two FIFOs together

with the WR_DONE_REQ and WR_DONE_ACK signals constitute an internal I/O

interface, which is connected to the Command Decoder in Fig. 2.7. WR_DONE_REQ

and WR_DONE_ACK signals provide a way to initiate a USB transaction when the

FX2 OUT FIFO buffer is not filled yet by issuing a nPKTEND signal.

An example of the state transition diagram with all essential input, output and

internal signals is given in Fig. A.3. It shows read and write operations of the

external FX2 FIFOs, and read-to-write and write-to-read transitions. An IDLE state

for one IFCLK clock cycle is added when switching from READ to WRITE state in

order to avoid bus contention on the FD bus.

1 https://www.cypress.com/file/138911/download

89

https://www.cypress.com/file/138911/download

90 appendix

Figure A.1: Interfaces of the USB Decoupler to the FX2 and to the rest of FPGA.
Notes:
1. FIFOADR affects only nSLRD and nSLWR signals;
2. FLAGB and FLAGC are preassigned to EP2FULL and EP6EMPTY;
3. First Word Falls Through (FWFT) FIFO is used. The FWFT feature adds
two clock cycle latency to deassertion of the Empty flag, when the first data is
written into an empty FIFO;
4. Initiating a write transaction to the FX2 FIFO when it is full is not destructive
to the contents of the FIFO;
5. nSLWR signal is not registered because it is just an inversion of the registered
signal WR_XFIFO_RE and it has just 10.4 ns setup time, which gives 10.4 ns
slack time at 48 MHz clock.

a.1 supplementary material to chapter 2 91

Figure A.2: USB decoupler FSM state transition diagram.

92 appendix

Figure A.3: An example of the FX2 FIFO control signals during transitions between IDLE,
READ and WRITE states. In particular, the cases when the read FIFO is empty
(C, D) and the write FIFO is full (F, G, H) are shown. The dashed vertical lines
represent the IFCLK 48 MHz clock.
Description of the States:
A) Enter READ state by nEP6EMPTY low-to-high transition;
B) Read 2 bytes (FD = <0, 1>) from FX2 FIFO until the read FIFO is empty;
C) Leave READ by nEP6EMPTY and go to IDLE first, to prevent a bus-
contention on the FD bus;
D) Go from IDLE to WRITE triggered by WR_XFIFO_EMPTY;
E) Write 1 byte (FD = <0>, red) to FX2 FIFO. Byte <1> (red) is not written here;
F) Leave WRITE by nEP2FULL and go to READ by nEP6EMPTY immediately,
since there is no risk of bus-contention here;
G) Read 1 byte (FD = <2>) from FX2 and pause reading (nSLRD = 1,
RD_XFIFO_WE = 0) since RD_XFIFO is "Almost Full";
H) Handle the case when RD_XFIFO_FULL does not go high after writing one
byte to a FIFO with RD_XFIFO_AFULL = 1;
J) Proceed with reading by 1 byte (FD = <3, 4>);
K) Leave READ by RD_XFIFO_FULL and go to IDLE;
L) At this point both operations (READ and WRITE) are possible, so we go to
the WRITE state by decision of the Arbiter and write bytes (FD = <1, 2>, red).
Note: at the states E, J, L+1 the next state also depends on the Arbiter. It could
change the state at any of these points since both state_sel bits are set to 1.

a.2 supplementary material to chapter 3 93

a.2 supplementary material to chapter 3

a.2.1 Input Signal Conditioning Circuit

The DASLP chip has a differential input and the DASLP board has a uni-polar

power supply, however, most of the PC sound cards have single-ended AC-coupled

audio output. Hence, a signal conditioning circuit is required in order to feed the

chip with the audio signal from the PC. The simplified signal conditioning circuit is

shown in Fig. A.4. The resistor divider R1−R2 together with resistors R3−R4 sets

the input common mode voltage to approximately 0.6 V when the input signal level

is 0 V. A differential unity-gain buffer (DA1) is used to remove the common-mode

signal and to set the output common-mode (OCM) voltage to the operating point

(250 mV) of the Cochlea chip (DA2). The differential ADCs DA3 and DA4 are used

to measure the amplitude of an input signal and the amplitude at the output of the

filter-amplifier of one of the cochlea channels.

1KR1

1KR2

+

-

OCM

DA1
1KR3

100R4

1K

R5

1K

R6

1K

R7

1K

R8

GND

From DAC

+1.8VA

J1

GND

In +

In -

Out +

Out -

Cochlea Chip
DA2

+

-

ADC

DA3

+

-

ADC

DA4

Figure A.4: A simplified diagram of a circuit for conversion of the single-ended audio
output to the differential Cochlea input.

a.2.2 Calibration of Input from Sound Card

We calibrated the output of the audio card in the range of 40 − 10000 Hz using the

onboard 18-bit ADC. We apply the inverted frequency response to all test signals

generated later. Next, we tested linearity and flatness of the frequency response at

different amplitudes. The adjusted frequency responses were flat in the frequency

range of interest 50− 8000 Hz at all amplitudes in the range of 1− 100 mV (Fig. A.5).

The audio samples were played through the same sound card without frequency

response correction.

a.2.3 DASLP FPGA Control Logic Structure

The DASLP control logic is implemented on the Lattice FPGA LFE3-70EA. The

FPGA communicates with a PC through the Cypress FX3 chip (CYUSB3014-BZX)

that implements USB 3.0 interface. There are two interfaces between the FPGA and

FX3 chip – a high speed FIFO interface for data transfer from the cochlea chip to a

94 appendix

40 100 400 1k 4k 10k

Frequency, Hz

95

100

105

A
m

p
lit

u
d

e
,

m
V

Uncalibrated

Calibrated

Figure A.5: Uncalibrated and calibrated output of the sound card.

PC and a slower SPI interface for configuration of all FPGA modules and setting

on-chip and off-chip bias values A simplified diagram of the FPGA logic is shown

in Fig. A.6.

a.2.4 Implementation of ADC Data Transmission over Asynchronous AER Bus

In order to observe the signal waveform that elicited a series of spikes at the output

of a cochlea channel; and to be able to compare the input and output signals of the

bandpass filter-amplifier, we use two ADCs that are connected to the input and

multiplexed output of the filter bank. ADC samples are taken synchronously at

regular time intervals and read out to an FPGA via an SPI interface. Since the ADC

sampling frequency is generated from the same clock signal that is used for the

cochlea events timestamping, there is no desynchronization of the cochlea events

and the ADC samples possible. We considered two possibilities for transmission of

the ADC data to a PC for further processing – setting up a separate USB endpoint

for the ADC data and merging the ADC data into one stream with the cochlea

events. We found the latter option to be preferable, since it requires no hardware or

firmware modification in the connection between the FPGA and the USB FX3 chip

and it also makes possible transmission of the ADC samples without using USB to

any other processing device that has an AER interface.

However, the selected approach, if implemented straightforwardly, would have

a problem because the ADC samples the signal at the "Start of Conversion" time

(Fig. A.7), but the data can be acquired and send to the AER bus only after "ADC

Conversion" period, which is about 2 µs. In addition, all ADCs have to be read

sequentially over common SPI bus, that takes another 1 µs per ADC channel. For

two-channel ADC these delays sum up to 4 µs delay between the start of conversion

and sending the data samples. There could be a few cochlea spikes generated and

sent to AER FIFO within this period (see the cochlea spikes on Fig. A.7 within

0 − 4 µs interval). In this case, the order of ADC and cochlea events would be

reversed and hence, correct comparison of the cochlea events and waveforms would

be difficult.

In order to avoid this problem, we issue a Special Event (subcode x"2C", Fig. A.8

top) at the beginning of the ADC Conversion cycle. This event denotes the time

when the signal was sampled by the Sample-and-Hold circuit, and the subsequent

data samples are attributed to this time. The data samples are also transmitted as

a.2 supplementary material to chapter 3 95

F
X

3
S

ta
te

m
a

ch
in

e
F

X
3

S
P

IC
o

n
fi

g

10x1 32bit Mux

S
P

IC
o

n
fi

g

C
o

n
fi

g
P

a
ra

m
O

u
tp

u
t\

3
2

C
o

n
fi

g
M

o
d

u
le

A
d

d
re

ss
\7

,

C
o

n
fi

g
P

a
ra

m
A

d
d

re
ss

\8

F
X

3
 S

P
I

S
la

v
e

C
o

n
fi

g
 I

n
te

rf
a

ce

S
P

I_
S

C
K

S
P

I_
S

S

S
P

I_
M

O
S

I

S
P

I_
M

IS
O

C
o

n
fi

g
M

o
d

u
le

A
d

d
re

ss
\7

C
o

n
fi

g
P

a
ra

m
A

d
d

re
ss

\8

C
o

n
fi

g
P

a
ra

m
In

p
u

t\
3

2

C
o

n
fi

g
La

tc
h

In
p

u
t

M
u

lt
ip

le
xe

rS
P

IC
o

n
fi

g

lo
g

ic
U

S
B

F
if

o

(D
u

a
l

C
lo

ck
)

M
u

lt
ip

le
xe

rS
ta

te
M

a
ch

in
e

co
ch

le
a

A
e

rS
M

(G
e

n
e

ri
cA

E
R

S
ta

te
M

a
ch

in
e

)
co

ch
le

a
A

e
rS

P
IC

o
n

fi
g

(G
e

n
e

ri
cA

E
R

S
P

IC
o

n
fi

g
)

D
A

C
S

ta
te

M
a

ch
in

e
D

A
C

S
P

IC
o

n
fi

g

S
ca

n
n

e
rS

ta
te

M
a

ch
in

e

A
D

C
S

ta
te

M
a

ch
in

e

S
ca

n
n

e
rS

P
IC

o
n

fi
g

A
D

C
S

P
IC

o
n

fi
g

S
y

st
e

m
In

fo
S

P
IC

o
n

fi
g

D
F

F

D
F

F

D
F

F

D
F

F

D
F

F

D
F

F

_
xx

x_
_

P
a

ra
m

O
u

tp
u

t\
3

2
*

1
1

3
2

C
o

ch
le

a
LP

S
P

IC
o

n
fi

g
C

o
ch

le
a

LP
S

ta
te

M
a

ch
in

e
F

F

3
2

3
2 3
2

3
2 3
2

3
2

3
2

3
2

3
2

F
F

F
F

B
ia

s

C
h

ip

C
h

a
n

n
e

l

F
F

 –
 F

li
p

 F
lo

p

D
F

F
 –

 D
o

u
b

le
 F

F

S
P

I
C

o
n

fi
g

 C
o

m
m

a
n

d
 (

M
S

B
 f

ir
st

)

D
a

ta

P
a

ra
m

 A
d

d
re

ss

M
o

d
u

le
 A

d
d

re
ss

R
e

a
d

 O
p

e
ra

ti
o

n
 F

la
g

4
7

4
6

-4
0

3
9

-3
2

3
1

-0

F
X

3
 F

IF
O

In
te

rf
a

ce

d
v
sA

e
rF

if
o

(S
in

g
le

 C
lo

ck
)

E
m

p
ty

R
e

a
d

Controls\4

Flags\4

Data\16

U
S

B
F

if
o

D
a

ta
O

u
t\

1
6

Lo
g

ic
U

S
B

F
if

o
D

a
ta

In
\1

6

A
E

R
F

if
o

D
a

ta
O

u
t\

1
5

A
D

C
F

if
o

D
a

ta
O

u
t\

1
5

In
p

u
t

2

D
A

S
LP

 F
P

G
A

 L
o

g
ic

 D
ia

g
ra

m

A
E

R
F

if
o

D
a

ta
In

\1
5

A
E

R
 C

o
ch

le
a

In
te

rf
a

ce

A
E

R
D

a
ta

\8
,

A
E

R
R

e
q

,
A

E
R

A
ck

D
A

S
LP

 C
o

n
fi

g
u

ra
ti

o
n

In
te

rf
a

ce

A
G

C
S

ta
te

M
a

ch
in

e

A
G

C
S

P
IC

o
n

fi
g

A
E

R
D

a
ta

\8
,

C
h

a
n

n
e

lG
a

in
\4

,

A
E

R
R

e
q

,
A

E
R

A
ck

C
h

a
n

n
e

lA
d

d
re

ss
\6

,

C
h

a
n

n
e

lG
a

in
\6

F
F

In
p

u
t

1

A
D

C
 S

P
I

In
te

rf
a

ce

3
2

F
ig

u
re

A
.6

:
F

P
G

A
lo

g
ic

ar
ch

it
ec

tu
re

fo
r

th
e

D
A

S
L

P
co

ch
le

a.
T

h
e

sh
ad

o
w

ed
b

lo
ck

s
ar

e
d

es
ig

n
ed

o
r

si
g

n
ifi

ca
n

tl
y

m
o

d
ifi

ed
w

it
h

in
th

is
w

o
rk

.

96 appendix

Sample-and-Hold

and Start of Conversion

ADC Conversion

0 2 4 6 μs

ADC0

Reading out data from ADCs

ADC1 ADC2 ADC3

Sending ADC data over

asynchronous AER bus

Sending actual sampling

time for all ADC channels

Le
ft

 c
h

a
n

n
e

l
R

ig
h

t
ch

a
n

n
e

l

— Cochlea Events for right and left ears

Figure A.7: Implementation of ADC data transmission over asynchronous AER bus.

special events (Fig. A.8 bottom). These special events have a separate Event Code

b"100" and can carry 12-bit data payload. Since the ADC samples are 18-bit, two

events are required to transmit one ADC sample. The ADC sample is split into two

9-bit parts – MSB and LSB. Bit 9 of the ADC Data Special Event is set to "1" for

"MSB" and to "0" for "LSB". The remaining two bits (11:10) of the event data payload

define the ADC channel number. The ADC finite state machine (FSM) is designed

to support up to four ADC channels, however, only two ADCs are available on the

DASLP board – #0 and #1.

The data samples from both ADCs are timestamped, labeled with a "Special

Event ADC Data" bit code and injected into the event data stream from the DASLP

chip. Then data packets comprising both the output spike data and input/output

signal ADC samples are written to OUT-endpoint FIFO of the FX3 chip.

The ADC FSM supports two sampling frequencies – 16 kHz and 44.1 kHz, the

same frequency is used for all the channels. The frequency can be selected in the

jAER software. The detailed diagram of the ADC control FSM is given in Fig. A.9.

a.2 supplementary material to chapter 3 97

ADC Data Word Event

Data payload, 9 bit

MSB/LSB: 1 - MSB, 0 - LSB

ADC Channel, 2 bit

Special Event Code, 3 bit, b"100"

Event/Timestamp, 1 bit, 0 - Event

9 8:011:1014:1215

ADC Start-of-Conversion Event

Special Event Subcode, 12 bit, x"2C"

Special Event Code, 3 bit, b"000"

Event/Timestamp, 1 bit, 0 - Event

11:014:1215

Figure A.8: Format of AER Special Events for ADC data transfer over AER protocol.

98 appendix

F
ig

u
re

A
.9

:
F

o
u

r
ch

an
n

el
A

D
C

co
n

tro
l

state
m

ach
in

e

a.2 supplementary material to chapter 3 99

DASLP Event with embedded AGC Gain

ON/OFF: 0 - ON, 1 - OFF

L/R: 0 - Right, 1 – Left

Channel #, 6 bit

AGC Gain Setting Index, 4 bit

Special Event Code, 3 bit, b"001"

Event/Timestamp, 1 bit, 0 - Event

07:211:814:1215 1

Figure A.10: DASLP cochlea event bit structure.

DASLP AGC Threshold Crossing Event

L/U: 0 - Lower, 1 - Upper

L/R: 0 - Right, 1 - Left

Channel #, 6 bit

Threshold Crossed, 4 bit, b"1111"

Special Event Code, 3 bit, b"001"

Event/Timestamp, 1 bit, 0 - Event

07:211:814:1215 1

Figure A.11: DASLP AGC Threshold Crossing (or Gain Update) event bit structure. Bit 0
indicates which threshold is crossed, bit 1 — the ear currently used for AGC
control. When the bits [11:8] are set to b"1111" the event is considered to be
a threshold crossing event, otherwise it is a conventional cochlea event (see
Fig. A.10).

a.2.5 Embedding the AGC Channel Gain Information into DASLP Events

Figure A.10 shows the structure of a modified DASLP event, which carries infor-

mation about the current gain of a channel at the moment when the event was

generated. Bit 15 is set to ’0’ indicating that this is an event. Bits [14:12] when set to

"001" indicate that this is the "Y Address Event". Four bits [11:8] define the current

gain of a channel (gain index values form 0 to 11 are valid). If these bits are equal

to "1111" (15), the event is considered to be a Threshold Crossing event (Fig. A.11.

In this case bit 0 indicates which threshold is exceeded and bit 1 shows, which ear

is used for the AGC control.

100 appendix

a.2.6 jAER Control Panels and Biasgen Settings

The software control panels for the DASLP chip, the ADC and the AGC FPGA logic

are presented in Figures A.12, A.13, A.14, A.15, A.16.

Figure A.12: jAER control panel for on-chip biases.

Figure A.13: jAER control panel for on-chip master bias.

Figure A.14: jAER control panel for off-chip biases.

a.2 supplementary material to chapter 3 101

Figure A.15: jAER control panel for ADC. ADCChannelsEnable is a bitmask for enabling
individual ADC channels: 0 – off, 1 – right, 2 – left, 3 – both.

Figure A.16: jAER control panel for AGC. The upper and lower thresholds are given as
a number of spikes within the averaging time interval. The averaging time
interval is given in 0.1 ms units for each cochlea channel.

102 appendix

a.2.7 Measurements of Channel Characteristic Frequencies of DASLP

From the measurements of the frequency responses of the individual DASLP

channels, we found that the characteristic frequencies of the channels cannot be

fitted by a single exponential equation (thin black line on Fig. A.17). The base of

the equation should be 1.13224, which would give a uniform channel spacing for

64 channels in the range 8 Hz to 20 kHz. Instead, we needed to fit the frequencies

using two different exponential equations, one for the low frequency channels (blue

circles in Fig. A.17), and one for high-frequency channels (blue crosses in Fig. A.17).

We found that the high frequency channels (0 to 27) are spaced exponentially

with a base equal to 1.12 and the low frequency channels (28 to 63) are spaced

with the base equal to 1.141. Further we use these approximations to estimate the

characteristic frequencies for all the channels that were not measured directly.

0 10 20 30 40 50 60

Channel #

5

10

100

1k

10k

20k

40k

F
re

q
u

e
n

c
y
,

H
z

 F = 8.26 * 1.141
63-ch

 F = 20k * 1.12
-ch

 F = 8 * 1.13224
63-ch

Figure A.17: Fitting measured characteristic frequencies of high- and low-frequency chan-
nels with two exponential functions. The best fit exponent for the high-
frequency channels (blue crosses) has the base equal 1.12; and for the low-
frequency channels (blue circles) the base is 1.141. The thin black line shows
the characteristic frequencies distributed uniformly on a log scale between 8
and 20000 Hz.

a.2 supplementary material to chapter 3 103

a.2.8 Effect of Local Gain Control on Responses to a Two-Frequency Component

Signal

We presume that AGC helps to preserve a shape of inter-spike intervals distribution

of a channel in the presence of an interfering signal at the adjacent frequency bands.

We studied how the shape of instantaneous frequencies histogram at channel 30

(480 Hz, 5 mV) changes in the presence of a 1 kHz interfering frequency at two

signal-to-interference (SIR) levels: 0 and −6 dB. The results presented in Fig. A.18

show that there is a more prominent frequency peak that is closer to the target

frequency in the AGC case for both SIR levels.

Avg FR: 481 Hz, Peak: 466 Hz

F2 @ 5 mV (SIR = 0 dB)

400 450 500 550
0

100

200

300

400

n
o
n
-A

G
C

 S
p
ik

e
 C

o
u
n
t

Avg FR: 481 Hz, Peak: 492 Hz

F2 @ 10 mV (SIR = -6 dB)

400 450 500 550
0

100

200

300

400

Avg FR: 483 Hz, Peak: 492 Hz

F2 @ 5 mV (SIR = 0 dB)

400 450 500 550

Firing rate, Hz

0

100

200

300

400

A
G

C
 S

p
ik

e
 C

o
u
n
t

Avg FR: 483 Hz, Peak: 491 Hz

F2 @ 10 mV (SIR = -6 dB)

400 450 500 550

Firing rate, Hz

0

100

200

300

400

Figure A.18: Instantaneous firing rate (FR) of channel 30 (480 Hz) for non-AGC (top row)
and AGC (bottom row) cases for a mixture of frequencies: F1 = 480 Hz @
5 mV, F2 = 1 kHz @ 5, 10 mV.

104 appendix

a.3 supplementary material to chapter 4

a.3.1 WHISPER Platform Implementation Details

Figure A.19 shows the address space of the Wishbone FIFO used for data trans-

mission from the FPGA to the Raspberry Pi board. The software running on the

Raspberry Pi polls the status register at the FIFO_SZ+4 address and checks whether

the Empty bit is cleared every 20 µs in order to provide low data transmission

latency. In our implementation of the Wishbone interface the Empty flag is cleared

only when the full FIFO buffer is filled with the data. This approach allows for

reading the full buffer with one burst read command.

[0:FIFO_SZ-1]

FIFO_SZ

FIFO_SZ+1

FIFO_SZ+2

FIFO_SZ+3

READ WRITEAddress

Data

RD_FIFO_SIZE

WR_FIFO_SIZE

Read data count

Written data count

Data

(Re)start

acqusition

fifo_rst

fifo_rst

fifo_rstFIFO_SZ+4 [15:4] 12-bit packet ID (counter)

[3:0] [Empty, Stop, Stalled, Overflow]

Reset FIFO

and

(Re)start

acqusition

Figure A.19: Wishbone FIFO address space. FIFO_SZ is the FIFO size in 16-bit words. It
was set to 256 for 8 kHz sampling rate and to 1024 for 24 kHz.

The format of the Wishbone read and write commands is shown in Fig. A.20.

The 16-bit command (bits 31 − 16) is followed by the 16-bit data payload if the

Increment Address bit is set to 0. In order to initiate a multi-word data transaction

(burst mode) the Increment Address bit has to be set to 1 and the required amount

of data can be read or written without sending the address for each data word.

Data[15:8], MSB first

Data[7:0], MSB first

R/nW: 1-Read, 0-Write

Increment Address

Address, 14 bit, MSB first

31-18 1617 7-015-8

Figure A.20: Wishbone read/write commands format

a.3 supplementary material to chapter 4 105

Figure A.21 shows the PMOD connector pinout for two types of microphones: SPI

and I2S. A front view of the 12-pin dual-row connector is depicted by a shadowed

area. The logical bit numbers are given above and below the pin numbers. The SPI

connection was used in the prototype version of the WHISPER platform. The speci-

fied SPI pinout allows direct attachment of the Digilent PMODMIC32 SPI digital

microphones. The final WHISPER platform version uses custom designed I2S micro-

phones, whose schematic is given in Fig. A.22. The designed PCB allows installing

two models of microphones: ICS-434323 and ICS-434344 from InvenSense/TDK.

Bit # 3 2 1 0

PMOD Pin #

PMOD Pin #

Bit # 7 6 5 4

SPI Function 3.3V GND SCK MISO MOSI SS

I2S Function 3.3V GND SD SCK WS NC

 6 5 4 3 2 1

 12 11 10 9 8 7

Figure A.21: WHISPER PMOD connector pinout. The gray area represents the PMOD
connector (front view).

P1-
1

P1+
2

P2-
3

P3+
4

P3-
5

P2+
6

P4+
8

P4-
7

SHLD
9

A-2004-2-4-LPS-N-R

J1

CONN-RJ45-SHLD-RA

GND

GND

GND

LR
2

VDD
5

GND
3

WS
1

SCK
4

SD
6

VDD
12

WS
7

LR
10

SCK
8

SD
9

CONF
11

U1

ICS-43434/43432

VCC VCC

GND

33nF

LC1 ELK-E333FA

VCC VCC

4.7uF

C2

GRM155R61A475MEAAD

VCC

100nF

C1

CL05B104KO5NNWC

GND GND

RN1

33

R1

X

R2

0

VCC

GND

100nF

C3

CL05B104KO5NNWC

GND

1
1

TP1

WS

LR

WS

SCK

LR

SCK

SDSD

WS

SCK

SD

FB1

NFZ2MSM601SN10L

Figure A.22: Custom I2S microphone schematic diagram.

2 https://reference.digilentinc.com/_media/reference/pmod/pmodmic3/pmodmic3_rm.pdf

3 https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf

4 https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf

https://reference.digilentinc.com/_media/reference/pmod/pmodmic3/pmodmic3_rm.pdf
https://www.invensense.com/wp-content/uploads/2015/02/ICS-43432-data-sheet-v1.3.pdf
https://www.invensense.com/wp-content/uploads/2016/02/DS-000069-ICS-43434-v1.2.pdf

106 appendix

Figures A.23 and A.24 show a modification of the MRF89XAM9A module nec-

essary for implementation of our synchronization algorithm. The MRF89XAM9A

module schematic is adopted from the module datasheet5.

DCLK

+3.3V

DATA

SCK

MOSI

GND

SPI

CS

Figure A.23: MRF89XAM9A module pinout. DATA signal has no dedicated pin on the
PCB, so a wire should be soldered to the R2 pad as indicated by the arrow.

5 https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

https://ww1.microchip.com/downloads/en/DeviceDoc/75017B.pdf

a.3 supplementary material to chapter 4 107

F
ig

u
re

A
.2

4
:

M
R

F
89

X
A

M
9A

m
o

d
u

le
sc

h
em

at
ic

d
ia

g
ra

m
.

S
ch

em
at

ic
m

o
d

ifi
ca

ti
o

n
sh

o
w

n
in

re
d

.
P

9
is

co
n

fi
g

u
re

d
as

D
C

L
K

.

108 appendix

a.3.2 Phase Shift and Jitter of WHISPER Prototype

Phase synchronization measurements from two WHISPER-M4 modules are shown

in Fig. A.25. The constant phase shift between the two modules depends on the

relative spatial positions of the modules and is caused by the multipath radio wave

propagation. The observed phase shift of 63 ns corresponds to a negligible spatial

shift (much less than 1 mm) when sampling the acoustic signal in the air, so this

value does not affect our processing algorithms. The second curve (green) shows

the approximate cumulative distribution function of the sampling clock rising edge

of the second module with respect to the first one. The measurements show an rms

phase jitter (std dev) of about 100 ns.

63 ns

Figure A.25: Phase difference of the two wirelessly synchronized WHISPER-M4 prototype
modules. The oscilloscope is synchronized on the front of the sampling clock
of one of the modules (red). The sampling clock of the second module (green)
is averaged over 112 thousand cycles. The mean shift of the second module
clock w.r.t. the first one and the standard deviation of this shift are shown
in the red boxes. The standard deviation corresponds to the RMS of sum of
jitters of both modules. Assuming that the jitter is independent and has the
same statistics at two modules, the jitter at one module is smaller than the

measured value by a factor of
√

2.

a.3 supplementary material to chapter 4 109

a.3.3 Alternative Data Transmission Module

A photo of the DWM1000 UWB data transmission module soldered to a prototyping

board with two PMOD connectors is shown in Fig. A.26.

Figure A.26: DWM1000 wireless communication module.

Fig. A.27 shows a time-division multiplexing (TDM) scheme proposed in order

to avoid a concurrent medium access, when several WHISPER-M4 modules are

transmitting simultaneously, and hence, reduce the data transmission latency. An

individual time slot is scheduled for each module, with short guard intervals

between the time slots. Implementation of this scheme becomes possible when

the clocks of all the WHISPER modules are synchronized with high precision.

We achieved the clock synchronisation precision of about 200 ns, that allows to

make the guard intervals less than 1 µs, which is negligibly small compared to the

packet size (e.g. 602 µs for 512-byte packet, see Table 4.1 in Section 4.2.4). Two data

transmission topologies are possible within this scheme: a full mesh, when at each

time slot one module transmits and all other receive the signal; and a star topology,

when a separate receiver (in the last row) collects the data from all the modules.

Transmit0: Receive 1 Receive 2 Receive 3

Receive 0 Transmit Receive 2 Receive 3

Receive 0 Receive 1 Transmit Receive 3

Receive 0 Receive 1 Receive 2 Transmit

Module #

1:

2:

3:

Guard Intervals

Receive 0 Receive 1 Receive 2 Receive 3R:

Figure A.27: Time-division multiplexing scheme to be used with the DWM1000 transceiver.
Rows 0 − 3 represent WHISPER-M4 modules, and the last row represents a
separate receiver module.

A C R O N Y M S

ADC Analog to Digital Converter

AER Address Event Representation

AFE Acoustic Feature Extraction

AGC Automatic Gain Control

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuit

BSS blind source separation

CNN Convolutional Neural Network

COTS commercially available off-the-shelf

DAS Dynamic Audio Sensor

DASLP Dynamic Audio Sensor Low Power

DBN Deep Belief Network

DNN Deep Neural Network

DVS Dynamic Vision Sensor

EEG electroencephalogram

FIFO First In, First Out

FIR Finite Impulse Response

FLL Frequency Locked Loop

FPGA Field-Programmable Gate Array

FM Frequency Modulation

FSK frequency-shift keying

FSM Finite State Machine

GPS Global Positioning System

I2S Inter-IC Sound

IFR instantaneous firing rate

IIR Infinite Impulse Response

IO Input-Output

ISI interspike interval

ISM industrial, scientific and medical

JND just noticeable difference

KWS Keyword Spotting

LCMV Linearly Constrained Minimum Variance

111

112 acronyms

LIF Leaky Integrate-and-Fire

LR Logistic Regression

MASS Multi-channel Audio Source Separation

MNIST Modified National Institute of Standards and Technology

NTP Network Time Protocol

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

PGA Programmable Gain Amplifier

PLL Phase-locked Loop

PMOD Peripheral Module

PSS Point of Subjective Simultaneity

RBM Restricted Boltzmann Machines

RF Radio Frequency

RMS Root Mean Square

SBC single board computer

SIR Signal-to-Interference Ratio

SNN Spiking Neural Network

SNR signal-to-noise ratio

SoC System on a Chip

SPI Serial Peripheral Interface

SPL Sound Pressure Level

STD Standard Deviation

STOI Short-Time Objective Intelligibility

TDM time-division multiplexing

UDP User Datagram Protocol

UWB Ultra-Wideband

VAD Voice Activity Detection

WASN Wireless Acoustic Sensor Network

P U B L I C AT I O N S R E S U LT I N G F R O M

T H I S W O R K

[1] E. Ceolini, J. Anumula, A. E. Huber, I. Kiselev, and S.-C. Liu, “Speaker activity

detection and minimum variance beamforming for source separation.,” in

Interspeech, 2018, pp. 836–840.

[2] E. Ceolini, I. Kiselev, and S.-C. Liu, “Audio classification systems using deep

neural networks and an event-driven auditory sensor,” 2019 IEEE SENSORS,

2019.

[3] E. Ceolini, I. Kiselev, and S.-C. Liu, “Evaluating multi-channel multi-device

speech separation algorithms in the wild: A hardware-software solution,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28,

pp. 1428–1439, 2020.

[4] C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S.-C. Liu, “Real-time

speech recognition for IoT purpose using a delta recurrent neural network

accelerator,” in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS), IEEE, 2019, pp. 1–5.

[5] I. Kiselev, E. Ceolini, D. Wong, A. d. Cheveigne, and S.-C. Liu, “WHISPER:

Wirelessly synchronized distributed audio sensor platform,” in 2017 IEEE

42nd Conference on Local Computer Networks Workshops (LCN Workshops), Oct.

2017, pp. 35–43.

[6] I. Kiselev and S.-C. Liu, “Event-driven local gain control on a spiking cochlea

sensor,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS),

2021. doi: 10.1109/ISCAS51556.2021.9401742.

[7] I. Kiselev, D. Neil, and S.-C. Liu, “Event-driven deep neural network hardware

system for sensor fusion,” in 2016 IEEE International Symposium on Circuits

and Systems (ISCAS), IEEE, 2016, pp. 2495–2498.

[8] I. Kiselev, D. Neil, and S.-C. Liu, “Live demonstration: Event-driven deep

neural network hardware system for sensor fusion,” in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), IEEE, 2016, pp. 452–452.

113

https://doi.org/10.1109/ISCAS51556.2021.9401742

B I B L I O G R A P H Y

[1] 3D Audiosense, http://www.3daudiosense.com/uploads/2/4/7/2/24724752/

zylia-audiosense-parp_polish_product_of_the_future.pdf, 2014.

[2] H. Abdalla and T. K. Horiuchi, “An ultrasonic filterbank with spiking neu-

rons,” in 2005 IEEE International Symposium on Circuits and Systems, 2005,

pp. 4201–4204.

[3] J. Acharya, A. Patil, X. Li, Y. Chen, S.-C. Liu, and A. Basu, “A compari-

son of low-complexity real-time feature extraction for neuromorphic speech

recognition,” Frontiers in Neuroscience, vol. 12, p. 160, 2018.

[4] H. Afifi, J. Schmalenstroeer, J. Ullmann, R. Häb-Umbach, and H. Karl, “Mar-

velo: A framework for signal processing in wireless acoustic sensor networks,”

in Speech Communication; 13th ITG-Symposium, VDE, 2018, pp. 1–5.

[5] J. Anumula, D. Neil, X.-Y. Li, T. Delbruck, and S.-C. Liu, “Live demonstration:

Event-driven real-time spoken digit recognition system,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), May 2017.

[6] J. Anumula, E. Ceolini, Z. He, A. Huber, and S.-C. Liu, “An event-driven

probabilistic model of sound source localization using cochlea spikes,” in 2018

IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[7] J. Anumula, D. Neil, T. Delbruck, and S.-C. Liu, “Feature representations

for neuromorphic audio spike streams,” Frontiers in Neuroscience, vol. 12,

2018. doi: 10.3389/fnins.2018.00023. [Online]. Available: https://www.

frontiersin.org/article/10.3389/fnins.2018.00023.

[8] J. Benesty, J. Chen, Y. Huang, and J. Dmochowski, “On microphone-array

beamforming from a mimo acoustic signal processing perspective,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 15, no. 3, pp. 1053–

1065, 2007.

[9] A. Bertrand, “Applications and trends in wireless acoustic sensor networks: A

signal processing perspective,” in 2011 18th IEEE symposium on communications

and vehicular technology in the Benelux (SCVT), 2011, pp. 1–6.

[10] A. Bertrand, S. Doclo, S. Gannot, N. Ono, and T. van Waterschoot, “Special

issue on wireless acoustic sensor networks and ad hoc microphone arrays,”

Signal Processing, vol. 107, no. C, pp. 1–3, 2015.

[11] E. Ceolini, J. Anumula, S. Braun, and S.-C. Liu, “Event-driven pipeline for

low-latency low-compute keyword spotting and speaker verification system,”

in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), May 2019, pp. 7953–7957. doi: 10.1109/ICASSP.2019.8683669.

[12] E. Ceolini, I. Kiselev, and S.-C. Liu, “Audio classification systems using deep

neural networks and an event-driven auditory sensor,” in 2019 IEEE Sensors,

2019, pp. 1–4.

115

http://www.3daudiosense.com/uploads/2/4/7/2/24724752/zylia-audiosense-parp_polish_product_of_the_future.pdf
http://www.3daudiosense.com/uploads/2/4/7/2/24724752/zylia-audiosense-parp_polish_product_of_the_future.pdf
https://doi.org/10.3389/fnins.2018.00023
https://www.frontiersin.org/article/10.3389/fnins.2018.00023
https://www.frontiersin.org/article/10.3389/fnins.2018.00023
https://doi.org/10.1109/ICASSP.2019.8683669

116 bibliography

[13] E. Ceolini, I. Kiselev, and S.-C. Liu, “Evaluating multi-channel multi-device

speech separation algorithms in the wild: A hardware-software solution,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28,

pp. 1428–1439, 2020.

[14] E. Ceolini, D. Neil, T. Delbruck, and S.-C. Liu, “Temporal sequence recognition

in a self-organizing recurrent network,” in 2016 Second International Conference

on Event-based Control, Communication, and Signal Processing (EBCCSP), 2016,

pp. 1–4.

[15] V. Chan, S. C. Liu, and A. van Schaik, “AER EAR: A matched silicon cochlea

pair with address event representation interface,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 54, no. 1, pp. 48–59, Jan. 2007, issn: 1549-8328.

doi: 10.1109/TCSI.2006.887979.

[16] V. Y.-S. Chan, C. T. Jin, and A. van Schaik, “Neuromorphic audio-visual

sensor fusion on a sound-localising robot,” Frontiers in neuroscience, vol. 6,

p. 21, 2012.

[17] J. Coady, D. Toal, T. Newe, and G. Dooly, “Remote acoustic analysis for tool

condition monitoring,” Procedia Manufacturing, vol. 38, pp. 840–847, 2019, 29th

International Conference on Flexible Automation and Intelligent Manufac-

turing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond Industry 4.0:

Industrial Advances, Engineering Education and Intelligent Manufacturing,

issn: 2351-9789. doi: https://doi.org/10.1016/j.promfg.2020.01.165.

[Online]. Available: https://www.sciencedirect.com/science/article/

pii/S2351978920301669.

[18] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer, “Fast-

classifying, high-accuracy spiking deep networks through weight and thresh-

old balancing,” in Proceedings of the International Joint Conference on Neural

Networks, Killarney, Ireland, 2015, isbn: 9781479919604. doi: 10.1109/IJCNN.

2015.7280696.

[19] H. Finger and S.-C. Liu, “Estimating the location of a sound source with a

spike-timing localization algorithm,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2011, pp. 2461–2464.

[20] O. L. Frost, “An algorithm for linearly constrained adaptive array processing,”

Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935, 1972.

[21] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”

Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014, issn: 0018-9219.

doi: 10.1109/JPROC.2014.2304638.

[22] C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S. Liu, “Real-time

speech recognition for IoT purpose using a delta recurrent neural network

accelerator,” in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS), May 2019, pp. 1–5. doi: 10.1109/ISCAS.2019.8702290.

[23] C. Gao, A. Rios-Navarro, X. Chen, T. Delbruck, and S.-C. Liu, “EdgeDRNN:

Enabling low-latency recurrent neural network edge inference,” in 2020

2nd IEEE International Conference on Artificial Intelligence Circuits and Systems

(AICAS), 2020, pp. 41–45.

https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/https://doi.org/10.1016/j.promfg.2020.01.165
https://www.sciencedirect.com/science/article/pii/S2351978920301669
https://www.sciencedirect.com/science/article/pii/S2351978920301669
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ISCAS.2019.8702290

bibliography 117

[24] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V.

Zue, “Timit acoustic-phonetic continuous speech corpus,” Linguistic Data

Consortium, Nov. 1992.

[25] L. Girod, M. Lukac, V. Trifa, and D. Estrin, “The design and implementation

of a self-calibrating distributed acoustic sensing platform,” in Proceedings of

the 4th international conference on Embedded networked sensor systems, Jan. 2006,

pp. 71–84. doi: 10.1145/1182807.1182815.

[26] N. Goux, J.-B. Casanova, G. Pillonnet, and F. Badets, “A 6nw 0.0013mm2 ilo

bandpass filter for time-based feature extraction,” IEEE Solid-State Circuits

Letters, vol. PP, pp. 1–1, Aug. 2020. doi: 10.1109/LSSC.2020.3016716.

[27] T. J. Hamilton, C. Jin, A. Van Schaik, and J. Tapson, “An active 2-d silicon

cochlea,” IEEE Transactions on biomedical circuits and systems, vol. 2, no. 1,

pp. 30–43, 2008.

[28] J. R. Higgins, Sampling theory in Fourier and signal analysis: foundations. Oxford

University Press on Demand, 1996.

[29] I. J. Hirsh and J. Sherrick Carl E, “Perceived order in different sense modali-

ties.,” Journal of experimental psychology, vol. 62, no. 5, 1961, issn: 0022-1015.

[30] A. E. G. Huber and S. Liu, “On send-on-delta sampling of bandlimited

functions,” in 2017 International Conference on Sampling Theory and Applications

(SampTA), IEEE, 2017, pp. 422–426. doi: 10.1109/SAMPTA.2017.8024346.

[31] A. E. G. Huber and S. Liu, “On approximation of bandlimited functions with

compressed sensing,” in 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), IEEE, 2018, pp. 4009–4013. doi: 10.1109/

ICASSP.2018.8461376.

[32] A. Ipser, V. Agolli, A. Bajraktari, F. Al-Alawi, N. Djaafara, and E. Freeman,

“Sight and sound persistently out of synch: Stable individual differences

in audiovisual synchronisation revealed by implicit measures of lip-voice

integration,” Scientific Reports, vol. 7, May 2017. doi: 10.1038/srep46413.

[33] ITU-R Recommendation, “Effects of building materials and structures on

radiowave propagation above about 100 MHz,” Tech. Rep., Jul. 2015.

[34] jAER project, http://jaerproject.org, 2007.

[35] A. G. Katsiamis, E. M. Drakakis, and R. F. Lyon, “A biomimetic, 4.5 µW,

120+ dB, log-domain cochlea channel with AGC,” IEEE Journal of Solid-State

Circuits, vol. 44, no. 3, pp. 1006–1022, Mar. 2009, issn: 0018-9200. doi: 10.

1109/JSSC.2008.2011039.

[36] T. Kawase, I. Yahata, A. Kanno, S. Sakamoto, Y. Takanashi, S. Takata, N.

Nakasato, R. Kawashima, and Y. Katori, “Impact of audio-visual asynchrony

on lip-reading effects -neuromagnetic and psychophysical study-,” PLOS

ONE, vol. 11, e0168740, Dec. 2016. doi: 10.1371/journal.pone.0168740.

[37] M. Keetels and J. Vroomen, “Perception of synchrony between the senses,” in

The neural bases of multisensory processes, CRC Press/Taylor & Francis, 2012.

https://doi.org/10.1145/1182807.1182815
https://doi.org/10.1109/LSSC.2020.3016716
https://doi.org/10.1109/SAMPTA.2017.8024346
https://doi.org/10.1109/ICASSP.2018.8461376
https://doi.org/10.1109/ICASSP.2018.8461376
https://doi.org/10.1038/srep46413
http://jaerproject.org
https://doi.org/10.1109/JSSC.2008.2011039
https://doi.org/10.1109/JSSC.2008.2011039
https://doi.org/10.1371/journal.pone.0168740

118 bibliography

[38] I. Kiselev, E. Ceolini, D. Wong, A. d. Cheveigne, and S.-C. Liu, “WHISPER:

Wirelessly synchronized distributed audio sensor platform,” in 2017 IEEE

42nd Conference on Local Computer Networks Workshops (LCN Workshops), Oct.

2017, pp. 35–43.

[39] I. Kiselev, E. Ceolini, D. Wong, A. d. Cheveigne, and S.-C. Liu, “WHISPER:

Wirelessly synchronized distributed audio sensor platform,” in 2017 IEEE

42nd Conference on Local Computer Networks Workshops (LCN Workshops), Oct.

2017, pp. 35–43.

[40] I. Kiselev and S.-C. Liu, “Event-driven local gain control on a spiking cochlea

sensor,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS),

2021. doi: 10.1109/ISCAS51556.2021.9401742.

[41] I. Kiselev, D. Neil, and S.-C. Liu, “Event-driven deep neural network hardware

system for sensor fusion,” in 2016 IEEE International Symposium on Circuits

and Systems (ISCAS), IEEE, 2016, pp. 2495–2498.

[42] I. Kiselev, D. Neil, and S.-C. Liu, “Live demonstration: Event-driven deep

neural network hardware system for sensor fusion,” in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), IEEE, 2016, pp. 452–452.

[43] P. Klein, J. Conradt, and S.-C. Liu, “Scene stitching with event-driven sensors

on a robot head platform,” in 2015 IEEE International Symposium on Circuits

and Systems (ISCAS), 2015, pp. 2421–2424.

[44] D. Y. Levin, E. A. Habets, and S. Gannot, “On the average directivity factor

attainable with a beamformer incorporating null constraints,” IEEE Signal

Processing Letters, vol. 22, no. 11, pp. 2122–2126, 2015.

[45] C.-H. Li, T. Delbrück, and S.-C. Liu, “Real-time speaker identification using

the AEREAR2 event-based silicon cochlea,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), May 2012, pp. 1159–1162.

[46] C. Li, C. Brandli, R. Berner, H. Liu, M. Yang, S.-C. Liu, and T. Delbruck,

“Design of an RGBW color VGA rolling and global shutter dynamic and

active-pixel vision sensor,” in 2015 IEEE International Symposium on Circuits

and Systems (ISCAS), IEEE, 2015, pp. 718–721.

[47] X. Li, D. Neil, T. Delbruck, and S.-C. Liu, “Lip reading deep network ex-

ploiting multi-modal spiking visual and auditory sensors,” in 2019 IEEE

International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1–5.

[48] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 dB 15 µs latency

asynchronous temporal contrast vision sensor,” IEEE Journal of Solid-State

Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008, issn: 0018-9200.

[49] R. Lienhart, I. Kozintsev, S. Wehr, and M. Yeung, “On the importance of

exact synchronization for distributed audio signal processing,” in 2003 IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2003. Pro-

ceedings.(ICASSP’03)., IEEE, vol. 4, 2003, pp. IV–840.

https://doi.org/10.1109/ISCAS51556.2021.9401742

bibliography 119

[50] S.-C. Liu, A. van Schaik, B. Minch, and T. Delbrück, “Asynchronous binaural

spatial audition sensor with 2 × 64 × 4 channel output,” IEEE Trans. Biomed.

Circuits Syst., vol. 8, no. 4, pp. 453–464, 2014. doi: 10.1109/TBCAS.2013.

2281834.

[51] S.-C. Liu, T. Delbruck, G. Indiveri, R. Douglas, and A. Whatley, Event-Based

Neuromorphic Systems. Chichester, UK: John Wiley & Sons, 2015, p. 440, isbn:

0470018496. [Online]. Available: https://books.google.com/books?id=

MuvsBQAAQBAJ&pgis=1.

[52] S.-C. Liu and R. Douglas, “Temporal coding in a silicon network of integrate-

and-fire neurons,” IEEE Transactions on Neural Networks, vol. 15, no. 5,

pp. 1305–1314, 2004.

[53] Lockit, http://ambient.de/en/product_custom_cat/Timecode-en, 2019.

[54] R. F. Lyon, “Cascades of two-pole–two-zero asymmetric resonators are good

models of peripheral auditory function,” The Journal of the Acoustical Society of

America, vol. 130, no. 6, pp. 3893–3904, 2011.

[55] R. F. Lyon, A. G. Katsiamis, and E. M. Drakakis, “History and future of

auditory filter models,” in Proceedings of 2010 IEEE International Symposium on

Circuits and Systems, 2010, pp. 3809–3812.

[56] A. Maat, L. Trost, H. Sagunsky, S. Seltmann, and M. Gahr, “Zebra finch mates

use their forebrain song system in unlearned call communication,” PloS one,

vol. 9, e109334, Oct. 2014. doi: 10.1371/journal.pone.0109334.

[57] S. Markovich-Golan, S. Gannot, and I. Cohen, “Distributed multiple con-

straints generalized sidelobe canceler for fully connected wireless acoustic

sensor networks,” IEEE Transactions on Audio, Speech, and Language Processing,

vol. 21, no. 2, pp. 343–356, 2012.

[58] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of interchannel sam-

pling frequency mismatch for ad hoc microphone array based on maximum

likelihood estimation,” Signal Processing, vol. 107, pp. 185–196, 2015.

[59] D. P. Moeys, T. Delbrück, and S.-C. Liu, “Current-mode automated quality

control cochlear resonator for bird identity tagging,” in 2015 IEEE International

Symposium on Circuits and Systems (ISCAS), 2015, pp. 1734–1737.

[60] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking network

accelerator,” IEEE Trans on Very Large Scale Integration (VLSI) Systems, vol. 22,

no. 12, pp. 2621–2628, 2014.

[61] D. Neil and S. C. Liu, “Effective sensor fusion with event-based sensors and

deep network architectures,” Proceedings - IEEE International Symposium on

Circuits and Systems, vol. 2016-July, pp. 2282–2285, 2016, issn: 02714310. doi:

10.1109/ISCAS.2016.7539039.

[62] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time

classification and sensor fusion with a spiking Deep Belief Network,” Frontiers

in Neuroscience, vol. 7, 2013.

https://doi.org/10.1109/TBCAS.2013.2281834
https://doi.org/10.1109/TBCAS.2013.2281834
https://books.google.com/books?id=MuvsBQAAQBAJ&pgis=1
https://books.google.com/books?id=MuvsBQAAQBAJ&pgis=1
http://ambient.de/en/product_custom_cat/Timecode-en
https://doi.org/10.1371/journal.pone.0109334
https://doi.org/10.1109/ISCAS.2016.7539039

120 bibliography

[63] K. Ochi, S. Miyabe, and S. Makino, “Multi-talker speech recognition based on

blind source separation with ad-hoc microphone array using smartphones

and cloud storage.,” in Interspeech, 2016, pp. 3369–3373.

[64] S. Oh, M. Cho, Z. Shi, J. Lim, Y. Kim, S. Jeong, Y. Chen, R. Rothe, D. Blaauw,

H.-S. Kim, and D. Sylvester, “An acoustic signal processing chip with 142-nw

voice activity detection using mixer-based sequential frequency scanning

and neural network classification,” IEEE Journal of Solid-State Circuits, vol. PP,

pp. 1–12, Sep. 2019. doi: 10.1109/JSSC.2019.2936756.

[65] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck,

“Retinomorphic event-based vision sensors: Bioinspired cameras with spiking

output,” Proceedings of the IEEE, vol. 102, no. 10, pp. 1470–1484, Oct. 2014,

issn: 0018-9219. doi: 10.1109/JPROC.2014.2346153.

[66] C. K. Reddy, E. Beyrami, J. Pool, R. Cutler, S. Srinivasan, and J. Gehrke, “A

scalable noisy speech dataset and online subjective test framework,” Proc.

Interspeech 2019, pp. 1816–1820, 2019.

[67] B. Rueckauer and S. C. Liu, “Conversion of analog to spiking neural net-

works using sparse temporal coding,” in Proceedings - IEEE International

Symposium on Circuits and Systems, Florence, Italy: IEEE, 2018, pp. 8–12, isbn:

9781538648810. doi: 10.1109/ISCAS.2018.8351295.

[68] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion

of Continuous-Valued Deep Networks to Efficient Event-Driven Networks

for Image Classification,” Frontiers in Neuroscience, vol. 11, no. December,

pp. 1–12, 2017, issn: 1662-453X. doi: 10.3389/fnins.2017.00682. [Online].

Available: http://journal.frontiersin.org/article/10.3389/fnins.2017.

00682/full.

[69] M. A. Ruggero, “Responses to sound of the basilar membrane of the mam-

malian cochlea,” Current Opinion in Neurobiology, vol. 2, no. 4, pp. 449–456,

1992.

[70] E. Sazonov, V. Krishnamurthy, and R. Schilling, “Wireless intelligent sensor

and actuator network - a scalable platform for time-synchronous applica-

tions of structural health monitoring,” Structural Health Monitoring, vol. 9,

no. 5, pp. 465–476, 2010. doi: 10.1177/1475921710370003. [Online]. Available:

https://doi.org/10.1177/1475921710370003.

[71] J. Schmalenstroeer, P. Jebramcik, and R. Häb-Umbach, “A combined hardware-

software approach for acoustic sensor network synchronization,” Signal Pro-

cess., vol. 107, no. C, pp. 171–184, Feb. 2015, issn: 0165-1684.

[72] C. Schörkhuber, M. Zaunschirm, and I. Zmölnig, “Wilma-wireless largescale

microphone array,” in Linux Audio Conference, vol. 2014, 2014.

[73] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R.

Paz-Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas,

T. Delbruck, S.-C. Liu, R. Douglas, P. Häfliger, G. Jimenez-Moreno, A. Civit, T.

Serrano-Gotarredona, A. Acosta-Jimenez, and B. Linares-Barranco, “CAVIAR:

A 45K-neuron, 5M-synapse, 12G-connects/sec AER hardware sensory-

https://doi.org/10.1109/JSSC.2019.2936756
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
http://journal.frontiersin.org/article/10.3389/fnins.2017.00682/full
http://journal.frontiersin.org/article/10.3389/fnins.2017.00682/full
https://doi.org/10.1177/1475921710370003
https://doi.org/10.1177/1475921710370003

bibliography 121

processing-learning-actuating system for high speed visual object recognition

and tracking,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1417–1438, 2009.

[74] D. Snyder, G. Chen, and D. Povey, MUSAN: A Music, Speech, and Noise Corpus,

arXiv:1510.08484v1, 2015. eprint: 1510.08484.

[75] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber, “Live

demonstration: Handwritten digit recognition using spiking Deep Belief

Networks on SpiNNaker,” in 2015 IEEE International Symposium on Circuits

and Systems (ISCAS), 2015, pp. 1901–1901.

[76] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and S.-C. Liu, “Ro-

bustness of spiking Deep Belief Networks to noise and reduced bit precision

of neuro-inspired hardware platforms,” Frontiers in Neuroscience, vol. 9, 2015.

[77] W. Y. Tsai, D. Barch, A. Cassidy, M. Debole, A. Andreopoulos, B. Jackson,

M. Flickner, J. Arthur, D. Modha, J. Sampson, and V. Narayanan, “Always-

on speech recognition using TrueNorth, a reconfigurable, neurosynaptic

processor,” IEEE Transactions on Computers, vol. PP, no. 99, pp. 1–1, 2016, issn:

0018-9340. doi: 10.1109/TC.2016.2630683.

[78] I. Uysal, H. Sathyendra, and J. G. Harris, “Spike-based feature extraction

for noise robust speech recognition using phase synchrony coding,” in 2007

IEEE International Symposium on Circuits and Systems, 2007, pp. 1529–1532. doi:

10.1109/ISCAS.2007.378702.

[79] I. Uysal, H. Sathyendra, and J. Harris, “Towards spike-based speech pro-

cessing: A biologically plausible approach to simple acoustic classification,”

International Journal of Applied Mathematics and Computer Science, vol. 18, no. 2,

pp. 129–137, 2008.

[80] A. van Schaik, V. Chan, and C. Jin, “Sound localisation with a silicon cochlea

pair,” in 2009 IEEE International Conference on Acoustics, Speech and Signal

Processing, 2009, pp. 2197–2200. doi: 10.1109/ICASSP.2009.4960054.

[81] B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, “Localization

of brain electrical activity via linearly constrained minimum variance spatial

filtering,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 9, pp. 867–

880, 1997.

[82] V. Van Wassenhove, K. Grant, and D. Poeppel, “Temporal window of in-

tegration in auditory–visual speech perception,” Neuropsychologia, vol. 45,

pp. 598–607, Mar. 2007. doi: 10.1016/j.neuropsychologia.2006.01.001.

[83] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in

blind audio source separation,” IEEE transactions on audio, speech, and language

processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[84] J. Vroomen and J. Stekelenburg, “Perception of intersensory synchrony in

audiovisual speech: Not that special,” Cognition, vol. 118, pp. 75–83, Oct. 2010.

doi: 10.1016/j.cognition.2010.10.002.

[85] J. van der Vyver, A. Kern, and R. Stoop, “Active part implementation of a

biomorphic Hopf cochlea,” in Proceedings of the European Conference on Circuit

Theory and Design ECCTD 2003, 2003, pp. 285–288.

1510.08484
https://doi.org/10.1109/TC.2016.2630683
https://doi.org/10.1109/ISCAS.2007.378702
https://doi.org/10.1109/ICASSP.2009.4960054
https://doi.org/10.1016/j.neuropsychologia.2006.01.001
https://doi.org/10.1016/j.cognition.2010.10.002

122 bibliography

[86] B. Wen and K. Boahen, “A silicon cochlea with active coupling,” IEEE Trans.

Biomed. Circuits Syst., vol. 3, no. 6, pp. 444–455, 2009.

[87] A. Winkler, M. Latzel, and I. Holube, “Open versus closed hearing-aid fittings:

A literature review of both fitting approaches,” Trends in hearing, vol. 20,

p. 2 331 216 516 631 741, 2016.

[88] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, “A spiking neural network

framework for robust sound classification,” Frontiers in Neuroscience, vol. 12,

p. 836, 2018.

[89] Y. Xu, C. S. Thakur, R. K. Singh, T. J. Hamilton, R. M. Wang, and A. van

Schaik, “A fpga implementation of the car-fac cochlear model,” Frontiers in

neuroscience, vol. 12, p. 198, 2018.

[90] G. Yang, R. F. Lyon, and E. M. Drakakis, “A 6 µW per channel analog

biomimetic cochlear implant processor filterbank architecture with across

channels agc,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 1,

pp. 72–86, 2015.

[91] M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5 V 55 µW 64 × 2

channel binaural silicon cochlea for event-driven stereo-audio sensing,” IEEE

Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2554–2569, Nov. 2016, issn:

0018-9200. doi: 10.1109/JSSC.2016.2604285.

[92] M. Yang, C. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and M. Seok, “A 1 µW

voice activity detector using analog feature extraction and digital deep neural

network,” in 2018 IEEE International Solid - State Circuits Conference - (ISSCC),

Feb. 2018, pp. 346–348. doi: 10.1109/ISSCC.2018.8310326.

[93] M. Yang, C. Yeh, Y. Zhou, J. P. Cerqueira, A. A. Lazar, and M. Seok, “Design

of an always-on deep neural network-based 1 µW voice activity detector

aided with a customized software model for analog feature extraction,”

IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1764–1777, 2019. doi:

10.1109/JSSC.2019.2894360.

[94] A. T. Zai, S. Bhargava, N. Mesgarani, and S.-C. Liu, “Reconstruction of

audio waveforms from spike trains of artificial cochlea models,” Frontiers in

Neuroscience, vol. 9, p. 347, 2015.

[95] C. Zamarreno-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and B.

Linares-Barranco, “Multicasting mesh AER: A scalable assembly approach

for reconfigurable neuromorphic structured AER systems. Application to

ConvNets,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 1,

pp. 82–102, Feb. 2013, issn: 1932-4545. doi: 10.1109/TBCAS.2012.2195725.

[96] M. Zohourian and R. Martin, “Binaural speaker localization and separation

based on a joint ITD/ILD model and head movement tracking,” in 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2016, pp. 430–434.

https://doi.org/10.1109/JSSC.2016.2604285
https://doi.org/10.1109/ISSCC.2018.8310326
https://doi.org/10.1109/JSSC.2019.2894360
https://doi.org/10.1109/TBCAS.2012.2195725

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Background on Spiking Sensors and Event-driven Hardware
	1.2 Background on Local AGC
	1.3 Background on Multi-microphone Platform for Ad-hoc Network
	1.4 Thesis Outline

	2 Event-Driven Hardware System for Sensor Fusion
	2.1 Introduction
	2.2 Methods
	2.2.1 Setup
	2.2.2 Networks
	2.2.3 Input Stimuli

	2.3 n-Minitaur Architecture
	2.4 Results
	2.4.1 n-Minitaur Performance Measurements
	2.4.2 Hardware Inputs
	2.4.3 Single Sensor and Sensor Fusion Experiments

	2.5 Discussion

	3 Automatic Gain Control with Spiking Cochlea
	3.1 Introduction
	3.2 Methods
	3.2.1 DASLP Silicon Cochlea
	3.2.2 Gain Switching Transient Response
	3.2.3 Sensor Features
	3.2.4 Dataset Preparation

	3.3 Event-driven AGC Algorithm and Hardware Implementation
	3.3.1 Spike-driven Local AGC Algorithm
	3.3.2 FPGA AGC Implementation

	3.4 Results
	3.4.1 Dependence of Analog Filter Output on Input Amplitude
	3.4.2 AGC Steady-state Spike Response Measurements
	3.4.3 Spike Frequency Responses for non-AGC and AGC Cases
	3.4.4 AGC Transient Measurements to Speech
	3.4.5 Input Features and Classifier
	3.4.6 Voice Activity Detection Classification Task

	3.5 Discussion
	3.5.1 Improvements of Local AGC Mechanism

	4 Multi-microphone Platform for Ad-Hoc Network
	4.1 Background
	4.1.1 Challenges of Platform Development

	4.2 WHISPER platform
	4.2.1 WHISPER Hardware
	4.2.2 WHISPER Prototype Hardware
	4.2.3 FPGA Logic and Software
	4.2.4 Communication and Network

	4.3 Platform Synchronization
	4.3.1 Background of Synchronization Algorithms
	4.3.2 Synchronization Algorithm of the WHISPER Prototype Hardware
	4.3.3 Synchronization for the Final Hardware

	4.4 Beamforming Experiments with WHISPER
	4.4.1 Experiments with Prototype 1
	4.4.2 Speech Separation Experiments with final WHISPER

	4.5 Discussion

	5 Discussion and Conclusion
	5.1 Summary
	5.2 Outlook

	A Appendix
	A.1 Supplementary Material to Chapter 2
	A.1.1 n-Minitaur Implementation Details

	A.2 Supplementary Material to Chapter 3
	A.2.1 Input Signal Conditioning Circuit
	A.2.2 Calibration of Input from Sound Card
	A.2.3 DASLP FPGA Control Logic Structure
	A.2.4 Implementation of ADC Data Transmission over Asynchronous AER Bus
	A.2.5 Embedding the AGC Channel Gain Information into DASLP Events
	A.2.6 jAER Control Panels and Biasgen Settings
	A.2.7 Measurements of Channel Characteristic Frequencies of DASLP
	A.2.8 Effect of Local Gain Control on Responses to a Two-Frequency Component Signal

	A.3 Supplementary Material to Chapter 4
	A.3.1 WHISPER Platform Implementation Details
	A.3.2 Phase Shift and Jitter of WHISPER Prototype
	A.3.3 Alternative Data Transmission Module

	Acronyms
	Publications

	 Bibliography

