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A B S T R A C T   

As the automotive industry transitions from combustion to electric motors, there is a growing 
demand for efficient computational models that can describe the homogenized large deformation 
response of Li-ion batteries. Here, a detailed three-dimensional unit cell model with periodic 
boundary conditions is developed to describe the large deformation response of a typical anode- 
separator-cathode lay-up of a pouch cell. The model makes use of a Deshpande-Fleck foam model 
for the porous polymer separator and Drucker-Prager cap models of the granular cathode and 
anode coatings. Using the unit cell model, the stress-strain response of a battery cell is computed 
for 20’000 random loading paths in the six-dimensional strain space. Based on this data, a 
recurrent neural network (RNN) model is trained, validated and tested. It is found that an RNN 
model composed of two gated recurrent units in series with a deep fully connected network is 
capable to describe the large deformation response with a high level of accuracy. As a byproduct, 
it is shown that advanced conventional constitutive models such as the anisotropic Deshpande- 
Fleck model cannot provide any predictions of satisfactory accuracy.   

1. Introduction 

As the automotive industry transitions from combustion to electric motors, there is a growing demand for efficient computational 
models that can describe the large deformation response of Li-ion batteries. Safety is paramount in automotive engineering and crash 
simulations are an integral part of the design process for new vehicles. In the event of accidental impact loading, the local deformations 
at the cell level of battery packs needs to be known to assess the probability of short circuit and thermal runaway. Furthermore, due to 
their size and weight, transmission of loads through battery packs affects the overall crash response of a passenger car. Consequently, 
their overall stress-strain response for arbitrary three-dimensional mechanical loads needs to be known. 

The basic building block of commercial Li-ion battery cells is a lay-up composed of an anode and cathode separated by a permeable 
polymer layer. The anode typically comprises a copper foil that is double-sided coated by graphite or an Si/C composite, while the 
cathode comprises an aluminum foil that is double-sided coated with an active ceramic powder such as LiFePO4 (LFP), LiCoO2 (LCO), 
LiNixMnyCozO2 (NMC), LiNiCoAlO2 (NCA), or their combination. From the point of view of mechanical modeling, the small di
mensions of the lay-up (as compared to the characteristic dimensions of the load carrying members of a car body) poses a major 
challenge. Depending on the specific battery manufacturer, the thicknesses of the foils vary from 5 to 20μm and that of their coatings 

* Corresponding author. 
E-mail address: mohr@mit.edu (D. Mohr).  

Contents lists available at ScienceDirect 

International Journal of Plasticity 

journal homepage: www.elsevier.com/locate/ijplas 

https://doi.org/10.1016/j.ijplas.2021.103072 
Received 18 April 2021; Received in revised form 11 July 2021;    

mailto:mohr@mit.edu
www.sciencedirect.com/science/journal/07496419
https://www.elsevier.com/locate/ijplas
https://doi.org/10.1016/j.ijplas.2021.103072
https://doi.org/10.1016/j.ijplas.2021.103072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2021.103072&domain=pdf
https://doi.org/10.1016/j.ijplas.2021.103072
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Plasticity 146 (2021) 103072

2

Nomenclature 

σ, σij Cauchy stress tensor and its components 
s Deviatoric part of the Cauchy stress tensor 
p Hydrostatic pressure 
σvM von Mises equivalent stress 
ε,εij Hencky strain tensor and its components 
εe, εp Elastic and plastic part of the Hencky strain tensor 
εp Equivalent plastic strain 
εp

C, εp
S, εp

C, εp
S Consolidation and sliding part of the plastic strain tensor for the Drucker-Prager cap model and their respective 

equivalent plastic strain 
E Young’s modulus 
ν Poisson’s ratio 
fvM, fDF, fS,fC Yield surface for the von Mises, Deshpande-Fleck and Drucker-Prager and cap models 
gDF, gS, gC Flow potential for the Deshpande-Fleck and Drucker-Prager and cap models 
k Isotropic deformation resistance 
A, ε0, n Parameters of the Swift hardening model for the current collectors 
α, pt Parameters of the isotropic Deshpande-Fleck equivalent stress 
pc Hardening parameter for the Deshpande-Fleck model 
c, d, R Parameters of the Drucker-Prager cap equivalent stress 
pa Hardening parameter for the Drucker-Prager cap model 
H, Hij Displacement gradient tensor and its components 
P First Piola-Kirchhoff stress tensor 
Hmax, Hmax

ij Endpoint of the straining path and its components 
Hmax Radius of the straining hypersphere 
ψ , θ, φ Hyperspherical angular coordinates 
hij, bij Amplitude function of the straining path and its parameter 
t, tF Time and final simulation time 
dPath Distance between two loading paths in strain space 
Ns, Nt Number of simulations and number of extracted time steps 
γ Arbitrary rotation of the simulation results around the z-axis 
Cijkl Components of the elastic stiffness tensor for the homogenized model 
B, C, D, F Parameters of the homogenized transversely-isotropic Desphande-Fleck model 
Φ Yield surface for the transversely-isotropic Deshpande-Fleck model 
PADF Matrix representation of the homogenized anisotropic Deshpande-Fleck model 
k Isotropic deformation resistance 
A, ε0, n Parameters of the Swift hardening model for the homogenized model 
Wp Plastic dissipation density 
fANN Functional form of the Artificial Neural Network (ANN) approach 
NIN, NO Dimension of the input and output vectors 
NU Number of Gated Recurrent Units (GRU) 
NNPU Number of neurons per GRU 
r〈t〉,r〈t〉j Reset gate of the GRU at time t and its components 

f〈t〉,f 〈t〉j Forget gate of the GRU at time t and its components 

h〈t〉,h〈t〉
j Hidden state of the GRU at time t and its components 

ĥ
〈t〉

,ĥ
〈t〉
j Candidate hidden state of the GRU at time t and its components 

Wr, Wf , Wĥ Weight matrices for the reset gate, forget gate and candidate hidden state of the GRU 

Ur, Uf , Uĥ Recurrent weight matrices for the reset gate, forget gate and candidate hidden state of the GRU 

br, bf , bĥ Bias vector for the reset gate, forget gate and candidate hidden state of the GRU 
ς Sigmoid function 
NHL Number of hidden layers in the fully connected neural network (FCNN) 
NN Number of neurons per hidden layers 
W(n) Weight matrix for the nth layer of the FCNN 
b(n) Bias vector for the nth layer of the FCNN 
x,x,xj,xj Input and normalized vector for the ANN and their components 
y,y,yj,yj Output and normalized vector for the ANN and their components 
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from 50 to 100μm. Due to the importance of out-of-plane loading, a discretization with solid elements with an edge length of a few 
microns would be needed to account for the compressibility of the porous coatings. This element size is about three orders of 
magnitude smaller than the smallest affordable element size in state-of-the-art vehicle models for explicit crash simulation. 

Reliable homogeneous-equivalent mechanical models of battery cells are thus urgently needed to enable full vehicle crash simu
lations with electric power trains. A first rudimentary model has been proposed by Sahraei et al. (2012a). Except for the casing, their 
model represents the entire interior multilayer structure of 18650 lithium-ion cells by an isotropic crushable foam model (material #63 
from the LS-DYNA library). They obtained good results for four different crush loading conditions (lateral indentation by a rigid rod, 
indentation by a hemispherical punch, 3-point bending, and compression between two rigid flat plates) after (re-)calibrating the foam 
model based on the obtained load displacement curves. In Sahraei et al. (2012b), the authors show that the foam model could also be 
successfully calibrated to reproduce the experimental results from out-of-plane compression experiments on pouch cells. A 
pressure-dependent anisotropic plasticity model based on the works of (Caddell et al., 1973) has been proposed by Greve and Feh
renbach (2012) to describe the homogenized response of battery cells. Xia et al. (2014) modeled the impact response of battery packs 
comprising cylindrical cells. Similar to Sahraei et al. (2012a), they modeled the 0.25mm thick aluminum casings of the cells with shell 
elements, while solid elements are used in conjunction with an isotropic crushable foam model to represent the mechanical response of 
the interior jelly roll structure in an approximate manner. Their shell casing model accounts for both plastic anisotropy and stress-state 
dependent fracture. Li and Zhu (2020) proposed an extension of the Deshpande-Fleck model to describe the large deformation and 
fracture response of Li-ion cells in a homogeneous manner. Their macroscopic model incorporates the effects of anisotropy, strain rate 
and state-of-charge. After calibrating the model, they demonstrated its validity through structural simulations of a variety of inden
tation experiments on pouch cells. The limitations of their model include the absence of strain hardening under in-plane loading, the 
negligence of the Poisson effect under out-of-plane loading, numerical issues due to the non-associated flow rule and the simplistic 
treatment of fracture and strain rate effects. In the context of modeling the impact response of pouch and prismatic cells, Deng et al. 
(2020) used a Drucker-Prager cap type of model (material #25 in LS-DYNA) to describe the homogeneous-equivalent response of a 
battery cell. 

Instead of treating the entire cell interior as a single homogeneous material, more detailed models resolving the layer-type of 
interior structure have also been developed. Here, the specific choice of the constitutive models describing the stress-strain response of 
individual battery ingredients and their mechanical interaction is extremely challenging due to the small dimensions (thin foils) and 
exotic nature of the active materials (liquid-filled granular solids). Sahraei et al. (2012b) built a first layered model where the current 
collector foils are represented by an isotropic metal plasticity model, while the granular active material with binder and separator is 
modeled as homogeneous crushable foam. The layered model has also been used to replicate the results from in-plane compression 
experiments on pouch cells with and without lateral confinement. Sahraei et al. (2012b) conclude rather pessimistically by stating that 
“it is clear that there is no universal constitutive model to represent all types of batteries with different types of external casing and 
shape factor.” They also pointed out the importance of developing models that capture the anisotropy of the internal layered structure 
of prismatic cells. 

A crushable foam model has been employed by Zhang et al. (2016) to model the active materials and the separator layer in Li-ion 
pouch cells. On top of estimating the mechanical fields during indentation loading, they also solved the electrical and thermal field 
equations to predict the thermal effect of deformation-induced short circuits. A basic two-dimensional RVE model featuring five 
material layers and periodic boundary conditions has been developed by Sahraei et al. (2016). They made use of RVE simulations to 
generate data for calibrating an isotropic crushable foam model that represents the homogenized response of the anisotropic jelly roll 
structure. (Zhu et al., 2019a) presented a comprehensive investigation of the mechanical behavior of all cell layers. They proposed a 
Drucker-Prager (with cap) plasticity model for the graphite and NMC coatings of the anodes and cathodes, respectively. In their cell 
model, the ceramic-coated polyethylene current separator is described through a Deshpande-Fleck model, while basic J2 plasticity 
with isotropic hardening and Mohr-Coulomb fracture is used for the copper and aluminum current collectors. The same model has also 
been used by Li et al. (2019) when determining the safety envelopes for pouch cell subject to impact loading. The model of Wang et al. 
(2019) treats the jelly roll as a three-layer structure with a separate constitutive model for the cathode (aluminum foil coated with 
active material), anode (copper foil coated with active material) and the polymeric separator. They chose a linear elastic model for 
both the cathode and the anode, and an elasto-plastic model for the separator. 

Lian et al. (2020) extended the isotropic Deshpande-Fleck model of foams to account for damage and fracture of the 

Y,Yj Normalized output vector used in the calibration of the ANN and its components 
ymax

j ,ymin
j Maximum and minimum jth components of the output vector 

NParamGRU Number of trainable parameters per GRU 
NParamFCNN Number of trainable parameters for the FCNN 
NParam Total number of trainable parameters 
Np Number of predicted loading cases 
Ω All trainable parameters of the full architecture 
σFE, σNN Cauchy stress tensor obtained from the finite element simulations and predicted by the neural network 
MSE Mean squared error 
MAE Mean absolute error 
MaxAE Maximum absolute error  
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separator/active material compound. The resulting model was successfully used to predict shear bands within the internal structure of 
pouch cells. The detailed model proposed by Pan et al. (2020) makes use of shell elements to discretize the anode and cathode current 
collectors as well as the separator. An isotropic rate-dependent elasto-plasticity model is used for each of these components. Solid 
elements are employed together with crushable foam model to represent the granular active layers. A two-dimensional mechanical 
model (in COMSOL) using a two-stage deformation plasticity model for the positive and negative electrodes, and the separator is used 
by Li et al. (2020) when studying the short-circuit mechanism during the indentation of pouch cells. 

A coupled chemo-mechanical model of fracture of the cathode current collector of Li-ion cells has been developed by Singh and Pal 
(2020). Their model is suited for predicting the possible degradation of polycrystalline cathodes during electrochemical cycling. 
Hofmann et al. (2020) used an electro-chemical diffusion model in conjunction with a small-strain plasticity model to simulate the 
dilatation of lithium-iron phosphate cathodes. (Li et al., 2019) developed a defect-based viscoplastic model of thin film Si electrode 
accounting for both convection and diffusion of solute atoms, while the effect of irradiation on the yield strength of electrode materials 
is taken into account by the electrochemical-irradiated plasticity model of Ma et al. (2017). 

In the present work, an attempt will be made to come up with a homogeneous-equivalent constitutive model for the interior 
structure of battery cells through a machine-learning approach. Similar to the challenges faced by crystal plasticity models (e.g. Roters 
et al., 2019), the computational costs for RVE based battery models are still too high for most structural applications and 
computationally-efficient surrogate models are needed. Bessa et al. (2017) proposed a framework for machine-learning material 
modeling, especially suitable for RVE-based approaches, reducing the computational cost of plasticity and damage modeling. Liu et al. 
(2019) made use of fully-connected neural networks to model the constitutive response of heterogeneous materials. A possible rep
resentation of von Mises plasticity through fully-connected neural networks has been shown by Zhang and Mohr (2020). 
Fully-connected neural networks have also been successfully used to present the temperature and strain-rate dependent hardening of 
aluminum 5282 (Jenab et al., 2016), advanced high strength steels (Li et al., 2019) ), aluminum 7075 during hot-forming (Pandya 
et al., 2020) and polypropylene (Jordan et al., 2020). Other successful applications of fully-connected neural networks in the field of 
plasticity include the prediction of path-dependent forming limits (e.g. Bonatti and Mohr, 2020, Greve et al., 2019) or basic uni-axial 
elasto-plastic loading/unloading cycles (Lavech du Bos et al., 2020). Recurrent neural network models appear particularly suitable for 
describing the loading history-dependent elasto-plastic response of solids. (Mozaffar et al., 2019)and Gorji et al. (2020) demonstrated 
that deep learning models with long short term memory (LSTM) cells or gated recurrent units (GRUs) can replicate the response of 
advanced phenomenological plasticity models (e.g. HAH model by Barlat et al. (2011, 2013)). Abueidda et al. (2021) showed that 
GRUs as well as temporal convolutional networks (TCNs) can describe the history- and time-dependent response of cellular solids and 
metal solidification. 

In the sequel, we present a detailed three-dimensional unit cell model of a battery cell comprised of five distinct material layers and 
periodic boundary conditions. The unit cell model is then subjected to random loading paths in the six-dimensional strain space and the 
corresponding stress histories are computed. The outcome is a rich database that describes the stress-strain response of a Li-ion battery 
cell with more than 20,000 finite strain loading paths. This data is then used to train, validate and test a GRU based constitutive model 
which can then be used to describe the anisotropic macroscopic mechanical response of battery cells in structural applications that 
involve large deformations. 

2. Unit cell model of battery 

A three-dimensional unit cell model is built to predict the macroscopic stress-strain response of lithium-ion batteries through 
computational homogenization. Following the jargon use in literature on batteries, we will also make use of the term “RVE” to make 
reference to the unit cell model. The specific lithium-ion cell considered in this work consists of the following layers: (i) a 20μm thick 
aluminum foils as current collector for the cathode, (ii) a 70μm thick layer of a first active material with binder acting as cathode, (iii) a 
16μm thick polymeric separator, (iv) a 60μm thick layer of a second active material with binder acting as anode, (v) a 10μm thick 
copper foil as current collector for the anode. The mechanical model is designed for predicting the large deformation response (prior to 
failure) for static loading conditions. 

2.1. Models of constituent materials 

The models for the constituent material are taken from the open literature and follow the recommendations of (Zhu et al., 2019a). 
Previous experimental works (Zhu et al., 2019b) showed the negligible effect of the electrolyte on the slow strain rate response of the 
cells by comparing cells with and without electrolyte. The present work focuses on the slow-strain rate response and the electrolyte is 
thus not modeled. The effects of strain rate and anisotropy are neglected at the solid material level. It is believed that the origin of the 
anisotropic response of battery cells lies mainly in their architecture. In this manuscript, ε denotes the Hencky logarithmic strain 
tensor, σ the Cauchy stress tensor. Each material is modeled as elasto-plastic material. The strain tensor is then decomposed additively 
into an elastic part εeand a plastic part εp = ε − εe. In vector notation, the stress vector is defined by 

[σ] =
[
σxx, σyy, σzz, σxy, σxz, σyz

]T (1)  

and the plastic strain increment vector by 
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Fig. 1. (a)-(c)-(e) Yield surface and flow potential of the current collectors, separator and active material along with the hardening behavior (b)-(d)- 
(f). The dashed line indicate the yield locus shape at higher equivalent plastic strain. 
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[dεp] =
[
dεp

xx, dεp
yy, dεp

zz, dεp
xy, dεp

xz, dεp
yz

]T
(2) 

Both metallic current collectors are modeled using von Mises plasticity with isotropic hardening. The porous polymeric separator is 
modeled using the isotropic Deshpande-Fleck model with a combined isotropic and kinematic hardening. Finally, both active materials 
are modeled using the Drucker-Prager cap model. A summary of the yield surface shape and hardening law is shown on Fig. 1, while 
the details about the constitutive modeled used in the simulations are provided in Appendix A. 

2.2. Finite element model of unit cell 

The unit cell corresponds to an elementary volume based on which the entire interior structure of a battery cell can be constructed 
through translations. In the thickness direction (z-direction), we chose to define the unit cell boundary at the center of the separator. 
The stack-up in our unit cell model thus comprises nine layers (Fig. 2): (1) 8μm separator, (2) 60μm graphite, (3) 10μm copper, (4) 
60μm graphite, (5) 16μm separator, (6) 70μm NMC powder, (7) 20μm aluminum, (8) 70μm NMC powder, (9) 8μm separator. The total 
height of the unit cell is 322μm. Following the recommendation of (Zhu et al., 2019a), a friction interface with a Coulomb friction 
coefficient of 0.5 is defined between the active material and the separator, while the active materials are tied to the current collectors. 
The tied condition is chosen due to the presence of a binding agent between the active materials and the current collectors. Luo et al. 
(2018) studied the adhesion properties of the cathode and showed a high adhesion strength together with a weak loading angle de
pendency making the tied conditions a viable assumption. 

From a topological point of view, the in-plane dimensions of the unit cell model could be chosen as small as a single finite element. 
However, from a mechanical point of view, the in-plane dimensions set the maximum wavelength of possible buckling (and post- 
buckling) patterns. Based on the buckling waves observed experimentally (Zhu et al., 2020), we chose the in-plane dimension 
equal to the height of the unit cell, i.e. the final unit cell size is 322μm× 322μm× 322μm. 

The unit cell is meshed with first-order hexahedral elements with reduced integration (C3D8R from Abaqus library) with a min
imum of 4 elements through the thickness of each layer and 40 elements along each in-plane direction, resulting in a total of 70’400 
elements. All simulations are carried out with explicit time integration using the finite element software Abaqus/Explicit. To ensure 
quasi-static conditions, density-scaling is used in a way that each simulation required at least 100’000 time steps (whose size is set by 
the ratio of the minimum element dimension and the density-dependent elastic wave speed). The periodic boundary conditions are 
applied by enforcing linear kinematic constraints between opposite nodes of the unit cell model to a master node whose displacement 
is related to the macroscopic displacement gradient H (similar to the unit cell models developed by Tancogne-Dejean and Mohr, 2018). 
The macroscopic first Piola-Kirchhoff stress tensor P (i.e. the spatial average over the entire unit cell volume) is determined from the 
work-conjugate resulting forces at the master nodes. The macroscopic Hencky strain tensor ε and Cauchy stress tensor σ are obtained 
using standard transformations (under the absence of rigid body rotation) 

ε = ln(1 + H) (3)  

and 

σ =
1

det(1 + H)
(1+H).PT . (4)  

2.3. Loading scenarios 

In the sequel, non-linear loading paths are defined in strain space to characterize the mechanical response of the unit cell. Due to the 
invariance of the initial unit cell geometry to rotations around the z-axis (and neglecting the effects deformation-induced symmetry 
changes and non-stationary principal directions), we limit our attention to macroscopic displacement gradients with the y-direction as 
principal direction, 

Fig. 2. RVE architectures with the different materials.  
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H =

⎛

⎝
Hxx 0 Hxz
0 Hyy 0

Hzx 0 Hzz

⎞

⎠ (5) 

Furthermore, we assume no rigid body rotation, so that the displacement gradient is symmetric, i.e. Hxz = Hzx. During the loading, 
the displacement gradient starts at 0 and reaches a final value Hmax lying on a four-dimensional hypersphere. Using hyperspherical 
coordinates, the final value of each component can be written as 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Hmax
xx = Hmaxsin(ψ)sin(θ)cos(φ)

Hmax
yy = Hmaxsin(ψ)sin(θ)sin(φ)

Hmax
zz = Hmaxsin(ψ)cos(θ)

Hmax
xz = Hmax

zx = Hmaxcos(ψ)

(6)  

where Hmax =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Hxx
max)

2
+ (Hyy

max)
2
+ (Hzz

max)
2
+ (Hxz

max)
2

√

is the radius of the hypersphere and ψ ∈ [0,π], θ ∈ [0,π],φ ∈ [0,2π]. In the 
present study, we limit the radius to Hmax = 0.15 (moderate strains at the macroscopic level). The relevant range for the angular 
coordinate is further reduced based on the following considerations:  

• Due to the interface conditions between the active material and the separator, the cell cannot carry any loads for out-of-plane 
tension. Thus, we can limit our simulations to cases where Hzz

max < 0.  
• Mechanical symmetries of the loading can further reduce the number of simulations required to map the entire space. Firstly, 

positive and negative shear strains yield the same response, and therefore we limit our attention to Hxz
max ≥ 0.  

• Then, due to the in-plane isotropy, the response is symmetric with respect to the plane with the normal vector (ex − ey). 

The four above-mentioned conditions lead to the following restrictions 

ψ ∈ [0, π / 2], θ ∈ [π / 2, π],φ ∈ [π / 4, 5π / 4]. (7) 

From these angles, the full loading space, i.e. the half-hypersphere with Hzz
max ≤ 0 can be populated. 

To gain insight into the unit cell response for both proportional and non-proportional loading paths, the paths are chosen here to 
exhibit different histories for each component. With t denoting a time-like parameter, we define 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Hxx(t) = hxx(t)Hmax
xx

Hyy(t) = hyy(t)Hmax
yy

Hzz(t) = hzz(t)Hmax
zz

Hxz(t) = hxz(t)Hmax
xz

(8)  

Fig. 3. 1000 loading paths in the {Hxx,Hyy,Hzz} space with (a) a 3D view and (b) a top view in the {Hxx,Hyy} view. The red sphere denotes the limit 
of the hypersphere. 
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where the histories are defined by the functions hij(t) =
exp

(

bij
t

tF

)

− 1

exp(bij)− 1 . These functions start at 0 and reach 1 at the final time tF. The 
amplitude parameter is limited to the interval bij ∈ [− 5, 5] \ {0} leading to concave and convex-shaped strain histories. 

In summary, each simulation is defined by randomly choosing three angles {ψ , θ,φ} and four non-zero amplitude parameters {bxx,

byy,bzz,bxz}. The resulting displacement gradient components then read 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hxx(t) =
exp

(

bxx
t
tF

)

− 1

exp(bxx) − 1
Hmaxsin(ψ)sin(θ)cos(φ)

Hyy(t) =
exp

(

byy
t
tF

)

− 1

exp
(
byy

)
− 1

Hmaxsin(ψ)sin(θ)sin(φ)

Hzz(t) =
exp

(

bzz
t
tF

)

− 1

exp(bzz) − 1
Hmaxsin(ψ)cos(θ)

Hxz(t) = Hzx(t) =
exp

(

bxz
t
tF

)

− 1

exp(bxz) − 1
Hmaxcos(ψ)

Hxy = Hyx = Hyz = Hzy = 0

(9) 

This results in smooth non-linear displacement gradient paths. Overall, 1,000 unit cell simulations are performed to cover a wide 
spectrum of loading. Fig. 3 shows the loading paths in the {Hxx,Hyy,Hzz} space. The output of the simulations are the stress and strain 
tensor components for Nt = 200 equally-spaced time steps. Using a high-performance computing facility, each of the simulations takes 
about one hour on six CPUs (on AMD EPYC 7742 cores), resulting in a total running time of 1000h. 

To generate data describing the stress-strain response for the entire six-dimensional strain space, the results are further enriched 
using the rotational symmetry of the system. This is done through an in-plane rotation around the ez-axis by an arbitrary angle γ. For 
each simulation, 20 rotation angles are picked within the interval γ ∈ [0;2π[ resulting in a data set for a total of Ns = 20,000 distinct 
loading paths in strain space. In order to discuss the mechanical response of the cells, four simulations with linear strain paths are 
performed, corresponding to (i) an in-plane compressive straining Hxx = − Hmaxt /tF, (ii) an in-plane tensile straining Hyy = Hmaxt /tF, 
(iii) an out-of-plane compressive straining Hzz = − Hmaxt /tF and (iv) an out-of-plane pure shear straining Hxz = Hzx = Hmaxt /tF. All 
other components of the displacement gradient are set to zero. Note that the first three cases result in a single non-zero Hencky strain 
component (respectively εxx, εyy, εzz), while the out-of-plane pure shear straining results in two normal components εxx = εzz =

1 /2ln(1 − tanh2(εxz)). For further comparison between the different loading cases, the following distance between two paths is 
introduced: 

dPath(a, b) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(i,j)∈{x,y,z}2

(
ε(a)ij (tF) − ε(b)ij (tF)

)2
√

(10) 

This distance corresponds to the distance between the endpoints of the two paths in the strain space. 

3. Analytical plasticity model of battery 

3.1. Constitutive equations 

In order to assess the performance of advanced analytical plasticity models, the simulations results are used to calibrate the ma
terial constants of a transversely-isotropic elasto-plastic model, i.e. the extension of the Deshpande and Fleck model to transverse 
isotropy (Tagarielli et al., 2005). Firstly, the transversely isotropic elastic behavior is given by 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σxx
σyy
σzz
σxy
σxz
σyz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Cxxxx Cxxyy Cxxzz 0 0 0
Cxxyy Cxxxx Cxxzz 0 0 0
Cxxzz Cxxzz Czzzz 0 0 0

0 0 0
(
Cxxxx − Cxxyy

)
0 0

0 0 0 0 Cxzxz 0
0 0 0 0 0 Cxzxz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εxx − εp
xx

εyy − εp
yy

εzz − εp
zz

εxy − εp
xy

εxz − εp
xz

εyz − εp
yz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11) 

As discussed in the introduction, the isotropic Deshpande-Fleck model has been used for modelling cells (e.g. Lian et al., 2019, Li 
and Zhu, 2020). The model is based on a quadratic yield surface with pressure dependency and a transverse isotropic behavior. The 
yield locus reads: 
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Φ =
(

B2
(

σ2
xx + σ2

yy + 2σ2
xy

)
+ σ2

33 − C2
(

σxxσyy − σ2
xy

)
− D2σzz

(
σxx + σyy

)
+ F2

(
σ2

xz + σ2
yz

))1/2

− k(εp) = 0
(12)  

Here {B,C,D, F} are the material model parameters and k(εp) denotes the self-similar hardening evolution law to be calibrated on the 
out-of-plane uniaxial compression. As explained in Tagarielli et al. (2005), the isotropic Deshpande-Fleck is recovered for B2 = 1, C2 

= D2 =
1− 2α2/9
1+α2/9 and F2 = 3

1+α2/9, where α is the original parameter describing the ellipse ratio in the (p, σvM) plane (Deshpande and 
Fleck, 2000). Setting α = 1 recovers the von Mises yield locus. It is noteworthy that the quadratic yield surface can be written as 

Φ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[σ].PTIDF.[σ]

√
− k(εp) = 0, (13)  

with the matrix PTIDF defined as 

PTIDF =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B2 − C2/2 − D2/2 0 0 0
− C2/2 B2 − D2/2 0 0 0
− D2/2 − D2/2 1 0 0 0

0 0 0 2B2 + C2 0 0
0 0 0 0 F2 0
0 0 0 0 0 F2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14) 

The flow rule is defined as associated and the plastic strain increment vector reads 

[dεp] =
dεp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[σ].PTIDF .[σ]

√ PTIDF .[σ]. (15) 

The equivalent plastic strain increment can finally be defined as 

dεp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[dεp].P− 1
TIDF .[dεp]

√

. (16) 

The hardening is described by a Swift law as defined in Eq. (35). The model is implemented as a user-subroutine in Abaqus/Explicit 
(VUMAT) following the work of Erice et al. (2018). The implementation allows simulating the response of the homogenized model 
subjected to the same strain paths based on a single element simulation. 

3.2. Model parameter identification 

The plasticity model is calibrated based on the data for all strain paths. The elastic constants are obtained from dedicated small 
strain simulations. The material parameters {B,C,D, F} are fitted to the stress tensor values at a macroscopic plastic work density Wp =

0.5mJ/mm3. The Swift hardening law parameters {A, ε0, n} are fitted using the simulations for confined out-of-plane compression. 

4. Neural network plasticity model 

A neural network model is built to act as computationally-efficient surrogate of the unit cell model. It predicts the Cauchy stress 
tensor at a given time t as a function of the history of the Hencky strain tensor from 0 to t. The mathematical problem to be described 
may be written as the mapping 

fANN :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

εxx[τ], 0 ≤ τ ≤ t
εyy[τ], 0 ≤ τ ≤ t
εzz[τ], 0 ≤ τ ≤ t
εxy[τ], 0 ≤ τ ≤ t
εxz[τ], 0 ≤ τ ≤ t
εyz[τ], 0 ≤ τ ≤ t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σxx[t]
σyy[t]
σzz[t]
σxy[t]
σxz[t]
σyz[t]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17) 

To predict the stress based on the entire strain history, a feed-forward recurrent neural network based on Gated Recurrent Unit and 
Fully Connected Neural Network (GRU-FCNN) network formulation is employed. Feed-forward refers to the unidirectional flow signals 
from an input layer to an output layer while passing through hidden layers. The recurrent neural network (RNN) is capable to keep 
track of the input history through memory cells. The RNN output at a time t is directly connected to the network’s prior decisions by 
injecting its previous output at a time t − Δt to the input when predicting the output at time t. As a consequence, the stress components 
(output of the network) at a given time step depend on the strains at that time step as well as the complete prior deformation history of 
the material. Gated Recurrent Units (GRU) are used here as memory cells (Cho et al., 2014). In combination with fully-connected 
neural network (FCNN) layers, a surrogate model of battery cells will be built with GRUs. It should be noted that conventional 
constitutive model of elasto-plasticity uses the previous strain value, some state variables and strain increment to predict the stress 
values, in an incremental manner. The incremental nature of the recurrent neural network architecture and the use of the entire strain 
history as an input allows writing the constitutive model in an incremental or total plasticity framework. The latter approach is fol
lowed for this work. 
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4.1. GRU-FCNN formulation 

The two main components used to compute the multi-dimensional output variables from the input variables are presented here, 
before describing the overall architecture. 

4.1.1. Gated recurrent unit 
The fully gated version of the GRU is formulated based on a reset gate, concatenating the new input with the previous memory, a 

forget gate deciding how much of the previous memory needs to be kept around, as well as the hidden state transferring the infor
mation forward. The two gates control the information flow between the long-term hidden state and the predictions at each time step 
as shown in Fig. 4b. Each GRU is defined with NNPU number of neurons per gate and includes the following main elements:  

1) Activation of the NNPU-dimensional time step-dependent reset gate r〈t〉 in the GRU cell represented by NNPU-dimensional hidden 
state h〈t− Δt〉, i.e., the RNN capability to hold information on previous data that the network has already seen. With the input vector 
x〈t〉, the reset gate output reads 

r〈t〉 = ς
[
Wrx〈t〉 +Urh〈t− Δt〉 + br]. (18)   

The weight matrix Ur is the recurrent connection between the previous and the current hidden layers inside the reset gate. Note that 

Fig. 4. (a) GRU-FCNN architecture and (b) details of a Gated Recurrent Unit (GRU).  
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the initial hidden state is described by the null vector h〈t=0〉 = 0. The second weight matrix Wr connects the inputs at a specific time t to 
the current hidden layer, while br denotes the bias vector. The function ς refers to the sigmoid function.  

1) Activation of the forget gate that is represented by NNPU-dimensional time step-dependent f〈t〉. This gate learns what information 
should be discarded and what information should be remembered. It reads 

f〈t〉 = ς
[
Wfx〈t〉 +Ufh〈t− Δt〉 + bf]. (19)   

Like the reset gate, the activation is specified with the sigmoid function ς. Wf , Uf , and bf are respectively two weights matrices and a 
bias vector regulating the forgetting mechanism in this gate.  

1) Activation of the NNPU-dimensional candidate hidden state ĥ
〈t〉

. It is computed based on the current input x〈t〉, the previous hidden 

state h〈t− Δt〉, and the output vector of the reset gate r〈t〉. The candidate hidden state ĥ
〈t〉

is transformed by the hyperbolic tangent 
activation function, 

ĥ
〈t〉

= tanh
[
Wĥ x〈t〉 +Uĥ(r〈t〉 ∘ h〈t− Δt〉)+ bĥ] (20)   

with two different weight matricesWĥ and Uĥ as well as a bias vector bĥ . Here, ∘ denotes the term by term product of two vectors of 

identical dimensions, i.e.(r〈t〉 ∘ ĥ
〈t− Δt〉

)i = r〈t〉i ĥ
〈t− Δt〉
i for i = 1,...,NNPU. It is worth noting that the hyperbolic tangent function ensures the 

values stay within [ − 1, + 1]. For a given index j, if the reset gate value r〈t〉j is zero (or close to zero), the previous hidden state value 

h〈t− Δt〉
j will not appear in the candidate hidden state and thus the cell will be “reset”.  

1) Computation of the GRU output current hidden state, represented by NNPU-dimensional h〈t〉, which is a linear composition of the 

previous hidden state h〈t− Δt〉 and the current candidate hidden state ĥ
〈t〉

using the current forget gate f〈t〉. It reads, 

h〈t〉 = (1 − f〈t〉) ∘ h〈t− Δt〉 + f〈t〉 ∘ ĥ
〈t〉

(21)   

where 1 is a unit vector (i.e. a vector filled with ones). The formulation gives some insights about the role of the forget gate. If for a 
given index j, f〈t〉j is zero (or close to zero), the value h〈t〉

j of the hidden state will be the value of the previous hidden state h〈t− Δt〉
j and is 

remembered, while if it is one (or close to one), the value will be forgotten and replaced by the value from the candidate hidden state 

ĥ
〈t〉
j . 

The total number of hyperparameters in a GRU cell is associated with the dimension NIN of the input vector x and the desired 
amount of neurons in the hidden layers NNPU of the GRU cell. For each GRU, the number of parameters reads 

NParamGRU = 3NNPU(1+NIN +NNPU) (22)  

4.1.2. Fully-connected neural network 
The GRU cells are responsible for learning the long-term dependencies through the recurrent gating mechanism. The output of the 

machine-learning based model is obtained through a Fully-Connected Neural Network. This network consists in NHL layers containing 
NN neurons each and process the data as follows:  

1) Computation of the first hidden layer. Considering the NNPU-dimensional input h〈t〉 from the last GRU, the activation of the first 
hidden layer of the FCNN, h(1) is computed by, 

h(1) = tanh
[
W(1)h〈t〉 + b(1)] (23)   

with the weight matrix W(1) and the bias vector b(1).  

1) Computation of the subsequent (NHL − 1) hidden layers. For each hidden layer, n = 2, ..., N, the nth-hidden layer’s terms read 
similarly: 
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h(n) = tanh
[
W(n)h(n− 1) + b(n)] (24)    

2) Normalized output calculation. From the last NN-dimensional hidden layer h(N), the normalized output is a NO-dimensional vector 
y which can be computed using a weighted sum as the activation function and is obtained by 

y = W(N+1)h(N) + b(N+1) (25)   

Overall the number of parameters of the FCNN architectures reads: 

NParamFCNN = NN(I + 1) + NN(NHL − 1)(NN + 1) + (NN + 1)NO (26)  

4.1.3. GRU-FCNN plasticity model 
The plasticity model is based on NU GRUs in series connected to an FCNN (Fig. 3a). The input vector is given by the strains at time t, 

x〈t〉 =
{

εxx[t], εyy[t], εzz[t], εxy[t], εxz[t], εyz[t]
}

(27)  

while the stresses at time t define the model output, 

y〈t〉 =
{

σxx[t], σyy[t], σzz[t], σxy[t], σxz[t], σyz[t]
}
. (28) 

It is reemphasized that the model does not explicitly feature state variables as inputs since the GRUs are able to memorize the 
loading history. The input data are normalized with a 0 mean value and a unit standard deviation. For each input component xi (with i 
= 1, ..., 6), the normalized input vector x is calculated. Similarly, the output variables, i.e. the stress components are scaled in the 
interval [0; 1], where each component is stored in the 6-dimensional vector y = [y1, ..., y6]. After the FCNN, the output stress y is 
computed by the inverse transformation of the normalized output. 

Taking into account the different input size, the total number of parameters in the architecture is given by the following formula: 

NParam = 3NNPU(1 + NIN + NNPU + (NU − 1)(1 + 2NNPU)) + NN(NNPU + 1)
+(NN + 1)(NN(NHL − 1) + NO)

(29)  

4.2. Training procedure 

The network parameters (weights and biases) are identified by minimizing the error between the desired and the actual response of 
the output layer (supervised learning). The objective function for the present model is the mean squared error (MSE) between the 
predicted normalized network outputs y and the given target responses Y (normalized). It reads as, 

MSE(Ω) =
1

6NpNt

∑6

i=1

∑Np

k=1

∑Nt

τ=1

(

y(k)
i (τ,Ω) − Y(k)

i (τ)
)2

(30)  

where Ω stands for all trainable parameters including the weight matrixes and bias values and Np is the number of predicted loading 
cases (here the training set size). The training is performed using the python-based Keras framework. 75% of the total loading cases (i. 
e. 15,000) are randomly chosen for training, while 5,000 are used for testing. This results in a total number of training points of 6NpNt 

= 18.106. The ADAM optimizer is used for the backpropagation (Kingma and Ba, 2015). Nine architectures with increasing number of 
neurons and hidden layers are trained (see Table 1). The number of neurons is identical in all GRUs and hidden layers (NNPU = NN) and 
the number of hidden layers is identical to the number of GRUs (NHL = NU). The models are denoted NN − NU, e.g. 200-2 denotes a 
model with 2 GRUs, 2 hiddens layers with 200 neurons for each layer and each gate. For six inputs and outputs, the number of pa
rameters is given by: 

Table 1 
Number of parameters for the different architectures.  

Architectures Number of GRU cells Number of neuron per cell Number of hidden layers Number of neurons per layers Number of parameters 

50-1 1 50 1 50 11406 
50-2 2 50 2 50 29106 
50-3 3 50 3 50 46806 
100-1 1 100 1 100 42806 
100-2 2 100 2 100 113206 
100-3 3 100 3 100 183606 
200-1 1 200 1 200 165606 
200-2 2 200 2 200 446406 
200-3 3 200 3 200 727206  
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Fig. 5. Mechanical response of the RVE for (a,b) in-plane compressive straining, (c,d) in-plane tensile straining, (e,f) out-of-plane compressive 
straining and (g,h) out-of-plane shear. The right side shows contour of the deformed sample with a colormap representing the plastic dissipa
tion density. 
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NParam = 6 + 4NN(NU + 6) + N2
N(7NU − 3) (31) 

For the architectures with 50 neurons per hidden layer and GRUs, the training is done with a minibatch size of 1000 and an initial 
learning rate of 3.10− 3 for 4000 epochs followed by 1000 epochs with an initial learning rate of 10− 3. For the larger architectures, the 
minibatch size is set at 100 with 4000 epochs at an initial learning rate of 10− 3 followed by 1000 epochs with an initial learning rate of 
10− 4. Due to the explicit simulations and the frictional interfaces, a small noise is visible in the simulations output. To improve the 
training results, the stress components are smoothed using a succession of two moving averaging filter with a span of 5 and 9 data 
points respectively. Special care is taken to ensure that the elastic region is not smoothed, by smoothing the results starting at the 5th 

time step (out of 200). 
The training is performed on the normalized mean squared error and to provide a separate verification of the accuracy of the model, 

the stress outputs generated by the machine learning-based model are compared to the numerical simulations results by computing 
two other error measures, i.e. the mean absolute error (MAE) and the maximum absolute error (MaxAE). The MAE of each output 
vector is computed using the following formula: 

MAE =
1

6Nt

∑Nt

τ=1

⃒
⃒σNN(τ) − σFE(τ)

⃒
⃒ (32) 

The MaxAE is used to obtain more insight from possible outliers and is defined as: 

MaxAE = max
τ∈{1,...,Nt}
{i,j}∈{x,y,z}2

⃒
⃒
⃒σNN

ij (τ) − σFE
ij (τ)

⃒
⃒
⃒ (33) 

The maximum absolute error emphasizes the worst discrepancy out of an entire loading case and expresses it in the unit of the 
stress, here in MPa. On the other hand, the MAE allows assessing the model accuracy over the entire loading history. 

5. Results and discussion 

In this section, the results of the simulations are presented before looking at the analytical plasticity model and the output of the 
machine learning training. The large deformation behavior of the unit cell will be investigated. Then, the limitations of the analytical 
plasticity model will be shown before addressing the results of the machine-learning-based model. 

5.1. Results from unit cell simulations 

Firstly, the unit cell behavior is discussed for four linear paths: (i) and (ii) in-plane uniaxial compressive and tensile straining, (iii) 
out-of-plane uniaxial compressive straining and (iv) out-of-plane shear straining. The stress tensor evolution is depicted in Fig. 5 along 
with a view of the deformed unit cell. The plastic work density is shown as a colormap indicating which layers are responsible for the 
plastic behavior of the material. The second axes in Fig. 5a,c,e,f show the elastic strain energy density (red dashed line) and the plastic 
work density (gray dashed line). 

The in-plane compression (Fig. 5a) shows a high hardening rate along the loading direction with a minimum stress reaching σxx =

− 130MPa and compressive stresses in the other two directions. The out-of-plane stress σzz remains close to zero at low strain levels 
before reaching a value similar to σyy = − 25MPa at the final strain level. This behavior can be understood by looking at the spatial 
distribution of the plastic work density. The two metallic current collectors with incompressible plastic behavior undergo plane strain 
compression and exhibit the highest plastic work density. This gives rise to the high normal stresses σxx and σyy in the two in-plane 
directions. Due to the incompressibility of the metal foils, the other materials are compressed and the cathode coating yields giving 
rise to larger stress level in the out-of-plane direction. At the end of the loading and due to its higher volume fraction, the cathode 
material contributes five times more to the plastic work than the metal foils. 

The in-plane tensile straining features a similar behavior up to a strain of εyy = 0.05 (when necking occurs in both current col
lectors). Fig. 5d shows the plastic work density at a strain of εyy = 0.045at the onset of necking. Only the two metal foils deform 
plastically and due to their incompressibility, the out-of-plane stress is negative. It is noted that the unit cell results depend on the unit 
cell size after the onset of localization. The localization can also be detected from a maximum in the elastic strain energy density. For 
out-of-plane compressive straining (Fig. 5e and f), the cell exhibits a different plastic dissipation mechanism. The metal foils do not 
deform plastically. Instead the plastic dissipation occurs mainly in the separator and the granular coatings, mostly related to their 
plastic compaction. The separator thickness (i.e. volume) is reduced by 31% while the anode and cathode thickness (i.e. volumes) are 
reduced by 20% and 10% respectively. This leads to locally lower plastic work density compared to the in-plane compressive loading 
(Fig. 5b) with a more uniform spatial distribution. The stress in the out-of-plane direction evolves in a convex manner as the coatings 
and separator (recall Fig. 1) and reaches a compressive value of σzz = − 105MPa while both in-plane stresses behave identically and 
reach σxx = σyy = − 25MPa. 

The last loading case considered is out-of-plane pure shear straining (Fig. 5g-h). The main feature of this deformation mode is the 
low level of macroscopic plastic work density reached at the end of the loading (about five times lower than that for out-of-plane 
compression). This is due to the friction between the separator and the granular coatings. The interface condition allows for sliding 
with a small force. The plastic work density is localized at the sliding interfaces in the separator and in the metal foils. Regarding the 
stress tensor evolution, the out-of-plane shear and normal stress evolves almost linearly and in a opposite manner with a final shear 
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stress of σxz = 7.5MPa. At the same time, the in-plane normal stress σyy reaches similar positive values, while the second in-plane 
normal stress attains higher values with a maximum of σxx = 20MPa. 

The study of those four loading cases reveals a variety of plastic dissipation mechanism of Li-ion cells including metal and granular 
coating plasticity as well as friction. A mechanical model predicting the large deformation response of a battery unit cell should be able 
to capture all those mechanisms and also be applicable for arbitrary loading. To this extent, the macroscopic yield surface is con
structed based on the results from all simulations. The only non-zero stresses are (σxx, σyy, σzz, σxz). The yield surface is defined at 
isolevels of macroscopic plastic work and here, two macroscopic plastic work density levels are chosen Wp = {0.2, 0.5}mJ /mm3. 
Fig. 6a shows the yield surface in the (σxx, σyy, σzz) space for the highest macroscopic plastic work density level Wp = 0.5mJ /mm3 with 
a colormap indicating the value of the out-of-plane shear stress. The gray points are obtained by mirroring the simulation results along 
the (σxx +σyy, σzz) plane and the gray shape is the convex hull of the results. The yield surface features an almost elliptical shape with 
higher values under compression-dominated loading (3rd quadrant) than under tension-dominated loading (1st quadrant). The in-plane 
shape is conserved for almost all levels of out-of-plane compression up to a stress around σzz = − 24MPa where it suddenly shrink to 
one point. This is further visible on Fig. 6c-d which show selected 2D views of the yield surface. The views from Fig. 6b-d) are obtained 
by interpolating the yield surface and then setting some of the stress components to zero (specifically σxx = σyy = 0 for Fig. 6b, σyy = σxz 

= 0 Fig. 6c and σxz = 0 with σxx = σyy for Fig. 6d). The shape is conserved for both levels of macroscopic plastic work density and the 
results will only be discussed for Wp = 0.5mJ/mm3. The in-plane vs out-of-plane normal stress plots (uniaxial and equibiaxial, Fig. 6c 

Fig. 6. (a) Macroscopic yield surface at a macroscopic plastic dissipation of Dp = 0.5mJ/mm3. The colormap indicates the level of out-of-plane shear 
stress. The grey dots are mirrored points across the plane of normal σxx − σyy and the grey shade corresponds to the convex hull of the points. (b-d) 
Interpolation of the yield surface and fit with the transversely anisotropic Deshpande-Fleck yield surface at two plasticity dissipation density level 
with cut from several planes (b), (σ13, σ33) (c) (σ11, σ33) and (d) (σ11 = σ22, σ33). Note that all other stress components are kept at zero. 
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and d) show that the yield surface is almost uncoupled with respect to the out-of-plane direction. The yield stress under uniaxial and 
equibiaxial compression are around σ11 ≈ − 33MPa, higher their tension counterpart σ11 ≈ 20MPa. The relationship between the out- 
of-plane shear and normal stress (Fig. 6b) is more complex. At low normal stress, the yield shear stress is negligible and increases 
towards a maximum at an out-of-plane compression of σ33 = − 7MPa before it decreases back to zero upon out-of-plane compression 
yielding. This behavior is largely attributed to the frictional interfaces, where the out-of-plane normal stress induces larger out-of-plane 
shear stress. It is noteworthy that for pouch cells, the packaging pressure induces some out-of-plane normal stress and prevents the 
sliding rigid body motion. 

Table 2 
Material constant for the homogenized transversely-isotropic Deshpande-Fleck model.  

Exx [GPa] Ezz [GPa] Gxz [GPa] νxy [ − ] νxz [ − ]

12.41 6.44 0.02 0.31 0.30 
B2 [ − ] C2 [ − ] D2 [ − ] F2 [ − ]

0.5445 0.3335 0.5415 3.2731  
A [MPa] ε0 [ − ] n [ − ]

1068.9 0.0177 1.477    

Fig. 7. Comparison of the unit cell response and the transversely-isotropic Deshpande-Fleck model for (a) in-plane compressive straining, (b) in- 
plane tensile straining, (c) out-of-plane compressive straining and (d) out-of-plane shear. 
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Fig. 8. 20000 loading paths in the six-dimensional strain space. The red lines denote the 5000 paths in the testing set while the grey lines highlight 
the 15000 data in the training set. The thick colored lines represent the worst predicted path (yellow) and unseen radial paths. The dashed lines 
correspond to the training path with the closest endpoint on the hypersphere. 
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Fig. 9. Performance of the machine-learning based models. (a) Mean squared error of all architectures for the training and testing dataset. Keeping 
the same number of layers/GRUs and increasing the number of parameters changes from 50 neurons to 100 and 200. (b) Cumulative density 
function of the mean absolute error for the best performing 200-2 model. (c) Influence of the number of training paths for the 200-2 model. 
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5.2. Results for analytical plasticity model 

This section shows the results and limitations of the analytical modeling approach. The parameters obtained for the transversely- 
isotropic elasto-plastic Deshpande-Fleck model are presented in Table 2. Note that the hardening exponent n = 1.5 is close to the 
phenomenological values reported in Chung et al. (2018). Fig. 6 shows the calibrated yield locus at two levels of macroscopic plastic 
work density. The model captures quite accurately the in-plane to out-of-plane compression relation for both uniaxial and equibiaxial 
in-plane loadings but fails at capturing the relationship for positive in-plane normal stresses due to its quadratic nature (Fig. 6c and d). 
Furthermore, the model fails to capture the diamond-shaped response for out-of-plane shear (Fig. 6b) and overestimates the shear 

Fig. 10. Performance of the 200-2 architecture. Left: strain history and right stress response from the RVE and machine-learning model from the 
median (a-b), 0.99 quantile (c-d) and maximum (e-f) MAE. The full lines indicates the RVE response, while the dashed lines shows the 
model prediction. 
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stress for a given normal stress. The model slightly underestimates the stress under out-of-plane compression, i.e.σzz = − 23.0MPa 
compared to σzz = − 24.1MPa in the unit cell simulation. The stress evolutions for selected radial paths are shown in Fig. 7. For the 
in-plane loading paths (Fig. 7a and b), the analytical model overestimates all the stress components and shows a convex hardening 
behavior, reminiscent of the granular coating hardening instead of the concave behavior related to the metal foils plasticity. On the 
other hand, the model accurately captures the out-of-plane compressive straining (Fig. 7c) with an out-of-plane normal stress within 
12% of the unit cell prediction at the end but still overestimates by a factor of 3 the in-plane normal stresses. Lastly, the model cannot 
capture the complex shear response of the material (Fig. 7d). It gives reasonable prediction of the out-of-plane shear and normal 
stresses, but it predicts the in-plane normal stresses with an opposite sign. Overall, it is concluded that the transversely-isotropic 
Deshpande-Fleck model does not give satisfactory predictions of the unit cell behavior. 

5.3. Results for neural network model 

As a summary of the generated loading paths, Fig. 8 presents all the loading cases in the 6-dimensional strain space with grey 
(respectively red) lines indicating the training (respectively testing) paths. The four linear paths used as validation are shown with 
thick colored lines along with the strain path for the worst prediction of the neural network model (yellow). For those five cases, the 
closest training path (according to the distance defined in Section 2.3) is shown in dashed lines. The superposition of the training and 
testing set highlight the random sampling of the loading cases. 

The neural network model does not distinguish between elasticity and plasticity and predicts the stress tensor at a given increment 
based on the full strain tensor history. The best performing model is assessed based on the Mean Squared Error (MSE) at the end of the 

Fig. 11. Comparison of the unit cell response (solid) with the predictions of the machine-learning based model (dashed) for radial straining: (a) in- 
plane compressive straining, (b) in-plane tensile straining, (c) out-of-plane compressive straining and (d) out-of-plane shear. The thick dashed lines 
indicates the ML prediction with the original strain path while the thin transparent lines denotes ML prediction after rotation of the strain inputs for 
60 angles. Note that the radial paths are not part of the training or testing set. 
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Fig. 12. Correlation between the distance to the training path and the MSE. The red circles shows the results of the 5000 testing paths while the 
square highlights the worst prediction (yellow) and selected radial paths. 

Fig. 13. Effect of the loading path. (a) Three strain paths with identical endpoint (except for εzz). Stress prediction and comparison with the 
simulation for (b)-(c) the two monotonic strain paths and (d) for the non-monotonic path. 
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training. Fig. 9a presents the MSE for all nine architectures as a function of the number of parameters. Overall, the accuracy of the 
model on both training and testing data sets increases with the number of parameters with the exception of the largest model. The 
smallest model with only 11406 parameters shows a training error (respectively testing) of 0.129MPa2 (resp. 0.196MPa2) while the 
model with the 200-2 architecture shows a minimum error of 0.014MPa2 (resp. 0.023MPa2) with 446406 parameters. For similar 
number of parameters, e.g. 50-3 and 100-1 as well as 100-3 and 200-1 architectures, a better performance is obtained with a smaller 
number of layers/GRU and a larger number of neurons in the layers/gates. The same trends are observed for the mean absolute error. 
In the sequel, we focus on the results obtained with the 200-2 model composed of two GRU cells (with 200 neurons per gates) and two 
fully-connected hidden layers (composed of 200 neurons each). 

The cumulative density function of the Mean Absolute Error (MAE) for the 5,000 loading paths included in the testing set is re
ported in Fig. 9b. The minimal MAE is 0.035MPa; it increases to a median value of 0.086MPa and attains a 99% value of 0.25MPa. The 
maximum absolute error follows the same trends with approximately ten times higher values. It is emphasized that only 1% of the 
5,000 testing cases (i.e. 50 loading cases) features a maximum absolute error between 2.30MPa and 5.70MPa, exposing very good 
agreement with the unit cell simulations. The median, 99% and maximum MAE cases are shown in Fig. 10. The strain paths are 
complex and involve (a) a non-proportional combination of out-of-plane normal and shear strains (median case), (b) a triaxial 
compressive straining with superimposed shear (99% case), and (c) an out-of-plane compressive straining with in-plane equibiaxial 
compressive straining and shear. For all cases, the response is smooth and free of oscillations and the prediction is in good agreement 
with the unit cell results, even the most critical one. The discrepancies occur towards the end of the loading around the time step 150, 
which is tentatively attributed to the shortcomings of the GRU sequential training procedure. 

The influence of the number of training cases on the predictive capability of the model is investigated by keeping the same 5000 
testing paths and reducing the number of training paths from 15000 to 1000. The number of training iterations is kept identical by 
increasing the number of training epochs for smaller training sets. To limit the impact of the sampling of the loading paths, three 
random pooling are considered for the training sets composed of 1000, 2500 and 5000 loading paths. Fig. 9(c) shows the evolution of 
the training and testing MSE as a function of the size of the training set. The testing MSE is almost insensitive to the pooling with less 
than 17% difference between the three repeats of the small training sets. On the other hand, the testing MSE is very sensitive to the size 
of the training set, decreasing by two orders of magnitude (3.3MPa to 0.023MPa) from 1000 to 15000 loading cases in the training set. 
Increasing the number of training paths from 10000 to 15000 decreases the MSE by a factor of three, highlighting the importance of 
this large number of training paths and the smaller rate of convergence. 

The proportional loading paths discussed in the previous sections are also predicted using the machine-learning based model. Note 
that these loading paths are not part of the testing nor training sets. The predictions are presented in Fig. 11 and reveal that for all 
loading besides the in-plane tensile straining (Fig. 11b), the predictions are close to the simulation results. In the case of the in-plane 
straining, the prediction is accurate up to the onset of localization where it significantly deviates from the unit cell simulation. 

A possible explanation of the performance of the machine-learning based model could the scarcity of the training data set around 
the in-plane tension loading and more generally for high MSE prediction. Fig. 8 reveals that the closest training path to the in-plane 
tensile straining feature a large out-of-plane compression (εzz = − 0.04) and a maximum distance to the radial path of 0.04, much 
larger than the distance between the other radial paths and their closest training path (around 0.02). However, the correlation shown 
on Fig. 12 between the MSE and the distance to the training set reveals a weak correlation between the two factors. The worst predicted 
path in the testing path has a distance of 0.016 while points with distance of around 0.04 exhibits MSE one order of magnitude below. 
This points towards the influence of the loading case itself on the prediction. The instability shown in the in-plane uniaxial tension case 

Fig. 14. Machine-learning model prediction for a complex loading/unloading path. (a) Hencky strain evolution and (b) Cauchy stress prediction for 
60 rotated strain inputs. 
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leads to a significant sensitivity to the strain path and is dependent on the unit cell orientation as well. This highlights the importance of 
mechanical information in the sampling of the strain path space to ensure higher sampling rate around unstable loading paths. 

The ability of the neural network model to capture the loading path dependency of the elasto-plastic response of batteries is 
assessed next. For this, we consider three straining scenarios with identical endpoints that have not been included in the training or 
testing dataset. Two of these are monotonic loading paths (circle and diamond paths in Fig. 13a) with different amplitude parameters, 
while the third scenario is a loading/unloading/reloading case (cross path in Fig. 13a). For path 3, the strains first reach the endpoint of 
paths 1 and 2 (step 66 in Fig. 13a), before further loading to a point within a 0.02 displacement gradient radius (step 133) and finally 
returning to the endpoint of paths 1 and 2. To ensure that the constituent layers stay in contact, monotonic compressive straining is 
applied in the out-of-plane direction. Fig. 13b-d compare the detailed FE simulation responses to the corresponding neural network 
predictions. For both monotonic paths 1 and 2 (Fig. 13b and c), the MAE is below 0.22MPa, on par with the general model perfor
mance. For the unloading/reloading scenario (path 3, Fig. 14d), the prediction is equally accurate during the first loading stage (up to 
step 66). Upon unloading, the neural network prediction exhibits a slight delay in the response, before following the stress history 
predicted by the detailed FE model. A similar delay in the stress response is observed after initiated reloading (after step 133). The MAE 
of 14.9MPa for path 3 is higher than that for any loading path from the validation dataset. This reveals the limited extrapolation 
capability of the GRU model which had been primarily trained for monotonic loading. However, the reasonable qualitative agreement 
indicates that the overall framework is able to capture the highly non-linear nature of the loading/unloading/reloading response of 
elastoplastic solids. Moreover, the good agreement for paths 1 and 2 demonstrates that the GRU model is able to capture the strain path 
dependency of the multi-axial stress-strain response. 

The transverse isotropy of the model is assessed by predicting the response of the same paths up to an out-of-plane rotation and the 
stress response is shown in thin lines on Fig. 11. For all cases, the response is independent of the orientation prior to localization; 
however, significantly deviates after localization for the in-plane tensile straining. The dependency of the post-localization response is 
nonetheless consistent with the unit cell simulations and cannot be seen as a limitation of the machine-learning-based model. This 
shows that the neural network-based model enforces transverse isotropy within the testing dataset and is able to generalize properly. 
This is further shown by investigating the prediction of the machine learning –based model for a completely new loading path. This 
loading path is based on the 10 points randomly chosen in the 4-dimensional volume within the hypersphere described in Section 2.3, 
which are connected through straight lines (see black line in Fig. 8). Here again, the prediction for the initial path is compared to the 
predictions for all out-of-plane rotations with angles α = 2π /60. Fig. 14 presents the strain path (Fig. 14a) and the resulting prediction 
(Fig. 14b). For all components, the stress stays within a narrow band. This shows that the model has learnt the transverse isotropy 
feature; however, due to the sequential nature of the GRU training, the prediction accuracy decreases with the time steps. 

6. Conclusion 

A recurrent neural network model is proposed to describe the large deformation response of Li-ion battery cells in a homogenized 
manner. The characteristic unit cell of battery cells is a layered structure composed of a fully-dense and porous materials including 
polymers, metal foils and granular matter. Using a fully three-dimensional unit cell model, virtual experiments are performed to 
identify the large deformation response of battery cells for random multiaxial loading. 

The calibration and validation of the anisotropic Deshpande-Fleck model demonstrated that advanced existing constitutive theories 
for foam like materials cannot predict the large deformation response of battery cells with reasonable accuracy. A basic recurrent 
neural network model with GRUs is then pursued as an alternative modeling approach. It could be successfully trained based on the 
results from the virtual experiments. The model testing and validation demonstrated that the identified neural network model provides 
accurate predictions of the macroscopic stress-strain response of battery cells. The results from this work therefore encourage the 
implementation of neural network based constitutive models into commercial finite element software, thereby enabling the design safe 
and crashworthy electric vehicles through computer aided engineering. The present neural network modeling framework could 
extended to consider battery-specific mechanical behavior such as the effect of the state of charge (lithiation). 
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Appendix A. Constitutive models of the battery cell components 

In this section, s = σ − 1
3 tr(σ)1 denotes the deviatoric part of the Cauchy stress tensor, with tr(σ) = σ11 + σ22 + σ33 the trace 

operator and 1 the second-order identity tensor. The pressure is defined as p = − 1
3 tr(σ) and the von Mises equivalent stress as σvM =

̅̅̅̅̅̅̅̅̅̅̅
3
2 s : s

√

where : is the dyadic product. Each material features an isotropic elastic behavior defined by the Young’s modulus E and the 
Poisson’s ratio ν. 

A.1. Constitutive model of current collector foils 

Both metallic current collectors are modeled using an isotropic Levy-von Mises plasticity model. The plastic response is charac
terized by the yield condition 

fvM = σvM(σ) − k(εp), (34)  

where εp is work-conjugate to the von Mises stress σvM. k denotes the deformation resistance which evolves according to the Swift law 

k(εp) = A(ε0 + εp)
n (35)  

with the parameters A, ε0 and n. The hardening functions for the aluminum and copper foils identified by (Zhu et al., 2019a) are plotted 
in Fig. 1a. The corresponding model parameters are summarized in Table A.1. 

A.2. Constitutive model of the polymeric separator 

The separator is a ceramic-coated semi-crystalline porous polyethylene film. Instead of using a state-of-the-art polymer model (e.g. 
Felder et al., 2020), we follow the battery literature and use the pressure-dependent Deshpande-Fleck model (Deshpande and Fleck, 
2000) with a non-associated flow rule (e.g. Zhang et al., 2016). The yield function is defined as 

fDF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
vM +

(α
2

)2
(2p + pt − pc(εp))

2
√

−
α
2
(pt + pc(εp)) (36)  

with the model parameters α, pt (yield pressure for tension) and pc (yield pressure under hydrostatic compression) while the latter is 
assumed to evolve as a function of the equivalent plastic strain. The non-associated flow rule is given through the potential gDF, 

dεp =
3
2

dεp

gDF
σ with gDF =

̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2

σ : σ
√

. (37) 

When calibrating the hardening law based on a uniaxial experiment (with axial stress σ and an axial plastic strain ε), the hydrostatic 
compression yield pressure is obtained based on the compressive stress and is given by 

Table A.1 
Material constant for the current collectors.  

Material E [GPa] ν [ − ] A [MPa] ε0 [ − ] n [ − ]

Aluminum 70 0.33 200.5 3.4e− 6 0.041 
Copper 117 0.33 340.7 3.2e− 6 0.043  

Table A.2 
Material constant for the separator.  

Material E [GPa] ν [ − ] pt [MPa] α [ − ]

Separator 5.9 0.3 0.9 1.69  

Table A.3 
Material constant for the active materials.  

Material E [GPa] ν [ − ] d [MPa] c [ − ] R [ − ]

Anode 5.0 0.3 4.0 1.73 0.5 
Cathode 5.0 0.3 4.0 2.90 0.1  
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pc =

σ
(

σ
(

1
α2 +

1
9

)

+ 1
3pt

)

pt + σ . (38) 

The equivalent plastic strain is then defined by 

dεp =

̅̅̅
2
3

√

dεp. (39) 

The yield surface and flow potential as identified from experiments by (Zhu et al., 2019a) are shown in Fig. 1b. The corresponding 
hardening law is depicted in Fig. 1c and the summary of the model parameters are shown in Table A.2. 

A.3. Constitutive model of active materials 

The active cathode and anode materials are of granular nature. Here, we consider a lithium-ion cell with a cathode made from 
Lithium-Nickel-Manganese-Cobalt-Oxide (NMC) powder and a graphite anode. The mechanical response of the active materials is 
described by a Drucker-Prager cap model. The model is defined through two intersecting yield surfaces: a Drucker-Prager yield surface 
associated with internal sliding, and a cap surface associated with consolidation. The Drucker-Prager surface is defined by the yield 
function 

fS = σvM − pc − d (40)  

while the cap part is defined by 

fC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(p − pa)
2
+

(

RσvM

)2
√

− R(d + pac). (41) 

The material parameters are {c, d,R, pa}with pa controlling the rate of hardening. The transition between the two yield surfaces 
occurs at p = pa, where σvM = pac+ d. This transition exhibits a corner, which is removed through a transition surface in the numerical 
implementation. The flow potentials for sliding and consolidation are defined as 

gS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c2(p − pa)
2
+

(

RσvM

)2
√

(42)  

and 

gC =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(p − pa)
2
+

(

RσvM

)2
√

. (43) 

The plastic strain tensor also consists of two parts given by the flow rules 

dεp
C =

dεp
C

gC

(
3
2
R2s − 1

3
(p − pa)1

)

(44)  

and 

dεp
S =

dεp
S

gS

(
3
2

R2s −
1
3

c2(p − pa)1
)

(45)  

with dεp = dεp
C + dεp

S. Table A.3 provides the material model parameters for the two active materials as identified by (Zhu et al., 2019a) 
from experiments. The corresponding yield surface, flow potential, and evolution of the pressure with respect to the volumetric 
compressive strain are provided in Fig. 1d-e. 
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