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REVIEW

Nutrient and stress tolerance traits linked to fungal
responses to global change: Four case studies

Kathleen K. Treseder1,*, Charlotte J. Alster1, Linh Anh Cat2, Morgan E. Gorris3,
Alexander L. Kuhn1, Karissa G. Lovero1, Frank Hagedorn4, Jennifer F. Kerekes5,
Theresa A. McHugh6, and Emily F. Solly7

In this case study analysis, we identified fungal traits that were associated with the responses of taxa to 4
global change factors: elevated CO2, warming and drying, increased precipitation, and nitrogen (N)
enrichment. We developed a trait-based framework predicting that as global change increases limitation of
a given nutrient, fungal taxa with traits that target that nutrient will represent a larger proportion of the
community (and vice versa). In addition, we expected that warming and drying and N enrichment would
generate environmental stress for fungi and may select for stress tolerance traits. We tested the
framework by analyzing fungal community data from previously published field manipulations and linking
taxa to functional gene traits from the MycoCosm Fungal Portal. Altogether, fungal genera tended to
respond similarly to 3 elements of global change: increased precipitation, N enrichment, and warming and
drying. The genera that proliferated under these changes also tended to possess functional genes for stress
tolerance, which suggests that these global changes—even increases in precipitation—could have caused
environmental stress that selected for certain taxa. In addition, these genera did not exhibit a strong
capacity for C breakdown or P acquisition, so soil C turnover may slow down or remain unchanged following
shifts in fungal community composition under global change. Since we did not find strong evidence that
changes in nutrient limitation select for taxa with traits that target the more limiting nutrient, we
revised our trait-based framework. The new framework sorts fungal taxa into Stress Tolerating versus C
and P Targeting groups, with the global change elements of increased precipitation, warming and drying,
and N enrichment selecting for the stress tolerators.

Keywords: Elevated CO2, Precipitation, Warming, Drying, Nitrogen enrichment, Nitrogen fertilization,
Limiting nutrients, Synthesis, Fungal traits, Growth form, Extracellular enzymes, Functional genes, Tissue
phosphorus concentration

Introduction
Recent decades have witnessed a discovery stage in fungal
ecology, powered in part by advances in high throughput
DNA sequencing (Lindahl et al., 2013; Jansson and

Hofmockel, 2020). We have learned that fungal commu-
nities frequently shift under human-induced global
change factors such as elevated CO2, warming, drought,
increased precipitation, and nitrogen (N) enrichment (re-
viewed in Allison and Martiny, 2008; Castro et al., 2010;
Pickles et al., 2012; Treseder et al., 2012; Mohan et al.,
2014; Classen et al., 2015; Jansson and Hofmockel,
2020). These changes have now been well-documented
in field studies (e.g., Hagedorn et al., 2013; Kerekes et
al., 2013; McHugh and Schwartz, 2016; Treseder et al.,
2016). Nevertheless, we have a poor understanding of why
specific fungal taxa respond the way they do (Martiny et
al., 2015). For example, why does the abundance of a given
taxon increase under elevated CO2 (or another global
change factor) while another decreases? If we understand
underlying mechanisms for these shifts, we may better
predict fungal contributions to carbon and nutrient
cycling under global change.

Global changes could select for (or against) fungal taxa
with certain physiological or genetic traits (e.g., Romero-
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Olivares et al., 2021). Here, we focus on traits that enable
fungi to acquire and use carbon (C), N, and phosphorus (P)
from the environment. Fungi require these nutrients to
grow and reproduce (Sinsabaugh et al., 2008; Sinsabaugh
et al., 2009; Strickland and Rousk, 2010; Mouginot et al.,
2014). Yet, global changes can alter the relative availability
of C, N, and P (Vitousek, 2004; Chapin et al., 2011). For
instance, elevated CO2 may alleviate C limitation for fungi
by boosting availability of plant C and exacerbate N or P
limitation (Chagnon et al., 2013; Johnson et al., 2013).
Accordingly, fungi with N- or P-acquisition traits may pro-
liferate under elevated CO2, while those that invest in
C-acquisition traits may decline or remain unchanged
(Velicer and Lenski, 1999; Treseder, 2005; Malik et al.,
2019). Other global change factors could also alter the rela-
tive abundance of C versus N or P, each in their own way.

Global change can also cause environmental stress for
fungi, apart from changes in limiting nutrients (Mohan et
al., 2014; Lenoir et al., 2016; Morrison et al., 2018; Malik et
al., 2019; Garcia et al., 2020). For example, warming (and
the drying often associated with it) in arid ecosystems
could generate drought stress (Schimel et al., 2007;
Manzoni et al., 2012; Homyak et al., 2018). In addition,
N enrichment can lead to soil acidification, changes
in osmotic potential, or the formation of toxic
N-containing compounds such as melanoidins (Broadbent,
1965; Baath et al., 1981; Vitousek et al., 1997; Treseder,
2008; Liu and Greaver, 2010; Lu et al., 2011). Stress
tolerance traits may be advantageous under these
circumstances.

We created a framework to predict responses of fungal
communities to elevated CO2, warming, increased precip-
itation, and N enrichment and then tested the framework
on 1 case study for each global change element (Table S1;
Hagedorn et al., 2013; Kerekes et al., 2013; McHugh and

Schwartz, 2016; Treseder et al., 2016).We acquired data on
nutrient and stress tolerance–related traits of the fungal
taxa by assessing functional genes in published fungal
genomes housed in the U.S. Department of Energy’s My-
coCosm Fungal Portal (Grigoriev et al., 2014). Then, we
used phylogenetic independent contrasts to test for rela-
tionships between the global change responses and those
functional genes. If fungal taxa respond to global changes
depending on nutrient or stress tolerance–related traits,
these responses could help us identify broadly applicable
mechanisms underlying community shifts. This approach
could allow us to use a trait-based framework to predict
fungal community shifts in response to future environ-
mental conditions.

Trait-based framework
We based our approach on the idea that fungal taxa
should invest more toward acquiring nutrients that limit
their growth and reproduction (Read, 1991). Liebig’s Law
of the Minimum suggests that an organism’s activity is
constrained by the scarcest nutrient that it requires, even
if other required nutrients are readily available (Liebig,
1843). Consequently, fungal taxa that preferentially target
the limiting nutrients may displace groups that focus on
other, nonlimiting nutrients. The displacement could be
particularly strong if evolutionary or physiological trade-
offs apply—if resources invested in acquiring a nonlimiting
nutrient cannot be invested in acquiring the limiting
nutrient (Velicer and Lenski, 1999; Allison et al., 2010b;
Treseder et al., 2011; Malik et al., 2019). Altogether, this
framework suggests that the relative availability of nutri-
ents selects for or against individual fungal taxa.

Global changes may alter the relative availability of C,
N, or P (Figure 1). Elevated CO2 can increase C fluxes from
plants to litter and soil, potentially decreasing N and P

Figure 1. Hypothesized effects of global changes on nutrient limitation of fungal growth and activity.
Mechanisms that might underlie fungal responses to nutrient limitation or stress, and related functional genes, are also
included. See Table S1 for a complete listing of functional genes. DOI: https://doi.org/10.1525/elementa.2020.00144.f1
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availability under certain vegetation types (Staddon et al.,
1999; Norby et al., 2001; de Graaff et al., 2006; Hungate
et al., 2009; Dieleman et al., 2010; Norby and Zak,
2011). Accordingly, fungi that decompose litter and soil
organic matter may become more N- and P-limited and
less C-limited. In addition, mycorrhizal fungi may have
an advantage under elevated CO2 since C allocation
from host plants to the fungi can increase (Diaz,
1996; Compant et al., 2010). Nitrogen fertilization or
anthropogenic N deposition can enrich N supplies to
fungi, alleviating N limitation and exacerbating C- and
P-limitation (Treseder and Allen, 2002; Johnson et al.,
2013; Treseder et al., 2018). Increased precipitation may
improve the availability of all 3 nutrients because the
water can dissolve and carry the nutrients to the fungi
and stimulate decomposer activity (Schimel and Ben-
nett, 2004; Chapin et al., 2011; Manzoni et al., 2012;
Manzoni et al., 2014). Warming can stimulate microbial
activity when water is not limiting but can lead to
higher water evaporation rates and soil drying in some
ecosystems (Rebetez and Dobbertin, 2004; Allison and
Treseder, 2008; Allison and Treseder, 2011). Conse-
quently, warming could enhance C and N availability
in moist ecosystems (Solly et al., 2017a; Solly et al.,
2017b), while it could reduce availability of C, N, and
P if warming induces moisture limitation (Allison and
Treseder, 2011; Parker and Schimel, 2011). We expect
that fungal taxa will respond to these shifts in nutrient
limitations depending on their nutrient-related traits.

Stress tolerance traits could also influence the dis-
tribution of fungal taxa (Malik et al., 2019). Certain
global change factors tend to reduce fungal abun-
dance, potentially because the changes create environ-
mental stresses for fungi. Fungal biomass generally
declines as N enrichment increases (Treseder, 2008).
Warming experiments have varied widely in the extent
to which fungal abundance responds, and reductions
are more common when warming is accompanied by
drying (Chen et al., 2015; Romero-Olivares et al.,
2017b; Gao and Yan, 2019). Elevated CO2 tends to
increase mycorrhizal fungal biomass (Treseder, 2004;
Dong et al., 2018), so it may alleviate environmental
stress for those fungi. Altogether, we predicted that N
enrichment and warming (if accompanied by drying)
may select for taxa with stress tolerance traits, while
elevated CO2 and increased precipitation may select
against them (Figure 1).

Methods
Selected traits

Response traits

The extent to which a given fungal group becomes more
or less abundant in response to global change can be
considered a trait (sensu Lavorel and Garnier, 2002). We
quantified response traits as the increase or decrease in
relative abundance of a given fungal group in response to
a global change factor. For example, if a given fungal
group represented 30% of the fungal community under
ambient CO2 controls, but rose to 40% under experimen-
tal CO2 enrichment, its elevated CO2 response was þ10%.

In this analysis, positive response traits will indicate pro-
liferation under global change, while negative response
traits indicate a reduction.

Functional gene traits

To test our trait-based framework, we focused on func-
tional genes for C, N, and P acquisition and environmental
stress tolerance. Certainly, possession of a gene does not
confirm that the gene is expressed or translated (Pradet-
Balade et al., 2001; Wilmes and Bond, 2006; Myrold et al.,
2014). Instead, we consider gene possession an indication
that the fungal group has the genetic capacity for that
trait. Moreover, gene frequencies or copy numbers can
influence the extent to which a trait is expressed (Zhou
et al., 2011).

We selected functional genes encoding extracellular
enzymes that break down organically bound C for C acqui-
sition (Lynd et al., 2002; Edwards et al., 2008; Martı́nez et
al., 2009), chitin or lignin complexes for N acquisition
(Bending and Read, 1997; Cairney and Burke, 1998; Talbot
et al., 2012), and C-bound phosphate for P acquisition
(Sinsabaugh, 1994). In addition, amino acid permeases,
ammonium transporters, nitrate transporters, and phos-
phate transporters can improve uptake rates of N or P into
hyphae (Versaw and Metzenberg, 1995; Nehls et al., 1999;
Mitsuzawa, 2006; Slot et al., 2007). For stress tolerance,
b-1,3 glucan synthase allows fungi to incorporate this car-
bohydrate into their cell walls to prevent desiccation and
freezing damage (Bowman and Free, 2006; Latgé, 2007).
Furthermore, cold-induced RNA helicase and heat shock
proteins help improve cold and heat tolerance, respec-
tively (Schade et al., 2004; Owttrim, 2006; Tiwari et al.,
2015). Moreover, trehalase produces trehalose, a compati-
ble solute that protects fungi from water loss, freezing
damage, and heat shock (Wiemken, 1990; Estruch,
2000).We determined functional gene frequencies (# cop-
ies per 10,000 genes) encoding each of these traits by
examining 692 published whole fungal genomes repre-
senting 111 genera (Table 1; Figure S1). We used search
terms (Table 1) in MycoCosm to identify existing gene
annotations (last accessed February 24, 2021; Grigoriev
et al., 2014).

Study selection

For each of the 4 global change factors, we selected 1
previously published study based on predetermined
selection criteria (Table S1). First, we used field-based
studies, so that findings could be applicable to an eco-
system setting. Second, we chose studies in which the
global change factor was experimentally manipulated
in comparison to a control, so we could calculate the
response trait based on relative abundance in the exper-
imental versus control treatments. Third, the relative
abundance data for each fungal taxon needed to be
accessible, either via published databases or directly from
authors. Fourth, we focused on studies that characterized
fungal communities at the species to genus level to allow
greatest flexibility in taxonomic rank analysis. This latter
criterion restricted us to studies that sequenced the
highly variable ITS1 or ITS2 region. In contrast, we placed

Treseder et al: Fungal traits linked to global change responses Art. 9(1) page 3 of 19
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/9/1/00144/477526/elem

enta.2020.00144.pdf by Sw
iss Federal Institute of Technology user on 18 August 2021



no restrictions on ecosystem type, geography, or
sequencing platform (e.g., Illumina or 454). If samples
were taken at multiple time points within the same plots,
we used the last samplings to allow the longest exposure
to the global change treatment. Upon study selection, we
contacted the lead authors of the studies and invited
them to collaborate on the analysis.

Fungal taxa identification

For most of the studies, we used taxonomic names pro-
vided by the investigators unless those taxonomies had
been revised after publication. In those cases, we updated
taxonomic names to match current names from Index
Fungorum (2021, accessed February 24, 2021). For the
N enrichment study, Kerekes et al. (2013) had not identi-
fied taxa to genus or species. For that study, we used
UNITE (Nilsson et al., 2018) to match representative se-
quences to these taxonomic ranks where possible. Across

studies, between 18.2% and 71.2% of taxa were identified
to at least the genus level (Table S1).

Experimental designs

Increased precipitation

We calculated responses to increased precipitation using
fungal community composition from samples taken at the
final sampling (i.e., 30 days after onset of treatments) of
the McHugh and Schwartz (2016) study. They collected soil
from the top 5 cm of 4 pairs of control and watered plots.

Nitrogen enrichment

Kerekes et al. (2013) characterized fungal taxa in the litter
layer in 4 control and four N-fertilized plots.

Warming and drying

Warming and drying responses of taxa were taken directly
from supplementary information in Treseder et al. (2016).

Table 1. Functional genes and their search terms in MycoCosm (Grigoriev et al., 2014). DOI: https://doi.org/10.1525/
elementa.2020.00144.t1

Functional Gene Glycoside Hydrolase (GH) Activity Search Term

Amino acid permease n.a. IPR004762

Ammonium transporter n.a. IPR001905

b-1,3 glucan synthase n.a. GO:0000148

Chitinase (GH 18) Chitinase IPR001223

Crystalline cellulase (AA 9, formerly GH 61) n.a. IPR005103

Fungal lignin peroxidase n.a. IPR001621

GH 1 b-glucosidase and b-galactosidase IPR001360

GH 7 Cleave b-1,4 glycosidic bonds in cellulose/b-1,4-glucans IPR001722

GH 9 Cellulases IPR001701

GH 12 Endoglucanase IPR002594

GH 13 Substrates containing a-glucoside linkages GH13

GH 15 Hydrolyze the non-reducing end residues of a-glucosides IPR011613

GH 28 Polygalacturonase IPR00743

GH 31 a-glucosidase IPR000322

GH 32 Invertase IPR001362

GH 76 Endo-acting a-mannanases IPR005198

GH 81 Endo-b-1,3-glucanase IPR005200

GH 85 Endo-b-N-acetylglucosaminidase IPR005201

GH 92 Exo-acting a-mannosidases IPR012939

Heat shock protein n.a. IPR002068

Nitrate transporter n.a. IPR004737

Phosphatase n.a. IPR000560

Phosphate transporter n.a. HMMPFAM: PF01384

Cold-induced RNA helicase n.a. IPR014014

Trehalase n.a. GO:0005991

n.a. ¼ not applicable.
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They sampled fungi in the litter horizon of 5 control and 5
warmed plots.

Elevated CO2

We calculated elevated CO2 responses using data supplied
by Hagedorn et al. (2013). They had characterized fungal
community composition in 10 blocks of control and ele-
vated CO2 plots. Each block encompassed 4 plots: a control
plot and elevated CO2 plot, each centered on a Larix
decidua tree; and a control plot and elevated CO2 plot,
each centered on a Pinus uncinata tree. There were 40
plots in total. From each of these plots, they collected soil
from 3 horizons: litter layer, F horizon, and H horizon,
after 9 plant growing seasons of CO2 enrichment. The soils
were nutrient poor and acidic Ranker or Podzols with a 10-
to 20-cm thick organic layer. We calculated mean relative
abundances across all soil horizons and both tree species.
By combining soil horizons, we obtained a more general-
izable pattern of fungal responses than if we had analyzed
each horizon separately. On the other hand, it limited our
ability to discern horizon-specific responses.

Trait compilation

We compiled the responses of taxa to elevated CO2, warm-
ing and drying, increased precipitation, and N enrichment
with functional gene frequencies (Table S2). Specifically,
for each response and functional gene trait, we calculated
genus-level means (e.g., average response of all taxa within
Boletus). We chose to take genus-level means instead of
species-level means for 2 reasons. First, many taxa were
identifiable to genus but not species. Second, the majority
of species with response traits were detected in just 1
experiment or did not have whole genomes available in
MycoCosm. By taking genus-level means, we were able to
compare traits across more taxa. We lost species-level res-
olution but gained statistical power. Many of the func-
tional gene traits we examined tend to vary most at the
order to subphylum levels (Treseder and Lennon, 2015), so
we likely captured much of the trait variation with genus-
level means.

Relationships between traits

We used phylogenetic independent contrasts to examine
relationships between each pairwise combination of
response and functional gene traits. Since the global
change experiments had sequenced the ITS1 or ITS2 re-
gions, which are highly variable, it was not feasible to
construct an accurate phylogeny from these sequences.
Instead, we used the fungal phylogeny of Choi and Kim
(2017), which was developed from 235 whole genome
sequences of fungal strains. We downloaded the phylog-
eny from Github (2020, accessed March 12, 2020). Of the
111 genera in our dataset, 41 were represented in the
phylogeny. For each of the remaining genera, we used the
closest taxon in the tree (Table S3). Sixty-one of the genera
were assigned to a taxon of the same family or order in the
phylogeny. We pruned the tree to remove all taxa not
represented in at least 1 case study (Figure S1).

For the phylogenetic independent contrasts, we used
the aotf function in Phylocom version 4.2 (Webb et al.,

2008). This function determined the difference in the va-
lues of a specific trait between daughter clades of each
node in the phylogenetic tree. It then took a series of
correlations of the contrasts between each pairwise com-
bination of traits, minimizing errors along the x and y
axes. We used the default parameters for this function,
so more recently diverged clades were weighted more in
the correlations. Where the correlations included an out-
lier with large leverage, we ranked the contrasts. We
focused on pairwise relationships with r values greater
than 0.5 or less than –0.5, which corresponded to an
unadjusted P < 0.00001 for correlations between func-
tional gene traits. The aotf function also identified nodes
at which each response trait diverged significantly (Figure
S1).

To view relationships between all traits included in the
case study analysis, we performed a nonmetric multidi-
mensional scaling analysis using the Kruskal Method with
a square (similarities) model and 2-dimensional output
(SPSS, 2017). The input was the matrix of r values from
the phylogenetic independent contrasts (Table S4).

Relationships between traits
Our results were unexpected. The fungal traits sorted into
3 distinct groups based on their relationships to one
another (Figure 2). Responses to N enrichment tended
to be positively related to responses to warming and dry-
ing as well as increased precipitation response. Collec-
tively, these response traits clustered with most of the
stress tolerance traits: b-1,3 glucan synthase, trehalase,
and cold-induced RNA helicase (Group A; Figure 2). Thus,
we will refer to this group of traits as the “Stress Tolerating
Group.” A second cluster of traits featured C-targeting
enzymes and phosphate transporters (Group B; Figure
2). Specifically, crystalline cellulase was positively related
to phosphate transporters and GH Families 12 and 81
(endoglucanases). In turn, GH Family 12 was positively
related to GH Family 7 (cellulases and b-1,4-glucanases).
This group, which we will refer to as “C and P Targeting
Group,” was distinct from the group that included global
change response traits. Altogether, none of our predic-
tions were upheld. In fact, the clustering of increased
precipitation response with stress tolerance traits was
opposite to its predicted relationship.

Stress Tolerating Group
Why did genera that increased under climate change also
tend to possess stress tolerance traits? Bijlsma and
Loeschcke (2005) noted that environmental stress is
a function of both the stressor (e.g., increased precipita-
tion) and the stressed (e.g., resident fungal taxa). In other
words, environmental conditions that are suboptimal for
most fungi could be optimal for local fungi that have
adapted to them. For example, although rainfall could
alleviate drought stress for many fungi, it might generate
environmental stress in fungi adapted to arid ecosystems
(Van Gestel et al., 1993; Fierer et al., 2003; Schimel et al.,
2007). Perhaps increased precipitation, N enrichment, and
warming and drying induced stress because they exposed
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fungi to environmental conditions they did not typically
experience.

This may have been the case in the increased precip-
itation manipulation we analyzed. As the climate warms,
precipitation regimes change with it (Intergovernmental
Panel on Climate Change [IPCC], 2014). On average, pre-
cipitation rates are expected to increase globally (IPCC,
2014). In the increased precipitation experiment by
McHugh and Schwartz (2016), month-long water addi-
tions in an Arizonan semiarid grassland yielded faster
soil respiration rates, larger inorganic N pools, and sig-
nificant shifts in the fungal community. Previous
research has indicated that fungal community composi-
tion frequently shifts with water availability (Castro et al.,
2010; Hawkes et al., 2011; Maestre et al., 2015; Matulich
et al., 2015; McHugh and Schwartz, 2015; Gao et al.,
2016; He et al., 2017; Zhao et al., 2017; Jansson and
Hofmockel, 2020), although not everywhere (Barnard

et al., 2013; Jumpponen and Jones, 2014; Zhang et al.,
2016a).

In this experiment, water additions may have increased
fungal stress. Fungal genera whose relative abundance
increased following water additions also dedicated larger
proportions of their genomes to trehalase and b-1,3 glu-
can synthase genes (Figure 3a and b). Counterintuitively,
water additions to chronically dry soils can be physiolog-
ically challenging to microbes (Schimel et al., 2007). As
soils dry, microbes tend to accumulate osmolytes to
reduce water loss (Harris, 1981). When soils are rewetted,
the osmolytes could drive water into their cells, raise inter-
nal pressures, and potentially burst the cells (Kieft et al.,
1987). Strong cell walls can help offset this risk (Kieft et
al., 1987), so reinforcement with b-1,3 glucan might be
advantageous in this case. In addition, microbes can
quickly remove osmolytes by transforming or excreting
them (Wood et al., 2001). It is unclear why fungal genera

Figure 2. Relationships between traits. Traits are arrayed based on a 2-dimensional nonmetric multidimensional
scaling analysis. Traits located closer together tend to be more closely related. Each symbol represents 1 trait. Lines
connect traits with phylogenetic independent contrast r values greater than 0.5 (cyan) or less than –0.5 (yellow). Line
thickness is proportional to |r|. A given trait was assigned to a group if it was related (at |r| > 0.5) to at least one other
trait within the group. “Group A” is highlighted because it includes global change responses. Correlation graphs for
each linked pair of traits are below (Group A: Figures 3, 4, and S2; Group B: Figure 5; Group C: Figure S3). An
interactive version of this figure can be accessed at Polinode (2021). DOI: https://doi.org/10.1525/
elementa.2020.00144.f2
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with the capacity to construct trehalose tended to perform
better in the McHugh and Schwartz (2016) study, given
that osmolytes like trehalose can be disadvantageous dur-
ing rewetting. Perhaps because trehalose production can
be reversed upon rewetting, it allowed fungi to tolerate
drought stress while allowing them the flexibility to accli-
mate quickly to changing water availability (Harris, 1981).
Gene frequencies for ammonium transporters and cellu-
lases (GH Family 9) were also positively related to re-
sponses to increased precipitation (Figure 3c and d),
possibly because these stress tolerance traits require N for
enzyme construction and C for trehalose production.

Trehalase genes coincided with b-1,3 glucan synthase
genes and another stress tolerance trait: cold-induced RNA
helicase genes (Figure 4a and b). In an earlier examina-
tion of 157 whole fungal genomes, Treseder and Lennon
(2015) had noted that genes for trehalase, b-1,3 glucan
synthase, and cold-induced RNA helicases are positively
related to one another across the fungal tree of life. Our
current analysis of 692 fungal genomes reinforced that
observation.

These 3 traits may form part of a multifaceted
“environmental stress response,” which has previously
been defined for ascomycetes (Gasch and Werner-
Washburne, 2002; Gasch, 2007). In an environmental
stress response, hundreds of stress tolerance–related
genes are expressed when fungi are exposed to
a stressor such as heat shock. After the environmental
stress response has commenced, the fungus is then
tolerant of other stresses it has not been previously
exposed to, such as extreme pH (Gasch, 2007; Gasch
and Werner-Washburne, 2002). At the same time, other
genes, including those involving carbohydrate metabo-
lism, are repressed, ostensibly to divert resources to
stress tolerance traits (Gasch, 2002; Zakrzewska et al.,
2011). This type of trade-off may also have been appar-
ent in the negative relationship we observed between
cold-induced RNA helicase and a-glucosidase (GH Fam-
ily 13) genes (Figure 4c). If trehalase, b-1,3 glucan
synthase, and cold-induced RNA helicases were indeed
part of a larger environmental stress response, then it is
possible that an unidentified stress response trait—

Figure 3. Relationships between fungal responses to increased precipitation versus select functional genes in
the Stress Tolerating Group. Symbols represent phylogenetic nodes (Figure S1). Contrasts are differences in trait
values between daughter clades of that node. For functional genes, units are number of copies per 10,000 genes.
Symbol size is proportional to the node’s assigned weight in the analysis. Lines are best fit. P values are
unadjusted for multiple comparisons. Increased precipitation responses are calculated from McHugh and
Schwartz (2016), and gene frequencies are from MycoCosm (Grigoriev et al., 2014). DOI: https://doi.org/
10.1525/elementa.2020.00144.f3

Treseder et al: Fungal traits linked to global change responses Art. 9(1) page 7 of 19
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/9/1/00144/477526/elem

enta.2020.00144.pdf by Sw
iss Federal Institute of Technology user on 18 August 2021



other than trehalase—was driving tolerance for
increased precipitation.

Responses to N enrichment and warming and drying
also belonged to the Stress Tolerating Group. Specifically,
fungal genera that responded positively to N enrichment

in the Kerekes et al. (2013) tropical forest experiment also
tended to respond positively to increased precipitation
and warming and drying (Figure S2a and b). In this site,
N additions had reduced soil pH from 5.1 to 4.9, which
may have contributed to fungal stress (Corre et al., 2010).
Nitrogen enrichment shifts fungal community composi-
tion (Johnson, 1993; Egerton-Warburton and Allen,
2000; Allison et al., 2008; Allison et al., 2010a; Entwistle
et al., 2013; Amend et al., 2016; Morrison et al., 2016; Jia
et al., 2017; Chen et al., 2018) more often than not (Porras-
Alfaro et al., 2011; Cassman et al., 2016; McHugh et al.,
2017). In a temperate forest in the northeastern United
States, N fertilization favors stress-tolerant fungi and those
with higher gene frequencies of ammonium transporters
and amino acid permeases (Morrison et al., 2018; Romero-
Olivares et al., 2021). Our finding that responses to N
enrichment in the tropical forest tended to cluster with
stress tolerance and ammonium transporter genes was
consistent with those from the temperate forest.

With respect to warming and drying in the boreal for-
est study, departures from ambient temperature or mois-
ture (or both) might have been stressful for local fungi. In
the boreal forest experiment, warming increases evapo-
transpiration and dries the topsoil by about 22% (Allison
and Treseder, 2008). As a result, fungal abundance de-
clines (Allison and Treseder, 2008). After 8 years, the fun-
gal community in surface litter had shifted significantly
(Treseder et al., 2016; Romero-Olivares et al., 2017a).
Moreover, decomposition rates of the litter slowed, espe-
cially for cellulose (Romero-Olivares et al., 2017a). Meta-
transcriptomic profiles of the fungal community in this
experiment indicate that warming and drying induces the
expression of cell maintenance genes while repressing the
expression of GH genes, potentially owing to trade-offs
between stress tolerance and decomposition (Romero-
Olivares et al., 2019). In addition, fungi belonging to
known stress-tolerant taxa displayed higher gene tran-
scription rates in the warming and drying treatment com-
pared to controls (Romero-Olivares et al., 2019). These
findings mirror those reported from the Hubbard Brook
Experimental Forest in the northeastern United States,
where warming combined with intensified freeze/thaw
cycles selected for stress-tolerant genes in fungi and bac-
teria (Garcia et al., 2020).

Carbon and Phosphorus Targeting Group
The C and P Targeting Group of traits was centered on
crystalline cellulose genes (Auxiliary Activity Family 9; Le-
vasseur et al., 2013; Figure 2). This enzyme family releases
cellulose chains from highly crystalline or cross-linked
structures, which tend to be recalcitrant (Harris et al.,
2010; Langston et al., 2011). Fungal genera with relatively
strong capacities for crystalline cellulase production
tended to be capable of glucan breakdown as well (Figure
5a and c, GH Families 12 and 81). Moreover, gene fre-
quencies for endoglucanase production (GH Family 12)
were positively related to those for GH Family 7, which
breaks b-1,4 glycosidic bonds in cellulose and b-1,4-glucan
(Figure 5d; Shoemaker et al., 1983; Teeri et al., 1983;
Ilmen et al., 1997). This suite of carbohydrate-targeting

Figure 4. Relationships between functional genes in
the Stress Tolerant Group. Symbols represent
phylogenetic nodes (Figure S1). Contrasts are
differences in trait values between daughter clades.
Units are number of copies per 10,000 genes. Symbol
size is proportional to the node’s assigned weight in the
analysis. Lines are best fit. P values are unadjusted for
multiple comparisons. Data are from MycoCosm
(Grigoriev et al., 2014). DOI: https://doi.org/10.1525/
elementa.2020.00144.f4
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genes may form a decomposer lifestyle in fungi, distinct
from a stress tolerance lifestyle. Previous studies have
noted that C-targeting extracellular enzymes tend to coin-
cide within fungal taxa (e.g., Eastwood et al., 2011; Flou-
das et al., 2012; Riley et al., 2014; Treseder and Lennon,
2015).

Phosphate transporters were also linked to this trait
group. Specifically, gene frequencies of phosphate transpor-
ters were positively related to those of crystalline cellulase
(Figure 5b). Fungi use P to build DNA, RNA, adenosine
triphosphate, and phospholipids (Elser et al., 1996). Fungi
might invest in P uptake to meet stoichiometric demands
associated with increased C use (Sinsabaugh et al., 2008;
Sinsabaugh et al., 2009; Sinsabaugh et al., 2016).

Unlinked trait: Responses to elevated CO2

Several traits were not strongly linked to any others, so
they did not belong to any group here. Responses to ele-
vated CO2 in alpine treeline was one example. Unlike the
other response traits, it did not cluster with the Stress
Tolerating Group. The numbers of sequences and identi-
fied taxa from this experiment were comparable to the
other experiments (Table S1), so lack of statistical power is
not a likely explanation. In this study, an increase in CO2

concentrations from approximately 370 ppm (ambient) to
563–600 ppm (elevated) yields no significant change in

fine root biomass or soil fungal biomass (Hagedorn et al.,
2013). Likewise, the soil fungal community does not shift
significantly at the operational taxonomic unit (i.e., spe-
cies) level (Hagedorn et al., 2013). In fact, soil bacterial
communities may have been more sensitive to elevated
CO2 than are fungi, given that bacterial composition shifts
marginally significantly (Hagedorn et al., 2013). In this
ecosystem, temperature limitation of plants may constrain
their responses to elevated CO2 (Dawes et al., 2011), which
in turn may minimize effects on belowground C supplies
and progressive nutrient limitation. Essentially, fungi in
this system may have experienced little change in envi-
ronmental conditions under elevated CO2.

This case study may not be representative of other
elevated CO2 studies. Elsewhere, mycorrhizal fungi fre-
quently become more abundant (Treseder, 2004; Dong
et al., 2018). Likewise, fungal community composition
often shifts (Weber et al., 2011), sometimes owing to in-
creases in fine root production (Lipson et al., 2014). These
CO2 effects in other ecosystems might be more readily
linked to stress tolerance, resource acquisition, or other
lifestyles.

Revisiting the trait-based framework
We revised our trait-based framework to center links
between stress tolerance traits and responses to increased

Figure 5. Relationships between functional genes in the C and P Targeting Group. Symbols represent
phylogenetic nodes (Figure S1). Contrasts are differences in trait values between daughter clades. Units are number
of copies per 10,000 genes. Symbol size is proportional to the node’s assigned weight in the analysis. Lines are best fit.
P values are unadjusted for multiple comparisons. Data are from MycoCosm (Grigoriev et al., 2014). DOI: https://
doi.org/10.1525/elementa.2020.00144.f5
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precipitation, N enrichment, and warming and drying
(Figure 6). We suggest that taxa with strong cell walls (from
b-1,3 glucose), osmolytes (e.g., trehalose), and cold tolerance
(via cold-induced RNA helicase) may have an advantage
under these conditions. The advantage may be conferred
by these specific stress tolerance traits or by a larger environ-
mental stress response with which they co-occur (Gasch and
Werner-Washburne, 2002; Gasch, 2007).

In contrast, C- and P-acquisition traits may be disadvan-
tageous under these circumstances. If stress-tolerating
fungi compete for space or resources with C and P acquir-
ing fungi, the latter group may become less prevalent.
Furthermore, GH 13 genes (a-glucosidases) were nega-
tively related to cold-induced RNA helicase genes (Figure
4c), which implies that investment in C acquisition might
trade off with stress tolerance. On the other hand, if com-
petition or trade-offs are not significant, the C and P
acquiring taxa may not necessarily decline in absolute
abundance upon exposure to increased precipitation, N
enrichment, or warming and drying. Nevertheless, fungal
species are known to compete with one another (Boddy,
2000; Fukami et al., 2007; Kolesidis et al., 2019). It would
be worth investigating whether stress tolerators compete
with decomposers under natural settings (Cray et al.,
2013; Ho et al., 2017; Malik et al., 2019).

Another question to explore is the timescale during
which stress tolerance might be advantageous under
global change. If stress is induced when fungi are exposed
to unfamiliar environmental conditions, will the stress
decline once fungi acclimate or adapt? Here, the increased
precipitation experiment was relatively brief—the water
additions lasted for 1 month (McHugh and Schwartz,
2016). By comparison, N enrichment had been maintained
for 9 years at the time of sampling (Kerekes et al., 2013).
Moreover, the warming and drying experiment had been
ongoing for 8 years. In laboratory settings, fungi can adapt
or acclimate to new conditions within hours to months

(Dettman et al., 2008; DeAngelis et al., 2010; Romero-
Olivares et al., 2015; Zhang et al., 2016b). However, we
might expect these mechanisms to operate more slowly
in the field, where conditions can be less optimal, and stress
levels are less extreme or abrupt (Leuzinger et al., 2011; Gao
et al., 2020). In addition, direct, immediate effects of the
global change itself need not be the only sources of stress
for fungi. Indirect effects via shifts in the plant community,
changes in soil texture, disturbance, or other intermediate
processes could sustain stress over a longer time.

The revised trait-based framework suggests potential
consequences of global changes for fungal contributions
to nutrient cycling (sensu Lavorel and Garnier, 2002;
Chagnon et al., 2013; Treseder and Lennon, 2015; Ho et
al., 2017; Malik et al., 2019). In ecosystems exposed to
increased precipitation, N enrichment, or warming and
drying, we might expect that b-1,3 glucan incorporation
into fungal cell walls will increase owing to its contribu-
tions to stress tolerance. b-1,3 glucan forms cross-linkages
with chitin (Cabib, 2009), forming a recalcitrant C com-
plex that may remain in the soil after the fungi die (Klis,
1994; Treseder and Lennon, 2015). This process could aug-
ment soil C storage. Conversely, as C and P targeting fungi
use the products of extracellular cellulases, they essen-
tially convert a portion of the cellulose-C to CO2. If com-
petition with stress-tolerating fungi reduce the abundance
of C and P targeting fungi, then the fungal community
may produce less CO2 via this process. If competition is
not significant, however, this may not be a consequence.
Next generation trait-based models can use these trait
linkages to predict ecosystem dynamics under global
change (Follows et al., 2007; Allison, 2012; Allison,
2014; Wieder et al., 2015).

Conclusions
In summary, we found that stress tolerance traits were
positively related to the responses of fungal genera to 3

Figure 6. Revised trait-based framework relating global changes to the relative abundance of fungal taxa and
their functional gene traits. DOI: https://doi.org/10.1525/elementa.2020.00144.f6
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types of global change: increased precipitation, N
enrichment, and warming and drying. Capacity for C
and P acquisition seemed less critical, as functional
genes for these traits were less strongly linked to global
change responses. Although we had expected that abil-
ity to capture limiting nutrients under global change
would influence responses of fungal genera, we found
little evidence to support this notion. We developed
a revised trait-based framework predicting that
increased precipitation, N enrichment, and warming
and drying will generate stress in fungi and select for
taxa with stress tolerance traits. Stress-tolerating fungi
may outcompete C and P targeting fungi if space or
resources are limiting. Essentially, elements of global
change—even those that might otherwise seem benefi-
cial to fungi like increased precipitation—may generate
environmental stress and select for stress-tolerating
fungi.
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