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Local Reasoning for Global Graph Properties
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1 New York University, New York, NY, USA, {siddharth,wies}@cs.nyu.edu
2 ETH Zürich, Zurich, Switzerland, alexander.summers@inf.ethz.ch

Abstract. Separation logics are widely used for verifying programs that manipu-
late complex heap-based data structures. These logics build on so-called separation
algebras, which allow expressing properties of heap regions such that modifica-
tions to a region do not invalidate properties stated about the remainder of the heap.
This concept is key to enabling modular reasoning and also extends to concurrency.
While heaps are naturally related to mathematical graphs, many ubiquitous graph
properties are non-local in character, such as reachability between nodes, path
lengths, acyclicity and other structural invariants, as well as data invariants which
combine with these notions. Reasoning modularly about such graph properties
remains notoriously difficult, since a local modification can have side-effects on a
global property that cannot be easily confined to a small region.
In this paper, we address the question: What separation algebra can be used to
avoid proof arguments reverting back to tedious global reasoning in such cases?
To this end, we consider a general class of global graph properties expressed as
fixpoints of algebraic equations over graphs. We present mathematical foundations
for reasoning about this class of properties, imposing minimal requirements on the
underlying theory that allow us to define a suitable separation algebra. Building
on this theory, we develop a general proof technique for modular reasoning about
global graph properties expressed over program heaps, in a way which can be
directly integrated with existing separation logics. To demonstrate our approach,
we present local proofs for two challenging examples: a priority inheritance
protocol and the non-blocking concurrent Harris list.

1 Introduction

Separation logic (SL) [31,37] provides the basis of many successful verification tools that
can verify programs manipulating complex data structures [1, 4, 17, 29]. This success is
due to the logic’s support for reasoning modularly about modifications to heap-based data.
For simple inductive data structures such as lists and trees, much of this reasoning can
be automated [2, 11, 20, 33]. However, these techniques often fail when data structures
are less regular (e.g. multiple overlaid data structures) or provide multiple traversal
patterns (e.g. threaded trees). Such idioms are prevalent in real-world implementations
such as the fine-grained concurrent data structures found in operating systems and
databases. Solutions to these problems have been proposed [14] but remain difficult to
automate. For proofs of general graph algorithms, the situation is even more dire. Despite
substantial improvements in the verification methodology for such algorithms [35, 38],
significant parts of the proof argument still typically need to be carried out using non-
local reasoning [7, 8, 13, 25]. This paper presents a general technique for local reasoning
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1 method acquire(p: Node, r: Node) {
2 if (r.next == null) {
3 r.next := p; update(p, -1, r.curr_prio)
4 } else {
5 p.next := r; update(r, -1, p.curr_prio)
6 }
7 }
8 method update(n: Node, from: Int, to: Int) {
9 n.prios := n.prios \ {from}

10 if (to >= 0) n.prios := n.prios ∪ {to}
11 from := n.curr_prio
12 n.curr_prio := max(n.prios ∪ {n.def_prio})
13 to := n.curr_prio;
14 if (from != to && n.next != null) {
15 update(n.next, from, to)
16 }
17 }
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Fig. 1: Pseudocode of the PIP and a state of the protocol data structure. Round nodes
represent processes and rectangular nodes resources. Nodes are marked with their default
priorities def_prio as well as the aggregate priority multiset prios. A node’s current
priority curr_prio is underlined and marked in bold blue.

about global graph properties that can be used within off-the-shelf separation logics.
We demonstrate our technique using two challenging examples for which no fully local
proof existed before, respectively, whose proof required a tailor-made logic.

As a motivating example, we consider an idealized priority inheritance protocol (PIP),
a technique used in process scheduling [39]. The purpose of the protocol is to avoid
priority inversion, i.e. a situation where a low-priority process causes a high-priority
process to be blocked. The protocol maintains a bipartite graph with nodes representing
processes and resources. An example graph is shown in Fig. 1. An edge from a process
p to a resource r indicates that p is waiting for r to be available whereas an edge in
the other direction means that r is currently held by p. Every node has an associated
default priority and current; these are natural numbers. The current priority is used for
scheduling processes. When a process attempts to acquire a resource currently held by
another process, the graph is updated to avoid priority inversion. For example, when
process p1 with current priority 3 attempts to acquire the resource r1 held by process
p2 of priority 1, p1’s higher priority is propagated to p2 and, transitively, to any other
process that p2 is waiting for (p3 in this case). As a result, all nodes on the created cycle3

will get current priority 3. The protocol maintains the following invariant: the current
priority of each node is the maximum of its default priority and the current priorities of
all its predecessors. Priority propagation is implemented by the method update shown
in Fig 1. The implementation represents graph edges by next pointers and handles both
adding an edge (acquire) and removing one (release - code omitted). To recalculate
the current priority of a node (line 12), each node maintains its default priority def_prio
and a multiset prios which contains the priorities of all its immediate predecessors.

Verifying that the PIP maintains its invariant using established separation logic (SL)
techniques is challenging. In general, SL assertions describe resources and express the
fact that the program has permission to access and manipulate these resources. In what

3 The cycle can be used to detect/handle a deadlock; this is not the concern of this data structure.
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follows, we stick to the standard model of SL where resources are memory regions
represented as partial heaps. We sometimes view partial heaps more abstractly as partial
graphs (hereafter, simply graphs). Assertions describing larger regions are built from
smaller ones using separating conjunction, φ1 ∗φ2. Semantically, the ∗ operator is tied to
a notion of resource composition defined by an underlying separation algebra [5, 6]. In
the standard model, composition enforces that φ1 and φ2 must describe disjoint regions.
The logic and algebra are set up so that changes to the region φ1 do not affect φ2 (and
vice versa). That is, if φ1 ∗ φ2 holds before the modification and φ1 is changed to φ′1,
then φ′1 ∗ φ2 holds afterwards. This so-called frame rule enables modular reasoning
about modifications to the heap and extends well to the concurrent setting when threads
operate on disjoint portions of memory [3, 9, 10, 36]. However, the mere fact that φ2 is
preserved by modifications to φ1 does not guarantee that if a global property such as the
PIP invariant holds for φ1 ∗ φ2, it also still holds for φ′1 ∗ φ2.

For example, consider the PIP scenario depicted in Fig. 1. If φ1 describes the
subgraph containing only node p1, φ2 the remainder of the graph, and φ′1 the graph
obtained from φ1 by adding the edge from p1 to r1, then the PIP invariant will no longer
hold for the new composed graph described by φ′1 ∗φ2. On the other hand, if φ1 captures
p1 and the nodes reachable from r1 (i.e., the set of nodes modified by update), φ2 the
remainder of the graph, and we reestablish the PIP invariant locally in φ1 obtaining φ′1
(i.e., run update to completion), then φ′1 ∗φ2 will also globally satisfy the PIP invariant.
The separating conjunction ∗ is not sufficient to differentiate these two cases; both
describe valid partitions of a possible program heap. As a consequence, prior techniques
have to revert back to non-local reasoning to prove that the invariant is maintained.

A first helpful idea towards a solution to this problem is that of iterated separating
conjunction [30, 44], which describes a graph G consisting of a set of nodes X by a
formula Ψ = ∗x∈X N(x) where N(x) is some predicate that holds locally for every
node x ∈ X . Using such node-local conditions one can naturally express non-inductive
properties of graphs (e.g. “G has no outgoing edges” or “G is bipartite”). The advan-
tages of this style of specification are two-fold. First, one can arbitrarily decompose
and recompose Ψ by splitting X into disjoint subsets. For example, if X is partitioned
into X1 and X2, then Ψ is equivalent to∗x∈X1

N(x) ∗ ∗x∈X2
N(x). Moreover, it is

very easy to prove that Ψ is preserved under modifications of subgraphs. For instance,
if a program modifies the subgraph induced by X1 such that∗x∈X1

N(x) is preserved
locally, then the frame rule guarantees that Ψ will be preserved in the new larger graph.
Iterated separating conjunction thus yields a simple proof technique for local reasoning
about graph properties that can be described in terms of node-local conditions. However,
this idea alone does not actually solve our problem because general global graph proper-
ties such as “G is a direct acyclic graph”, “G is an overlay of multiple trees”, or “G
satisfies the PIP invariant” cannot be directly described via node-local conditions.

Solution. The key ingredient of our approach is the concept of a flow of a graph: a
function fl from the nodes of the graph to flow values. For the PIP, the flow maps
each node to the multiset of its incoming priorities. In general, a flow is a fixpoint of
a set of algebraic equations induced by the graph. These equations are defined over a
flow domain, which determines how flow values are propagated along the edges of the
graph and how they are aggregated at each node. In the PIP example, an edge between
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nodes (n, n′) propagates the multiset containing max(fl(n), n.def_prio) from n to
n′. The multisets arriving at n′ are aggregated with multiset union to obtain fl(n′).
Flows enable capturing global graph properties in terms of node-local conditions. For
example, the PIP invariant can be expressed by the following node-local condition:
n.curr_prio = max(fl(n), n.def_prio). To enable compositional reasoning about
such properties we need an appropriate separation algebra allowing us to prove locally
that modifications to a subgraph do not affect the flow of the remainder of the graph.

To this end, we make the useful observation that a separation algebra induces a
notion of an interface of a resource: we say that two resources a and a′ are equivalent
if they compose with the same resources. The interface of a resource a could then be
defined as a’s equivalence class, but more-succinct and simpler representations may be
possible. In the standard model of SL where resources are graphs and composition is
disjoint graph union, the interface of a graph G is the set of all graphs G′ that have the
same domain as G; in this model, a graph’s domain could be defined to be its interface.

The interfaces of resources described by assertions capture the information that is
implicitly communicated when these assertions are conjoined by separating conjunction.
As we discussed earlier, in the standard model of SL, this information is too weak to
enable local reasoning about global properties of the composed graphs because some
additional information about the subgraphs’ structure other than which nodes they
contain must be communicated. For instance, if the goal is to verify the PIP invariant, the
interfaces must capture information about the multisets of priorities propagated between
the subgraphs. We define a separation algebra achieving exactly this: the induced flow
interface of a graph G in this separation algebra captures how values of the flow domain
must enter and leave G such that, when composed with a compatible graph G′, the
imposed local conditions on the flow of each node are satisfied in the composite graph.

This is the key to enabling SL-style framing for global graph properties. Using iter-
ated separating conjunctions over the new separation algebra, we obtain a compositional
proof technique that yields succinct proofs of programs such as the PIP, whose proofs
with existing techniques would involve non-trivial global reasoning steps.

Contributions. In §2, we present mathematical foundations for flow domains, imposing
the minimal requirements on the underlying algebra that allow us to capture a broad
range of data structure invariants and graph properties and reason locally about them in a
suitable separation algebra. Building on this theory we develop a general proof technique
for modular reasoning about global graph properties that can be integrated with existing
separation logics (§3). We further identify general mathematical conditions that can be
used when desired to guarantee unique flows, and provide local proof arguments to check
the preservation of these conditions (§4). We demonstrate the versatility of our approach
by presenting local proofs for two challenging examples: the PIP and the concurrent
non-blocking list due to Harris [12].

Flows Redesigned. Our work is inspired by the recent flow framework explored by
some of the authors [22], but was redesigned from the ground up. We revisit the core
algebra behind flow reasoning, and derive a different algebraic foundation by analysing
the minimal requirements for general local reasoning; we call our newly-designed
reasoning framework the foundational flow framework. Our new framework makes



312 S. Krishna et al.

several significant improvements over [22] and eliminates its most stark limitations. We
provide a detailed technical comparison with [22] and discuss other related work in §5.

2 The Foundational Flow Framework

In this section, we introduce the foundational flow framework, explaining the motivation
for its design with respect to local reasoning principles. We aim for a general technique
for modularly proving the preservation of recursively-defined invariants over (partial)
graphs, with well-defined decomposition and composition operations.

2.1 Preliminaries and Notation

The term (b ? t1 : t2) denotes t1 if condition b holds and t2 otherwise. We write f : A→
B for a function from A to B, and f : A ⇀ B for a partial function from A to B. For a
partial function f , we write f(x) = ⊥ if f is undefined at x. We use lambda notation
(λx. E) to denote a function that maps x to the expression E (typically containing x). If
f is a function from A to B, we write f [x� y] to denote the function from A ∪ {x}
defined by f [x� y](z) := (z = x ? y : f(z)). We use {x1� y1, . . . , xn� yn} for
pairwise different xi to denote the function ε[x1 � y1] · · · [xn � yn], where ε is the
function on an empty domain. Given functions f1 : A1 → B and f2 : A2 → B we write
f1 ] f2 for the function f : A1 ] A2 → B that maps x ∈ A1 to f1(x) and x ∈ A2 to
f2(x) (if A1 and A2 are not disjoint sets, f1 ] f2 is undefined).

We write δn=n′ : M → M for the function defined by δn=n′(m) := m if n = n′

else 0. We also write λ0 := (λm. 0) for the identically zero function, λid := (λm. m)
for the identity function, and use e ≡ e′ to denote function equality. For e : M →M and
m ∈M we writem.e to denote the function application e(m). We write e◦e′ to denote
function composition, i.e. (e ◦ e′)(m) = e(e′(m)) for m ∈ M , and use superscript
notation ep to denote the function composition of e with itself p times.

For multisets S, we use standard set notation when clear from the context. We write
S(x) to denote the number of occurrences of x in S. We write {x1� i1, . . . , xn� in}
for the multiset containing i1 occurrences of x1, i2 occurrences of x2, etc.

A partial monoid is a set M , along with a partial binary operation +: M ×
M ⇀ M , and a special zero element 0 ∈ M , such that (1) + is associative, i.e.,
(m1+m2)+m3 = m1+(m2+m3); and (2) 0 is an identity, i.e., m+0 = 0+m = m.
Here, = means either both sides are defined and equal, or both are undefined. We
identify a partial monoid with its support set M . If + is a total function, then we call
M a monoid. Let m1,m2,m3 ∈ M be arbitrary elements of the (partial) monoid in
the following. We call a (partial) monoid M commutative if + is commutative, i.e.,
m1 + m2 = m2 + m1. Similarly, a commutative monoid M is cancellative if + is
cancellative, i.e., if m1 +m2 = m1 +m3 is defined, then m2 = m3.

A separation algebra [5] is a cancellative, partial, commutative monoid.

2.2 Flows

Recursive properties of graphs naturally depend on non-local information; e.g. we cannot
express that a graph is acyclic directly as a conjunction of per-node invariants. Our
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foundational flow framework defines flow values at each node that capture non-local
graph properties, and enables local specification and reasoning about such properties.
Flow values are drawn from a flow domain, an algebraic structure which also specifies
the operations used to define a flow via recursive computations over the graph. Our
entire theory is parametric with the choice of a flow domain, whose components will be
explained and motivated in the rest of this section.

Definition 1 (Flow Domain). A flow domain (M,+, 0, E) consists of a commutative
cancellative (total) monoid (M,+, 0) and a set of edge functions E ⊆M →M .

Example 1. The path-counting flow domain is (N,+, 0, {λid, λ0}), consisting of the
monoid of natural numbers under addition and the set of edge functions containing only
the identity function and the zero function. This can be used to define a flow where the
values at each node represent the number of paths to this node from a distinguished node
n. Path-counting provides enough information to express locally per node that e.g. (a)
all nodes are reachable from n (all path counts are non-zero), or (b) that the graph forms
a tree rooted at n (all path counts are exactly 1).

Example 2. We use (NN,∪, ∅, {λ0} ∪ {(λm. {max(m ∪ {p})}) | p∈N}) as flow do-
main for the PIP example (Figure 1). This consists of the monoid of multisets of natural
numbers under multiset union and two kinds of edge functions: λ0 and functions map-
ping a multiset m to the singleton multiset containing the maximum value between m
and a fixed value p (used to represent a node’s default priority). This can define a flow
which locally captures the appropriate current node priorities as the graph is modified.

Further definitions in this section assume a fixed flow domain (M,+, 0, E) and a
(potentially infinite) set of nodes N. For this section, we abstract heaps using directed
partial graphs; integration of our graph reasoning with direct proofs over program heaps
is explained in §3.

Definition 2 (Graph). A (partial) graph G = (N, e) consists of a finite set of nodes
N ⊆ N and a mapping from pairs of nodes to edge functions e : N ×N→ E.

Flow Values and Flows. Flow values (taken from M ; the first element of a flow domain)
are used to capture sufficient information to express desired non-local properties of a
graph. In Example 1, flow values are non-negative integers; for the PIP (Example 2)
we instead use multisets of integers, representing relevant non-local information: the
priorities of nodes currently referencing a given node in the graph. Given such flow values,
a node’s correct priority can be defined locally per node in the graph. This definition
requires only the maximum value of these multisets, but as we will see shortly these
multisets enable local recomputation of a correct priority when the graph is changed.

For a graph G = (N, e) we express properties of G in terms of node-local conditions
that may depend on the nodes’ flow. A flow is a function fl : N →M assigning every
node a flow value and must be some fixpoint of the following flow equation:

∀n ∈ N. fl(n) = in(n) +
∑
n′∈N

fl(n′) . e(n′, n) (FlowEqn)
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Intuitively, one can think of the flow as being obtained by a fold computation over the
graph:4 the inflow in : N → M defines an initial flow at each node. This initial flow
is then updated recursively for each node n: the current flow value at its predecessor
nodes n′ is transferred to n via edge functions e(n′, n) : M →M . These flow values are
aggregated using the summation operation + of the flow domain to obtain an updated
flow of n; a flow for the graph is some fixpoint satisfying this equation at all nodes. 5

Definition 3 (Flow Graph). A flow graphH = (N, e,fl) is a graph (N, e) and function
fl : N →M such that there exists an inflow in : N →M satisfying FlowEqn(in, e,fl).

We let dom(H) = N , and sometimes identify H and dom(H) to ease notational
burden. For n ∈ H we write Hn for the singleton flow subgraph of H induced by n.

Edge Functions. In any flow graph, the flow value assigned to a node n by a flow
is propagated to its neighbours n′ (and transitively) according to the edge function
e(n, n′) labelling the edge (n, n′). The edge function maps the flow value at the source
node n to one propagated on this edge to the target node n′. Note that we require such
a labelling for all pairs consisting of a source node n inside the graph and a target
node n′ ∈ N (i.e., possibly outside the graph). The 0 flow value (the third element
of our flow domains) is used to represent no flow; the corresponding (constant) zero
function λ0 = (λm. 0) is used as edge function to model the absence of an edge in the
graph. A set of edge functions E from which this labelling is chosen can, other than
the requirement λ0 ∈ E, be chosen as desired. As we will see in §4.4, restrictions to
particular sets of edge functions E can be exploited to further strengthen our overall
technique. Edge functions can depend on the local state of the source node (as in the
following example); dependencies from elsewhere in the graph must be represented by
the node’s flow.

Example 3. Consider the graph in Figure 1 and the flow domain as in Example 2. We
choose the edge functions to be λ0 where no edge exists in the PIP structure, and other-
wise (λm. {max(m ∪ {d})}) where d is the default priority of the source of the edge.
For example, in Figure 1, e(r3, p2) = λ0 and e(r3, p1) = (λm. {max(m ∪ {0})}).
Since the flow value at r3 is {1, 2, 2}, the edge (r3, p1) propagates the value {2} to p1,
correctly representing the current priority of r3.

Flow Aggregation and Inflows. The flow value at a node is defined by those propagated
to it from each node in a graph via edge functions, along with an additional inflow value
explained here. Since multiple non-zero flow values can be propagated to a node, we
require an aggregation of these values via a binary + operator on flow values : the second
element of our flow domains. The edges from which the aggregated values originate
are unordered. Thus, we require + to be commutative and associative, making this
aggregation order-independent. The 0 flow value must act as a unit for +. For example,
in the path-counting flow domain + means addition on natural numbers, while for the
multisets employed for the PIP it means multiset union.

4 We note that flows are not generally defined in this manner as we consider any fixpoint of the
flow equation to be a flow. Nonetheless, the analogy helps to build an initial intuition.

5 We discuss questions regarding the existence and uniqueness of such fixpoints in §4.
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Each node in a flow graph has an inflow, modelling contributions to its flow value
which do not come from inside the graph. Inflows play two important roles: first, since
our graphs are partial, they model contributions from nodes outside of the graph. Second,
inflow can be artificially added as a means of specialising the computation of flow values
to characterise specific graph properties. For example, in the path-counting domain, we
give an inflow of 1 to the node from which we are counting paths, and 0 to all others.

Example 4. Let the edges in the graph in Figure 1 be labelled as described in Example 3.
If the inflow function in assigns the empty multiset to every node n and we let fl(n) be
the multiset labelling every node in the figure, then FlowEqn(in, e,fl) holds.

The flow equation (FlowEqn) defines the flow of a node n to be the aggregation of
flow values coming from other nodes n′ inside the graph (as given by the respective edge
function e(n′, n)) as well as the inflow in(n). Preserving solutions to this equation across
updates to the graph structure is a fundamental goal of our technique. The following
lemma (which relies on the fact that + is required to be cancellative) states that any
correct flow values uniquely determine appropriate inflow values:

Lemma 1. Given a flow graph (N, e,fl), there exists a unique inflow in such that
FlowEqn(in, e,fl).

We now turn to how solutions of the flow equation can be preserved or appropriately
updated under changes to the underlying graph.

Graph Updates and Cancellativity. Given a flow graph with known flow and inflow
values, suppose we remove an edge from n1 to n2 (replacing the edge function with
λ0). For the same inflow, such an update will potentially affect the flow at n2 and nodes
to which n2 (transitively) propagates flow. Starting from the simple case that n2 has
no outgoing edges, we need to recompute a suitable flow at n2. Knowing the old flow
value (say, m) and the contribution m′ = fl(n1) . e(n1, n2) previously provided along
the removed edge, we know that the correct new flow value is some m′′ such that
m′ +m′′ = m. This constraint has a unique solution (and thus, we can unambiguously
recompute a new flow value) exactly when the aggregation + is cancellative; we therefore
make cancellativity a requirement on the + of any flow domain.

Cancellativity intuitively enforces that the flow domain carries enough information
to enable adaptation to local updates (in particular, removal of edges6). Returning to the
PIP example, cancellativity requires us to carry multisets as flow values rather than only
the maximum priority value: + cannot be the maximum operation, as this would not be
cancellative. The resulting multisets (like the prio fields in the actual code) provide the
information necessary to recompute corrected priority values locally.

For example, in the PIP graph shown in Figure 1, removing the edge from p6 to
r4would not affect the current priority of r4 whereas if p7 had current priority 1 instead
of 2, then the current priority of r4 would have to decrease. In either case, recomputing
the flow value for r4 is simply a matter of subtraction (removing {2} from the multiset at
r4); cancellativity guarantees that our flow domains will always provide the information

6 As we will show in §2.3, an analogous problem for composition of flow graphs is also directly
solved by this choice to force aggregation to be cancellative.
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needed for this recomputation. Without this property, the recomputation of a flow value
for the target node n2 would, in general, entail recomputing the incoming flow values
from all remaining edges from scratch. Cancellativity is also crucial for Lemma 1 above,
forcing uniqueness of inflows, given known flow values in a flow graph. This allows us
to define natural but powerful notions of flow graph decomposition and recomposition.

2.3 Flow Graph Composition and Abstraction

Building towards the core of our reasoning technique, we now turn to the question
of decomposition and recomposition of flow graphs. Two flow graphs with disjoint
domains always compose to a graph, but this will be a flow graph only if their flows are
chosen consistently to admit a solution to the resulting flow equation (i.e. the flow graph
composition operator � defined below is partial).

Definition 4 (Flow Graph Algebra). The flow graph algebra (FG,�, H∅) for the flow
domain (M,+, 0, E) is defined by

FG := {(N, e,fl) | (N, e,fl) is a flow graph} , H∅ := (∅, e∅,fl∅),

(N1, e1,fl1)� (N2, e2,fl2) :=

{
(N1 ]N2, e1 ] e2,fl1 ] fl2) if in FG

⊥ otherwise,

where e∅ and fl∅ are the edge functions and flow on the empty set of nodes N = ∅.

Intuitively, two flow graphs compose to a flow graph if their contributions to each
others’ flow (along edges from one to the other) are reflected in the corresponding inflow
of the other graph. For example, consider the subgraph from Figure 1 consisting of
the single node p7 (with 0 inflow). This will compose with the remainder of the graph
depicted only if this remainder subgraph has an inflow which, at node r4, includes at
least the multiset {2}, reflecting the propagated value from p7.

We use this intuition to extract an abstraction of flow graphs which we call flow
interfaces. Given a flow (sub)graph, its flow interface consists of the node-wise inflow
and outflow (the flow contributions its nodes make to all nodes outside of the graph,
defined below). It is thus an abstraction that hides the flow values and edges that are
wholly inside the flow graph. Flow graphs that have the same flow interface “look the
same” to the external graph, as the same values are propagated inwards and outwards.

Definition 5 (Flow Interface). For a given flow domain M , a flow interface is a pair
I = (in, out) where in : N →M and out : N \N →M for some N ⊆ N.

We write I.in, I.out for the two components of the interface I = (in, out). We will
again sometimes identify I and dom(I.in) to ease notational burden.

Given a flow graph H ∈ FG, we can compute its interface as follows. Recall that
Lemma 1 implies that any flow graph has a unique inflow. Thus, we can define an inflow
function that maps each flow graph H = (N, e,fl) to the unique inflow inf(H) : H →
M such that FlowEqn(inf(H), e,fl). Dually, we define the outflow of H as the function
outf(H) : N \ N → M defined by outf(H)(n) :=

∑
n′∈N fl(n′) . e(n′, n). The flow

interface of H , written int(H), is the pair (inf(H), outf(H)) consisting of its inflow
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and its outflow. Returning to the previous example, if H is the singleton subgraph
consisting of node p7 from Figure 1 with flow and edges as depicted, then int(H) =
(λn. ∅, λn. (n=r4 ? {2} : ∅)).

This abstraction, while simple, turns out to be powerful enough to build a separation
algebra over our flow graphs, allowing them to be decomposed, locally modified and
recomposed in ways yielding all the local reasoning benefits of separation logics. In
particular, for graph operations within a subgraph with a certain interface, we need to
prove: (a) that the modified subgraph is still a flow graph (by checking that the flow
equation still has a solution locally in the subgraph) and (b) that it satisfies the same
interface (in other words, the effect of the modification on the flow is contained within
the subgraph); the meta-level results for our technique then justify that we can recompose
the modified subgraph with any graph that the original could be composed with.

We define the corresponding flow interface algebra as follows:

Definition 6 (Flow Interface Algebra). For a given flow domain M , the flow interface
algebra over M is defined to be (FI,⊕, I∅), where:

FI := {I | I is a flow interface} , I∅ := int(H∅),

I1 ⊕ I2 :=


I I1 ∩ I2 = ∅

∧ ∀i 6= j ∈ {1, 2} , n ∈ Ii. Ii.in(n) = I.in(n) + Ij .out(n)

∧ ∀n 6∈ I. I.out(n) = I1.out(n) + I2.out(n)

⊥ otherwise.

Flow interface composition is well-defined because of cancellativity of the underlying
flow domain (it is also, exactly as flow graph composition, partial). We next show the
key result for this abstraction: the ability for two flow graphs to compose depends only
on their interfaces; flow interfaces implicitly define a congruence relation on flow graphs.

Lemma 2. int(H1) = I1 ∧ int(H2) = I2 ⇒ int(H1 �H2) = I1 ⊕ I2.

Crucially, the following result shows that we can use our flow interfaces as an
abstraction directly compatible with existing separation logics.

Theorem 1. The flow interface algebra (FI,⊕, I∅) is a separation algebra.

This result forms the core of our reasoning technique; it enables us to make modifi-
cations within a chosen subgraph and, by proving preservation of its interface, know that
the result composes with any context exactly as the original did. Flow interfaces cap-
ture precisely the information relevant about a flow graph, with respect to composition
with other flow graphs. In Appendix B of the accompanying technical report (hereafter,
TR) [23] we provide additional examples of flow domains that demonstrate the range of
data structures and graph properties that can be expressed using flows, including a notion
of universal flow that in a sense provides a completeness result for the expressivity of
the framework. We now turn to constructing proofs atop these new reasoning principles.
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3 Proof Technique

This section shows how to integrate flow reasoning into a standard separation logic,
using the priority inheritance protocol (PIP) algorithm to illustrate our proof techniques.

Since flow graphs and flow interfaces form separation algebras, it is possible in
principle to define a separation logic (SL) using these notions as a custom semantic
model (indeed, this is the proof approach taken in [22]). By contrast, we integrate flow
interfaces with a standard separation logic without modifying its semantics. This has
the important technical advantage that our proof technique can be naturally integrated
with existing separation logics and verification tools supporting SL-style reasoning. We
consider a standard sequential SL in this section, but our technique can also be directly
integrated with a concurrent SL such as RGSep (as we show in §4.5) or frameworks such
as Iris [18] supporting (ghost) resources ranging over user-defined separation algebras.

3.1 Encoding Flow-based Proofs in SL

Proofs using our flow framework can employ a combination of specifications enforced
at the node level and in terms of the flow graphs and interfaces corresponding to larger
heap regions such as entire data structures (henceforth, composite graphs and composite
interfaces). At the node level, we write invariants that every node is intended to satisfy,
typically relating the node’s flow value to its local state (fields). For example, in the PIP,
we use node-local invariants to express that a node’s current priority is the maximum of
the node’s default priority and those in its current flow value. We typically express such
specifications in terms of singleton (flow) graphs, and their singleton interfaces.

Specification in terms of composite interfaces has several important purposes. One
is to define custom inflows: e.g. in the path-counting flow domain, specifying that the
inflow of a composite interface is 1 at some designated node r and 0 elsewhere enforces
in any underlying flow graph that each node n’s flow value will be the number of paths
from r to n.7 Composite interfaces can also be used to express that, in two states of
execution, a portion of the heap “looks the same” with respect to composition (it has the
same interface, and so can be composed with the same flow graphs), or to capture by
how much there is an observable difference in inflow or outflow; we employ this idea in
the PIP proof below.

We now define an assertion syntax convenient for capturing both node-level and
composite-level constraints, defined within an SL-style proof system. We assume an intu-
itionistic, garbage-collected SL [6] with standard syntax and semantics:8 see Appendix A
of the TR [23] for more details.

Node Predicates. The basic building block of our flow-based specifications is a node
predicate N(x,H), representing ownership of the fields of a single node x, as well as

7 Note that the analogous property cannot be captured at the node level; when considering
singleton interfaces per node in a tree rooted at r, every singleton interface has an inflow of 1.

8 As P ∗ φ ≡ P ∧ φ for pure formulas P in garbage-collected SLs, we use ∗ instead of ∧
throughout this paper.
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capturing its corresponding singleton flow graph H:

N(x,H) := ∃fs ,fl . x 7→ fs ∗H = ({x} , (λy. edge(x, fs , y)), fl) ∗ γ(x, fs ,fl(x))

N is implicitly parameterised by fs , edge and γ; these are explained next and are typically
fixed across any given flow-based proof. The N predicate expresses that we have a heap
cell at location x containing fields fs (a list of field-name/value mappings).9 It also
says that H is a singleton flow graph with domain {x} with some flow fl , whose edge
functions are defined by a user-defined abstraction function edge(x, fs , y); this function
allows us to define edges in terms of x’s field values. Finally, the node, its fields, and
its flow in this flow graph satisfy the custom predicate γ, used to encode node-local
properties such as constraints in terms of the flow values of nodes.

Graph Predicates. The analogous predicate for composite graphs is Gr. It carries owner-
ship to the nodes making up a potentially unbounded graph, using iterated separating
conjunction over a set of nodes X as mentioned in §1:

Gr(X,H) := ∃H.∗
x∈X

N(x,H(x)) ∗ H =
⊙
x∈X
H(x)

Gr is also implicitly parameterised by fs , edge and γ. The existentially-quantifiedH is
a logical variable representing a function from nodes in X to corresponding singleton
flow graphs. Gr(X,H) describes a set of nodes X , such that each x ∈ X is an N (in
particular, it satisfies γ), whose singleton flow graphs compose back to H . As well as
carrying ownership of the underlying heap locations, Gr’s definition allows us to connect
a node-level view of the region X (eachH(x)) with a composite-level view defined by
H , on which we can impose appropriate graph-level properties such as constraints on
the region’s inflow.

Lifting to Interfaces. Flow based proofs can often be expressed more elegantly and
abstractly using predicates in terms of node and composite-level interfaces rather than
flow graphs. To this end, we overload both our node and graph predicates with analogues
whose second parameter is a flow interface, defined as follows:

N(x, I) := ∃H. N(x,H) ∗ I = int(H)
Gr(X, I) := ∃H. Gr(x,H) ∗ I = int(H)

We will use these versions in the PIP proof below; interfaces capture all relevant proper-
ties for decomposition and composition of these flow graphs.

Flow Lemmas. We first illustrate our N and Gr predicates (which capture SL ownership
of heap regions and abstract these with flow interfaces) by identifying a number of
lemmas which are generically useful in flow-based proofs. Reasoning at the level of flow
interfaces is entirely in the pure world (mathematics independent of heap-ownership and

9 For simplicity, we assume that all fields of a flow graph node are to be handled by our flow-
based technique, and that their ownership (via 7→ points-to predicates) is always carried around
together; lifting these restrictions would be straightforward.
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Gr(X1 ]X2, H) |= ∃H1, H2. Gr(X1, H1) ∗ Gr(X2, H2)

∗H1 �H2 = H (DECOMP)

Gr(X1, H1) ∗ Gr(X2, H2) ∗H1 �H2 6= ⊥ |= Gr(X1 ]X2, H1 �H2) (COMP)

N(x,H) ≡ Gr({x} , H) (SING)

emp |= Gr(∅, H∅) (GREMP)

Gr(X1, H
′
1) ∗ Gr(X2, H2) ∗H = H1 �H2 |= Gr(X1 ]X2, H

′
1 �H2) (REPL)

∗ int(H1) = int(H ′
1) ∗ int(H) = int(H ′

1 �H2)

Fig. 2: Some useful lemmas for proving entailments between flow-based specifications.

resources) with respect to the underlying SL reasoning; these lemmas are consequences
of our predicate definitions and the foundational flow framework definitions themselves.

Examples of these lemmas are shown in Figure 2. (DECOMP) shows that we can
always decompose a valid flow graph into subgraphs which are themselves flow graphs.
Recomposition (COMP) is possible only if the subgraphs compose. These rules, as well
as (SING), and (GREMP) follow directly from the definition of Gr and standard SL prop-
erties of iterated separating conjunction. The final rule (REPL) is a direct consequence of
rules (COMP), (DECOMP) and the congruence relation on flow graphs induced by their
interfaces (cf. Lemma 2). Conceptually, it expresses that after decomposing any flow
graph into two parts H1 and H2, we can replace H1 with a new flow graph H ′1 with the
same interface; when recomposing, the overall graph will be a flow graph with the same
overall interface.

Note the connection between rules (COMP)/(DECOMP) and the algebraic laws of
standard inductive predicates such as ls describing a segment of a linked list [2]. For
instance by combining the definition of Gr with these rules and (SING) we can prove the
following graph analogue of the rule to separate a list into the head node and the tail:

Gr(X ] {y} , H) ≡ ∃Hy, H
′.N(y,Hy) ∗ Gr(X,H ′) ∗H = Hy �H ′ ((UN)FOLD)

However, crucially (and unlike when using general inductive predicates [32]), this rule
is symmetrical for any node x in X; it works analogously for any desired order of
decomposition of the graph, and for any data structure specified using flows.

When working with our overloaded N and Gr predicates, similar steps to those
described by the above lemmas are useful. Given these overloaded predicates, we simply
apply the lemmas above to the existentially quantified flow-graphs in their definitions and
then lift the consequence of the lemma back to the interface level using the congruence
between our flow graph and interface composition notions (Lemma 2).

3.2 Proof of the PIP

We now have all the tools necessary to verify the priority inheritance protocol (PIP).
Figure 3 gives the full algorithm with flow-based specifications; we also include some
intermediate assertions to illustrate the reasoning steps for the acquire method, which



Local Reasoning for Global Graph Properties 321

1 // Let δ(m, q1, q2) := m \ (q1 ≥ 0 ? {q1} : ∅) ∪ (q2 ≥ 0 ? {q2} : ∅)
2

3 method update(n: Ref, from: Int, to: Int)
4 requires N(n, In) ∗ Gr(X \ {n} , I ′) ∗ I = I ′n ⊕ I ′ ∗ ϕ(I) ∗ n ∈ X
5 requires I ′n = ({n� δ(In.in(n), from, to)} , In.out) ∗ from 6= to
6 ensures Gr(X, I)
7 {
8 n.prios := n.prios \ {from}
9 if (to >= 0) {

10 n.prios := n.prios ∪ {to}
11 }
12 from := n.curr_prio
13 n.curr_prio := max(n.prios ∪ {n.def_prio})
14 to := n.curr_prio
15

16 if (from != to && n.next != null) {
17 update(n.next, from, to)
18 }
19 }
20

21 method acquire(p: Ref, r: Ref)
22 requires Gr(X, I) ∗ ϕ(I) ∗ p ∈ X ∗ r ∈ X ∗ p 6= r
23 ensures Gr(X, I)
24 {

25
{
∃Ir, Ip, I1. N(r, Ir) ∗ N(p, Ip) ∗ Gr(X \ {r, p} , I1) ∗ I = Ir ⊕ Ip ⊕ I1 ∗ ϕ(I)

}
26 if (r.next == null) {
27 r.next := p;
28 // Let qr = r.curr_prio

29

{
∃Ir, I ′r, Ip, I1. N(r, I ′r) ∗ N(p, Ip) ∗ Gr(X \ {r, p} , I1) ∗ I = Ir ⊕ Ip ⊕ I1
∗ I ′r = (Ir.in, {p� {qr}}) ∗ Ir.out = λ0 ∗ · · ·

}

30 |=

{
∃Ip, I ′p, I2. N(p, Ip) ∗ Gr(X \ {p} , I2) ∗ I = I ′p ⊕ I2
∗ I ′p = ({p� δ(Ip.in(p),−1, qr)} , Ip.out) ∗ · · ·

}
31 update(p, -1, r.curr_prio)

32
{
Gr(X, I)

}
33 } else {
34 p.next := r; update(r, -1, p.curr_prio)
35 }
36 }
37

38 method release(p: Ref, r: Ref)
39 requires Gr(X, I) ∗ ϕ(I) ∗ p ∈ X ∗ r ∈ X ∗ p 6= r
40 ensures Gr(X, I)
41 { r.next := null; update(p, r.curr_prio, -1) }

Fig. 3: Full PIP code and specifications, with proof sketch for acquire. The comments
and coloured annotations (lines 29 to 32) are used to highlight steps in the proof, and are
explained in detail in the text.



322 S. Krishna et al.

we explain in more detail below. 10 We instantiate our framework in order to capture the
PIP invariants as follows:

fs :=
{
next : y, curr_prio : q, def_prio : q0, prios : Q

}
edge(x, fs , z) :=

{
(λm. max(m ∪ {q0})) if z = y 6= null

λ0 otherwise

γ(x, fs ,m) := q0 ≥ 0 ∗ (∀q′ ∈ Q. q′ ≥ 0) ∗ m = Q ∗ q =
{
max(Q ∪ {q0})

}
ϕ(I) := I = (λ0, λ0)

Each node has the four fields listed in fs . fs also defines variables such as y to denote
field values that are used in the definitions of edge and γ; these variables are bound to the
heap by N. edge abstracts the heap into a flow graph by letting each node have an edge
to its next successor labelled by a function that passes to it the maximum incoming
priority or the node’s default priority: whichever is larger. With this definition, one can
see that the flow of every node will be the multiset containing exactly the priorities of
its predecessors. The node-local invariant γ says that all priorities are non-negative, the
flow m of each node is stored in the prios field, and its current priority is the maximum
of its default and incoming priorities. Finally, the constraint ϕ on the global interface
expresses that the graph is closed – it has no inflow or outflow.

Flows Specifications for the PIP. Our specifications of acquire and release guarantee
that if we start with a valid flow graph (closed, according to ϕ), we are guaranteed to
return a valid flow graph with the same interface (i.e. the graph remains closed). For
clarity of the exposition, we focus here on how we prove that being a flow graph that
satisfies the PIP invariant is preserved (as is the composite flow graph’s interface).
Extending this specification to one which proves, e.g., that acquire adds the expected
edge is straightforward (see Appendix C of the TR [23]). 11

The specification for update is somewhat subtle, and exploits the full flexibility
of flow interfaces as a specification medium. The preconditions of update describe an
update to the graph which is not yet completed. There are three complementary aspects
to this specification. Firstly, (as for acquire and release), node-local invariants (γ)
hold for all nodes in the graph (enforced via N and Gr predicates). Secondly, we employ
flow interfaces to express a decomposition of the original top-level interface I into
compatible (primed) sub-interfaces. The key to understanding this specification is that
I ′n is in some sense a fake interface; it does not abstract the current state of the heap node
n. Instead, I ′n expresses the way in which the node n’s current inflow hasn’t yet been
accounted for in the heap: that if n could adjust its inflow according to the propagated
priority change without changing its outflow, then it would compose back with the rest of
the graph, and restore the graph’s overall interface. The shorthand δ defines the required
change to n’s inflow.

In general (except when n’s next field is null, or n’s flow value is unchanged), it
is not even possible for n’s fields to be updated to satisfy I ′n; by updating n’s inflow,
10 In specifications, we implicitly quantify at the top level over free variables such as I . λ0 denotes

an identically zero function on an unconstrained domain.
11 We also omit acquire’s precondition that p.next == null for brevity.
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we will necessarily update its outflow. However, we can then construct a corresponding
“fake” interface for the next node in the graph, reflecting the update yet to be accounted
for, and establishing the precondition for the recursive call to update.

The third specification aspect is the connection between heap-level nodes and in-
terfaces. The N(n, In) predicate connects n with a different interface; In is the actual
current abstraction of n’s state. Conceptually, the key property which is broken at this
point is this connection between the interface-level specification and the heap at node n,
reflected by the decomposition in the specification between X \ {n} and {n}.

We note that the same specification ideas and proof style can be easily adapted to
other data structure implementations with an update-notify style, including well-known
designs such as Subject-Observer patterns, or the Composite pattern [27].

Proof Outline. To illustrate the application of flows reasoning to our PIP specification
ideas more clearly, we examine in detail the first if-branch in the proof of acquire. Our
intermediate proof steps are shown as purple annotations surrounded by braces. The first
step, as shown in the first line inside the method body, is to apply ((UN)FOLD) twice (on
the flow graphs represented by these predicates) and peel off N predicates for each of r
and p. The update to r’s next field (line 27) causes the correct singleton interface of r to
change to I ′r: its outflow (previously none, since the next field was null) now propagates
flow to p. We summarise this state in the assertion on line 29 (we omit e.g. repetition
of properties from the function’s precondition, focusing on the flow-related steps of
the argument). We now rewrite this state; using the definition of interface composition
(Definition 6) we deduce that although I ′r and Ip do not compose (since the former has
outflow that the latter does not account for as inflow), the alternative “fake” interface
I ′p for p (which artificially accounts for the missing inflow) would do so (cf. line 30).
Essentially, we show Ir ⊕ Ip = I ′r ⊕ I ′p, that the interface of {r, p} would be unchanged
if p could somehow have interface I ′p. Now by setting I2 = I ′r ⊕ I1 and using algebraic
properties of interfaces, we assemble the precondition expected by update. After the
call, update’s postcondition gives us the desired postcondition.

We focused here on the details of acquire’s proof, but very similar manipulations
are required for reasoning about the recursive call in update’s implementation.12 The
main difference there is that if the if-condition wrapping the recursive call is false then
either the last-modified node has no successor (and so there is no outstanding inflow
change needed), or we have from= to which implies that the “fake” interface is actually
the same as the currently correct one.

Despite the property proved for the PIP example being a rather delicate recursive in-
variant over the (potentially cyclic) graph, the power of our framework enables extremely
succinct specifications for the example, and proofs which require the application of rela-
tively few generic lemmas. The integration with standard separation logic reasoning, and
the complementary separation algebras provided by flow interfaces allow decomposition
and recomposition to be simple proof steps. For this proof, we integrated with standard
sequential separation logic, but in the next section we will show that compatibility with
concurrent SL techniques is similarly straightforward.

12 We provide further proof outlines in Appendix C of the TR [23].
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mh −∞ 3 5 9 10 12 ∞

fh 2 6 1 7 ft

Fig. 4: A potential state of the Harris list with explicit memory management. fnext
pointers are shown with dashed edges, marked nodes are shaded gray, and null pointers
are omitted for clarity.

4 Advanced Flow Reasoning and the Harris List

This section introduces some advanced foundational flow framework theory and demon-
strates its use in the proof of the Harris list. We note that [22] presented a proof of this
data structure in the original flow framework. The proof given here shows that the new
framework eliminates the need for the customized concurrent separation logic defined
in [22]. We start with a recap of Harris’ algorithm adapted from [22].

4.1 The Harris List Algorithm

The power of flow-based reasoning is exhibited in the proof of overlaid data structures
such as the Harris list, a concurrent non-blocking linked list algorithm [12]. This algo-
rithm implements a set data structure as a sorted list, and uses atomic compare-and-swap
(CAS) operations to allow a high degree of parallelism. As with the sequential linked
list, Harris’ algorithm inserts a new key k into the list by finding nodes k1, k2 such that
k1 < k < k2, setting k to point to k2, and using a CAS to change k1 to point to k only
if it was still pointing to k2. However, a similar approach fails for the delete operation.
If we had consecutive nodes k1, k2, k3 and we wanted to delete k2 from the list (say by
setting k1 to point to k3), there is no way to ensure with one CAS that k2 and k3 are also
still adjacent (another thread could have inserted/deleted in between them).

Harris’ solution is a two step deletion: first atomically mark k2 as deleted (by setting
a mark bit on its successor field) and then later remove it from the list using a single
CAS. After a node is marked, no thread can insert or delete to its right, hence a thread
that wanted to insert k′ to the right of k2 would first remove k2 from the list and then
insert k′ as the successor of k1.

In a non-garbage-collected environment, unlinked nodes cannot be immediately freed
as suspended threads might continue to hold a reference to them. A common solution
is to maintain a second “free list” to which marked nodes are added before they are
unlinked from the main list (this is the so-called drain technique). These nodes are then
labelled with a timestamp, which is used by a maintenance thread to free them when it is
safe to do so. This leads to the kind of data structure shown in Figure 4, where each node
has two pointer fields: a next field for the main list and an fnext field for the free list
(the list from fh to ft via dashed edges). Threads that have been suspended while holding
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Fig. 5: Examples of graphs that motivate effective acyclicity. All graphs use the path-
counting flow domain, the flow is displayed inside each node, and the inflow is displayed
as curved arrows to the top-left of nodes. (a) shows a graph and inflow that has no
solution to (FlowEqn); (b) has many solutions. (c) shows a modification that preserves
the interface of the modified nodes, yet goes from a graph that has a unique flow to one
that has many solutions to (FlowEqn).

a reference to a node that was added to the free list can simply continue traversing the
next pointers to find their way back to the unmarked nodes of the main list.

Even for seemingly simple properties such as that the Harris list is memory safe and
not leaking memory, the proof will rely on the following non-trivial invariants:

(a) The data structure consists of two (potentially overlapping) lists: a list on next

edges beginning at mh and one on fnext edges beginning at fh .
(b) The two lists are null terminated and next edges from nodes in the free list point to

nodes in the free list or main list.
(c) All nodes in the free list are marked.
(d) ft is an element in the free list (due to concurrency, it’s not always the tail).

Challenges. To prove that Harris’ algorithm maintains the invariants listed above we
must tackle a number of challenges. First, we must construct flow domains that allow us
to describe overlaid data structures, such as the overlapping main and free lists (§4.2).
Second, the flow-based proofs we have seen so far work by showing that the interface of
some modified region is unchanged. However, if we consider a program that allocates
and inserts a new node into a data structure (like the insert method of Harris), then the
interface cannot be the same since the domain has changed (it has increased by the
newly allocated node). We must thus have a means to reason about preservation of flows
by modifications that allocate new nodes (§4.3). The third issue is that in some flow
domains, there exist graphs G and inflows in for which no solutions to the flow equation
(FlowEqn) exist. For instance, consider the path-counting flow domain and the graph
in Figure 5(a). Since we would need to use the path-counting flow in the proof of the
Harris list to encode its structural invariants, this presents a challenge (§4.4).

We will next see how to overcome these three challenges in turn, and then apply
those solution to the proof of the Harris list in §4.5.
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4.2 Product Flows for Reasoning about Overlays

An important fact about flows is that any flow of a graph over a product of two flow
domains is the product of the flows on each flow domain component.

Lemma 3. Given two flow domains (M1,+1, 01, E1) and (M2,+2, 02, E2), the product
domain (M1 ×M2,+, (01, 02), E) is a flow domain, where + and E are the pointwise
liftings of (+1,+2) and (E1, E2), respectively, to the domain M1 ×M2.

This lemma greatly simplifies reasoning about overlaid graph structures; we will use
the product of two path-counting flows to describe a structure consisting of two overlaid
lists that make up the Harris list.

4.3 Contextual Extensions and the Replacement Theorem

In general, when modifying a flow graph H to another flow graph H ′, requiring that H ′

satisfies precisely the same interface int(H) can be too strong a condition as it does not
permit allocating new nodes. Instead, we want to allow int(H ′) to differ from int(H)
in that the new interface could have a larger domain, as long as the edges from the new
nodes do not change the outflow of the modified region.

Definition 7. An interface I = (in, out) is contextually extended by I ′ = (in ′, out ′),
written I - I ′, if and only if the following conditions all hold:

(1) dom(in) ⊆ dom(in ′),
(2) ∀n ∈ dom(in). in(n) = in ′(n), and
(3) ∀n′ 6∈ dom(in ′). out(n′) = out ′(n′).

The following theorem states that contextual extension preserves composability and
is itself preserved under interface composition.

Theorem 2 (Replacement Theorem). If I = I1 ⊕ I2, and I1 - I ′1 are all valid
interfaces such that I ′1 ∩ I2 = ∅ and ∀n ∈ I ′1 \ I1. I2.out(n) = 0, then there exists a
valid I ′ = I ′1 ⊕ I2 such that I - I ′.

In terms of our flow predicates, this theorem gives rise to the following adaptation of
the (REPL) rule:

Gr(X ′1, H
′
1) ∗ Gr(X2, H2) ∗H = H1 �H2 ∗ int(H1) - int(H ′1)

|= ∃H ′. Gr(X ′1 ]X2, H
′) ∗H ′ = H ′1 �H2 ∗ int(H) - int(H ′) (REPL+)

The rule (REPL+) is derived from the Replacement Theorem by instantiating with
I = int(H), I1 = int(H1), I2 = int(H2) and I ′1 = int(H ′1). We know I1 - I ′1;
H = H1 �H2 tells us (by Lemma 2) that I = I1 ⊕ I2, and Gr(X ′1, H

′
1) ∗ Gr(X2, H2)

gives us I ′1 ∩ I2 = ∅. The final condition of the Replacement Theorem is to prove that
there is no outflow from X2 to any newly allocated node in X ′1. While we can use
additional ghost state to prove such constraints in our proofs, if we assume that the
memory allocator only allocates fresh addresses and restrict the abstraction function
edge to only propagate flow along an edge (n, n′) if n has a (non-ghost) field with a
reference to n′ then this condition is always true. For simplicity, and to keep the focus of
this paper on the flow reasoning, we make this assumption in the Harris list proof.
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4.4 Existence and Uniqueness of Flows

We typically express global properties of a graph G = (N, e) by fixing a global inflow
in : N → M and then constraining the flow of each node in N using node-local
conditions. However, as we discussed at the beginning of this section, there is no general
guarantee that a flow exists or is unique for a given in and G. The remainder of this
section presents two complementary conditions under which we can prove that our flow
fixpoint equation always has a unique solution. To this end, we say that a flow domain
(M,+, 0, E) has unique flows if for every graph (N, e) over this flow domain and inflow
in : N →M , there exists a unique fl that satisfies the flow equation FlowEqn(in, e,fl).
But first, we briefly recall some more monoid theory.

We say M is positive if m1 +m2 = 0 implies that m1 = m2 = 0. For a positive
monoid M , we can define a partial order ≤ on its elements as m1 ≤ m2 if and only if
∃m3. m1 +m3 = m2. This definition implies that every m ∈M satisfies 0 ≤ m.

For e, e′ : M → M , we write e + e′ for the function that maps m ∈ M to e(m) +
e′(m). We lift this construction to a set of functions E and write it as

∑
e∈E e.

Definition 8. A function e : M → M is called an endomorphism on M if for every
m1,m2 ∈M , e(m1 +m2) = e(m1) + e(m2). We denote the set of all endomorphisms
on M by End(M).

Note that for cancellative M , e(0) = 0 for every endomorphism e ∈ End(M).
Note further that e + e′ ∈ End(M) for any e, e′ ∈ End(M). Similarly, for finite sets
E ⊆ End(M),

∑
e∈E e ∈ End(M). We say that a set of endomorphisms E ⊆ End(M)

is closed if for every e, e′ ∈ E, e ◦ e′ ∈ E and e+ e′ ∈ E.

Nilpotent Cycles. Let (M,+, 0, E) be a flow domain where every edge function e ∈ E
is an endomorphism on M . In this case, we can show that the flow of a node n is the
sum of the flow as computed along each path in the graph that ends at n. Suppose we
additionally know that the edge functions are defined such that their composition along
any cycle in the graph eventually becomes the identically zero function. We then need
only consider finitely many paths to compute the flow of a node, which means the flow
equation has a unique solution.

Definition 9. A closed set of endomorphisms E ⊆ End(M) is called nilpotent if there
exists p > 1 such that ep ≡ 0 for every e ∈ E.

Example 5. The flow domain (N2,+, (0, 0), {(λ(x, y). (0, c · x)) | c ∈ N}) contains
nilpotent edge functions that shift the first component of the flow to the second (with
a scaling factor). This domain can be used to express the property that every node in a
graph is reachable from the root via a single edge (by requiring the flow of every node to
be (0, 1) under the inflow (λn. (n = r ? (1, 0) : (0, 0)))).

Before we prove that nilpotent endomorphisms lead to unique flows, we present a
useful notion when dealing with endomorphic flow domains.

Definition 10. The capacity of a flow graph G = (N, e) is cap(G) : N ×N→ (M →
M), defined inductively as cap(G) := cap|G|(G), where cap0(G)(n, n′) := δn=n′ and

capi+1(G)(n, n′) := δn=n′ +
∑

n′′∈G
capi(G)(n, n′′) ◦ e(n′′, n′).



328 S. Krishna et al.

For a flow graph H = (N, e,fl), we write cap(H)(n, n′) = cap((N, e))(n, n′)
for the capacity of the underlying graph. Intuitively, cap(G)(n, n′) is the function that
summarizes how flow is routed from any source node n in G to any other node n′,
including those outside of G.

We can now show that if all edges of a flow graph are labelled with edges from a
nilpotent set of endomorphisms, then the flow equation has a unique solution:

Lemma 4. If (M,+, 0, E) is a flow domain such that M is a positive monoid and E is
a nilpotent set of endomorphisms, then this flow domain has unique flows.

Effectively Acyclic Flow Graphs. There are some flow domains that compute flows
useful in practice, but which do not guarantee either existence or uniqueness of fixpoints
a priori for all graphs. For example, the path-counting flow from Example 1 is one where
for certain graphs, there exist no solutions to the flow equation (see Figure 5(a)), and for
others, there can exist more than one (in Figure 5(b), the nodes marked with x can have
any path count, as long as they both have the same value).

In such cases, we explore how to restrict the class of graphs we use in our flow-based
proofs such that each graph has a unique fixpoint; the difficulty is that this restriction must
be respected for composition of our graphs. Here, we study the class of flow domains
(M,+, 0, E) such that M is a positive monoid and E is a set of reduced endomorphisms
(defined below). In such domains we can decompose the flow computations into the
various paths in the graph, and achieve unique fixpoints by restricting the kinds of cycles
graphs can have.

Definition 11. A flow graphH = (N, e,fl) is effectively acyclic (EA) if for every 1 ≤ k
and n1, . . . , nk ∈ N ,

fl(n1) . e(n1, n2) · · · e(nk−1, nk) . e(nk, n1) = 0.

The simplest example of an effectively acyclic graph is one where the edges with
non-zero edge functions form an acyclic graph. However, our semantic condition is
weaker: for example, when reasoning about two overlaid acyclic lists whose union
happens to form a cycle, a product of two path-counting domains will satisfy effective
acyclicity because the composition of different types of edges results in the zero function.

Lemma 5. Let (M,+, 0, E) be a flow domain such that M is a positive monoid and
E is a closed set of endomorphisms. Given a graph (N, e) over this flow domain and
inflow in : N →M , if there exists a flow graph H = (N, e,fl) that is effectively acyclic,
then fl is unique.

While the restriction to effectively acyclic flow graphs guarantees us that the flow is
the unique fixpoint of the flow equation, it is not easy to show that modifications to the
graph preserve EA while reasoning locally. Even modifying a subgraph to another with
the same flow interface (which we know guarantees that it will compose with any context)
can inadvertently create a cycle in the larger composite graph. For instance, consider
Figure 5(c), that shows a modification to nodes {n3, n4} (the boxed blue region). The
interface of this region is ({n3� 1, n4� 1} , {n5� 1, n2� 1}), and so swapping
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the edges of n3 and n4 preserves this interface. However, the resulting graph, despite
composing with the context to form a valid flow graph, is not EA (in this case, it has
multiple solutions to the flow equation). This shows that flow interfaces are not powerful
enough to preserve effective acyclicity. For a special class of endomorphisms, we show
that a local property of the modified subgraph can be checked, which implies that the
modified composite graph continues to be EA.

Definition 12. A closed set of endomorphisms E ⊆ End(M) is called reduced if e◦e ≡
λ0 implies e ≡ λ0 for every e ∈ E.

Note that if E is reduced, then no e ∈ E can be nilpotent. In that sense, this class of
instantiations is complementary to the nilpotent class.

Example 6. Examples of flow domains that fall into this class include positive semirings
of reduced rings (with the additive monoid of the semiring being the aggregation monoid
of the flow domain and E being any set of functions that multiply their argument with
a constant flow value). Note that any direct product of integral rings is a reduced ring.
Hence, products of the path counting flow domain are a special case.

For reduced endomorphisms, it suffices to check that a modification preserves the
flow routed between every pair of source and sink node in order to ensure that it does
not create any new cycles in any composite graph.

Definition 13. A flow graph H ′ is a subflow-preserving extension of H , for which we
write H -s H

′, if the following conditions all hold:

(1) int(H) - int(H ′)
(2) ∀n ∈ H,n′ 6∈ H ′,m. m ≤ inf(H)(n)⇒ m.cap(H)(n, n′) = m.cap(H ′)(n, n′)
(3) ∀n ∈ H ′ \H,n′ 6∈ H ′,m. m ≤ inf(H ′)(n)⇒ m . cap(H ′)(n, n′) = 0

This pairwise check, apart from requiring the interface of the modified region to be
unchanged, also permits allocating new nodes as long as no flow is routed via the new
nodes (condition (3)). We now show that it is sufficient to check that a modification is a
subflow-preserving extension to guarantee composition back to an effectively-acyclic
composite graph:

Theorem 3. Let (M,+, 0, E) be a flow domain such thatM is a positive monoid and E
is a reduced set of endomorphisms. If H = H1 �H2 and H1 -s H

′
1 are all effectively

acyclic flow graphs such that H ′1 ∩H2 = ∅ and ∀n ∈ H ′1 \H1. outf(H2)(n) = 0, then
there exists an effectively acyclic flow graph H ′ = H ′1 �H2 such that H -s H

′.

We define effectively acyclic versions of our flow graph predicates, Na(x,H) and
Gra(X,H), that additionally constrain H to be effectively acyclic. The above theorem
yields the following variant of the (REPL) rule for EA graphs:

Gra(X
′
1, H

′
1) ∗ Gra(X2, H2) ∗H = H1 �H2 ∗H1 -s H

′
1

|= ∃H ′. Gra(X ′1 ]X2, H
′) ∗H ′ = H ′1 �H2 ∗H -s H

′ (REPLEA)
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4.5 Proof of the Harris List

We use the techniques seen in this section in the proof of the Harris list. As the data
structure consists of two potentially overlapping lists, we use Lemma 3 to construct a
product flow domain of two path-counting flows: one tracks the path count from the
head of the main list, and one from the head of the free list. We also work under the
effectively acyclic restriction (i.e. we use the Na and Gra predicates), both in order to
obtain the desired interpretation of the flow as well as to ensure existence of flows in this
flow domain.

We instantiate the framework using the following definitions of parameters:

fs := {key : k, next : y, fnext : z}
edge(x, fs , v) := (v = null ? λ0 : (v = y ∧ y 6= z ? λ(1,0)

: (v 6= y ∧ y = z ? λ(0,1) : (v = y ∧ y = z ? λid : λ0))))

γ(x, fs , I) := (I.in(x) ∈ {(1, 0), (0, 1), (1, 1)}) ∗ (I.in(x) 6= (1, 0)⇒M(y))

∗ (x = ft ⇒ I.in(x) = (_, 1)) ∗ (¬M(y)⇒ z = null)

ϕ(I) := I = (λ0[mh � (1, 0)][fh � (0, 1)], λ0)

Here, edge encodes the edge functions needed to compute the product of two path
counting flows, the first component tracks path-counts from mh on next edges and the
second tracks path-counts from fh on fnext edges 13. The node-local invariant γ says:
the flow is one of {(1, 0), (0, 1), (1, 1)} (meaning that the node is on one of the two lists,
invariant (a)); if the flow is not (1, 0) (the node is not only on the main list, i.e. it is
on the free list) then the node is marked (indicated by M(y), invariant (c)); and if the
node is ft then it must be on the free list (invariant (d)). The constraint on the global
interface, ϕ, says that the inflow picks out mh and fh as the roots of the lists, and there
is no outgoing flow (thus, all non-null edges must stay within the graph, invariant (b)).

Since the Harris list is a concurrent algortihm, we perform the proof in rely-guarantee
separation logic (RGSep) [41]. Like in §3, we do not need to modify the semantics of
RGSep in any way; our flow-based predicates can be defined and reasoning using our
lemmas can be performed in the logic out-of-the-box. For space reasons, the full proof
can be found in Appendix D of the TR [23].

5 Related Work

As mentioned in §1, the most closely related work is the flow framework developed by
some of the authors in [22]. We here present a simplified and generalized meta theory of
flows that makes the approach much more broadly applicable. There were a number of
limitations of the prior framework that prevented its application to more general classes
of examples.

First, [22] required flow domains to form a semiring; the analogue of edge functions
are restricted to multiplication with a constant which must come from the same flow

13 We use the shorthands λ(1,0) := (λ(m1,m2). (m1, 0)) and λ(0,1) := (λ(m1,m2). (0,m2)),
and denote an anonymous existentially-quantified variable by _.
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value set. This restriction made it complex to encode many graph properties of interest.
For example, one could not easily encode the PIP flow, or a simple flow that counts the
number of incoming edges to each node. Our foundational flow framework decouples
the algebraic structure defining how flow is aggregated from the algebraic structure of
the edge functions. In this way, we obtain a more general framework that applies to many
more examples, and with simpler flow domains.

Second, in [22], a flow graph did not uniquely determine its inflow (cf. Lemma 1).
Correspondingly, [22]’s notion of interface included an equivalence class of inflows (all
those that induce the same flow values). Since, in [22], the interface also determines
which modifications are permitted by the framework, [22] could only handle modifica-
tions that preserve the inflow equivalence class. For example, this prevents one from
reasoning locally about the removal of a single edge from a graph in certain cases (in
particular, like release does in the PIP). Our foundational flow framework solves
this problem by requiring that the aggregation operation on flow values is cancellative,
guaranteeing unique inflows.

Cancellativity is fundamentally incompatible with [22], which requires the flow
domain to form an ω-CPO in order to guarantee the existence of unique flows. For
example, in a graph with two nodes n and n′ with identity edges between them and
all other edges zero (in [22], edges labelled with 1 and 0), if we have in(n) = 0
and in(n) = m for some non-zero m, a solution to the flow equation must satisfy
fl(n) = m+ fl(n). [22] forces such solutions to exist, ruling out cancellativity. To solve
this problem, we present a new theory which can optionally guarantee unique flows
when desired and show that requiring cancellativity does not limit expressivity.

Next, the proofs of programs shown in [22] depend on a bespoke program logic. This
logic requires new reasoning primitives that are not supported by the logics implemented
in existing SL-based verification tools. Our general proof technique eliminates the need
for a dedicated program logic and can be implemented on top of standard separation log-
ics and existing SL-based tools. Finally, the underlying separation algebra of the original
framework makes it hard to use equational reasoning, which is a critical prerequisite for
enabling proof automation.

An abundance of SL variants provide complementary mechanisms for modular
reasoning about programs (e.g. [18, 36, 38]). Most are parameterized by the underlying
separation algebra; our flow-based reasoning technique easily integrates with these
existing logics.

The most common approach to reason about irregular graph structures in SL is to
use iterated separating conjunction [30, 44] and describe the graph as a set of nodes each
of which satisfies some local invariant. This approach has the advantage of being able to
naturally describe general graphs. However, it is hard to express non-local properties that
involve some form of fixpoint computation over the graph structure. One approach is to
abstract the program state as a mathematical graph using iterated separating conjunction
and then express non-local invariants in terms of the abstract graph rather than the
underlying program state [14, 35, 38]. However, a proof that a modification to the state
maintains a global invariant of the abstract graph must then often revert back to non-local
and manual reasoning, involving complex inductive arguments about paths, transitive
closure, and so on. Our technique also exploits iterated separating conjunction for the
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underlying heap ownership, with the key benefit that flow interfaces exactly capture the
necessary conditions on a modified subgraph in order to compose with any context and
preserve desired non-local invariants.

In recent work, Wang et al. present a Coq-mechanised proof of graph algorithms in
C, based on a substantial library of graph-related lemmas, both for mathematical and
heap-based graphs [42]. They prove rich functional properties, integrated with the VST
tool. In contrast to our work, a substantial suite of lemmas and background properties are
necessary, since these specialise to particular properties such as reachability. We believe
that our foundational flow framework could be used to simplify framing lemmas in a
way which remains parameteric with the property in question.

Proofs of a number of graph algorithms have been mechanized in various verification
tools and proof assistants, including Tarjan’s SCC algorithm [8], union-find [7], Kruskal’s
minimum spanning tree algorithm [13], and network flow algorithms [25]. These proofs
generally involve non-local reasoning arguments about mathematical graphs.

An alternative approach to using SL-style reasoning is to commit to global reasoning
but remain within decidable logics to enable automation [16, 21, 24, 28, 43]. However,
such logics are restricted to certain classes of graphs and certain types of properties.
For instance, reasoning about reachability in unbounded graphs with two successors
per node is undecidable [15]. Recent work by Ter-Gabrielyan et al. [40] shows how
to deal with modular framing of pairwise reachability specifications in an imperative
setting. Their framing notion has parallels to our notion of interface composition, but
allows subgraphs to change the paths visible to their context. The work is specific to
a reachability relation, and cannot express the rich variety of custom graph properties
available in our technique.

Dynamic frames [19] (e.g. implemented in Dafny [26]), can be used to explicitly
reason about framing of heap information in a first-order logic. However, by itself, this
theory does not enable modular reasoning about global graph properties. We believe that
the flow framework could in principle be adapted to the dynamic frames setting.

6 Conclusions and Future Work

We have presented the foundational flow framework, enabling local modular reasoning
about recursively-defined properties over general graphs. The core reasoning technique
has been designed to make minimal mathematical requirements, providing great flexi-
bility in terms of potential instantiations and applications. We identified key classes of
these instantiations for which we can provide existence and uniqueness guarantees for
the fixpoint properties our technique addresses and demonstrate our proof technique on
several challenging examples. As future work, we plan to automate flow-based proofs
in our new framework using existing tools that support SL-style reasoning such as
Viper [29] and GRASShopper [34].
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