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Abstract
Anthropogenic changes in the variability of precipitation stand to impact both natural and human
systems in profound ways. Precipitation variability encompasses not only extremes like droughts
and floods, but also the spectrum of precipitation which populates the times between these
extremes. Understanding the changes in precipitation variability alongside changes in mean and
extreme precipitation is essential in unraveling the hydrological cycle’s response to warming. We
use a suite of state-of-the-art climate models, with each model consisting of a single-model
initial-condition large ensemble (SMILE), yielding at least 15 individual realizations of equally
likely evolutions of future climate state for each climate model. The SMILE framework allows for
increased precision in estimating the evolving distribution of precipitation, allowing for forced
changes in precipitation variability to be compared across climate models. We show that the scaling
rates of precipitation variability, the relation between the rise in global temperature and changes in
precipitation variability, are markedly robust across timescales from interannual to decadal. Over
mid- and high latitudes, it is very likely that precipitation is increasing across the entire spectrum
from means to extremes, as is precipitation variability across all timescales, and seasonally these
changes can be amplified. Model or structural uncertainty is a prevailing uncertainty especially
over the Tropics and Subtropics. We uncover that model-based estimates of historical interannual
precipitation variability are sensitive to the number of ensemble members used, with ‘small’
initial-condition ensembles (of less than 30 members) systematically underestimating precipitation
variability, highlighting the utility of the SMILE framework for the representation of the full
precipitation distribution.

1. Introduction

Anthropogenic changes in the variability of precipit-
ation stand to impact both natural and human sys-
tems in profound ways, from enhancing volatility
of crop yields and dryland productivity (Rowhani
et al 2011, Gherardi and Sala 2019), which renders
vulnerable populations and livestock (Shively 2017,
Sloat et al 2018), to enhancing flood risk and dam-
age (Nobre et al 2017). Changes in mean or extreme
precipitation alone are not the only drivers of shifts

in the distribution of hydrometeorological events.
The ‘space between’ mean and extreme also determ-
ines the properties of the distribution. Precipita-
tion variability connects the times between dry and
wet periods, between droughts and floods. Scientific
understanding and projection of such changes in the
hydrological cycle, including understanding of the
uncertainties inherent to theirmanifestation, is there-
fore critical for informing policy and management
decisions aimed at mitigating and/or adaption to
imminent hydrometeorological threats.
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There is scientific consensus that mean precip-
itation is changing with warming globally at a rate
of about 2% K−1 (Allen and Ingram 2002, Allan
et al 2020), driven by an increase in moisture but
constrained by radiation cooling. Heavy precipita-
tion (99.9th all-day percentile of daily precipitation)
is increasing at a rate of around 7% K−1 globally,
mainly driven by the change in near surface mois-
ture (O’Gorman and Schneider 2009). At local scales,
these rates can be higher due to changes in dynamics
(Lenderink and van Meijgaard 2008, Berg et al 2009,
Westra et al 2014, Lenderink et al 2017, Wood and
Ludwig 2020). It is however not settled whether the
change in precipitation variability with warming fol-
lows the change of mean precipitation or the rate of
near surface moisture. Pendergrass et al (2017) have
argued that precipitation variability changes globally
above the rate of mean precipitation, but below the
rate of heavy precipitation. The physical processes
leading to changes in mean and extreme precipit-
ation, as well as variability can thereby be differ-
ent (Bintanja et al 2020, van der Wiel and Bintanja
2021). Changes in variability are commonly studied
on regional scales, for example the Asian Monsoon
regions (Brown et al 2017a), the North American
Monsoon (Dong et al 2018), or the Arctic (Bintanja
et al 2020). Earlier studies have shown an increase
in interannual variability to be strongest in the trop-
ics and mid-latitudes (Boer 2009, Seager et al 2012,
He and Li 2019). However, most work has focused
on variability changes related to changes in El Nino-
Southern Oscillation (ENSO) (Maher et al 2018,
Haszpra et al 2020).

Quantification of anthropogenic changes in the
distribution of precipitation is challenged by the
ever-present influence of internal climate variability.
Internal variability in the climate system is an irre-
ducible and important source of uncertainty induced
by natural processes in the atmosphere-ocean-land-
biosphere-cryosphere system (Hawkins and Sutton
2009, Deser et al 2012, Lehner et al 2020). It is dif-
ficult to account for internal variability in a single
climate model simulation, because it can only show
a limited number of possible weather and climate
events. This limitation holds true for the observa-
tional record as well. The current best-practice to
robustly estimate the model’s forced response and
its internal variability is by using long control sim-
ulations or large ensembles (Brown et al 2017b,
Maher et al 2018, Milinski et al 2020). Although,
progress is being made on isolating internal vari-
ability in individual simulations and observations
using statistical methods (Smoliak et al 2015, Deser
et al 2016, Sippel et al 2019, Wills et al 2020). How-
ever, long control simulations cannot account for
forced changes in internal variability in a changing
climate. Large ensembles are multi-member climate
simulations using a single climate model under the

same external forcing (i.e. radiative forcing), applying
perturbations at the initialization of each member,
which will create diverging climate trajectories. These
ensembles can be described as single-model initial-
condition large ensembles (SMILEs, for examples see
Kay et al 2015, Maher et al 2019). While multi-
model archives with mainly single or only a limited
number of members, such as the Coupled Model
Intercomparison Project (CMIP) phase 5, confound
structural uncertainty (differences in model formu-
lation) with those from internal variability, archives
of multiple SMILEs are well suited to address both
sources of uncertainties. Within CMIP, internal vari-
ability accounts for roughly half of intermodel spread
for projected changes in precipitation over North
America and Europe over the next 50 years (Deser
et al 2020 and references therein). Also, changes in
large scale dynamics, such as ENSO, which itself drive
interannual variability in surface climate variables,
often show a small signal-to-noise ratio, such that
large ensembles are needed to robustly compute their
variance and its change (Maher et al 2018, Milinski
et al 2020).

Disentangling forced changes in variance from
natural variance, particularly at decadal timescales,
is statistically untenable with a single climate realiz-
ation, because of their small sample size, but achiev-
able through using SMILEs, due to their large sample
size. Further, SMILEs enable a more robust model
evaluation by providing more complete information
on biases (Maher et al 2019, Suarez-Gutierrez et al
2020). There are now a growing number of SMILEs
stored in public archives (Deser et al 2020), affording
more multi-SMILE studies (Maher et al 2020, 2021,
Schlunegger et al 2020).

Here, we use six state-of-the-art fully-coupled
global SMILEs with daily data from the Multi-
Model Large Ensemble Archive (MMLEA; Deser et al
2020) to quantify changes in precipitation (mean
and extreme) and its variability on timescales from
annual to decadal under the Representative Concen-
tration Pathway 8.5 (RCP8.5) scenario. The usage of
multiple SMILEs enables us to answer the question
whether and where changes in variability are robust
and whether different models agree on these changes.
We use a simple evaluation framework for interan-
nual precipitation variability in SMILEs and analyze
to what extent ensemble size influences the represent-
ation of variability.

2. Data

2.1. Large ensembles
We make use of six publicly available SMILEs
with daily precipitation data, and one SMILE with
monthly data (MPI). These SMILEs constitute a reli-
able representation of the CMIP5 ensemble (Lehner
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Table 1. Single-model initial-condition large ensembles (SMILEs) used in this study.

Modeling center Model version Resolution (atm ocn−1)
Initialization
(methods)

No. of
members Reference

CCCma CanESM2a ∼2.8◦ × 2.8◦/∼1.4◦ × 0.9◦ Macro and
Micro

50 Kirchmeier-Young
et al (2017)

NCAR CESM1a ∼1.3◦ × 0.9◦/nominal 1.0◦ Micro 40 Kay et al (2015)
CSIRO MK3.6a ∼1.9◦ × 1.9◦/∼1.9◦ × 1.0◦ Macro 30 Jeffrey et al (2013)
SMHI/KNMI EC-Eartha ∼1.1◦ × 1.1◦/nominal 1.0◦ Micro 16 Hazeleger et al

(2010)
GFDL CM3a 2.0◦ × 2.5◦/1.0◦ × 0.9◦ Micro 20 Sun et al (2018)
GFDL ESM2Mb 2.0◦ × 2.5◦/1.0◦ × 0.9◦ Macro 30 Rodgers

et al (2015)
Schlunegger et al
(2019)

MPI MPI-ESM-LRa,c ∼1.9◦ × 1.9◦/nominal 1.5◦ Macro 100 Maher et al (2019)
a Daily outputs are available on the Multi-Model Large-Ensemble Archive (MMLEA): www.cesm.ucar.edu/projects/community-

projects/MMLEA/.
b Daily outputs are available on the Princeton Multi-ESM Large Ensemble Archive: http://poseidon.princeton.edu.
c Monthly outputs.

et al 2020, Maher et al 2021) and the individual mod-
els are largely structural independent (Knutti et al
2013, Sanderson et al 2015). All SMILEs follow stand-
ard CMIP5 ‘historical’ and RCP8.5 forcing protocols.
The strong forcing scenario allows for the analysis of
changes across a broader range of climate sensitivit-
ies, allowing for a more robust separation of internal
versus model uncertainty. The models range from
∼2.8◦ to ∼1.0◦ horizontal resolution and from 16 to
100 ensemble members. In terms of initialization, the
models used either Micro, Macro, or both schemes
(Hawkins et al 2016). For detailed model specifica-
tions and experimental design, the reader is referred
to the references in table 1.

2.2. Precipitation observations
Two daily land-based precipitation datasets with a
spatial resolution of 1◦ × 1◦ from the FROGS data-
base (Roca et al 2019) are used. The REGEN-ALL-
v2019 (Contractor et al 2020) (hereafter REGEN) is
used based on the longest time period (1950–2016)
and, according to Alexander et al (2020), ranks in
the center of various datasets based on a comparison
of multiple ‘ETCCDI’ precipitation indices. To check
whether the choice of reference dataset influences
the results, the GPCC-FDD-v2018 (Ziese et al 2018)
(hereafter GPCC) was chosen as a second observa-
tional dataset. The GPCC timeseries is considerably
shorter (1982–2016) and ranks among the wettest
datasets (Alexander et al 2020).

3. Methods

3.1. Changes in precipitation and its variability
Chen and Knutson (2008) recommend that prior
to any comparison of models with distinct resolu-
tions, the models should be conservatively remapped
to a common resolution before the calculation of

statistics. Following this recommendation, we con-
servatively remap all data (climate models and
observations) to the coarsest model resolution of
∼2.8◦ × 2.8◦ (i.e. CanESM2) prior to any calcula-
tions. By following this order of processing, we can
regard differences as model biases (structural uncer-
tainty) rather than the impact of spatial scales. We
look at the pattern of change in mean and extreme
precipitation to establish that the six SMILEs are a
good representation of the CMIP5 models before
analyzing the changes in interannual, multiyear, and
decadal variability. Extreme precipitation is defined
as the 99.9th percentile of all-day daily precipitation
(i.e. all days in the year not excluding dry days) within
historical and future 20 year periods. The 99.9th per-
centile represents the wettest 7.3 d in 20 years which
corresponds to 1 in 1000 d or occurring roughly every
3 years. Schär et al (2016) have shown that all-day pre-
cipitation should be favored over wet-days only.

Standard-deviation of precipitation is used as a
metric for precipitation variability. For longer times-
cales, daily data is aggregated first to annual means
and subsequently to five year and decadal means,
using a rolling window. The aggregation is done for
each 20 year period for each member separately and
afterwards data is pooled from all members to cal-
culate the standard-deviation. Changes in variabil-
ity are calculated as the relative change of future
periods versus the historical period scaled by each
model’s forced global-temperature change (GMST).
Seasonal variability is the interannual variability of
the respective season. All changes are shown rel-
ative to the historical period 1955–1974 (also for
the global-temperature change) with maps showing
changes by 2080–2099. Standard-deviationmight not
be the most suitable metric to assess precipitation
variability on daily scales, due to the high number of
dry days leading to a skewed distribution, however
by using annual to decadal means largely alleviates
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this issue. Pendergrass et al (2017) have shown that
standard-deviation is a robust tool for the quantific-
ation of variability at annual to decadal timescales.

We consider a change ‘robust’ when at least 5 out
of 6 models agree on the sign of the forced response,
following guidance from IPCC (2013). Model uncer-
tainty in the magnitude of change is defined as the
standard-deviation of the individual ensemble means
forced changes by 2080–2099, which gives a meas-
ure for how similar the projected changes in the
SMILEs are.

3.2. Evaluating precipitation variability
Observations will match neither the exact evolution
of either a single model realization nor the ensemble
mean, but observations can be put in the context
of the model’s ensemble mean and its variability.
We have therefore adapted the evaluation framework
from Maher et al (2019) and Suarez-Gutierrez et al
(2020) to evaluate precipitation variability.

We compare observed annual anomalies of pre-
cipitation to anomalies from the climate models for
land-areas only. Anomalies are calculated as the relat-
ive differences of the annual means to the climatolo-
gical baseline (1955–1974 for REGEN and 1985–2004
for GPCC). The climate model anomalies are calcu-
lated for each member separately and with respect
to the REGEN or GPCC baseline period. The loca-
tion of each year’s observational anomaly within each
year’s ensemble spread is determined, to see whether
the observations fall outside the ensemble spread
(0–100th percentile range) or within the central 75th
percentile bounds (12.5th–87.5th percentile) of the
ensemble. Ideally, the observations should cover the
entire spread of the ensemble over time and should
not cluster in the center of the ensemble (more than
80% of years within the central 75th percentile range)
or be located outside the ensemble spread for more
than 10% of years. The clustering of observations in
the center of the ensemble indicates an overestima-
tion of the variability by the model. Conversely, many
observations outside the ensemble spread indicate an
underestimation of variability.

To assess whether the ensemble size influences the
over- or underestimation of variability, we sample
100 random combinations (without replacement) of
16 members (corresponding to the smallest ensemble
size, i.e. EC-Earth) and 30 members from the MPI
ensemble. The 100 member MPI ensemble is used
to minimize the resampling bias. A resampling bias
occurs when the samples use more than 50% of the
full ensemble size to generate the random samples
(Milinski et al 2020). The random samples are not
independent anymore because they share too many
of the same members. For the evaluation, each of
the 100 random samples (of 16 and 30 members)
are compared separately to the REGEN anomalies.
We then determine for each grid cell how many of
the samples show an over- or underestimation. At

least 66% of samples must agree either on an over-
estimation (at least 80% of observed annual anom-
alies within the 75th percentile range) or underestim-
ation (at least 10% of anomalies outside the ensemble
spread) of variability to be assigned one of the two
categories, otherwise they are marked as having no
structural bias. The comparison of the two synthetic
MPI ensembles (16 and 30 member) with the full
MPI ensemble and the other six SMILEs, allows for
a separation of ensemble size dependence and model
dependence. Thereby, the ensemble size dependence
is based on the comparison of the synthetic MPI
ensembles with the full MPI ensemble first, before
emerging regions are checked for consistency with
the other smaller SMILEs (<30 members). Whereas
model dependence is based on the comparison of the
individual SMILEs and the full MPI ensemble.

4. Evaluating precipitation variability

4.1. Historical precipitation variability in the
6 SMILEs
In figure 1, the results for the gridcell-based evalu-
ation show that interannual variability over North
and Central America, Europe and Western Russia is
generally well captured by most models. The obser-
vational network in these areas is quite dense, which
reduces the potential for observational uncertainty
associated with this result. Generally, all models
show a better representation of variability over the
Northern compared to the Southern Hemisphere.
Structural differences between models are apparent,
in particular in tropical regions: while three SMILEs
(CanESM2, CSIRO, and GFDL-ESM2M) show an
overestimation of variability over South America,
others show good agreement or an underestimation.
Similar results are found in India, where CanESM2
and CSIRO overestimate the variability and other
models do not (i.e. CESM, GFDL-CM3, GFDL-
ESM2M). Overall, the evaluation highlights CESM
and MPI (seen in figure 2(a)) as capturing precipit-
ation variability most adequately over most parts of
global land area. However, other SMILEs are equally
good in some parts of the world and therefore inter-
pretation depends on the region of interest.

We checked whether the climatological baseline
period for the anomaly calculation (figure S1
(available online at stacks.iop.org/ERL/16/084022/
mmedia)) or the observational dataset (figure S2)
itself affects the results. The general patterns seem
to be unaffected by both, although individual grid-
cells might exhibit differences. Further, it was checked
whether trends in interannual variability in the obser-
vations or SMILEs affects the results. We detrended
both the observed and SMILE annual anomalies by
applying a linear least-square fit to the data and sub-
tracting it from the data. Over Africa and the north-
ern High Latitudes, the detrended data shows a better
representation, which might indicate a mismatch of a
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Figure 1. Evaluation of annual precipitation anomalies simulated by six different SMILEs compared to REGEN observed
anomalies over land from 1955 until 2016. Light blue shading shows areas with a good representation of interannual precipitation
variability. Grey shading suggests an overestimation of variability, red shading an underestimation of variability, and white areas
show no-data. The grey shading shows the fraction of observed annual anomalies within the ensemble central 75th percentile
range (e.g. for 85% of years the observational anomalies are within the ensemble 75th percentile range (light grey)). Red shading
shows the fraction of observed annual anomalies outside the ensemble spread (e.g. for 25% of years the observed anomalies are
outside the ensemble spread (above or below) (medium red shading)). Anomalies are relative to the climatological baseline of
1955–1974. Maps are cut to 60◦S and 90◦N.

forced change in historical variability between some
models and observations (figure S3). Although over-
all the general takeaways remain the same.

4.2. Influence of the ensemble size
The results in figure 1might reveal an influence of the
ensemble size on how adequately models can capture
precipitation variability. The SMILEs with a small
ensemble size (EC-Earth: 16, GFDL-CM3: 20) both
show a tendency to underestimate variability across
land, while the larger SMILE CanESM2 (50) tends
to show an overestimation of variability. To analyze
this further, we use an additional large SMILE, the
100 member MPI ensemble, to quantify the influence
of the ensemble size on precipitation variability. We
compare the full MPI ensemble (100 members) rep-
resenting large ensemble sizes, with multiple random
combinations of 16 and 30 members from the MPI,
representing small and medium ensemble sizes.

An underestimation of precipitation variabil-
ity over northern hemisphere mid- to high latit-
udes, as seen in the EC-Earth (figure 1(d)) and the
MPI 16 members (figure 2(b)), are likely ensemble
size dependent. Over the High Latitudes even
ensemble sizes of 30 members might be too small
(figures 1(c), (f) and 2(c)) and more members are
needed. The SMILEs with at least 40 members
(CanESM2, CESM, MPI) all seem to be better at
representing High Latitude variability.

The underestimation of variability over South
America, East Asia, South-East Asia, and Northern
Australia, as seen in the ensembles with <30 mem-
bers (figures 1(d), (e) and 2(b)), are partly ensemble
size dependent. The under- or overestimation over
the majority of Africa is rather related to structural
uncertainty and not ensemble size, as well as over
the Amazon, Northern Africa, the Middle East, and
India.

5
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Figure 2. Evaluation of ensemble size dependence in interannual precipitation variability. (a) The evaluation result of the full MPI
ensemble (100 member) following methods in figure 1. (b) Shows the result of 100 random combinations of 16 members drawn
from the MPI ensemble. At least 66% of combinations show either (light blue) no systematic bias, (grey) overestimation of
variability, or (red) underestimation of variability. The grey and red category are the generalization of the colorbars in panel (a).
Grey represents at least 80% of observed annual anomalies within the ensemble 75th percentile range. Red represents at least 10%
of anomalies outside the ensemble spread. (c) Shows the result of 100 random combinations of 30 members drawn from the MPI
ensemble.

5. Future changes in precipitation
variability

Prior to the analysis of changes in precipitation vari-
ability, we have checked whether the six SMILEs are
a good representation of the CMIP5 model suite, on
different spectra of the rainfall distribution. For the
change in mean precipitation, we can largely agree
with previous studies (Lehner et al 2020, Maher et al
2021) on a good agreement of the SMILEs with
CMIP5. The SMILEs project a global average change
of 2.5% K−1 (figure S5(a)) which follows the early
assumptions by Allen and Ingram (2002). Comparing
the change in extreme precipitation with results for
the CMIP5 ensemble (Pendergrass et al 2017), we can
in addition assert this for extreme precipitation. The
SMILEs project changes at a rate of 7.2% K−1 glob-
ally (figure S5(b)) in conjunctionwith the rate of near

surface moisture change (O’Gorman and Schneider
2009).

Precipitation variability increases globally by
3.7–4% K−1 for timescales of annual to decadal
(figures 3(a)–(c)), which is higher than the increase
in mean state precipitation (2.5% K−1, figure S5(a))
but lower than the scaling of near surface mois-
ture change. Over land, where changes have the
biggest impact on society, variability increases at a
higher rate, around 4.5–4.7% K−1. Over oceans the
increase is modestly lower, around 3.4–3.7% K−1.
These scaling rates already showhow remarkably sim-
ilar the scaling rates are over all timescales. How-
ever, changes in interannual variability show higher
model agreement over larger parts of the globe than
for the longer timescales. Around 75% of gridcells
globally show high model agreement for interan-
nual variability changes, while only ∼66% of grid

6



Environ. Res. Lett. 16 (2021) 084022 R R Wood et al

Figure 3. Patterns of variability change by 2080–2099. Left column ((a), (d), (g)) shows maps for annual variability; center
column ((b), (e), (f)) for multiyear variability; and right column ((c), (f), (i)) for decadal variability. Upper row (a)–(c) shows the
multi SMILE forced response as the relative change scaled by the GMST change w.r.t. 1955–1974. Hatching indicates low model
agreement (less than 5 models agree on the sign). Numbers below the panels indicate area weighted averages over the globe, ocean,
and land in % K−1. Center row (d)–(f) shows the number of models agreeing on the sign of change (browns: negative/decreasing;
greens: positive/increasing). White colors indicate low model agreement with less than 5 models in agreement. Numbers below
the panels indicate the percentage of global, ocean, and land gridcells with model agreement. Bottom row (g)–(i) shows the
model-to-model uncertainty in the forced response (standard-deviation across the individual SMILE’s forced change).

cells show agreement on decadal variability changes
(figures 3(d)–(f)). Model agreement over land is
slightly higher than over the ocean or globally.

The relatively large number of gridcells with
high model agreement indicates that the individual
SMILEs generally agree and show similar global rates.
However, two distinctive exceptions must be men-
tioned. First, GFDL-ESM2M shows little to no change
(0.1–0.8% K−1) in variability across all timescales
(figures S6–S8). This could potentially be linked to
a weakening of the ENSO amplitude and less fre-
quent extreme El-Nino events as shown by the GFDL-
ESM2M(Kohyama andHartmann 2017). TheGFDL-
ESM2M has been shown to have a more realistic
ENSO nonlinearity compared to other models from
the CMIP5 archive. Kohyama and Hartmann (2017)
argue for a La Nina-like warming rather than El
Nino-like mean-state warming proposed by most
other models. However, the causality of the proposed
mechanisms needs to be further investigated as well
as the connection to the here shown forced response
of precipitation variability (or lack thereof) in the
GFDL-ESM2M.Over themid- and high latitudes, the

GFDL-ESM2M is consistent with the other SMILEs,
showing an increase in variability.

Secondly, EC-Earth shows globally consider-
ably higher scaling rates for precipitation variabil-
ity changes across all timescales, between 8.2 and
8.9% K−1 (figures S6–S8), which is above the near
surface moisture change of 6–7% K−1. As shown
in section 4, the EC-Earth shows smaller historical
interannual variability, compared to other SMILEs,
and generally underestimates historical variability.
The small variability might be connected to small
ensembles not being able to capture the full vari-
ance of modes of variability, as shown by Maher et al
(2018) for ENSO variance. A smaller variability in
the historical period can lead to higher percentage
changes compared to a SMILE with a higher vari-
ability and the same absolute change. Both examples
(GFDL-ESM2M and EC-Earth) show that model-to-
model agreement on the signmight be given, but that
structural uncertainty is still relevant for model-to-
model agreement on the magnitude of change. These
differences are highlighted by the model-to-model
uncertainty (i.e. standard-deviation of the SMILE’s

7
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Figure 4. (a) Latitudinal zonal averages of precipitation variability change and (b) percentage of gridcells with high model
agreement on the sign of change (at least 5 out 6 models agree) by 2080–2099. In panel (a) the vertical black line marks zero and
the grey band indicates the Clausius-Clapeyron relation (6–7% K−1).

forced changes) which are increasing from interan-
nual to decadal timescales (figures 3(g)–(i)).

The areas with low model agreement in interan-
nual variability and longer timescales over land (i.e.
South America, Northern Africa, and Middle East)
are consistent with the areas of high structural uncer-
tainty shown in the previous section. Regions with
low model agreement over the oceans are mainly
around subtropical subsidence regions with decreas-
ing precipitation variability (figures 3(a)–(c)) and
decreasing mean state precipitation (figure S5(a)).
Here, we find high model agreement in the cen-
ters, but declining model agreement towards the
edges, due to differences in the geographic extent.
We note that a point-wise comparison will concep-
tually underestimate the agreement of the models, as
dynamical boundaries and features, such as the jet
stream, or divergence and convergence zones are not
geographically coincident between models (Madsen
et al 2017, Brown et al 2020, Harvey et al 2020),
despite possibly showing consistent trends within
the features. For the subtropical descending regions,
He and Li (2019) show that interannual variability is
constrained by mean state precipitation and that the

change in interannual variability is almost propor-
tional to the change in mean state precipitation.

Regionally, precipitation variability strongly
increases in all SMILEs over the Pacific ITCZ
(figures 3(a)–(c)) across all timescales (except for
GFDL-ESM2M), as also shown formean and extreme
precipitation (figures S5(a) and (b)). It needs to be
noted that the model-to-model uncertainty is sub-
stantial over the ITCZ (figures 3(g)–(i)). However,
the dynamical changes in the ITCZ are yet not well
understood (Allan et al 2020). Precipitation variabil-
ity increases over the South Pacific Convergence Zone
(SPCZ) alongside a widespread increase in extreme
precipitation. This might indicate that the change in
precipitation variability is linked to an increase in
severe weather events, which has been shown by Cai
et al (2012) indicating a near doubling of zonal SPCZ
event occurrence, although it needs to be acknow-
ledged that climate-model simulations of the SPCZ
still show persistent biases (Brown et al 2020 and ref-
erences therein). In contrast, the south-eastern Pacific
dry zone gets drier (figure S5(a)) and precipitation
variability decreases, which aligns with the paradigm
of wet-gets-wetter and dry-gets-drier found mostly
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Figure 5. Forced changes in seasonal variability by 2080–2099. (a) Change in winter (DJF) variability; (b) change in summer (JJA)
variability; (c) latitudinal zonal averages for annual and seasonal changes; (d) percentage of gridcells with agreement on the sign.
In panel (c) the vertical black line marks zero and the grey band indicates the Clausius-Clapeyron relation (6–7% K−1).

over oceans. Generally, in the Tropics and Subtropics
model agreement is much lower (<60% of gridcells)
than in the mid- and high latitudes for all variability
timescales (figure 4(b)).

Over the mid- and high latitudes, it is very likely
that the hydrological cycle intensifies, and that vari-
ability increases across all timescales at scaling rates
around or above the Clausius-Clapeyron (CC) rela-
tion of 7%K−1 (north of 60◦N, figure 4(a)). The scal-
ing rates are even higher for the change in wintertime
variability (DJF) with 2xCC in the Arctic (figures 5(a)
and (c)). An increase in arctic interannual precip-
itation variability was also shown by Bintanja et al
(2020), linking the changes to an increased pole-
ward moisture transport. Over North America, Dong
et al (2018) link an increase in Mid-latitude winter-
time variability to an increase in moisture (thermo-
dynamical component), while the subtropical South
is more dominated by a change in circulation vari-
ability (dynamical component). Over the northern
hemisphere, at least 80% of gridcells show an increase
in variability across all timescales. Over the southern
hemisphere, interannual variability also shows high
model agreement over at least 80% of gridcells, but
longer durations show lower agreement over 60% and
more of gridcells (figure 4(b)).

The SMILEs agree on an increase in variabil-
ity across all timescales over the South Asian and
East Asian Monsoon region which is consistent with
Brown et al (2017a) for timescales shorter than
decadal. Our results also indicate an increase in
decadal variability in these regions. The increase in
the South and East Asian Monsoon region is most
noticeable in the change of the summertime variab-
ility (JJA) at rates above 7% K−1 (figure 5(b)).

Generally, the patterns for changes in precipita-
tion variability are quite complex and on seasonal
scales these patterns are even more complex, high-
lighting the importance of local dynamics boosting or
attenuating changes.

6. Summary and conclusions

We have used six single-model initial-condition large
ensembles (SMILEs) to analyze changes in mean and
extreme precipitation, as well as precipitation vari-
ability across multiple timescales (annual to decadal)
by the end of the century under the RCP8.5 emission
scenario.

Mean and extreme precipitation increases in the
multi-SMILE average at a rate of 2.5 and 7.2% K−1

globally following the theoretical scaling rates. These
results indicate that the six SMILEs agree with the res-
ults from the CMIP5 models and are therefore a suit-
able super ensemble for mean state precipitation ana-
lysis, which recently has also been shown by Lehner
et al (2020) and Maher et al (2021), and can now also
be asserted to extreme precipitation.

We can show implicit evidence for a forced change
in internal variability in a warming climate which
leads to an increase in precipitation variability from
interannual to decadal timescales. We can further
show that the scaling rates are markedly stable across
all timescales and that they can locally exceed the
Clausius-Clapeyron relation (>7%K−1). Interannual
precipitation variability increases at rates of 4% K−1

(4.7% K−1) globally (over land), multiyear variabil-
ity increases at rates of 3.7% K−1 (4.5% K−1), and
decadal variability at rates of 4% K−1 (4.6% K−1).
Seasonal variability can exceed these rates especially
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over land in winter (DJF, 5.8% K−1) as well as loc-
ally, highlighting the importance of changes in local
processes. These high scaling rates have considerable
relevance for local climate adaptation plans.

The increase in precipitation variability implies
an increase in precipitation volatility with an
enhanced risk of swings between extreme dry and wet
periods, as shown by Swain et al (2018) for California.
This could pose challenges for communities that rely
on precipitation as a primary water source. While
projections remain uncertain over the majority of
Africa, we can show an increase in precipitation vari-
ability over Eastern Africa across all timescales.

Over northern hemisphere mid- and high latit-
udes,model agreement on the sign is very highwith at
least 80% of gridcells showing an increase in variabil-
ity across all timescales. Thus, while reducing model-
to-model differences will only slightly improvemodel
agreement on the sign, it will still improve agreement
on the magnitude of change. Over the Tropics and
Subtropics model agreement is considerably lower
than elsewhere, whichmeans that reducing structural
uncertainty will improve both the agreement on the
sign and the magnitude of change.

For interannual variability, the patterns from the
SMILEs show considerable resemblance to results
from the CMIP5 ensemble (Pendergrass et al 2017,
He and Li 2019, Maher et al 2021), which shows
that there is considerable amount of internal variab-
ility included in CMIP5. Further, it shows that the
multi-SMILE ensemble can be a valuable tool to test
the hypothesis derived from the CMIP5 ensemble,
and extent our understanding of dynamical changes,
such as ENSO, which drive local variability and could
explain model differences (e.g. the lack of variability
change in the GFDL-ESM2M).

Alongside the changes in precipitation variability,
we conducted a first evaluation of historical interan-
nual precipitation variability in the 6 SMILEs. While
there are several caveats to consider (e.g. smoothing
of precipitation variability during the interpolation
and remapping process, temporal artifacts related
to changes in the observational system, or vary-
ing degrees of quality of the underlying data) we
mainly focused on the model-to-model differences
rather than absolute biases. Overall, the evaluation
highlights CESM and MPI as capturing interannual
precipitation variability most adequately over most
parts of global land area. The evaluation reveals that
especially over the Tropics and Subtropics structural
uncertainty remains critical, which is supported by
the low model agreement on future forced changes
in precipitation variability. Lastly, we show that small
ensembles (less than 30 members) tend to under-
estimate historical annual precipitation variability
(e.g. northern hemisphere mid- and high latitudes,
Northern Australia, East Asia). This suggests that
ensembles with at least 30 members are needed for

a robust quantification of interannual variability of
precipitation.

Data availability statement

The GFDL-ESM2M daily data are publicly available
through the Princeton Multi-ESM Large Ensemble
Archive (http://poseidon.princeton.edu). All other
SMILEs are available on the Multi-Model Large
Ensemble Archive (MMLEA; www.cesm.ucar.edu/
projects/community-projects/MMLEA/). The obser-
vational datasets are available on the FROGS data-
base (Roca et al 2019) and are openly available
at: https://doi.org/10.14768/06337394-73A9-407C-
9997-0E380DAC5598.

Acknowledgments

We acknowledge US CLIVAR for support of the
Multi-Model Large Ensemble Archive (MMLEA).
Data was analyzed using the Iris Python library (v2.4;
https://scitools.org.uk/iris). R R W was supported by
the ClimEx project, funded by the Bavarian Min-
istry for the Environment and Consumer protec-
tion. F L was supported by the Swiss National Sci-
ence Foundation (Grant No. PZ00P2_174128). This
workwas partly supported by theRegional andGlobal
Model Analysis (RGMA) component of the Earth and
Environmental SystemModeling Program of the U.S.
Department of Energy’s Office of Biological & Envir-
onmental Research (BER) via NSF IA 1844590, and
by the National Center for Atmospheric Research,
which is a major facility sponsored by the National
Science Foundation (NSF) under cooperative Agree-
ment No. 1947282. S S was supported byNASA award
NNX17AI75G and by NSF’s Southern Ocean Car-
bon and Climate Observations and Modeling (SOC-
COM) Project under the NSF Award PLR-1425989,
with additional support from NOAA and NASA.

ORCID iDs

Raul R Wood https://orcid.org/0000-0003-4172-
7719
Angeline G Pendergrass https://orcid.org/0000-
0003-2542-1461

References

Alexander L V, Bador M, Roca R, Contractor S, Donat M G and
Nguyen P L 2020 Intercomparison of annual precipitation
indices and extremes over global land areas from in situ,
space-based and reanalysis products Environ. Res. Lett.
15 055002

Allan R P et al 2020 Advances in understanding large-scale
responses of the water cycle to climate change Ann. New York
Acad. Sci. 1472 49–75

Allen M R and IngramW J 2002 Constraints on future changes in
climate and the hydrologic cycle Nature 419 224–32

10

http://poseidon.princeton.edu
https://www.cesm.ucar.edu/projects/community-projects/MMLEA/
https://www.cesm.ucar.edu/projects/community-projects/MMLEA/
https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
https://scitools.org.uk/iris
https://orcid.org/0000-0003-4172-7719
https://orcid.org/0000-0003-4172-7719
https://orcid.org/0000-0003-4172-7719
https://orcid.org/0000-0003-2542-1461
https://orcid.org/0000-0003-2542-1461
https://orcid.org/0000-0003-2542-1461
https://doi.org/10.1088/1748-9326/ab79e2
https://doi.org/10.1088/1748-9326/ab79e2
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1038/nature01092
https://doi.org/10.1038/nature01092


Environ. Res. Lett. 16 (2021) 084022 R R Wood et al

Berg P, Haerter J O, Thejll P, Piani C, Hagemann S and
Christensen J H 2009 Seasonal characteristics of the
relationship between daily precipitation intensity and
surface temperature J. Geophys. Res. 114 D18102

Bintanja R, van der Wiel K, van der Linden E C, Reusen J,
Bogerd L, Krikken F and Selten F M 2020 Strong future
increases in Arctic precipitation variability linked to
poleward moisture transport Sci. Adv. 6 eaax6869

Boer G J 2009 Changes in interannual variability and decadal
potential predictability under global warming J. Clim.
22 3098–109

Brown J R, Lengaigne M, Lintner B R, Widlansky M J, van der
Wiel K, Dutheil C, Linsley B K, Matthews A J and Renwick J
2020 South Pacific Convergence Zone dynamics, variability
and impacts in a changing climate Nat. Rev. Earth Environ.
1 530–43

Brown J R, Moise A F and Colman R A 2017a Projected increases
in daily to decadal variability of Asian-Australian monsoon
rainfall Geophys. Res. Lett. 44 5683–90

Brown P T, Ming Y, Li W and Hill S A 2017b Change in the
magnitude and mechanisms of global temperature
variability with warming Nat. Clim. Change 7 743–8

Cai W et al 2012 More extreme swings of the South Pacific
convergence zone due to greenhouse warming Nature
488 365–9

Chen C-T and Knutson T 2008 On the verification and
comparison of extreme rainfall indices from climate models
J. Clim. 21 1605–21

Contractor S, Donat M G, Alexander L V, Ziese M,
Meyer-Christoffer A, Schneider U, Rustemeier E, Becker A,
Durre I and Vose R S 2020 Rainfall estimates on a gridded
network (REGEN)—a global land-based gridded dataset of
daily precipitation from 1950 to 2016 Hydrol. Earth Syst. Sci.
24 919–43

Deser C et al 2020 Insights from Earth system model
initial-condition large ensembles and future prospects Nat.
Clim. Change 10 277–86

Deser C, Knutti R, Solomon S and Phillips A S 2012
Communication of the role of natural variability in future
North American climate Nat. Clim. Change 2 775–9

Deser C, Terray L and Phillips A S 2016 Forced and internal
components of winter air temperature trends over North
America during the past 50 years: mechanisms and
implications J. Clim. 29 2237–58

Dong L, Leung L R and Song F 2018 Future changes of
subseasonal precipitation variability in North America
during winter under global warming Geophys. Res. Lett.
45 12467–76

Gherardi L A and Sala O E 2019 Effect of interannual
precipitation variability on dryland productivity: a global
synthesis Glob. Change Biol. 25 269–76

Harvey B J, Cook P, Shaffrey L C and Schiemann R 2020 The
response of the Northern Hemisphere storm tracks and jet
streams to climate change in the CMIP3, CMIP5, and
CMIP6 climate models J. Geophys. Res. Atmos. 125
e2020JD032701

Haszpra T, Herein M and Bódai T 2020 Investigating ENSO and
its teleconnections under climate change in an ensemble
view—a new perspective Earth Syst. Dyn. 11 267–80

Hawkins E, Smith R S, Gregory J M and Stainforth D A 2016
Irreducible uncertainty in near-term climate projections
Clim. Dyn. 46 3807–19

Hawkins E and Sutton R 2009 The potential to narrow
uncertainty in regional climate predictions Bull. Am.
Meteorol. Soc. 90 1095–108

Hazeleger W et al 2010 EC-Earth Bull. Am. Meteorol. Soc.
91 1357–64

He C and Li T 2019 Does global warming amplify interannual
climate variability? Clim. Dyn. 52 2667–84

IPCC 2013 Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change ed
T F Stocker, D Qin, G-K Plattner, M Tignor, S K Allen,

J Boschung, A Nauels, Y Xia, V Bex and P MMidgley
(Cambridge: Cambridge University Press)

Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C,
Moeseneder C, Wong K and Skytus J 2013 Australia’s
CMIP5 submission using the CSIRO-Mk3.6 model Aust.
Meteorol. Oceanogr. J. 63 1–14

Kay J E et al 2015 The community earth system model (CESM)
large ensemble project: a community resource for studying
climate change in the presence of internal climate variability
Bull. Am. Meteorol. Soc. 96 1333–49

Kirchmeier-Young M C, Zwiers F W and Gillett N P 2017
Attribution of extreme events in Arctic Sea ice extent J. Clim.
30 553–71

Knutti R, Masson D and Gettelman A 2013 Climate model
genealogy: generation CMIP5 and how we got there
Geophys. Res. Lett. 40 1194–9

Kohyama T and Hartmann D L 2017 Nonlinear ENSO warming
suppression (NEWS) J. Clim. 30 4227–51

Lehner F, Deser C, Maher N, Marotzke J, Fischer E M, Brunner L,
Knutti R and Hawkins E 2020 Partitioning climate
projection uncertainty with multiple large ensembles and
CMIP5/6 Earth Syst. Dyn. 11 491–508

Lenderink G, Barbero R, Loriaux J M and Fowler H J 2017
Super-clausius–clapeyron scaling of extreme hourly
convective precipitation and its relation to large-scale
atmospheric conditions J. Clim. 30 6037–52

Lenderink G and van Meijgaard E 2008 Increase in hourly
precipitation extremes beyond expectations from
temperature changes Nat. Geosci. 1 511–4

Madsen M S, Langen P L, Boberg F and Christensen J H 2017
Inflated uncertainty in multimodel-based regional climate
projections Geophys. Res. Lett. 44 11606–13

Maher N et al 2019 The Max Planck Institute Grand Ensemble:
enabling the exploration of climate system variability J. Adv.
Model. Earth Syst. 11 2050–69

Maher N, Lehner F and Marotzke J 2020 Quantifying the role of
internal variability in the temperature we expect to observe
in the coming decades Environ. Res. Lett. 15 054014

Maher N, Matei D, Milinski S and Marotzke J 2018 enso change in
climate projections: forced response or internal variability?
Geophys. Res. Lett. 45 11390–8

Maher N, Power S B and Marotzke J 2021 More accurate
quantification of model-to-model agreement in externally
forced climatic responses over the coming century Nat.
Commun. 12 788

Milinski S, Maher N and Olonscheck D 2020 How large does a
large ensemble need to be? Earth Syst. Dyn.
11 885–901

Nobre G G, Jongman B, Aerts J and Ward P J 2017 The role of
climate variability in extreme floods in Europe Environ. Res.
Lett. 12 84012

O’Gorman P A and Schneider T 2009 The physical basis for
increases in precipitation extremes in simulations of
21st-century climate change Proc. Natl Acad. Sci. USA
106 14773–7

Pendergrass A G, Knutti R, Lehner F, Deser C and Sanderson B M
2017 Precipitation variability increases in a warmer climate
Sci. Rep. 7 17966

Roca R, Alexander L V, Potter G, Bador M, Jucá R, Contractor S,
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