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A B S T R A C T   

The aim of this paper is to map agricultural crops by classifying satellite image time series. Domain experts in 
agriculture work with crop type labels that are organised in a hierarchical tree structure, where coarse classes 
(like orchards) are subdivided into finer ones (like apples, pears, vines, etc.). We develop a crop classification 
method that exploits this expert knowledge and significantly improves the mapping of rare crop types. The three- 
level label hierarchy is encoded in a convolutional, recurrent neural network (convRNN), such that for each pixel 
the model predicts three labels at different level of granularity. This end-to-end trainable, hierarchical network 
architecture allows the model to learn joint feature representations of rare classes (e.g., apples, pears) at a coarser 
level (e.g., orchard), thereby boosting classification performance at the fine-grained level. Additionally, labelling 
at different granularity also makes it possible to adjust the output according to the classification scores; as coarser 
labels with high confidence are sometimes more useful for agricultural practice than fine-grained but very un
certain labels. We validate the proposed method on a new, large dataset that we make public. ZueriCrop covers an 
area of 50 km × 48 km in the Swiss cantons of Zurich and Thurgau with a total of 116′000 individual fields 
spanning 48 crop classes, and 28,000 (multi-temporal) image patches from Sentinel-2. We compare our proposed 
hierarchical convRNN model with several baselines, including methods designed for imbalanced class distri
butions. The hierarchical approach performs superior by at least 9.9 percentage points in F1-score.   

1. Introduction 

Monitoring agricultural land use is of high importance for food 
production, biodiversity, and forestry (Gómez et al., 2016). An 
increasing world population, climate change, and changes in food con
sumption habits put yet uncultivated areas under pressure, while lead
ing to intensification in existing agricultural areas (Laurance et al., 
2014). Cropland expansion and intensive use of agricultural areas are 
often connected with negative ecological impacts like deforestation and 
biodiversity loss, but also degradation of ecosystem services like ground 
and surface water quality (Herzog et al., 2008; Dise et al., 2011). 
Therefore, dense, accurate monitoring of agricultural lands plays an 
essential role for their optimal and sustainable management. Knowledge 
of crop areas and certain land uses is of importance for many political 

programs that aim to reduce and alleviate the environmental impacts of 
intensive agriculture, too (Gómez et al., 2016). Policy driven incentives, 
for instance, foster a particular share of a farm area to remain exten
sively used grassland to promote biodiversity, or give subsidies to pro
mote a certain crop mix in the rotation (Finger and Lehmann, 2012). 
Collecting information is traditionally based on farmer self-reporting 
and spot checking by the authorities in the field, which is laborious, 
costly, and prone to errors. 

Modern machine learning methods in combination with publicly 
available satellite imagery provide new possibilities for more accurate 
spatially dense monitoring of agricultural sites at high temporal reso
lution and low cost. One particularly promising recent sensor is Sentinel- 
2, due to its low ground sampling distance (10 m) at a revisit rate of 3–5 
days. In general, the spectral signal of the vegetation as captured by the 
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satellite has specific characteristics as a function of (i) soil structure and 
composition (e.g., soil brightness, soil water content, soil type, etc.), (ii) 
vegetation structure (e.g., canopy cover, Leaf Area Index (LAI), plant 
height, leaf angle, etc.) and (iii) leaf biochemistry (e.g., chlorophyll, 
water content, nitrogen content, etc.) (Thenkabail et al., 2013). Not only 
each plant species has its own spectral signature, but spectral charac
teristics are also highly dependent on the phenological stage of the plant 
(Walter et al., 2015; Anderegg et al., 2020). Instead of merely analysing 
images at a single point in time, time-series (sequences) analysis of 
satellite images thus provides significant additional evidence about crop 
species. 

Supervised machine learning – recently in particular deep learning 
(Rußwurm and Körner, 2017, 2018b; Rustowicz et al., 2019; Zhong 
et al., 2019; Pelletier et al., 2019; Rußwurm et al., 2019; Sainte Fare 
Garnot et al., 2019, 2020) has shown good performance as a tool for 
multi-temporal vegetation mapping, on different datasets (Rußwurm 
and Körner, 2017, 2018b; Rustowicz et al., 2019; Zhong et al., 2019; 
Pelletier et al., 2019; Rußwurm et al., 2019; Sainte Fare Garnot et al., 
2020). However, these existing datasets usually contain only a small 
number of relatively well-balanced crop classes (e.g., 9 classes in 
Rußwurm et al. (2019), 10 classes in Pelletier et al. (2019), 13 in Zhong 
et al. (2019)). In practice, large-scale datasets that cover all existing 
plots in some geographic region have highly skewed and long tail class 
distributions with a large number of different classes. 

When dealing with imbalanced data, a large number of (rare) classes 
comes with very few labels, which makes training any data-driven 
method challenging. A viable way to alleviate this problem consists in 
using hierarchical classification strategies (Srivastava and Salakhutdi
nov, 2013; Zhu and Bain, 2017; Wehrmann et al., 2018; Koo et al., 2018; 
Roy et al., 2020). Although many classes are rare, they may belong to the 
same super-class at a coarser level and share common features, e.g., 
leopards, tigers, lions, and cheetahs all share the visual properties of 
cats. This observation can be used to regularize the training of a model 
and improve the generalization error, especially for the rare classes. 
Imposing prior knowledge about the class structure adds (soft) con
straints to the model and encourages it to pool shared information from 
related classes. Such “coarse-granularity features” are easier to learn due 
to the larger training set, while the fine-grained classification can focus 
on discriminating fewer sub-classes, thus using the rare training exam
ples more efficiently. Crop classification is a task for which we can define 
such a label hierarchy. For example, apple orchards, pear orchards and 
chestnut orchards (which rarely appear individually) all belong to the 
same orchards subclass and share many visual features. We point out 
another advantage of a hierarchical scheme: one can use the class scores 
to determine how reliable predictions are at different hierarchy levels. In 
case output scores at the most fine-grained level (e.g., apple orchard, 
pear orchard, chestnut orchard) are low, we can always use coarser 
outputs (orchard), which typically receive significantly higher scores 
because they aggregate evidence across more data. For many applica
tions (e.g., summary statistics, calculation of subsidies) that coarser 
granularity of annotation is good enough. Moreover, only passing the 
fine-grained decisions between few, rare classes to human experts 
greatly reduces their manual cleaning and relabeling workload. 

In this work, we propose a deep learning network architecture for 
crop mapping that is hierarchical, to exploit a tree-structured label hi
erarchy built by domain experts; convolutional to encode image data; and 
recursive to represent time series. The proposed architecture has multiple 
levels of representation that consist of stacked, convolutional recurrent 
neural networks. The different network levels predict successively finer 
label resolution in the hierarchical tree. Moreover, we add a label 
refinement module, which takes the predictions as input and refines 
them with a Convolutional Neural Network (CNN) that exploits the 
correlations between labels across the hierarchy. 

In order to test our model, we introduce a new dataset called Zuer
iCrop. This dataset is based on farm census data from the Swiss Federal 
Office for Agriculture (FOAG) and consists of annotated field polygons 

from the Cantons of Zurich and Thurgau from the year 2019. This 
dataset contains 48 different classes with a realistic, highly imbalanced 
class distribution. The dataset comes with a label hierarchical tree, built 
using expert knowledge, that can be leveraged during training. Our 
experiments show that the proposed model outperforms the state-of-the- 
art methods on our ZueriCrop dataset; in addition, it is more effective 
than widely used techniques for coping with imbalanced data distribu
tion, such as data augmentation or class-balanced loss functions. To 
summarize, our contributions are:  

• We propose a new, multi-temporal crop classification method that 
encodes a domain-specific label hierarchy directly inside an end-to- 
end trainable model architecture. It outputs labels at multiple 
granularity levels for each pixel and significantly improves classifi
cation accuracy.  

• We provide a new, publicly available crop classification dataset 
ZueriCrop, equipped with a tree-structured label hierarchy. ZueriCrop 
covers a 50 km × 48 km area in the Swiss cantons of Zurich and 
Thurgau. It contains 28,000 Sentinel-2 image patches of size 24 
pixels × 24 pixels, each observed 71 times over a period of 52 weeks; 
48 agricultural land cover classes; and 116,000 individual agricul
tural fields. 

2. Related work 

Crop Classification with multi-temporal satellite data has been widely 
studied in remote sensing. Traditional machine learning approaches 
with handcrafted features (Inglada et al., 2015; Wardlow and Egbert, 
2008; Vuolo et al., 2018) predominantly rely on vegetation indices like 
the Normalized Difference Vegetation Index (NDVI) (Foerster et al., 
2012; Ustuner et al., 2014; Peña-Barragán et al., 2011; Conrad et al., 
2010). Different strategies have been explored to better model the 
temporal evolution as further evidence for classification, such as tem
poral windows (Conrad et al., 2014), hidden Markov models and dy
namic time warping (Siachalou et al., 2015; Belgiu and Csillik, 2018), 
and conditional random fields (Bailly et al., 2018). For instance, War
dlow and Egbert (2008) extract features, which are time series of NDVI, 
from MODIS data collected over the growing season of crops; and they 
perform classification with a decision tree. Similarly Conrad et al. 
(2014) investigate the optimum number of acquisition dates and most 
suitable temporal windows for the discrimination of crops from Rap
idEye satellite time-series data. These traditional methods have in 
common that their performances are constrained by the limited dis
criminativeness and robustness of the hand-crafted features, as well as 
by the limited expressive power of conventional classifiers. 

More recently deep learning methods have shown their ability to 
effectively solve many pattern recognition task. Their main advantage is 
twofold: (i) they no longer rely on hand-engineered features to encode 
spectral, spatial, or temporal patterns; (ii) their large capacity makes 
them able to learn very complex, highly non-linear relationships, if 
given sufficient labeled training data and computational resources. 
Rußwurm and Körner (2017) use a recurrent neural network with Long 
Short-Term Memory (LSTM) to encode temporal dependencies in the 
data, while Rußwurm and Körner (2018b) improve the result on the 
same dataset by encoding both, temporal and spatial dependencies via 
convolutional LSTM and Gated Recurrent Units (GRUs). In (Rustowicz 
et al., 2019; Sainte Fare Garnot et al., 2019), satellite images are first 
processed individually with a CNN to obtain per-image features; then 
temporal dependencies between these features are modeled with a 
separate Recurrent Neural Networks (RNNs). Further options are tem
poral CNNs that combine features also across time with convolutions 
(Pelletier et al., 2019), or models that use the attention principle (Vas
wani et al., 2017) to aggregate information across time Rußwurm et al., 
2019; Rußwurm and Körner, 2020). Sainte Fare Garnot et al. (2020) 
combine pixel-set encoder and transformer (Vaswani et al., 2017) and 
show improved performance over RNN-based approaches. Finally, in 
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our previous work (Turkoglu et al., 2021) we build a deep RNN with a 
new cell structure termed STAR that trains better than LSTM- and GRU- 
type models while being more parameter-efficient. This makes it 
possible to train deeper models, which translates to improved perfor
mance across a range of sequence modelling tasks, including crop 
classification. 

Handling imbalanced datasets is generally an issue in supervised 
classification. Modern deep learning methods are data-hungry and 
prone to overfit. In order to generalize well on the test data, a large 
amount of labeled training data is usually required. In practice, how
ever, some classes occur more often than others (e.g., animal species, 
crop types) or some labels are simply easier to collect. This leads to long- 
tailed class distributions being the norm, rather than the exception, for 
large, real-world datasets (Xiao et al., 2010). Under standard training 
regimes, machine learning models tend to ignore rare, under- 
represented classes and focus on the dominant classes to maximize cu
mulative performance across the entire dataset (Wang et al., 2017; Ren 
et al., 2018; Dong et al., 2018). While those shortcomings are easily 
overlooked when evaluating with global performance metrics like 
overall accuracy, they become obvious with class-balanced metrics like 
average class precision or F1-score. In fact, for many practical applica
tions a class-balanced evaluation is essential, as rare classes have the 
same (or even higher) importance as frequent ones. This is also true for 
our agricultural mapping problem where crops that have high financial 
or ecological value (for instance orchards and vegetables) are rare 
compared to pastoral grasslands or wheat fields. 

Two major strategies have been explored to counter class imbalance: 
(i) algorithm-level approaches and (ii) data-level approaches. A typical 
algorithm-level approach is cost-sensitive learning where the loss 
function is re-weighted by a factor inversely proportional to the class 
frequencies (Ling and Sheng, 2008; Huang et al., 2016; Khan et al., 
2017, 2019), where training samples of rare classes receive higher 
weight. An inherent consequence of resampling or reweighting training 
samples according to rarity is a model bias towards the rare classes. 
Data-level approaches try to balance the dataset either by oversampling 
minority classes (Chawla et al., 2002; Douzas and Bacao, 2018; Cui 
et al., 2019) or by under-sampling the majority classes (He and Garcia, 
2009). Undersampling dominant classes runs the risk to miss large parts 
of the data distribution, thus hurting model performance. On the other 
hand, oversampling rare classes reaches its limit if the number of 
available samples in a class is too low. We propose to leverage the hi
erarchical structure of the labels to counter class imbalance and to 
improve performance for rare classes. 

Hierarchical classification in remote sensing has been investigated 
before. Melgani and Bruzzone (2004) develop hierarchical tree-based 
classification strategies using binary classifiers like support vector ma
chines (SVM) for hyper-spectral remote sensing data. Chen et al. (2009) 
propose a rule-based method that hierarchically classifies land cover and 
land use from LIDAR and WorldView-2 data. Similarly, Wu et al. (2016) 
apply a rule-based classification of LIDAR data for building classification 
followed by a classification of road, vegetation, and bare soil with SVMs 
by additionally incorporating WorldView-2. Another rule-based, hier
archical method is proposed in (Heupel et al., 2018) for crop classifi
cation from four different satellite sensors: Landsat-7 and Landsat-8, 
Sentinel-2A and Rapid-Eye. The first-level classifier decides whether it is 
winter crop or summer crop and the second-level classifiers predict into 
eight fine-grained classes, e.g., potato, corn. Their method exhaustively 
relies on hand-crafted features and expert knowledge. Jiao et al. (2019) 
apply rule-based decision-making to classify land covers of coastal 
wetlands into four coarse classes which are subdivided into more fine- 
grained classes with SVMs. Goel et al. (2018) study hierarchical 
metric learning for classification of remote sensing data. They use iter
ative max-margin clustering to organize the classes in a hierarchical 
fashion and subsequently learn different distance metric trans
formations for the classes present at the non-leaf nodes of the tree. 
Another idea is using individual Random Forests at different hierarchy 

levels for land cover and land use classification (Sulla-Menashe et al., 
2011, 2019) from MODIS data. More recently, Demirkan et al. (2020) 
investigated the benefit of hierarchical classification with SVMs and 
Random Forests for land cover and land use classification from Sentinel- 
2 data. Although hierarchical classification in remote sensing has been 
studied before, all methods use traditional, hand-crafted features and 
decision trees designed for specific scenes and datasets by domain ex
perts. Complex workflows that employ multiple independent classifiers 
at different stages are costly to compute, need much manual tuning for 
each new dataset, and erroneous decisions at early stages can hardly be 
compensated for later on in the pipeline. Additionally, none of the 
existing workflows dealt with a hierarchical approach for a realistic, 
large-scale, imbalanced dataset with a large number of classes. 

Hierarchical classification has already been studied in deep learning 
literature. Srivastava and Salakhutdinov (2013) introduce a tree-like 
hierarchy in CNNs for image classification. Their method learns to 
organize the classes into a tree hierarchy that imposes a prior over the 
classifier's parameters, which improves performance for minority clas
ses. Yan et al. (2015) embed deep CNNs into a two-level hierarchy. 
Easily distinguishable classes are separated with a coarser classifier, 
while another classifier separates the other, more difficult cases at a 
more fine-grained level. Xiao et al. (2014); Roy et al. (2020) study hi
erarchical networks composed of deep CNNs in the context of incre
mental learning. Chen et al. (2019) propose a training strategy that 
leverages the information from a label hierarchy. It maximizes the 
probability of the ground truth class, and at the same time, neutralizes 
the probabilities of the other classes in a hierarchical fashion, making 
the model take advantage of the label hierarchy explicitly. Another 
interesting recent work, in the field of (hierarchical) text classification, 
is (Mao et al., 2019), where the hierarchy is explored at both training 
and inference time with a Markov decision process and deep rein
forcement learning. Zhu and Bain (2017) and Wehrmann et al. (2018) 
propose multi-stage deep CNNs. Like ours, their models have multiple 
outputs of different granularity as well as multiple objectives. Koo et al. 
(2018) further improve on that idea by combining a CNN that extracts a 
hierarchical image representation with an RNN to capture the hierar
chical tree of labels. 

To the best of our knowledge, our method is the first that explicitly 
encodes the inherent (and for domain experts well-known) label hier
archy for crop classification in satellite image sequences in the deep 
learning setting. Our method differs from all existing literature in that it 
is based on an integrated, convolutional and recurrent model 
(convRNN) that is able to capture all relevant spatio-temporal correla
tions. To demonstrate these features, and to enable further work in this 
direction, we also provide a new dataset which, compared to existing 
ones (Rustowicz et al., 2019; Rußwurm et al., 2019; Rußwurm and 
Körner, 2017), has many more classes and a realistic, much less 
balanced class distribution. 

3. Method 

Formally, our objective is to predict a crop type map Y ∈ IRH×W×C 

from a sequence of input images {X1,X2, ..,XT} ∈ IRH×W×B. H and W are 
height and width of the input images, respectively, B is the number of 
input bands, T is number of time stamps in the input sequence, and C is 
the number of crop types. See Fig. 4. We assume that multiple labels are 
assigned to a single pixel. Each of those labels belongs to a different level 
in a hierarchical structure that encodes agricultural crop types at a 
different granularity, from coarse to fine. This label hierarchy is created 
by human experts, the levels have an intrinsic semantic meaning. Fig. 1 
shows our label tree for all classes used in our dataset. 

Labels are denoted as Yn, where n ∈ 1, …, N represents the level 
inside the label hierarchy. Even though there are multiple labels for each 
crop type, the ultimate goal is to predict (as much as possible) the finest 
granularity YN, corresponding to detailed species labels. In our dataset, 
we distinguish three hierarchy levels, with 1 the coarsest and 3 the 

M.O. Turkoglu et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 264 (2021) 112603

4

finest. We note that although, for clarity, we stick to the case N = 3 for 
the rest of the paper, our method is generic and be used for other values 
of N. 

3.1. Convolutional recurrent neural networks 

Convolutional recurrent neural networks (convRNN) are the con
volutional version of RNNs, designed to represent spatio-temporal data. 
ConvRNNs have been used for different spatio-temporal modelling tasks 
like weather forecasting (Xingjian et al., 2015), video action recognition 
(Li et al., 2018), video forecasting (Su et al., 2020), and the prediction of 
heat diffusion Saha et al. (2020). They differ from standard RNNs in that 
the matrix multiplications are replaced with the convolution operator. 

In general it is straightforward to convert any recurrent cell with its 
convolutional version, see for instance (Xingjian et al., 2015; Siam et al., 
2017; Turkoglu et al., 2021). Constructing a network with multiple 
layers helps learning more discriminative evidence via a richer set of 
features. However, training networks with many layers is hard if using 
widely known LSTM and GRU cells as basic recurrent units as shown in 
(Turkoglu et al., 2021). A computationally more efficient cell type with 
less parameters that allows training deeper models is convSTAR (Tur
koglu et al., 2021). We thus construct a network using convSTAR units 
and demonstrate its superior performance over versions using GRU and 
LSTM units in the experiments section (Section 6), Table 3). In the 
following, we will briefly recap the design of a convSTAR cell before 
describing the construction of our hierarchical approach. 

Primary Crops

Special Crops

Orchards

Grassland

Field Crops

Crop Mix

Broad Leaf 

Row Crop

Small Grain 

Cereal

Large Grain 

Cereal

Vegetable 

Crop

Forest

Tree Crop

Orchard Crop

Meadow

Pasture

Biodiversity 

Area

Berries

Hedge, Gardens, 

Multiple

Fallow

Summer 

wheat
Winter wheat

Wheat
Einkorn 

Wheat

Summer 

Barley

Oat

Rye

Winter Barley

Grain

Spelt Buckwheat

Vegetables

Sorghum

Maize

Pumpkin

Chicory

Field Bean

Linen

Sugar beet

Beets

Hemp

Peas
Lupine

Winter 

Rapeseed

Potatoes Sunflowers

Summer 

Rapeseed

Tobacco

Mustard Legumes

Apples

Vines

Pears

Hops

Stone Fruit

Chestnut

Hedge

Multiple

Gardens

Level 1 Level 2 Level 3

Soy

Fig. 1. The hierarchy of all crop classes of the ZueriCrop dataset. Black box indicates intermediate label levels while colour boxes indicates the finest granularity.  
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More formally, the convSTAR cell at convolution layer l and at time t, 
takes as input the hidden state tensor Ht

l− 1 of the previous layer (l − 1), 
where the input Ht

0 corresponds to the channels of the multi-spectral 
input image Xt. That tensor is first non-linearly transformed and then 
linearly combined with the previous hidden state Ht− 1

l , with the weights 
of the linear combination modulated by a gating variable Kt

l that de
pends on both inputs and controls the information flow. Formally, the 
computation is given by 

Kl
t = σ

(
Wx*Hl− 1

t +Wh*Hl
t− 1 +BK

)
(1)  

Zl
t = tanh

(
Wz*Hl− 1

t +Bz
)

(2)  

Hl
t = tanh

(
Hl

t− 1 +Kl
t∘
(
Zl

t − Hl
t− 1

) )
(3)  

where σ is the sigmoid non-linearity, * denotes convolution, ∘ is the 
Hadamard (element-wise) product, and W and B are the trainable 
weight and bias tensors, l and t denote the cell layer and time step of the 
sequence, respectively. The hidden state HT

L of the deepest (L-th) layer 
serves as latent encoding of the input sequence up to time T and can be 
used for classification, regression or forecasting, by passing it through an 
appropriate decoder. 

3.2. Hierarchical convolutional recurrent network 

In order to construct a hierarchical representation similar to multi- 
stage CNN classification networks, but for image sequences instead of 
single images (Wehrmann et al., 2018; Zhu and Bain, 2017), we propose 
a network that has N stages. Each stage is made of a 2-layer convSTAR 
architecture (Fig. 2). The output tensors (hidden states) at stage n are fed 
as inputs to the next stage (n + 1). The final hidden state (HT

2)n of each 
hierarchical level is fed to a conventional CNN classifier to obtain label 
scores Ŷ

n
. 

All convolutional kernels have size 3 × 3. Each convSTAR layer has 
64 filters, a shallow 1-layer convolutional neural network (CNN) is used 
to convert the final hidden state to a patch of labels. The network is 
trained with the cross-entropy (CE) loss, leading to the objective 
function 

L =
∑N

n=1
λnCE

(
Yn, Ŷ

n)
= −

∑N

n=1

∑C

c=1
λnYn

c log
(

Ŷ
n
c

)
(4)  

where λn represents hyper-parameters that determine the relative in
fluence of different hierarchy levels on the tree, with 

∑
λn = 1. By taking 

into account the loss at all levels of granularity, the network imposes the 
label hierarchy as a (soft) prior to guide the feature encoding. For 
example, the features of apple orchards and pear orchards should support 
an assignment to the coarser orchard label, too. 

3.3. Label refinement 

The model described so far embeds the label hierarchy in the 
network. However, by itself this does not guarantee consistency between 
the predictions at different stages. As an extreme example, the network 
could learn to simply ignore the input from the coarser hierarchy level 
and build independent classifiers for different levels of granularity. As a 
consequence, labels predicted at test time could possibly violate the 
parent-child relations of the hierarchy. A pixel could receive labels 
sunflower and at the same time orchard, for example. To imprint the 
preference for coherent labels across the hierarchy levels, we add a label 
refinement network, which is a CNN after the multi-level ms-convSTAR 

network. The refinement stage takes all the predictions 
{

Ŷ
1
…Ŷ

N}
from 

the individual network stages and produce a final prediction for the 

finest label granularity, Ŷ
N
refined, while modelling their interactions. 

More specifically, 3-dimensional probability volumes from three stages 
are concatenated in the channel dimension and fed to the CNN. See 
Fig. 2. Formally, it is defined as 

Ŷ
N
refined = Ŷ

N
+F

(
concat

[
Ŷ

1
, Ŷ

2
,…, Ŷ

N] )
(5)  

where F represents a CNN, see Fig. 3. The final loss function of the 
network is the weighted sum of the ms-convSTAR losses and the 
refinement loss, with a hyper-parameter γ for the relative influence of 
the refinement loss: 

L =
∑N

n=1
λnCE

(
Yn, Ŷ

n)
+ γCE

(

YN , Ŷ
N
refined

)

(6) 
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Fig. 2. Our proposed hierarchical, multi-stage, convolutional STAR network (ms-convSTAR).  
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where Ŷ
N
refined represent the output of the label refinement module and 

has exactly the same dimension as Ŷ
N
, see Fig. 2. Note that, empirically, 

we observed that refining coarser predictions does not affect the final 
model performance significantly. For experimental evaluation we thus 
run the refinement module exclusively for the finest label granularity. 

3.4. Implementation details 

We have implemented our network architecture in PyTorch. Input 
image sizes are H = W = 24, B = 4 and sequence length is T = 71. For all 
experiments, we use Adam (Kingma and Ba, 2014) as optimiser with 
batch size 4 and run the training for 30 epochs. The learning rate is set to 
0.001 at the start of the training and divided by 10 every 10 epochs. The 
model is regularised with weight decay of 0.0001. Gradient magnitudes 
are clipped to 5 to prevent exploding gradients. The hyper-parameters of 
the loss function (4) are empirically determined and set to λ1 = 0.1, λ2 =

0.3, and λ3 = γ = 0.6. Input image patches are flipped randomly with 
66% chance during training for data augmentation. All source code, 
trained models and the dataset are available online at 
https://github.com/0zgur0/ms-convSTAR. 

4. Dataset 

The ZueriCrop dataset contains ground truth labels of 116,000 field 
instances. Each field instance consists of a polygon representing the 
borders of the field, and its dominant crop label in 2019. The ground 
truth labels of all 48 crop classes are provided by the Swiss Federal 
Office for Agriculture (FOAG) and correspond to the primary crop grown 
per field during the year. No information is provided about intermediate 

or cover crops, i.e., crops planted after harvesting the primary crop to 
cover the field over the winter in order to improve soil fertility and 
reduce disease pressure. The input data is a time series of 71 multi- 
spectral Sentinel-2 Level-2A bottom-of-atmosphere reflectance images 
with a ground sampling distance (GSD) of 10 m (Fig. 4). All input images 
are atmospherically corrected using the Sen2Cor v2.8 software package. 
The dataset is collected over a 50 km × 48 km area (Fig. 5) in the Swiss 
Cantons of Zurich and Thurgau between January 2019 and December 
2019. 

We subdivide the entire scene into smaller patches of 24 px × 24 px. 
Patches without any ground-truth information are discarded. In the 
remaining patches the fraction of pixels without reference label is 
≈48%. Only those four spectral channels available at the highest, 10 m 
resolution (Red, Green, Blue, and Near-Infrared) are used because we 
observed that adding more channels did not significantly improve per
formance while increasing the computational cost, we refer the reader to 
Appendix B for an empirical evaluation how additional bands impact the 
model performance. We do not use any cloud detection method to 
discard patches with a high cloud cover because RNN architectures are 
robust to uninformative inputs. See Section 6.4. 

Switzerland has a small-structured agricultural system, where 
farmers are not allowed to grow crop after crop, but are required to 
adhere to a diverse crop rotation scheme. The average farm and field 
sizes in Switzerland are 21 hectares and 1.5 hectares, respectively with 
approximately 70% of all Swiss agricultural land being grassland 
(Bundesamt für Statistik, 2020), of which 12% are temporary grasslands 
used in rotation with other crops (Stumpf et al., 2020). This situation 
leads to a diverse set of crop classes with a highly skewed, imbalanced 
class distribution (Fig. 6). 

4.1. Crop class hierarchy 

We organize the 48 crop classes of the ZueriCrop dataset into a hi
erarchy based on expert knowledge about the Swiss agricultural system 
(Fig. 1). 

The 1st level of the class hierarchy was chosen with two goals in 
mind: (i) separate the main categories found in the Swiss agricultural 
landscape and (ii) group crop types according to their visual appearance 
in satellite images. For example, field crops are grown in crop rows on 
fields, a feature that can be picked up by remote sensing. Another 
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Fig. 4. Example Sentinel-2 satellite images of the ZueriCrop dataset. Each row shows randomly sampled images (false colour composite: NIR-Red-Green) from a 
satellite image time-series. The first column shows the ground-truth where different colors correspond to different crop types. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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example is grassland, the largest class in the dataset, which is a very 
heterogeneous class containing many different grassland types, mixtures 
and other land use scenarios. Their main feature is that they are 
permanently green with high biomass and generally low plant height. 
Other classes on the 1st level are: orchards, special crops and forest. Or
chards can usually be identified by their specific planting patterns. 
Special crops are a pool of marginally grown specialist crops (e.g., 
asparagus, different berries and herbs) and have a very diverse set of 
sub-classes. 

The 2nd level of the class hierarchy contains more refined versions of 
the preceding classes. Classes in the second level were selected to 
represent the plant family and agronomic use and practices in cultiva
tion. All crops of the small grain cereal class are cultivated in a very 
similar manner in rows with little row spacing, similar plant seed density 
per square meter and similar erectile canopy structure with ears 
appearing at the top of the plant habitus (small grain as fruits). Similarly, 
the broad leaf row crop class contains dicotyledonous plant species that 

are cultivated in rows and possess, in contrast to grain crops, a hori
zontal leaf surface pattern. 

The 3rd level distinguishes different crop species and is the finest 
level in our hierarchy. For some crops the ground truth was not reported 
at that granularity. In such cases the 2nd-level labels were copied. For 
the forest class, 1st level label is copied to 2nd and 3rd levels. 

5. Experiments 

We compare the performance of the proposed hierarchical scheme to 
several baselines, and to competing state-of-the-art methods. In order to 
avoid any biases due to regional differences within the area of interest, 
we always perform 5-fold leave-one-out cross-validation and average 
the performance metrics across all five train/test splits. We divide the 
dataset into 5 geographically disjoint strips of equal size as shown in 
Fig. 5, and use 4 strips as training set and the 5th one as test set. In the 
ground truth, a single label is assigned to each field polygon, i.e., 

Fold 1 Fold 2 Fold 3

Fold 4 Fold 5

Zurich
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47.240, 9.000

0 6 12 km

4
7
.4

9
0
, 8

.9
1
0

0
0

.5
1
 k

m47.469, 8.869

Fig. 5. Overview of the ZueriCrop dataset collected in 2019: Location inside Switzerland (left), Sentinel-2 image of the area of interest, overlaid with the geographical 
split used for cross-validation (center), example of GIS reference data for the main crop per field (bottom right), and distribution of field sizes (fields >4 hectares are 
pooled into one bin for visualization). The average field size is 0.72 hectares. 
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differences between administrative field boundaries and actual crop 
boundaries are not represented. To match that format, we assign the 
same label to all pixels within a field polygon by majority voting (See 
Appendix for results without majority voting). Classification perfor
mance is evaluated pixel-wise, with four different metrics: overall ac
curacy, average per-class precision, average per-class recall, and average 
per-class F1-score (Table 1). Note that overall accuracy, unlike the other 
metrics, does not compensate for class frequencies. It measures cor
rectness per pixel, respectively area, but not correctness per label, 
respectively crop type; and is thus dominated by the performance for 
(few) frequent crops. On the contrary, the other metrics are better in
dicators of class-wise performance, as they are computed separately per 
class (independent of the absolute pixel count) and averaged. 

As baseline for the hierarchical approach we also run the standard 
(single-level) convSTAR network (Turkoglu et al., 2021) without inter
mediate outputs, losses, and label refinement. Hyper-parameters, like 
network depth, hidden state size and learning rate schedule are all set 
the same for the hierarchical method. As further baseline experiments 
we add data augmentation and class-balanced losses to the standard 
convSTAR network, which are alternative, widely used techniques to 
improve the performance on imbalanced datasets. When balancing the 
loss, the contribution of a training example is weighted inversely pro
portional to the class frequency, such that every class (in principle) 
contributes an equal share of the total loss. For data augmentation, 
training patches are sampled inversely proportional to the class fre
quency to achieve the same effect. The class frequencies are found by 
counting pixels over the entire training set. 

The use of a class-balanced loss functions causes a subtle difference, 
as it affects the gradient magnitude reducing the overall learning rate, 
which can potentially harm the training. Therefore, we also test another 
variant, denoted as Class-balance loss-2, where, after including the 
weight of the loss function for each class we compute the median 
effective learning rate and set it to match the default learning rate. 
Moreover, we also evaluate the recently proposed, more robust re- 
weighting scheme of Cui et al. (2019). That state-of-the-art technique 
uses the effective number of samples for each class to re-balance the loss. 
As the method has an additional, empirically chosen hyper-parameter β, 
we test different settings β ∈ {0.99,0.999,0.9999}. 

The baselines described so far serve to isolate the impact of the 
proposed hierarchical labeling scheme, and to that end use the same 
convSTAR backbone. As an additional, external reference we also 
compare against Random Forest and other state-of-the-art deep learning 
methods that have been developed for multi-temporal crop classifica
tion. Rußwurm and Körner (2017) use LSTM, Pelletier et al. (2019) 
propose a temporal convolutional network, and Rußwurm et al. (2019); 
Rußwurm and Körner (2020) design a Transformer network. All four 
methods process pixels individually, unlike our approach that aggre
gates context information from image patches with convolutions. 

Convolutions and recurrence are used separately by Rustowicz et al. 
(2019), who extract features from the images with a convolutional ar
chitecture in the style of U-Net (Ronneberger et al., 2015) and apply 
convolutional LSTM to the resulting feature vectors to represent their 
temporal evolution. Also, U-Net (Ronneberger et al., 2015) itself is 
compared since it has become a standard architecture for image seg
mentation and has been used in remote sensing (e.g., Stoian et al. 
(2019); Flood et al. (2019)). Early temporal fusion, spectral channels of 
different timestamps are concatenated in the channel direction, is 
applied to deal with multi-temporal data. An integrated, convolutional 
variant of GRU is already used by Rußwurm and Körner (2018b). This 
work is, from a technical point of view, similar to our convSTAR base
line, except that it uses a different form of recurrence and employs a bi- 
directional approach. 

6. Results 

In this section, we first compare the performance of our proposed ms- 
convSTAR against baseline methods (Table 1), as well as other state-of- 
the-art methods (Table 2) on the ZueriCrop dataset. In the ablation study 
(Section 6.2), we evaluate the effectiveness of our label refinement 
component (Table 1), and compare different convRNN types (Table 3). 
We also discuss how the proposed method can be used in combination 
with the hierarchical label tree to provide more certain prediction by 
adjusting the label coarseness at prediction time. Finally, we also discuss 
the robustness of ms-convSTAR against clouds. 

6.1. Performance comparison 

We find that among the baselines, simple data augmentation per
forms best, but all baselines are clearly outperformed by the proposed, 
hierarchical ms-convSTAR, on all performance metrics. See Table 1. 
Most significantly, there are significant improvements on those metrics 
that compensate for class frequencies and average measure per-class 
performance. Our proposed ms-convSTAR increases mean class preci
sion by >11 percentage points, and mean class recall by >10 percentage 
points. Accordingly, the F1-score (their harmonic mean) increases by 
>11 percentage points. These results indicate that our method improves 
in particular the classification of less frequent classes, which was the 
initial motivation for using the crop label hierarchy and developing ms- 
convSTAR. Data augmentation, where we over-sample the minority 
classes during training (i.e., patches with rare classes are sampled 
inversely proportional to their frequencies), improves the F1-score by 
2.9 percentage points compared to the baseline convSTAR. However, it 
degrades the overall accuracy significantly by 2.3 percentage points, 
because over-sampling rare classes induces a global bias towards those 
classes and degrades performance for the dominant classes. Adding a 

Table 1 
Performance comparison between ms-convSTAR (bottom row) and non- 
hierarchical baseline methods. We compare against standard (1-level) con
vSTAR (top row) as well as further baselines that extend convSTAR with 
different techniques intended to compensate class imbalance. Precision, recall 
and F1-score are mean values over all classes. All numbers are averaged over 5 
cross-validation folds. The best score for each metric is shown with bold.  

Method Prec (%) Rec (%) F1 (%) Acc (%) 

convSTAR 40.2 37.3 37.2 87.3 
+ Data augmentation 48.3 39.3 41.1 85.0 
+ Class-balanced loss 26.9 32.7 28.2 75.6 
+ Class-balanced loss-2 26.5 31.7 27.3 74.0 
+ Cui 2019, β = 0.99 42.2 37.5 36.5 87.3 
+ Cui 2019, β = 0.999 39.4 35.7 35.6 87.4 
+ Cui 2019, β = 0.9999 43.3 39.1 39.4 87.1 

ms-convSTAR w/o LR 59.3 47.1 49.8 87.6 
ms-convSTAR 60.1 49.8 52.4 88.0  

Table 2 
Performance comparison of ms-convSTAR (bottom row) with state-of-the-art 
methods. Precision, recall and F1-score are mean values over all classes. All 
numbers are averaged over 5 cross-validation folds. The best score for each 
metric is shown with bold and the second best is underlined. *Random Forest is 
trained with a balanced dataset by under-sampling the majority classes which 
leads to improved class-wise performance.  

Method Prec 
(%) 

Rec 
(%) 

F1 
(%) 

Acc 
(%) 

Random Forest* 46.4 40.7 38.9 78.8 
LSTM (Rußwurm and Körner, 2017) 37.7 27.9 29.2 84.1 
TCN (Pelletier et al., 2019) 39.2 27.7 29.3 83.5 
Transformer (Rußwurm et al., 2019) 56.8 38.4 42.3 85.4 
2D-CNN (U-Net) 34.6 25.7 26.7 82.2 
U-Net + convLSTM (Rustowicz et al., 

2019) 
47.7 32.8 35.2 85.0 

Bi-convGRU (Rußwurm and Körner, 
2018b) 

55.0 39.6 42.5 86.4 

ms-convSTAR 60.1 49.8 52.4 88.0  
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standard class-balanced loss to the baseline convSTAR approach 
significantly decreases performance across all measures, whereas the 
state-of-the-art class-balanced loss technique (Cui et al., 2019) can 
improve the F1-score a little (by 2.2 percentage points with β = 0.9999) 
but slightly reduces the overall accuracy (by 0.2 percentage points). In 
summary, even though a class-balanced loss or data augmentation bring 
a mild improvement for minority classes, the gains are not very big, and 
they tend to reduce the overall performance in return. In contrast, our 
proposed ms-convSTAR greatly boosts performance for mean precision, 
mean recall and F1-score, while improving overall accuracy, too. 

Fig. 7 illustrates the difference between the confusion matrix of re
sults achieved with proposed ms-convSTAR (Fig. 8) and with its baseline 
counterpart convSTAR. ms-convSTAR improves the performance for 
many less frequent classes like stone fruit, legumes, tobacco while it does 
not harm the performance for frequent classes like meadow or maize. We 

note that for exceedingly rare classes the performance does not improve. 
These classes have too few pixels (typically <1000) to be represented 
well, moreover they are often only present in some of the five cross- 
validation stripes, such that they do not appear in either the training 
set or the test set. For completeness, we nevertheless leave those classes 
in the dataset. 

In Table 2, we compare the proposed ms-convSTAR (bottom row) to 
a number of state-of-the-art methods for crop classification from image 
time series. ms-convSTAR significantly improves performance across all 
measures. Again the gains are mostly due to better classification of rare 
classes, as indicated by an improvement of >9.9 percentage points in F1- 
score. Model implementations are taken from official codebases, and 
similar hyperparameters with the proposed method are used as the 
hidden size, the initial learning rate, the number of epochs, etc.; for 
other model-specific hyperparameters (e.g., number of layers in TCN 
(Pelletier et al., 2019), number of heads in Transformer (Rußwurm et al., 
2019)), values from original papers are used. See Appendix for more 
details. Random Forest parameter settings follow Rußwurm and Körner 
(2020). To achieve better classification performance for the Random 
Forest, we augmented the raw input reflectance with the NDVI and the 
training dataset is randomly under-sampled such a way that number of 
per class samples is limited to 10 K (≈ the median of the number of per 
class samples) like done in Rußwurm and Körner (2020). 

We show qualitative comparisons for several output samples in 
Fig. 9. Our new method does what it is designed for: it correctly predicts 
rare classes like linen or sorghum, where all other methods fail. Another 
qualitative comparison to the closest competitor (Rußwurm and Körner, 
2018b) is shown in Fig. 10 for a larger region. We point out that both 
approaches, ms-convSTAR and (Rußwurm and Körner, 2018b), typically 
mis-classify the same fields. But the number of mistakes is significantly 
smaller with ms-convSTAR. For qualitative results without polygon ag
gregation, e.g., for mapping in the absence of field boundaries, see 

Table 3 
Performance comparison of multi-stage convRNNs (ms-convRNNs). All numbers 
are averaged over 5 cross-validation folds. The best score for each metric is 
shown with bold and the second best is underlined.  

Method Prec (%) Rec (%) F1 (%) Acc (%) 

3 layers convLSTM 31.5 27.9 28.1 84.6 
ms-convLSTM 37.7 30.1 31.1 83.9 
convGRU 43.1 38.2 38.6 87.2 
ms-convGRU 49.8 38.6 40.8 85.8 
convSTAR 48.3 42.6 43.5 87.8 
ms-convSTAR 54.6 42.7 45.3 86.8 

6 layers convLSTM 1.1 2.3 1.4 47.2 
ms-convLSTM 40.5 33.6 34.7 85.2 
convGRU 15.8 15.7 15.0 71.1 
ms-convGRU 52.2 42.9 44.7 86.9 
convSTAR 40.2 37.3 37.2 87.3 
ms-convSTAR 60.1 49.8 52.4 88.0  

Fig. 7. Benefit of ms-convSTAR: Difference between normalized confusion matrices. Averaged over 5 cross-validation folds. Green denotes margins in favour of ms- 
convSTAR (higher correctness on the diagonal, respectively lower confusion off the diagonal), brown denotes margins in favour of the baseline counterpart (con
vSTAR). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix (Fig. B.15). 

6.2. Ablation study 

As an ablation study, we first evaluate the performance gain due to 
the label refinement module by also running our hierarchical ms- 
convSTAR model without the label refinement module (denoted as 
ms-convSTAR w/o LR). Results in Table 1 show that the CNN-based 
label refinement consistently improves all performance metrics, in 
particular per-class performance. 

We then investigate the importance of the RNN cell type used in the 
network (Table 3). We construct the hierarchical multi-stage network 
(ms-convX) and its non-hierarchical baseline counterparts (convX) using 
the most popular RNN cells: LSTM and GRU. We experimentally eval
uate 3-layer and 6-layer convRNN versions and corresponding ms- 
convRNN versions (Table 3). While convLSTM and convGRU produce 
acceptable results for the 3-layer version without hierarchy, they 
perform very poorly for the deeper, 6-layer versions. As we have shown 
in (Turkoglu et al., 2021), both cell types LSTM and GRU suffer from 
gradient vanishing problems, which get more severe with deeper ar
chitectures. Using our proposed hierarchical approach fixes these 
gradient problems and leads to substantial improvements with respect to 
their baseline versions without hierarchy. Unlike convLSTM and con
vGRU, convSTAR does not suffer from gradient issues at any point and 
performs well for all settings, outperforming all existing approaches in 
overall accuracy (Table 2). Combining convSTAR with the proposed 
hierarchical approach leads to superior performance with a clear margin 
above all other methods on the ZueriCrop dataset. 

6.3. Simultaneous multi-level classification 

An attractive property of ms-convSTAR is that it simultaneously 
predicts per-pixel labels at three different levels in the class hierarchy. 
Performance of proposed ms-convSTAR at different levels of granularity 
is given in Table 4. As we expected, the accuracy of the model improves 
while going to the coarser levels. 

Such feature makes also possible to chose the granularity of the la
bels according to the output (confidence) scores. In this way one can 
produce reliable maps where most pixels are assigned a label and all 
labels have sufficiently high confidence – at the cost of only assigning a 
coarse-grained label to some pixels were the fine-grained answer is too 
uncertain. For instance if the model is uncertain about deciding for 
either apple or pear orchard, the coarser label orchard can be assigned 
with much higher confidence. In a number of applications this coarser 
level of annotation is good enough. An example are the summary sta
tistics computed by the Swiss federal administration, where a large de
gree of coverage with coarse labels is critical. Moreover, coarse but 
correct and (nearly) complete answers are a lot more useful for down
stream GIS processing: for instance, mapping orchards is much easier if 
the user knows which polygons have not yet received a fine-grained 
label and must be checked. 

To quantify this effect, we measure the area that is classified above a 
given confidence score, and compare ms-convSTAR models with 
different numbers of hierarchy levels. We set a prediction confidence 
value p, and, for each pixel switch to the next-coarser label if the con
fidence level p is not achieved. Fig. 11 shows the overall accuracy and 
the coverage rate (the proportion of pixels with a confident label at any 

Fig. 8. Confusion matrix for the proposed method. Averaged over 5 cross-validation folds. Rows show true labels and columns show predicted labels. The sum of 
each row is normalized to 1. 
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granularity) for two confidence levels, p = 0.6 and p = 0.9. As can be 
seen if we wish to retain only confident predictions and set p = 0.9, the 
3-levels hierarchy brings a large benefit. While accuracy (computed over 
covered areas) stays the same, coverage improves by ≈0.20 − 0.25, 
although, obviously, some areas are only predicted at a coarse label 
resolution. 

Fig. 12a shows how the coverage rate and the model performance 
change as functions of the confidence value p. One can see that, as ex
pected, when decreasing p the coverage increases whereas the accuracy 
decreases. Fig. 12b shows how the model performance improve with 
increasing p in the full coverage case (every pixel is classified aat the 
coarsest available level regardless of the p value). The full, 3-level model 
boosts performance significantly with increasing p; in contrast, a basic 1- 
level model does not show this behaviour. This analysis suggests that the 
imposed label hierarchy is actually meaningful for the problem, in the 
sense that the coarser classes are indeed easier to discriminate than their 
finer sub-classes. Moreover, the results once more support our hierar
chical multi-level scheme: additional hierarchy levels consistently help 
to predict more pixels correctly and confidently, for any value of p. 

6.4. Cloud robustness 

RNNs normally exhibit good robustness against missing data due to 

clouds, in the context of crop mapping see, e.g., Rußwurm and Körner 
(2018a). We have conducted two experiments to further analyse 
robustness against clouds. For Table 5 we have trained the proposed 
model with the cloud mask as an additional input channel, so as to 
explicitly give the model the information which pixels are obscured by 
clouds. The performance is practically the same, suggesting that the 
model learns to detect the presence of clouds, such that the additional 
input brings no benefit. In Fig. 13 we look at the issue from another 
angle: we thresholding the Sen2Cor cloud score to determine how many 
images are cloudy in the time series of every pixel. Then, we quantify 
how the varying number of cloud-free observations influences the per
formance. To that end we rank the classified pixels according to the 
number of cloudy observations in the time series. As can be seen, the 
accuracy remains almost constant as pixels are affected increasingly by 
cloud cover. 

7. Discussion 

We go on to discuss limitations of the proposed approach, and 
highlight cases where prediction is particularly difficult in the ZueriCrop 
dataset. 

Although the hierarchical approach significantly reduces the 
misclassification of underrepresented classes, exceedingly rare classes 

Fig. 9. Visual results for five different samples (train-test fold 2). Green colour indicates correct classification, red are mis-classified pixels (respectively, fields). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(e.g., beets, lupine, grain) still often get confused with more frequent 
ones. The full confusion matrix is shown in Fig. 8. In most cases, very 
rare crops are misclassified as meadow, which is the largest class in the 
dataset, with almost half of the labeled pixels. The misclassification of 

field crops like grains and lupine may in part be attributed to a strong 
presence of weeds, which is especially common in organic or extensive 
cropping systems (Giller et al., 2009; Gomiero et al., 2011). This is also 
reflected by the mixed crop class that represents a mixture of grain and 
legume crops used for Nitrogen efficient production of animal forage. 
Another source of errors are mixed pixels that span several crop types. 
Because the Sentinel-2 ground sampling distance of 10 m is still rela
tively large relative to the small field sizes of Switzerland (see Fig. 5), 
mixed pixels can have a noticeable impact at field boundaries, where 
stripes of meadow (grassland) and hedges are common (see Fig. B.14). 
Other examples of misclassifications are apple and pear, which belong to 
the same genus (family of Rosaceae). Similarly, sugar beets and beets 
(forage or vegetable) are the same species and just differentiated in the 

Fig. 10. Qualitative comparison: ms-convSTAR vs. the best-performing alternative on the ZueriCrop data.  

Table 4 
Performance of proposed ms-convSTAR at different levels of granularity. All 
numbers are averaged over 5 cross-validation folds.  

Level Prec (%) Rec (%) F1 (%) Acc (%) 

1st 80.3 52.9 57.0 96.3 
2nd 73.0 51.0 54.5 89.2 
3rd 60.1 49.8 52.4 88.0  

(a) p = 0 .9 (b) p = 0 .6

Fig. 11. Performance of models with different numbers of hierarchical levels at fixed confidence values: (a) p = 0.9, (b) p = 0.6. The fraction of classified pixels 
(coverage rate, blue) grows with an increasing number N of hierarchy levels (computed with a single train-test fold). See Section 6.3. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cultivar or variety. Finally, intermediate crops, cover crops and sec
ondary crops are not part of the reference dataset, but are of course 
visible in the satellite imagery throughout the year. It is required by 
Swiss law to grow cover crops during winter on bare soils as part of 
sustainable practice to reduce environmental degradation, such as 
erosion caused by strong rainfall events or nutrient leaching during 

winter (Prasuhn, 2012). These intermediate or secondary crops are 
often, but not always, one of the sub-classes of the grassland class. We 
hypothesize that this might be another reason for very rare classes being 
wrongly associated with grassland. 

Of course our proposed approach also has limitations, which we 
discuss in the following, together with ideas how to mitigate them in 
future work. Like many deep neural networks, the model requires a 
significant amount of training labels for optimal performance. One 
possible way to alleviate the consequences of label scarcity during 
training is to use an active learning scheme. I.e., iterate between model 
training and the selection of maximally informative samples to extend 
the training set (which must then be annotated by an expert). Active 
learning can significantly reduce the amount of training labels needed to 
reach a defined performance level, the price to pay is that the overall 
lower annotation effort becomes more protracted and less projectable. 
Also, data-driven models are intrinsically tied to the data used during 

(a) (b)

Fig. 12. Performance of models with different numbers of hierarchical levels: (a) Coverage rate and model performance vs. confidence value p, (b) performance vs. 
confidence value p in full coverage case for models with different number of hierarchy levels (computed with a single train-test fold). See Section 6.3. 

Table 5 
Performance comparison: the proposed model vs. the same model with the cloud 
masks (CM) as additional input. Numbers are averaged over 5 cross-validation 
folds. The best score for each metric is shown in bold.  

Method Prec (%) Rec (%) F1 (%) Acc (%) 

ms-convSTAR 59.8 49.7 52.1 88.0 
ms-convSTAR w/ CM 60.2 48.8 52.2 87.9  

(a) c = 0 .1 (b) c = 0 .5

Fig. 13. Robustness against clouds. We plot classification accuracy against the proportion of cloud-free observations. Along the x-axis, pixels are ordered according 
to how often they are obscured by clouds. The blue curve depicts the cumulative number of pixels with at most a certain fraction of cloudy views. The orange curve 
shows the accuracy of the model evaluated over those pixels. The test was repeated with two different thresholds c for the Sen2Cor cloud scores. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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training. A domain shift, caused for instance by a change of target crop 
types, will require a re-training or fine-tuning of the model. At least fine- 
tuning may also be required to maintain performance if the model is 
applied in an area with different ecological background conditions. 
Pairing our method with a meta-learning scheme, as recently explored in 
(Rußwurm et al., 2020), could ease the adaptation effort to different 
crop types and different geographic regions. Finally, the label hierarchy 
in this work is specific to Switzerland and different hierarchies will be 
needed for other agricultural regimes. In that context we reiterate that 
hard-coding a specific label hierarchy into the network architecture is an 
integral part of the current design, but lacks flexibility when moving to 
other environments. A technically challenging, but potentially useful 
extension to the current method could be to learn the label hierarchy 
from data rather than impose it a priori, using for instance unsupervised 
learning techniques. It can be expected that constructing the hierarchy 
in a data-driven manner, rather than with expert knowledge, will 
require fairly large amounts of data. 

8. Conclusion 

We have proposed a novel, hierarchical classification approach for 
multi-temporal crop classification from satellite images – in our case 
Sentinel-2, but the scheme is generic and could be applied to other 
sensors. Our ms-convSTAR method is a multi-stage convolutional 
recurrent neural network that leverages an explicit, hierarchical tree 
structure of the labels. Besides classifying the input data simultaneously 
at multiple interdependent hierarchy levels of granularity, the method 
also features an CNN-based label-refinement component to favour con
sistency across the hierarchy. 

In our study, the labels are based on the classes of the Swiss 
governmental reporting scheme, and the hierarchy was defined by 

domain experts according to agronomic knowledge and best practices. 
Based on that hierarchy we also have collected a new dataset of Sentinel- 
2 time series images, ZueriCrop, that densely covers a large agricultural 
region in Central Europe. The dataset is larger, more imbalanced, and 
more representative of real applications than earlier science datasets. In 
the experiments on ZueriCrop, ms-convSTAR has shown improved per- 
class performance and outperforms competing state-of-the-art 
methods. In particular, it greatly improves the classification of many 
rare classes. 
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Appendix A. Performance comparison: without polygon aggregation 

We provide models' performances when polygon aggregation, i.e., majority voting is not performed as post-processing, in Table A.6. Compared to 
results in Table 2, scores for each method are decreased in a similar proportion especially in terms of overall accuracy and F1-score.  

Table A.6 
Without polygon aggregation: Performance comparison of ms-convSTAR (bottom row) with state-of-the-art methods when polygon aggregation, 
i.e., majority voting, is not performed as post-processing. Precision, recall and F1-score are mean values over all classes. All numbers are averaged 
over 5 cross-validation folds. The best score for each metric is shown with bold and the second best is underlined. *Random Forest is trained with 
a balanced dataset by under-sampling the majority classes which leads to improved class-wise performance.  

Method Prec (%) Rec (%) F1 (%) Acc (%) 

Random Forest* 43.6 36.2 32.6 69.8 
LSTM (Rußwurm and Körner, 2017) 33.9 25.2 26.5 80.2 
TCN (Pelletier et al., 2019) 42.1 25.4 27.2 80.5 
Transformer (Rußwurm et al., 2019) 53.7 34.7 38.7 82.0 
2D-CNN (U-Net) 33.8 23.8 24.6 79.6 
U-Net + convLSTM (Rustowicz et al., 2019) 44.1 31.2 31.7 81.1 
Bi-convGRU (Rußwurm and Körner, 2018b) 49.1 35.7 38.4 82.4 
ms-convSTAR 53.0 44.2 46.2 83.9  

Appendix B. Number of input channels 

In order to motivate our decision to use exclusively the 10 m bands we conducted a simple experiment where we compare the performance of our 
method and of a Random Forest (RF) when using exclusively the 4 10 m bands, and when using both the 10 m and 20 m bands. Results are reported in 
Table B.7. As it can be seen, at least for the considered dataset, the improvements are marginal for the RF, and we actually observe a small performance 
drop for our method when using all the 9 bands. In terms of visual results, prediction comparison between 4 and 9 bands model are shown in Fig. 3. As 
can be seen the main difference is that the 9 bands model have some pixels that are misclassified on the edges of the fields. It is difficult to judge 
whether in this case the label is not fully accurate on the edges of the fields, or if the prediction is not accurate because of the limited resolution of the 
additional bands.  
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Table B.7 
Performance comparison w.r.t. number of input channels. 5-fold evaluation (bi-cubic upsampling of all channels with 20 m meter 
GSD).  

Method Prec(%) Rec(%) F1(%) Acc(%) 

RF (9 channels) 46.5 40.9 39.0 78.9 
RF (4 channels) 46.4 40.7 38.9 78.8 
ms-convSTAR (9 channels) 56.3 46.6 48.7 87.8 
ms-convSTAR (4 channels) 59.8 49.7 52.1 88.0  

Fig. B.14. Qualitative comparison: Example failure cases of the 4-channels model vs the 9-channels model. Polygon aggregation is not performed as post-processing. 
Both models often fail at edge cases; however, the 9-channels model makes more mistakes at field edges.  
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Fig. B.15. Qualitative result: The first row shows the Sentinel-2 satellite image (false colour composite: NIR-Red-Green) of the test area, the second row shows the 
crop map generated by the proposed ms-convSTAR, and the third row shows the ground truth map. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Appendix C. Class-wise performance 

Class-wise accuracy for each granularity is given in Table C.8.  

Table C.8 
Class-wise performance of proposed ms-convSTAR at different levels of granularity. All numbers are averaged over 5 cross-validation folds. Class frequencies are given 
in parenthesis.  

Level-1 Acc (%) Level-2 Acc (%) Level-3 Acc (%) 

Field Crops (41.39%) 98.2 Small Grain Cereal (16.89%) 97.7 Summer Wheat (0.13%) 38.0 
Winter Wheat (10.77%) 95.7 
Wheat (1.20%) 39.4 
Einkorn Wheat (0.14%) 49.8 
Summer Barley (0.05%) 26.1 
Winter Barley (3.49%) 96.4 
Grain (0.05%) 21.7 
Rye (0.14%) 68.1 
Spelt (0.70%) 84.0 
Oat (0.21%) 76.4 
Buckwheat (0.02%) 7.0 

Large Grain Cereal (10.37%) 94.3 Maize (10.30%) 94.7 
Sorghum (0.07%) 27.0 

(continued on next page) 
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Table C.8 (continued ) 

Level-1 Acc (%) Level-2 Acc (%) Level-3 Acc (%) 

Vegetable Crop (2.85%) 83.4 Vegetables (2.76%) 82.3 
Pumpkin (0.03%) 14.2 
Chicory (0.07%) 30.8 

Broad Leaf Row Crop (11.20%) 95.1 Sugar Beet (4.26%) 97.2 
Beets (0.01%) 0.0 
Potatoes (1.65%) 86.6 
Sunflowers (1.05%) 92.8 
Linen (0.04%) 54.4 
Hemp (0.02%) 3.1 
Soy (0.37%) 87.4 
Winter Rapeseed (3.21%) 97.6 
Summer Rapeseed (0.02%) 0.0 
Field Bean (0.15%) 88.3 
Peas (0.32%) 82.4 
Lupine (<0.01%) 0.0 
Tobacco (0.03%) 48.5 
Mustard (<0.01%) 0.0 
Legumes (0.05%) 78.0   

Crop Mix (0.08%) 16.7 Crop Mix (0.08%) 39.7 
Grassland (56.00%) 97.9 Meadow (47.76%) 95.3 Meadow (47.76%) 94.9 

Pasture (8.20%) 37.4 Pasture (8.20%) 42.4 
Biodiversity A. (0.04%) 0.0 Biodiversity A. (0.04%) 0.0 

Orchards (1.54%) 49.6 Orchard Crop (1.41%) 76.3 Apples (0.40%) 69.3 
Pears (0.07%) 2.3 
Vines (0.83%) 82.2 
Hops (0.01%) 0.0 
Stone Fruit (0.09%) 24.1 
Chestnut (<0.01%) 0.0 

Tree Crop (0.13%) 20.9 Tree Crop (0.13%) 37.2 
Special Crops (1.00%) 8.3 Hedge, Gardens, Multiple (0.43%) 1.0 Hedge (0.42%) 1.5 

Gardens (<0.01%) 0.0 
Multiple (0.01%) 0.0 

Berries (0.22%) 18.8 Berries (0.22%) 25.8 
Fallow (0.36%) 65.8 Fallow (0.36%) 70.3 

Forest (0.07%) 0.0 Forest (0.07%) 0.0 Forest (0.07%) 1.6  

Appendix D. More details about baselines 

Parameters of baseline models and links for their source codes are given in Table D.9 and Table D.10, respectively.  

Table D.9 
Parameters of baseline methods.  

Method Hidden Layer Kernel Batch Note 

Random Forest     max_depth:60 max_features:auto min_sample_leaf:1 min_sample_split:3 n_estimators:1000 
LSTM 128 1  576  
TCN 64 3 5 576 dropout: 0.5 
Transformer 64 4  576 head: 4 
Bi-convGRU 64 1 3 × 3 4  
U-Net  12 3 × 3 4 filters: 64, 64, 128, 128, 256, 256 
U-Net + convLSTM 256 12 + 1 3 × 3 4 filters: 64, 64, 128, 128, 256, 256   

Table D.10 
Code sources of baseline methods.  

Method Source 

Random Forest https://scikit-learn.org 

LSTM https://pytorch.org/docs/stable/nn.html 

TCN https://github.com/charlotte-pel/temporalCNN 

Transformer https://github.com/dl4sits/BreizhCrops 

Bi-convGRU https://github.com/TUM-LMF/MTLCC 

U-Net https://github.com/roserustowicz/crop-type-mapping 

U-Net + convLSTM https://github.com/roserustowicz/crop-type-mapping  

M.O. Turkoglu et al.                                                                                                                                                                                                                            

http://scikit-learn.org
https://pytorch.org/docs/stable/nn.html
https://github.com/charlotte-pel/temporalCNN
https://github.com/dl4sits/BreizhCrops
https://github.com/TUM-LMF/MTLCC
https://github.com/roserustowicz/crop-type-mapping
https://github.com/roserustowicz/crop-type-mapping


Remote Sensing of Environment 264 (2021) 112603

18

References 

Anderegg, J., Yu, K., Aasen, H., Walter, A., Liebisch, F., Hund, A., 2020. Spectral 
vegetation indices to track senescence dynamics in diverse wheat germplasm. Front. 
Plant Sci. 10, 1749. 

Bailly, S., Giordano, S., Landrieu, L., Chehata, N., 2018. Crop-rotation structured 
classification using multi-source sentinel images and lpis for crop type mapping. In: 
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. 
IEEE, pp. 1950–1953. 

Belgiu, M., Csillik, O., 2018. Sentinel-2 cropland mapping using pixel-based and object- 
based time-weighted dynamic time warping analysis. Remote Sens. Environ. 204, 
509–523. 

Bundesamt für Statistik, 2020. Landwirtschaft und Ernährung - Taschenstatistik 2020 
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