
ETH Library

Nearly linear time minimum
spanning tree maintenance for
transient node failures

Journal Article

Author(s):
Nardelli, Enrico; Proietti, Guido; Widmayer, Peter

Publication date:
2004-10

Permanent link:
https://doi.org/10.3929/ethz-b-000049951

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Algorithmica 40(2), https://doi.org/10.1007/s00453-004-1099-9

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000049951
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00453-004-1099-9
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DOI: 10.1007/s00453-004-1099-9

Algorithmica (2004) 40: 119–132 Algorithmica
© 2004 Springer-Verlag New York, LLC

Nearly Linear Time Minimum Spanning Tree
Maintenance for Transient Node Failures1

Enrico Nardelli,2 Guido Proietti,3 and Peter Widmayer4

Abstract. Given a 2-node connected, real weighted, and undirected graph G = (V, E), with n nodes and
m edges, and given a minimum spanning tree (MST) T = (V, ET) of G, we study the problem of finding,
for every node v ∈ V , a set of replacement edges which can be used for constructing an MST of G − v (i.e.,
the graph G deprived of v and all its incident edges). We show that this problem can be solved on a pointer
machine inO(m · α(m, n)) time andO(m) space, where α is the functional inverse of Ackermann’s function.
Our solution improves over the previously best known O(min{m · α(n, n),m + n log n}) time bound, and
allows us to close the gap existing with the fastest solution for the edge-removal version of the problem (i.e.,
that of finding, for every edge e ∈ ET , a replacement edge which can be used for constructing an MST of
G − e = (V, E\{e})). Our algorithm finds immediate application in maintaining MST-based communication
networks undergoing temporary node failures. Moreover, in a distributed environment in which nodes are
managed by selfish agents, it can be used to design an efficient, truthful mechanism for building an MST.

Key Words. Graph algorithms, Minimum spanning tree, Transient node failures, Fault tolerance, Algorithmic
mechanism design.

1. Introduction. Let G = (V, E) be a 2-node connected, undirected graph, with n
nodes and m edges. Assume that with each edge e ∈ E a real weight w(e) is associated.
Let T = (V, ET) denote a minimum spanning tree (MST) of G, that is, a spanning tree
of minimum total edge weight. For any v ∈ V , let G − v denote the subgraph of G
induced by the node set V \{v} (i.e., the graph G deprived of v and all incident edges).
Note that G − v is connected, since G is 2-node connected. In this paper we consider
the problem of finding, for every v ∈ V , a set of replacement edges which can be used
for constructing an MST of G − v.

1.1. Motivations. The MST serves as a basis for many complex network problems.
Indeed, assume that V is a set of n sites that must be interconnected, through a set E
of potential links between the sites. Any of these links e = (u, v) has a real value w(e)

1 This work was partially supported by the Swiss National Science Foundation, and by the Research Project
GRID.IT, funded by the Italian Ministry of Education, University and Research. A preliminary version of
this paper was presented at the 8th European Symposium on Algorithms (ESA 2000), Saarbrücken, Germany,
September 5–8, 2000. Volume 1879 of Lecture Notes in Computer Science, Springer-Verlag, Berlin.
2 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma,
Italy, and Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185 Roma,
Italy. nardelli@mat.uniroma2.it.
3 Dipartimento di Informatica, Università di L’Aquila, Via Vetoio, 67010 L’Aquila, Italy, and Istituto di Analisi
dei Sistemi ed Informatica “A. Ruberti”, CNR, Viale Manzoni 30, 00185 Roma, Italy. proietti@di.univaq.it.
4 Institut für Theoretische Informatik, ETH Zentrum, CLW C 2, Clausiusstrasse 49, 8092 Zürich, Switzerland.
widmayer@inf.ethz.ch.

Received December 14, 2003; revised March 9, 2004. Communicated by B. Chazelle.
Online publication June 18, 2004.

120 E. Nardelli, G. Proietti, and P. Widmayer

associated, representing the cost (in terms of some standard of measurement) for com-
municating between u and v through e. Then an MST of G is a spanning communication
network of minimum cost.

In many complex scenarios, computing just a single MST is not sufficient to embed all
the system requisites, though. As a classic example, we mention the well-known fault-
tolerance framework. In this respect the starting point is that—apart from its cost—
a communication network must also be reliable. Therefore, one should be ready to
maintain the connectivity among the sites as soon as any network component (either a
node or an edge) fails. Such a maintenance is generally accomplished by activating a
replacement communication network (RCN) satisfying the same optimization criteria
used for building the original network. In particular, for an MST this will result in a
replacement MST (RMST) of the graph G now deprived of the failed component. Since
the failed component is likely to be repaired soon, the RMST is just temporary, and
the old, optimal MST will shortly be reactivated. Therefore, under these assumptions, it
makes sense to study the problem of dealing with the failure of every arbitrary component,
to precompute all the individual RMSTs.

Besides the above classical motivation, there is also an emerging and totally different
framework in which our problem finds a concrete application, namely the algorithmic
mechanism design. Indeed, as we discuss in more detail in the paper, the computation
of all the RMSTs provides a measure of how the communication network is perturbed
by the failure of any of its components, and this reflects the marginal utility that each
node brings into the MST. Therefore, under the assumption that network components
are owned by selfish agents that want to be rewarded to forward messages, we will show
that our algorithm can be used to implement a time-efficient mechanism for computing
an MST.

1.2. Related Work. In the last two decades, several results related to our problem have
been obtained, especially for the edge replacement case. In this context it is easy to see
that an edge e ∈ ET has to be replaced by a minimum weight non-tree edge forming with
e a fundamental cycle in G (i.e., a cycle containing just a single non-tree edge). Such an
edge is named a replacement edge for e. The problem of finding all the replacement edges
of an MST (i.e., all the RMSTs with respect to edge failures) was originally addressed
by Tarjan [20], under the guise of the sensitivity analysis of an MST, that is, how much
the weight of each individual edge in the MST can be perturbed before the spanning
tree is no longer minimal. In his seminal paper, Tarjan solved the problem on a pointer
machine inO(m ·α(m, n)) time and linear space, where α(m, n) is the functional inverse
of Ackermann’s function defined in [19]. On the more powerful RAM model, Dixon et
al. [6] proposed an optimal deterministic algorithm—for which a tight asymptotic time
analysis could not be offered—and a randomized linear time algorithm, while Booth and
Westbrook [1] devised a linear time algorithm for the special case in which the graph G
is planar.

In a somewhat related scenario, the problem of finding all the RMSTs as a conse-
quence of the failure of each individual node in the graph was originally studied by Chin
and Houck [4], who gave anO(n2) time algorithm. For not very dense graphs, more pre-
cisely for m = o(n2/log n), the (more general) offline algorithm for the dynamic MST
problem given by Eppstein [7] can be used to devise a fasterO(m log n) time algorithm.

Nearly Linear Time MST Maintenance for Transient Node Failures 121

Subsequently, such a bound has been obtained through a different technique from Das
and Loui [5], who have also shown that if edge weights are sorted in advance, then the
runtime can be lowered to O(m · α(m, n)). In this way, however, the logarithmic factor
bottleneck is shifted to the edge weights sorting, although there is no evidence that this
operation is crucial for solving the problem. As a matter of fact, this logarithmic factor
was removed in [14], where the authors devised an O(min{m · α(n, n),m + n log n})
time and linear space algorithm. Notice that this algorithm can be suitably modified to
produce an optimal linear time algorithm for the planar case [9].

1.3. Our Result. In this paper we provide an improved version of the algorithm pre-
sented in [14], running in O(m · α(m, n)) time and using O(m) space. Remarkably,
this progress is achieved on a pure pointer machine, without using the direct addressing
capability provided by a RAM. Although the asymptotic advancement might appear
limited at a first glance, we believe the progress in terms of the problem’s knowledge is
drastic. Indeed, we obtain the same runtime as for the edge failure case, thus filling the
efficiency gap existing between the solution for the edge and the node failure case. The
task of finding a linear time algorithm (or, alternatively, a superlinear lower bound) for
the two problems remains a challenging open problem.

The paper is organized as follows: In Section 2 we give some definitions and we present
the first basic algorithmic observations, while in Section 3 we describe the algorithm
for solving the problem, and we provide an analysis of both correctness and complexity.
In Section 4 we present an application to a mechanism design optimization problem.
Finally, Section 5 contains conclusions and lists some open problems.

2. Preliminaries. Let G = (V, E) be an undirected graph, where V is a set of n
nodes and E ⊆ V × V is a set of m edges, with a real weight w(e) associated with
each edge e ∈ E . If multiple edges between nodes are allowed, then the graph is called
a multigraph. A graph H = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ ⊆ E .
If V ′ = V , then H is called a spanning subgraph of G.

A path in G is a subgraph with node set V ′ = {v1, . . . , vk} and edge set E ′ =
{(vi , vi+1) | 1 ≤ i < k}, also denoted as 〈v1, v2, . . . , vk〉. Such a path is said to go
from v1 to vk passing through v2, v3, . . . , vk−1. If vi �= vj for i �= j , then the path is
called simple. If v1 = vk and no other nodes are repeated, then the path is called a cycle.
A graph G is connected if, given any two distinct nodes u, v of G, there exists a path
going from u to v. A graph G is 2-node connected (biconnected, for short) if, given
any three distinct nodes u, v, w of G, there exists a path going from u to w not passing
through v. In other words, a graph G is biconnected if at least two of its nodes must be
removed to disconnect it. A connected, spanning subgraph of G containing no cycles is
called a spanning tree of G. A spanning tree T = (V, ET) of G is said to be a minimum
spanning tree (MST) of G if the sum of all the tree edge weights is minimum among all
the spanning trees of G.

Let r denote an arbitrary node in G. In the following the tree T is considered as rooted
in r . Let F = E\ET be the set of non-tree edges of G. For any two node-disjoint subtrees
T1 and T2 of T , let F(T1, T2) be the set of non-tree edges having one endnode in T1 and
the other endnode in T2. We denote by T (v) the subtree of T rooted at v, and by T (v)

122 E. Nardelli, G. Proietti, and P. Widmayer

2

9

6

�0

�k

4

2

5

5

3

37

�2�1

4

6

v

: : :

G

r

T (v)

=)

vk

v0

: : :

Gv

T (v1)

T (v2)

v1

T (vk)

v2

Fig. 1. A node v in G, with the associated set of upwards (dashed) and horizontal (dotted) edges, along
with their weights. When node v is removed, subtrees T (v), T (v1), . . . , T (vk) are contracted to vertices
ν0, ν1, . . . , νk , respectively, joined by the selected upwards and horizontal edges of v, to form Gv .

the tree T after the removal of T (v). Let v0 and v1, . . . , vk be the parent and the children
of v in T , respectively. Let Hv = { f ∈ F | f ∈ F(T (vi), T (vj)), 1 ≤ i, j ≤ k, i �= j},
referred to in the following as the set of horizontal edges of v, and let Uv = { f ∈ F | f ∈
F(T (vi), T (v)), 1 ≤ i ≤ k}, referred to in the following as the set of upwards edges of
v. A selected horizontal edge for v with respect to T (vi) and T (vj) is an edge (if any)
in F(T (vi), T (vj)) of minimum weight. Similarly, a selected upwards edge for v with
respect to T (vi) is defined as an edge (if any) in F(T (vi), T (v)) of minimum weight.

LetH′v ⊆ Hv and U ′v ⊆ Uv be the set of selected edges associated with v. It is easy to
see that an MST of G−v, say TG−v , can be computed through the computation of an MST
Tv = (Vv,Rv) of the contracted graph Gv = (Vv,H′v∪U ′v), whereVv = {ν0, ν1, . . . , νk}
is obtained by contracting to a vertex each subtree of T created after the removal of v
(see Figure 1). Therefore

TG−v = (V \{v}, ET \{{v0, v}, {v, v1}, . . . , {v, vk}} ∪Rv),(1)

whereRv ⊆ H′v ∪ U ′v is called the set of replacement edges for v.
The ALL NODES TEMPORARY REMOVAL problem with input G and T , denoted in the

following as ANTR(G, T), is that of finding TG−v (i.e.,Rv) for every node v ∈ V .

3. Solving the ANTR(G,T) Problem. We first give a high-level description of the
algorithm, and then we describe it in detail.

3.1. High-Level Description of the Algorithm. A high-level description of our algo-
rithm is the following. First, we compute the selected edges for all the non-leaf nodes of
T (if v is a leaf node, then trivially Rv = ∅). This can be done in O(m · α(m, n)) time
by means of a suitable transformation of G as described later, and is the key for the effi-
ciency of our algorithm. Hence, we consider the graph G defined by the union of all the
contracted graphs Gv , one for each non-leaf node v, and we compute in O(m · α(m, n))
time a minimum spanning forest F of G [3]. In this way, with each contracted graph Gv
a tree in F remains associated, corresponding to TG−v , and therefore our result follows.

Nearly Linear Time MST Maintenance for Transient Node Failures 123

3.2. Computing the Selected Horizontal Edges. As sketched in the previous section,
the efficiency problem lies in the computation of the selected edges. We start by proving
the following:

LEMMA 1. The selected horizontal edges for all the non-leaf nodes v of T can be
computed in O(m) time and space.

PROOF. By definition, each horizontal edge f = (x, y) is associated with a unique
triplet of nodes in V , say 〈lca(x, y), vx , vy〉, where lca(x, y) denotes the least common
ancestor (LCA) in T of x and y, and vx and vy denote the two children in T of lca(x, y)
on the paths (if any) going from lca(x, y) to x and y, respectively. Node lca(x, y) can be
obtained inO(1) amortized time [2]. Concerning nodes vx and vy , they can be computed
in O(1) amortized time in the following way [6]: first, we associate with each node
x ∈ V the set of nodes

L(x) = {v ∈ V | ∃ f = (x, y) ∈ F such that v = lca(x, y)};
then we perform a depth-first traversal of T , maintaining a stack of the ancestors of
the currently visited node, and when a node x ∈ V is visited, we report, for each node
v ∈ L(x), the node just above v in the stack.

From this, it follows that computing F(T (vi), T (vj)) for every pair of (non-leaf)
siblings vi and vj costsO(m) time, and selecting all the minimums over these sets costs
time proportional to the size of all the sets, that isO(m) time. SinceO(m) space suffices
to perform all the above operations, the claim follows.

3.3. Computing the Selected Upwards Edges. The efficiency problem is the computa-
tion of the selected upwards edges U ′v , for all the nodes v ∈ V . It is clearly prohibitive
simply to compute U ′v from scratch, but it is also too expensive to attack the problem in
a bottom-up fashion, by using mergeable heaps in which each heap contains all the up-
wards edges associated with a given subtree of T . Indeed, it is known that�(k log(p/k))
time is needed for deleting k ≤ p elements from a heap of p elements, assuming that
insertion, merge, and find-minimum operations are performed in constant time [18].
Then it is not hard to produce an instance in which such an approach would require
�(m log n) time. More precisely, it suffices to consider the case in which T degenerates
to a path, and for each couple of non-adjacent nodes x, y ∈ V there exists a non-tree
edge f = (x, y). Then it is not hard to see that at the kth step of the bottom-up process,
2 < k ≤ n − 1, there are k − 2 deletions from a heap containing �(n) elements, and
then they cost �(k log(n/k)) time. Therefore, summing up for all the steps, it turns out
that �(m log n) time is needed.

To avoid this problem, we adopt a totally different strategy. More precisely, we find
U ′v by transforming the graph G into a weighted multigraph G ′ = (V, E ′) with E ′ =
ET ∪ F ′, where F ′ contains less than 2|F | edges, and is obtained from F as follows: let
f = {x, y} ∈ F , and let 〈lca(x, y), vx , vy〉 be defined as above. Edge f is subject to the
following transformation rules (notice that x and y are interchangeable), depending on
the specified conditions:

(i) if lca(x, y) = y, f is transformed into edge f ′ = {x, vx } of weight w(f);

124 E. Nardelli, G. Proietti, and P. Widmayer

y3 vx4 vy4

vy2

x4 y4

x1

y2

x3

x2

vx1

)

r � y1
G

r

f 0

2

f 00

4

G0

f 0

4

f4

f3

f2

f1

f 0

1

Fig. 2. Transformation of non-tree (dashed) edges fi = (xi , yi), i = 1, . . . , 4, according to the i th transfor-
mation rule, based on T (solid edges).

(ii) if vx = x and vy �= y, f is transformed into edge f ′ = {y, vy} of weight w(f);
(iii) if vx = x and vy = y, f disappears;
(iv) otherwise, f is transformed into edges f ′ = {x, vx } and f ′′ = {y, vy}, each of

weight w(f).

Figure 2 gives an illustration of the above transformation rules (edge weights are
omitted for the sake of readability).

The decisive property of the above transformation is the following:

LEMMA 2. Let f = (x, y) ∈ F be a non-tree edge forming a fundamental cycle in G
containing a pair of adjacent tree edges ev = (v0, v) and evi = (v, vi), where v0 is the
parent of v and v is the parent of vi in T , respectively. If x (resp. y) is a descendant of
v in T , then f is a non-tree edge of minimum weight forming a fundamental cycle in G
with ev and evi , if and only if f ′ = (x, vx) (resp. f ′′ = (y, vy)) is a minimum weight
edge of F ′ forming a fundamental cycle in G ′ with evi .

PROOF. Let f = (x, y) be a non-tree edge of minimum weight among all the non-tree
edges forming a fundamental cycle in G with ev and evi . Without loss of generality, we
assume that x is a descendant of v in T (the case where y is a descendant of v in T can be
treated similarly). Since f forms a cycle with ev and evi , it follows that lca(x, y) belongs
to the path in T from r to v0. Hence, the edge f ′ = (x, vx), of weight w(f) = w(f ′),
is such that vx belongs to the path in T from r to v, and therefore f ′ forms a cycle with
evi . To show that f ′ is a minimum weight edge of F ′ forming a fundamental cycle in G ′

with evi , we assume that there exists an edge g′ = (u, vu) ∈ F ′ forming a cycle with evi ,
and, such that w(g′) < w(f ′). Let g = (u, z) be the original non-tree edge transformed
into g′, and, possibly, into another additional edge g′′ = (z, vz) (see Figure 3). Since
g′ forms a cycle with evi , it follows that vu belongs to the path in T from r to v, and
therefore lca(u, z) belongs to the path in T from r to v0. Hence, g forms a cycle in G
with ev and evi , and w(g) = w(g′) < w(f ′) = w(f), a contradiction.

Conversely, without loss of generality let f ′ = (x, vx) ∈ F ′ (the case with f ′′ =
(y, vy) can be treated similarly) be a minimum weight edge of F ′ forming a fundamental
cycle in G ′ with evi . From the transformation rules, it follows that the original edge f

Nearly Linear Time MST Maintenance for Transient Node Failures 125

lca(u; z)

f

y
g

f 0

z

xu

g0

vi evi

ev

v0

v

vx

r

vu

lca(x; y)

Fig. 3. If f = (x, y) is a non-tree edge of minimum weight among all the non-tree edges forming a fundamental
cycle in G with ev and evi , then f ′ = (x, vx) must be a non-tree edge of minimum weight among all the
non-tree edges forming a fundamental cycle in G ′ with evi (splines denote paths; notice that vu might coincide
with v).

that generated f ′ is such that either lca(x, y) = v0 or lca(x, y) is an ancestor of v0 in T .
In both cases f forms a fundamental cycle in G with ev and evi , and w(f) = w(f ′). To
show that f is a non-tree edge of minimum weight among all the non-tree edges forming
a fundamental cycle in G with ev and evi , we assume that there exists a non-tree edge
g = (u, z) forming a cycle with ev and evi , and such that w(g) < w(f). Two cases are
possible: (1) u is a descendant of vi in T ; (2) z is a descendant of vi in T . In the former
case, from the fact that lca(u, z) belongs to the path in T from r to v0, it follows that vu

belongs to the path in T from r to v, and therefore g′ = (u, vu) forms a cycle in G ′ with
evi , and w(g′) = w(g) < w(f) = w(f ′), a contradiction. Similarly, in the latter case, it
follows that vz belongs to the path in T from r to v, and therefore g′′ = (z, vz) forms a
cycle in G ′ with evi , and w(g′′) = w(g) < w(f) = w(f ′), a contradiction.

From the above lemma, the following can be proved:

LEMMA 3. The selected upwards edges for all the non-leaf nodes v of T can be com-
puted in O(m · α(m, n)) time and O(m) space.

PROOF. From Lemma 2, computing a selected upwards edge for a node v ∈ V with
respect to any of its children vi is equivalent to computing a replacement edge for an
MST of G ′ after removing the edge (v, vi). Hence, the computation of all the selected
upwards edges is reduced to an ALL EDGES TEMPORARY REMOVAL problem with input
G ′ and T , namely the AETR(G ′, T) problem. Since |E ′| < 2m, this problem can be
solved in O(m · α(m, n)) time and O(m) space [20]. Moreover, G ′ can be computed in
linear time and space [2]. From this, the claim follows.

126 E. Nardelli, G. Proietti, and P. Widmayer

3.4. Finding All the Replacement Edges. Once the horizontal and the upwards edges
have been selected, to solve the ANTR(G, T) problem we have to compute, for every
v ∈ V , an MST Tv of Gv , whose set of edges corresponds toRv . This leads to the main
result:

THEOREM 1. The ANTR(G, T) problem for an MST T of a biconnected, real weighted,
undirected graph G with n nodes and m edges can be solved on a pointer machine in
O(m · α(m, n)) time and O(m) space.

PROOF. From Lemmas 1 and 3, computingH′v and U ′v for every non-leaf node v costs
O(m · α(m, n)) time and O(m) space.

It remains to analyze the total time needed to compute, for every such non-leaf node
v, an MST Tv of Gv . Let G = (V, E) be the graph defined by the set of contracted graphs
Gv , one for each non-leaf node v ∈ V . These contracted graphs define the connected
components of G. It is easy to see that G can be built in O(m) time and space, once that
E is given. Indeed, |V| = O(n), since each edge of T generates at most two vertices
of V . Moreover, |E | = O(m), since each selected horizontal edge is associated with a
unique Gv , while there is at most a selected upwards edge for each edge in T . From this,
it follows that a minimum spanning forest F of G can be computed in O(m · α(m, n))
time and O(m) space [3]. Since each contracted graph Gv remains associated with the
tree in F corresponding to TG−v , the claim follows.

4. An Algorithmic Mechanism Design Application. Interestingly, by solving any
network problem which involves the temporary removal, one after the other, of every
single component, one naturally obtains a characterization of their vitality. Indeed, com-
puting a replacement network provides a measure of the increment in the network cost:
the larger the increment, the higher the vitality of the removed component. In standard
economic terms, this is also known as the marginal utility brought from a component to
the network.

In any large network which contains heterogeneous components (e.g., high perfor-
mance backbone and regional network routers) the above vitality aspect has an immediate
economic counterpart. Indeed, each of the network components may be owned by differ-
ent owners (e.g., an autonomous system), and the incentive for an owner of a component
in performing some task (e.g., forwarding a message), naturally, is to get some reward.
From the network management point of view, this reward represents the price of the ser-
vice of forwarding the message. It is economically desirable that each owner declares the
true price for the service that her components offer, so as to allocate the overall resources
in the best possible way. Nevertheless, there is an incentive for owners to speculate and
ask for a higher price, in the hope of getting a higher profit. This leads to economically
suboptimal resource allocation and is therefore undesirable. A celebrated game theory
result [21] states that when agents are compensated proportionally to their marginal util-
ity, then speculating with high prices does not pay off. Hence, computing (efficiently)
these marginal utilities is instrumental to obtain an optimal resource allocation in several
network applications.

Nearly Linear Time MST Maintenance for Transient Node Failures 127

4.1. Previous Results. This interplay between game theory and computational com-
plexity is well known today as algorithmic mechanism design for selfish agents [8],
[17]. Among others, in their seminal paper [17], Nisan and Ronen addressed the classic
shortest path problem, which can be formulated as follows. Let a given communica-
tion network be modeled by a directed graph G = (V, E), in which two distinguished
nodes s and t , called respectively the source and the destination node, want to estab-
lish a communication. Each edge e = (x, y) ∈ E is owned by an agent Ae, which
holds private information t (e) associated with e, named type. This value depends on
various factors (e.g., bandwidth, reliability, etc.) and expresses the agent’s true cost (in
terms of some common currency) for receiving or sending a message through that edge.
Each agent, whenever called for using her edge, will report a (not necessarily true) cost
r(e). This value represents her strategy. Indeed, on the basis of all the reported costs,
a solution (i.e., a path between s and t) will be computed, and if a given edge e lies
on this path, then the corresponding owner will receive a payment p(e), thus realizing
a utility u(e) = p(e) − t (e). Since the payments are known in advance to the agents
as a function of the computed solution, it is clear that the agents, depending on their
strategies, can negatively influence the system, by leading it to compute a suboptimal
solution (with respect to their true costs). Therefore, the system-wide goal is to induce,
through appropriate payments, the agents to cooperate in computing an optimal output,
by revealing their true costs. This combination of output computation and definition of
payments is usually referred to as a mechanism. We call a strategy dominant for an agent
if it maximizes the agent’s utility, whatever the strategies adopted by the other agents.
Then a mechanism is truthful if for the agents it is a dominant strategy to report their
true costs.

As far as the shortest path problem is concerned, if we denote by dG(s, t) the length
of a shortest path in G between s and t according to the reported edge costs, then the
following payment function ensures that for the agents it is a dominant strategy to report
their true costs [17]. In this way an authentic shortest path in G between s and t will be
selected:

p(e) =
{

0 if e is not on the shortest path;
dG−e(s, t)− (dG(s, t)− r(e)) otherwise.

(2)

Indeed, it can be proved that the above payments can be used to implement a so-called
Vickrey–Clarke–Groves mechanism (VCG-mechanism) [10], which enjoys the funda-
mental property of being truthful. With respect to our simplified framework, a VCG-
mechanism can be defined as follows (for an extensive treatment of the subject, the
interested reader is referred to [17]):

DEFINITION 1 (VCG-Mechanism). Let G = (V, E) be a graph in which each edge
e ∈ E is owned by an agent Ae, which holds a private type t (e) and reports a public
weight r(e) for e. Let π = 〈G,S, ϕ〉 be a maximization (minimization) problem on G,
withS ⊆ 2E denoting the set of feasible solutions, and ϕ denoting the objective function,
which is subject to the restriction that, for E ′ ∈ S, the following holds:

ϕ(E ′) =
∑
e∈E ′

r(e).(3)

128 E. Nardelli, G. Proietti, and P. Widmayer

Then a VCG-mechanism for π is a pair 〈Alg,P〉, where:

1. Alg is an algorithm which finds a feasible solution maximizing (minimizing) ϕ:
2. P is the set of payments provided to the agents, where the payment p(e) for the agent

Ae has the following form: let h(t−e) be an arbitrary function not depending on the
type t (e) associated with e ∈ E , and let E ′ be the solution reported from Alg; then

p(e) =
{

0 if e /∈ E ′;
h(t−e)− (ϕ(E ′)− r(e)) otherwise.

(4)

It is not hard to see that the payments (2) for the shortest path problem fit the above
definition.

Based on that, the algorithmic question posed in [17] was the following: How fast can
the payment functions (2) be computed? The authors of [17] conjectured this can be done
in O(m log n) time. Unfortunately, this is not the case, since for m = O(n√n), a lower
bound of�(m

√
n) time holds [11]. On the other hand, for undirected graphs, there exists

anO(m+n log n) time algorithm for a pointer machine [12], and anO(m ·α(m, n)) time
algorithm for a RAM [15], respectively. Notice that both these papers were motivated
by the problem of finding the most vital edge of a shortest path. This is not merely
a coincidence, as already observed before, since the vitality of an edge reflects the
marginal utility it brings into the solution, which is exactly what a VCG-mechanism
aims to capture.

For another popular network topology, that is the MST, the situation evolved similarly.
Indeed, as pointed out in [17], theO(m·α(m, n)) time and linear space sensitivity analysis
algorithm by Tarjan [20] (which computes all the replacement edges of an MST), can
be used to implement a truthful mechanism for designing an MST in a communication
network in which edges are owned by selfish agents.

Since Definition 1 can be easily extended to the case in which agents control multiple
edges in the network, a natural set of problems arises when agents sit on nodes and
control a subset of edges incident to that node. In this respect, a first result was obtained
in [16], where an O(m + n log n) time algorithm was presented for the problem of
finding a most vital node of a shortest path (i.e., a node whose removal induces a longest
replacement shortest path between s and t). As the authors pointed out, such an algorithm
can be used to implement a truthful mechanism for solving the shortest path problem in
a communication network in which nodes are owned by selfish agents. However, what
about the problem of finding an MST in such a scenario? In the following we provide
both positive and negative results along this direction.

4.2. Applying Our Algorithm. Assume then that each node v of the graph is controlled
by one or more independent agents. Each of these agents owns (in an exclusive way)
a non-empty subset of the edges incident to that specific node. It is worth noticing that
this scenario models a realistic situation in which, for instance, each node represents a
given geographical region, containing a certain number of servers (each belonging to a
different owner). Each server is connected to other nodes by a set of links that can be used
to receive and forward messages. Then, in the interest of a best possible overall resource
allocation, the system-wide goal is to design a routing protocol in which messages are
exchanged through a minimum-cost network, i.e., an MST.

Nearly Linear Time MST Maintenance for Transient Node Failures 129

By extending our adopted notation, we have that the above problem can be formalized
as follows. Let V be a set of nodes and let E be a set of edges interconnecting all these
nodes. Let Av = {A1

v, . . . , Ak
v} be the set of agents associated with v ∈ V , and let

Ei
v ⊂ E denote the set of edges incident to v which are owned by agent Ai

v . Agent
Ai
v associates with edge e ∈ Ei

v a type t (e) ∈ R+, and reports a cost r(e) ∈ R+. Let
G = (V, E) be the positively weighted graph obtained by associating with each edge
the cost reported by the agent owning it. In the following we assume that G is connected,
and then let T = (V, ET) be an MST of G. If an edge e ∈ Ei

v belongs to T , then agent
Ai
v will receive a payment p(e) ∈ R+ for its use, while otherwise p(e) = 0. Hence, the

global payment of Ai
v will be

pi
v = pi

v(E
i
v, ET) =

∑
e∈Ei

v∩ET

p(e),(5)

while her utility will be

ui
v = ui

v(E
i
v, ET) =

∑
e∈Ei

v∩ET

u(e) =
∑

e∈Ei
v∩ET

[p(e)− t (e)].(6)

Now, let G∗ = (V, E) be the weighted graph obtained by associating with each edge
e the corresponding type of the agent owning it, and let T ∗ = (V, E∗T) be an MST of
G∗. In general, depending on the agents’ declarations, we have that T and T ∗ may differ.
Nevertheless, the system-wide goal is to obtain T ∗, i.e., a true MST, and this is potentially
in contrast with the strategies of the selfish agents. To solve the question, once again we
have then to design a truthful mechanism.

First, we show a positive result, i.e., the existence of a truthful mechanism, which
can be implemented efficiently through our algorithm. Let G − Ei

v denote the graph G
deprived of the edges in Ei

v (notice that G − Ei
v might not be connected). Let TG−Ei

v
be

a minimum spanning forest of G − Ei
v , and let ϕ(T) and ϕ(TG−Ei

v
) denote the weights

of T and TG−Ei
v
, respectively. Finally, let ϕ(T |Ei

v←0) denote the weight of T once the
weights of the edges in Ei

v have been set to zero. The following payment function is a
natural generalization of (4), and ensures that a dominant strategy for the agents is to
report their true costs, thus guaranteeing that an optimal solution (i.e., a true MST) will
be selected:

pi
v =

{
0 if Ei

v ∩ ET = ∅;
ϕ(TG−Ei

v
)− ϕ(T |Ei

v←0) otherwise.
(7)

Indeed, the payment of any agent is a linear function of the reported costs of all the
other agents, and depends neither on her valuations nor on a function of her types. There-
fore, this payments define a VCG-mechanism. Moreover, we can prove the following:

THEOREM 2. The payments functions (7) for all the agents can be computed on a pointer
machine in O(m · α(m, n)) time and O(m) space.

PROOF. It suffices to show that our algorithm from Section 3 can be adapted in order
to compute TG−Ei

v
instead of TG−v , for every agent and every node v ∈ V .

First, we modify the definition of the contracted graph Gv . More precisely, for an

130 E. Nardelli, G. Proietti, and P. Widmayer

agent Ai
v , let Gi

v denote the contracted graph obtained as follows:

1. The vertex set of Gi
v results from the contraction of each subtree of T created after

the removal of Ei
v . If Gi

v contains only a single vertex (i.e., Ei
v ∩ ET = ∅), then set

pi
v = 0 and discard it.

2. The edge set ofGi
v consists of the subsets of the selected upwards and horizontal edges

of Gv whose endnodes do not belong to the same contracted vertex of Gi
v (notice that

some of the selected horizontal and upwards edges computed as described in Section 3
might now be absorbed during the contraction). Moreover, let E−i

v be the set of edges
incident to v but not contained in Ei

v . Then we also add to the edge set of Gi
v the

subset of edges of E−i
v whose endnodes do not belong to the same contracted vertex.

In this way it is easy to see that the graph G = (V, E) defined by this set of modified
contracted graphs, can still be built inO(m) time and space. Moreover, the vertex set of
each contracted graphGi

v inG has size equal to |Ei
v∩ET |+1, and therefore |V| ≤ 2(n−1).

Concerning the edge set, notice that each selected upwards and horizontal edge of Gv
appears at most twice in G. Indeed, if the two tree edges incident to v which form a
fundamental cycle with a given selected edge belong to the same agent, then the selected
edge will be absorbed, while otherwise if the two tree edges belong to different agents,
then the selected edge will be duplicated. Finally, each edge of E−i

v which is added to Gi
v

appears at most twice in G (once for each respective endnode). Thus, |E | = O(m). From
this, it follows that a minimum spanning forestF ofG can be computed inO(m ·α(m, n))
time and O(m) space [3]. Since each Gi

v remains associated with the subforest in F
corresponding to TG−Ei

v
, the claim follows.

4.3. Voluntary Participation. Unfortunately, the above mechanism is dictatorial, in
the sense that there might be cases in which an agent is forced to enter into the solution
(or, putting it differently, an agent is instrumental to the solution). More precisely, we
have that this situation occurs whenever an agent in G exists such that the removal of all
her edges disconnects G. In this case any spanning tree of G must include at least one
edge of such an agent. This implies an interesting consequence: We cannot guarantee
the voluntary participation of this agent (i.e., we cannot provide a truthful mechanism
such that her utility is always non-negative). Indeed, the following can be proved:

THEOREM 3. If an agent in G exists such that the removal of all her edges disconnects
G, then no truthful mechanism exists for computing an MST of G that guarantees a
non-negative utility for that agent.

PROOF. Let A j
z be an agent such that G−E j

z is not connected. For the sake of simplicity,
assume that E j

z consists of a single edge ez ∈ ET . By contradiction, assume the claim
is not true. From our assumptions, the only truthfully dominant strategy mechanisms
for solving the problem belong to the VCG family [13]. Then, from (4), the payment
function for A j

z must be

p j
z = h(t−ez)−

∑
e∈ET \{ez}

r(e).

Nearly Linear Time MST Maintenance for Transient Node Failures 131

Therefore, to get a non-negative utility for A j
z , it must be

u j
z = p j

z − t (ez) = h(t−ez)−
∑

e∈ET \{ez}
r(e)− t (ez) ≥ 0.

Since the mechanism is truthful, we have that r(·) coincides with t (·), and then the above
is equivalent to

h(t−ez) ≥
∑

e∈ET \{ez}
t (e)+ t (ez).(8)

Notice that the above condition must be satisfied as long as ez participates in the solution,
which is always the case. This means that (8) must hold true even if t (ez) grows arbitrarily.
Thus, for any h(t−ez) and any ε > 0, it suffices to have

t (ez) ≥ h(t−ez)−
∑

e∈ET \{ez}
t (e)+ ε

to have a contradiction.

5. Conclusions and Future Work. In this paper we have presented anO(m ·α(m, n))
time and O(m) space algorithm for solving on a pointer machine the all nodes replace-
ment problem ANTR(G, T), where G is a 2-node-connected, real weighted graph, and
T is an MST of G. This algorithm finds application in managing temporary node fail-
ures in MST-based communication networks, and provides an efficient solution to an
interesting algorithmic mechanism design problem.

It is worth noticing that we have obtained the same runtime as for the edge-version
of the problem, namely the AETR(G, T). Since this problem can be solved on a RAM
model in optimal time, although the corresponding tight asymptotic bound is still not
known [6], the problem of devising (possibly by modifying appropriately the algorithm
presented in [6]) an optimal algorithm for solving the ANTR(G, T) problem on a RAM
model remains open. Moreover, for both versions of the problem, it would be interesting
to address the question of designing an optimal algorithm on a pointer machine. This
seems to be doable by exploiting the results contained in [6] and [2]. We conjecture that
the two problems have the same time complexity.

From a different perspective, a natural goal to be pursued is to extend the class of
graphs (at the moment restricted to planar graphs [9]) for which a linear bound for the two
problems holds. Moreover, in a broader scenario, we mention the problem of studying
ANTR and AETR problems for spanning subgraphs of G other than an MST.

Acknowledgments. The authors thank Giovanna Melideo for inspiring discussions on
the topic, and the anonymous referees for their very helpful comments.

References

[1] H. Booth and J. Westbrook, A linear algorithm for analysis of minimum spanning and shortest-path
trees of planar graphs, Algorithmica, 11 (1994), 341–352.

132 E. Nardelli, G. Proietti, and P. Widmayer

[2] A.L. Buchsbaum, H. Kaplan, A. Rogers, and J. Westbrook, Linear-time pointer-machine algorithms for
least common ancestors, MST verification, and dominators, Proc. of the 30th Annual ACM Symposium
on Theory of Computing (STOC 1998), pp. 279–288.

[3] B. Chazelle, A minimum spanning tree algorithm with inverse-Ackermann time complexity, J. Assoc.
Comput. Mach., 47(6) (2000), 1028–1047.

[4] F. Chin and D. Houck, Algorithms for updating minimal spanning trees, J. Comput. System Sci., 16(3)
(1978), 333–344.

[5] B. Das and M.C. Loui, Reconstructing a minimum spanning tree after deletion of any node, Algorithmica
31 (2001), 530–547. Also available as TR UILU-ENG-95-2241 (ACT-136), University of Illinois at
Urbana-Champaign, IL, 1995.

[6] B. Dixon, M. Rauch, and R.E. Tarjan, Verification and sensitivity analysis of minimum spanning trees
in linear time, SIAM J. Comput., 21(6) (1992), 1184–1192.

[7] D. Eppstein, Offline algorithms for dynamic minimum spanning tree problems, J. Algorithms, 17(2)
(1994), 237–250.

[8] J. Feigenbaum and S. Shenker, Incentives and Internet computation, ACM SIGACT News, 33(4) (2002),
37–54.

[9] C. Gaibisso, G. Proietti, and R.B. Tan, Optimal MST maintenance for transient deletion of every node
in planar graphs, Proc. of the 9th Annual International Computing and Combinatorics Conference
(COCOON ’03), Vol. 2697 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 404–
414.

[10] T. Groves, Incentives in teams, Econometrica, 41(4) (1973), 617–631.
[11] J. Hershberger, S. Suri, and A.M. Bhosle, On the difficulty of some shortest path problems, Proc. of the

20th Symposium on Theoretical Aspects of Computer Science (STACS ’03), Vol. 2607 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 343–354.

[12] K. Malik, A.K. Mittal, and S.K. Gupta, The k most vital arcs in the shortest path problem, Oper. Res.
Lett., 8 (1989), 223–227.

[13] C. Montet and D. Serra, Game Theory & Economics, Palgrave MacMilliam, Houndmills, Hampshire,
2003.

[14] E. Nardelli, G. Proietti, and P. Widmayer, Maintaining a minimum spanning tree under transient node
failures, Proc. of the 8th European Symposium on Algorithms (ESA 2000), Vol. 1879 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 346–355.

[15] E. Nardelli, G. Proietti, and P. Widmayer, A faster computation of the most vital edge of a shortest path,
Inform. Process. Lett., 79(2) (2001), 81–85.

[16] E. Nardelli, G. Proietti, and P. Widmayer, Finding the most vital node of a shortest path, Theoret. Comput.
Sci., 296(1) (2003), 167–177. A preliminary version appeared in Proc. of the 7th Annual International
Computing and Combinatorics Conference (COCOON ’01), Vol. 2108 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, pp. 278–287.

[17] N. Nisan and A. Ronen, Algorithmic mechanism design, Games Econom. Behaviour, 35 (2001), 166–
196. A preliminary version appeared in Proc. of the 31st Annual ACM Symposium on Theory of Com-
puting (STOC 1999), pp. 129–140.

[18] D.D. Sleator and R.E. Tarjan, Self-adjusting heaps, SIAM J. Comput., 15(1) (1986), 52–69.
[19] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22(2)

(1975), 215–225.
[20] R.E. Tarjan, Applications of path compression on balanced trees, J. Assoc. Comput. Mach., 26(4) (1979),

690–715.
[21] W. Vickrey, Counterspeculation, auctions and competitive sealed tenders, J. Finance, 16 (1961), 8–37.

