
ETH Library

Metha: Network Verifiers Need To
Be Correct Too!

Conference Paper

Author(s):
Birkner, Rüdiger; Brodmann, Tobias; Tsankov, Petar; Vanbever, Laurent; Vechev, Martin

Publication date:
2021-04

Permanent link:
https://doi.org/10.3929/ethz-b-000491509

Rights / license:
In Copyright - Non-Commercial Use Permitted

Funding acknowledgement:
851809 - From Network Verification to Synthesis: Breaking New Ground in Network Automation (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000491509
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Metha: Network Verifiers Need To Be Correct Too!

Rüdiger Birkner∗ Tobias Brodmann∗ Petar Tsankov Laurent Vanbever Martin Vechev
∗These authors contributed equally to this work.

ETH Zürich

Abstract
Network analysis and verification tools are often a godsend

for network operators as they free them from the fear of in-
troducing outages or security breaches. As with any complex
software though, these tools can (and often do) have bugs.
For the operators, these bugs are not necessarily problematic
except if they affect the precision of the model as it applies
to their specific network. In that case, the tool output might
be wrong: it might fail to detect actual configuration errors
and/or report non-existing ones.

In this paper, we present Metha, a framework that sys-
tematically tests network analysis and verification tools for
bugs in their network models. Metha automatically generates
syntactically- and semantically-valid configurations; com-
pares the tool’s output to that of the actual router software;
and detects any discrepancy as a bug in the tool’s model. The
challenge in testing network analyzers this way is that a bug
may occur very rarely and only when a specific set of config-
uration statements is present. We address this challenge by
leveraging grammar-based fuzzing together with combinato-
rial testing to ensure thorough coverage of the search space
and by identifying the minimal set of statements triggering
the bug through delta debugging.

We implemented Metha and used it to test three well-known
tools. In all of them, we found multiple (new) bugs in their
models, most of which were confirmed by the developers.

1 Introduction

It’s Friday night and you are about to push an important
(network) configuration update in production. Usually, you
would feel terribly nervous doing so as there is always the
possibility that you may have missed something. You are only
too aware that misconfigurations happen frequently and can
lead to major network outages [22,24,27]. Tonight though you
feel confident when pressing “deploy” as you have confirmed
the correctness of your configuration update using a state-of-
the-art configuration verifier. A few minutes later, your phone
rings: none of your customers can reach the Internet anymore.

This fictitious situation illustrates an intrinsic problem with
validation technologies: their results can only be completely
trusted if their analysis is sound and complete. As with any
complex software though, these tools can (and often do) have
bugs. To be fair, this is not surprising: building an accurate and
faithful network analysis tool is extremely difficult. Among
others, one not only has to precisely capture all the different
protocols’ behaviors, but also all of the quirks of their spe-
cific implementations. Unfortunately, every vendor, every OS,
every device can exhibit slightly different behaviors under
certain conditions. For all it takes, these behaviors might be
the results of bugs themselves. And yet, failing to accurately
capture these behaviors—as we show—can lead to incorrect
and possibly misleading analysis results.

A fundamental and practical research question is therefore:
How can developers make sure that their network analysis
and verification tools are correct?
Metha We introduce Metha, a system that thoroughly tests
network analysis and verification tools to find subtle bugs
in their network models using black-box differential testing.
Metha automatically finds model discrepancies by generating
input configurations and comparing the output of the tool un-
der test with the output produced by the actual router software.
For every discovered discrepancy, Metha provides a minimal
configuration that helps developers pinpoint the bug. Later
on, these configurations can be used to build up an adequate
test suite for current and future network tools.
Challenges Precisely identifying bugs in network analyzers’
models is challenging for at least three reasons. First, the
search space of possible configurations is gigantic: there are
hundreds of configuration statements, each of which can take
many possible parameters. And yet, as our analysis reveals,
most of the bugs only manifest themselves when specific
configuration statements/values are present. Second, system-
atically exploring the search space is highly non-trivial (in-
dependently of its size) as one not only needs to generate
syntactically-valid configurations, but also semantically-valid
ones that involve all features and their interactions. Failing
to do so could lead to miss bugs, hence lowering coverage.

mailto:rbirkner@ethz.ch
mailto:tobias.brodmann@gmx.ch
mailto:petar.tsankov@inf.ethz.ch
mailto:lvanbever@ethz.ch
mailto:martin.vechev@inf.ethz.ch

Finally, upon finding a configuration triggering a discrepancy,
figuring out the exact subset of statements requires to solve
another tricky combinatorial search.
Insights Metha addresses the above challenges by first re-
ducing the search space through restricting the parameters to
their boundary values. Metha ensures thorough coverage of
the search space by phrasing the search as a combinatorial
testing problem and targeting the search towards single and
pairwise interactions of configuration statements. To ensure
syntactically- and semantically-valid configurations Metha
relies on a hierarchical grammar-based approach. Finally,
Metha employs delta debugging to identify the minimal bug-
inducing set of configuration statements to help the developer
better understand and reproduce the bug.
Bugs found We demonstrate Metha’s effectiveness in practice
by finding 62 real-world bugs across three popular network
analysis and verification tools – Batfish [17], NV [13], and
C-BGP [28] – 59 of which have been confirmed by the tools’
developers. The majority of the discovered bugs are subtle,
silent bugs that undermine the soundness of the tools’ results.
That is, they could lead operators to incorrect conclusions that
their networks behave correctly, while, in fact, they do not.

Our experiments also demonstrate that Metha’s key compo-
nents are essential for its effectiveness. In particular, a random
baseline only found 3 bugs, while Metha found 20 bugs with
the same number of tests. Last but not least, through our inter-
actions with the tools’ developers, we confirm that Metha’s
minimal configuration examples are indeed useful: some of
the developers are already using them to analyze and fix the
bugs Metha has discovered.
Contributions In summary, our main contributions are:

• A testing system capable of finding bugs in the network
models of state-of-the-art network analyzers (§3).

• A formulation of the search problem in terms of combi-
natorial testing (§5).

• A precise localization procedure relying on delta de-
bugging to isolate bugs and pinpoint the configuration
statements causing them (§6).

• An end-to-end implementation of Metha1 supporting
both Cisco IOS and Juniper configurations (§7).

• An evaluation showing that Metha finds real (and un-
known) bugs in all the tested tools (§8).

Limitations Metha treats the network verification tool it is
testing as a black box. Hence, it cannot localize the bug within
the tool’s actual code. This task is left to the developer. How-
ever, by identifying the configuration statements responsible
for the bug and by creating a minimal configuration that show-
cases it, the developer has a good starting point for her work.
Similarly, Metha cannot detect whether two observed bugs
that are triggered by different configuration statements are
caused by the same bug in the underlying network model.

1Available at https://github.com/nsg-ethz/Metha

Backbone

Z 1
Z 10

Z 51

config of Z 1’s border router
...
ip access-list ISOLATE_Z51
deny ip any 200.51.0.0/24
permit ip any any

...

config of Z 10’s border router
...
router bgp 10
aggregate-address 128.0.0.0/1

...

Figure 1: Zone 51 has to be isolated from all the other zones.
This is achieved through access-lists at the border routers with
the exception of zone 10 where it was forgotten.

2 Motivation

We now illustrate how subtle bugs in the network model of
network analyzers can lead operators to deploy erroneous con-
figuration changes. We start with two case studies on common
configuration features known for easily causing forwarding
anomalies: route aggregation and redistribution. In these sit-
uations, validating the change with an analyzer is of utmost
importance, provided the analysis is correct. We end with a
collection of Cisco IOS configuration statements whose se-
mantics were not correctly captured by Batfish [17]. The bugs
in this Section were discovered by Metha.

2.1 Example 1: Excess Null Route
Consider the network in Fig. 1. It consists of a backbone with
multiple zones attached to it. The backbone and the zones are
interconnected using BGP. Each zone receives a default-route
from the backbone. Zone 51 hosts critical infrastructure in the
prefix 200.51.0.0/24, which should not be accessible from
any other zone. To enforce this, the routers connecting the
zones to the backbone have an access-list (ACL) in place to
filter that traffic. However, in zone 10, this ACL was forgotten
and, instead, there happens to be a left-over statement from
a previous configuration: “aggregate-address 128.0.0.0

128.0.0.0”. This statement directs the router to advertise the
specified aggregate route if any more-specific BGP routes in
that range exist in the routing table.
Property violation Due to the lack of an ACL on the border
router, the requirement that mandates to keep zone 51 isolated
is violated: traffic from zone 10 can reach zone 51.
Analyzer mishap When used on the network above, Bat-
fish, a recent network validation tool, will falsely assert that
zone 51 is isolated. The problem is due to the semantics of
the left-over aggregate-address statement. Batfish wrongly
activates the aggregate because of a non-BGP route in the
routing table and installs the null route. Because of this
null route, Batfish wrongly assumes that all traffic in zone 10
falling within the aggregate range will be dropped. In practice,
the routers only install a null route if a BGP route within the
aggregate is present, which is not the case here.

https://github.com/nsg-ethz/Metha

Feature Description Possible Consequence

max-metric router-lsa The model sets maximum metric not only for point-to-
point links, but also for stub links. This should only be
done when the keyword include-stub is used.

A router might appear to be free of
traffic and safe to reboot, even though
it is not.

default-information originate The OSPF routing process should only generate a
default-route if the route table has a default-route from
another protocol. The model, however, also announces
a default-route if there is one in the routing table of
different OSPF type, i.e., E1 type.

Additional default-routes might ap-
pear in the routing tables.

distance XX The model does not consider any changes to the ad-
ministrative distance.

The forwarding state could be com-
pletely wrong.

area X range A.B.C.D/Y When summarizing routes between OSPF areas, the
model does not insert a null route for the summary to
prevent routing loops.

A routing loop could be falsely de-
tected.

set community no-export When redistributing a static route into BGP and setting
the no-export community, the model still advertises
the route to its eBGP neighbors.

Reachability properties could be
falsely asserted.

neighbor A.B.C.D maximum-prefix X Even when a BGP neighbor advertises more prefixes
than the specified threshold, the model does not drop
the peering to the neighbor.

Reachability properties could be
falsely asserted.

Table 1: A selection of Cisco IOS configuration features that are not correctly modelled by Batfish [17] as discovered by Metha.

R1

R2

config of Z10’s border router
...
ip route 200.0.0.0/20 Null
...
router ospf 1
redistribute static

...

Figure 2: All routers should be able to reach the Internet. The
static route at R2 creates a blackhole and violates that.

2.2 Example 2: Incomplete Redistribution

Consider the small company network depicted in Fig. 2. It
consists of a single OSPF area. R1 acts as Internet gateway
and announces a default-route internally. A static route on
R2 drops all the traffic for 200.0.0.0/20 by directing it to
the null interface. This is intended. What is not intended,
however, is the redistribute static command at R2.
Property violation The following reachability property must
always hold: all routers, with the exception of R2, are able to
reach the entire Internet. However, this property, is violated
since R2 redistributes the static route in the network and, in
turn, creates a blackhole for 200.0.0.0/20.
Analyzer mishap When run on this network, Batfish will
falsely attest that all routers, with the exception of R2 can
reach the entire Internet. The problem is the redistribution
command. By default, Cisco routers only redistribute classful
networks [7] and only by specifying the subnets keyword,
they also redistribute any subnets of them. Less-specific net-
works however are redistributed regardless of the subnets

keyword (e.g., 200.0.0.0/20 is less-specific than the corre-
sponding class C network 200.0.0.0/24). Batfish’s network
model does not incorporate that as it only redistributes classful
networks and not less-specific networks.

2.3 Selection of Bugs
In addition to the two bugs illustrated in the previous exam-
ples, we found several other configuration statements that
trigger bugs. We present a selection of them in Table 1 along-
side a short description of the observed behavior and possi-
ble consequences. All of the presented bugs concern Cisco
IOS configuration statements. In our tests, we also used Ju-
niper configurations and found that, in many cases, the same
bugs occur. Hence, some of these bugs are not due to vendor-
specific behaviors, but due to general inaccuracies of the net-
work model.

3 Overview

In this section, we first present the key insights enabling Metha
to efficiently uncover bugs in network analyzers. Then, we
provide a high-level overview of Metha.

3.1 Key Insights
The main challenge in testing network analyzers is that bugs
may occur rarely and only for very specific configurations,
which we address with a combination of five insights:

Input

Topology

Configuration Features

redistribute static

max-metric router-lsa

distance

...

aggregate-address

Phase I

Test Coordination

Combinatorial Testing

Test Suite

Test #1

...

Testbed

Configuration
Generation

Device
Configurations

Test Runner

Tool Oracle

Phase II

Fault Localization

Delta Debugging

Detected Discrepancy

✘
✘

✓

Report

Violating Feature

redistribute static

Minimal Configuration

Figure 3: Metha generates a test suite based on the test topology and supplied configuration features. The testbed runs one
test after another and compares the computed routing tables of the tool under test to those of an oracle. It then analyzes every
discrepancy to localize all the bugs and creates a report for each one of them.

Producing valid inputs with grammar-based generation
When testing network analyzers, it is of utmost importance
to use syntactically- and semantically-valid configurations,
meaning the configurations need to be parseable and con-
straints have to be met such that actual computation takes
place in the network. Our key insight is to use a hierarchical
grammar-based approach. Approaching it hierarchically al-
lows to resolve the intra- and inter-device constraints. This
provides the structure that is then completed using grammar-
based configuration generation ensuring syntactical validity.
Reducing the search space through boundary values
The search space of all possible configurations is prohibitively
large. Even a single parameter, such as an OSPF cost, for
example, already has 216 possible values to test. By focusing
the testing on the boundary values (the minimum, maximum,
and a normal value), we reduce the search space significantly.
Exploring the search space with combinatorial testing
Network devices support a wide variety of configuration fea-
tures that all need to be tested not just by themselves, but
also their interactions. Hence, we use combinatorial testing
to design a test suite that systematically covers all pairwise
interactions of configuration features.
Comparing the tested tool’s output to ground truth
Detecting crash bugs is straightforward as the tool will just
fail or report an error. Silent bugs, on the other hand, can only
be detected by comparing the output to a ground truth, which
is hard to come by. We address this by leveraging a testbed
running real router images as an oracle.
Isolating bugs with delta debugging
Lastly, once one identifies a network configuration that trig-
gers a bug, one needs to identify the configuration statements
causing it to provide any useful insights to the tool’s devel-
oper. Therefore, we use iterative delta debugging to obtain a
minimal configuration example reproducing the bug.

3.2 Metha

Metha operates in two phases as shown in Fig. 3: First, it
aims to find network configurations exhibiting discrepancies
between the tool under test and the oracle. To that end, the
test coordination determines all the tests to run in the testbed.
Second, it identifies the configuration statements responsible
for the observed discrepancies through fault localization.
Input and output Metha takes two inputs: (i) a physical
topology, i.e., an undirected graph; and (ii) a set of configu-
ration features to be tested, such as, route-maps, and route-
summarization. For every discovered bug, Metha creates a
report, which consists of the identified discrepancy between
the routing tables of the tool and the oracle, the configuration
statements causing it and a configuration set to reproduce it.
Phase I: Test coordination (§4, §5) The configuration fea-
tures and the topology provided as input define the search
space of Metha’s testing efforts which consists of all possible
configurations that can be built using these features.

This search space of network configurations is prohibitively
large. Therefore, Metha first reduces the values of all param-
eters to their boundary values, which means it only uses the
two extreme values (i.e., the minimum and the maximum) and
one “normal” value. Even with this reduction, it is difficult to
systematically cover the search space. Hence, Metha creates
a test suite relying on combinatorial testing, which allows
it to cover all pairs of feature and parameter combinations
requiring a minimal number of tests. Each test in the test suite
is a set of configuration statements that should be active.
Phase I: Testbed (§7) For every single test, Metha generates
the device configurations based on the statements as defined
by the test suite. Then, it runs these configurations in the
tool and the oracle. Once both converged, Metha analyzes the
routing tables of the two tools and reports any discrepancies.

BGPProcess → router bgp Integer16 [Options]
Options → Option | Options Option
Option → Redistribute | Neighbor | Network | · · ·
Redistribute → redistribute Source
Source → direct | static | · · ·
Neighbor → neighbor Address Property
Property → RemoteAS | RouteMap | · · ·
RemoteAS → remote-as Integer16
RouteMap → route-map String Direction
Direction → in | out

Figure 4: Partial BNF grammar for device configurations.

Phase II: Fault localization (§6) A discovered discrepancy
can be caused by multiple bugs in the network analyzer. There-
fore, Metha applies delta debugging to identify every single
bug and the configuration statements causing it. It does so
by iteratively testing subsets of the active configuration state-
ments until the entire discrepancy is resolved.

4 Search Space

In this section, we define the search space of all possible con-
figurations. We also show how we reduce the search space by
restricting the parameter values used in configuration state-
ments to boundary values.

4.1 Network Configurations
The search space is given by all possible configurations that
one can deploy at the network’s routers.
Configurations A device configuration defines the enabled
features along with their parameter values. Formally, the set of
all possible configurations is defined by a context-free gram-
mar whose terminals consist of feature names and parameter
values. To illustrate this, in Fig. 4 we show a subset of the
production rules in Backus-Naur form (BNF). An example
configuration derived from this grammar is:

1 router bgp 100

2 redistribute static

3 neighbor 1.1.1.2 remote-as 50

4 neighbor 1.1.1.2 route-map map10 out

This configuration defines the AS identifier, neigh-
bors, neighbor properties, and route redistribution as-
sociated with the BGP routing process 100. Here,
router bgp, redistribute, neighbor A.B.C.D remote-as,
and neighbor A.B.C.D route-map are configuration state-
ments, while the values to the right define their parameter
values. We distinguish three types of parameter values:

Keywords are used in configuration statements parameter-
ized by a value drawn from a fixed set of options.
For example, the configuration statement neighbor

A.B.C.D route-map is parameterized by a direction,
which is set to either in or out. For some state-
ments, one can also omit the parameter value alto-
gether, which we model with the designated value ∅.
For example, redistribute connected is parametrized
by a value drawn from the set {∅,subnets}, and
so both redistribute connected and redistribute

connected subnets are valid statements.
Integers are used to define 16- and 32-bit numbers. For ex-

ample, the configuration statement router bgp is param-
eterized by a 16-bit integer defining the AS number.

Strings are used in configuration statements parameterized
by custom names. For example, neighbor A.B.C.D

route-map is parameterized by the route-map’s name.

Semantic constraints Besides conforming to the syntax in
Fig. 4, configurations must also comply with semantic con-
straints. For example, consider the following configurations:

1 interface FastEthernet0/0

2 ip address 1.1.1.1 255.255.255.0

3 !

4 router bgp 100

5 neighbor 1.1.1.2 remote-as 50

6 neighbor 1.1.1.2 route-map map10 out

7 !

8 route-map map10 permit 10

9 match ip address prefixList

1 interface FastEthernet0/0

2 ip address 1.1.1.2 255.255.255.0

3 !

4 router bgp 50

5 neighbor 1.1.1.1 remote-as 100

The top configuration (C1) defines a BGP process with AS
number 100 (Line 4), and declares that announcements sent
to its BGP neighbor with IP 1.1.1.2 (Line 5) are processed
using route-map map10 (Line 6). The bottom configuration
(C2) defines a BGP process with AS number 50 (Line 4), and
declares 1.1.1.1 in AS 100 as a neighbor (Line 5). These two
configurations illustrate two kinds of semantic constraints:

Intra-device constraints, which stipulate conditions that
must hold on any (individual) configuration. For exam-
ple, the route-map map10 used at Line 6 must be defined
within the configuration C1. This constraint holds as
map10 is defined at Line 8.

Inter-device constraints, which stipulate conditions across
multiple configurations. For example, the AS number
assigned to neighbor 1.1.1.2 in C1 at Line 5 must match
the AS number declared in C2 at Line 4. This constraint
holds as at both lines the AS number is 50.

Finally, we note that we specify the semantic constraints
separately from the syntactic production rules as some are not
context-free and thus cannot be encoded in the grammar.

Search space The search space used by Metha is defined by
the set of configurations that one can deploy at the network’s
routers. As the set of configurations derived from the grammar
is, in general, infinite, we restrict all recursive rules so that
its language consists of finitely many configurations. For
instance, for the grammar given in Fig. 4, we fix the set of
BGP options (such as route redistribution) that can appear
when defining a BGP routing process. Finally, the search
space of Metha is defined as CR, where C is the set of all
configurations and R is the set of routers. Note that each
element of CR defines a network-wide configuration, assigning
a configuration from C to each router in R.

4.2 Boundary Values

The search space is extremely large due to the enormous
number of configurations and the exponentially many com-
binations in which they can be deployed at the routers. To
cope with the large set of configurations, we apply a boundary
values reduction by restricting the parameters to a small set
of representative values. The intuition behind this reduction
is that most parameter values lead to the same behavior such
that testing them individually provides no additional insights.

The reduction to boundary values ensures that various be-
haviors of a feature are exercised. For example, the Cisco
BGP feature neighbor X.X.X.X maximum-prefix n termi-
nates the session when the neighbor announces more than n

prefixes. When randomly choosing n, the feature will most
likely not come into action. However, with the boundary val-
ues, both the minimum and maximum value are tested, ensur-
ing that the feature is at least once active and once not.

For integer parameters, the values are restricted to: the max-
imum value, the minimum value, and a non-boundary value.
For example, for 16-bit integers, which contain all integers
in the range [0,65535], our boundary value reduction selects
three values: 0, 65535, and a value x such that 0 < x < 65535.
Similarly, we reduce the values assigned to string parameters
by predefining a fixed set of strings.

5 Effective Search Space Exploration

Metha must cover a wide variety of different network con-
figurations to thoroughly test the tool, including many com-
binations of device features and parameter values. The key
challenge is that it is impossible to iterate through every single
combination of features and their respective parameter values,
even after considering our reduction to boundary values. To
address this, Metha relies on combinatorial testing [16, 20],
which is able to uncover all bugs involving a small number of
interacting features. In the following, we first provide relevant
background on combinatorial testing, and then we show how
Metha uses it to effectively test network tools.

5.1 Combinatorial Testing

Combinatorial testing is a black-box test generation technique
which is effective at uncovering interaction bugs, i.e., bugs
that occur because of multiple interacting features and their
parameter values. The main assumption behind combinatorial
testing is that interaction bugs are revealed by considering a
small number of features and parameter values. In this case,
one can generate a test suite, called combinatorial test suite,
that uncovers all such bugs.

To use combinatorial testing, one needs to define a specifi-
cation of the system’s parameters and their values:

Definition 1 (Combinatorial specification). A combinatorial
specification S is a tuple (P,V,∆), where P is a set of parame-
ters, V is a set of values, and ∆ : P→ 2V defines the domain
of values ∆(x)⊆V for any parameter x ∈ P.

For example, the combinatorial specification for a pro-
gram that accepts three boolean flags as input has parameters
P = {a,b,c}, values V = {0,1}, and domains ∆(a) = ∆(b) =
∆(c) = {0,1}. A test case is a total function tc : P→V map-
ping parameters to values from their respective domains, i.e.,
with P(x) ∈ ∆(x) for any x. An example test case for our pro-
gram is tc = {a 7→ 0,b 7→ 0,c 7→ 1}. In contrast to test cases,
a t-wise combination maps only some parameters to values:

Definition 2 (t-wise combination). Given a combinatorial
specification S = (P,V,∆), a t-wise combination for S is a
function c : Q→V such that Q⊆ P with |Q|= t and c(x) ∈
∆(x) for any x ∈ P.

An example pairwise combination (i.e., t = 2) for our exam-
ple is c = {a 7→ 0,b 7→ 1}. We write C S

t to denote the set of all
t-wise combinations for a given combinatorial specification S .
Note that a test case can cover multiple t-wise combinations:

combt(tc) = {c⊆ tc | |c|= t}

For instance, our example test case above covers the following
three pairwise combinations: {a 7→ 0,b 7→ 0}, {a 7→ 0,c 7→ 1},
and {b 7→ 0,c 7→ 1}.

Definition 3 (t-wise combinatorial coverage). Given a com-
binatorial specification S , we define the t-wise combinatorial
coverage of a test suite T as:

covt(T) =
|
⋃

tc∈T combt(tc)|
|C S

t |
.

A test suite T is called a t-combinatorial test suite if
covt(T) = 1. If the assumption that interaction faults are
caused by up to t-wise interactions holds, then T finds all
bugs. The goal of combinatorial testing is to generate the
smallest t-wise combinatorial test suite.

5.2 Combinatorial Testing of Configurations

In Metha, we apply pairwise combinatorial testing to the
generation of network configurations. Concretely, we phrase
the search space defined in §4 as a combinatorial specifica-
tion S = (P,V,∆) as follows. First, each statement that can
appear in the configuration, such as route redistribution or
route-map as defined in §4, defines a configuration feature.
We set F to be the set of all configuration features. The set
of parameters P is then given by R×F , where R is the set of
routers. Namely, the parameters consist of all configuration
features one can define in the device configurations.

Second, the domains of values for each configuration fea-
ture contain the boundary values that can be used in the given
configuration statement, along with the designated value ⊥,
which indicates whether the configuration feature is enabled
or not. That is, ⊥ results in omitting the configuration state-
ment altogether. We note that for configuration statements
with multiple parameters, we take the product as the domain of
possible values. For example, the Cisco OSPF configuration
feature default-information-originate has three optional
parameters: always, metric combined with an integer value,
and metric-type combined with 1 or 2. After reduction to
boundary values this leads to the following three parameters:

A = {∅,always}
B = {∅,metric 1,metric 100,metric 1677214}
C = {∅,metric-type 1,metric-type 2}

The domain of values for this configuration feature is then
given by {⊥}∪ (A×B×C).

Finally, Metha uses the above combinatorial specification
to derive a test suite of configurations that covers all pairwise
combinations.

6 Fault Localization

A discovered discrepancy between the network model and
the oracle is only of limited use as the developer still needs
to isolate its cause. Often understanding the bug is the most
time-consuming part of the debugging process, and fixing
it can be done relatively quickly. To help with this, Metha
pinpoints the configuration features that cause a discrepancy
and finds a minimal configuration, i.e., a configuration with
as few configuration features enabled as possible. To do this,
Metha uses iterative delta debugging, an extended version
of classic delta debugging, which lifts the assumption that
a single fault causes failures. This extension is important as
network configurations are large and complex, and discrep-
ancies are often caused by multiple faults. In the following,
we first introduce classic delta debugging and then present its
iterative extension.

6.1 Delta Debugging
Delta debugging [35] is a well-established fault localization
technique, which finds minimal failure-inducing inputs from
failing test cases. Below, we present delta debugging in our
context, and then define its assumptions and algorithmic steps.
Terminology As defined in §5, a test case tc assigns config-
uration features F to either parameter values or ⊥, where ⊥
indicates that a given feature is disabled (i.e., it is omitted
from the configuration). Given a test case tc and features
Q⊆ F , we write tc|Q for the test case obtained by disabling
all features in tc that are not contained in Q:

tc|Q(f) =
{

tc(f) if f ∈ Q
⊥ otherwise

Given a failing test case tc, the goal of delta debugging is
to find the minimal set Q of features such that tc|Q fails. We
denote the complement of Q by Q̄ = F \Q.
Assumptions Delta debugging relies on three assumptions:
(i) test cases are monotone, i.e., if tc|Q fails, then for any
superset Q′ ⊇ Q of features tcQ′ also fails; (ii) test cases are
unambiguous, meaning that for a failing test case tc there is a
unique minimal set Q that causes the failure; and (iii) every
subset of features is consistent, meaning that for any Q⊆ F ,
tc|Q terminates with a definite fail or success result.
Algorithm Given a test case tc, delta debugging finds a mini-
mal set of features Q that causes a failure. Initially, Q contains
all enabled features in tc, i.e., Q = { f ∈ F | tc(f) 6=⊥}. Then
it applies the following steps:

1. Split: Split Q into n partitions Q1, . . . ,Qn, where n is the
current granularity. Test tc|Q1 , . . . , tc|Qn for failures. If
some tc|Qi fails, then use Qi as the new current set of
features and continue with step 1.

2. Complement: If none of the new tests tc|Q1 , . . . , tc|Qn

fail, check the complement of each partition by testing
tc|Q̄1

, . . . , tc|Q̄n
. If some tc|Q̄i

fails, then use Q̄i as the
new current set of features and continue with step 1.

3. Increase Granularity: If no smaller set of features is
found and n < |Q|, then set n to min(2n, |Q|) and con-
tinue with step 1.

4. Terminate: If it is not possible to split the current set of
features into a smaller set, terminate and return Q.

6.2 Iterative Delta Debugging
In our setting, test cases are often ambiguous as a discrepancy
often arises due to multiple faults in the network model. To
this end, we apply the delta debugging algorithm iteratively
and find all minimal sets of features that cause a given dis-
crepancy. Intuitively, starting with a test case tc with enabled
features Q, we first apply the delta debugging steps (given

Algorithm 1: Iterative Delta Debugging
Input :Test case tc, initially enabled features Q in tc.
Output :A set of minimal feature subsets S = {Q1, . . . ,Qn}.

1 S = /0

2 Queue = queue()

3 put(Queue,Q)

4 while ¬empty(Queue) do
5 H = head(Queue)
6 if run(tc|H) = failure then
7 Q′ = minimize(H)
8 for f in Q′ do
9 put(Queue,H \{ f})

10 S = S ∪{Q′}

11 return S

in §6.1) to find a minimal configuration feature set Q′ such
that tc|Q′ triggers the discrepancy. Then, we generate new test
cases tc1, . . . , tc|Q′|, by disabling a feature from Q in each new
test case tci, and iteratively apply delta debugging to these.
We apply this process repeatedly until no further failing test
cases are found. Once Metha identifies all minimal sets of
configuration features that trigger a given bug, Metha creates
a minimal configuration for the developer to reproduce it.

We present our iterative delta debugging algorithm in Al-
gorithm 1. We start from a set of initially enabled features Q
in tc and return all minimal subsets of Q that trigger a discrep-
ancy. We keep all sets of features to be checked in a queue
and continue until the queue is empty (Line 2 - Line 4). For
every set H of features in the queue, we check if the test case
tc|H triggers a discrepancy (Line 5, Line 6). If this is the case,
then we find a minimal subset Q⊆ H of features that triggers
the discrepancy using classic delta debugging, and create new
subsets that need to be checked (Line 8, Line 9). For example,
if we find a minimal set of features Q = {a,b} that triggers
the discrepancy, then we check if there are any other minimal
sets of features that do not contain a or b (and are thus non-
comparable to Q). We note that we generate two new sets of
features H \{a} and H \{b} instead of a single one H \{a,b}
because there may be overlapping discrepancies. For example,
even though we know that b can trigger a discrepancy with
a, b might also trigger a discrepancy with another feature c.
Finally, the algorithm keeps all found minimal feature subsets
and returns them (Line 10, Line 11). We conclude by stating
the correctness of our algoirthm:

Theorem 1. For any test case tc with enabled features Q, Al-
gorithm 1 finds all minimal fault-inducing subsets of features.

We present the proof of this theorem in App. A.
Runtime The running time of Algorithm 1 is O(|Q|!). The
worst-case behavior is when the size of the set H of features
is reduced by 1 element in each step, introducing |H − 1|
new features sets to the set S . To improve the running time,

we cache (not shown in Algorithm 1) feature sets that have
been added to the queue. This strictly reduces the algorithm’s
running time and yields a worst-case running time complex-
ity of O(2|Q|). We note that the running time in practice is
reasonable as the reduction of the set H by the delta debug-
ging minimization step (Line 7) is significant (down to 2−3
elements in practice).
Limitations As with classic delta debugging, there may be a
fault in the interaction between a set of parameters, say a, b,
and c, as well as a different fault in the interaction between
a subset of these parameters, say a and b. We cannot distin-
guish these two faults and will only identify the latter fault.
However, once the identified fault is fixed, our algorithm will
then identify the fault in the interaction among a, b, and c as
well, assuming it is still present in the verification tool.

7 System

We have fully implemented Metha in 7k lines of Python code.2

This covers the entire testing pipeline from the input, the list
of configuration features to be tested and the topology, to the
outputs, the bug reports. In the following, we highlight key
points of Metha’s implementation, which consists of a vendor-
and tool-agnostic core that uses runners to interface with the
different network analysis and verification tools.
Semantic constraints To run the tests, Metha uses a logical
topology, which consists of the physical topology extended
with logical groupings. These groupings map the routers to
BGP ASes and their interfaces to OSPF areas. This trivially
ensures that the base configuration meets all the necessary
semantic constraints (cf. §4.1). In a next step, Metha starts to
randomly assign IP subnets to links and IP addresses to the
router interfaces on these links. Specifically, every router is
assigned a router ID, which is also assigned to the loopback
interface of that router. Finally, Metha generates additional re-
sources that are needed to test specific configuration features.
For example, Metha adds several prefix-lists and static routes
which can then be used in the test generation, for example, for
a match statement of a route-map and route redistribution, re-
spectively. All these additional resources are generated based
on the predefined logical topology. Hence, a prefix-list, for
example, will only consist of prefixes that are actually defined
in the network, such that a route-map statement using that list
for a match will also be reachable.
Testing coordination Once Metha laid the groundwork, it
has to define a test strategy based on the specified configura-
tion features. At the moment, Metha supports configuration
features pertaining to four categories: static routes, OSPF,
BGP and route-maps. As part of that, the system supports
additional constructs such as prefix-lists and community-lists.
These are currently not tested on their own, but added when
needed to test the main features, such as route-maps. Metha

2 Available at https://github.com/nsg-ethz/Metha

https://github.com/nsg-ethz/Metha

then uses all features and the logical topology to prepare the
parameters to come up with the test suite. To do that, Metha
passes all the parameters and their possible values to a state-
of-the-art combinatorial testing tool: PICT [25]. PICT devises
a test suite that consists of a set of tests ensuring complete
coverage of all pairwise feature interactions.

Configuration generation A single test from the PICT test
suite is an abstract network configuration. It simply specifies
which feature and corresponding value needs to be activated
and where (i.e., on which router and, if applicable, at which in-
terface). Metha then translates the abstract network configura-
tion to concrete device configurations using a grammar-based
approach to ensure lexical and syntactical validity.

Metha implements a large portion of both Cisco IOS and
Juniper grammars for which we relied on the respective of-
ficial command references. This means Metha can generate
both Cisco IOS and Juniper configurations for the tests. Metha
even supports to test hybrid networks in which devices of both
vendors are used at the same time.

Testbed Metha runs the generated configurations in parallel
on both the tool under test and the oracle. After both of them
converged, it retrieves the routing tables and compares them.
Metha is able to test any tool that takes the device configu-
rations as inputs and provides direct access to the computed
routing tables out-of-the-box. Otherwise, Metha uses tool-
specific runners to process the inputs such that they meet the
tool’s requirements and map the output back to Metha’s for-
mat. Metha comes with runners for three well-known network
analysis and verification tools: Batfish [17], NV [13] and C-
BGP [28]. For NV, for example, Metha first has to compile
the simulation program from the network configurations. As
a source of ground truth, Metha uses a virtualized network
running real device images of both Cisco and Juniper routers.
It connects to these devices over Telnet and retrieves the rout-
ing tables (e.g., show ip route for Cisco devices). To ensure
full convergence, Metha retrieves the routing tables every
10 seconds and proceeds once the tables have not changed
for ten consecutive checks. With this setup, Metha allows to
freely choose any oracle (e.g., hardware testbed) as long as it
exposes the computed routing tables.

Output Finally, Metha localizes all bugs within a discovered
discrepancy by relying on delta debugging. For every single
bug, it generates a report highlighting the observed difference
in the routing tables of the tool under test and the oracle, such
as a mismatch in a route’s metric or a missing route. This helps
the developer understand the expected behavior. In addition,
it identifies the configuration statements required to trigger
the bug and comes up with a minimal network configuration
to reproduce the bug. This allows Metha to provide actionable
feedback to the developers of the tool, helping them to faster
locate and understand the bug. The minimal configuration
example can also be used as an extra test case for traditional
system testing.

8 Evaluation

In this section, we evaluate Metha to address the following
research questions:
RQ1 How does Metha’s semantical configuration generation,

the search space reduction using boundary values and
the test suite from combinatorial testing contribute to
Metha’s effectiveness? We show that Metha finds 20
bugs and achieves a higher combinatorial coverage than
the random baseline, which only discovers 3 bugs with
the same number of tests.

RQ2 How many test cases does Metha need to localize all
bugs in a single discrepancy between the tool under
test and the oracle? Metha requires on average 14.1 test
cases to isolate all the bugs causing a discrepancy.

RQ3 Is Metha practical? We ran Metha on three different
state-of-the-art network analysis and verification tools
and found a total of 62 bugs, 59 of them have been
confirmed by the respective developers.

8.1 Comparison to Random Baseline
We begin our evaluation by studying how the three compo-
nents of Metha contribute to its effectiveness. To this end, we
compare a random baseline to three versions of Metha: step-
by-step, we enable each component starting with semantic
Metha, then we add the reduction to boundary values, and fi-
nally, we use full Metha using combinatorial testing to define
a test suite. The results show that the semantical configuration
generation is the most fundamental part of Metha. Reducing
the parameters to boundary values and applying combinato-
rial testing help to find additional bugs as both manage to
increase the combinatorial coverage.

In the following, we introduce the four approaches:
Random baseline The random baseline relies on random syn-
tactic test generation, meaning it uses a traditional grammar-
based fuzzing approach. Thanks to the grammar, the con-
figurations generated by the baseline are lexically- and
syntactically-valid, but they are not necessarily semantically-
valid: the baseline generates device configurations that are
parseable and look realistic. However, the configurations
might not always be practical: for example, referenced route-
maps and prefix-lists do not always exist, and IP addresses
on interfaces might not match those of their neighbors. Inter-
and intra-device dependencies are not factored in.
Semantic Metha The initial Metha approach implements ran-
dom semantic test generation. Similar to the random base-
line, it uses a grammar-based fuzzing approach with the only
difference that it ensures semantical validity within the con-
figuration: while, for example, interface costs are completely
random, other values are more constrained based on inter-
and intra-device dependencies. This approach ensures, for
example, that only defined route-maps are referenced, and
that BGP sessions are configured with matching parameters.

Approach # Discovered Bugs

Random Baseline 3
Semantic Metha 16
Bounded Metha 17
Full Metha 20

Table 2: Every component of Metha allows it to find more
bugs with the same number of test runs.

0 500 1 000 1 500 1 794
0

50

100

Number of Tests

C
om

bi
na

to
ri

al
C

ov
er

ag
e

[%
]

Full Metha
Bounded Metha
Semantic Metha
Random Baseline

Figure 5: The achieved combinatorial coverage increases with
every single component of Metha. Full Metha achieves com-
plete combinatorial coverage.

Bounded Metha The bounded approach adds the reduction
to boundary values as introduced in §4.2 to semantic Metha.
This means instead of assigning completely random numeric
values, the approach reduces the allowed values to three op-
tions: the minimum, the maximum, and a “normal” value,
randomly chosen between the two extremes.
Full Metha Finally, we run the full testing system. We add
combinatorial testing as introduced in §5 to define a test suite
that maximizes combinatorial coverage on top of the semantic
configuration generation and the boundary values reduction.
Experiment setup We ran all four approaches for the same
number of tests and used them to test Batfish [17]. Whenever
one of them detected a discrepancy between Batfish and the
oracle, we applied the full fault localization procedure as
described in §6 to detect the underlying bugs and the features
causing it. Thanks to that, we are able to detect duplicates and
count only the unique bugs that each approach discovered.

For all the tests, we used the same simple topology con-
sisting of four routers connected in a star topology and tested
configuration features belonging to the following four cat-
egories: static routes, BGP, OSPF, and route-maps. For the
entire experiment, we used Cisco IOS configurations. For the
given configuration features, combinatorial testing generated
a test suite consisting of 1 794 tests. While the full Metha ap-
proach followed the test suite, the other approaches randomly
chose the active configuration statements for every single test.
Results Table 2 shows the number of unique bugs that every
approach found within the 1 794 test runs. The full Metha de-
tected 20 unique bugs, while the random baseline only found

3 bugs. The semantic configuration generation is the most
fundamental component of Metha. It comes as no surprise as
without semantical validity, many of the configurations do not
allow for any meaningful control plane computations and will
not fully exercise the network model of the tool under test.

Boundary values and combinatorial testing allow finding 1
and 3 additional bugs within the 1 794 test runs, respectively.
This is because both approaches achieve higher combinato-
rial coverage and therefore test a wider variety of features.
These results show that the boundary values reduction strikes
a good balance between testing different parameter values,
while keeping the search space tractable. It is important to
note that the detected bugs are inclusive, meaning that full
Metha detected all 17 bugs that bounded Metha detected and
3 additional bugs. There is one exception: the baseline found
a bug in the parser, which the other approaches did not find.

The random baseline is strong at discovering parser bugs
since that is where grammar-based fuzzing excels. Two out
of its three discovered bugs are parser bugs. In both cases,
the problem was an, according to the specification, unsigned
32-bit integer being parsed as signed. For example, ip ospf

100 area 3933914791 could not be parsed. Metha did not
catch this bug as it uses fixed area numbers as part of the
logical topology. By adding the area numbers to the set of
configuration features being tested, Metha also finds this bug.

Fig. 5 shows the combinatorial coverage achieved by the
four approaches, i.e., it shows the pairwise feature combina-
tions covered during testing. We focus on feature instead of
code coverage for two reasons: First, one can easily achieve
high code coverage with random, semantically-invalid config-
urations. Second, code coverage is specific to the tool under
test and makes it difficult to compare. To measure the combi-
natorial coverage of the random baseline and semantic Metha,
we partitioned the input space in the same manner as we
did for bounded Metha, i.e., into minimum, maximum, and
middle values. Any configuration which did not specifically
use the minimum or maximum value for a parameter was
then considered as a middle configuration. Metha achieves
full combinatorial coverage by design as it is guaranteed by
combinatorial testing. These results underline the importance
of semantically-valid configurations. While both the random
baseline, which relies on syntactically-valid configurations,
and semantic Metha achieve a similar combinatorial coverage,
semantic Metha finds many more bugs as its configuration
actually ensures control plane computations.
Performance Running a single test case took an average of
two minutes. We run both the tool under test as well as the
virtualized testbed in parallel and found that most of the time
is spent waiting on the testbed to converge. The generation of
a combinatorial test suite with PICT for the baseline network
with 4 routers took an average of 6 minutes. Over the entire
test suite, this time is negligible. Running the entire setup took
us several days. The runtime depends highly on the number
of discrepancies and the number of bugs causing them.

Bugs Type Feature Category

discovered confirmed crash silent OSPF BGP route-filter other

Batfish [17] 29 29 5 24 10 10 9 0
NV [13] 30 30 5 25 13 9 7 1
C-BGP [28] 3 ? 0 3 1 1 1 0

Table 3: Bugs discovered by Metha for Batfish, NV and C-BGP and classification.

8.2 Fault Localization

Whenever Metha detects a discrepancy between the routing
tables of the tool under test and those of the oracle, it goes
into fault localization to isolate all independent bugs. Fault
localization relies on delta debugging (cf. §6) which creates
additional test cases to identify the configuration statements
causing the bugs. In the following, we evaluate its overhead,
i.e., the number of additional test cases Metha had to create.
Experiment setup For this experiment, we ran Metha using
the same topology as before and tested the full set of configu-
ration features. Whenever Metha detected a discrepancy, we
recorded the number of additional test cases required to find
all independent bugs and the number of discovered bugs.
Results On average, Metha used 14.1 additional test cases to
locate all bugs within a test case. The number of additional
test cases ranged from as low as 7, to localize a single bug, up
to as high as 58, to localize 5 independent bugs. The number
of additional test cases mostly depends on the number of
independent bugs within a single detected discrepancy. The
number of configuration statements that actually cause the bug
plays a minor role. Also, we have observed that the detected
bugs are all caused by a few configuration statements (one
or two), even though multiple configuration statements were
active during the tests. This confirms the observation that bugs
are often caused by the interaction of few features [20, 31]
and shows that combinatorial testing is a useful technique in
this setting.

8.3 Real Bugs

In addition, we showcase our end-to-end implementation of
Metha by testing three different network analysis and verifica-
tion tools: Batfish [17], NV [13], and C-BGP [28]. We show
that Metha finds real bugs and report them in Table 3.
Experiment setup We ran Metha for several days on all three
tools and with several different setups. Batfish is the most
complete and advanced tool as it can handle configurations
of many different vendors and supports a wide variety of
configuration features. NV itself is an intermediate language
for control plane verification that allows to build models of
any routing protocols and their configurations. It provides
simulation and verification abilities. We tested the simulation
only, the discovered bugs, however, most likely also exist in

the verification part as both rely on the same network model.
For Batfish and NV, we used both Cisco IOS and Juniper
configurations. C-BGP has its own configuration language.
Results As shown in Table 3, Metha found a total of 62 bugs.
The developers of both Batfish and NV confirmed the dis-
covered bugs to be real bugs. To better understand the nature
of the bugs, we classified them by their type (i.e., whether
they lead to a crash or go unnoticed) and by the configuration
feature category itself (e.g., OSPF). Only a few of the bugs
produce a clear error. This is most likely also because these
are noticed more often and reported. The large majority of the
bugs are silent semantic bugs which are extremely difficult
to notice. These are the sneakiest bugs and can lead to false
analyses and answers by the verifier. These bugs include all
the configuration features discussed in §2 showing that they
affect the analysis of commonly used features, such as route
redistribution and aggregation, and named communities.

The bugs are distributed quite evenly among all tested parts
of the network model. We did not find one specific protocol
or configuration feature that is especially error-prone.

9 Discussion

What about the testbed? Metha detects bugs by looking for
discrepancies between the tool under test and an oracle. For
the oracle, Metha uses a testbed running real router firmwares.
The testbed just needs to be large enough to fully exercise
all configuration features. Normally, a small testbed of few
routers suffices and also helps speed up the testing. In this
paper, we rely on a virtualized testbed. To use a physical
testbed instead, one simply has to change the SSH/Telnet
configurations to connect to the physical devices.

A virtualized testbed comes with several advantages. It
provides more flexibility in terms of the settings one can test
and the time needed to setup. For example, there is no re-
wiring needed to test different topologies. In addition, it is
very simple to test the same topology with a different device
category or with devices from another vendor: one simply has
to exchange the router image.
What about more targeted tests? Metha’s test suite can be
adjusted to the developers requirements by restricting the set
of configuration features, adjusting the number of values per
feature, and changing the number of interacting features. The
tests required to cover the search space mainly depend on the

number of values per feature and the number of simultaneous
feature interactions, while the set of features is secondary.
By default Metha tests three values per feature and considers
pairwise interactions. This choice strikes a good balance be-
tween the number of tests required and thorough testing, as
our results confirm: Metha found all bugs that the random ap-
proaches discovered with fewer tests, despite using “only” the
boundary values; and all discovered bugs are caused by one
or two interacting configuration features, despite considering
interactions of more than just two features.

Metha does not replace traditional unit and system testing,
but provides an additional way to find latent bugs anywhere
in the system. The advantage of Metha is that it requires
minimal developer involvement and can be run alongside
traditional tests without any additional effort. If desired one
can run extensive tests by considering more elaborate feature
interactions and more than three values per feature. Often with
fuzz testing, one just lets the testing system run indefinitely
and collect bug reports along the way.

10 Related Work

In this section, we first discuss current network analysis and
verification tools. Then, we survey related work on testing
static analyzers and verifiers, the various testing initiatives in
the field of networking, delta debugging, and fuzz testing.
Network analyzers & verifiers Our work aims to facilitate
the development of network analysis and verification tools
through thorough testing. Over the years, we have seen a
rise in tools that simulate networks [28], verify properties of
networks and their configurations [3, 14, 19, 30], and tools
that analyze aspects of networks [11, 12, 18, 23]. All of these
tools have in common that they in some way or another use a
network model to analyze and verify the network. Any bug or
inaccuracy that exists within that network model undermines
the soundness of the tools’ results and analyses.

In contrast, CrystalNet [21] is a cloud-scale, high-fideltiy
network emulator running real network device firmwares in-
stead of relying on a network model. Hence, it accurately
resembles the real network (e.g., vendor-specific behaviors
and bugs in device firmwares are captured).
Testing analyzers and verifiers The problem of ensuring the
correctness of analysis and verification tools is not specific to
networks. In the field of static analysis, several works exist
that pursue the same goal. Bugariu et al. [5] apply a unit
testing approach, meaning they do not test the entire system
but components thereof which simplifies the test generation.
Since Metha treats the tool under test as a black box it cannot
test certain components separately. Cuoq et al. [8] randomly
generate input programs. This technique is mostly effective
at testing the robustness of the analyzers. Similar to Metha,
Andreasen et. al [1] apply delta debugging to find small input
programs that help developers understand the bug faster.

Testing in networking Prior work on testing in networking
has mainly focused on testing the network and its forwarding
state [36], and SDN controllers [2, 6, 29].

Closest to Metha is Hoyan [32], a large-scale configura-
tion verifier, in which the results of the verifier (i.e., network
model) are continuously compared to the actual network for
inaccuracies. It does so during operation and only covers cases
that have actually occurred in the network. Metha in contrast
proactively tests to detect the bugs before deployment.
Delta debugging In automated testing tools, delta debugging
is a well-established technique [33,35] that allows to automat-
ically reduce a failing test case to the relevant circumstances
(e.g., lines of code or input parameters). Over the years, re-
searchers came up with several extensions to the general delta
debugging algorithm, such as a hierarchical approach [26] that
takes the structure of the inputs into account. It first explores
the more important inputs allowing to prune larger parts of
the input space and hence, requiring fewer test cases.

Traditional delta debugging finds one bug at a time even if
the test case is ambiguous and exhibits multiple independent
bugs. The developer then fixes one bug and reruns delta debug-
ging to find the next. Metha automatically detects the causes
of all independent bugs without developer involvement.
Fuzz testing Fuzz testing [15, 34] is an umbrella term for
various testing techniques relying on “randomized” input gen-
eration. Metha uses a form of grammar-based fuzzing. Due
to the complex dependencies within network-wide config-
urations, Metha first builds a basic configuration structure
to ensure semantical validity. Then, it uses fuzzing to test
different feature combinations restricted to that structure.

11 Conclusion

We presented Metha, an automated testing framework for net-
work analysis and verification tools that discovers the bugs
in their network models before deploying them to production.
It does so by generating a wide variety of network configura-
tions according to a test suite defined through combinatorial
testing. Metha provides developers with actionable reports
about all discovered bugs including a configuration to repro-
duce them. We implemented Metha and evaluated it on three
state-of-the-art tools. In all tools, Metha discovered a total of
62 bugs, 59 of them have been confirmed by the developers.
An interesting avenue for future work would be to extend
Metha so that it can also test configuration synthesizers such
as [4,9,10] as bugs in their models would render them useless.

Acknowledgements

We thank our shepherd Michael Schapira and the anonymous
reviewers for their insightful comments and helpful feedback.
The research leading to these results was partially supported
by an ERC Starting Grant (SyNET) 851809.

References

[1] Esben Sparre Andreasen, Anders Møller, and Ben-
jamin Barslev Nielsen. Systematic Approaches for In-
creasing Soundness and Precision of Static Analyzers.
In ACM SOAP, Barcelona, Spain, 2017.

[2] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar
Itzhaky, Aleksandr Karbyshev, Mooly Sagiv, Michael
Schapira, and Asaf Valadarsky. VeriCon: Towards Ver-
ifying Controller Programs in Software-defined Net-
works. In ACM PLDI, Edinburgh, United Kingdom,
2014.

[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In ACM SIGCOMM, Los Angeles, CA,
USA, 2017.

[4] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t Mind the Gap: Bridg-
ing Network-Wide Objectives and Device-Level Con-
figurations. In ACM SIGCOMM, Florianopolis, Brazil,
2016.

[5] Alexandra Bugariu, Valentin Wüstholz, Maria Chris-
takis, and Peter Müller. Automatically Testing Imple-
mentations of Numerical Abstract Domains. In ACM
ASE, Montpellier, France, 2018.

[6] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan
Kostić, and Jennifer Rexford. A NICE Way to Test
OpenFlow Applications. In USENIX NSDI, San Jose,
CA, USA, 2012.

[7] Inc. Cisco Systems. Redistributing Routing Protocols.
https://www.cisco.com/c/en/us/support/docs/ip/
enhanced-interior-gateway-routing-protocol-

eigrp/8606-redist.html, March 2012. Accessed:
2020-09-12.

[8] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile
Prevosto, John Regehr, Boris Yakobowski, and Xuejun
Yang. Testing Static Analyzers with Randomly Gener-
ated Programs. In NFM, Norfolk, VA, USA, 2012.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide Configuration Syn-
thesis. In CAV, Heidelberg, Germany, 2017.

[10] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Netcomplete: Practical Network-
Wide Configuration Synthesis with Autocompletion. In
USENIX NSDI, Renton, WA, USA, 2018.

[11] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd D

Millstein. A General Approach to Network Configura-
tion Analysis. In USENIX NSDI, Oakland, CA, USA,
2015.

[12] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast Control Plane Analysis
using an Abstract Representation. In ACM SIGCOMM,
Florianopolis, Brazil, 2016.

[13] Nick Giannarakis. NV - An Intermediate
Language for Network Verification. https:

//github.com/NetworkVerification/nv, 2020. Com-
mit: d058c4ce5c1549ad4e22d97cb01b8ea19d07741c.

[14] Nick Giannarakis, Devon Loehr, Ryan Beckett, and
David Walker. NV: An Intermediate Language for Ver-
ification of Network Control Planes. In ACM PLDI,
London, UK, 2020.

[15] Patrice Godefroid. Fuzzing: Hack, Art, and Science.
Communications of the ACM, 63(2), 2020.

[16] Linghuan Hu, W Eric Wong, D Richard Kuhn, and
Raghu N Kacker. How does combinatorial testing per-
form in the real world: an empirical study. Empirical
Software Engineering, 25(4), 2020.

[17] Intentionet. Batfish. https://github.com/
batfish/batfish, 2020. Commit:
95099bc5ad77af57d92c484e2e5634827f63e724.

[18] Peyman Kazemian, George Varghese, and Nick McKe-
own. Header Space Analysis: Static Checking for Net-
works. In USENIX NSDI, San Jose, CA, USA, 2012.

[19] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. VeriFlow: Verifying
Network-Wide Invariants in Real Time. In USENIX
NSDI, Lombard, IL, USA, 2013.

[20] D Richard Kuhn, Dolores R Wallace, and Albert M
Gallo. Software Fault Interactions and Implications
for Software Testing. IEEE Transactions on Software
Engineering, 30(6), 2004.

[21] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri
Tallapragada, Nuno Lopes, Andrey Rybalchenko, Guo-
han Lu, and Lihua Yuan. CrystalNet: Faithfully Em-
ulating Large Production Networks. In ACM SOSP,
2017.

[22] Mallory Locklear. Google accidentally broke the in-
ternet throughout Japan. https://www.engadget.com/
2017-08-28-google-accidentally-broke-

internet-japan.html, August 2017. Accessed:
2020-09-12.

https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://github.com/NetworkVerification/nv
https://github.com/NetworkVerification/nv
https://github.com/batfish/batfish
https://github.com/batfish/batfish
https://www.engadget.com/2017-08-28-google-accidentally-broke-internet-japan.html
https://www.engadget.com/2017-08-28-google-accidentally-broke-internet-japan.html
https://www.engadget.com/2017-08-28-google-accidentally-broke-internet-japan.html

[23] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid,
Karthick Jayaraman, and George Varghese. Checking
Beliefs in Dynamic Networks. In USENIX NSDI, Oak-
land, CA, USA, 2015.

[24] Doug Madory. Widespread Impact Caused by Level
3 BGP Route Leak. https://blogs.oracle.com/
internetintelligence/widespread-impact-

caused-by-level-3-bgp-route-leak, November
2017. Accessed: 2020-09-12.

[25] Microsoft. PICT - Pairwise Independent Combinatorial
Testing. https://github.com/microsoft/pict, 2020.

[26] Ghassan Misherghi and Zhendong Su. HDD: Hierarchi-
cal Delta Debugging. In ICSE, Shanghai, China, 2006.

[27] Matthew Prince. August 30th 2020: Analy-
sis of CenturyLink/Level(3) Outage. https:

//blog.cloudflare.com/analysis-of-todays-
centurylink-level-3-outage/, August 2020. Ac-
cessed: 2020-09-12.

[28] Bruno Quoitin and Steve Uhlig. Modeling the Routing
of an Autonomous System with C-BGP. IEEE Network,
19(6), November 2005.

[29] Leonid Ryzhyk, Nikolaj Bjørner, Marco Canini, Jean-
Baptiste Jeannin, Cole Schlesinger, Douglas B Terry,
and George Varghese. Correct by Construction Net-
works Using Stepwise Refinement. In USENIX NSDI,
Boston, MA, USA, 2017.

[30] Konstantin Weitz, Doug Woos, Emina Torlak,
Michael D. Ernst, Arvind Krishnamurthy, and Zachary
Tatlock. Scalable Verification of Border Gateway
Protocol Configurations with an SMT Solver. In ACM
OOPSLA, Amsterdam, Netherlands, 2016.

[31] W. Eric Wong, Xuelin Li, and Philip A. Laplante. Be
more familiar with our enemies and pave the way for-
ward: A review of the roles bugs played in software
failures. Journal of Systems and Software, 133, 2017.

[32] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu,
Bingchuan Tianx, Qiaobo Ye, Chunsheng Wang, Xin
Wu, Tianchen Guo, Cheng Jin, et al. Accuracy, Scala-
bility, Coverage: A Practical Configuration Verifier on a
Global WAN. In ACM SIGCOMM, Virtual Event, NY,
USA, 2020.

[33] Andreas Zeller. Yesterday, my program worked. Today,
it does not. Why? ACM SIGSOFT FSE-7, 1999.

[34] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon
Fraser, and Christian Holler. Fuzzing: Breaking things
with random inputs. In The Fuzzing Book. Saarland
University, 2020. Accessed: 2020-09-12.

[35] Andreas Zeller and Ralf Hildebrandt. Simplifying and
Isolating Failure-Inducing Input. IEEE Transactions on
Software Engineering, 28(2), 2002.

[36] Hongyi Zeng, Peyman Kazemian, George Varghese, and
Nick McKeown. Automatic Test Packet Generation. In
ACM CoNEXT, Nice, France, 2012.

https://blogs.oracle.com/internetintelligence/widespread-impact-caused-by-level-3-bgp-route-leak
https://blogs.oracle.com/internetintelligence/widespread-impact-caused-by-level-3-bgp-route-leak
https://blogs.oracle.com/internetintelligence/widespread-impact-caused-by-level-3-bgp-route-leak
https://github.com/microsoft/pict
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/

A Proof of Theorem 1

Proof. By contradiction. Assume that there is a minimal sub-
set Q′ ⊆ Q such that tc|Q′ fails which is not returned in S .
We check at least one superset of Q′ for a failure since we
will always check the initial set Q. Assume C ⊇ Q′ is a small-
est superset of Q′ which is checked. By the assumption of
monotonicity, tc|C must fail, therefore we will minimize C. If
C = Q′, then we must minimize to Q′ since Q′ is assumed to
be minimal, violating the assumption that Q′ is not returned
by the algorithm. If Q′ ⊂C, then C will either minimize to
Q′ (again violating the original assumption that Q′ is not re-
turned by the algorithm) or to a different minimal subset P. In
this case, we generate additional sets to be tested. However,
both Q′ and P are minimal subsets of C, therefore Q′ 6⊂ P and
P 6⊂Q′. Since Q′ 6= P, we know that there must be an element
e ∈ P which is not in Q′, i.e., such that Q′ ⊆C \{e}. The set
C\{e} is both strictly smaller than C and will be added to the
sets to check by the algorithm in Line 9 and therefore violates
our assumption that C was a smallest superset of Q′ which is
checked.

