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A B S T R A C T

The world we live in is increasingly digital. In only the last decade, the
humble mobile phone has developed into a powerful portable computer
carried in the pockets of almost the entire population. The integration of
GPS-receivers into these devices allows the gathering of data on human
mobility at an unprecedented scale and detail. This cumulative dissertation
deals with several important aspects of the collection, processing and
application of such data. The work presented is all in the context of the
MOBIS study, a nationwide field-experiment on mobility pricing, using a
smartphone-based GPS tracking app, Catch-my-Day.

First, the recruitment and study design of the MOBIS experiment are
presented. The meta-behaviour of the respondents in the study is anal-
ysed, identifying important factors influencing the rate of attrition in long
duration tracking studies. In the second paper, a method for estimating
the external costs of road transportation based on GPS data and using the
MATSim framework is developed.

The amount of data collected through such tracking studies is massive,
presenting a challenge for the application of discrete choice methods. This
is the topic of the third paper. Here, a new software package for R, called
mixl, is presented. The final paper presents the initial descriptive results of
the impacts of the Covid-19 pandemic on mobility behaviour in Switzer-
land. Here, the original MOBIS-panel was re-invited to use the tracking
app. Drastic changes in travel behaviour are identified as a result of the
restrictions, and the implications for future transport policy discussed.

In closing, this dissertation presents a mixture of methodological and
applied work centered around the use of smartphone-based GPS tracking
in transportation research. The methodological contributions will help
inform the design of future tracking studies and field experiments, and the
insights gained into mobility behaviour during the pandemic will hopefully
stimulate further research efforts.
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Z U S A M M E N FA S S U N G

Die Digitalisierung beeinflusst und verändert die Welt, in der wir leben,
immer stärker. Erst in den letzten zehn Jahren hat sich das Mobiltelefon
zu einem leistungsfähigen Computer entwickelt, welcher von fast jeder
Person täglich in der Tasche mitgeführt wird. Die Integration von GPS-
Empfängern in solche Geräte ermöglicht die Erfassung von hochauflö-
senden Mobilitätsdaten im grossen Stil. Diese Dissertation befasst sich
tiefgehend mit verschiedenen Aspekten der Sammlung, Verarbeitung und
Anwendung dieser Daten. Die vorgestellten Arbeiten sind alle im Zuge
der MOBIS-Studie entstanden, einem landesweiten Feldexperiment zur
Preisgestaltung für Mobilität unter Verwendung der Smartphone-basierten
GPS-Ortungsapplikation «Catch-my-Day».

In der ersten Arbeit wird zunächst der Rekrutierungsvorgang der MOBIS-
Teilnehmer erläutert und das Design des Experiments vorgestellt. Im Fokus
steht die Analyse des Verhaltens der Teilnehmer während der Studie. Dabei
werden wichtige Faktoren identifiziert, welche zum Abbruch der Teilnahme
einer Langzeit-Tracking-Studie führen können. Im zweiten Beitrag wird
eine Methode zur Schätzung der externen Kosten des Strassenverkehrs
präsentiert, die auf der Grundlage von GPS-Daten und unter Verwendung
von MATSim entwickelt wurde.

Für die Modellierung der Verkehrsmittelwahl werden häufig diskrete
Entscheidungsmodelle verwendet. Die schiere Datenmenge, die durch di-
gitale Mobilitätstagebücher generiert wird, stellt für solche Modelle aber
meist eine grosse Herausforderung dar. In der dritten Arbeit wird deshalb
ein Paket für die Statistiksoftware R namens «mixl» vorgestellt, welches
eigens dafür entwickelt wurde. Der vierte und letzte Beitrag präsentiert
die ersten Ergebnisse der Auswirkungen der Covid-19 Pandemie auf das
Mobilitätsverhalten in der Schweiz. Hierzu wurden die MOBIS-Teilnehmer
erneut eingeladen, das digitale Tagebuch auf freiwilliger Basis während der
Pandemie weiterzuführen. Die drastischen Veränderungen des Mobilitäts-
verhaltens werden unmittelbar als Folge der nationalen Einschränkungen
identifiziert und dessen Auswirkungen auf die zukünftige Verkehrspolitik
in der Schweiz ausführlich diskutiert.

Diese Dissertation präsentiert eine Reihe von methodischen und ange-
wandten Analysen in der Verkehrsforschung basierend auf der Verwendung
von Smartphone-basierten GPS-Daten. Die methodischen Beiträge helfen da-
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bei wesentlich zur Weiterentwicklung zukünftiger Tracking-Studien sowie
Feldexperimenten im Bereich der Verkehrsforschung. Die Pandemie gibt
der Forschung die einmalige Chance, das Mobilitätsverhalten aus neuen
Blickwinkeln zu studieren. Die gewonnenen Erkenntnisse sollen helfen, die
Forschung zu inspirieren und stetig voranzutreiben.
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1
I N T R O D U C T I O N

Technological advances have been at the center of each paradigm shift in
transportation throughout history, with inflection points that have spurred
massive changes in how we live and interact with our surroundings. How-
ever, it can be argued that the data collection methods necessary to model
and hence understand the movement of the population within these trans-
port networks are only just now in the middle of their own inflection point,
precipitated by the technological advance of the smartphone, and more
specifically, the ubiquity of GPS-receivers in these devices.

A key data collection method in transportation research has been the
travel diary, which, since its introduction in 1930s has played an essential
role in the understanding of transport behaviour (Axhausen, 1995; Stopher
and Greaves, 2007). Traditionally, these were collected through mailed out
booklets, and then later through telephone based interviews. In the last 20

years, GPS technology has made the streamlined collection of travel diaries
possible, at a level of detail infeasible with paper and telephone based
methods. Early work using GPS required dedicated tracking units, which
the user had to carry with them and return to the researchers. This process
is expensive and involved. Initially, GPS devices were only used to validate
the results of paper or telephone based surveys (Stopher, FitzGerald, and
Xu, 2007; Wolf, Loechl, et al., 2003). Shen and Stopher (2014) provide a
comprehensive list of studies using dedicated devices.

It is only in the last two decades that GPS-receivers have been integrated
into mobile phones. Furthermore, the consolidation of the smartphone
market into essentially two leaders, Apple and Android, has made it possi-
ble to develop a single digital travel diary application downloadable and
usable by close to 100% of the population in a developed country. Montini
et al. (2015) compared the performance of self-contained devices and GPS-
enabled smartphones and found the performance varied, with accuracy
being better with the dedicated GPS tracker, but sufficient with the mobile
phone for routing and trip-diary purposes.

As an alternative, mobile tracking data can also be passive. That is, the
location of the device as determined by the network operator, usually

1



2 introduction

through triangulation, based on the connections that the mobile device
makes to the antennas in the mobile network.

As such, the work in this thesis is motivated by the desire to understand
the capabilities and limits of tracking data in the context of mobility studies,
and to utilise the technology in the study of current transport-related
challenges facing our society.

Two field-experiments are presented in the following chapters. The first
is an empirical investigation into the effectiveness of mobility pricing as
tool to internalise the external costs of transport. Economists argue that
pricing mechanisms are the most effective way to deal with the continuously
growing problem of congestion (Lindsney and Verhoef, 2001). However, to
be most effective, prices in the implemented scheme would need to vary
according to the severity of congestion (Vickrey, 1963). Furthermore, there is
increasing evidence that in multimodal transport networks, it is insufficient
just to price road transport, and that the interplay between demand and
supply across the multi-modality of the transport network is important
(Tirachini, Hensher, and Rose, 2014).

Currently, usage of the road network in most cases is priced through
three components: a registration fee, a fuel tax and an optional flat yearly
highway-usage fee. None of these charges incentivise users to avoid trav-
elling on congested roads. Fuel taxes are also becoming increasingly in-
effective as cars become more fuel-efficient. The gradual electrification of
the vehicle fleet will only exacerbate this trend. Levinson (2010) identify
additional reasons, which include the need to raise revenue for future in-
vestment. While there has been stated-preference work into the effects of
mobility pricing (Brownstone and Small, 2005; Ettema, Ashiru, and Polak,
2004; Vrtic et al., 2010), there have only been a small number of real world
experiments (Nielsen, 2004; Transurban, 2016). These experiments have
been limited to road pricing, and have not considered the external costs of
the transport system as a whole.

Finally, the political acceptance of mobility pricing continues to be an
issue, and both these experiments, as well as the experience of the London
and Stockholm congestion charges showed that participants were overall
more accepting of pricing measures after exposure (Transport for London,
2004; Winslott-Hiselius et al., 2009). Bringing these factors together, there
is a multitude of urgent reasons to further understand the impacts of
mobility pricing in a real world setting, and hopefully accelerate the political
acceptance of mobility pricing.
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The second experiment, while not by design, is one of the largest sudden
disruptions of global mobility in modern history. The onset of the Covid-19

pandemic saw drastic changes in people’s daily lives. In Switzerland, a
lockdown was imposed in March 2020 to slow the spread of the virus. A
rapid shift to remote-work and a slow reopening of the economy followed.
By reactivating the dormant GPS tracking panel from the mobility pricing
experiment, it has been possible to understand just how people were adapt-
ing their mobility behaviour to the pandemic and restrictions. Here, the
motivations were two fold: first, there was the potential to aid short-term
policy-making during the pandemic, and then second, discover lessons
that may inform long-term transport policy-making in the post-pandemic
world.

1.1 background and state-of-the-art

Data collected from mobile devices first started to play a role in trans-
portation research in the 2000’s, starting with Asakura and Hato (2004),
who used call detail records (CDR) to investigate the feasibility of using
mobile network data to study metropolitan-scale travel behaviour. At this
stage, the first iPhone was still a prototype, and it would not be until 2008

that the first iPhone with integrated GPS was released (Apple, 2008). Fur-
ther work using aggregated mobile network data continued (Ahas et al.,
2010; Anda, Medina, and Fourie, 2018; Gonzalez, Hidalgo, and Barabasi,
2008). However, the benefits of passive mobile network data - namely the
non-existent response burden and sample size come with trade-offs which
need to be acknowledged. Privacy laws normally ensure that the traces
must remain anonymous, meaning that minimal, if any demographics are
available. Secondly, particularly in Europe, tracking of participants over
consecutive days is rarely allowed without their explicit permission (Cik
et al., 2020).

While cellular network data is collected passively by the network oper-
ator, the collection of GPS data requires the installation of an app on the
device. However, the spatial and temporal accuracy of the data is very good,
rarely exceeding 30m in outdoor settings (Zandbergen and Barbeau, 2011).
In contrast, the accuracy of cellular network positioning is not comparable
to that of GPS data (Widhalm et al., 2015). On mobile phones, the data from
the GPS receiver is often augmented with other available sources, such
as WiFi, cell tower triangulation and accelerometers to improve accuracy,
which are collectively known as location services. For the purpose of this
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thesis these location services will be referred to as GPS, as is common in the
literature. GPS data can either be collected anonymously through aggrega-
tion services at a large scale (Buck et al., 2014), or through the recruitment
of participants, who are asked to install and use a specific app. For studies
where a representative sample is required, or behavioural models with
socio-demographic variables are to be developed, the recruitment of the
participants is naturally the preferred option.

1.1.1 GPS tracking in transport behaviour research

Over the last 20 years, GPS has been increasingly used both in the collection
of travel diaries and the understanding of daily patterns (Wolf and Guensler,
2000). Many of these studies have been of short duration, i.e. a couple of
days (Allström, Kristoffersson, and Susilo, 2017; Greene et al., 2012), due
to the acknowledged response burden and resulting attrition observed in
these studies (Kohla and Meschik, 2013). As Widhalm et al. (2015) note, the
sample size and observation period of most GPS studies is still limited. A
table of recent GPS-based travel surveys is presented in chapter 2.

In addition, continuous methodological advancements have been made
in the processing of collected GPS data. The process is normally divided
into stages: filtering, trip segmentation, transport mode detection and,
where necessary, map-matching to a network. For an overview of the
various methods and advances, see Shen and Stopher (2014) and Zheng
(2015). Graphhopper (Karich and Schröder, 2014) provides an open-source
framework for map-matching GPS traces to Openstreetmap (OSM) (Haklay
and Weber, 2008) network using the Hidden Markov Model approach
developed by Newson and Krumm (2009).

1.1.2 Theoretical work on external costs of transport

The cost of travel in transportation can be divided into two categories -
individual costs - i.e. those payed by the traveller, and the costs of travel
bourn by other individuals, known as external costs. In transport, the exter-
nal costs are divided into the following groups: congestion, environmental
effects, noise damages, and accidents. (Verhoef, 2000).

The theoretical foundations for road pricing were laid by Pigou (1920) in
his work on the internalisation of the external costs in a market. He used
the example of two roads to suggest that differential taxes can be useful
in increasing the overall utility in the simple network where congestion is
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present. Knight (1924) explored this further, but suggested that a govern-
ment intervention would be required, and tolls should be set by private
operators.

Vickrey (1963) used a bottleneck model to demonstrate how road pricing
could influence travellers’ choice of route and transport mode. Vickrey
demonstrated that in perfect congestion pricing, tolls must match the
severity of congestion, and vary by time of day, location, type of vehicle and
current conditions. It then follows that transport users should be charged
their marginal external costs - costs which would otherwise be absorbed by
other transport users and society (Button and Verhoef, 1998).

The methods for internalising these external costs can be categorised by
their level of optimality. In first-best pricing, the marginal external cost is
charged to the user. In this case, both the charging mechanism and the
amount charged need to be optimal (Verhoef, 2000). In second-best pricing,
the pricing mechanism is guided by the principle of marginal external costs,
but the implemented scheme is simplified (Small, Verhoef, and Lindsey,
2007).

Most of the early work on the pricing of externalities focused on the dif-
ferent transport networks in isolation - the congestion on the road network
was not considered in the context of public transport or non-motorized
modes. Multiple researchers have identified how this is insufficient. Small
(2008) argued that a road congestion charge can act as an effective way to
financially support public transport, by raising the cost of car travel, which
has been traditionally cheap as the numerous external costs are not paid by
the driver. Tirachini and Hensher (2012) also examined the intricate rela-
tionship of pricing between car travel, public transport and non-motorized
modes, in both a first-best and second-best context. As is acknowledged
in the literature, there exist limitations to implementing first-best pricing.
Verhoef (2000) identifies both general issues such as the “limited social and
political acceptability and the technical feasibility of marginal external cost
pricing” and the unlikelihood that the assumptions required for effective
Pigouvian taxes apply.

1.1.3 Mobility pricing in practice

Although the theoretical challenges of efficiently internalising the external
costs in transport have been discussed for decades, it is only more recently
that solutions have been implemented for personal vehicle travel, either ex-
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perimentally or in reality. Schemes for freight traffic are already widespread,
with Germany being one example (Link, 2008).

In the AKTA study (Nielsen, 2004), 500 drivers around Copenhagen had a
GPS receiver installed in their vehicle (before the widespread availability of
GPS-enabled mobile devices). After a control period, they were exposed to
different road pricing schemes over 8-12 weeks, with the charges calculated
based on the data from the GPS receiver.

The Melbourne road pricing experiment also investigated the feasibility
of a road pricing scheme for a sample of customers for an Australian
tollway operator in metropolitan Melbourne (Transurban, 2016). It was
conducted over 17 months with 1,635 participants, and a range of charging
schemes. The results showed that such as system could act as a significant
funding source for new transport investment, and help manage demand in
congested areas and peak hours. Here, as in the AKTA study, a GPS device
was installed in the participant’s car for the duration of the study.

The London congestion charge is one of the most well known real world
implementations (Leape, 2006; Santos and Shaffer, 2004). First applied in
2003, it has seen numerous extensions since, including additional charges
for heavily polluting vehicles and discounts for electric cars. In Stockholm,
road pricing has also been implemented in the form of a congestion charge
(Eliasson et al., 2009). An analysis by Karlström and Franklin (2009) showed
that drivers crossing the toll cordon (perimeter) boundaries were 15% more
likely to switch to public transport. In both cases, cars entering a cordon
around the central business district have to pay a charge during certain
times. These second-best schemes only include road travel, and are relatively
blunt instruments.

Over the years, a variety of road pricing schemes have been implemented
in Singapore, starting in 1975 with a paper-based peak-hour permit scheme
(Chin, 2005). In 1994, the system was revised to offer two levels of licensing.
Starting in 1997, the ERP (Electronic Road Pricing) was introduced, in which
vehicles are charged each time they pass through a gantry (Agarwal and
Koo, 2016). The charges are regularly adjusted to maintain a certain level
of service. In 2023 a satellite (GPS) based system will be introduced (Tan,
2020).

Solutions involving tradable permits have also been proposed (Verhoef,
Nijkamp, and Rietveld, 1997), but were assumed to be an academic curiosity
due to the large number of actors in the system, among other reasons.
Brands et al. (2020) demonstrated the feasibility of a tradable permit scheme



1.1 background and state-of-the-art 7

for road pricing, using a virtual experiment where participants were asked
to trade permits for their usual commute throughout the week.

1.1.4 External costs in agent-based simulation

Verhoef (2000) notes that the welfare benefits of such systems need to
be considered on an individual level. One way to do this is to capture
the heterogeneity in individual behaviour through the use of agent-based
modelling. Chakirov (2016) used the agent-based transport modelling frame-
work MATSim (Horni, Axhausen, and Nagel, 2016) to investigate mobility
pricing, and the interacting effects when congestion charging and dynamic
public transport pricing are combined in one setting.

Hülsmann et al. (2011) developed the emissions model for MATSim,
which takes the HEBFA database (Keller et al., 2017) and calculates the
pollutant emissions for agents in the network. This module was developed
further by Kickhöfer, Hülsmann, et al. (2013), and applied to calculate
time-dependent, vehicle-specific pollutant exposure tolls in an agent-based
scenario (Kickhöfer and Kern, 2015). Here, the factors for the monetisation
of the emissions were taken from Maibach et al. (2008).

The internalisation of externalities using agent-based simulation has also
been investigated using the MATSim framework. Kaddoura, Kickhöfer, et al.
(2015) looked at optimal public transport pricing to internalise the marginal
social cost of crowding and waiting on public transport, based on a multi-
modal corridor scenario. Kaddoura (2015) applied a marginal external cost
(MEC) approach to road congestion for the MATSim greater Berlin scenario,
where the delay caused by an agent in the simulation to each other affected
agent is calculated at each link exit in the network. The marginal social costs
generated by each agent can be calculated based on these delays. Kaddoura,
Agarwal, and Kickhöfer (2017) considered the simultaneous congestion,
noise and air pollution pricing for the greater Berlin area using MATsim
under Pigouvian assumptions, using the aforementioned emissions module
and MEC approach to road congestion.

1.1.5 Mobility monitoring during pandemics

It has been widely acknowledged that transportation is a key driver in the
spread of infectious diseases (Baroyan and Rvachev, 1967; Herrera-Valdez,
Cruz-Aponte, and Castillo-Chavez, 2011). The important role of mobility
in a pandemic has been demonstrated for historical pandemics such as
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the Spanish flu in 1918 (Ammon, 2002; Trilla, Trilla, and Daer, 2008). More
recently Wesolowski et al. (2015) used mobile phone data to predict the
spread of the dengue epidemics in Pakistan. For a comprehensive overview
of studies exploring the link between transport and infectious diseases, see
Muley et al. (2020).

In the current pandemic, mobile data has shown to be useful in under-
standing the role of both regional and global mobility during the pandemic.
Many countries are now using mobile data to understand the effectiveness
of measures, including Austria, Belgium, Chile, China, Germany, France,
Italy, Japan, Spain, United Kingdom and the United States (Oliver et al.,
2020; Yabe et al., 2020).

During the COVID-19 pandemic, anonymised aggregated mobile data
has been a key new technological tool in monitoring mobility. Vinceti et al.
(2020) used aggregated mobile data for three regions in Italy (Lombardy,
Veneto and Emilia-Romagna) between February 2020 and April 2020 to
monitor mobility during the first and second lockdowns. They determined
that a relaxed lockdown did not reduce mobility sufficiently to slow the
virus.

Iacus et al. (2020) used such data to explore the correlation between
mobility and the number of positive tests in regions of France, Spain and
Italy. They argue that reducing internal mobility is more important than
mobility across provinces in the spread of the disease.

Heiler et al. (2020) investigated the nation-wide changes in mobility
during the first European wave for Austria using real-time anonymised
mobile phone data. They saw a doubling of the number of persons with
a radius of gyration (activity space) of less than 500m, and increased
segmentation of the community structure.

In the USA, Badr et al. (2020) found a strong correlation between reduced
mobility behaviour and decreased COVID-19 case growth rates. Further-
more, they show evidence that behavioural changes were already observable
days to weeks before movement restriction policies were implemented.

There has also been a wealth of work looking at the initial spread of the
disease in China, with the help of anonymous mobile phone data (Jia et al.,
2020; Kraemer et al., 2020; Xiong et al., 2020; Zhou et al., 2020). However, as
the data sets used in these works have a few key limitations: they are less
effective at capturing mobility changes at local urban scales, and individual
socio-demographic variables are generally not available. This is important
for both understanding which groups are most affected by restrictions,
and understanding which population segments were best able to adapt to
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the changed conditions. Indeed, even the quarantine measures introduced
to combat the 1636 outbreak of the plague were found to affect different
classes of society differently (Newman, 2012).

1.2 methods

The use of location tracking apps is the central methodology in this thesis.
Harding et al. (2020) compared the performance of a wide range of the
tracking apps available. In the following work, the Catch-my-Day app,
developed by Motiontag GmBH, was used. Although Catch-my-Day was
developed specifically for use in mobility studies undertaken by the Institute
for Transport Systems and Planning, ETH Zurich, it uses the same interface
and processing backend as Motiontag’s publicly available app.

The Motiontag platform is provided as an API and SDK for Android
and iOS. The SDK was designed to minimize the use of GPS by taking
advantage of other sensors in the phone where possible. The data is sent to
the Motiontag servers where it is enriched with Openstreetmap data and
segmented into stays (activities) and trips. The trips are then divided into
stages using a Deep Recurrent Neural Network (RNN) which identifies the
transport modes and transfer points on the trip. The output is a travel diary,
constituting stages (labeled with the transport mode) and activities (labeled
with the activity purpose). Figure 1.1 shows the main interface screens of
the Catch-my-Day app.

1.2.1 The mobility pricing experiment

The work in Chapters 3, 4 and 2 needs to be framed in the context of
the MOBIS mobility pricing field experiment. The MOBIS experiment was
an eight-week mobility pricing study undertaken in Switzerland between
September 2019 and January 2020. Participants were invited by post to
participate, and offered the incentive of 100 CHF 1 for the completion of the
study. In an introduction survey they were asked for socio-demographic
information, and were posed questions about their attitudes to transport
policies and problems, as well as values using the method developed by

1 around $100 USD
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Figure 1.1: The Catch-my-Day interface. From left to right: 1) Calendar home
page. 2) Daily view showing recorded trips. 3) Editing the mode of a
selected trip.

Otte (2008). The introduction survey also screened participants against
eligibility criteria. The criteria were:

• aged between 18 and 65

• living in urban agglomerations (based on a postcode list),

• not a professional driver

• able to walk

• have access to a smartphone for downloading the app

Eligible participants who were willing to participate were then given
a registration code and directions to install the Catch-my-Day app. They
could start the tracking whenever they wanted, and the 8 weeks would start
from the first complete tracking day. If participants were identified as not
tracking for a certain number of days, they were notified by email, with the
aim to increase the quality of the tracking data and reduce the dropout rate.
In the first 4 weeks, participants received a weekly email with a summary
of their kilometers travelled with each transport mode. Participants who
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provided less than 12 days of tracking in the first 4 weeks were not allowed
to participate in the second phase.

After the 4 week control phase, each participant was randomly assigned
to either one of two treatment groups, or a continued control. Those in the
treatment groups were informed by email that the conditions of the study
were changing. In the first treatment group information, participants only
received weekly information on their external costs in the previous week. In
the pricing group, participants received the external cost information, as well
as a budget for the treatment phase, where any remaining budget would
be transferred to them at the conclusion of the study. The budget for the
pricing group in the treatment phase was set at 120% of their external costs
in the control phase. Additionally, to discourage gaming of the experiment,
the budget was reduced by 1/28

th for each day where no tracking data was
provided over the 4 weeks of the treatment phase. During the treatment
phase, participants were provided with a weekly email report updating
on their external costs in the previous 7 days, as well as their remaining
budget if applicable. Due to the rolling start to the experiment, participants
received these reports on different days of the week. As such, a pipeline
was developed to download the new data from Motiontag and calculate
the external costs and mail the reports each evening. The methodology to
calculate external costs is covered in detail in chapter 3.

1.2.2 External costs in the mobility pricing experiment

The external costs presented to participants were grouped into 3 categories:
CO2, congestion and health. CO2 is the external cost of CO2, N2O and
methane (CH4), in CO2 equivalent emissions of a particular mode of travel.
Congestion is the link-based time lost caused to other drivers in the case of
car travel, and the peak-hour transit surcharge for transit modes. Health is
broader, and groups together the impacts of particulate matter (PM), noise,
nitrous oxides (NOx), accident costs and the (positive) health benefits of
active mobility such as cycling and walking.

particulate matter Particulate emissions were priced according to
the urbanity of the trip. Using the the development zoning classification for
Switzerland (ARE, 2017), each link in the MATSim network was designated
as urban or rural, and PM emissions were computed for each, and priced
accordingly.
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noise After determining that a dis-aggregated noise model developed
by Kaddoura, Kröger, and Nagel (2017) would not scale to a national level,
a fixed per-Km cost of noise emissions was used, with the value taken from
the Swiss norms.

nox The health externalities from NOx emissions were priced using the
CHF/t value in the Swiss norms.

accident costs The Swiss norms provide accident costs per km trav-
elled for each mode. In contradiction to multiple studies (Gössling et al.,
2019; Sælensminde, 2004), the Swiss norms give external accident costs
for cycling which outweigh the health benefits, giving an overall negative
external cost for cycling.

health benefits For walking and cycling, the Swiss norms stipulate
a health benefit of 0.1870 CHF/km and 0.1863 CHF/km, and accident
costs of 0.075 CHF/km and 0.257 CHF/km respectively. This gives a total
external cost of -0.112 CHF/km and 0.070 CHF/km for cycling and walking
respectively. The calculation of external costs was performed within the
agent-based transport framework MATSim (Horni, Axhausen, and Nagel,
2016).

To calculate the emissions from car travel, the emissions module for
MATSim (Hülsmann et al., 2011; Kickhöfer, Hülsmann, et al., 2013) was
used to calculate the pollutant emissions of a driver on each link based on
the Hbefa (De Haan and Keller, 2004; Keller et al., 2017). The congestion
externalities were estimated using the marginal-cost method developed by
Kaddoura (2015). Here, a constant value of time was used for all agents in
the simulation, in this case a necessary violation of the constraints required
for true first-best pricing. Walking and cycling externalities were calculated
on a per-Km basis using the normative values provided by the relevant
Swiss authorities, updated for 2019 (ASTRA, 2017).

1.2.3 Dynamic public transport pricing

For public transport externalities, pollution emissions were calculated on
a per-Km basis, using the values in Table 1.1. These provided estimates
of per-person-km emissions in grams for the key pollutants for which
monetary values are available from Table 3.6. In contrast to private car
travel, the marginal social cost of public transport (in terms of pollution
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Mode CO2 PM10 NOx Accidents Noise Health a

Train 0.000066 0.0140 - 0.00066 0.0087 -

Bus 0.0144 0.0437 0.5440 0.0141 0.0257 -

Tram - - - 0.0126 0.0075 -

Bicycle - - - 0.257 - -0.1870

Walk - - - 0.075 - -0.1863

Table 1.1: Per-km Monetary costs used in the MOBIS experiment. Note the zero
pollution values for Tram - None were provided in the NISTRA. This
has a minimal effect on the study results, as they would be similar to
Train, i.e. Minimal.

a Note that the negative values indicate a benefit

and noise) decreases as the demand increases. On the other hand, crowding
affects willingness to pay and can be seen as a form of congestion in
public transport, and delay in some circumstances (Tirachini, Hensher, and
Rose, 2013). However, crowding effects are extremely heterogeneous, both
spatially and temporally. Even in peak hours, crowding can be restricted to
particular transit lines during very short periods (Zurich Public Transport
(VBZ), 2017). As such, it would be unreasonable to distribute the crowding
effects in an aggregate measure across all peak-hour travellers in a specific
public transit region. Additionally, for each public transport operator, data
would have to be collected separately and collated as it is not available on
a national level. As an alternative solution, a zonal peak-hour surcharge
pricing scheme was developed for the national public transport network, as
a form of second-best pricing. Throughout the experiment, participants had
access to a interactive map which showed them where and when the pricing
scheme applied (see fig. 1.2. The peak-hour pricing surcharge applied a 0.1
CHF/km surcharge on public transport trips between those zones with a
larger demand in peak-hours compared to the off-peak.

The zoning system was based on the Gemeinde2, with large urban mu-
nicipalities such as Zurich being split into their Kreise3. The surcharge
was applied to transit stages between any two zones which experience
peak-hour demand. The peak-hour windows and the affected zone-pairs
were determined using the output of the MATSim scenario for Switzerland

2 A Gemeinde in Switzerland is roughly translatable as a municipality.
3 A Kreise in Switzerland is roughly translatable as a municipal district
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(Bösch, Müller, and Ciari, 2016). The peak windows were set as 7am-9am
and 5pm-7pm, and not adapted for regional variations in working patterns.
Municipality pairs were priced if the maximum hourly transit trip count
during peak-hour was greater than three times the average hourly transit
trip count during the daily off-peak (9am - 5pm) for that pair. A municipal-
ity could also be paired with itself if the the above criteria was met, and the
direction of the peak-hour flow is not considered. If the trip was partially
in both the peak and off-peak periods, only the proportion of the travel
duration that overlaps with the peak period was charged.

1.2.4 Estimation of discrete choice models

Discrete choice methods are an important methodological tool for mod-
elling the impacts of transport policies. In particular, they are useful for
both generating value-of-time estimates and understanding how a mobility
pricing scheme affects mode share. However, the amount of data generated
by a tracking study like MOBIS is extremely large. The tracking of 3,680

participants over 8 weeks generated over 1.4 million travel stages in 935,570

trips. Each of these stages or trips would count as an observation in the
discrete choice model. Sampling methods have been developed for working
with such large data sets (Cranenburgh and Bliemer, 2019). However, even
with a 10% sample, the data set is still very large by discrete choice mod-
elling standards. With many available packages, the memory requirements
for more complicated models with many random components that require
simulated estimation become prohibitive, requiring over 200 GB of memory,
as shown in chapter 4. As such, there is currently a methodological gap here,
which the work in chapter 4 seeks to fill. This is done by taking advantage
of some methods from computer science. Namely the translation and com-
plication of computing code from one syntax to another, and the use of data
parallelism to split the problem over multiple processing cores (Subhlok
et al., 1993). The high performance parallel computing framework OpenMP
(Chapman and Massaioli, 2005) was used to formulate the estimation of the
log-likelihood in discrete choice in the data-parallelism framework.

1.3 research objectives and questions

The MOBIS mobility pricing project had the ambitious goal of determining
if the consideration of the external costs - through either information or
incentivisation - would lead to significant behavioural change in the Swiss
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Figure 1.2: The PT surcharge guide as viewed on a mobile device. The red areas
indicate destination zones which would be charged during peak-hour
from the black zone. The map is movable and zoomable by the user.
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population. The goal was to do this through a real-world field experiment.
This thesis is concerned with some of the research questions that arose as
a result of the work on this project. The following list corresponds to the
order of the papers presented in this thesis.

1. Which factors affect the attrition rate in a long term GPS tracking
study? Does the duration of participation vary across the population
or between treatment groups? How does the response rate compare
to other studies in the literature? Are app-based tracking studies
sufficiently accurate and advanced enough to support such a mobility
field experiment?

2. How can external costs be accurately imputed at a trip level, taking
advantage of the temporal and spatial resolution in GPS data? Does a
dis-aggregate link-level approach based on an agent-based framework
method better capture the heterogeneity in external costs compared
to an average approach?

3. Can the scalability issues with current estimation software for dis-
crete choice models in R be overcome? Is it possible to improve the
performance to the extent that complex models on large data sets are
feasible to estimate in R, such as those required by the MOBIS project?
Can such performance be achieved while providing a simple model
specification syntax?

4. The final research questions followed after the completion of the
MOBIS tracking period was completed, as a response to the Covid-19

pandemic. How is the mobility behaviour in Switzerland changing in
response to the measures introduced to control the pandemic? How
do these responses vary by socio-demographics and trip purpose?

1.4 overview of the thesis

In this thesis, the above research questions are answered over the span of
four research papers, presented in the following chapters.

In chapter 2, The recruitment methodology for the MOBIS study is
presented, along with a detailed analysis of the response rates and attrition
in the tracking phase of the study. An analysis of the survey-behaviour of
the participants follows, and the influence of the mobile operating system
on survey participation is quantified.
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In chapter 3, a methodology for the link-level calculation of external costs
on pre-processed GPS traces is presented. The resulting model is validated
against the official average values and various discrepancies discussed. To
evaluate the usefulness of the model, the individual external costs calculated
for the MOBIS study are compared against a simple per-Km approach to
quantify the extra heterogeneity captured using the new methodology.

In chapter 4, a new software package mixl for the R programmming
language is presented. This package overcomes current scalability limits in
the simulated estimation of mixed multinomial logit models, which have
been restricting the complexity of the models which could be estimated as
the number of observations and random draws increased. It also utilises
multiple processing cores better than other open source software to improve
the estimation time.

chapter 5 presents a first look at the impact of the restrictions and re-
sulting relaxations on mobility behaviour in Switzerland captured by a
re-activation of the MOBIS cohort. The detailed socio-demographic infor-
mation available for each participant, as well as the travel diaries processed
from the collected GPS data give a detailed insight into how mobility
behaviour has changed as a result of the pandemic.

Finally, in chapter 6, the four papers are brought together and the limita-
tions and potential for future work presented. The role the methods and
results presented in the above chapters have to play in ongoing transporta-
tion research is discussed, as well as the immediate and future impact of
the work on society.
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2.1 abstract

This article presents the first results and observations from the MOBIS
Study, a nation-wide mobility pricing field experiment in Switzerland. Mo-
bility pricing is widely regarded as a promising policy measure to combat
congestion, internalize external costs of transport, and offset decreasing fuel
tax revenues. However, the implementation of mobility pricing in Switzer-
land is hindered by a lack of empirical evidence, among other things. In the
field experiment participants participated through the use of a GPS tracking
app, Catch-my-Day, which logged their daily travel on different transport
modes and imputed the trip segments and modes. The experiment lasted 8

weeks, bookended by online surveys. After the first 4 week control phase,
participants were split into three treatment groups. The first continued as
a control. The second received information on their external costs, and
the third received a real monetary budget, from which their external costs
were deducted. The first results show that the technology is capable of
supporting such an experiment on both Android and iOS, the two main
mobile platforms. Significant differences in the engagement and attrition
were observed between iOS and Android participants over the 8 week
period. Finally, the attrition rate did not vary between treatment groups.

2.2 introduction

Mobility pricing is widely regarded as a promising policy measure to com-
bat congestion, internalize external costs of transport, and offset decreasing
fuel tax revenues. The concept of mobility pricing was first proposed in
the 1920’s as an example of a corrective tax to internalize congestion exter-
nalities (Pigou, 1920). Since then, there has been much study of the topic,
including mathematical theory (Small et al., 2004; Verhoef, Nijkamp, and
Rietveld, 1996) and simulation experiments (Chakirov, 2016; Kaddoura,
2015; Meyer de Freitas et al., 2017). Most of the research and practical im-
plementations have focused specifically on road pricing, which is a limited
form of mobility pricing that focuses on drivers. Despite the theoretical
capabilities to maximise infrastructure utilisation, mobility pricing has only
been sparsely implemented in practice as it is typically viewed as a ‘new tax’
and is thus associated with strong political resistance. Schemes in London
(Leape, 2006; Santos and Shaffer, 2004) and Stockholm (Eliasson et al., 2009)
are two well-known examples where limited mobility pricing has been
implemented in the form of congestion charges: Cars entering the central
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business district during certain hours have to pay a fee. These ‘congestion
charges’ don’t reflect all the external costs from all modes of transportation.
Schemes have also been implemented in a number of cities including Milan,
Paris, Rome, Stuttgart and Singapore.

Although there is evidence on the success of congestion pricing (Eliasson
et al., 2009; Leape, 2006; Santos and Shaffer, 2004), understanding the effects
of broader mobility pricing schemes remains a challenge. A key challenge
is understanding the potential impacts of the proposed policy. Multiple
studies have looked at route, mode and destination choice within the con-
text of various pricing schemes using stated-preference experiments (Li and
Hensher, 2012; Vrtic, Schuessler, et al., 2010; Washbrook, Haider, and Jac-
card, 2006). Work on the acceptance of pricing schemes includes Jakobsson,
Fujii, and Gärling (2000) and Vrtic, Schüssler, et al. (2007). More recently,
the proliferation of affordable GPS tracking and mobile connectivity has
opened up the possibilities to do field experiments exploring transport
users’ behavioural responses under a pricing scheme, which would have
been financially and logically infeasible in the pre cell-phone era. In one
of the first examples, Nielsen (2004) equipped 500 cars with a GPS-based
device, and monitored participants for a control period before exposing
them to a pricing scheme for the Copenhagen region. This study was in
the pre-smartphone era and hence limited to a small sample size and no
control group. A similar study using car-based GPS loggers was performed
in Melbourne, in which 1,400 toll road users experienced different types
of congestion charges (Martin and Thornton, 2017; Transurban, 2016). A
period of several months was used to monitor baseline behaviour before
the pricing schemes were introduced for three quarters of the sample. In
both these experiments, only car trips with the primary household vehicle
were tracked. Public transport and active modes were not recorded. The
Melbourne study did investigate possible modal shifts to rail commuting,
by identifying car trips and subsequent parking at railway stations. The
study reportd that 30% of participants reported changing their road travel
use under the pricing scheme. Until now there have been no studies that
have attempted to use smartphone-based GPS tracking to look at road or
mobility pricing, limiting the opportunity to understand modal shifts.

The use of GPS tracking for mobility research is now widespread. Mul-
tiple studies have identified how traditional travel diaries under-report
the number of trips, due to, among other reasons, response burden and
memory recall (Janzen et al., 2018; Stopher, FitzGerald, and Xu, 2007; Wolf
et al., 2003). Passive tracking mostly mitigates these issues, although the
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collecting of trip metadata such as detailed trip purpose, fellow passengers
and travel expenses mostly still requires more traditional survey methods.
Furthermore, the performance of GPS tracking depends on the quality of the
GPS traces, and the algorithms used to identify trips, stages and activities,
as well as the mode and purpose of travel. Here there has been significant
advances in recent years (Marra et al., 2019; Schuessler and Axhausen, 2009).
For two comprehensive reviews on the processing of GPS tracking data,
the reader is referred to Shen and Stopher (2014) and Nikolic and Bierlaire
(2017). Other studies note that the performance of the algorithms is highly
dependent on the quality of the GPS data (Burkhard et al., 2020; Harding,
2019; Montini et al., 2015).

One of the key factors influencing the quality of GPS data is the device
used. This can be either a dedicated GPS logger, or a smartphone, where the
data is collected through an app. The quality of the data can vary between
devices, in particular between iOS and Android devices, depending for
example on battery saving settings.

Few studies have explored the implications of this iOS/Android di-
chotomy and the implications for mobility studies using app-based tracking.
Harding (2019) compared the performance of trip identification and mode
detection by different apps and found that iOS-based apps tended to have
a higher accuracy. However, not only is the quality of the recorded data
important, but also the attrition rate throughout the study, as this ultimately
determines the sample size. This is an open question that has not been
widely explored. The market penetration rates of iOS and Android - and
even different Android-based manufacturers - varies across regions and,
possibly, segments of the population. For studies requiring a representative
sample, for example official national travel surveys, an understanding of
these factors is important. As the MOBIS study aims to analyze societal
impacts of mobility pricing to inform policy and decision making, obtaining
a representative sample was a key objective.

We report our experiences undertaking a tri-lingual, national-scale mo-
bility pricing survey and randomized controlled trial in Switzerland, com-
bining traditional survey methods and app-based GPS tracking. MOBIS
aims to understand the effects on travel behaviour of a) informing subjects
about congestion, health effects, and carbon emissions of their mobiliity,
and b) actually charging subjects the external costs associated with these
3 factors under a mobility pricing experiment. To do this, we examine
two different treatments - information and pricing. In the current political
discourse it is of interest to understand if information measures are found
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to have a similar impact as mobility pricing. On the other hand, evidence
for pricing would support calls to restructure current mobility taxes and
subsidies. In this paper, we focus on the survey method and the role of
app-based tracking. In particular, contributions include a detailed analysis
of the response rate over the duration of the study, and how it was impacted
by the differences between iOS and Android devices.

2.3 methodology

The 8-week study consisted of two consecutive 4-week phases, a control
and treatment phase respectively, book-ended by introductory and conclud-
ing online surveys. A pretest with a mail-out sample of 1,500 letters was
undertaken to estimate the expected response rate for the main study and
test the surveys and GPS tracking.

2.3.1 Initial recruitment

For the main study, a representative list of 60,000 addresses randomly se-
lected across the major agglomerations (in the German and French speaking
parts) of Switzerland from the Swiss Federal Office of Statistics was used.
Based on the response rate in the pretest, this address sample was skewed to
account for under-represented groups. Additionally, to achieve the desired
sample size of 3,500 study participants, a second wave of around 30,000

persons were contacted using addresses from a private vendor, yielding
a total of a little over 90,000 invitations. Only people living in an agglom-
eration area of Switzerland (excluding the Italian-speaking canton Ticino)
were invited to participate in the study.

The letter invited the recipients to fill in a screening-survey with transport-
related questions and, if they met the inclusion criteria, to participate in a
smartphone-based mobility experiment where they would receive 100 CHF
($100 USD) for participating for the entire 8 weeks. Neither the ‘mobility
pricing’ nature of the study nor the focus on the external costs of transport
was shared with the participants.

Two reminder letters were also sent in the first wave, 4 and 7 weeks
after the invitation letter was received, to those who had not responded to
previous letters. No reminders were sent in the second wave as the target
number of 3,500 participants had already been achieved.
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2.3.2 Introduction and final surveys

The initial survey was designed to determine a respondent’s eligibility
for the main tracking study and collect data that would be needed in the
calculation of external costs (such as mobility tool ownership, car type
and age, and some general attitudes towards transport policies). The final
survey included a series of stated-choice experiments and lifestyle and
values questions, as well as awareness questions to gauge if participants
understood the experiment and were therefore ‘knowledgeable’ participants.
Completion of the final survey was a condition for receiving the incentive.

2.3.3 Recruitment for the field experiment

The participants who completed the introduction survey were assessed
against the eligibility criteria for the field experiment. Specifically, partici-
pants

• had to use a car at least two days a week

• were restricted to the age of 18 to 65

• must be able to walk without assistance

• must own a smartphone

• were not allowed to drive in a professional capacity - i.e. postman/-
woman or taxi driver.

Those who met the requirements for the study and gave consent to par-
ticipate were sent an email with a unique registration code and a link to
download the Catch-My-Day app and participate in the tracking study.

2.3.4 Tracking app

The Catch-My-Day app is a location tracker for iOS and Android, which
uses the location services of the respective operating system. GPS tracks
are stored on the phone and uploaded to the MotionTag analytics platform,
where stages, travel modes and activities are imputed. The following modes
are detected the by Catch-my-Day app.

• Airplane
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• Bicycle

• Bus

• Car

• Ferry

• S-Bahn (Local train)

• Regional train

• Subway

• Train (other)

• Tram

• Walk

Those marked with an asterisk are not automatically detected, but selectable
by the user as a correction

• Boat*

• Carsharing*

• Motorbike/Scooter*

• Taxi/Uber*

Users can view their daily travel patterns on their phone in the form of a
logbook, validate the travel mode and activity purpose or indicate if a trip or
activity did not take place. The database stores both their correction and the
original algorithmic imputation. There are some user-interface differences
between the iOS and Android versions, which are most noticeable in the
trip validation interface.

Users of could view their daily travel log in the app, and correct any
incorrect travel mode imputations. Validation in the treatment phase was
still allowed, even for the pricing group. Disabling validation in the treat-
ment phase would have disadvantaged those affected by mis-detection,
especially if they had made corrections in the control phase, due to the
lower external costs of public transport. To counter any possible ‘gaming’ of
the experiment, an outlier analysis was performed before transferring the
incentive to the participants. No clearly suspicious behaviour was observed,
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(a) iPhone (b) Android

Figure 2.1: Trip/validation interface
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except for one participant who seemed to switch to riding his e-bike for the
entire second phase of the study. Figure 2.1 presents the validation interface
of the app for the respective operating systems.

Users were required to activate the app by creating an account, which
requires the provision of an email address and the choice of a password,
along with the unique registration code provided. Participants are not
required to validate their trips and activities, but were informed that this
was possible and would be appreciated.

To increase the retention rate, automated reminder emails were sent to
participants when they had not activated the app, or no data was recorded
for a certain number of days. A help-desk was set up for participants expe-
riencing difficulties. User-guides on correctly configure one’s smartphone
for the app were provided. Additionally, participants who did not record
data on at least 12 of the first 28 days were removed from the study, and
notified by email.

2.3.5 Treatment groups

The 8-week study period was divided into two 4-week phases. In the first
phase, participants were tracked using the app, and received weekly reports
on the kilometers traveled per mode. At the beginning of the second phase,
participants were randomly assigned to either the control group, or one of
the two treatment groups. The control group continued to receive the same
basic information on their behaviour, whereas both the information and
pricing groups received additional information on the externalities they
caused. Furthermore, participants in the pricing group were provided with
a mobility budget, equal to 120% of their external costs in the first phase,
from which their external costs in phase 2 were subtracted; with the balance
remaining transferred to them, as an incentive to reduce their externalities.
An example of the weekly reports is provided in Figure 2.3

These externalities were separated into health, environmental and conges-
tion costs, which were computed using a data pipeline run every evening.
For more details on the externality computation, please refer to Tcher-
venkov, Molloy, and Axhausen (2018). The calculations are based on the
HBEFA (Handbook for emissions analysis), relevant Swiss norms and the
IVT MATSim scenario for Switzerland (Hörl, Balać, and Axhausen, 2019).
Additionally, data collected from the introduction survey was incorporated
into the data processing pipeline to improve the computation: Informa-
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(a) First sections (b) Further sections

Figure 2.3: Weekly report to participants in the pricing group

tion on the participant’s main vehicle was used to calculate individualized
external costs.

2.4 results and discussion

In this paper, we present the results in terms of participation and the
collection of tracking data. The analysis of the field experiment is still
ongoing and will be presented elsewhere.

2.4.1 Response rates

Invitations to the study were sent by post to 90,090 persons. From this
sample, 23.70% completed the initial survey. This response rate was likely
elevated by the prospect of the 100 CHF incentive for the tracking exper-
iment, mentioned in the invitation letter (even though no incentive was
provided for participation in the introductory survey on its own). Only
31.89% of those who completed the introduction survey met the criteria for
the field experiment. This was predominately due to the minimal car-use
requirement. Many people (age 16 and over) in Switzerland neither have
access to a car (22%), nor a drivers license (18%) (BFS and ARE, 2017).
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The two reminder letters were also effective in the first wave. of the
5320 who registered, 2397 (45%) did so before a reminder letter was sent,
and 1793 (34%) and 1245 (23%) did so after the first and second reminder
respectively.

Of those who qualified, 78.06% agreed to participate. This compares
similarly to the other studies in Table 2.1. At the next stage, out of the
remaining 5364 participants, 1146 (21.4%) did not start tracking. Either they
either never installed the app, removed it before data was recorded, or were
unable to get it to work successfully. Of those who did track, the share with
an iOS device was 61%, much higher than the reported 44,4% national mar-
ket share in 2019 Comparis, 2019, indicating that relatively more Android
users were unable or unwilling to use app. Anecdotal evidence from the
staff on the study help desk also indicated that more participants had issues
installing the app for Android than iOS, and required assistance from the
help desk in doing so (Tchervenkov, Molloy, Castro Fernández, et al., 2020).

Finally, 3690 participants successfully completed the 8-week tracking
period, giving a completion rate of 69.4% for those that registered, and
4.06% overall. This is somewhere in the middle of the results from previous
studies, with the high incentive appropriately offsetting the long tracking
period.
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Figure 2.5: Kaplan-Meier survival curve by treatment group. The cross indicates
censoring of participants

2.4.2 Participant retention

To explore the retention rate of participants in the tracking phase, we
performed a survival analysis on the duration of tracking in the study. First,
a Kaplan-Meier approach (see Figure 2.5) shows the impact of the treatment
on the length of time which participants would track. Participants who were
automatically dropped out after phase 1 due to poor tracking compliance
but were still tracking at the end of phase 1 were censored (marked by a
cross). There is no significant difference between the three treatment groups
in their survival curves. A sharp decrease in survival is evident in the last
study week. As participants were informed at the end of the study that
they could delete the app, the last few days of tracking were sometimes not
collected before the app was deleted.

Although the participants in the study had a clear participation goal of 8

weeks, after which they would receive the incentive, the survival curve is
extremely linear. One would intuitively expect that the attrition rate would
be highest early on in the study, and flatten out as participants neared the
8-week goal. This appears to only slightly be the case, with the dropout
rate remaining constant throughout the study, even in the second phase.
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Furthermore, Figure 2.5) shows that the treatment didn’t affect the attrition
rate in the second phase.

A time-variant Cox proportional hazards model is to investigate the
impact of different factors on the participation duration (see Table 2.2 for the
model results). To account for time-dependent effects, the study period was
stratified into fortnightly windows. Those in high-income brackets (more
than 12,000 CHF/month) were more likely to stop tracking. Conversely,
those from larger households and those with tertiary education were more
likely to track for longer. A significant gender-based difference was only
observed in the final fortnight, where females were more likely to remain
in the study.

Contrary to expectations, there was no significant effect of age on the
hazard rate. This suggests that common concern about the feasibility of
tracking studies for older age groups is unfounded, at least up to the age of
65, the age limit in this study.

The coefficient on employment is also time-dependent. Those in the
workforce (i.e. excluding students, homeworkers and retirees) were more
likely to remain in the study throughout the first fortnight.

The participant’s mobile device played a much larger role. Having an
Android phone of any model increased the hazard drastically. However,
this effect was strongest in the first week. The effects were even larger for
Huawei models. The incompatibility of GPS loggers with Android (and
particularly Huawei devices) is already well known; however, here the effect
is quantified, and seen to be dramatic. The effect was also time-dependent,
with the most significant hazard in the first fortnight. At the end of the
second fortnight, participants who tracked insufficiently were removed from
the study - this explains the reduction in the Android hazard coefficient for
the third fortnight, when many of them could have been expected to stop
tracking, had they not been removed from the study.

2.4.3 Post-study retention

At the end of the tracking study, participants were told that they could
delete the app, but were also encouraged to continue using it if they wished.
Figure 2.6 shows the dropout rate for the whole study, including the post-
study period. The majority of the participants dropped out soon after the
study, but even 6 months after the study was completed, around 5% of
participants continued to use the app. Anecdotal reports from participants
indicated that they enjoyed having an overview of their travel, and that
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Figure 2.6: Post-study participation survival curve

it even continued to inform their mobility decisions. The impacts of the
mobile operating system continued even after the study, with the post-study
retention rate falling faster for Android users.

2.4.4 Participant engagement

Participants in the information and pricing groups were effectively treated
through information provided in a weekly email detailing their external-
ities and the costs incurred. Interactions with the emails were recorded
using standard email tacking techniques. Emails that remained unopened
were effectively missed treatments. Table 2.3 presents a overview of the
engagement with the email communications. The open rate did not change
drastically over the duration of the study. Participants in the pricing group
viewed their emails much more often than the control or information
groups. The information group also opened their emails repeatedly in the
first two weeks of phase two, before returning to a pattern similar to the
control group, whereas the pricing group continued to repeatedly open
their emails.

Participants in the treatment groups likely repeatedly reopened the emails
to check their externalities and remaining budget. We suggest that this
‘repeat opening’ behaviour is a useful indicator to measure the level of
engagement with the treatment.
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2.4.5 Trip mode and purpose validation

Participants were invited to use the validation interface to confirm the
detected mode and purpose of their trips and activities. This was optional,
but they were encouraged in the weekly email reports to do so. Even in the
second phase, participants were trusted to correct the mode detected by the
app. As the mode is crucial in determining the external costs deducted from
the mobility budget for the pricing group, this consequently gave them
the opportunity to ’game’ the experiment, by for example ‘correcting’ car
trips to another transport mode. To test for this, a regression analysis using
a zero-inflated negative binomial model was performed with the number
of corrections for a day as the dependent variable (see Table 2.4). A zero-
inflated model was used to accommodate the large number of participants
who did not correct any trips. While a significant increase in the number
of corrections was observed in phase 2, no increase in the number of
corrected trips specific to the pricing group was observed. Conversely, the
parameters are insignificant but negative. In fact, the information group saw
a significant reduction in the corrections in phase 2. One hypothesis is that
by receiving more information on their externalities in the weekly reports in
the second phase, participants felt discouraged from correcting their trips
in the app. Also, no indication was given to participants that they would be
penalised for any suspicious behaviour. The fact that no significant change
in the average correction rate was seen between treatment groups, suggests
that the trust in the participants was justified.

In recent years, state-of-the-art machine learning algorithms for mode and
activity detection have achieved accuracy rates of over 90%, depending on
the approach (Nikolic and Bierlaire, 2017; Wu, Yang, and Jing, 2016). Hence,
we made validation of the trip purpose and mode optional for participants,
in order to ensure a minimal response burden over the 8 weeks. 85.7% of
participants confirmed at least 1 of their trips; however, of those who did
use the validation functionality, 20.4% of iPhone users and 44.1% of Android
users did not make a single correction over the 8 weeks, respectively. Even
with state-of-the-art accuracy rates, such a validation behaviour is extremely
unlikely. As such, we can assume that these participants did not use or
understand the validation interface correctly, and these participants are
therefore removed from the following analysis on the mode detection
performance. It also indicates that the iPhone validation interface was much
more intuitive.



44 mobis : response rates and survey method results

2.4.6 Mode detection performance

The mode detection provided by the tracking app was a key component
of the MOBIS study. As far as the authors aware, this is the first study
to incentivise changes in mobility behaviour based on the output of a
mode detection algorithm. As seen in Table 2.5, the algorithm worked
exceptionally well on location data from both operating systems. There is
small difference in accuracy between iOS and Android, with iOS being on
average slightly better (92.23% vs 92.10%) with a p-value of 0.01, test of equal
proportions). However, the differences in accuracy are more observable at
the categorical level. The iOS performs better on car, local rail, regional rail,
tram and walk. However, the differences are only 1-3% in accuracy. Note
that ‘Rail’ groups all rail modes together for conciseness. It is also worth
noting that while the accuracy of some individual rail modes is quite low,
the overall rail accuracy is very good. The main confusion was between
different rail mode types.

Table 2.6 presents the confusion matrix between the modes. Here we
can see that the algorithm often mis-detected car travel as bus travel. For
conciseness, the category ‘Other *’ includes those modes which could be
manually selected by the participant, but which were not automatically
detected. These included: Carsharing, Taxi/Uber, Motorbike/Mopeds, and
Gondolas. Most of these were detected as car travel, and the 1,500 ‘Bicy-
cle’ trips which were corrected to ‘Other’ were predominately trips by
motorbike or moped.

These mode detection results confirmed the indications of our pretest
that the automatic detection could indeed be used to calculate the external
costs of travel with sufficient accuracy and determine the phase 2 budget
and deductions based on these. If the accuracy had been too low, more
participants would have dropped out of the study, seeing it as ‘unfair’ if
the budget and deductions did not match their travel behaviour.

2.4.7 Identified mode detection issues

As previously mentioned, the quality of the mode detection was key to the
mobility pricing field experiment. A few issues were identified which are
worth considering in future studies that apply algorithmic mode detection.

The first consideration concerns those leisure activities that are movement
based over a larger area, such as a bike tour, hiking and skiing. Skiing is
especially important in alpine areas: In Switzerland, the percentage of
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the population that ski regularly is 37% (Statistica, 2018). Gondolas and
chairlifts move at between 15 and 50km/h, meaning that these trips are
often confused for car travel unless the algorithm has been specifically
calibrated. On the downhill, skiers reach similar speeds. Taking a strict
definition of a transport trip, such movement-based activities should be
excluded from the calculation of external costs. If they were to be included,
a person could end up being charged for a long hike in the wilderness
on the weekend - which would arguably not be in the spirit of a mobility
pricing scheme.

The second consideration is trip chaining. Shen and Stopher (2014) note
that all methods to date (albeit in 2014) did not consider trip chains when
detecting the transport mode, and only considered each individual stage.
While the mode detection provided by the app was sufficient for the pur-
pose of the mobility pricing field experiment, anecdotal evidence indicates
that considering trip chains could further improve the performance of the
algorithm.

2.5 conclusion

This work makes multiple contributions to the literature on conducting
tracking-based mobility studies, and demonstrates the feasibility of running
an incentive-based field experiment using a tracking app. We analysed the
effect of the mobile device operating system on GPS tracking studies, and
identified certain areas where the difference in OS needs to be considered
when undertaking such studies. The impact on participant retention is
significant. While this effect is strongest at the start of the study, it per-
sists throughout. The on-boarding of Android users into the study took
significant resources, and we suggest this be accounted for when planning
and budgeting such studies. Correspondence by email was effective, and
participant engagement did not decline over the 8 weeks. The mode detec-
tion algorithm was also sufficiently accurate to support the calculation of
external costs in the field experiment. Finally, concerns that participants
would manipulate the study by ‘correcting’ their trips in the app were
unfounded, with participants adhering to the spirit of the study. Socio-
demographic differences in the correction rate do, however, indicate that
some participants were more engaged than others.
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Beta (SE) HR (95% CI) p

Income > 12,000 CHF 0.28 (0.09) 1.32 (1.10, 1.58) 0.003 **

Household size -0.07 (0.03) 0.93 (0.87, 1.00) 0.038 *

Age (decades) 0.00 (0.03) 1.00 (0.95, 1.06) 0.883

Tertiary education -0.19 (0.08) 0.83 (0.70, 0.97) 0.022 *

German speaking 0.03 (0.09) 1.03 (0.87, 1.22) 0.752

Female

fortnight=1 0.02 (0.15) 1.02 (0.77, 1.35) 0.895

fortnight=2 -0.07 (0.20) 0.93 (0.62, 1.39) 0.721

fortnight=3 -0.04 (0.22) 0.96 (0.62, 1.48) 0.841

fortnight=4 -0.28 (0.12) 0.76 (0.60, 0.96) 0.022 *

Android

fortnight=1 0.87 (0.16) 2.38 (1.73, 3.26) 0.000 ***

fortnight=2 0.46 (0.22) 1.58 (1.02, 2.45) 0.040 *

fortnight=3 -0.01 (0.25) 0.99 (0.60, 1.62) 0.960

fortnight=4 0.41 (0.13) 1.51 (1.17, 1.94) 0.002 **

Huawei

fortnight=1 0.38 (0.20) 1.47 (0.99, 2.18) 0.057 .

fortnight=2 0.37 (0.32) 1.45 (0.78, 2.70) 0.239

fortnight=3 0.29 (0.41) 1.33 (0.59, 2.98) 0.487

fortnight=4 0.15 (0.21) 1.16 (0.77, 1.75) 0.465

Employed

fortnight=1 -0.33 (0.16) 0.72 (0.53, 0.97) 0.033 *

fortnight=2 -0.07 (0.23) 0.94 (0.60, 1.47) 0.775

fortnight=3 0.24 (0.27) 1.27 (0.75, 2.15) 0.369

fortnight=4 0.05 (0.14) 1.05 (0.80, 1.38) 0.718

AIC 10484.33

Coordance 0.602

Num. events 655

PH test 0.76

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2.2: Cox porportional-hazard model
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Email & n % Opened Times opened Time to open (h)

Treatment (mean) median (IQR)

Welcome

- 5475 82.36 2.78 8.50 (2.88 - 20.33)

Report 1

4168 84.88 2.13 7.37 (2.53 - 19.22)

Report 2

4132 81.03 1.87 6.66 (2.59 - 18.37)

Report 3

4105 78.59 1.83 6.19 (2.51 - 17.85)

Report 4

Control 1247 79.23 1.62 5.40 (2.30 - 14.65)

Info 1262 83.68 1.99 5.40 (2.40 - 16.83)

Pricing 1222 82.90 2.64 6.06 (2.35 - 17.57)

Halfway

Control 1250 76.80 1.60 5.60 (2.41 - 15.54)

Info 1263 83.29 1.72 5.50 (2.53 - 17.35)

Pricing 1222 80.93 2.17 5.51 (2.24 - 17.15)

Report 5

Control 1243 76.43 1.55 5.96 (2.42 - 15.37)

Info 1255 80.80 1.90 6.28 (2.42 - 17.29)

Pricing 1213 80.54 2.24 6.94 (2.66 - 19.82)

Report 6

Control 1238 77.06 1.87 5.78 (2.35 - 16.89)

Info 1252 78.12 1.87 5.87 (2.57 - 17.32)

Pricing 1208 79.22 2.09 6.24 (2.41 - 17.87)

Report 7

Control 1235 74.98 1.61 5.83 (2.35 - 15.83)

Info 1248 77.64 1.66 6.08 (2.44 - 18.16)

Pricing 1205 80.25 2.02 6.07 (2.33 - 17.49)

Report 8

Control 1231 79.69 1.50 6.11 (2.55 - 17.01)

Info 1246 78.33 1.46 6.41 (2.49 - 18.85)

Pricing 1200 81.50 2.01 6.55 (2.49 - 18.80)

Table 2.3: Engagement with various emails through the study
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Count model (1) Zeros model (2)

Corrections/day Correction/day > 0

Constant 0.744 (0.032)∗∗∗ 1.504 (0.046)∗∗∗

Phase 2 0.047 (0.014)∗∗ 0.050 (0.020)∗

Age (decades) −0.024 (0.003)∗∗∗ −0.014 (0.005)∗∗

Male 0.074 (0.012)∗∗∗ 0.047 (0.017)∗∗

Treatment

Control - -

Information −0.029 (0.022) −0.053 (0.032)

Pricing −0.083 (0.069) −0.335 (0.103)∗∗

Education

Mandatory - -

Trade/traineeship (baseline −0.098 (0.023)∗∗∗ −0.220 (0.033)∗∗∗

Higher education −0.014 (0.023) −0.321 (0.033)∗∗∗

Income (CHF per month)

Less than 4000 - -

4000 <= 8000 −0.134 (0.022)∗∗∗ −0.208 (0.032)∗∗∗

8000 <= 12,000 −0.203 (0.022)∗∗∗ −0.324 (0.032)∗∗∗

12,000 <= 16,000 −0.230 (0.024)∗∗∗ −0.429 (0.035)∗∗∗

More than 16,000 −0.124 (0.025)∗∗∗ −0.360 (0.038)∗∗∗

Interactions

Control * male - -

Information * male −0.027 (0.028) 0.139 (0.040)∗∗∗

Pricing * male −0.004 (0.027) −0.001 (0.040)

pricing * mandatory - -

pricing * trade/traineeship −0.113 (0.057) 0.099 (0.081)

pricing * higher education −0.166 (0.057)∗∗ −0.023 (0.082)

pricing * less than 4000 - -

pricing * 4000 <= 8000 0.174 (0.059)∗∗ 0.278 (0.084)∗∗∗

pricing * 8000 <= 12,000 0.285 (0.058)∗∗∗ 0.354 (0.083)∗∗∗

pricing * 12,000 <= 16,000 0.187 (0.065)∗∗ 0.456 (0.092)∗∗∗

pricing * more than 16,000 0.128 (0.068) 0.368 (0.099)∗∗∗

Observations 147,450

Log Likelihood −127,206.400

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 2.4: Zero inflated negative binomial model of the validation behaviour
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% Correct

Mode Android iOS

Airplane 99.48% 98.86%

Bicycle 81.59% 79.14%

Bus 66.98% 66.82%

Car 92.98% 93.15%

Rail 89.50% 91.05%

Local train 88.67% 90.18%

Regional train 71.35% 73.40%

Subway 93.56% 92.53%

Train 63.13% 63.78%

Tram 95.01% 96.64%

Walk 95.56% 97.21%

Table 2.5: Comparison of the MotionTag mode detection performance bewteen
iOS and Android

Confirmed mode

Airplane Bicycle Boat Bus Car Rail Tram Walk Other Total

Predicted

Airplane 2,113 - - - 22 - - - - 2,135

Bicycle 4 26,201 136 438 1,499 177 149 2,771 1,500 32,875

Bus 1 435 2 35,713 15,085 140 280 889 865 53,410

Car 372 2,495 741 8,028 366,649 3,314 1,950 2,834 7,433 393,816

Rail 64 56 85 1,748 7,298 60,270 691 258 298 70,768

Tram - 49 2 128 396 60 20,174 149 16 20,974

Walk 80 3,807 456 1,224 9,960 868 868 514,944 638 532,845

2,634 33,043 1,422 47,279 400,909 64,829 24,112 521,845 10,750 1,106,823

Table 2.6: Confusion matrix of mode detection accuracy





3
C A L C U L AT I N G E X T E R N A L C O S T S O N G P S T R A C E S

full title

Imputing the external costs of travel using GPS travel diaries: Towards a
first-best mobility pricing scheme

authorship

Joseph Molloy, Christopher Tchervenkov and Kay W. Axhausen

This chapter has been submitted to Transportation Research Part D: Transport
and Environment

55





3.1 introduction 57

3.1 introduction

It is increasingly recognized that both the environmental and social costs of
travel need to be internalized to manage the demand on already strained
transport networks by encouraging shifts in travel patterns. In this direction,
there is a growing body of evidence that informal feedback on energy
use can encourage more efficient behaviour, both regarding home energy
use (Faruqui, Sergici, and Sharif, 2010) and travel behaviour (Fujii and
Taniguchi, 2006; Taniguchi et al., 2003). However, providing accurate and
individualized feedback on external costs in transport is particularly chal-
lenging, primarily due to the heterogeneous nature of travel behaviour and
the difficulties inherent in data collection at the individual level.

The main external costs of transportation can be divided into two groups:
those that affect other users in the network, namely congestion and accident
risks, and those that affect those outside the system such as noise and
emissions (Button, 2004). These two categories are called intra- and inter-
sectoral, respectively. The impact of congestion is primarily the loss of time
spent waiting or slowed down in traffic, whereas emissions and noise have
both environmental and health consequences.

Most of the literature on external costs in transportation focuses on road
transport, partly because this is where the external costs are the highest
(Maibach et al., 2008). The external costs arise because road users only
consider their own costs of travel - known as the Marginal Private Cost
(MPC) - and do not consider their own contribution to the total societal
costs of road usage - known as the Marginal Social Cost (MSC), since the
private costs (in time) of each trip rises with the number of drivers in the
network. This is the primary intra-sectoral external cost. Combined with
the inter-sectoral costs of pollution and noise, the unregulated level of travel
exceeds the optimum for the network. As such, by imposing a price or tax
equal to the difference between the MPC and MSC, the benefit to society is
maximized and under ideal conditions, a pareto-optimum reached, where
no one can be better off without disadvantaging another.

Certain constraints are required for this theory to hold. These include
complete perfect information on prices and costs, and existence of the
network within a broader economic system without market failures. Verhoef
(2000) identifies the following components that need to be considered by
an optimal charging system for road transport that encapsulates various
external costs:

1. The vehicle technology used
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2. The actual state and age of this vehicle

3. The time of driving

4. The place of driving

5. The actual route chosen

6. The driving style

Verhoef also notes that in reality, such first-best pricing can only be
hypothetical, due to the level of surveillance required, and that practical
schemes in transport will require second-best pricing. However, he argues
that in the long-run, a scheme will benefit from being designed as closely
as possible to these first-best principles.

Currently, when people choose to drive on a road, they usually only
have to pay with their private time and for car usage costs, and not the
societal costs of their trip, namely, the additional costs the driver imposes on
other drivers by increasing demand along the route. From economic theory,
internalizing this cost in the form of a tax would reduce congestion and
provide an overall social benefit (Arnott and Small, 1994; Pigou, 1920). There
are some examples where pricing policies have been implemented to control
congestion, such as the area-based congestion charge in London (Leape,
2006) or the cordon system in Stockholm (Eliasson et al., 2009). In the United
States, high-occupancy tolling on single highway segments is increasingly
common, where one or some of the lanes are priced dynamically according
to congestion, with prices changing as regularly as every 3 minutes (Janson
and Levinson, 2014). However, the application of dynamic pricing to a
whole network faces steep political and technical hurdles, not least of
which is the design of a suitable pricing scheme that captures the complex
interactions between users experiencing and causing congestion.

As a step towards better understanding these interactions, this paper
presents a methodology for estimating the individualized external costs of
car travel based on the output from GPS-based travel diaries. It is assumed
that the GPS tracks have already been segmented into stages, and the
transport mode identified. This approach was developed for the MOBIS
mobility pricing study (Molloy et al., 2021), an 8-week study using GPS
tracking where participants were presented with their external costs. The
resulting software pipeline also supports per-kilometer values for other
modes, such as walking, cycling and public transport, where a link-based
approach is not feasible.
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The paper proceeds as follows: section 3.2 covers the related literature
on external costs and various approaches available. Section 3.3 describes
the model methodology and its building blocks, referred to from hereon
as the externalities pipeline, at a high level, before describing the respective
methodologies for emissions and congestion in more detail. In Section 3.4,
the methodology is validated against reference values from the literature,
and applied to GPS data collected during MOBIS study. The results are
discussed in section 3.5 and section 3.6 concludes.

3.2 background

Building on Pigou’s two road model (Pigou_1920), Vickery’s bottleneck
model (Vickrey, 1963) has become a key model for examining congestion
effects in a network (Arnott, De Palma, and Lindsey, 1993; Van Den Berg
and Verhoef, 2011), as well as social-optimums via pricing (Chakirov, 2016)
and pricing schemes (Laih, 1994). However, Arnott et al. (2001) note that
traditional macroscopic models focus on link congestion, while ignoring
or simplifying other elements of congestion such as modal congestion,
parking, interactions with pedestrians and spillback effects. In particular, the
importance of value of time heterogenity among individuals in road pricing
models has been recognized by numerous researchers (Small and Yan, 2001;
Verhoef and Small, 2004). Modern traffic microsimulation frameworks such
as MATSim (Horni, Nagel, and Axhausen, 2016) are specifically designed
to incorporate many of these various heterogeneities, making them useful
for such modelling.

Fellendorf and Vortisch (2000) developed one of the first approaches
for the microsimulation of pollutant emissions. A traffic flow model is
used to calculate the speed and acceleration of each vehicle at a 1-second
frequency, and available engine maps to calculate the emissions. More
recently, Kraschl-Hirschmann et al. (2011) coupled the microscopic traffic
flow simulator (VISSIM) with a microscopic emissions model (PHEM) to
investigate the impact of traffic signalling on emissions. Ma, Mitchell, and
Heppenstall (2015) used the output from a travel-diary survey to build a
microsimulation of Beijing, and estimated the CO2 emissions and possible
reductions.

Kaddoura and Kickhöfer (2014) developed an agent-based marginal-cost
pricing approach for congestion and applied it successfully to a large-
scale scenario of Greater Berlin (Kaddoura, 2015). When considering the
internalization of congestion costs, a particular contribution of this work was



60 calculating external costs on gps traces

to assign the external congestion costs to the causing agents. In particular,
they note that it is simple to calculate the incurred time-loss through
congestion for each agent, but much more challenging to map it back to the
causing agents. The approach calculates each agent’s contribution to the
delays on travelled links using a queue-based node-link model including
spillback.

In real networks, such an approach would require knowing the location
and of every driver connected to a particular incident of congestion, to
determine who was affected. Quantifying the monetary value of the delay
would then require knowing each affected driver’s willingness to pay for
a unit of travel time savings, a measure known as the value of travel time
savings (VTTS). This is clearly unrealistic as it would involve tracking a
large proportion of the population.

3.2.1 MATSim and the Switzerland scenario

MATSim is a powerful tool for performing agent-based transport simula-
tions. A population is represented by a set of agents who try to optimize
their daily travel plan over repeated iterations of the model, through a
process called re-planning. It can handle scenarios consisting of millions
of agents travelling on a city, regional or national transport network. It is
designed as a modular event-based framework, where the actions of agents,
such as a departure, arrival, link entry or exit, are events which are passed
around the framework.

This event-based design makes the traffic flow simulation framework, sep-
arate from the re-planning component, well suited for processing individual-
level mobility data at the trip level. The traffic flow simulation is based on
a first-in first-out queue model where each link is represented as a queue
with three attributes: the non-congested (freespeed) travel time t f ree, the
flow capacity c f low and the storage capacity of the link cstorage. The link
queues are updated typically every second, and agents are moved from one
link to the next if the freespeed travel time on the link has passed, enough
time has passed since the last vehicle left the link (the inverse of c f low), and
there is enough capacity cstorage on the following link. Importantly, an agent
who leaves a link prevents all following agents from leaving that link for
the time of 1/c f low, and the tracking of agents restricted by cstorage on the
incoming links allows the consideration of spillback on congestion.

The IVT Switzerland Scenario builds on the work of Bösch, Müller, and
Ciari (2016) to provide a MATSim scenario for all of Switzerland (Hörl, 2020)
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with a synthetic population for 2019. It represents a typical working day in
Switzerland. As a MATSim scenario, the population consists of individual
agents, each with daily travel plans (preferences) and social-demographic
characteristics. These agents represent the entire population of Switzerland
on a network generated from OpenStreetMap (Haklay and Weber, 2008).
The scenario is available in 1%, 10% and 100% samples with respectively
increasing runtimes (Hörl, 2020).

The simulations here are carried out using a discrete mode choice ap-
proach developed by Hörl, Balać, and Axhausen (2019). The initial travel
demand, which comes from census data, is routed along the shortest path
based on non-congested travel times. Then, at each iteration, a small fraction
of agents are selected for re-planning. Each feasible mode alternative for
each agent is routed along the shortest path based on the updated travel
times from the previous iteration, and one is selected based on a discrete
mode choice model. This process is repeated over several iterations until
equilibrium.

3.2.2 Analysis of road transport externalities in Switzerland

Numerous sources are available for the analysis of external costs in Switzer-
land, including standards, government reports and databases. These sources
guide and inform the evaluation of new and existing infrastructure projects.
The Swiss Federal Office for Spatial Development (ARE) (ARE, 2020) pro-
duced a report on the external costs and benefits of transport in Switzerland,
built on the methodology developed by Ecoplan / Infras (2019). It presents
the most recent external cost-benefit analysis for the Swiss transport system,
primarily focusing on external environmental, health and accident-related
costs. Specifically, external costs for 12 different cost categories are com-
puted, differentiated according to three different perspectives: transport
mode (road/rail/air/water, passenger/freight, vehicle type), transport user
and heavy vehicles.

For the modelling of road transport pollutant emissions in Switzerland
(and other European countries), emission factors are commonly taken from
the Handbook Emission Factors for Road Transport (HBEFA) (De Haan and
Keller, 2004; Keller, Hausberger, et al., 2017). The HBEFA database contains
emission factors for a range of vehicle categories and traffic situations,
differentiated by emission type, pollutant and year. The HBEFA is the
standard for road pollutant analysis in Germany, Switzerland and Austria,
and is supported by the European Commission.
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The Swiss Federal Office for the Environment (FOEN) (FOEN, 2010) also
use the HBEFA to provide a detailed analysis of past and predicted future
pollutant emissions, covering road transport in Switzerland from 1990 to
2035. Emissions values are calculated for three emissions types: emissions
when the engine is in hot operating condition, cold-start emissions and
evaporation emissions. The calculation of these values require both traffic
volume data as well as the emissions factors from the HBEFA for each
emission type. The report models the development of the vehicle fleet com-
position, vehicle specific mileage and emission standards trends, resulting
in traffic volumes (mileage and start/stop processes) differentiated by vehi-
cle category, emission standard and road category. These traffic volumes
are then multiplied by the corresponding emissions factors (i.e. for road
gradient and temperature) to obtain the final emissions values.

Concerning congestion specifically, Keller and Wüthrich estimate the
external traffic delay costs for the years 2009 to 2014 (Keller and Wüthrich,
2016) and then again from 2015 to 2017 (Keller and Wüthrich, 2019). In
this study, vehicle hours of delay for Switzerland were estimated and the
proportion attributable to heavy vehicles determined. From 2013 onwards,
this was achieved by combining and aligning INRIX traffic flow data and
traffic demand data from the National Passenger Transport Model. The
time lost per road section was calculated by subtracting the free-flow travel
time from actual travel time, where traffic jams are considered to occur
only when the actual speed is less than 65% of the free-flow speed. This
approach only considers flow congestion, and not queuing delays. For the
other years, online data from the Swiss Federal Roads Office (FEDRO)
counting stations was used. A summary of their results is provided in
Table 3.1. The values provide a useful estimate of delay costs in Switzerland.
However, the use of an "at-least" approach will tend to underestimate the
lost time and resulting associated delay costs (Keller and Wüthrich, 2016).
This is particularly the case for non-motorway road segments, where long
road lengths and imprecise speed data can influence results.

For the monetization of externalities, the Swiss Association of Road and
Transportation Experts (VSS) has published a series of norms (SN 641 82* :
Cost Benefit Analysis for Road Traffic) aimed at guiding the assessment of
monetary effects and the cost benefit analysis of transport projects, policies
and regulations. Norms SN 641 820 (Basic Standard), SN 641 822a (Travel
Time Costs for Passenger Traffic) and SN 641 828 (External Costs) are of
particular interest in the context of external cost evaluation. They provide
standard values for time costs and willingness to pay per vehicle type and
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Congestion costs (M CHF/year)

Motorway Non-motorway All roads

Year LMV HMV LMV HMV LMV HMV Both

2010 608.7 61.4 449.9 17.0 1,058.6 78.4 1,137.0

2011 634.3 63.8 454.4 17.2 1,088.7 80.9 1,169.7

2012 672.2 67.8 458.8 17.3 1,131.0 85.1 1,216.0

2013 645.7 65.5 462.7 17.4 1,108.4 83.0 1,191.3

2014 690.6 70.4 466.6 17.6 1,157.1 87.9 1,245.1

2015 736.6 71.0 468.3 17.7 1,204.9 88.6 1,293.5

2016 780.9 76.9 471.4 17.8 1,252.3 94.7 1,347.0

2017 840.6 87.6 473.8 17.9 1,314.4 105.5 1,419.9
Estimated congestion costs for Light (LMV) and Heavy

Motorized Vehicles (HMV), Keller and Wüthrich (2019), p.20

Table 3.1: Estimated congestion costs for 2010-2017

trip purposes as well as standard methods for evaluating the monetary
impacts of air pollution and climate impacts.

3.2.3 Limitations of the aggregate values

The values from the Swiss standards are only available as CHF/km or
CHF/h. Although some external costs are given under a urban/rural or
motorway/non-motorway classification, there is no temporal or spatial vari-
ation. One hypothesis of this paper is the following: For private car travel,
the variation in external costs is significant, and justifies a disaggregate
approach to the calculation of external costs. In the following work, this
is done for the calculation of private car emissions and congestion delays.
For noise, this was found to be too computationally expensive to do on a
national scale, and hence per-kilometer values from the norms are still used.
Other researchers have previously identified the usefulness of disaggregate
noise models (Kaddoura, Kröger, and Nagel, 2017; Kuehnel and Moeckel,
2020). However, their noise calculations were carried out only on a city
level and are based on the German RLS-90 approach (Bundesminister für
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Verkehr, 1990; Forschungsgesellschaft für des Straßenverkehr (FGSV), 1997),
which differs from the norms used in Switzerland.

3.3 methodology

In this section, the methodology for estimating externalities on GPS data is
presented. The approach requires that the GPS data be already segmented
into trip-stages and labelled with the transport mode used. This can be
done with one of many methods. For an overview, see (Zheng, 2015). In the
case of this paper, the data was segmented and labelled with the transport
mode by the GPS tracking app ‘Catch-my-Day’ (MotionTag GmbH, 2019a),
developed by MotionTag GmbH (MotionTag GmbH, 2019b).

The methodology requires a few static data inputs for the calculation
of various externalities. Reference values for both emitted air pollutants
and caused congestion are required. For the calculation of emissions, the
HBEFA database (version 3.3) is used (Keller, Hausberger, et al., 2017). For
congestion, average 15-minute-interval values of the delay caused by a
vehicle present on that link are calculated for each link using a 10% sample
from the 2019 MATSim scenario for Switzerland (see Section 3.2.1). This is
done using the approach of Kaddoura and Kickhöfer (2014), described in
more detail in section 3.3.5.

A multistage pipeline has been developed for estimating car-based exter-
nalities on labelled GPS traces using the MATSim framework. The pipeline
consists of the following steps, described in more detail below:

1. Cleaning of GPS data

2. Map matching to the MATSim network using Graphhopper

3. Calculation of link entry and exit times

4. Conversion to MATSim events

5. Estimation of externalities on MATSim events

6. Monetization of the externalities

More broadly, the pipeline is grouped into two stages: the first creates a
series of MATSim events representing the map-matched path of the GPS
traces; the second processes those events using the previously mentioned
reference values to estimate the generated emissions and delays.
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Figure 3.1: MATSim-based externalities pipeline

Figure 3.1 illustrates how data flows through the externalities pipeline.
The objects in bold are those developed as part of this paper. Dotted lines
indicate data inputs from static sources, and solid lines are the flow of
the GPS-based trip data through the model. The lack of flows inside the
MATSim framework is intentional, as those modules are built on top of the
MATSim event framework. This is discussed further in Section 3.3.8.

3.3.1 Data cleaning

GPS data accuracy can vary considerably depending on the sensor used,
the surrounding environment and even geographical location. Hence, any
GPS points not within 200m of a segment of the Swiss road network are
removed before map matching.

3.3.2 Map matching with Graphhopper

To map trip legs to the MATSim network, the Graphhopper (Graphhop-
per, 2018) map-matching library was modified to support matching to a
MATSim network instead of OpenStreetMap. Graphhopper uses a Hidden
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Markov Model (Newson and Krumm, 2009) to identify candidate links for
each GPS point, with an error radius, σ, which in our case was set to 200m -
equivalent to the filtering distance used to exclude GPS points.

An unlimited distance between consecutive points is allowed. The Graph-
hopper routing engine then identifies the best route between the set of
candidate links, where a minimum of two-matched GPS points are required.
However, the standard implementation of Graphhopper does not calcu-
late the entry and exit timestamps for each link in the network, which
are needed to calculate the time spent and average speed on each link.
Additionally, in the absence of high-frequency GPS measurements or addi-
tional sensor information, there may be insufficient GPS measurements to
pinpoint the entry and exit times for each link. The MATSim compatible
version of Graphhopper was been extended to return the entry and exit
times for each link, including links where few or no GPS measurements are
available.

3.3.3 Calculation of link entry and exit times

A trip leg contains a sequence of links L with the set of GPS points P(l)
matched to each link l. For convenience, let the first and last GPS point
on each link in the set L be pl,s and pl,e respectively. The start and end
links of a trip leg always have at least one GPS point associated with them,
while other links may have none or more GPS points. Hence, trip legs are
divided into sets of consecutive links L′, beginning at l′1, where l′2..k have
no GPS points. The GPS recorded travel time over the links in L′ is then
proportionally allocated based on the non-congested (freespeed) travel time
of each link L′ for which there are no measurements, where lk+1 is the next
non-empty link.

Let the projection of GPS point pl,i onto link l be p′l,i. t(p) gives the time
at point p. t_link(l) gives the travel time on link l, t_gps(a, b) gives the
recorded time between two GPS points a and b and t_network(a, b) gives
the summed travel time over a set of links in the network. A helper function
t_between(a, b) returns the time needed to travel between projected points
and the vertices of a link l, travelling at the freeflow speed for that link: for
example, from p′l,e to the end of the link; or the start of the link to the first
projected point on that link p′l,s.

In MATSim, the assumptions hold that an agent always starts and ends
somewhere on a link. Hence, only the exit time for the first link and the
entry time for the last link need to be calculated. Additionally, entry_t(lj) =
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exit_t(lj−1), ∀j = 1..n. As such, the algorithm can be separated into two
cases:

• First Link For the first link l1,
exit_time(l1) = t(p′l1,e) + t_between(p′l1,e, l1)

• Other Links
entry_time(lj) = exit_time(lj−1)
if P(lj) = ∅
then
exit_time(lj) = entry_time(lj) + t_gps(p′lj−1,e, p′lk ,s) ·

t_link(lj)

t_network({i,...,j,...,k})
where li and lk are the most recent and next link with P(lk) 6= ∅,
respectively
else exit_t(lj) = entry_t(lj) + t_between(lj, p′lj ,e

)

The sequence of links with entry and exit times are then converted to valid
MATSim events for each person and date.

3.3.4 Estimation of emission externalities

To estimate the externalities of each trip leg, the generated events are
processed using the MATSim framework, extended with two additional
modules. The first, developed by Hülsmann et al. (2011) and Kickhöfer and
Nagel (2016), applies the HBEFA factors to calculate the emitted pollutant
amounts incurred on each link, based on the observed travel speed on that
link. The emissions factors are taken from the HBEFA database (version
3.3). To this module a few extensions have also been made. The module
was originally designed to work with simulation output from MATSim,
where real world boundary conditions (speeding) and data artifacts are
not present. Hence, average speeds on each link are now capped at the
freespeed of the link. Furthermore, the road types for assigning emissions
factors are extracted from OpenStreetMap, rather than a VISUM model, as
was done in the original Berlin Scenario. These improvements have been
contributed back to the MATSim codebase, in accordance with open-source
principles of the MATSim framework.

The HBEFA provides four traffic states, free-flow, heavy, saturated and
stop&go, while MATSim considers only two in its queuing model - free-flow
or queuing (to exit the link). Hülsmann et al. (2011) align these by assigning
the difference between the actual travel time and the free-flow travel time
on a link (the congestion) to the HBEFA stop&go traffic state, and the
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rest to free-flow. In doing so they ignore the heavy and saturated states.
However, in the original paper, they also suggest an alternative version,
which accommodates all 4 HBEFA traffic states, using the average speeds
of each traffic state provided in the HBEFA. In this paper, we implement
this method, allowing for all 4 HBEFA traffic states to be considered in the
emissions model.

The emissions module outputs quantities in non-monetized terms. These
are then converted to monetary damages using the most current norm
values for Switzerland derived from the “Nachhaltigkeits - Indikatoren
für Strasseninfrastrukturprojekte” (NISTRA) (FEDRO, 2017), which is itself
based on the Swiss Standard SN 641 820 (VSS, 2013). For this work, the
values were revised for the year 2019, and the values used are presented
in Table 3.2. For PM10 emissions, distinct normative values were available
for urban and rural areas. Links in the network were assigned the rural
or urban classification based on the Swiss building codes (ARE, 2017).
Links in unbuilt areas were assigned as rural, and all others as urban. The
assignment was done based on the midpoint of the link.

Emission Aspect Value Unit

Scenario year 2019

CO2 Climate Costs 136.08 CHF/ton ab

PM10 Costs (Healthcare)
Rural 515,497 CHF/ton ab

Urban 1,358,461 CHF/ton ab

NOx Regional 7,109 CHF/ton ab

VTTS 25.77 CHF/h c

a FEDRO (2017) - updated for 2019,
b metric tons, c scaled nominal wage rate from a

Table 3.2: External costs of emissions

The NISTRA does not specify whether its monetization values are average
or marginal. However, it is widely recognized that for air pollution costs,
the marginal costs are virtually the same as the average costs, as numerous
epidemiological studies have shown that the relationship between pollutants
and health effects are almost linear (Van Essen et al., 2019).
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3.3.5 Estimation of congestion externalities

The calculation of the experienced delay is a simple affair, if one makes
the broad assumption that all delay is attributable to other users in the
system, and not external causes such as signal control, rogue pedestrians
and extraordinary events. However, calculating the true caused delay to
other users in the network would require GPS traces for all users of the
transport network. As such we use an average model of caused delay from
the output of the MATSim scenario for Switzerland. This method gives the
average marginal external cost for travelling on each link in a certain time
window.

The approach of Kaddoura and Kickhöfer (2014) is used to calculate the
caused congestion on each link by an agent. The approach has a number of
diverging implementations, and in this paper we apply version 3, where
the delays caused to each agent are allocated to the agents ahead in the
queue until the delay is fully internalized. For each link in the network,
the entry and exit times of each simulated agent are stored as a queue of
potential delay-causing agents. Each time an agent exits a link with a delay,
this queue is iterated through, and each causing agent pays for 1/c f low,
the delay they caused on that link, until the delay is internalized. If an
agent exits a link without delay, the previously stored queue on that link
is reset. Any remaining non-internalized delay is considered to be a result
of cstorage, which is carried over to the next link closer to the bottleneck
and then distributed to the stored queue for that link. In this manner, the
delays caused by an agent to other agents on other links in the network can
be accounted for. For a specific example of how this algorithm works, the
reader is referred to Section 3.2 of (Kaddoura and Kickhöfer, 2014).

A 30-hour MATSim simulation period is used to allow all trips to con-
clude, and the average delay caused by a vehicle for each link in the network
over a set of time windows covering an entire day (24 hours) is computed.
Let xl,t,a be the delay caused on link l at time t by agent a to all other agents
in the network which might have been affected on other links. Al,t is the
number of agents who passed through link l in time period t. The average
delay caused by travelling on link l at time t is then given by

xl,t =
∑a xl,t,a

Al,t

This gives a matrix of dimensions L x (1440/T) where L is the number of
links in the MATSim network, and T the size of the time period in minutes.
The value of 1440 corresponds to 24 hours in minutes. For a trip matched
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to the MATSim network, it is then trivial to obtain the average caused
marginal delay on each traversed link and calculate the average marginal
delay caused by the trip. In an ideal world, the time loss caused to each
agent in the simulation would be monetized individually based on the
VTTS of the affected agent during that trip, before the aggregation was
performed. However, as this information is not contained in the MATSim
scenario, congestion externalities were monetized using the Swiss reference
value of time (VOT), and the monetization factor can be applied to the
aggregated values.

3.3.6 Other external costs

Where monetization by discrete link based quantities is not implemented
or possible, externalities are calculated directly using available CHF/km
values. Ideally, noise emissions from car travel would be calculated based
on the surrounding population, other noise emitters and the presence of
noise reduction features. The Swiss norms (SN 641 828) provide decibel
thresholds, above which health-related costs for the affected persons are to
be considered. Using the MATSim scenario for Switzerland in a manner
analogous to congestion, noise cost values per link per time could be calcu-
lated. However, it was unfeasible within the scope of this project to develop
and integrate a nation-wide noise model. Instead, a normative value for
noise emissions in CHF/km (differentiated by mode) is used. An in-depth
spatially and temporally variant consideration of noise for all motorized
modes is left as future work to improve the described methodology.

For walking and cycling modes, there are no pollutants or significant
congestion externalities to calculate (at least in Switzerland, and excluding
E-bikes). Hence, health benefits and damages are calculated in the pipeline
on a CHF/km basis.

The pipeline is designed to support the marginal external cost calcula-
tions for other modes for which only per-kilometer values are available.
Furthermore, the pipeline is adaptable to support the mapping of public
transit trips to links in a MATSim transit network. This would enable the
calculation of link-level congestion externalities on public transport, if data
on crowding was available. Maibach et al. (2008) estimate crowding exter-
nalities to be roughly 50% of the VOT. However, they also note that the
VOT varies greatly by transport mode, trip purpose and travel distance.
The externality would also depend on the definition of “crowding”.
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3.3.7 Calibration of the congestion model

Congestion externalities were computed using the MATSim framework, as
described in section 3.2.1. A 10% scenario for Switzerland for 2019 was first
simulated for 40 iterations such as to reach equilibrium in terms of mode
shares. Since MATSim is a stochastic simulation, this equilibrium is one
within a distribution of possible outcomes. Therefore, the average caused
congestion per link per time was computed as described in section 3.3.5
over a further 30 iterations, where the agents could only reroute their trips
during re-planning. Delays only contribute to the average congestion if the
corresponding travel speed was less than 65% of the free-flow travel speed
on that link, consistent with the methodology used by Keller and Wüthrich
(2016).

The median congestion across these additional 30 iterations was then
computed and converted to a per-kilometer cost (fig. 3.2). During each
additional MATSim iteration, 10% of agents are allowed to modify their
chosen routes. This occasionally results in multiple agents simultaneously
choosing to travel on previously non-congested links in the next iteration,
and if this number of agents is large, it might take several iterations before
they are randomly selected and routed along other less-congested paths.
Thus, these oscillations in route choice can still result in high median
congestion costs on a few links at certain times; in the current case, the
maximum median cost per kilometer is nearly CHF 4,500. Therefore, the
congestion costs per kilometer were capped to the 95 percentile value of
the distribution, corresponding to a maximum cost per kilometer of just
under CHF 2. After capping, the average cost per kilometer over all links
exhibiting congestion is 0.22 CHF/km. A comparison of different capping
thresholds is presented in Section 3.4.3.

3.3.8 Software Architecture

To enable compatibility with both MATSim and Graphhopper, the pipeline
has been built to run on the JAVA virtual machine. Java version 1.8 or above
is required. MATSim version 11.0 and Graphhopper 0.12.0 are used. A
script has been developed to divide the run into multiple instances of the
pipeline to allow computation in parallel, allowing the expedient generation
of results from the pipeline.
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Figure 3.2: Distribution of per-kilometer congestion costs in the MATSim scenario
with 95% threshold (log-scaled horizontal axis).
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The input and output stages of the pipeline are also modular, meaning
that data can be read or written from either a database or JSON files,
allowing for the integration with different data sources and other models.

The externalities pipeline described in this paper takes advantage of
the event-based framework in MATSim. Each module is designed as an
EventHandler in a event-listener framework, where a function is called
when certain events are fired, such as when a vehicle enters or exits a link.
Sequences of these events are used to determine values such as travel times
and average speeds on links. These handlers in turn generate new events
such as a WarmEmissionEvent, containing the amounts of various pollutants
produced by an agent travelling on a link.

On receiving a link-exit event, the congestion module determines the
estimated congestion caused on that link based on the link id and exit time.
The monetization module processes arrival events - which denote the end of
a trip - to tally up all the produced externalities, and compute the monetary
damages. All externalities are available on a trip leg level.

3.4 results

Using the output of the Swiss MATSim scenario, which represents a simu-
lated day for a synthetic population of Switzerland, the externalities pipeline
is first validated by comparing the computed externalities with emission
and congestion estimates from previous Swiss external cost reports. The
pipeline is then applied to GPS tracking data collected within the course of
the MOBIS mobility pricing study (Molloy et al., 2021) to demonstrate the
heterogeneity in external costs that can be observed in the data.

3.4.1 Emissions

To validate the estimation of pollution externalities using MATSim, the total
emissions are calculated using a 10% MATSim scenario for Switzerland and
compared to the reference values available in the literature. To accommodate
the new vehicle registration statistics according to Blessing and Burgener
(2013) and Bianchetti et al. (2016), the personal vehicle fleet composition
was adjusted to match the mileage-weighted fleet composition projected
by the Swiss Federal Office for the Environment (FOEN) (FOEN, 2010) for
2020 (table 3.3).

Emission values are estimated for the following pollutants: CO2, CH4,
N2O, PM10 (exhaust and non-exhaust) and NOx. Figure 3.3 shows hourly
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Mileage-weighted share

Emission level Petrol Diesel

Euro-0 0.00 0.00

Euro-1 0.00 0.00

Euro-2 0.02 0.00

Euro-3 0.03 0.01

Euro-4 0.13 0.07

Euro-5 0.13 0.11

Euro-6 0.26 0.23

Table 3.3: Passenger vehicle fleet composition by emission concepts (FOEN, 2010)

CO2 emissions estimated from the MATSim scenario. As expected, these
correlate with typical commuter patterns: two distinct peaks during the
morning and evening rush-hour, low emissions in the morning and at night
and higher values around noon.

The MATSim computed emissions values are then compared to those
estimated by FOEN for 2020. Since MATSim simulates a single workday,
the MATSim emissions values are scaled such as to match the total yearly
travel distance by car reported by FOEN for 2020. Table 3.4 compares the
total estimated emissions values for both MATSim and FOEN in metric
tons per year. Deviations are likely due to the fact that emissions factors
depend on the exact type of petrol or diesel engine.

3.4.2 Congestion

Contrary to emissions, congestion caused cannot directly be estimated
and assigned to the causers from GPS traces alone, since information on
how many other drivers were present on the road at that given moment
is lacking. Hence, MATSim is used to estimate the marginal congestion
externalities during a typical workday.

To assess the suitability of this approach, we compare the total calculated
congestion costs over the course of a 10% simulation of the MATSim sce-
nario with those computed by Keller and Wüthrich (2019). As a calibration
step to account for unresolved oscillation effects in the MATSim scenario,
the per-kilometer congestion costs are limited to the 95% percentile (see
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Hourly CO2 emission values for Switzerland in kilotons (metric).
Pollutants other than total CO2 are omitted as their values are negligible in

comparison.

Figure 3.3: Hourly CO2 emissions for Switzerland

Section 3.3.7). The total congestion costs from the scenario are scaled to
be equivalent to the total yearly travel distance reported by Keller and
Wüthrich, for motorways and non-motorways respectively. The comparison
between the congestion costs in the MATSim scenario for Switzerland and
the reference values is presented in Table 3.5 for different percentile thresh-
olds, with the 95% percentile threshold in bold font. The corresponding
per-kilometer congestion cost for each threshold is also reported.

The total yearly congestion values and thus the resulting costs estimated
in MATSim for motorway and non-motorway road segments are lower
respectively higher than those estimated by Keller and Wüthrich. This may
be due to several factors. On the MATSim side, the model simulates pas-
sengers vehicles as well as trucks during a typical workday, and therefore
does not account for seasonal variations in travel demand nor extraordinary
circumstances such as large events, accidents and holiday traffic which also
impact yearly congestion. Unlike emissions, which mainly depend on the to-
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Pollutant FOEN MATSim Ratio

(tons/year) (tons/year) (MATSim/FOEN)

CO2 10,167,283 8,740,076 0.86

CH4 380 361 0.95

N2O 159 103 0.65

PM10 (exhaust) 234 218 0.93

PM10 (non-exhaust) 2,381 2,638 1.11

NOx 12,344 12,045 0.98

Table 3.4: MATSim and FOEN estimated emission totals comparison

tal distance travelled, congestion is highly dependent on the actual demand
patterns, road infrastructure and travel behaviour. Thus, any deviations
in the mode shares, route choice or road capacities affect the computed
congestion values. In addition, the grouping of the MATSim estimates by
road segment type is based on OSM data, which might differ from the
classification used by Keller and Wüthrich. Finally, Keller and Wüthrich
state that they have taken an "at-least" approach in estimating delays and
that the values for non-motorway segments are highly underestimated. A
combination of these effects likely contributes to the underlying cause of
the deviation between the estimates.

3.4.3 Sensitivity analysis

Taking the 95% percentile provides a good calibration against the over-
all total costs calculated by Keller and Wüthrich. However, the MATSim
congestion cost estimates are sensitive to the chosen threshold. The sen-
sitivity is evident for both motorway and non-motorway road types. We
propose that this sensitivity stems from the long tail in the distribution
of the per-kilometer congestion cost values (see fig. 3.2), caused at certain
bottlenecks in the MATSim network for Switzerland, where route-choice
oscillations result in an all-or-nothing switching behaviour between routes.
This oscillatory behaviour remains an open problem. It may be that once
this is solved, the thresholds are no longer needed. The sensitivity analysis
suggests that before applying this methodological approach in other study
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Road Type MATSim Reference

90% 92.5% 95% 97.5% 99% 100%

Motorway 245.3 284.9 332.3 398.0 461.5 595.3 840.6

(0.29) (0.34) (0.40) (0.47) (0.55) (0.71)

Non-motorway 788.7 924.4 1,090.0 1,326.3 1,580.9 3,169.5 473.8

(1.66) (1.95) (2.30) (2.80) (3.34) (6.69)

Total 1,034.0 1,209.3 1,422.3 1,724.3 2,042.4 3,764.8 1,314.4

(0.79) (0.92) (1.08) (1.31) (1.55) (2.86)

Max (CHF/km) 0.84 1.23 1.94 3.73 7.69 4,476.58

Table 3.5: Comparison between reference congestion totals (M CHF) (Keller
and Wüthrich, 2019) and estimates with MATSim for different per-
kilometer thresholds. Ratio between MATSim and reference values in
parentheses.

regions, individual characteristics of the scenario and network need to be
taken into account through a calibration step as was performed above.

3.4.4 Capturing the heterogeneity in external costs

As noted in the introduction, is it important to capture both the temporal,
spatial, and individual variation in external costs when assessing the policy
implications of proposed measures to tackle emissions and congestion.
Using a set of over 1.6 million car trips collected from 3,680 participants
during the MOBIS study, the external costs for each trip were calculated
using the methodology presented in this paper.

fig. 3.4 demonstrates the heterogeneity in external costs observed in the
GPS data, as opposed to the available average per-kilometer reference values
taken from Table 3.6. The range of the external costs is smaller for pollution
emissions than for congestion. The mean values are still consistent with the
reference values. Using the map-matching computed with graphhopper, the
motorway-share of the trip is computed to allow the application of values
for highway and non-highway kilometers separately, rather than just an
average.

In fig. 3.5, the hourly variation between the two methods is compared,
on a trip level. In subplot (a), a roughly constant split between highway
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External cost Value (CHF/km)

Congestion (average) a
0.00939

Highway 0.0206

Non-highway 0.0015

Emissions b

CO2 0.0233

PM10 0.0388

NOx 0.00939

a Keller and Wüthrich (2016) and Keller and Wüthrich (2019), b FEDRO
(2017) and Rexeis et al. (2013)

Table 3.6: Average monetization values

and non-highway travel throughout the day results in a nearly constant
average hourly external cost with the ARE method, even during the middle
of the night. On the other hand, average values with the MATSim method
vary between 0 and 0.05 CHF/km depending on the time of day. The small
spike around hour 24 is due to agent behaviour in the MATSim scenario,
and could benefit from further calibration. Subplot (b) shows the total
externalities caused over the observation period. Hence, the increase in
traffic during the peak-hours does lead to some temporal variation in the
total emissions with the ARE method, but much less than with the MATSim
method.

In Table 3.7, a summary of the external costs for different periods of
the day are presented for the MATSim method. The morning and evening
peaks cover 7:30am to 9:30am and 4:30pm to 7:30pm respectively. Here one
can see that while the maximum marginal external costs are high (i.e. 15

CHF for one trip in the evening peak), the 95% percentile is much lower.
The average external cost per kilometer in the morning peak is 1.63 times
higher than the daily off-peak average, and the evening peak is 2.22 times
higher. The per-trip values have similar ratios. The minimum values are not
shown, being zero for all time periods.



3.4 results 79

Figure 3.4: External cost (CHF/km) by trip. The ARE congestion distribution ap-
plies a highway/non-highway classification, and hence still requires
map matching to a network.

Figure 3.5: Total external cost by time of day (15 minute resolution). a) the average
cost per trip at the starting time of the trip. b) The total external cost
of trips starting at that time.



80 calculating external costs on gps traces

Period Median Mean 95% Max

Per-Km

Morning peak 0.016 0.036 0.140 0.937

Day off-peak 0.011 0.022 0.083 0.769

Evening peak 0.029 0.049 0.169 1.056

Night off-peak 0.004 0.019 0.091 0.625

Per-Trip

Morning peak 0.197 0.434 1.699 8.059

Day off-peak 0.129 0.275 1.060 13.858

Evening peak 0.328 0.652 2.384 15.363

Night off-peak 0.049 0.297 1.493 9.554

Table 3.7: Summary of congestion externalities for the MATsim-based method

3.5 discussion

As Verhoef (2002) stipulates, it is important to consider external costs on
an individual level. Not only is this important in understanding the spatial
and temporal distribution of the external costs within a transport network,
it is also an important step towards understanding the potential impact of
pricing policies. The method presented here shows how an agent-based
transport microsimulation can be applied to real-world trip data to calculate
external costs at an individual trip level. This approach captures much more
variation than the use of average values.

The validation of the model in section 3.4 identifies some discrepancies
between the reference values and the output of the proposed method,
resulting from the various limitations of both approaches. However, an
exploration of the trip-level heterogeneity on the real-world data indicates
that the mean per-kilometer averages for both congestion and emissions are
very close to the reference averages.

The main insights follow from an exploration of the temporal variation
captured by the congestion model. The mean values hide much of the
temporal variation in external costs, and there are implications for policy
analysis and transport planning. While average external cost values for
congestion and emissions are currently used for the cost-benefit-analysis
of new transport projects in Switzerland, the analysis in this paper clearly
shows that the respective total societal congestion costs and benefits would
be distorted for policies aiming at reducing peak-hour congestion. One such
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policy might be a mobility pricing scheme, where the use of the average
congestion values would lead either to an ineffective price structure, or the
benefits of the scheme being undervalued.

The influence of the emissions model on the variation in external costs
is less pronounced, but an effect is still evident. In particular, the external
costs of PM10 emissions are a large component of the estimated externalities,
and these vary greatly depending on the age, size and engine type of the
vehicle (Rexeis et al., 2013). These effects could be considered using the
vehicle data reported by the study participants. The results indicate that
reliance on the average per-kilometer values of external costs neglects the
large variation around the average per-kilometer values, which undervalues
the use of more efficient vehicles.

There are some limitations to the approach used. The performance of
the map-matching step is reliant on the quality of the GPS input, the
segmentation and mode detection. In a small minority of cases, the map
matching is not consistent with the route chosen, which may lead to an over-
or underestimation of the external costs. The assumption is also made that
the owner used their reported vehicle, and not another one. Additionally,
the MATSim model used to estimate the link-level external costs does not
take into account other variations in demand that may affect the delay
caused by a driver. These include accidents, changes in road conditions,
and day-to-day variation in traffic. The external cost of scheduling delays
is also not incorporated into the calculation of external costs, though this
would be possible using the MATSim framework. As Arnott, De Palma,
and Lindsey (1990) note, the scheduling delay costs can be equal to the
costs from congestion delays. The model also relies on the assumption
that the MATSim scenario accurately reflects average conditions on the
network, although thresholds were needed to account for outliers resulting
from the oscillating behaviour in the scenario. In future work, observed
travel times and delays from real-world GPS data could be used to make
link-level adjustments to the model on a day-to-day basis to account for
these variations.

3.6 conclusion

This paper presents a methodology for estimating the externalities on GPS
traces using the MATSim framework. A MATSim scenario for Switzerland
is used to provide aggregate estimates of caused congestion for 15-minute
time periods. Pollutant emission factors are taken from the HBEFA. The
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suitability of the MATSim scenario for this purpose is evaluated by validat-
ing the Switzerland-wide externalities against published reference values.
The agent-based aspect of MATSim allows for a much finer calculation of
externalities by taking into account the heterogeneity in both the popula-
tion and travel behaviour. The validation step indicates that the aggregated
congestion model calculated on the MATSim scenario for Switzerland is
suitable for this purpose, with some caveats. Although the total external
costs of congestion obtained from the scenario for motorways and other
roads are lower respectively higher than the reference values when con-
sidered separately, the combined estimates are within 8% of the published
values. An analysis of the heterogeneity in the external costs shows that the
approach captures important variation in the external costs for different
externalities, around mean values which are consistent with the published
values for Switzerland. These results indicate that a proper consideration of
the individual, spatial and temporal variation in external costs, and not just
the mean values, is important to the analysis of potential transport policies
and projects.

references

Arnott, Richard et al. (2001) The economic theory of urban traffic con-
gestion: a microscopic research agenda. In: Workshop on Environmental
Economics and the Economics of Congestion: Coping with Externalities, Venice
International University, Venice Summer Institute, San Servolo, Italy. Found
online at http://FMWWWW. bc. edu/ECV/Arnott. fac. html.

Arnott, Richard, Andre De Palma, and Robin Lindsey (1990) Economics of
a bottleneck. In: Journal of Urban Economics 27 (1), pp. 111–130.

Arnott, Richard, Andre De Palma, and Robin Lindsey (1993) A structural
model of peak-period congestion: A traffic bottleneck with elastic demand.
In: The American Economic Review, pp. 161–179.

Arnott, Richard and Kenneth Small (1994) The economics of traffic conges-
tion. In: American scientist, pp. 446–455.

Bianchetti, Roberto, Peter de Haan, Michel Müller, and Sebastian Dicken-
mann (2016) Energieverbrauch und Energieeffizienz der neuen Personen-
wagen 2015 : 20. Berichterstattung im Rahmen der Energieverordnung.
Tech. rep. Bern: Ernst Basler + Partner AG.

Blessing and Burgener (2013) 17. Berichterstattung im Rahmen der En-
ergieverordnung über die Absenkung des spezifischen Treibstoff-Normverbrauchs
von Personenwagen 2012. Tech. rep. Bern: Auto Schweiz.



3.6 references 83

Bösch, Patrick M, Kirill Müller, and Francesco Ciari (2016) The IVT 2015

baseline scenario. In: 16th Swiss Transport Research Conference (STRC 2016).
16th Swiss Transport Research Conference (STRC 2016).

Bundesminister für Verkehr (1990) Richtlinien für den Lärmschutz an
Straßen RLS-90.

Button, Kenneth (2004) The rationale for road pricing: standard theory and
latest advances. In: Road pricing: theory and evidence 9, pp. 3–25.

Chakirov, Artem (2016) Urban mobility pricing with heterogeneous users.
PhD thesis. ETH Zurich.

De Haan, Peter and Mario Keller (2004) Modelling fuel consumption and
pollutant emissions based on real-world driving patterns: the HBEFA ap-
proach. In: International journal of environment and pollution 22 (3), pp. 240–
258.

Ecoplan / Infras (2019) Externe Effekte des Verkehrs 2015. Aktualisierung
der Berechnungen von Umwelt-, Unfall-und Gesundheitseffektendes
Strassen-, Schienen-, Luft-und Schiffsverkehrs 2010 bis 2015. Technical
Report. Bern.

Eliasson, Jonas, Lars Hultkrantz, Lena Nerhagen, and Lena Smidfelt Rosqvist
(2009) The Stockholm congestion–charging trial 2006: Overview of effects.
In: Transportation Research Part A: Policy and Practice 43 (3), pp. 240–250.

Faruqui, Ahmad, Sanem Sergici, and Ahmed Sharif (2010) The impact of
informational feedback on energy consumption-A survey of the experi-
mental evidence. In: Energy 35 (4), pp. 1598–1608.

Federal Office for Spatial Development (ARE) (2017) Bauzonenstatistik
Schweiz.

Federal Office for Spatial Development (ARE) (2020) Externe Kosten und
Nutzen des Verkehrs in der Schweiz. Strassen-, Schienen-, Luft- und
Schiffsverkehr 2017. Technical Report. Bern: Federal Office for Spatial
Development (ARE).

Federal Office for the Environment (FOEN) (2010) Pollutant Emissions from
Road Transport, 1990 to 2035. Updated in 2010. Technical Report 1021.
Bern, p. 129.

Federal Roads Office (FEDRO) (2017) Handbook NISTRA 2017. Technical
Report. Bern: Federal Roads Office (FEDRO).

Fellendorf, Martin and Peter Vortisch (2000) Integrated modeling of trans-
port demand, route choice, traffic flow and traffic emissions. In: 79th
Annual Meeting of the Transportation Research Board.

Forschungsgesellschaft für des Straßenverkehr (FGSV) (1997) Empfehlun-
gen für Wirtschaftlichkeitsuntersuchungen an Straßen EWS–Entwurf.



84 calculating external costs on gps traces

Fujii, Satoshi and Ayako Taniguchi (2006) Determinants of the effectiveness
of travel feedback programs-a review of communicative mobility man-
agement measures for changing travel behaviour in Japan. In: Transport
policy 13 (5), pp. 339–348.

Graphhopper (2018) Graphhopper. In:
Haklay, Mordechai and Patrick Weber (2008) Openstreetmap: User-generated

street maps. In: IEEE Pervasive Computing 7 (4), pp. 12–18.
Hörl, Sebastian (2020) Dynamic Demand Simulation for Automated Mobil-

ity on Demand. PhD thesis. ETH Zurich.
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4.1 abstract

This paper introduces mixl, a new R package for the estimation of advanced
choice models. The estimation of such models typically relies on simulation
methods with a large number of random draws to obtain stable results.
mixl uses inherent properties of the log-likelihood problem structure to
greatly reduce both the memory usage and runtime of the estimation
procedure for specific types of mixed multinomial logit models. Functions
for prediction and posterior analysis are included. Parallel computing is also
supported, with near linear speedups observed on up to 24 cores. mixl is
directly accessible from R, available on CRAN. We show that mixl is fast
and easy to use, and scales to very large data sets. This paper presents the
architecture and performance of the package, details its use, and presents
some results using real world data and models.

4.2 introduction

Choice modelling is an important tool in many fields, including transporta-
tion, marketing, psychology, and economics. For example in transportation,
individuals must make many repeated decisions, whether to travel or not,
which mode of transport to take, and which route or transit line to travel
on. All of these decisions involve a choice of one alternative from multiple
options: a discrete choice. Since the 1970’s multinomial logit models have
applied random utility theory to model how decision makers compare
and evaluate alternatives (McFadden, 1974). However, for a closed-form
solution some mathematical constraints of the decision need to be accepted.
However, these restrictions, although computationally convenient, limit
the realism of the models. As such, increasingly more complex models
and model families have been proposed, including Mixed MNL (MMNL)
(McFadden and Train, 2000), Generalized Extreme Value (McFadden, 1980)
and Hybrid Choice Models (HCM) (Ben-Akiva, McFadden, Train, et al.,
2002; Walker and Ben-Akiva, 2001). These models relax the behavioural
restrictions on the classic MNL model, but in the process, require simulation
methods to estimate.

In particular, Mixed MNL and hybrid choice models are increasingly
popular tools used to explain human behaviour (e.g. Schmid and Axhausen,
2019). These modelling approaches incorporate random parameters and
require simulation to estimate. Runtime generally increases linearly with
the number of draws selected by the modeller. Additionally, the size of
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the datasets that researchers are working with are also becoming larger.
Hence, it is now common that complex model formulations can take many
hours or even days or weeks to estimate when using simulation methods.
Cranenburgh and Bliemer (2019) developed the approach Sampling of Ob-
servations (SoO) to scale down choice datasets while producing similar
results, noting that large models can be otherwise computationally infeasi-
ble. In particular they note that the size of the problem estimable is bound
by the amount of memory required.

There are various software packages for estimating such models, includ-
ing Biogeme (Bierlaire, 2018), ALOGIT (ALOGIT, 2016) and routines coded
for using within Stata 1, MATLAB 2 3, and Gauss4

3. Ideally, the model
estimation process integrates seamlessly with the workflow of the modeller,
which is commonly the R language. The available R software packages for
choice model estimation are limited either in functionality (mlogit, mnlogit)
or by their reliance on the R language (Apollo, gmnl, RSGHB), making
them both computationally slow and unable to handle large datasets when
using simulation methods with a large number of draws. As such, there is
a need for open-source R software that can simultaneously estimate com-
plex choice models on large datasets, while taking advantage of modern
multi-core machines to improvement performance.

This paper presents a new open-source R package, mixl, for the estima-
tion of MNL, MMNL and HCM. All code is opensource and available at
https://github.com/joemolloy/fast-mixed-mnl. The estimation process
is fast, and scales well on multicore machines, with a 10x speedup with
24 processing cores when compared to a single core, to handle extremely
large problems. mixl also avoids the memory limitations of other R pack-
ages. Furthermore, models can be estimated with two lines of code, and a
straight-forward syntax. Through these contributions, mixl provides the
tools needed by both those estimating extremely large models, and those
new to choice modelling.

The paper proceeds as follows: In Section 4.3, the necessary background
on log-likelihood computation and estimation, including the available soft-
ware for doing so, is covered. Section 4.4 describes the software architecture
and design decisions behind the mixl package. Section 4.5 explains how to
use the package, Section 4.6 presents some of the additional features of the
package that may be useful to the modeller, and Section 4.7 discusses the
the performance of the package. Section 4.10 concludes.

1 https://www.sheffield.ac.uk/economics/people/hole/stata
2 https://github.com/czaj/dce
3 https://eml.berkeley.edu/~train/software.html

https://github.com/joemolloy/fast-mixed-mnl
https://www.sheffield.ac.uk/economics/people/hole/stata
https://github.com/czaj/dce
https://eml.berkeley.edu/~train/software.html
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4.3 background

In this section a brief overview of the multinomial logit model, the log-
likelihood calculation and estimation are presented. For more detail, the
reader is referred to Train (2009) and Ben-Akiva and Lerman (1987). Let us
assume that a decision maker n is trying to maximize his utility in the form
Unjt = Vnjt + εnjt where Vnjt is the observed utility in choice scenario t for
alternative j, and εnjt represents unobserved factors (Ben-Akiva and Lerman,
1987). This leads to the following succinct closed formed expression for the
choice probability, where Vnjt can be expressed as exp(Xnjtβ) (Train, 2009):

Pnit =
exp(Xnitβ)

∑j exp(Xnjtβ)
(4.1)

where n is the decision maker, i the chosen alternative in choice scenario
t, and Tn is the number of choice tasks for individual n. The total number
of alternatives for a person and situation is specified by It,n. The vector β
represents the model parameters to be estimated, and Xnit the vector of
observed variables. With a sample of N decision makers, the probability
that the choice of person n is observed can be represented as

L(β) =
N

∏
n

Tn

∏
t

It,n

∏
i
(Pnit)

ynit (4.2)

where yni = 1 if person n chose i and zero otherwise. Computationally,
it is beneficial to remove the product operators, giving the log-likelihood
function, with the β that optimises this function.

LL(β) =
N

∑
n

Tn

∑
t

It,n

∑
i

ynit log(Pnit) (4.3)

In the mixed case, Equation 4.2 is extended to include the distribution of
the parameters, where f (β) is the density function, and θ the parameters
that describe the density of β:

Ln =
∫ Tn

∏
t

Pnit f (β|θ)dβ (4.4)

These mixed models can be formulated in several ways, with two main
derivations using random coefficients and/or error components. They vary
over decision makers with the density f (β), a function of the parameters θ.
As such, in a mixed model, the parameters β vary over the population.
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The calculation of the likelihood for a simple MNL model is straightfor-
ward. The likelihood is simply the product of the chosen probabilities for
each individual. For panel data, the logs of the probabilities are summed
up over all observations for each individual. To calculate the probabilities
in a mixed model, R values βr are drawn from f (β|θ) and used to calculate
the likelihood. In equation 4.1, β is hence replaced by βr to calculate Pr

nit.
The simulated probability P̂n for individual n is given by the average over
all R draws, and the simulated log-likelihood (L̂L) for the sample follows:

P̂n =
1
R

R

∑
r

Tn

∏
t

∏
i
(Pr

nit)
ynit (4.5)

L̂L = ∑
n

ln
(

P̂n
)

(4.6)

The summation in Equation 4.5 requires that ∏Tn
t Pr

nit be calculated R
times, and hence, the execution time increases linearly with the number of
draws.

4.3.1 Maximum likelihood estimation

The process of estimating the optimal value of the parameters β is called
maximum likelihood estimation (MLE), or maximum simulated likelihood
estimation (MSLE). In this process, an optimization routine tries to find
the set of parameters that give the maximum log-likelihood by repeatedly
calculating the log-likelihood with different β until the process converges.
The speed of convergence relies on repeated improved guesses of β by
determining the gradient of the function. The most common approach,
when an analytical gradient is not available is to calculate a numerical
gradient f ′ of f with respect to the vector β:

f ′(β) =
f (β− ∆) + f (β + ∆)

2∆
(4.7)

To calculate the gradient at each optimization step, the objective function,
namely the log-likelihood, needs to be calculated 2k+ 1 times, where k is the
number of free parameters to be estimated and ∆ is a suitably small number
to give an estimate of the derivative for the vector β′. A method of gradient
descent is then used to find a minimum (or maximum) of the function. Two
of the most popular approaches are the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm and Newton-Raphson method. However, they are not
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guaranteed to converge for non-linear problems, of which MMNL is an
example. As such the selection of the initial start values (the initial β) can
influence the final log-likelihood and parameter estimates. One benefit of
the BFGS method is that, as a Quasi-Newton method, the Hessian matrix
of the second derivative does not need to be computed during estimation,
a very computationally expensive process.

Analytical gradients are implemented in many packages, such as gmnl,
Apollo (version 0.2.0 onwards) and Biogeme. With analytical gradients,
f ′(β) can be calculated in one step, instead of with two evaluations of f (β).
Since the evaluation of f ′(β) is the most common operation in the MLE,
this leads to a rougly 2x speedup over numerical derivation, all other things
being equal.

4.3.2 Overview of available choice modelling software

There is a wide variety of software available for choice model estimation,
including but not limited to Biogeme (Bierlaire, 2018), the mlogit (Crois-
sant, 2015) and mnlogit (Hasan, Zhiyu, and Mahani, 2014) packages for R,
ALOGIT (ALOGIT, 2016), and NLOGIT (Greene, 2002). Recently, a new R
package for choice modelling, Apollo (Hess and Palma, 2019a; Hess and
Palma, 2019b) has also been published. Each of these packages handle
various model types and mixed models. Table 4.1 summarizes the attributes
of the packages.

The two most well known proprietary packages which are designed spefi-
cically for choice modelling are ALOGIT and NLOGIT, are well established,
but are neither open-source, nor freely available to researchers.

There is also routines available in most statistical software packages, such
as MATLAB, STATA and Gauss. In particular, recently released routines for
MATLAB have been shown to be 5-10x faster than previously available R
Code for choice modelling Czajkowski and Budziński (2019).

Arguably the two leading open source softwares for discrete choice
modeling are Biogeme and Apollo. Both estimate an extremely wide range
of parametric models. Biogeme has been under development for many
years and is a robust and stable software, now with the latest version,
pandasBiogeme directly usable from python. In this paper it will be referred
to just as Biogeme. The user can specify arbitrary utility functions and the
likelihood formulation. Additionally, it takes advantage of both compilation
to C++ and automatic derivation to achieve excellent performance. As a
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package for the python programming language, it is not directly usable
from R.

In R, the mlogit and mnlogit packages provide the most accessible tools
for working with MNL models. They support basic mixed models, but
don’t provide the syntax to specify more complicated models. They also
struggle on larger models. The mnlogit package provides significant speed
improvements over mlogit by optimizing the calculation of the Hessian
matrix and using the Newton-Raphson method for MSLE. However, No-
cedal and Wright (2000) observed that quasi-Newton methods such as BFGS
perform better on larger MSLE problems. Both these R packages rely on
the R formula package and syntax for specifying the utility function. Also,
mnlogit does not support random coefficients. Both mlogit and mnlogit
packages do not support hybrid choice models or other more advanced
model formulations. More recently, the gmnl (Sarrias, Daziano, et al., 2017),
RSGHB (Dumont, Keller, and Carpenter, 2015) and Apollo Hess and Palma,
2019b have been published. They support more advanced model specifi-
cations, including Latent Class models. Of these, only Apollo supports
parallel execution on multiple cores. However, as shown in Section 4.8 there
has some performance limitations with Apollo when a large number of
random draws are used in combination with a large dataset.

Open-source R Mixed models HCM Large problems

Apollo yes yes yes yes no

gmnl yes yes yes no no

RSGHB yes yes yes yes no

mlogit yes yes yes no no

mnlogit yes yes no no yes

Biogeme yes no yes yes yes

ALOGIT no no yes no yes

NLOGIT no no yes no yes

Stata no no yes yes no

Gauss no no yes yes no

MATLAB no no yes yes yes

Table 4.1: Comparison of main software packages for multinomial logit mod-
elling
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4.3.3 Potential and limitations of the R language

The open-source statistical software R is an incredibly powerful and popular
platform for data processing, analysis and visualization. However, it is well
known for its liberal use of memory. A particular performance bottleneck
in R is iteration. for loops have a significant overhead in the R language. As
such, for many common operations, functions available in R and its pack-
ages are written in the programming language C++ for better performance,
or ‘vectorized’ to work on vectors or matrices to avoid R-based iteration.

The Rcpp package (Eddelbuettel and Francois, 2011) is most commonly
used to improve the performance of R scripts by rewriting critical functions
in C++. Functions written in Rcpp accept and return R datatypes such
as Vectors and Matrices. Code written in C++ and called from R is often
many times faster that the equivalent R code. However, C++ code must be
compiled before execution, either when the package is created, or inside
the script itself. The process of writing C++ code is also more involved,
requiring the developer to generally make a tradeoff between coding effort
and execution time when switching from R to C++.

4.4 software architecture

In section 4.3.1 it was noted that while the utility function must be calculated
many times during the MSLE process, all the data used by the function
except the parameters to be estimated do not change. Furthermore, each
observation can be seen as independent from a calculation perspective. For
every observation, the utility of each alternative is calculated. From there
the log of the probability of the chosen alternative is simple to calculate,
which are then summed over each individual for repeated observations.
Since this operation is associative, the order in which the observations are
processed is not important.

This is exploited to reduce the memory required during estimation. Nor-
mally, the log-probability for every single observation is calculated, resulting
in a matrix of size (N ∗ T) x R where N is the number of individuals, T the
number of observations per individual, and R is the number of draws used.
The resulting matrix is then summed over the individuals. Instead, a run-
ning logsum of the probabilities over the observations for each individual
is kept, requiring a smaller a matrix P of size N x R. For datasets with a
large panel structure, and models with a large number of draws, this saves
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a significant amount of memory - a factor equal to the average number of
observations per individual.

In R, this requires using iteration constructs rather than the optimised
vectorized linear algebra operations, as the dataset and draws matrix are of
different sizes. As mentioned in Section 4.3.3, this results in an unacceptable
performance bottleneck. The solution is to code the log-likelihood function
in C++. It then follows that f (β) must also be written and compiled in C++.

To compile the loglikihood function to C++, a pre-compiler is imple-
mented in mixl to takes a model specification written in plain text, and
convert it to a C++ objective function callable from R and optimisation
routines. Section 4.5 details how model specifications need to be written.
The pre-compiler validates the specification against the dataset to check
that all variables are present, and automatically identifies model properties
such as mixed effects and hybrid choice components. mixl detects errors in
the model specification and reports them to the user.

Since Pnit is calculated for each observation t separately, the calculation of
the log-likelihood is an embarrassingly parallel problem which can be handled
efficiently using data parallelism. While there are packages to perform data
parallelism in R, for example parallel and foreach, they require significant
communication overheads as new processes are spawned. Since in mixl the
log-likelihood function is implemented in C++, the openMP (Chapman and
Massaioli, 2005) framework is used to efficiently parallelize the for-loop
over observations. Since all data except the intermediate utilities of each
alternative are shared between all cores, no copying of the data across
cores is needed to run the log-likelihood function in parallel. Furthermore,
these intermediate data structures are generated once for each estimation,
meaning that new memory does not need to be allocated for each likelihood
computation. Compiling with the openMP framework even provides a per-
formance boost on a single core, due to certain optimizations the framework
enables in the compiler.

4.5 using the mixl package

We start by implementing the model denoted in Equations 4.8 to 4.10.
Equations 4.8 and 4.9 show the utility functions of the alternatives public
transport and car for every decision maker n for every choice situation t.
In addition to the price, the travel time, and the number of changes (or
transfers), a random ASC for public transport is included in the model.
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VPT,n,t =ASCPT + ψPT,n + βprice ∗ xprice,PT,n,t + βtime,PT ∗ xtime,PT,n,t/60+

βchange ∗ xchange,PT,n,t (4.8)

VCar,n,t =ASCCar + βprice ∗ xprice,Car,n,t + βtime,Car ∗ xtime,Car,n,t/60 (4.9)

ψPT ∼N (0, σ2
PT) (4.10)

For the implementation in mixl, the modeller describes the utility func-
tions in terms of mathematical relationships between variables in the data
(prefixed with a $ sign), and parameters (prefixed with an @ symbol):

Listing 4.1: Example of mixl syntax.

1 ASC_PT_RND = @ASC_PT + draw_1 * @SIGMA_PT;

2

3 U_pt = ASC_PT_RND + @B_price * $price_PT + @B_timePT * $time_PT / 60

4 + @B_change * $change_PT;

5

6 U_car = @ASC_Car + @B_price * $price_Car + @B_timeCar * $time_Car / 60;

In listing 4.1, an example of the syntax is provided. All words prefixed
with @ (ASC_PT, SIGMA_PT, ...) are parameters to be estimated. Those with
$ are variables of the observations available in the data. In this example
one random parameter is required, indicated by the draw_ variable. One
intermediate variable (line 1) is also calculated, ASC_PT_RND, which is then
used in the utility function of public transport. The _RND suffix indicates
that this is a random coefficient, for which posteriors can be automatically
calculated using the posteriors function. The availabilities must be supplied
as a separate matrix, with one row for each observation, and one column
for each alternative used in the model specification.

To aid both the specification of models and improve error reporting to
the modeller, a small amount of syntax is required. This is covered in more
detail in the user-guide.

• Variables from the dataset must be prefixed with a $

• Coefficients to be prefixed with a @

• Every statement must end with a ;

• Intermediate variables that are calculated don’t require a prefix

• The utility functions are prefixed by U_xxx, where x is the choice id.
“U_1” or “U_car” are, for example, valid. The order in which they are
specified must correlate with the numbering of the choices in CHOICE
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• Draws are prefixed by draw. The same naming rules as for the
utility functions apply. If the nDraws parameter is passed into the
specify_model function, a set of draws will be generated automatically.
Currently, this defaults to a halton sequence. Alternatively, any set of
draws (Sobol (Sobol, 1967), MLHS (Hess, Train, and Polak, 2006), etc)
can be passed in as an argument, as long as the matrix is large enough
to accommodate the number of individuals and random parameters.

• Standard mathematical functions such as addition, multiplication,
exponentiation, and equality comparisons are allowed with the ap-
propriate operator.

4.5.1 Iterative development of a model with mixl

In this section we present the iterative development of a model, starting
with a basic MNL model, followed by a mixed MNL model. The dataset is
the ‘Electricity’ dataset available in the mlogit package, which Train uses for
MMNL examples in Train (2009). This provides a good example of how the
successively more advanced models can be iteratively developed using the
mixl package.

The utility functions of the basic MNL model are denoted in Equation
4.12. The different alternatives represent different heating options and
are differentiated by price (xp f ), whether the supplier is local (xloc) or
well known (xwk), and whether the supplier offers time-of-day (xtod) or
seasonal rates (xseas). As the experiment is unlabelled, generic parameters
are estimated.

Vj =βp f ∗ xp f ,j + βcl ∗ xcl,j + βloc ∗ xloc,j + βwk ∗ xwk,j + βtod ∗ xtod,j+

(4.11)

βseas ∗ xseas,j, j ∈ {1, ..., 4} (4.12)

Using the ‘Electricity’ dataset from the mlogit package, it is straight-
forward to set up the data for our model in lines 2-4 in listing 4.2. Only the
ID and CHOICE variables need to be converted to continuous values starting
from 1. We then specify the above model as a string of text in R as follows
(6-11). Variables in the dataset are prefixed with $ and β to be estimated
with @. We then call specify_model to convert this model specification to a
log-likelihood function. The dataset is passed in so that the variables in the
model can be verified.
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The starting values are specified on line 15 and the availabilities on line
18. Here we use a default function with two parameters: the dataset and the
number of alternatives . The estimate function is then called (line 20) on the
model specification, and the results presented to the user using the summary

command on line 21.
To specify a model alternatives are available, then a matrix of n columns

and a rows is required, where n is the number of total choice observations,
and a the number of utility functions. A value of 1 indicates that that
alternative is available for that observation.

Listing 4.2: A simple MNL model on the Electricity dataset.

1 library(mixl)

2 data("Electricity", package = "mlogit")

3 Electricity$ID <- Electricity$id

4 Electricity$CHOICE <- as.numeric(Electricity$choice)

5

6 mnl_test <- ‘

7 U_1 = @pf * $pf1 + @cl * $cl1 + @loc * $loc1 + @wk * $wk1 + @tod * $tod1 +

@seas * $seas1;

8 U_2 = @pf * $pf2 + @cl * $cl2 + @loc * $loc2 + @wk * $wk2 + @tod * $tod2 +

@seas * $seas2;

9 U_3 = @pf * $pf3 + @cl * $cl3 + @loc * $loc3 + @wk * $wk3 + @tod * $tod3 +

@seas * $seas3;

10 U_4 = @pf * $pf4 + @cl * $cl4 + @loc * $loc4 + @wk * $wk4 + @tod * $tod4 +

@seas * $seas4;

11 ’

12

13 model_spec <- specify_model(mnl_test, Electricity)

14

15 est <- stats::setNames(c(0,0,0,0,0,0),

16 c("pf", "cl", "loc", "wk", "tod", "seas"))

17

18 availabilities <- mixl::generate_default_availabilities(Electricity, 4)

19

20 model <- estimate(model_spec, est, Electricity, availabilities)

21 summary(model)

For estimation, mixl wraps the maximum likelihood optimisation routine
from the maxLik package (Henningsen and Toomet, 2011). As Train (2009)
suggests, the BFGS (Witzgall and Fletcher, 1989) optimization procedure is
used as default. The interface is designed so that all possible parameters
to maxLik can be passed through, including the choice of optimisation
routine, Hessian function, and a limit on the number of iterations. The
fixing of parameter values is also supported. The robust standard errors
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are caculated using the sandwich package (Zeileis, 2006; Zeileis, Köll, and
Graham, 2020).

The output from a estimated model is presented in the console as follows:

Listing 4.3: Sample output from mixl for listing 4.2.

Model diagnosis: successful convergence

Number of decision makers: 361

Number of observations: 4308

LL(null): -5972.156

LL(init): -5972.156

LL(final): -4958.649

Rho2: 0.1697054

AIC: 9929.3

AICc: 9929.54

BIC: 9967.51

Estimated parameters: 6

Estimates:

est se trat_0 trat_1 robse robtrat_0 robtrat_1 rob_pval0

rob_pval1

pf -0.6253 0.0232 -26.93 -69.99 0.0334 -18.70 -48.60 0

0.00

cl -0.1083 0.0082 -13.13 -134.43 0.0140 -7.74 -79.18 0

0.00

loc 1.4421 0.0506 28.52 8.74 0.0788 18.31 5.61 0

0.00

wk 0.9954 0.0448 22.23 -0.10 0.0638 15.61 -0.07 0

0.94

tod -5.4636 0.1837 -29.74 -35.18 0.2778 -19.67 -23.27 0

0.00

seas -5.8408 0.1867 -31.29 -36.64 0.2723 -21.45 -25.12 0

0.00

In the listing 4.3, for each estimated coefficient, multiple values are
provided. est is the estimated value, se the standard error. trat is short for
the t-ratio, and pval for the p-Value. The rob prefix indicates the robust
estimates. The _1 values are to be considered when testing against the null
hypothesis that the parameter equals one (for example, a scale parameter).

In order to illustrate how random parameters are incorporated into the
model, a new model is specified for the Electricity data set, see Equations
4.13 to 4.19. Equation 4.13 shows the utility function for every alternative
j, every individual n, and every choice situation t. Unlike in the previous
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standard MNL model, all parameters follow the normal distribution, see
Equations 4.14 to 4.19.

Vj,n,t =βp f ,rnd,n ∗ xp f ,j,n,t + βcl,rnd,n ∗ xcl,j,n,t + βloc,rnd,n ∗ xloc,j,n,t + βwk,rnd,n∗
xwk,j,n,t + βtod,rnd,n ∗ xtod,j,n,t + βseas,rnd,n ∗ xseas,j,n,t, j ∈ {1, ..., 4}

(4.13)

βp f ,rnd ∼N (βp f , σ2
p f ) (4.14)

βcl,rnd ∼N (βcl , σ2
cl) (4.15)

βloc,rnd ∼N (βloc, σ2
loc) (4.16)

βwk,rnd ∼N (βwk, σ2
wk) (4.17)

βtod,rnd ∼N (βtod, σ2
tod) (4.18)

βseas,rnd ∼N (βseas, σ2
seas) (4.19)

The associated mixl code is presented in listing 4.4 below. As can be
inferred, random draws are prefixed with draw_. By default, all parameters
follow the normal distribution if included in the way below. Naming the
random parameters with _RND is only necessary if one wishes to estimate
posteriors using the post-estimation functions (see Section 4.6.2.

Listing 4.4: A Mixed MNL model in mixl syntax.

mnl_test <- ‘

pf_RND = @pf + draw1 * @sigma_pf;

cl_RND = @cl + draw2 * @sigma_cl;

loc_RND = @loc + draw3 * @sigma_loc;

wk_RND = @wk + draw4 * @sigma_wk;

tod_RND = @tod + draw5 * @sigma_tod;

seas_RND = @seas + draw6 * @sigma_seas;

U_1 = pf_RND * $pf1 + cl_RND * $cl1 + loc_RND * $loc1 +

wk_RND * $wk1 + tod_RND * $tod1 + seas_RND * $seas1;

U_2 = pf_RND * $pf2 + cl_RND * $cl2 + loc_RND * $loc2 +

wk_RND * $wk2 + tod_RND * $tod2 + seas_RND * $seas2;

U_3 = pf_RND * $pf3 + cl_RND * $cl3 + loc_RND * $loc3 +

wk_RND * $wk3 + tod_RND * $tod3 + seas_RND * $seas3;

U_4 = pf_RND * $pf4 + cl_RND * $cl4 + loc_RND * $loc4 +

wk_RND * $wk4 + tod_RND * $tod4 + seas_RND * $seas4;

’
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The same code as before is used to estimate the model with the addition
of the required number of Halton draws (in this example 100) which has to
be indicated in the estimate function. By including a random alternative
specific constant, the log-likelihood improves by almost 800 units and
doubles the McFadden R2. Table 4.2 shows the results of the MMNL model,
available as a function provided in mixl using the texreg package.

Unlike in other software such as Apollo and Biogeme, the likelihood
function cannot be modified by the user. For a large range of problems,
however, it is sufficient to encode the behaviour in the utility functions,
and use a standard log-likelihood function for panel data as described in
Section 4.3.

4.6 further features

4.6.1 Estimation of hybrid choice models

The package also supports hybrid choice models or to be more exact
integrated choice and latent variable models. The current example uses
a continuous measurement equation (Linear Regression) for the latent
variable, which can be easily extended to any (discrete) specification (e.g.
Ordered Logit). Due to the size of the actual code input, we want to focus
on the crucial parts. The relevant model components are presented in
Equations 4.20 to 4.24.

I = i + xlvζ lv
I + v (4.20)

vr ∼ N (0, σ2
I,r), r ∈ {1, 2} (4.21)

xlv = βLV
Age ∗ xAge + βLV

Inc ∗ xInc + ψLV (4.22)

ψLV ∼ N (0, σlv,struct
2) (4.23)

V1 = ASC1 + ψ1 + xlvβLV,u1 (4.24)

ψ1 ∼ N (0, σ2
1 ) (4.25)

Equation 4.20 denotes the measurement equation for the latent variable,
where i denotes the mean of this indicator. The indicator is treated continu-
ously. The structural equation of the latent variable is shown in Equation
4.22. Both Age and Income are used to explain the latent variable. The
utility function of the choice model, which includes the latent variable as
an explanatory variable, is presented in Equation 4.25.



4.6 further features 103

Model 1

pf −0.86∗∗∗

(0.04)

cl −0.21∗∗∗

(0.02)

loc 1.90∗∗∗

(0.11)

wk 1.38∗∗∗

(0.08)

tod −7.92∗∗∗

(0.40)

seas −8.14∗∗∗

(0.37)

sigma_pf 0.18∗∗∗

(0.02)

sigma_cl 0.32∗∗∗

(0.03)

sigma_loc 1.21∗∗∗

(0.12)

sigma_wk 0.30∗

(0.17)

sigma_tod 2.01∗∗∗

(0.24)

sigma_seas 0.89∗∗∗

(0.11)

# estimated parameters 12.00

Number of respondents 361.00

Number of choice observations 4308.00

Number of draws 20.00

LL(null) -5972.16

LL(final) -4108.61

McFadden R2 0.31

AIC 8241.23

AICc 8242.13

BIC 8317.65

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Table 4.2: Latex model output from a mixed MNL model estimated with mixl
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First, in line 1 of the subsequent code snippet, we define the structural
equation of the latent variable (LV). In lines 2 and 3, we specify the measure-
ment equations. While $I_1 relates to the actual indicator in the data, $I_1_m
refers to its pre-computed sample mean. For reasons of identification, we
set the parameter of the first indicator to 1. For the second indicator, we
estimate the parameter @LV_ZETA_I_2. @LV_SIGMA_I_1 and @LV_SIGMA_I_2 refer to
the variances of the error of the respective linear regressions. In line 4, the
latent variable is included in utility function U_1.

LV = @LV_AGE * $Age + @LV_Inc * $income + @LV_SIGMA_Struct * draw_2;

P_indic_1 = R::dnorm($I_1 - $I_1_m - 1 * LV,0,(@LV_SIGMA_I_1),0);

P_indic_2 = R::dnorm($I_2 - $I_2_m - @LV_ZETA_I_2 * LV,0,(@LV_SIGMA_I_2),0);

U_1 = @ASC_1 + draw_1 * @SIGMA_1 + @LV_U1 * LV;

If models include variable definitions with the prefix P_indic_, the model
is assumed to have hybrid components, and the P_indic_ variables will be
considered as probability indicators for each observation. P_indic_ should be
defined from 1 to k, the number of indicators to be used in the model. The
pre-compiler detects these automatically, and generates the code to include
the product of the probability indicators in the log-likelihood as such:

p_choice = log(chosen_utility / sum(utilities));

p_indic_total = P_indic_1 * P_indic_2 * .... P_indic_k;

p_choice = p_choice + (1/count) * log(p_indic_total);

The count variable, used to normalize the choice indicator, represents
number of choice observations per individual and must also be included in
the data. On convergence, the model estimation will return both the choice
log-likelihood and the model log-likelihood. One extra column is required
in the dataset to enable hybrid choice, namely a ‘count’ column with the
total number of observations for the individual making the choice.

4.6.2 Post processing

The mixl package provides some key post processing functions for working
with an estimated model. The estimation results include all the expected
components, such as the (robust) co-variance matrix, table of coefficients,
standard errors, Hessian matrix, etc. The following functions are provided:

The posterior function allows the model to calculate the posteriors for
models with mixed distributions. Random variables in the model specifica-
tion are automatically detected (those with an equation ending by _RND and
including draws), and the posterior function returns a labeled matrix of the
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posteriors for each individual and random variable. This can all be done
inside the R language, as the results of th estimation are always returned as
either matrices or dataframes.

The probabilities function is useful for calculating e.g. elasticities, since it
calculates the probabilities for each alternative given the estimated parame-
ters. Different scenarios can be easily evaluated by changing specific values
(e.g. by 1%) of the input dataset.

summary_tex outputs the model results in latex syntax for insertion into a
paper.

4.7 performance and multicore scalability

With the widespread availability of multi-core machines and computing
clusters, parallel scalability is an important consideration. mixl achieves
consistent speedups even on large numbers of cores. Figure 4.1 and Table 4.3
show the performance of the isolated log-likelihood function for different
numbers of draws over an increasing number of cores. To demonstrate the
speed up, a pooled RP/SP MMNL model on a large panel dataset with 491

individuals and 17,120 observations is used (Schmid, Balac, and Axhausen,
2019). The model contains 27 free parameters, 15 linear-additive utility
functions related to four different data/experiment types (mode choice
RP, mode choice SP, route choice public transport SP and route choice
carsharing SP) and 12 random parameters (six for the ASCs and another
six for the mode-specific travel times). The utility functions are a simplified
version of the ones presented in Schmid (2019), Chapter 4, including all
level-of-service attributes without socioeconomic effects and accounting for
scale effects between the data/experiment types.

Each timing was repeated 50 times to obtain an average. For the 10 draw
configuration, communication costs dominate and a maximum speedup
of 4.78x is observed. As the number of draws used is increased, so do
the benefits of using parallel computing. On 24 processing cores for 10,000

draws, a speedup of 19.3x is observed. It is worth noting that only the utility
calculation has been parallelized, and potential performance improvements
remain in other parts of the log-likelihood function in future work. The
results in Table 4.3 show a super-linear speedup in the 4 core case. This can
be attributed to cache-effects on the processor.

It is worth noting that the speedups obtained in Table 4.3 will not nec-
essarily replicated on real problems, but rather show the upper bound
of obtainable performance. This is due to Amdahl’s law, which defines
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how sequential parts of the program limit the potential gains obtainable
with parallel computing. Again, larger problem sizes extract better relative
performance from more cores. More complicated utility functions, i.e. with
more alternatives or parameters, will also see a benefit from increased
parallelism.

Processors

Draws 1 2 4 8 16 24

10 1 1.56 2.81 2.73 3.51 4.78

100 1 1.92 3.83 5.09 6.96 14.76

500 1 1.94 4.04 5.91 9.09 17.40

1000 1 1.95 4.04 6.16 9.60 18.49

5000 1 1.96 4.11 6.28 10.22 19.58

10,000 1 1.97 4.21 6.31 10.25 19.35

Table 4.3: Speedup over multiple cores for the log-likelihood calculation

4.7.1 Further example using the Grapes dataset

In the following example, we estimation of an MMNL model based on
a modified version of the Grapes dataset (Ben-Akiva, McFadden, Train,
et al., 2019). Table 4.4 presents the attribute values in the dataset. All binary
attributes were sampled from independent uniform distributions. There are
three grape alternatives that participants can choose from, in addition to
the possibility of not choosing any of them. Datasets were generated for
1000, 4000, and 16,000 individuals with 8 observations per respondent.

The model specification is shown in Equations 4.26 to 4.31. The utility
for alternatives 1,2, and 3 is presented in Equation 4.26. n denotes the
individual decision maker and t the choice task. Four random parameters
are included, i.e. one for each variable. As can be inferred from Equations
4.28 to 4.31, all parameters follow the univariate normal distribution. The
opt-out alternative is depicted in Equation 4.27.



4.7 performance and multicore scalability 107

Figure 4.1: Performance of the inner log-likelihood function over multiple cores

Vj,n,t =βS,V,n ∗ xS,j,n + βC,V,n ∗ xc,j,n,t + βL,V,n ∗ xl,j,n,t + βO,V,n ∗ xo,j,n,t, j ∈ {1, ..., 3}
(4.26)

V4 = 0 (4.27)

βS,V ∼N (βS, σ2
S) (4.28)

βC,V ∼N (βC, σ2
C) (4.29)

βL,V ∼N (βL, σ2
L) (4.30)

βO,V ∼N (βO, σ2
O) (4.31)

The true underlying parameters, are reported in Table 4.5. The model is
specified in mixl syntax in Listing 4.5.
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Attribute Symbol Levels

Sweetness S Sweet (1) or Tart (0)

Crispness C Crisp (1) or Soft (0)

Size L Large (1) or Small (0)

Organic O Organic (1) or Non-organic (0)

Table 4.4: Grape dataset attributes and levels (Ben-Akiva, McFadden, Train, et al.,
2019)

Parameter Mean Standard Deviation

B_S 1.00 0.40

B_C 0.90 0.30

B_L 2.50 1.00

B_O 1.50 0.50

Table 4.5: Parameters of the Grapes choice model.

Listing 4.5: MMNL model using the Grapes dataset

B_S_V = @B_S + @B_S_S * draws_1;

B_C_V = @B_C + @B_C_S * draws_2;

B_L_V = @B_L + @B_L_S * draws_3;

B_O_V = @B_O + @B_O_S * draws_4;

U_1 = (B_S_V * $S_1 + B_C_V * $C_1 + B_L_V * $L_1 + B_O_V * $O_1);

U_2 = (B_S_V * $S_2 + B_C_V * $C_2 + B_L_V * $L_2 + B_O_V * $O_2);

U_3 = (B_S_V * $S_3 + B_C_V * $C_3 + B_L_V * $L_3 + B_O_V * $O_3);

U_4 = 0;

Table 4.6 illustrates the runtime for the estimation using MIXL of an
MMNL model based on a modified version of the Grapes dataset 5 (Ben-
Akiva, McFadden, Train, et al., 2019). Using 24 cores can reduce the ex-
ecution time by nearly 90%. Furthermore, the speedup is almost linear,
implying that further reductions in execution time are possible if more
cores are used.

5 The datasets are available on request should the creators of other packages wish to benchmark
their software.
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Processors

Draws 1 2 4 8 12 16 24

1 00:00:48 00:00:18 00:00:15 00:00:12 00:00:20 00:00:17 00:00:09

(2.55) (3.06) (3.83) (2.31) (2.79) (4.96)

100 00:20:11 00:10:25 00:06:25 00:03:56 00:03:02 00:02:54 00:02:21

(1.94) (3.14) (5.13) (6.63) (6.95) (8.58)

500 01:54:33 01:02:51 00:32:53 00:21:00 00:13:29 00:15:00 00:09:47

(1.82) (3.48) (5.46) (8.49) (7.64) (11.7)

1000 04:07:52 02:14:21 01:12:57 00:50:42 00:37:46 00:24:03 00:16:10

(1.84) (3.4) (4.89) (6.56) (10.3) (15.32)

5000 18:39:44 09:57:14 05:36:15 03:17:41 02:31:20 01:44:46 01:26:45

(1.87) (3.33) (5.66) (7.4) (10.69) (12.91)

10,000 60:16:29 35:00:28 17:58:11 10:33:33 08:57:10 06:38:54 05:27:31

(1.72) (3.35) (5.71) (6.73) (9.07) (11.04)

Table 4.6: mixl performance on a large dataset of 128,000 choice observations -
runtime in hh:mm:ss, speedup in brackets

4.8 comparsions to other open-source software

The performance of the mixl (v 1.1.3) is compared against Apollo ( v0.2.0)
and pandasBiogeme (3.2.5), using the same grapes dataset and model
specified above in listing 4.5. The demonstrated difference between the
performance of Biogeme, mixl and Apollo is primarily due to the inclusion
or exclusion of two optimisations: compilation of the loglikelihood function
to C++, and the implementation of symbolic derivation. In version 0.2.0 of
Apollo, analytical gradients have been implemented, giving a 2x speedup
over version 0.1.0 on this model and dataset. Section 4.3 shows why this is
the case. However, its reliance on the R language for the utility functions
means that it is still slower than mixl. Biogeme implements both symbolic
derivation to generate analytical gradients, and compilation to C++, hence it
has the best performance. Table 4.7 shows the performance of the compared
programs with respect to the number of processors used, taking the average
of different respondent samples (1000, 4000, 16000) and numbers of random
draws (10, 100, 500, 1000, 5000, 10,000). With more processing cores, mixl is
as fast as Biogeme, and up to 3.5x faster than Apollo.
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Processors

Program 1 2 4 8 12 16 24

Mixl 1.1.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Apollo 0.2.0 0.87 0.73 0.76 0.51 0.50 0.52 0.36

Biogeme 3.2.5 2.16 1.66 1.50 1.35 1.34 1.30 1.08

Table 4.7: Speedup relative to mixl by number of processors(higher values are
faster)

The same performance tests were also run for GMNL, which implements
analytical gradients, as Apollo and Biogeme do. On the smallest example
(1000 respondents and 1000 draws), GMNL had a similar runtime to mixl.
However, on a middle size problem with 16,000 respondents and 1000 draws,
the code was still running without result after 72 hours. For comparison,
Biogeme, mixl and Apollo return results in 2 hours, 4 hours and 5 hours
respectively, when using one processing core.

Figure 4.2 and illustrates how mixl handles larger problems using multi-
core processing in comparison to Apollo and Biogeme on two program sets,
a small one (n=1000, 1000 draws), and a medium size one (n=16,000, 1000

draws). Although Biogeme is faster when fewer processors are available,
the use of openMP for the parllelisation in mixl makes it competetive with
Biogeme when more cores are used, especially on larger problems. Simi-
larly, we can see how the effectiveness of the R-based parallelisation used
by Apollo is more effective on larger problems sizes, but doesn’t provide
much benefit on more than 4 cores for smaller problems. Figure 4.3 shows
this from another perspective, with the speedup on the vertical axis. The
speedup value is the performance improvement relative to one processing
core. For the three programs, we can see how better speed ups are achieved
on larger problems, as the communication costs become less significant.
Also visible is the ability of mixl to better utilise the a large number of
processing cores - particularly when more than 12 cores are available.

Figure 4.4 shows how the memory usage of the different programs
compare. A dashed line indicates the predicted memory usage, as the tests
were limited by a 200GB memory ceiling. Apollo does take advantage of
R vectorization to avoid R’s unoptimised iteration constructs and achieve
good results on smaller problems. However, with this technique, the draws
must be replicated for each choice task of an individual. The ammount
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Figure 4.2: Performance of the sample mixed MNL model with 8 parameters and
1000 random draws. (a) 1000 individuals. (b) 16,000 individuals.

of memory required for the duplication means that this approach breaks
down for large panel datasets, especially as the number of draws increases,
which is required for complex model specifications. The approach used in
the mixl package (as with Biogeme) avoids this by accessing the required
draws using the ID of the individual. To do this without R’s performance
penalty is possible by using compiled code. For smaller problems the
performance is bound by other sequential parts of the program such as
the compilation of the likelihood function. Essentially, mixl is not bound
by the number of individuals or repeated choices in the dataset, number
of random dimensions or the number of draws used, as long as enough
memory is available to store both the data and draws matrix.
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Figure 4.3: Speedup over multiple cores for mixl, Apollo and Biogeme on small
(n=1000) and large (n=16,000) datasets

4.9 limitations

Mixl is designed to support a core group of models, which in the authors
experience are used the majority of the time. These include standard MNL,
Mixed MNL and also, those less commonly used, hybrid choice models.
Furthermore, a design decision was made to only support random hetero-
geneity across individuals, and not intra-respondent variations. With large
datasets and a large amount of draws - even a relatively small number of
draws massively increases the memory required, as an extra dimension
is required in the draw matrix. Both Apollo and Biogeme support intra-
respondent heterogenetity. The second limitation is that mixl currently only
supports the logit kernel. As the code is open-source and simply structured,
mixl could be extended with with additional model types in the future.



4.10 conclusion 113

Figure 4.4: Comparison of memory usage for mixl, Apollo and Biogeme

4.10 conclusion

This paper presents the mixl R package for estimating flexible multino-
mial logit models. Mixed models and hybrid choice models are supported
through a flexible and intuitive syntax. The package has been designed to
have an intuitive model specification syntax, and is engineered with both
large datasets and complex mixed MNL models in mind. For R practitioners
looking to use other model formulations, Apollo is much more flexible,
albeit with performance drawbacks and a different syntax. mixl combines
compilation to C++ code with efficient data structures to allow the estima-
tion of models on large datasets that are not feasible with other R packages,
especially if the dataset or number of draws used is large. For large prob-
lems, parallel computing is an attractive way to gain significant speed
increases, and mixlmakes it easy for the user to take advantage of this. The
paper presents performance indicators on a complex mixed MNL model
estimated on a large dataset with over 128,000 observations demonstrating
speedups in model estimation of over 10x when using 24 cores as opposed
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to a single core, with no increase in memory usage. The package has also
already been used in modelling projects (among them, Schmid, Aschauer,
et al., 2019) with hundreds of thousands of observations and 10,000 random
draws, indicating its robustness and scalability. Future work will aim to
integrate the work with other estimation packages such as Apollo, and
support more model types.

installing the package

The estimation software is provided as an R package on CRAN https://

rdrr.io/cran/mixl/. The code is open-source and shared through Github.
A user-guide and documentation are provided with the package.
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5.1 abstract

In Switzerland, strict measures as a response to the COVID-19 pandemic
were imposed on March 16, 2020, before being gradually relaxed from
May 11 onwards. We report the impact of these measures on mobility
behaviour based on a GPS tracking panel of 1,439 Swiss residents. The
participants were also exposed to online questionnaires. The impact of both
the lockdown and the relaxation of the measures are presented. Reductions
of around 60% in the average daily distance were observed, with decreases
of over 90% for public transport. Cycling increased in mode share drastically.
Behavioural shifts can even be observed in response to the announcement of
the measures and relaxation, a week before they came in to place. Long-term
implications for policy are discussed, in particular the increased preference
for cycling as a result of the pandemic.

5.2 introduction

The sudden onset of the Covid-19 pandemic in early 2020 dramatically
altered the rhythms of daily life around the world. Within the space of a
few weeks, borders were closed, lockdowns imposed and local economies
brought to a stand-still in the attempt to contain the spread of the virus.
Schools were closed, and children had their first experience of remote
learning. After decades of unfulfilled predictions of the move towards
teleworking, firms were forced to make the shift almost overnight.Those
under lockdown orders were generally only allowed outside for shopping
and small amounts of exercise. As a consequence, mobility behaviour
became unrecognisable.

Understanding the impact these restrictions have had on mobility has
been challenging, given the pace of the change. New policies were being
implemented constantly; classic survey methods would not have kept pace
with the dynamic changes to people’s travel patterns. In this paper we
present both the method and descriptive results from an app-based mobility
survey panel of over 1500 people which was recruited as the pandemic
took hold in Switzerland in mid-March. Uniquely, this panel was recruited
from a previous mobility survey undertaken in autumn 2019. Thus, a
baseline behaviour for each participant in the study is available against
which their mobility behaviour under these extra-ordinary circumstances
can be understood.
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The paper is structured as followed. First a timeline of the pandemic
as it developed in Switzerland is presented, including the various restric-
tions and relaxations which occurred. The period up to the end of July is
covered in this paper. A brief overview of GPS-based mobility studies in
the literature is presented, as well as other available sources of Covid-19

mobility data. In the methods and data section, the recruitment and app
are presented. The results section presents some of the key insights from
the mobility tracking. In the discussion the implications of these findings
for transport policy in the near future are discussed.

5.2.1 Timeline of coronavirus in Switzerland

The first confirmed case of COVID-19 was registered in Switzerland on
February 25, 2020. The onset followed that in Northern Italy, which was one
of the earliest hotspots outside China. The situation deteriorated quickly
and by March 9, over 100 people had been infected. At the time of writing,
July 31 2020, 791,725 people have been tested in Switzerland, over 35,000

people have been infected with the virus and more than 1,700 have died,
which translates to infection and death rates per 100,000 inhabitants of 38

and 2.4, respectively.
On March 16, the Federal Council declared an extraordinary situation,

which gives it widespread competencies that allowed it to order the in-
troduction of uniform measures in all cantons. Non-essential businesses
were closed, along with schools, recreational facilities and public parks.
Only food stores, post offices and healthcare institutions were not affected.
Furthermore, checks on the borders to Germany, Austria, France and Italy
were introduced. Entry to Switzerland from its four large neighbours was
only possible for Swiss citizens, persons holding a residence permit for
Switzerland and those who have to enter Switzerland for work-related
reasons. Employers were urged to reorganise the working hours of their
employees to avoid rush hour travel. Wherever possible, home-office was
to be implemented. To minimise the risk of infection, the Federal Office of
Public Health (FOPH) recommended avoiding the use of public transport
wherever possible. People who had symptoms of respiratory disease and
people over 65 years of age were told to not use public transport. National
and regional passenger transport services were maintained to support the
functioning of the economy and society. International passenger transport
was maintained to countries with open borders.



5.2 introduction 121

The number of confirmed COVID-19 cases in Switzerland increased
rapidly. On March 20, more than 4,800 infections and 43 fatalities were
reported. The canton of Ticino on the border to Northern Italy was hit
especially hard by the corona virus. The Federal Council decided to step up
measures and forbid gatherings of more than 5 people in public places, and
an inter-personal distance of 2 meters was mandated for groups with fewer
than 5 people. However, unlike in neighboring countries as for example
in Austria, Belgium, France, Italy, Luxembourg and Spain, people were
allowed to leave the house during the lockdown. Public transport continued
operation, though at reduced frequency. The peak rate of daily infections
and COVID19-related deaths was in late March and early April. The statis-
tics were subject to weekly fluctuations and showed fewer cases towards the
end of the week. On April 5, Switzerland reported a total 158,000 COVID-19

tests, 15% (21,100) of which were positive, and 559 deaths, one of the high-
est incident rates in Europe. After that, infections started to decrease as a
consequence of the containing measures. Despite the fact that the measures
put in place to combat the virus were being followed well by the public and
were having the desired effect, the Federal Council extended the measures
until April 26.

On April 27, hospitals were able to resume all medical procedures, in-
cluding non-urgent procedures, and a first group of businesses was allowed
to re-open (garden centers, florists, hairdressing salons and cosmetic stu-
dios). The Federal Council’s strategy to emerge from the lockdown was
structured into three phases, with transitions depending on the number
of new infections, hospital admissions and deaths as well as hospital oc-
cupancy rates. In a first phase from April 27 to May 11, measures were
eased on businesses where a low level of direct contact is possible, where
precautionary measures can easily be put in place, and where there will be
no significant movements of people. As opposed to other countries, there
was no general obligation for healthy people to wear a mask. Keeping a
safe distance and washing hands was seen as the most effective protective
measures. Still, sick people were advised to stay home in isolation.

On May 11, Switzerland moved to phase 2 by further easing measures as
the spread of the corona virus had continued to slow. Even though rules
on hygiene and social distancing still applied, most types of businesses
opened again, including restaurants, along with mandatory school for
students up to grade 9. Museums and libraries were allowed to re-open
and sports activities in small groups of up to 5 people were permitted
as well. In parallel, restrictions on entering Switzerland were relaxed and
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scheduled public transport services increased significantly. Furthermore,
the Federal Council decided to introduce contact tracing for new infections
with COVID-19.

Entering phase 3 of the emergency plan on June 6, all events of up to
300 persons and spontaneous gatherings for up to 30 people were allowed
again. High schools and universities were able to resume, all leisure and
entertainment businesses plus tourist attractions re-opened. Switzerland
reported a cumulative total of 30,988 infections, 1,663 COVID-related deaths
and only 16 new cases. The number of new infections, hospitalisations and
deaths continued to fall despite measures being eased, and stabilised at a
low level. The extended powers of the federal government expired on June
19.

From June 22 onwards, the start of the fourth phase, most of the measures
put in place were lifted and only the ban on large-scale events remains
in place until at least the end of August. Interestingly, the Federal council
reduced the minimum distance that should be kept between two people
from 2 metres to 1.5 metres and strongly recommended to wear a face mask
when using public transport if it is not possible to maintain the necessary
distance. It also lifted the recommendation to work from home, leaving the
decision to the employer, which is required to protect the health of staff
by putting in place appropriate measures. In contrast to the first wave, the
prime responsibility in the event of a renewed increase in COVID-19 cases
now rests with the 26 cantons in Switzerland.

In response to an increase in new daily infections in mid-June and
increased ridership on public transport, the Federal Council made wearing
masks compulsory on public transport throughout Switzerland starting
from July 6. Since mid-June, the number of new corona virus cases has
been rising in Switzerland as infected persons have entered the country
from countries both within and outside the Schengen area. Consequently,
travellers entering Switzerland from certain regions must quarantine for
ten days upon their return.

5.2.2 Tracking studies in the literature

The use of GPS tracking in mobility studies is becoming an integral data col-
lection method in transportation. Where traditionally, such surveys required
participants to carry a GPS logging device which had to be returned at the
end of the study for the data to be collected, more recent methods allow
users to install an app on their smartphone, which uses the GPS receiver
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and other location services on the phone to detect the location. These apps
run in the background, and depending on the phone model, have a minimal
effect on battery life, something which used to be extremely detrimental to
such studies. For example, in the original MOBIS study sample on which
this study is based, only 12.5% of participants who started tracking were
lost over the 8 week study duration (Molloy et al., 2020).

In recent years there have been an increasing number of studies which
have used either a separate GPS device (Livingston, 2011; Nielsen, 2004;
Wargelin, Stopher, et al., 2012), or a smartphone app (Allström, Kristoffers-
son, and Susilo, 2017; Greene et al., 2012; Nahmias-Biran et al., 2018; Safi
et al., 2015; Stopher, Daigler, and Griffith, 2018). This data is then usually
segmented into trips (or sometimes lower level segments) and activities,
on which the mode and trip purpose are imputed. The usefulness of this
method is indicated by multiple sources that identify trip under-reporting
in traditional paper-based travel diaries (Janzen et al., 2018; Stopher, FitzGer-
ald, and Xu, 2007; Wolf et al., 2003).

5.2.3 Other COVID-19 mobility data sources

The rapid onset of the COVID-19 pandemic meant that there was little
opportunity to set up new tracking studies to measure changes in mobility.
However, there were a number of data sources which were already available.
The most prominent were those from Apple (Apple, 2020) and COVID-19

Community Mobility Reports (Google, 2020). The Apple reports monitor
the number of search requests by transport mode (driving, walking, public
transport) as an indicator for mobility. The Google reports use records of
visits to land use types (i.e. parks), based on anonymised data collected from
google apps and mobile devices. Both these reports present only overall
aggregate numbers and do not include analysis of socio-demographic
differences. For the baseline, the Apple reports take January 13, 2020, and
Google uses the period January 3 – February 6, 2020. Another available
resource for Switzerland is produced by Intervista AG, in collaboration with
the Zurich Statistics Bureau (Intervista AG, 2020). The Intervista sample
consists of 2561 persons (daily average) and is broadly representative, with
socio-demographic attributes for the participants. Data is also available
since the start of 2020.
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5.2.4 The impacts of pandemics on mobility behaviour

It has been widely acknowledged that transportation is a key driver in
the spread of infectious diseases (Baroyan and Rvachev, 1967; Herrera-
Valdez, Cruz-Aponte, and Castillo-Chavez, 2011). The important role of
mobility in a pandemic has been demonstrated for historical pandemics
such as the Spanish flu in 1918 (Ammon, 2002; Trilla, Trilla, and Daer,
2008). For a comprehensive overview of studies exploring the link between
transport and infectious diseases, see Muley et al. (2020). However, the
impact of measures to overcome pandemics also have an impact on mobility.
In the much of the recently published transport literature on the Covid-
19 pandemic, the focus has been drawing conclusions on the impact of
restrictions on the spread of the disease, with little focus on the specific
impacts on the restrictions on mobility itself within the population. In
the following paragraphs a few studies which do focus on mobility are
highlighted.

In the current pandemic, mobile data has played a key role in understand-
ing the changes in both regional and global mobility during the pandemic.
Many countries are now using mobile data to understand the effectiveness
of measures, including Austria, Belgium, Chile, China, Germany, France,
Italy, Japan, Spain, United Kingdom and the United States (Oliver et al.,
2020; Yabe et al., 2020). In particular, Heiler et al. (2020) used real-time
anonymised mobile phone data to understand the changes in mobility
behaviour as a result of the introduced measures in Austria during the
first wave. They saw a doubling of the number of persons with a radius of
gyration (activity space) of less than 500m, and increased segmentation of
the community structure.

In the USA, Badr et al. (2020) found a strong correlation between re-
duced mobility behaviour and decreased COVID-19 case growth rates.
Furthermore, they show evidence that behavioural changes were already
observable days to weeks before movement restriction policies were imple-
mented, indicating that it was not just the introduced policy measures that
restricted mobility, but the desire of persons to avoid the pandemic.

All these data sets use data collected from mobile phone providers, which
are less effective at capturing mobility changes at local urban scales. Socio-
demographic differences (e.g. across age, gender and household-size) can
also not be explored with this data. This is important for understanding
how the mobility of different groups was affected by the pandemic.
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Other work has used travel surveys to explore the impact of the COVID-
19 pandemic on mobility. Beck and Hensher (2020) performed a household
survey of 1457 respondents. The main conclusions of this paper focus on
telework (working-from-home) and suggest that there could be signifi-
cant implications for localised transport networks. The shift towards more
flexible working conditions may also lead to a spreading of peak-hours.

Huang et al. (2020) used location data from Baidu in China to examine
the impacts on mobility and activity patterns as a result of the pandemic.
They suggest that the government should promote cycling as means of
transport and the construction of bike lanes.

5.3 methods and data

5.3.1 Recruitment

Starting in September 2019, a sample of 5,375 persons living in Switzerland
were recruited to a mobility pricing field experiment called MOBIS (MObil-
ity Behaviour in Switzerland). The study required the participants to use
an app (available for both Android and iPhone) which used the phones lo-
cation services to track their location, and identify trip stages and activities.
They were tracked for 8 weeks to investigate their response to a conceptual
mobility pricing scheme. 3680 persons completed the 8 weeks, with the
last person finishing in January. They did not have to uninstall the app
afterwards, and could continue using it. At the start of March 2020, around
300 people were still using the app. The tracking panel for the MOBIS-
COVID19 study was recruited from those 3680 participants who completed
the MOBIS study. Of these participants, around 1,600 volunteered to reacti-
vate the tracking app, Catch-my-Day, developed by Motion-Tag. table 5.1
presents the distribution of the sample by different socio-demographics,
showing that the MOBIS-COVID19 sample is broadly representative. Our
sample is slightly more educated and more likely to be employed - but this
is primarily since those over 65 years of age were not invited to the original
MOBIS study. Participants were only eligible to participate in the MOBIS
study if they used a car at least 2 days a week. This also skewed our sample
towards car drivers, compared to the Swiss population.

Weekly reports have been produced online in three languages (English,
German and French) since the start of the MOBIS-COVID19 study, to
which both participants and the public have access. Participants also have
access to a custom dashboard of their own mobility behaviour during the
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crisis, as long as they continue tracking. This was designed as a form of
non-monetary incentive to encourage continued participation.

5.3.2 App based tracking

The Catch-my-Day app works similarly to other tracking apps. It runs in the
background, collecting location data from the phone, with the participant’s
consent. The tracking can be turned on and off at any time. The data is
transferred to the server when the phone is connected to a WiFi network,
where the location points are processed to detect the transport stages,
activity locations, mode of travel and where possible, trip purpose. The trip
purpose detection is based on the activity type nominated by the participant
for other activities at the same location. The detection algorithms are based
on Openstreetmap data (OpenStreetMap contributors, 2017) and available
public transport schedules. Users are able to validate the imputations made
by the algorithms and make corrections.

Since not all activities have an assigned purpose in the data collected
from the app, we impute the missing activity purposes for the rest of the
data using a random forest approach, using the reported activity purposes
as the ground-truth dataset.

5.3.3 Online surveys

The tracked data was supplemented by online surveys, which the partici-
pants were invited to participate in by email. Initially, socio-demographic
information about participants was collected in the original MOBIS study.
Participants were also asked in May to complete another 2 surveys, one
during the lockdown, and one after, asking about their working conditions
and experience during the lockdown.

5.3.4 Sample weighting

As mentioned in above, our sample is skewed towards car-users in urban
areas, due to the sample composition of the original MOBIS study. To make
some correcrtion for this, the MOBIS-Covid sample is weighted against the
original 22,000 participants which filled out the introductry survey in the
MOBIS Study. This allowed a weighting of the MOBIS-Covid results by
age, gender, income, education, mobility tool ownership and accessibility.
Weights were calculated for each person-week in both the MOBIS and
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MOBIS-Covid study periods, against the sample present in that week. This
accounts for the changing sample composition over the weeks of the study.
The weights are both reasonable and stable across the study period, with
the weights in the range 0.5-3.

5.4 results

Across all segments of the population, a downward trend in the average
travelled Kilomters per day was observed before the lockdown measures
were put in place on March 16. This indicates that the Swiss population
preempted the preventative measures, and were proactively taking steps to
protect themselves from the virus by reducing their mobility. This is also
a consequence of the clear messaging from the Swiss federal government,
which mostly gave forewarning of at least a week before measures were
implemented.

Figure 5.1: Weekly change in average daily Km travelled

Mobility behaviour was most suppressed in the first week of the lock-
down, however, the average daily distance and the number of trips per day
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immediately started increasing, demonstrating the challenge of sustaining
a suppressed mobility demand over a long period through non-policed
lockdown measures.

5.4.1 Impact of home-office and Kurzarbeit (Short-work)

During lockdown, 20% of participants reported being on kurzarbeit (Short-
work). kurzarbeit is an industrial-relations policy that exists predominately
in German speaking countries, where a employee in the scheme has their
hours reduced by between 20 and 95% due to extreme economic circum-
stances. They are then paid the majority of their usual wage, with the
difference between hours worked and hours paid covered by government
finances.

Surprisingly, being on kurzarbeit had little effect on the number of trips
per day during the lockdown, compared to those on normal conditions.
The amount of home-office (telework) a participant was performing is
much more influential (see fig. 5.2). After the lockdown was lifted, the
difference between the groups has reduced as more of those who were
allowed home-office have returned to the workplace. However, differences
still persist, clearly indicating that home-office is effective for suppressing
travel demand.

5.4.2 The cycling boom

Significant changes in modal split were observed, particularly towards
cycling, where a large increase in the average daily distance travelled was
observed (see fig. 5.1). The change in average daily distance is, on some
weeks, greater than 100%, which is well beyond what the seasonal causes
would imply. The magnitude of the variations fluctuates throughout the
weeks, depending on the weather, which was excellent during the lockdown
period, but variable afterwards.

A large increase of the number of cycling trips per day was also observed,
as can be seen in the temporal patterns by time-of-day and type of day in
fig. 5.4. The red curve shows the average number of cycling trips started
for each hour of the day during the 2019 baseline period, whereas the blue
curves show this for the last two weeks respectively. All intermediate weeks
are plotted in grey.

These temporal patterns indicate that cycling was primarily used as a
leisure tool. First, the increase primarily occurred on weekends, indicating
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(a) By home-office arrangement

(b) By kurzarbeit status

Figure 5.2: Trips/day
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a leisure objective. Second, although an increase in the number of trips
was also observed during the week, much of this occurred over midday,
hinting that these trips were not conducted for commuting purpose. Indeed,
considering that a large number of commuting and station-access/egress
trips did not take place during the lockdown, this suggests that the use of
cycling for other purposes has increased.

Figure 5.4: Hourly bicycle trip counts

In Figure 5.5, the increase in mode share for different trip purposes is
presented. The mode share compared to the baseline period has increased
for all trip purposes. The influence of the weather is visible across all
purposes. The increases were largest during the lockdown, but the trend
has stabilised since then, at around a 75% increase over the baseline period.

5.4.3 Socio-demographic variations during and after the lockdown

As indicated by the analysis of working conditions, particularly home-
office capability, certain segments of the working population were able
to reduce their travel more than others. fig. 5.6 shows the reduction in
the average daily travelled kilometers by education level, as compared to
the reference period in September/October 2019. Those with a tertiary
education (i.e. from a university or technical college) had a larger decrease
in daily kilometers than the less educated. Towards the end of the lockdown
and post-lockdown, this difference became more pronounced. Those with
the mandatory education level experienced a rapid increase in their daily
kilometers. This coincides with the return to work for those in service
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Figure 5.5: Increase in bicycle mode share by trip purpose

industries, where professional degrees are not required. Travel per day for
this segment has plateaued in the post-lockdown period, indicating that a
new daily pattern for this cohort has been reached.

The relaxation of the lockdown measures were met with a continued
increase in travelled distance. All socio-demographic groups saw a spike
in the average daily distance as the lockdown measures were lifted, to
varying degrees, before a return to a trend similar to that observed during
the lockdown.

The various adaptions to the lockdown measures by different household
sizes is also insightful, as seen in fig. 5.7. Again, the total average weekly
kilometers dropped by approximately 60%, with the reduction in travel
correlated with household size throughout the lockdown period. On one
had, larger households had more travel constraints (e.g. taking care of the
children who now have to stay at home). Furthermore, those in smaller
households, particularly single person households had the smallest reduc-
tion in daily travel. It is important to note that no household had more
than one person participating in the study, hence we cannot say how tasks
such as shopping were redistributed among the household members to
reduce public exposure. It can also be reasonably inferred that those in
larger households had a larger incentive to reduce their daily travel. If one
household member were to contract the virus, it would have spread to the
whole household. This ties to the idea of social pressure, with larger house-
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Figure 5.6: Change in kilometers travelled by education level

holds resulting in a level of normative behaviour within the household
community.

The relaxation of the lockdown measures not only impacted travelled
distance, but also had an effect on the average number of trips per day and
the activity space. Indeed, at the beginning of the lockdown, the number of
daily trips plummeted by nearly half and remained low during the entirety
of the lockdown, whereas they have essentially returned to pre-COVID
numbers during the post-lockdown period (see fig. 5.9a). The evolution,
however, was quite gradual. The effect of the relaxation is much more
evident on the activity spaces, as can be seen in fig. 5.9b. The lockdown
caused a reduction in the activity space to around 50km2, which only slowly
increased during the lockdown - indicating that while people were travelling
more, they were doing so within their local neighbourhood. Immediately
after the lockdown was lifted, the area of the weekend and holiday activity
spaces increased. A short downward trend over 3 weeks followed, before
the activity space started growing again. This post-lockdown downward
trend was also observed on weekdays, which one would not expect to
be compatible with the rhythms of the 5-day work week. The size of the
activity spaces are now similar to what they were pre-COVID, both during
the week and on weekends.
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Figure 5.7: Change in kilometers travelled by household size

5.4.4 Change in road speeds

The general reduction in travel observed during the lockdown period also
included a significant reduction in car travel. With less vehicles on the roads,
congestion levels dropped during the lockdown, and average travel speeds
across different trip-distance classes correspondingly increased.

fig. 5.10 shows the effect of the COVID-19 crisis on median car travel
speeds during the week, i.e. excluding weekends and holidays. The black
line indicates the baseline travel speeds from the baseline period in 2019.
Car trips of over 500 km, which correspond to driving across Switzerland,
or with an average speed of over 180 km/h were considered unrealistic and
removed from the analysis.

During the lockdown period from March 16 to May 11, an increase by up
to 15 km/h in the peak-hour speeds was observed, indicating a decrease in
overall congestion. Reductions in congestion were observed during both
morning and evening peaks. However, no reduction was observed in the
middle of day. Since the relaxation of the lockdown measures on May 11,
peak-hour speeds have returned to almost pre-COVID-19 values, a sign that
congestion is returning to usual levels in peak periods. This is consistent
with the fact that public transport use is still suppressed, while car mileage
is roughly back to the baseline (see fig. 5.1). Post-lockdown, non-peak
travel speeds during the day are now lower than they were during the
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(a) Average number of daily trips

(b) Activity space (95% CI Ellipse)

Figure 5.8: Changes in activity space and number of trips
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Figure 5.10: Road travel speeds

baseline period, particularly for the 20-50km trip-distance class. Viewed
in combination with fig. 5.11, which shows the hourly counts for car trip
departures in the two weeks post-lockdown, it is evident that more car trips
are being generated during the middle of the day than during the baseline
period. This is a natural consequence of the reduction in public transport
usage, and has concerning implications for the coming months if public
transport demand remains suppressed.

5.4.5 Transport mode share shifts

The COVID-19 crisis also had had a clear impact on mode shares. While
the overall distance travelled has recovered since the lockdown and is now
only 15% below pre-COVID values, public transport has been most affected.
The daily distance travelled on public transport modes is still 50% below
the reference values, 8 weeks after the lockdown ended. In contrast, the
daily car distance is now essentially back to pre-COVID levels. The biggest
winner has been cycling, which has seen an increase in travelled distance
throughout the crisis. However, it is also necessary to look at the transport
modal shifts that occurred.

The change in mode shares over the course of the COVID-19 crisis for
different types of public transport subscriptions - GA (National), Halbtax
(50% discount) and other - can be best visualized with the help of ternary



136 mobility & covid-19 in switzerland

Figure 5.11: Car travel hourly counts

diagrams. fig. 5.12 plots the shifts in mode shares by distance. The modes
are grouped into the following categories:

• Motorized individual transport (car, motorbike, taxi, Uber)

• Public transport (bus, tram, ferry, metro, train)

• Non-motorized transport (walk, bike)

During the lockdown, a higher share of kilometers were performed
using motorized individual and non-motorized modes as compared to the
reference period. After the lockdown, the share of public transport has
increased and the share of non-motorized modes has decreased slightly.
The share of motorized individual modes it still greater than during the
reference period. The modal shifts were much larger for those with a full
national subscription. Those with other types of subscription - which are
usually for a particular zone or connection - have not returned to public
transport in the same way that national ticket holders have.

5.5 discussion

The reductions in mobility have been drastic. The average daily kilometers
travelled fell by 60% and 95% for car and train modes respectively (see
fig. 5.1). Car travel has recovered slowly, back to the Autumn values within
2 weeks of the lockdown measures being relaxed. However, public transport
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Figure 5.12: Mode shares by distance during the COVID-19 crisis

ridership at the same point was still low, at 20% of pre-COVID levels, despite
the importance of public transport as a commuting mode in Switzerland.
This is likely a result of many people still working from home. Indeed,
further results show that the morning and evening peeks are only slowly
returning - and this return is dominated by car travel.

The fall in the number of new corona cases in Switzerland since the
introduction of the measures (Federal Office of Public Health, 2020) shows
that restricting social interaction is a key requirement in dealing with the
pandemic. The home-office requirement aimed to reduce the possibility for
disease transmission both in the workplace and on public transport. Indeed,
the daily number of public transport trips has fallen by around 90%.

An important question is to what extend home-office will be encouraged
post-pandemic, and the implications for transport policy. A reduction in
peak-hour travel may reduce crowding and thus postpone or negate the
need for further infrastructure investment and dynamic demand measures,
such as mobility pricing.

Furthermore, it remains to be seen if some of the behavioural shifts
observed during this period will become permanent. These shifts have been
both positive and negative.

The increase in car usage during the day, with midday off-peak travelled
kilometers now slightly above the 2019 baseline (see fig. 5.11), suggests
that people are driving more to avoid public transport. It remains to be
seen if this observed trend continues in the coming months. If and when
workers eventually return to the workplace, this shift from public transport
to car usage would lead to additional congestion and be financially chal-
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lenging for the public transport operators. The obligatory wearing of masks
was introduced on the July 6, in order to reduce transmission on public
transport. This will also be important for encouraging a return to public
transport. Passengers may see public transport as safe enough when masks
are required. The alternative would have been other measures to increase
public transport capacity to allow social distancing, such as increasing the
train length or providing more services. These policy measures haven’t been
implemented, with mask wearing deemed to be sufficient. Furthermore,
the cost burden is shifted to the passengers, who need to provide their own
mask. If disposable masks are used, this effectively increases the per trip
cost of travel, which may further suppress public transport demand in the
coming months. Tirachini and Cats (2020) suggest that there is a possible
risk that if the public transportation is seen as unsafe during the pandemic
due to crowding and a lack of social distancing measures, formed negative
perceptions of public transportation will become more prevalent and could
persist after the pandemic, resulting in the formation of new undesirable
habits.

Home-office will continue to play a role. Globally, many companies are
continuing to allow or even encourage home-office working (The most well
publicised examples being the big tech companies). This is also the case in
Switzerland. In the post-lock period, we have already seen how congestion
has increased in certain times of the day.

The Cycling boom observed since March also raises policy challenges for
Switzerland. Other research has highlighted the negative effect of car traffic
on willingness to cycle (Kaplan, Luria, and Prato, 2019), The lack of car
traffic during the lockdown undoubtedly made cycling more attractive. Sales
of cycles increases dramatically, not just in Switzerland (Matthias Heim,
2020), but worldwide (Roger Harrabin, 2020). Sustaining the observed
increase in cycling would be associated with health benefits (De Hartog
et al., 2010), but also with an increase in accidents. The Covid-19 pandemic
has shown a willingness in the population to take up cycling, and policy
measures have already been mooted or implemented in other jurisdictions to
further encourage this trend (Keohane and Abboud, 2020). In the countries
there has been moves to introduce new temporary and permanent cycling
infrastructure as a result of the pandemic. One of the key justifications is
to simultaneously reduce demand for public transport and try persuade
public transport users to shift to active modes rather than use the car, which
would increase congestion. Such a policy has been suggested for Zurich,
the largest city in Switzerland and the initiative was approved in the last
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elections in September 2020. This is a good step towards making these
changes permanent.

In Handy, Van Wee, and Kroesen (2014), the key research needs for
promoting cycling are discussed. In particular, they note that even in pro-
cycling cities, strong evidence around cycling behaviour is important for
effectively directly resources. To this aim, the wealth of data collected in the
MOBIS-COVID19 study will prove invaluable in highlighting areas which
are underserved by cycling infrastructure. Lanzendorf and Busch-Geertsema
(2014) identify the importance of local government policy in increasing the
cycling mode share. They also note that in the case studies presented, the
governments took advantage of favourable general conditions. With this in
mind, governments should take advantage of the observed cycling uptake
as an opportunity to further develop their cycling strategies.

5.6 conclusion

The application of app-based tracking, combined with online surveys of
participants allowed the study of the changes in mobility patterns caused by
the Covid-19 pandemic. The study sample is broadly representative, with
a slight over representation of car owners. Important variations in travel
reduction were observed across different socio-demographic groups, which
are obscured in other data sources. Finally, the implications for transport
policy in Switzerland are widespread, especially if further increases in
congestion are to be avoided, and the observed uptake of cycling to be
made habitual.
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N %

Variable Value MOBIS MZ MOBIS MZ

No 13 2,587 0.8 6.2

Yes 1,480 31,824 90.4 75.8Access to car

Sometimes 144 7,584 8.8 18.1

Under 18 - 7,546 - 13.2

(18,25] 259 5,126 16.9 9.0

(25,35] 272 8,117 17.7 14.2

(35,45] 314 8,789 20.4 15.4

(45,55] 359 9,560 23.4 16.7

(55,65] 333 7,384 21.7 12.9

Age

66+ - 10,568 - 18.5

German 1,191 39,023 72.8 68.4

French 446 14,450 27.2 25.3Correspondence language

Italian - 3,617 - 6.3

Mandatory 96 9,954 5.9 19.3

Secondary 758 25,594 46.3 49.5Education

Higher Ed. 783 16,124 47.8 31.2

Female 828 28,928 50.6 50.7
Gender

Male 809 28,162 49.4 49.3

1 209 19,439 12.8 34.0

2 546 20,222 33.4 35.4

3 331 7,400 20.2 13.0

4 417 7,133 25.5 12.5

Hosuehold size

5 or more 134 2,897 8.2 5.1

4 000 CHF or less 92 10,139 5.6 17.8

4 001 - 8 000 CHF 470 18,728 28.7 32.8

8 001 - 12 000 CHF 495 9,945 30.3 17.4

12 001 - 16 000 CHF 267 3,878 16.3 6.8

More than 16 000 CHF 168 2,593 10.3 4.5

Income

Prefer not to say 143 11,807 8.7 20.7

Employed 1,196 27,521 73.1 48.2

Self-employed 111 4,133 6.8 7.2

Apprentice 10 1,488 0.6 2.6

Unemployed 59 1,423 3.6 2.5

Student 83 2,114 5.1 3.7

Other 110 9,421 6.7 16.5

Main employment

Retired 68 10,990 4.2 19.3

Swiss 1,517 43,347 92.7 75.9
Nationality

Other 120 13,743 7.3 24.1

Table 5.1: Comparison of MOBIS-Covid19 (MOBIS) sample with the last national
travel diary Mikrozensus (MZ) 2015





6
D I S C U S S I O N A N D O U T L O O K

The previous chapters in this thesis presented four pieces of work under
the umbrella of mobility field experiments using GPS tracking apps. This
discussion brings the papers together, discussing the main results, key
limitations, and the possible directions for future work.

In the chapter 2, the methodology for the use of app-based GPS tracking
in mobility studies was presented and evaluated. In answer to the research
questions, such methods are indeed suitable for such experiments, and the
trip and mode detection algorithms are now mature enough to reliably
support a mobility pricing experiment that covers multiple transport modes.
The key role that participants mobile device plays on the attrition rate was
identified, which is important contribution towards future studies which
may wish to use the same methods. It will also be interesting to follow this
up in future studies, both with Catch-my-Day and other Apps, to see if
this situation changes. From the analysis presented, no evidence was found
of any manipulation of the app or trip validation interface by the pricing
treatment group.

Furthermore, as all participants were subject to a four-week control
period, and the control treatment group continued as so for another four
weeks, more 20,000 person weeks of “untreated” travel diary data are now
available for the further research of travel behaviour. This data set is already
stimulating much further research, not least the understanding of mobility
during the Corona pandemic presented in chapter 5.

Chapter 3 covers the design of a link-level approach to calculating the
external costs of travel on GPS traces. The pipeline focuses on private car
travel, taking into account the speed, route and car type of the participant,
by combining various parts of the MATSim framework and Graphhopper.
An analysis of the application of the pipeline to the data collected from
the Catch-my-Day app shows that this method captures much more hetero-
geneity in the external costs than the use of normative values, while still
being consistent on the average level. As mentioned in chapter 1, mobil-
ity pricing has the potential to play a key role in future of our transport
networks, and the work in sections 2 and 3 are key components of the
MOBIS study, which aims to further our understanding of the potential
impacts of mobility pricing in Switzerland. Since the completion of this
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work, the pipeline has been applied in the nationwide mobility pricing
experiment referenced in chapter 2, and combined with zone-based public
transport peak-hour charging and per-km external costs for non-car modes,
forming the basis of a mobility pricing scheme in the MOBIS experiment.
The pricing scheme covers all main modes of transport, incentivises active
modes and public transport over car travel, and should encourage both
modal and departure time shifts. The analysis of the treatment effects in
experiment is still ongoing.

Developing models with the amount data collected from such a large
tracking experiment also requires new tools, and to this end, mixl was
developed for the R programming environment. Chapter 4 details the
development and use of this new package, which has already been ap-
plied in multiple pieces of published research (Marra and Corman, 2020;
Schmid, 2019; Wicki et al., 2019), and is used as a teaching tool in the
course “measurement and modelling" at the Institute for Transport Systems
and Planning, ETH Zurich. Arguably more importantly, it has provided a
performance benchmark for discrete choice estimation software in R, which
has motivated steady performance improvements in other discrete choice
estimation package for R, namely, Apollo. Apollo of course provides a much
larger modelling toolkit than mixl, although the way the utility functions
are specified is roughly similar. Valuable future work would be to integrate
the two packages, so that the performance benefits of mixl are available to
Apollo users in cases where their models are supported. While the perfor-
mance of mixl is impressive, there is still room for further reductions in the
estimation time. Further gains could be made through the implementation
of symbolic differentiation, and the adaptation of mixl to support GPUs
(graphical programming units), which contain hundreds of cores on a chip.
The data parallel problem structure of mixed multinomial logit structures is
perfectly suited to GPU architecture, and speed improvements of an order
of magnitude would be feasible.

Finally, chapter 5 presents a first analysis of mobility behaviour in the first
months of the Covid-19 pandemic in Switzerland, using the Catch-my-Day
app and the MOBIS panel of respondents. This work demonstrates the
power of the GPS tracking methods to capture unexpected changes in mo-
bility behaviour. It took only a few days to invite the MOBIS participants to
reactive the app, and as they were already familiar with the technology, and
the data pipelines were still in place, tracking could begin immediately. Fur-
thermore, as the original MOBIS tracking data was available from Autumn
2019, a baseline could be established against which to measure the impacts
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of the restrictions on mobility in Switzerland. A report of the mobility was
provided online weekly, in English, German and French. This work became
an important reference point both in Switzerland and more widely across
Europe. The results were reported widely in the Swiss media throughout
2020. It was also utilised across the transport industry, from local transport
authorities, to consulting companies and the automotive industry in under-
standing the impacts of the pandemic. For a list of the media coverage, see
chapter 6. The MOBIS-Covid19 data is also being used to develop mode
choice models (utilising mixl) for the Swiss railways (SBB) to incorporate
the changes in passenger behaviour and the shift towards telework (also
known as working-from-home or remote-work) in their in-house planning
models.

The identification of the cycling boom in chapter 5 was also a surprising
result, which was only possible due to the availability of baseline data from
2019 MOBIS study. If the MOBIS-Covid19 tracking had started from null at
the beginning of the pandemic, it is likely that the capture of the cycling
boom in the data would have been missed, or only identified much later on
comparison with other data sources. The data on cycling in the dataset is
still largely under-utilised, but there is still exciting work to be done on the
behavioural influences on cycling using the MOBIS-Covid19 data. It is also
worth mentioning that the MOBIS-Covid19 data collection is still on going,
and providing insights into the behavioural responses during the Second
wave in Autumn 2020.

6.1 outlook

The pandemic has clearly accelerated the shift towards telework that was
predicted to take many more years to occur. Indeed, tech companies such
as Facebook and Twitter now allow employees to work from home perma-
nently, and Facebook’s CEO anticipates that half of Facebook’s workforce
will permanently work from home by 2030 (Sandler, 2020). It will be par-
ticularly interesting to see how this develops in the near future, and how
it shapes our transport systems. It is feasible that for many office based
workers, their residential location choice will no longer be constrained by a
necessary proximity to the workplace. This could lead to a restructuring
of our cities, and a flattening of the peak-hour demand curves. On the
other-side, the lack of peak-hour commuting flows on public transport
may have drastic consequences for the financial viability of such systems.
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Already in 2020, the SBB has reported a loss of over 479 Million in the first
half of 2020 as a result of the pandemic (Burroughs, 2020).

More work needs to be undertaken to explore how best to adapt our
transport systems with a post-pandemic world, and further analysis on data
collected during this thesis will play a key role here. The results will apply
not only to the Swiss context but more widely, as many of the insights
will be potentially transferable to comparable regions, especially around
Europe.

As mentioned in the introduction, road pricing schemes using GPS are
already being implemented in parts of the world (Tan, 2020), and practical
implementations have been shown to be effective in London (Leape, 2006),
Copenhagen (Nielsen, 2004) and Stockholm (Eliasson et al., 2009), among
others. However, where GPS devices has been used to implement or monitor
such a system, they have been installed in the car. Designing a mobility-
pricing scheme with GPS, covering all transport modes, as opposed to just a
road-pricing scheme, would potentially require almost complete surveillance
of the population, either through use of a tracking app, or a combination
of GPS technology and smartcards (such as those already common in
public transport networks). In some respects, we are already living in
such a dystopian future, where our economic system is built around the
surveillance of population and monetisation of their data (Zuboff, 2019). It
is possible that the reluctant acceptance of this new reality might make the
introduction of mobility-pricing schemes more acceptable, if users of the
system are convinced that they would overall be better off, as has been the
promise of dynamic transport pricing since its conception.

There is also is the possibility to both replicate and extend the results
of works on human mobility scales, such as those by (Gonzalez, Hidalgo,
and Barabasi, 2008) and Alessandretti, Aslak, and Lehmann (2020). Such
“laws” of mobility have been applied to both large datasets of hundreds
of thousands of participants, and smaller ones of 1000 students. Here, the
long-term nature of the MOBIS dataset may be useful, where hundreds of
the participants have been tracking for well over a year. In particular, these
models could be used to expore the shifts to telework, and the influence
of household size on the scales of mobility. Such contributions have the
potential to improve our transport models, by improving our understanding
of how mobility patterns vary across different segments of the population.

There are still limitations to the methods, most of which were identified
in the previous chapters. In particular, the effectiveness of tracking apps is at
the mercy of the mobile phone manufacturers. Certain default settings, such
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as those on Huawei Android phones can render the tracking Apps almost
useless unless they are changed, and such requirements are only becoming
more common as device makers strive for longer battery life and better
performance. Furthermore, the difference in attrition between iOS and
Android may make GPS-based mobility studies less feasible in regions with
a higher share of cheaper Android devices, such as developing countries.
During the course of the MOBIS study, Apple released a new software
update that completely redesigned their location privacy framework. This
could have been a death-knell for the study, but fortunately it was handled
well by the app developers, Motiontag. It did however, emphasise the
fragility inherent in GPS tracking studies, which by necessity rely on a
large stack of technology provided by third-parties. It also needs to be
acknowledged that the usefulness of GPS tracking in urban areas with large
underground transport networks may be less effective.

It was proposed in the introduction that, after decades of reliance on
paper and telephone based methods for mobility studies and travel diary
collection, the field is experiencing an inflection point. While the potential
applications for GPS tracking were previously clear, the widespread appli-
cation was hindered by a reliance on physical GPS-receivers and a lack of
methods for processing the data. However, with the use of mobile phone
tracking apps, which are easy to install and run in the background, such as
Catch-my-Day, coupled with the accuracy of the machine learning methods
for identifying trips and modes, the stage is set for these GPS data to play a
ever more central role in transport planning.
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