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Optimization Method for the Energy and
Emissions Management of a Hybrid
Electric Vehicle with an Exhaust

Aftertreatment System

J. Ritzmann ∗, G. Lins ∗, C. Onder ∗

∗ Institute for Dynamic Systems and Control, ETH Zurich, 8092
Zurich, Switzerland

Abstract: This paper presents a real-time optimization method to compute the fuel-optimal
torque split, gear selection and engine on/off command for a Diesel hybrid electric vehicle
equipped with an exhaust aftertreatment system. We aim to minimize the amount of fuel
consumed, while achieving a charge-sustaining operation and keeping the tailpipe NOx emissions
below the legislative limit. We simplify the full vehicle model to facilitate the formulation
of a mixed-integer convex problem which is then solved using the proposed iterative convex
optimization (ICO) algorithm. We validate the result by comparing it to the globally optimal
solution computed using dynamic programming (DP). For the simple model, the ICO algorithm
finds the same solution as the DP benchmark. The computation time was reduced from one week
for the DP benchmark to 49 s for the ICO solution. By comparing the DP solution obtained
on the full model with the ICO solution evaluated on the full model, we observe an offset in
the solution due to model mismatch, but find that the ICO algorithm captures the qualitative
trends of the optimal solution. The proposed algorithm is capable of solving the energy and
emissions management problem in real-time, forming the basis for online optimal control.

Keywords: hybrid electric vehicle, energy and emissions management, aftertreatment system,
optimal control, mixed-integer optimization

1. INTRODUCTION

To exploit the full potential for a reduction of the fuel
consumption and the emissions of a hybrid electric ve-
hicle (HEV), the available degrees of freedom need to
be carefully controlled. In parallel-hybrid vehicles, these
are the torque split between the electric motor and the
internal combustion engine, the selected gear, and the
engine on/off command. Today’s Diesel-powered vehicles
are equipped with an exhaust gas aftertreatment system
(ATS) to reduce the NOx emissions and care must be taken
to guarantee a sufficient ATS temperature for the chemical
reactions to occur. The full system performance can only
be achieved if the resulting optimal control problem (OCP)
is solved for the current vehicle mission and an online
optimal controller which can exploit predictive information
about the driving mission is used, e.g., a model predictive
control (MPC) scheme. Both the battery state of charge
and the ATS temperature must be considered in a dynamic
optimization. Thereby, the goal is to minimize the amount
of fuel consumed, while achieving a charge-sustaining op-
eration and keeping the tailpipe NOx emissions below the
legislative limit. As both continuous inputs and discrete
inputs need to be considered, a mixed-integer OCP results.
A problem of this class is very challenging to solve (Lee and
Leyffer (2011)). Furthermore, this OCP must be solved
online using the limited computing power aboard an HEV,
requiring an extremely efficient optimization method. In

this paper we propose an algorithm to rapidly solve this
optimization problem.

The classical energy management problem for HEVs has
been in the focus of extensive research throughout the last
decades. A summary of typical approaches is presented in
Sciarretta and Guzzella (2007). If the dependency of the
Hamiltonian on the battery state of charge is neglected,
Pontryagin’s Minimum Principle (PMP, Boltyanski et al.
(1960)) can be used to simplify the problem to finding a
constant equivalence factor that characterizes the trade-
off between fuel energy and battery energy. If predictive
data is available, a reference trajectory for the state of
charge can be calculated. The equivalent consumption
minimization strategy is often used, where the optimal
control inputs are calculated based on the equivalence
factor which is set by a feedback controller in order to
follow a state-of-charge reference. An example is given in
Ambühl (2009). Classical energy management methods for
HEVs do not consider pollutant emissions and therefore
cannot guarantee that the vehicle is operated within the
legislative emission limit.

In some publications, the engine-out NOx emissions of
the internal combustion engine are considered in the
OCP, but the ATS temperature and its capability to
reduce the NOx emissions are not taken into account.
Using PMP, the authors of Zentner et al. (2014) show
that a second equivalence factor can be introduced which
characterizes the trade-off between fuel energy and NOx



emissions. In Nüesch et al. (2014a), this result is used to
develop an equivalent energy and emissions strategy that
controls both the equivalence factor corresponding to the
electrical energy consumption and the one corresponding
to the engine-out emissions. In the form presented, that
approach does not control the optimal discrete inputs
but sets them using a heuristic method. To guarantee
emissions compliance for a vehicle equipped with an ATS,
that method is not sufficient, as it does not consider the
influence of the ATS on the tailpipe emissions.

If the ATS is taken into account in the OCP, an approach
such as the one presented in Kessels et al. (2010) can be
used to show that the costate, aka the equivalence factor,
corresponding to the ATS temperature, is not constant
and that the previously introduced equivalent energy and
emissions strategy control methods no longer work reliably.
Several publications, such as Tschopp et al. (2015) or
Simon et al. (2018), solve the resulting OCP offline using
dynamic programming (DP, Bellman (1956)). The authors
state that about one week is required to solve the OCP,
rendering the optimization method unsuitable for online
control.

Only a limited number of real-time optimal energy and
emissions management controllers for HEVs could be
found in literature. The method presented in Kessels et al.
(2010) is applied to a series-hybrid vehicle and considers
the NOx reduction effect of the ATS, but neglects the
effect of the chosen strategy on the ATS temperature. Fur-
thermore, the publication does not state clearly whether
the engine can be switched off, and it does not consider
any predictive information. In Kuchly et al. (2019), MPC
is applied to a mild parallel hybrid. The OCP is solved
using a projected gradient method and considers predictive
information for a horizon of 10 s. Discrete inputs are not
included in the optimization. A further MPC approach
is presented in Zhao and Wang (2014) where the opti-
mization method used to solve the OCP is not stated and
where the text is unclear as to whether discrete inputs were
considered. In Ma and Wang (2017), a method is presented
that finds the optimal control parameters for a predefined
controller structure in an MPC fashion, thereby sacrificing
a significant portion of the available system performance.
No real-time optimization method capable of solving the
mixed-integer energy and emissions management problem
for HEVs could be found in literature.

This paper presents a real-time optimization method to
solve the mixed-integer energy and emissions management
problem. Specifically, we first present the HEV powertrain
architecture considered and its mathematical model. Sec-
ond, we simplify the HEV model to facilitate the formula-
tion of a mixed-integer convex problem (MICP). Third, the
iterative convex optimization (ICO) algorithm to solve the
resulting MICP is outlined. Fourth, the performance of the
ICO algorithm is compared to a DP benchmark. Finally,
the advantages of the proposed method are summarized
and the areas for further improvement are identified.

2. HEV POWERTRAIN

Figure 1 shows the parallel-hybrid powertrain considered
in this work. It features a single electric machine connected
to the torque splitter via a fixed-transmission-ratio gear-

box and drawing power from the battery via a DC-DC
converter. The Diesel engine is connected to the torque
splitter via a clutch and a six-speed automatic gearbox and
it features an ATS consisting of a Diesel oxidation catalyst
(DOC), a Diesel Particulate filter (DPF), and a selective
catalytic reduction (SCR) system. The degrees of freedom
that have to be set by the energy and emissions manage-
ment system are the clutch position (engaged/disengaged),
the selected gear of the engine gearbox, and the torque
split. The clutch position and the selected gear are com-
bined in the discrete variable igb, where igb = 0 represents
a disengaged clutch, i.e., engine off, and igb > 0 repre-
sents an engaged clutch, i.e., engine on, with the gear
igb ∈ {1, 2, 3, 4, 5, 6} selected. The torque split is set by
the continuous input P which represents the electric motor
power at the torque splitter.
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Fig. 1. Parallel-hybrid powertrain with ATS.

Only the most important relations and the sub-models
regarding emissions are presented in the following, as the
powertrain model without the emissions considerations
was already presented in Ritzmann et al. (2019).

2.1 Vehicle Dynamics

The rotational speed and the traction power at the torque
splitter are calculated from the vehicle dynamics and the
driving mission as

ωts =
γfd

rw
· v (1)

Pts = v ·
(
Fd(Γ, v) + Fm(a)

)
, (2)

where rw is the wheel radius, γfd is the final drive ratio,
Γ is the road gradient, v is the vehicle velocity, a is the
vehicle acceleration, Fd is the drag force, i.e. aerodynamic
drag, rolling resistance and gravitational force, and Fm is
the inertial force.

The friction brakes are only used when the engine is
switched off. The braking power Pbr cannot be larger than
zero.

Pbr =

{
Pts − P if igb = 0

0 if igb > 0
(3)

2.2 Electrical Components

The motor gearbox and the DC-DC converter are modelled
using a constant efficiency. The motor efficiency is given



as a map of the motor speed and torque. The battery is
modelled using an equivalent circuit model, where both the
open-circuit voltage Voc and the internal resistance Rint

depend on the battery state of charge. The state-of-charge
dynamics are

dξ

dt
= − Pb(P, ξ)

QmaxVoc(ξ)
, (4)

where ξ is the state of charge, Pb is the power drawn
from the battery, and Qmax is the maximum capacity
of the battery. The limit on the motor torque Tm ∈
[Tm,min(ωm), Tm,max(ωm)] and the limit on the battery
current Ib ∈ [Ib,min, Ib,max] are summarized in the limit
for the motor power at the torque splitter, resulting in
P ∈ [Pmin(ωm, ξ), Pmax(ωm, ξ)]. The dependency on ξ
results from the battery losses that depend on the state of
charge. The motor speed limit is given by ωm ∈ [0, ωm,max].
The battery state of charge is limited to ξ ∈ [ξmin, ξmax].

2.3 Engine

Given P , the engine power at the torque splitter is

Pe,ts = Pts − P − Pbr . (5)

The engine speed is set by ωts, and igb, whereas the engine
torque is set by Pe,ts, igb, and the efficiency of the engine
gearbox. The fuel power Pf , the engine-out NOx mass flow
∗
meo

NOx
, the exhaust temperature ϑexh, and the exhaust

mass flow
∗
mexh are related to the engine speed and torque

through static maps. The limit of the engine power at
the torque splitter is Pe,ts ∈ [0, Pe,ts,max(ωe)]. The engine
speed limit is ωe ∈ [ωe,min, ωe,max] if the engine is on and
ωe = 0 if it is off.

2.4 Aftertreatment System

In this work, we focus on NOx emissions and disregard all
other emission species. Both the DOC and the DPF bricks
have a catalytic coating to promote the oxidation of NO.
The SCR catalyst is used to reduce the NOx emissions.
To facilitate the optimization, a very simple model of the
ATS is required.

We capture the thermal behaviour of the ATS using a
single-cell 0D first-principle model, where the mass of the
ATS mATS and the convective heat transfer coefficient αhl

are parameters fitted to measurement data. The dynamics
of the ATS temperature are

dϑATS

dt
=

1

mATScATS
· (

∗
HATS −

∗
Qhl) (6)

∗
HATS =

∗
mexhcp · (ϑexh − ϑATS) (7)

∗
Qhl = αhlS · (ϑATS − ϑamb) , (8)

where cATS is the specific heat capacity of the ATS.
The enthalpy flow from the exhaust gas to the ATS is

denoted by
∗
HATS, where cp is the specific heat capacity at

constant pressure of the exhaust gas, ϑexh is the exhaust
gas temperature, and ϑATS is the ATS temperature. The

conductive heat loss to the environment is denoted by
∗
Qhl,

where S is the outer surface area of the ATS and ϑamb is
the ambient temperature.

For the chemical model of the ATS, we use a static look-
up map which gives the NOx-reduction efficiency ηDeNOx

as a function of the ATS temperature and the exhaust
mass flow. This map incorporates the effects of the DOC,
the DPF, and the SCR. It is obtained using steady-state
evaluations of a more sophisticated ATS model developed
based on Käfer (2004). The dynamics of the accumulated
tailpipe NOx mass are

dmtp
NOx

dt
=
(

1− ηDeNOx(ϑATS,
∗
mexh)

)
· ∗
meo

NOx
. (9)

3. OPTIMAL CONTROL PROBLEM

The HEV powertrain model used in this work is defined
by the input vector u and the state vector x.

u =

[
P

igb

]
x =

 ξ

ϑATS

mtp
NOx

 (10)

The resulting OCP is

minimize
P, igb

∫ tfin

0

Pf dt (11a)

subject to

Eqs. (1)− (9) (11b)

ξ(0) = ξ0 (11c)

ξ(tfin) ≥ ξ0 (11d)

ξ ∈ [ξmin, ξmax] (11e)

ϑATS(0) = ϑATS,0 (11f)

mtp
NOx

(0) = 0 (11g)

mtp
NOx

(tfin) ≤ mtp
NOx

(11h)

Pbr ≤ 0 (11i)

ωm ∈ [0, ωm,max] (11j)

P ∈ [Pmin(ωm, ξ), Pmax(ωm, ξ)] (11k)

ωe ∈
{
{0} if igb = 0

[ωe,min, ωe,max] if igb > 0
(11l)

Pe,ts ∈ [0, Pe,ts,max(ωe)] (11m)

igb ∈ {0, 1, 2, 3, 4, 5, 6} . (11n)

The initial state of charge is ξ0, the initial ATS tempera-
ture is ϑATS,0, and the limit on the accumulated tailpipe

NOx mass is mtp
NOx

. The final time is denoted by tfin.

As a benchmark for the optimization method developed
in this work, this OCP is solved using DP. We use the
function dpm presented in Sundström and Guzzella (2009).
Solving the OCP with DP takes about one week for a
driving mission with a duration of 20 minutes and a
discretization of 1 s.

4. FORMULATION OF MICP

In this section we simplify the HEV model to facilitate the
reformulation of the OCP given by (11) as a mixed-integer
convex problem (MICP).

4.1 Model Simplifications

As presented in Ritzmann et al. (2019), a piecewise
quadratic approximation is used to model the battery



power Pb and the fuel power Pf . The dependency of Pb

on the state of charge is neglected.

Pb =

{
αP 2 + β1P if P ≥ 0

αP 2 + β2P if P < 0
(12)

Pf =

{
0 if igb = 0

κ2P
2
e,ts + κ1Pe,ts + κ0 if igb > 0

(13)

The coefficients α and β of the electrical component
model are dependent on the motor speed ωm, while the
coefficients κ of the engine model are dependent on the
engine speed ωe.

The enthalpy flow from the exhaust gas to the ATS and
the engine-out NOx emissions are modelled as

∗
HATS =

{
0 if igb = 0

δ2ϑATS + δ1 · (Pf − Pe,ts) + δ0 if igb > 0

(14)
∗
meo

NOx = ν2P
2
f + ν1Pf , (15)

with coefficients δ and ν that depend on the engine speed
ωe. Equation (7) of the ATS thermal model is approxi-
mated by (14), while (6) and (8) remain unchanged.

The form of the static map for the chemical ATS model
from Eq. (9) is adapted in order to facilitate the formula-
tion of a MICP. By assuming a fixed ratio between

∗
meo

NOx

and
∗
mexh, we neglect the explicit dependency of

∗
mtp

NOx
on

the NOx concentration in the exhaust gas. The adapted
map gives the tailpipe NOx mass flow as a function of the
ATS temperature and the engine-out NOx mass flow as
shown in Fig 2.
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Fig. 2. Adapted static look-up map for the chemical ATS
model. All values are normalized.

The map in Fig. 2 clearly is not convex. In order to
nevertheless allow a region-wise convex approximation, the
map is split into two regions at the threshold temperature
ϑATS,thr. For ϑATS < ϑATS,thr, no NOx reduction takes
place. This region is denoted by the ATS binary value
bATS = 0. For ϑATS ≥ ϑATS,thr, NOx reduction takes place.
This region is denoted by the ATS binary value bATS = 1
and is further split into four sub-regions depending on the
engine-out NOx mass flow. These sub-regions are denoted
by the ATS integer iATS ∈ {0, 1, 2, 3}. Each sub-region
of the ATS map is approximated using a set of linear

functions that form a convex epigraph when relaxed. Each
linear function has the form

∗
mtp

NOx = τ2ϑATS + τ1
∗
meo

NOx + τ0 . (16)

The coefficients τ2, τ1, and τ0 for each linear function of
the set are summarized in the vectors T 2, T 1, and T 0 for
each sub-region of the ATS map. As each set of linear
functions was chosen such that it forms a convex epigraph
when relaxed, we find the value for

∗
mtp

NOx by evaluating
all linear functions and taking the maximum. The final
simplified ATS map is

∗
mtp

NOx =

{ ∗
meo

NOx if bATS = 0

max(T 2ϑATS + T 1
∗
meo

NOx + T 0) if bATS = 1 ,

(17)

where the vectors T depend on the ATS integer iATS.
Figure 3 shows the resulting ATS map with its regions
and sub-regions.
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Fig. 3. Region-wise convex adapted look-up map for the
chemical ATS model. All values are normalized.

Equation (9) is approximated by

dmtp
NOx

dt
=

∗
mtp

NOx
(ϑATS,

∗
meo

NOx
) . (18)

4.2 Resulting MICP

As (12), (13), (15), and (17) describe nonlinear equality
constraints of the OCP, they must be relaxed in order
to formulate an MICP. During the model formulation,
the inequality constraints were formulated such that they
always hold as equalities at the optimal solution, i.e.,
the relaxation does not alter the resulting optimum. In
addition to the gearbox integer variable igb, the ATS
binary bATS and the ATS integer iATS were introduced
and need to be added to the optimization variables of the
OCP. The resulting OCP is

minimize
P, igb, bATS, iATS

∫ tfin

0

Pf dt (19a)

subject to

Eqs. (1)-(6), (8), (11c)-(11n), and (18) (19b)

bATS ∈ {0, 1} (19c)

iATS ∈ {0, 1, 2, 3} (19d)



Pb ≥ αP 2 + β1P (19e)

Pb ≥ αP 2 + β2P (19f)
∗
meo

NOx ≥ ν2P
2
f + ν1Pf (19g)

Eq. (20) if igb = 0 (19h)

Eq. (21) if igb > 0 (19i)

Eq. (22) if bATS = 0 (19j)

Eq. (23) if bATS = 1 (19k)

If igb = 0, the following constraints are active:

Pf = 0 (20a)
∗
HATS = 0 . (20b)

If igb > 0, the following constraints are active:

Pf ≥ κ2P
2
e,ts + κ1Pe,ts + κ0 (21a)

∗
HATS = δ2ϑATS + δ1 · (Pf − Pe,ts) + δ0 . (21b)

If bATS = 0, the following constraints are active:

ϑATS < ϑATS,thr (22a)
∗
mtp

NOx =
∗
meo

NOx . (22b)

If bATS = 1, the following constraints are active:

ϑATS ≥ ϑATS,thr (23a)
∗
meo

NOx ≥
∗
meo,lb

NOx (23b)
∗
meo

NOx <
∗
meo,ub

NOx (23c)
∗
M tp

NOx ≥ T 2ϑATS + T 1
∗
meo

NOx + T 0 . (23d)

As in (12)-(17), the dependencies on ωm, ωe, and iATS are
not noted explicitly. The constraints (22a) and (23a)-(23c)
guarantee that the region of the ATS map corresponding to

bATS and iATS is evaluated. If bATS = 1, the limits
∗
meo,lb

NOx

and
∗
meo,ub

NOx denote the iATS-dependent lower and upper
bound of

∗
meo

NOx, respectively and the set of relaxed linear

constraints on
∗
mtp

NOx is summarized in the vector
∗
M tp

NOx
.

5. ICO ALGORITHM

Mixed-integer optimization problems are notoriously hard
to solve due to their combinatorial nature. The iterative
convex optimization (ICO) algorithm presented in this
work decouples the optimization of the continuous inputs
from the optimization of the discrete inputs by applying
two optimization methods. By iterating over the two meth-
ods, the solution that minimizes the cost of both optimiza-
tions is sought. An application of a similar algorithm to
a different problem is presented in Nüesch et al. (2014b).
An overview of the algorithm is presented in Fig. 4. The
individual blocks are outlined in the following.

The iteration index is denoted by j. The vector i contains
all discrete inputs, whilst the vector λ contains the costates
resulting from the convex optimization.

i =

 igb

bATS

iATS

 λ =

 λξ

λϑ

λNOx

 (24)
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Fig. 4. Overview of the ICO algorithm.

The costate λξ is associated to the state of charge, λϑ is
associated to the ATS temperature, and λNOx

is associated
to the accumulated tailpipe NOx mass. By evaluating
PMP for the MICP we find that the costates λξ and λNOx

are constant, as the Hamiltonian does not depend on the
state of charge or the current tailpipe NOx mass flow. The
costate λϑ on the other hand, is time-dependent.

5.1 Convex Optimization

The Convex Optimization block solves the OCP stated in
(19) for given discrete variables i using the parser YALMIP
(Lofberg (2004)) and the solver ECOS (Domahidi et al.
(2013)). To deal with infeasible problems during inter-
mediate iteration steps, soft constraints are used for the
terminal constraints on ξ and mtp

NOx. We add the slack
variables εξ ≥ 0 and εNOx ≥ 0 to the terminal constraints
(11d) and (11h) as

ξ(tfin) ≥ ξ0 − εξ (25)

mtp
NOx

(tfin) ≤ mtp
NOx

+ εNOx (26)

and we add the terminal cost

wξεξ + wNOx
εNOx

(27)

with weights wξ and wNOx
subject to tuning to the

objective (19a). To ensure that a non-slacked solution to
the OCP is found if it exists, wξ and wNOx

need to be
chosen at least as large as the a priori unknown costates
λξ and λNOx

. On the other hand, they should be chosen as
small as possible to avoid issues with the relaxation of the
constraints of the OCP. A reasonable trade-off is to set the
weights w to twice the value of the corresponding costates
obtained by running an optimization on the legislative
cycle. The outputs of the Convex Optimization block are
the costates λ, the states x, and the accumulated fuel
energy Ef found by integrating the fuel power Pf over the
entire driving mission.



5.2 Integer Optimization

In Ritzmann et al. (2019), we devised an algorithm to
rapidly solve the HEV energy management problem for the
HEV without accounting for the ATS and the emissions.
The OCP was solved efficiently by exploiting the fact that
neglecting the state dependency of the Hamiltonian results
in a limited loss in accuracy. The dynamic optimization
problem was reformulated as a static optimization prob-
lem, which is much easier to solve. A similar approach is
applied here.

The Hamiltonian resulting from the OCP in (19) has the
form

H = g(P, igb) + λᵀf(P, igb, ϑATS) , (28)

where the stage cost g(P, igb) corresponds to the fuel
power and f(P, i, ϑATS) is a vector describing the state
dynamics given by (4), (6), and (18). In (28) we notice
that the Hamiltonian only depends on the inputs and
the ATS temperature. In the Integer Optimization block
the value of ϑATS is approximated using the temperature
ϑj

ATS obtained from the previous evaluation of the Convex
Optimization block. The Hamiltonian is approximated as

H̃ = Pf + λj
d

ᵀ



− Pb(P )

QmaxVoc

1

mATScATS
·
( ∗
HATS(P, igb, ϑ

j
ATS)

− αhlS · (ϑj
ATS − ϑamb)

)
∗
mtp

NOx(ϑj
ATS, P, igb)


, (29)

where λj
d are the damped costates which are introduced in

the next section. This approximation results in a static
optimization problem, which is solved by evaluating H̃
for a grid consisting of all values for igb and of quantized
values for P and by identifying the minimum for each time
instance. This keeps the required computation time for the
integer optimization low.

Once the optimal values of igb and P are found, they
are applied in a forward simulation of the thermal ATS
model and the resulting temperature trajectory is used
to determine bATS. The discrete variable vector i is then
passed to the Convex Optimization block.

5.3 Costate Damping

To avoid any oscillations over ICO iterations, the costates
resulting from the convex optimization are damped ac-
cording to

λj
d =

{
λ0 if j = 0

ψjλj + (1− ψj) · λj−1 if j > 0 .
(30)

Instead of a constant damping factor ψ as in Nüesch et al.
(2014b), we heuristically choose ψj as

ψj = max

(
0.55

j
, 0.07

)
. (31)

Initially, in order to obtain a fast convergence, ψj is large
and the damping is limited. As we iterate, ψj is decreased

to increase damping and avoid any undesired oscillations
around the optimum. However, a minimum of 0.07 is
always retained.

5.4 Initialization

To initialize the ICO algorithm, the PMP-based method
presented in Ritzmann et al. (2019) is used to find the
optimal solution of the HEV energy management problem
without considering emissions. In addition to the gear
selection variable igb, the corresponding ATS variables
bATS and iATS are then found through a forward simulation
of the engine-out NOx model and the thermal ATS model,
and the discrete input vector i0 is passed to the Convex
Optimization block.

5.5 Convergence Criterion

To check the convergence of the ICO algorithm, we analyse
the accumulated fuel energy Ef as well as the non-damped
costates λξ and λNOx

. The ICO iteration is considered
converged and the algorithm is stopped if all the tolerances∣∣∣∣∣Ej

f − E
j−1
f

Ej
f

∣∣∣∣∣ ≤ 0.001 (32)∣∣∣∣∣λ
j
ξ − λ

j−1
ξ

λj
ξ

∣∣∣∣∣ ≤ 0.05 (33)∣∣∣∣∣λ
j
NOx
− λj−1

NOx

λj
NOx

∣∣∣∣∣ ≤ 0.05 (34)

are fulfilled and a non-slacked solution is found. By check-
ing Ef , we determine whether a further reduction in the
fuel consumption is possible. By checking the constant
costates λξ and λNOx

, we prevent any oscillations in the
strategy.

6. RESULTS

To test the performance of the proposed ICO algorithm,
we compare it to a DP benchmark. An urban driving
mission with a distinct elevation profile is used. The driv-
ing mission was obtained using the open-source software
Simulation of Urban MObility (SUMO, Behrisch et al.
(2011)) and is shown in the upper two plots of Fig. 5.
An initial temperature in the range of ϑATS,thr was chosen
such that the ATS is able to reduce NOx emissions, and the
accuracy of ICO can be assessed by analysing the results.
The computation times reported are obtained using a PC
with a 2.5 GHz quad-core processor, and 16 GB of RAM.

First, we check the performance of the ICO algorithm
itself. To exclude any model mismatch from the analysis,
we run both DP and ICO on the simple model presented in
Sec. 4.1. The performance comparison of the two methods
is shown in Table 1. Both methods meet the state-of-
charge and tailpipe NOx constraint exactly. As the ICO
algorithm does not suffer from a quantization error, it
outperforms the DP benchmark and reduces the amount
of fuel consumed by 0.24%. We conclude that the ICO
algorithm converges to the global optimum. The required
calculation time was reduced from one week to just 49 s.
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Table 1. Performance on the simple model.

Method tcalc mf [%] ξ [%] mtp
NOx

[%]

DP 1week 100 100 100

ICO 49 s 99.76 100 100

To analyse the effect of model mismatch on the solution,
we run DP on the full model presented in Sec. 1 and
compare the result to that obtained by evaluating the ICO
solution on the full model. The result is shown in Fig. 5.
The performance on the full model is further summarized
in Table 2. While the ICO algorithm meets the state-of-
charge and tailpipe NOx constraint exactly for the simple
model (yellow curves), an offset results when the ICO
solution is evaluated on the full model (dashed red curves).
The offset of 0.7% in the fuel consumption and of 0.88% in
the state of charge is limited. However, the offset of 14.9%
in the accumulated tailpipe NOx mass is much larger.

We identify the source of this offset by comparing the ICO
solution with the ICO solution evaluated on the full model.
While the engine-out NOx mass flow is almost identical,
a slight overestimation of the ATS temperature by the
simple model is observed. The offset in the accumulated
tailpipe NOx mass is almost exclusively attributed to the

operation between 400 s and 800 s. In this section, the
ATS operates in the non-convex part of the ATS map,
see Fig. 2, where the error introduced by fitting a region-
wise convex map is largest. Furthermore, in this part of the
ATS map, the tailpipe NOx mass flow is very sensitive to
the ATS temperature and even the small offset in the ATS
temperature has a strong effect on the tailpipe NOx mass
flow. The offset in the accumulated tailpipe NOx mass is
caused mainly by the inaccuracy of the region-wise convex
ATS map for normalized ATS temperatures between 0.5
and 0.55.

Table 2. Performance on the full model.

Method tcalc mf [%] ξ [%] mtp
NOx

[%]

DP 1week 100 100 100

ICO 49 s 100.70 100.88 114.90

7. CONCLUSION

In this paper, we identify the optimal energy and emissions
management strategies for a HEV by jointly accounting for
the battery and the ATS dynamics, achieving a charge-
sustaining operation, and keeping the tailpipe NOx emis-



sions below the legislative limit. By simplifying the vehi-
cle model we were able to formulate the optimal control
problem as a mixed-integer convex problem and solve it
using the proposed iterative convex optimization (ICO)
algorithm. For the simple model, the ICO algorithm was
shown to find the globally optimal solution. For the full
model, the result obtained using the ICO algorithm shows
an offset in the accumulated tailpipe NOx mass of 14.9%,
but manages to capture the qualitative behaviour of the
DP benchmark. The calculation time could be reduced
from one week for the DP benchmark to just 49 s for the
ICO solution.

As the proposed algorithm is designed for online optimal
control with feedback, the accuracy of the method is likely
sufficient. Its short computation time makes the proposed
algorithm real-time capable. Therefore, the ICO algorithm
constitutes an efficient optimization method to solve the
energy and emissions management problem online even
if integer control variables such as gear selection or the
engine on/off command have to be optimized. The imple-
mentation of an online controller based on the proposed
method is the logical next step.

As the current limitation of the ICO algorithm is given by
the model mismatch resulting from formulating a convex
problem, an optimization algorithm could be considered
that is similar to the ICO algorithm, but relies on a
continuously differentiable model and a non-convex mixed-
integer problem. While the model error would be reduced,
it would no longer be possible to formulate an MICP
and the global optimality guarantee would be lost. The
resulting trade-off between performance and robustness
needs to be analysed carefully.
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Ambühl, D. (2009). Energy management strategies for
hybrid electric vehicles. Ph.D. thesis, ETH Zürich,
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