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Abstract

This paper reports on the development of an agent-based cruising-for-parking simulation
using the cellular automaton approach. The software is ready for application in a real-
world scenario and for calibration with empirical data currently surveyed at the authors’
institute.
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1 Introduction

Parking search induced traffic—although difficult to quantify (Kipke} 1993} /Arnott and
Inci| 2005)—is regarded as substantial (Shoup} 2005) and consequently an ample body
of parking literature (for a review see e.g., Young et al. (1991)) exists, spanning a huge
number of empirical studies and estimated models E] but also numerous simulations |7 .

This report is structured as follows. In Section [2]its research goal is presented. The
agent-based cellular automaton approach is detailed in Section [3|and preliminary results
for a small-scale scenario are shown in Section (4l

Terminology:

To the authors’ knowledge a certain ambiguity exists in parking terminology. In this
paper, only two terms are used. Parking space refers to a place for one car. A parking
lot on the other hand consists of 1..n parking spaces. In the simulation agents choose
among parking lots.

2 Research Goal

The context of this research is that cruising for parking is seen as a significant part of
traffic in city centers and thus one of the reasons for congestion. To predict effects of
parking policies (see e.g., Marsden| 2006, Topp, 1991, Feeney, 1989) parking models
are needed. This report describes a stand-alone agent-based cellular automaton cruising-
for-parking simulation combining microsimulation and parking choice models in one
framework.

This report’s goal is to generate by simulation an aggregate model specifying parking
search time dependent on parking supply as similarly estimated with empirical data
in Axhausen ef al|(e.g., 1994, p.309). In general, such models, specifying parking
choice key values, can be applied in aggregate contexts and might complement or at
least validate (e.g. spatially transfer) estimated functions.

'a sample of papers investigating parking itself but also its interaction with other travel choices (such as

destination choice) is [van der Waerden et al.|(2009] 2006), Marsden| (2006), [Widmer and Vrtic| (2004),
Anderson and de Palmal (2004), |Golias et al.| (2002)), Hensher and King|(2001), |Gerrard ef al.| (2001),
Baier et al.| (2000), |Albrecht et al.| (1998), van der Waerden et al.| (1998), |Axhausen et al.| (1994),
van der Waerden et al.|(1993), |Glazer and Niskanen| (1992), Topp, (1991), |]Axhausen and Polak| (1991),
Arnott et al.|(1991), [Feeney| (1989), Miller and Everett| (1982), (Gillen| (1978||1977).

Zsuch asBenenson et al.|(2008), |Gallo et al.|(2011), Thompson and Richardson| (1998), |Dieussaert et al.
(2009), ivan der Waerden et al.| (2002), |Young| (1986)), [Young and Thompson| (1987)



As mentioned earlier, multiple parking simulations exist already. Why is yet another
parking search simulation needed? As far as we know, only the proposed parking search
model by Kaplan and Bekhor| (2011) combines the components, considered relevant by
us, in one framework, however, this conceptual paper is not yet implemented. These
components are: disaggregate traffic assignment (using a CA), agent-based approach
(including a memory for every agent) and inclusion of transit traffic passing the study
area without parking.

The model will in the future be integrated in the agent-based transport simulation
MATSim (MATS1m-T, [2011) following a hybrid aggregate-disaggregate approach as
described in Section[5] Instead of using existing code, an own implementation is expected
to be practically beneficial for this integration and intense calibration.

The simulation is also expected to be a useful testbed during parking model estimation
based on GPS and SP surveys currently running at the authors’ institute (Montini ef al.|
2012| Rieser-Schiissler et al., 2011} Weis et al., [2011). As an example, investigation of
latent variables such as parking search starting point (for more details see Section[3.2.2)
might be supported by a well-calibrated parking search simulation.

3 Method

Cornerstones of our model are traffic assignment with a cellular automaton based mi-
crosimulation (Section [3.1)) and parking choice modeling (Section [3.2)). The model
incorporates a limited short-term agent memory, whereas long-term learning mecha-
nisms will only be captured as exogenously given scenario demand. In our case, the
demand can be generated using MATSim.

Probabilistic decision making leads to stochastic simulation potentially making variabil-
ity analysis necessary (e.g., Horni et al.| 2011a), which will be performed together with
thorough future model calibration.

3.1 Cellular Automaton

The implemented cellular automaton (class cA, see Figure f)) is based on Nagel and
Schreckenberg (1992)), which is able to predict urban flow patterns (Wu and Brilon, 1997,
p-1). In terms of resolution this model lies between aggregate assignment methods or
queue-based models (such as Charypar et al.|(2007)) and detailed car following models
(see also (Wu and Brilon, |1997) for a CA extended by more detailed car-following
rules).



The update process is performed as described in Nagel and Schreckenberg (1992,
p.2222).

Cell size is defined as in Wu and Brilon| (1997, p.3), where reciprocal jam density is
used (133 vehicles/km). No unacceptable discretization errors are reported for this value.
An approach adapting cell size according to actual minimum speed on the link might
drastically improve performance. l.e., if there is no jam on a link, cell size should be
increased. This would speed up the simulation as less checks have to be performed if
traveled cells are free.

At the moment, only one agent is allowed to cross an intersection per time step. These
rough intersection dynamics or capacities need to be enhanced, e.g., by signaled and
multi-lane intersections handling. Similarly, capacity definition of links needs future
consideration as roads, clearly, not only have different speed-limits but also different
capacities.

Parking lots are attached to cells, where attaching them to relatively short links—as
usually the case for navigation networks—should be tested for performance reasons.

3.1.1 Implementation Details

Instead of naively iterating over nodes, links and cells in every time step, the procedure
is essentially reduced to iteration over agents. This is achieved with auxiliary data
structures (members of CAServer class) which dynamically manage agents’ positions
with waiting queues (class Queue). Queues are chosen randomly, such that, for example,
links do not have fixed priorities.

Activity-based models such as MATSim implement a complete day activity plan. Here,
for implementation simplicity, in the first instance, a maximum of two activities and one
parking search is realized by an agent. To model further trips of the same person, a new
agent is generated in pre-processing scenario creation (see (a) in FigureI)).

For parking agents, the route from their intermediate destination to the final home activity
is approximated. To circumvent implementation of a router, instead of departing from
the chosen parking lot the precomputed route from the intermediate location to the home
location is used (see (b) in Figure|[I)).

3.2 Cruising-For-Parking

For modeling purposes, the cruising-for-parking process and possibly succeeding choices
can be split into 3 parts (see also Kaplan and Bekhor| (2011)):



(i) Parking type choice (e.g., private or public parking, on-street or off-street parking),
(i1) choice of search route and search starting point, usually determined by a person-
specific search tactic (Polak and Axhausen, 1990), and
(iii) actual parking lot choice.

Here, only en-route choices are handled endogenously, i.e., parking choices made before
departure, usually also related to other choice dimensions such as destination choice,
are neglected. In the first instance, the model only considers travel and search time
costs, whereas further choice determinants, such as monetary costs are not yet taken into
account.

3.2.1 Parking Type Choice

Parking type choice differentiates for the Zurich scenario between private and public
parking. However, these choices are not modeled but specified exogenously as follows.
The share of private parking lots in the study area is measured. Private and public parking
supply shares are weighted with daily capacity f.qpaciry and are used to specify respective
demand. In other words, demand is derived from the supply situation, assuming that
supply corresponds more or less with demand. In Switzerland f.,paciry 1S Often called
"spezifisches Verkehrspotential (SVP)" (see e.g., (Axhausen, 2007, slide 4)), it specifies
the number of trips to a parking lot per day, which is the same as the number of parked
cars per day. Typically, f..paciry fOr private parking is much smaller than for public
parking. As a starting point the values f.qpacity,privare = 1.0 and feapacity, pupiic = 5.0 are
chosen.

Private parkers do not have to do parking search; in the simulation they are routed directly
to their destination and then removed from simulation. In the future, this exogenous
choice together with other parking type choices, such as on- or off-street parking, will be
endogenously modeled.

3.2.2 Choice of Parking Search Tactic

Contrary to first expectations, parking search starting point cannot be specified sharply
let alone operationalized easily. One can reasonably assume that drivers observe uncon-
sciously the parking situation while driving towards their destination. Therefore, without
actively searching, it can happen that a driver observes unexpectedly few free parkings,
that may start active search earlier than actually planned. In this perspective, search
starting point becomes fuzzy even for specification and, obviously, operationalization in
surveys is difficult. For non-interview surveys (e.g., pure GPS surveys) parking search
starting point is even more latent.



Based on a GPS and Stated Preference survey at the authors’ institute (Rieser-Schiissler
et al., 2011, Weis et al.| 2011) simple observable criteria/proxies (e.g., arrival in destina-
tion area defined by a certain radius around destination etc.) will be tested and finally
used to calibrate this simulation.

Having said that, we here define the starting point dependent on the linear distance to
the destination. Starting points for agents are randomly, uniformly sampled from the
distance range specified in the configuration file and randomly assigned to agents.

The search starting point defines if a person first drives to the destination and then
starts searching, or if a person accepts a parking space while initially driving toward
the destination and thereby is willing to take the risk of missing a closer parking space.
Clearly, the first tactic is usually associated with higher search times but shorter distances
to the destination, while for the second tactic the opposite is true.

The search route is generated on the fly on the basis of a weighted/biased random
walk (see class WeightedRandomRouteChoice and also|Kaplan and Bekhor (2011, p.4/5),
Frejinger et al.| (2009)) combined with a simple short-term agent memory. Usage of
short-term memory (in other words, agent’s mental map of the area) further exploits the
agent-based approach, and has to the knowledge of the authors not yet been applied in a
large-scale scenario.

In more detail, when leaving an intersection, the agent choses the next link as follows.
Either the agent has not yet started searching and just follows the prespecified route or
the agent is searching and choses the next link randomly but weighted according to the
following criteria, being considered simultaneously:

¢ Destination approaching efficiency: This measure depends on the angle to the
destination and on link length. The link length is used to reduce the probability
that agents chose very long links taking them far away from the destination, such
as express highways or for example Hardbriicke in Zurich. Note, that turns are not
possible on simulation links.

e Memorized free parking spaces: Additional weight is given to the direction

pointing to the parking lot in the agent’s memory with most free spaces. In the
future, this favorite parking lot should be evaluated under consideration of distance
to destination or actual position. At the moment, this is roughly approximated by
only considering the closest 5 parking lots. Memory currently has a size of 10
parking lots.
Instead of total number of parking lots, the ratio r of free spaces divided by size of
the lot could be tested. Presumably, an S-curve weighting with parking size needs
to be applied. Parking lots with e.g., r = 0.8 of medium size are optimal, whereas
very small lots harbor the risk of being filled fast and very large lots are difficult to
evaluate while driving by.



For all evaluations Euclidian distances and not network route distances are used. Weights
are specified according to rough plausibility tests but will be calibrated thoroughly based
on the IVT-GPS survey mentioned earlier. At the moment, weights are chosen such that
the direction to the destination dominates the other measures.

Class RandomRouteChoice is provided for comparisons with behaviorally more plausible
weighted random walk.

3.2.3 Parking Lot Choice

Parking lot choice, implemented with classes AcceptanceRadiusLinear, ParkingDecisionLinear,
and ParkingDecision, is modeled as a probabilistic choice, dependent on elapsed search

time, 4, and distance to destination, dyesinarion s shown in Figure 2] Up to distance
ducceptance (se€ also |Birkner (1995)) a free parking space is taken with a very high proba-
bility (here set to 1.0), where afterward probability decreases linearly or quadratically
(configurable) with distance. dcceprance Specifies the radius of a circular area around the
destination and increases linearly or quadratically (configurable) with elapsed search

time. In other words, agents behave according to dynamic preferences.

Choice of this function with decreasing acceptance probability for higher distances to
destination is natural. Its calibration, however, is not simple. On the one hand, the
decreasing slope should be moderate, such that, in case all parking lots with distance
smaller than dycceprance are taken, also parking lots with distance only slightly greater
than dcceprance are accepted with very high probability. A counterexample is shown in
Figure [3|(a). On the other hand, rather obviously, the slope must nevertheless decrease
significantly, such that an agent does not choose a very distant parking lot just because it
is the first one he encounters after search has started (agents would do that in Figure 3|

(b)).

Plausibility investigations showed that dycceprance and parking search starting point (de-
scribed above) must be modeled independently, although, at first sight, a direct relation
seems plausible. Argumentation here is that acceptance probability differs significantly
for initially driving toward destination as compared to the subsequent searching behavior
with the knowledge that no parking space is available close to the destination. This
behavior can only be modeled with two independent variables.

In general, it seems necessary to enhance the decision models to be directly dependent on
parking supply and load, and not indirectly through proxy ’elapsed search time’ (see also
Section [3.2.4). More specific, ducceprance Should change dependent on agent’s observed
parking situation (see the next section).



3.2.4 Conclusion

Parking search, clearly, is a highly complex process with many determinants. Fitting
its outcomes with a few-variables model of course is principally associated with a large
approximation error €,. Recognizing the moment during calibration where ¢, is achieved
and where further calibration only means moving this irreducible error around in the
model is not easy.

Development and calibration revealed that, as a next step, the procedure proposed in
Benenson et al.| (2008), p.434) should be integrated as it captures look-ahead search
behavior—in other words, behavior directly influenced by actual parking situation—
presumably central to modeling urban parking search. In this procedure, agents—in
general terms following Baysian learning—adapt the expectation for finding a free
parking lot close to the destination, based on continuous observation of the parking
situation while driving.

3.3 Software Design

MATLAB is designed for procedural matrices computations but also supports an object-
oriented (00) approach (although suffering from a few performance issues). Object-
oriented programming paradigm is chosen here for following reasons. First, agents nicely
translate to objects, which makes code elegant and easy to understand. Second, according
to the authors’ opinion, oo-approach with intrinsically good modularization perfectly fits
team software projects and makes adaptation of functionality (encapsulated in software
modules) straight forward. Third, authors are developers of the oo-software MATSim.
General simulation concepts (such as usage of a controller class) and design patterns
easily translate from MATSim to the new simulation. Additionally, later migration to
and integration in MATSim are more efficient with an oo-standalone model.

Figure {| presents an UML-inspired simulation components overview showing the main
components’ relations.

4 Results and Discussion

For efficient development, testing and basic illustration purposes three toy scenarios are
created, named chessboard (Figure [3), square (Figure [6) and miniNetwork (Figure[7).
The real-world Zurich scenario (Figure [§) is ready but not yet calibrated.

In general (and somehow fuzzy) terms the developed software fulfills the global research



goals formulated in Section [2] Software seems appropriate for later migration and
application in MATSim, and it has already now inspired research for the current IVT-
GPS survey and is, thus, expected to be a great testbed for subsequent choice model
estimations.

More practically, preliminary results for the chessboard scenario indicate that specifica-
tion or validation of aggregate models for key parking search measures (such as average
parking search time, see e.g., [Axhausen et al| (1994, p.309, Figure 4) and Figure [9)
can be done with our simulation. These functions, after thorough calibration on real
world scenarios can be used in aggregate contexts to model, for example, parking search
times.

The chessboard scenario is simulated with 100 agents having different trip start times
and a desired activity duration of 30 minutes. Private parkers and transit agents are not
included in this scenario. 30 minutes are simulated, meaning that in this setting no agent
leaves the parking lot during simulation period. This is similar to overnight parking.

Figure [10]shows the median search time dependent on number of parking spaces in the
study area. Median, instead of average, is used here, for appropriate handling of outliers,
such as persons not yet having found a parking space after simulation has finished.

A non-linear relation between median search time and parking supply is observed.
Clearly, parking density in a limited area around destination should be used instead of
number of parking lots in the study area. Nevertheless, simulation results—assuming
that varying demand and supply is isomorphic—corresponds with estimated results of
Axhausen ef al.| (1994, p.308), where a non-linear relation between average search time
and parking demand (approximated by parking lots’ occupancy) is reported. However,
current work validating this estiamtions with GPS data indicates that for high occupancy
levels a correction factor may be necessary. Testing this hypothesis might be supported
by using our simulation as a testbed.

The non-linear trend, empirically observed and here simulated, should be related to the
work of Benenson ef al.| (2008, p.438), who confirm by simulation the empirical finding

of Shoup| (2005) that "/[...] average search time and |[...] hardly react to changes in
parking supply as long as the demand/supply ratio is around one [...]".

5 Future Work and Integration Into MATSIim

Besides the numerous future tasks described at the appropriate locations following future
work will be performed.

First and foremost, speed needs even more consideration. Technical issues to be solved



include substantial overhead in internal functions reported by MATLAB profiler (possibly
due to object handling) and parallelization using built in tools such as parfor to begin
with.

Decision models need calibration and enhancement by further choice determinants and
mechanisms. An example is the look-ahead procedure mentioned earlier and described
in Benenson et al.| (2008, p.434).

The real-world Zurich scenario is set up and will be calibrated and simulated when
first GPS survey results are available. Scenario covers the inner-city of Zurich defined
here as an area with 1km radius around Bellevue. A high-resolution navigation network
(TomTom MultiNet, 2011])) is chosen as supposedly parking effects are local in nature.
Demand is derived from the MATSim Zurich scenario (Horni ef al.l 2011b). For
performance reasons not a complete day is simulated but only the evening hours 16-19
o’clock, where only the last hour is analyzed. For future validation a GPS and SP survey
as well as road count data is available. Boundary effects for agents with destination very
close to the study area limits need further consideration in future work.

Travel speed is usually reduced during searching, although in situations with high
traffic volumes this effect is probably smaller or diminishing due to consideration of
other drivers. However, this effect should be considered for implementation in a future
version.

The stand-alone MATLAB model is planned to be migrated to JAVA and integrated
into MATSim, where, due to huge computation times for high-resolution large-scale
scenarios, a hybrid approach will be implemented: In areas with high competition for
parking lots (e.g., in city centers) parking search is microsimulated based on the cellular
automaton approach; in regions with low competition (e.g., residential areas) average
search times are derived from aggregate functions specifying search times. The hybrid
approach is expected to increase model accuracy and at the same time maintain feasible
computation times for large-scale scenarios.

The final MATSim model will be used to investigate effects of parking on shopping

destination choice. This is particularly important as simulation of the MATSim Saturday
scenario, with usually higher shopping activities share, will be developed soon.

10
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Figure 9: Aggregate Search Time Model of Axhausen et al.|(1994) (scanned)
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