
DISS. ETH NO. 27505 

 

Massively-parallelized discovery and 

optimization of antimicrobials 

 

A thesis submitted to attain the degree of 

DOCTOR OF SCIENCES of ETH ZURICH 

(Dr. sc. ETH Zurich) 

 

presented by 

PHILIPP KOCH 

M.Sc., Technical University of Munich 

born March 26th, 1990 

citizen of Germany 

 

 

accepted on the recommendation of 

Prof. Dr. Sven Panke (ETH Zurich, Switzerland), examiner 

Dr. Martin Held (ETH Zurich, Switzerland), co-examiner 

Prof. Dr. Urs Jenal (University of Basel, Switzerland), co-examiner 

Prof. Dr. Jörn Piel (ETH Zurich, Switzerland), co-examiner 

 

2021 

 



 II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         

David Reinisch  
        Knud Esser 
        Andrew Buller 
        for inspiring me to do science 

  



 III 

Abstract 

The number of newly approved antimicrobial compounds has been steadily decreasing over 

the past 50 years emphasizing the need for novel antimicrobial substances. Besides, current 

antimicrobial therapies become increasingly ineffective due to the rapid spread of drug-

resistant pathogens, and even the most potent small-molecule antibiotics may eventually fail 

to cure infections with highly resistant bacteria. Peptides are a promising class of potential 

drug substances, as they are still underexplored, offer high structural complexity, and at least 

partly cover the chemical space left open between biologics and small molecule drugs. 

Ribosomally produced antimicrobial peptides are of particular interest, as they already act as 

effective antimicrobials in the defense against invading pathogens of most organisms. 

Consequently, they are currently being investigated for potential use to fight infectious 

diseases in humans. The fact that antimicrobial peptides are produced using transcription and 

translation makes them particularly attractive as they can be produced recombinantly and their 

modification can be simply achieved by straightforward manipulation of the synthesis template 

at the DNA level.  

 

In this thesis, we developed a high-throughput method for the discovery of antimicrobial 

peptides which is based on the principle of self-screening: Different peptides are expressed in 

a recombinant Escherichia coli strain, and their effect on growth rate is recorded. In our case, 

this is done by next-generation sequencing of expression plasmids in the bacterial culture, 

enabling the recording of massive numbers of growth curves for single strains in a single flask. 

We termed this technology massively parallelized growth assays (Mex). We applied this 

method to discover novel candidates for antimicrobial peptides by screening a library of 

~12’000 naturally occurring peptides with a length between 5 and 42 amino acids and diverse 

properties. Analysis of thousands of growth curves allowed us to identify more than 1,000 

previously unknown* antimicrobials. Additionally, by incorporating the kinetics of growth 

inhibition, we were able to obtain a first indication of the mode of action, with important 

implications for the ultimate usefulness of the peptide in question. We chemically synthesized 

the most promising peptides of the screen and determined their activity when applied 

externally. Notably, the results indicated that 10 out of 15 investigated peptides efficiently 

eradicated bacteria at a minimal inhibitory concentration in the upper nM / lower µM range. 

We think that this work represents a step-change in the high-throughput discovery of 

functionally diverse antimicrobial peptides.  

                                            
**Not present on the antimicrobial peptide database  
 



 IV 

Next, we applied a simplified version of Mex to optimize a single antimicrobial peptide in high-

throughput. As a model peptide, we optimized the 23 amino acid version of the well-

researched and highly active antimicrobial peptide Bac71-23 using deep mutational scanning, 

consisting of a first random and then a semi-rational approach. The random library of ~600,000 

different Bac71-23 variants allowed us to derive a fitness landscape of the peptide and to identify 

residues that are essential for growth inhibition and residues with potential for activity 

optimization. A smaller semi-rational library of ~160,000 Bac71-23 variants enabled us to extract 

the most beneficial amino acid combinations, thereby generating an antimicrobial peptide that, 

if synthesized chemically, is non-toxic and superior to Bac71-23 against a large panel of 

bacterial pathogens. We thus created a new-to-nature peptide lead with a great potential to 

be further developed in pre-clinical stages. 

 

To our best estimation, these novel methods exceed competing approaches in terms of 

throughput, hit-rate and sensitivity, while also offering an opportunity for the direct functional 

characterization of large libraries. These methods will accelerate the discovery and 

optimization of antimicrobials drastically, and may thus provide a path forward to master one 

of today’s most urgent challenges, the antimicrobial resistance crisis. 
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Zusammenfassung 
 

Die Anzahl neu zugelassener antimikrobieller Wirkstoffe ist in den letzten 50 Jahren stetig 

gesunken, was den Bedarf an neuen antimikrobiellen Substanzen verdeutlicht. Ausserdem 

werden derzeitige antimikrobielle Therapien immer ineffektiver aufgrund der schnellen 

Verbreitung antibiotika-resistenter Pathogene und selbst die wirkungsstärksten 

niedermolekularen Antibiotika könnten schlussendlich nicht mehr in der Lage sein, Infektionen 

mit hoch-resistenten Bakterien zu heilen. Peptide stellen eine vielversprechende Klasse 

möglicher Arzneimittelsubstanzen dar, da sie noch unerforscht sind, eine hohe strukturelle 

Komplexität aufweisen und zumindest teilweise den chemischen Raum zwischen Biologika 

und niedermolekularen Arzneimitteln ausfüllen. Vom Ribosom hergestellte antimikrobielle 

Peptide sind dabei von besonderem Interesse, da sie in den meisten Organismen schon zur 

Abwehr eintretender Pathogene als effektive antimikrobielle Agenzien wirken. Daher werden 

sie derzeit auf ihren potentiellen Nutzen im Kampf gegen Infektionskrankheiten im Menschen 

untersucht. Antimikrobielle Peptide gelten als besonders attraktiv da sie via Transkription und 

Translation hergestellt werden und sie somit rekombinant hergestellt werden und sie 

unkompliziert auf der Ebene des Synthese Musters, der DNA, modifziert werden können.  

 

In dieser Arbeit entwickelten wir eine Hochdurchsatzmethode für die Entdeckung von 

antimikrobiellen Peptiden, die auf dem Prinzip des „Selbst-Screenings“ basiert: verschiedene 

Peptide werden in einem rekombinanten Escherichia coli Stamm exprimiert und ihr Effekt auf 

die Wachstumsrate wird aufgezeichnet. In unserem Fall wurde diese Aufzeichnung mittels 

‘Next-Generation Sequencing’ der Expressionsplasmide in der bakteriellen Kultur 

durchgeführt, was es ermöglicht, eine grosse Anzahl an Wachstumskurven einzelner Stämme 

in einer einzelnen Kulturflasche aufzuzeichnen. Wir nennen diese Technologie „massively 

parallelized growth assays“ (Mex). Wir verwendeten diese Methode um eine Bibliothek von 

~12’000 natürlich vorkommenden Peptiden mit einer Länge zwischen 5 und 42 Aminosäuren 

und vielfältigen Eigenschaften zu screenen um neue Kandidaten für antimikrobielle Peptide 

zu entdecken. Die Analyse tausender Wachstumskurven erlaubte es uns, mehr als 1,000 

bisher unbekannte† antimikrobielle Peptide zu identifizieren. Wenn wir zusätzlich die Kinetiken 

der individuellen Wachstumshemmung miteinbezogen, konnten wir zudem einen ersten 

Hinweis auf den jeweiligen Wirkmechanismus ableiten, was wichtige Implikationen für die 

endgültige Nutzbarkeit des jeweiligen Peptides beinhaltet. Wir synthetisierten die 

vielversprechendsten Peptide aus dem Screen chemisch und bestimmten ihre Aktivität bei 

                                            
† Nicht vorhanden in der Datenbank ‘antimicrobial peptide database’  
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Zugabe zu Bakterien von aussen. Bemerkenswerterweise deuteten unsere Ergebnisse darauf 

hin, dass 10 von 15 getesteten Peptiden Bakterien mit einer minimalen inhibitorischen 

Konzentration im oberen nM / unterem µM Bereich abtöteten. Wir glauben, dass diese Arbeit 

einen Sprung in der Hochdurchsatzentwicklung von funktionell vielfältigen antimikrobiellen 

Peptiden darstellt. 

 

Als nächstes verwendeten wir eine vereinfachte Variante von Mex, um ein einzelnes 

antimikrobielles Peptid im Hochdurchsatz zu optimieren. Als ein Modell-Peptide optimierten 

wir die 23 Aminosäuren lange Version des stark beforschten und hochaktiven antimikrobiellen 

Peptids Bac71-23 zunächst mittels eines zufälligen und dann mittels eines halb-rationalen 

Ansatzes des „deep mutational scannings“. Die zufällig erzeugte Bibliothek aus ~600,000 

verschiedenen Bac71-23 Varianten erlaubte es uns, eine Fitness-Landschaft des Peptides zu 

generieren und dabei einerseits Aminosäurereste zu identifizieren, die essential für die 

Wachstumsinhibition sind und andererseits Reste zu finden, die das Potential für eine 

Optimierung der Aktivität des Peptides haben. Eine kleinere, halb-rational designte Bibliothek 

von ~160,000 Bac71-23 Varianten ermöglichte es uns, die für die Aktivität des Peptides 

vorteilhaftesten Aminosäurekombinationen zu identifizieren und somit ein antimikrobielles 

Peptid zu generieren, das nach chemischer Synthese nicht toxisch gegenüber eukaryotischen 

Zellen ist und dem ursprünglichen Bac71-23 in der Abtötung einer grosse Liste an bakteriellen 

Pathogenen überlegen ist. Somit generierten wir eine bisher nicht in der Natur auftretende 

Peptid-Leitstruktur mit einem hohen Potential für eine Weiterentwicklung in präklinischen 

Phasen.  

 

Unserer Einschätzung nach übertrumpfen diese neuartigen Methoden konkurrierende 

Ansätze im Hinblick auf Durchsatz, Treffer-Rate und Sensitivität und bieten zudem die 

Möglichkeit für eine direkte funktionelle Charakterisierung grosser Peptid-Bibliotheken. Diese 

Methoden werden die Entdeckung und Optimierung von antimikrobiellen Agenzien drastisch 

beschleunigen und können somit den Weg ebnen, um eine der dringlichsten 

Herausforderungen der heutigen Zeit, die Krise der antimikrobiellen Resistenz, zu bewältigen. 

  

  



 VII 

Table of contents 

Abstract .............................................................................................................................. III 

Table of contents .............................................................................................................. VII 

 Introduction .................................................................................................. 1 

1.1 Antimicrobials and antimicrobial resistance .................................................................................. 2 

1.2 Antimicrobial peptides ................................................................................................................... 4 

1.2.1 Definitions .............................................................................................................................. 4 

1.2.2 Biosynthesis and function of antimicrobial peptides ............................................................. 5 

1.2.3 Challenges for antimicrobial peptides in clinical pipelines .................................................... 6 

1.3 Discovery and screening of antimicrobial peptides ...................................................................... 8 

1.3.1 Overview of bioactive peptides in drug discovery ................................................................. 8 

1.3.2 Natural sources for antimicrobial peptides ............................................................................ 9 

1.3.3 Screening of antimicrobial peptide libraries ........................................................................ 11 

1.4 Scope of this thesis ..................................................................................................................... 13 

 Discovery of antimicrobials by Mex: massively parallelized growth assays
 ........................................................................................................................................... 15 

2.1 Abstract ....................................................................................................................................... 16 

2.2 Introduction ................................................................................................................................. 17 

2.3 Results and discussion ............................................................................................................... 18 

2.4 Methods ...................................................................................................................................... 25 

2.5 Supplementary figures ................................................................................................................ 34 

2.6 Supplementary code ................................................................................................................... 45 

 Optimization of the antimicrobial peptide Bac7 by deep mutational 
scanning ............................................................................................................................ 49 

3.1 Abstract ....................................................................................................................................... 50 

3.2 Introduction ................................................................................................................................. 51 

3.3 Results ........................................................................................................................................ 53 

3.4 Discussion ................................................................................................................................... 65 

3.5 Methods ...................................................................................................................................... 68 



 VIII 

3.6 Supplementary figures ................................................................................................................ 82 

 Methods to characterize the mechanism of action of antimicrobials ..... 87 

4.1 Introduction ................................................................................................................................. 88 

4.1.1 Bioreporter to determine the mechanism of action of antimicrobials .................................. 88 

4.1.2 Methods to detect antimicrobial-induced membrane damage ............................................ 89 

4.1.3 Aim of the study ................................................................................................................... 90 

4.2 Results ........................................................................................................................................ 91 

4.2.1 Experimental validation of ‘Alon collection’-derived bioreporters ........................................ 91 

4.2.2 Methods to detect membrane damage ............................................................................... 95 

4.3 Discussion and conclusion ......................................................................................................... 98 

4.4 Methods .................................................................................................................................... 100 

 Conclusion and outlook .......................................................................... 103 

Bibliography .................................................................................................................... 107 

Acknowledgements ........................................................................................................ 117 

Curriculum vitae .............................................................................................................. 118 

  



 1 

 Introduction 
  



 2 

1.1 Antimicrobials and antimicrobial resistance  

At the beginning of the 20th century, infectious diseases accounted for roughly half of all deaths 

in the United States of America1. Since then there has been a sharp decline in infectious 

disease mortality for which, next to continued improvements in hygiene measures, the 

discoveries of antibiotics played a crucial role. Especially the discoveries of salvarsan, 

penicillin, and streptomycin in the first half of the 20th century revolutionized medicine and 

resulted from decades of research lead by some of the most influential (anti) microbiologists 

to date: Paul Ehrlich, Alexander Fleming, Howard Florey, Ernst Chain, and Selman Waksman. 

Paul Ehrlich initially discovered the organoarsenic compound salvarsan2 and for the first time 

publicly described the concept of a ‘Zauberkugel’ or ‘magic bullet’: a compound with high 

target-selectivity and minimal deleterious side effects, which in the case of antibiotics attacks 

pathogens but remains harmless for healthy tissues in humans3. But it was not until the 

discovery of the β-lactam antibiotic penicillin in 19284 by Alexander Fleming and its subsequent 

characterization and purification by Howard Florey and Ernst Chain in 19405 that the medicine 

was applied at a global scale‡. The discovery of the first broad-spectrum§ antibiotic, the 

aminoglycoside streptomycin in 19446, was made by Selman Waksman in the course of 

systematic cultivation and isolation of soil bacteria and their secreted compounds. It was at 

that point when scientists around the world including large pharmaceutical and chemical 

companies joined in, starting large screening campaigns and ushering in what is now known 

as the golden era of antibiotic discoveries7. During the following two decades the majority of 

additional antibiotic classes were discovered, such as the chloramphenicols, tetracyclines, 

macrolides, and glycopeptides. However, from the end of that period until today, there has 

been a steady decline of novel antibiotic matter derived from natural origin. More specifically: 

until the 1960s, 24 classes of antibiotics had been discovered. Since then, only 8 new classes 

of natural origin have been added8. 

 

Even though there was a strong decline in the discovery of natural antibiotic classes, a plethora 

of synthetic antibiotic analogs have been developed7. However, there are two major biological 

issues why this replenishment did not solve all problems and we still struggle to treat bacterial 

infections today: (i) the bacterial cell envelope is highly restrictive of what can pass the barrier 

it represents9, considerably limiting the chemical space of drug-like substances that can be 

applied, and (ii) the emergence of extensive antimicrobial resistance (AMR)10. Especially the 

latter is believed to be one of the major medicinal challenges humanity has to master in the 

upcoming decades11. Simplified, there are four common mechanisms by which bacteria can 

                                            
‡Big drivers were World War II and Pfizer’s ability to produce it at large scale.  
§Compared to narrow-spectrum antibiotics, broad-spectrum antibiotics are active against a wide range of bacterial 
pathogens, often against both Gram-positive and Gram-negative bacteria. 
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enhance their resistance to antibiotics: reduction of cell permeability, increased efflux, 

alteration of the target, or inactivation of an antibiotic through enzymatic processing12. These 

mechanisms mainly result from millions of years of exposure to antibiotic substances produced 

from competing or defending organisms, but also from excessive use of antibiotics in human 

or animal therapeutics12. Many of the emerging multidrug resistant bacterial pathogens such 

as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa and the Enterobacter spp., the so-called ESKAPE 

panel, cause great concern as they have become difficult to treat with available antibiotics, and 

are responsible for most hospital-acquired infections13. Especially carbapenem-resistant 

Gram-negative P. aeruginosa, A. baumannii, and Enterobacteriaceae are currently listed as 

‘critical priority’ by the WHO according to criteria such as mortality, treatment, health-care 

burden, or prevalence of resistance14. Many strategies have been implemented that emphasize 

antibiotic stewardship and target hurdles from the regulatory, clinical, or development side** to 

delay or even prevent a potentially emerging ‘post-antibiotic era’ in which hardly any available 

antibiotic is effective to treat infections. Antibacterial drug discovery still plays a central role in 

those strategies and thus establishing novel methods to discover or optimize promising new 

compounds that end up in clinical pipelines is crucial to success. 

As most of the currently used medicines, including antibiotics, are either natural products or 

derived from natural products15, it is potentially rewarding to cast a fresh look at nature as our 

best engineer and chemist16. Even though most natural sources, such as the actinomycetes, 

seem to have been exhaustively investigated7, novel omics-based technologies and screening 

methods are highly promising to find new leads that might have remained hidden until now, 

like teixobactin17 or albicidin18, two recently discovered non-ribosomal peptide (NRP) 

antibiotics. Many hopes are also pinned on antimicrobial peptides (AMPs), a well-characterized 

but clinically not yet used group of antibiotic compounds. Compared to most small-molecule 

antibiotics, which are usually built from various building blocks by an enzymatic cascade or 

enzyme complexes, AMPs are ribosomally translated. These compounds are produced by 

most life forms, and some representatives have shown already very promising results against 

the most threatening multidrug-resistant pathogens today19.   

 

                                            
**https://carb-x.org/; https://amractionfund.com; https://gardp.org/; https://www.finddx.org/amr/; EU One Health 
Action Plan against AMR; https://www.repair-impact-fund.com/ 
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1.2 Antimicrobial peptides 

1.2.1 Definitions 
Seven years before Alexander Fleming first discovered penicillin, he noticed strong 

antibacterial properties when treating staphylococci with nasal mucus of patients suffering from 

rhinitis, and named the responsible compound lysozyme20. It was later discovered that 

lysozyme is a 139 amino acid long enzyme, widely distributed in nature, that hydrolyzes the 

linkages in the peptidoglycan layer of Gram-positive bacteria21. Following this discovery, many 

other peptides and proteins with antibacterial properties were isolated such as nisin, 

phagocytin, cecropin or magainin22–25, establishing the research field of AMPs26. During that 

time many important NRPs, such as polymyxin, gramicidin, or vancomycin27–29, were 

discovered and have since been broadly used to treat infectious diseases. Even though 

sometimes these compounds are also referred to as AMPs, they are generally excluded from 

the group of AMPs as I do in this thesis, because the primary peptide sequence does not 

appear as template on genes and is not produced ribosomally.  

 

The terminology of ribosomally produced antibacterial molecules has been widely debated and 

in addition to AMPs, they are often referred to as host defense peptides (HDPs)30, ribosomally 

synthesized and post-translationally modified peptides (RiPPs)31, or in the case of bacterial 

origin, bacteriocins32. In this thesis, I will consistently use the term AMP for all ribosomally 

produced peptides that are associated with antimicrobial activity including all HDPs, RiPPs, 

and bacteriocins. Moreover, there have been multiple suggestions on how to classify AMPs: 

by their taxonomy33 (bacteriocins, plant AMPs, animal AMPs, fungal AMPs) with further 

subclassifications; by their 3D-structure30 (α-helices, β-sheets, αβ, loop, extended structure); 

or by their bonding pattern34 (linear, sidechain-linked, backbone-linked, sidechain-backbone 

linked). In this thesis, I will use the classification based on their taxonomy, with further 

subclassifications into smaller AMP groups such as proline-rich AMPs within animal AMPs. 

 

AMPs are indispensable to the defense processes of higher organisms35. In addition to their 

ability to directly kill invading pathogens, they play an important role in immune modulation. 

This includes stimulation and regulation of the host immune response to an infection or 

involvement in functions such as inflammation control or wound healing30. As the focus of this 

work is the antimicrobial activity, I will only focus on the direct killing function of AMPs in the 

entire work. The broader context, including most of the known biological functions of AMPs, 

can be found in a recent review by Haney et al.36.  
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1.2.2 Biosynthesis and function of antimicrobial peptides 
AMPs are ribosomally produced and usually between 5 and 50 amino acids in length and many 

are synthesized as a long precursor peptide. In the simplest case, only a leader sequence is 

present in addition to the AMP core sequence,  that aids in transport and final activation of the 

AMP via its own enzymatic cleavage31. These peptides adopt a secondary structure without 

post-translational modifications (PTMs)30. In the most complex case, the precursor peptide is 

recognized by a co-expressed enzymatic modification machinery, which chemically modifies 

amino acids of the core peptide after translation resulting in highly cross-linked and modified 

peptide coils26. These PTMs restrict the conformational flexibility of the peptide for improved 

target recognition, increase chemical and proteolytic stability of the molecule, or introduce 

specific chemical functionalities such as enhanced membrane permeability37. While PTMs 

modulate peptide properties, the extent to which their contribution is essential for antimicrobial 

activity is not always fully understood38. In fact, there are plenty of highly active, unmodified 

AMPs in nature39, and the omission of PTMs does not necessarily result in decreased 

bioactivity40.  

 

The large majority of AMPs are of amphipathic nature resulting from the overrepresentation of 

positively charged and hydrophobic residues in their primary structure30. This property supports 

their biological selectivity towards bacteria. Contrary to negatively charged bacterial 

membranes, eukaryotic membranes contain phospholipids with a net charge of zero in the 

outer leaflet. Eukaryotic cell membranes also have a lower transmembrane potential41 and 

incorporate cholesterol, which increases membrane stability or repulses the peptide35. They 

are therefore chemically quite distinct from their bacterial counterparts. Following electrostatic 

attraction to the bacterial membrane, AMPs associate with the lipid cores of these membranes 

using their hydrophobic portions. AMPs eventually kill bacteria by membrane perturbation, by 

crossing the membrane and inhibiting vital intracellular processes, or by a combination thereof 

(Fig. 1.1). The most common mechanism of action (MoA) is by membrane perturbation, also 

called membrane permeabilization, and can be subcategorized by the barrel starve, the carpet 

(or detergent-like), or the toroidal pore model (Fig. 1.1)26. However, the detailed molecular 

mechanism, as well as the influence of environmental variables such as pH, ionic strength, 

temperature or peptide concentration, are still not fully elucidated42. The second route to direct 

bacterial killing is via membrane translocation and killing of bacteria without apparent 

membrane damage. Here, AMPs traverse the cell barriers either via direct penetration or via 

pore- or receptor-mediated uptake43–45 and then inhibit vital cellular processes such as DNA or 

RNA synthesis or protein translation46. These mechanisms however are even less studied than 

membrane permeabilization. In fact, within the group of 3,000 natural AMPs that are reported 
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in the antimicrobial peptide database (APD)34, an intracellular MoA has been assigned to less 

than 50 AMPs46.  

 

   
Fig. 1.1 | Antibacterial MoAs of AMPs. AMPs kill bacteria in two different ways. Intracellularly active AMPs 
translocate across the membrane and interfere with processes involved in protein folding, protein synthesis, or 
DNA/RNA synthesis. Membrane permeabilizing AMPs kill cells by using different mechanisms: barrel starve, carpet, 
or toroidal pore. AMPs can also bind to multiple intracellular targets or combine membrane permeabilization and 
binding to intracellular targets. Adapted from Mookherjee et al.47. 
 

While small molecule-antibiotics often have a single target which they bind with high affinity, 

some AMPs disturb multiple biological functions with moderate potency30. Having multiple 

targets led to the classification as ‘dirty’ drugs but in fact might represent a smart way to 

decrease the formation of resistance in nature, usually caused by the selective pressure from 

high-affinity antibiotics48. However, mounting evidence shows that a few AMPs in fact also 

show a high target specificity and work in an orchestrated and synergistic fashion together with 

other AMPs49. For example, the bumblebee AMP abaecin, which targets an intracellular 

protein, is enabled to enter the cytosol by pores created from the co-occurring membrane 

permeabilizing peptide hymenoptaecin50. This illustrates that since the discovery of the 

lysozyme about 100 years ago, our understanding of the role AMPs play in natural defense, of 

their route of synthesis, and of the various functions and MoA has increased considerably. 

AMPs currently represent a promising alternative to conventional small-molecule antibiotics as 

a starting point for the development of human therapeutics. 

1.2.3 Challenges for antimicrobial peptides in clinical pipelines  
Thousands of natural AMPs or AMP peptidomimetics have been isolated or generated, 

displaying excellent in vitro properties to kill bacterial pathogens34. In fact, a great effort has 

been made to bring AMP-based antimicrobials from the research bench through clinical 
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development pipelines. However, to date, even though many AMP-based antibiotics have 

entered clinical trials, none†† have achieved regulatory approval and failed during pre-clinical 

development36. A prominent example of failure is pexiganan, a magainin (frog AMP)-derived 

membrane-permeabilizing AMP that showed excellent in vitro activity51, but failed in clinical 

phase III due to inferiority to  currently used antibiotics (clinical trial identifier: NCT01590758). 

Another more recent example is murepavadin, a peptidomimetic derived from the animal AMP 

protegrin I that targets the outer membrane biogenesis of P. aeruginosa52. It showed excellent 

in vitro activity19, but failed in clinical phase III due to indications of kidney injury 

(NCT03409679). 

 

Generally, AMPs show crucial benefits over small-molecule antibiotics such as a slower 

emergence of resistance, a broader spectrum of activity, and, in some cases, also the potential 

to positively modulate the host immune response53. However, they face disadvantages such 

as higher cost-of-goods, as well as low in vivo stability, higher toxicity, and often low activity 

under physiological conditions30. Some of these disadvantages have been addressed over the 

past years. Chemical synthesis of smaller peptides (<50 amino acids) has become easier with 

increasing automation. Larger peptides can be competitively produced recombinantly54. 

Optimizations of biological synthesis routes using bacteria, plant, mammalian, or yeast cells, 

as summarized by Pachón-Ibáñez et al.55, have increased the feasibility of large-scale 

production. In contrast, translational research of AMPs still suffers from many unknowns such 

as pharmacological profiles, formulation, or pharmacokinetics53. In the past, these unknowns 

led to a strong focus on the development of AMP-based antibiotics for topical (body surface) 

applications56. However, with increasing numbers of AMPs being discovered and put into 

clinical pipelines, late-stage AMP commercialization efforts have adapted and are now 

experiencing an increase of AMPs destined for other application47. In fact, synthetic and natural 

AMPs are part of the group of antibacterials focusing on ‘new targets’, which is the largest 

group of molecules in the current global preclinical antibacterial pipeline (72% of all 

molecules)57.  

 

There is a great chance to discover a number of suitable and novel AMPs if technical, 

biotechnological, and state-of-the-art computational advances are combined with smartly 

designed AMP discovery, engineering, and screening approaches. This should increase the 

number of AMPs in preclinical pipelines, fill knowledge gaps, and eventually bring a number of 

AMP-based therapeutics to the patients. 

 

                                            
††The 13 amino acid long human-derived AMP called P113 is currently sold as part of a non-prescription 
antibacterial mouth rinse solution in Taiwan (https://www.oh-care.com). Please note that this statement refers only 
to AMPs as strictly ribosomally synthesized peptides. 
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1.3 Discovery and screening of antimicrobial peptides 

1.3.1 Overview of bioactive peptides in drug discovery  
Over the past 50 years, drug discovery has become a slower and more difficult process, an 

effect termed ‘Eroom’s Law’‡‡, which refers to a steady decrease in the number of drugs 

released on the market per money spent58. Concomitantly, thanks to scientific advances in the 

past decades, there has been a significant boost in numbers of recombinant 

biopharmaceuticals such as proteins, especially antibodies, and on a smaller scale also 

peptides59. In fact, 28 new peptide drugs have been approved for various medicinal indications 

in the period from 2000 to 201860. Peptides are traditionally between 2 and 100 amino acids in 

length, and lie at the interface of small molecule drugs (<500-900 Da) and proteins (>10 kDa) 

but according to their composition, size, and route of administration are rather similar to 

proteins59. Even though peptides still represent a small share of all therapeutics (around 5% in 

2015), they are increasingly applied in the fields of metabolic diseases, cancer, cardiovascular 

diseases, and antimicrobials, and their market share in the coming decades is predicted to 

increase59.  

 

In the past, bioactive peptides were obtained directly from natural sources. The first example 

was the extraction and purification of insulin from pancreas cells and its use to treat diabetes 

in humans61. However, as ribosomally synthesized peptides are encoded on DNA, the advent 

of recombinant DNA technologies allowed for peptides to be synthesized by biological 

production hosts such as bacteria or yeast. Insulin for example was first commercially 

produced in E. coli by Genentech in 197861. A giant step-change for peptide synthesis and 

discovery was marked by the development of more economical synthetic methods. Here, the 

invention of solid-phase peptide synthesis62 strongly increased production yields and 

combinatorial possibilities for the generation of peptide libraries.  

 

In general, the ability to generate combinatorial peptide libraries for drug discovery has been 

greatly advanced and can roughly be divided into chemical and biological peptide libraries63. 

For chemical libraries, solid-phase peptide synthesis, as previously mentioned, and adjusted 

methods such as the split-and-mix64 or tea-bag65 approach are most often used. In more recent 

approaches, peptides generated by these methods can even be coupled to single or double-

stranded DNA, which can be used as identifiers after affinity selection of the peptides66. Such 

libraries are called DNA-encoded libraries (DEL) and allow the screening of millions of peptides 

at the same time in a target-based fashion. In biological peptide libraries, DNA (genotype) is 

                                            
‡‡“Eroom’s law” refers to ‘Moore’s Law’, which describes the increase of transistors per integrated circuit over time, 
read backwards. 
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used for library generation, creating the link to the encoding peptide (phenotype). Peptides 

from these genetic libraries are finally produced by cells, for example, using phage display67 

or bacterial systems such as two-hybrid68, or ‘split-intein circular ligation of peptides and 

proteins’ (SICLOPPS)69. Other biological methods do not need cells for the production of 

peptides, such as ribosome display70, mRNA display70, or in vitro compartmentalization 

techniques71.  

 

In this section, I will focus on the emerging technologies employed for the discovery and activity 

screening of AMPs. 

1.3.2 Natural sources for antimicrobial peptides  
The richest source to discover bioactive peptides has been natural products. In fact, the 

majority of all therapeutic agents approved for clinical use between 1981 and 2019 are natural 

products or are at least derived from a natural product or its pharmacophore72. It has been 

postulated that because naturally-derived peptides have been preselected for biological 

activity and as a substrate for biological transporters that are present in their natural host, they 

cover the relevant ‘drug-like’ space much better than synthetic compounds73. Natural products 

are important for drug discovery as they already provide the required diversity for covering a 

wide range of chemical scaffolds and complex structures74. Correspondingly, AMPs were 

originally isolated from natural sources such as plants, animals, and bacteria – a procedure 

described as bioprospecting75. For animal AMPs (75% of all discovered AMPs are animal-

derived34) this often involved the detection of an antibacterial activity within the animal under 

study, mostly by first infecting it, and then purifying and further characterizing the antibacterial 

agent. Cecropins for example were first purified from the hemolymph of moths76 and then 

subsequently characterized using Edman sequencing and bacterial susceptibility testing24.  

 

The potential of bioprospecting has been greatly expanded by substantial progress in the field 

of genomic sequencing of all organisms, including increasing amounts of metagenomic data, 

including DNA sequence data from uncultivable bacterial species. Here, the number of 

individual sequenced organisms that are deposited on GenBank, a genetic database 

organized by the National Center for Biotechnology Information (NCBI)77, has vastly increased. 

Since 1982, the number of bases deposited has doubled every 18 months (Fig. 1.2a). Most of 

the raw genetic information available (bases deposited) is derived from the animal kingdom, 

but in terms of the number of deposited genomes, bacteria are representing the largest group 

(Fig. 1.2b/c). Both peptide sequences and the corresponding coding DNA sequence can be 

discovered in these databases, a process called genome mining. While genome mining can 

generally be applied to peptides from different types of organisms78, it is successfully carried 
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out using bacterial genomes. Bacteria produce a variety of antimicrobials, including secondary 

metabolites (e.g. the aminoglycoside streptomycin) or NRPs (e.g. the glycopeptide 

vancomycin) produced by NRP synthetases (NRPSs) or polyketide synthetases (PKSs). In 

addition, many bacteria are capable of producing AMPs. A famous example of a bacterial AMP 

is nisin25, a lantibiotic produced by Lactococcus lactis, which has been used as a food 

preservative for many years. Moreover, bioinformatics tools such as BAGEL79 or antiSMASH80 

have helped in mining bacterial genomes for AMPs and their biosynthetic gene clusters 

(BCGs), groups of genes involved in the production of AMPs, which collectively has yielded a 

high number of novel compounds81.  

 

In summary, bioprospecting for AMPs by direct isolation from its source but also through 

genome mining brought remarkable successes with currently more than 3,200 AMPs 

deposited on the antimicrobial peptide database (APD, https://wangapd3.com or 

aps.unmc.edu/AP/main.php)34. 

 

  
Fig. 1.2 | Genetic information on GenBank  a) The total number of available bases on GenBank from 1982-2020. 
b) Number of bases deposited on GenBank distributed over the main domains of life (yellow = prokaryotes; green 
= eukaryotes; purple = plasmids; blue = viruses). c) Number of sequenced genomes deposited on GenBank 
separated by kingdom including viruses and plasmids. There can be multiple genomes from the same species, e.g. 
there are ~23,000 E. coli genomes available on GenBank. Color code corresponds to domains of c). Data were 
obtained from Genbank (https://www.ncbi.nlm.nih.gov/genbank) on January 2021. 
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1.3.3 Screening of antimicrobial peptide libraries 
The rich source of natural AMP sequences stored on databases has guided numerous AMP 

screening campaigns aiming at investigating structure-activity relationships (SARs), improve 

antibacterial activity, or reduce unwanted toxicity towards eukaryotic cells. Since 2009, more 

than 1,000 publications and 300 patents on AMPs have appeared each year82. Most of these 

investigations are based on rational design approaches to improve antibacterial activity. Often, 

only minor alternations of the natural AMP sequences are made, resulting in collections of ~5-

10 chemically produced peptide variants that may have the desired improved features83. In 

total, these screening campaigns resulted in the generation of tens of thousands of synthetic 

AMPs, some of which are also stored on databases such as DRAMP84, covering both synthetic 

and natural AMPs. 

 

However, most of these studies only investigate a small part of the overall AMP fitness 

landscape, which maps a target peptide sequence to its fitness as measured in the 

experiment85, measured as antimicrobial activity against one pathogen while altering the 

peptide sequence (Fig. 1.3). As the primary sequence of a peptide encodes its biological 

function83, identifying the most potent antimicrobial peptide of a length of 20 amino acid 

residues would require in theory the screening of 2020 different peptides for antimicrobial 

activity (20 positions, 20 canonical amino acids possible at each position, >1026 different 

sequence possibilities). This would however be impossible with any currently available 

screening method. Even fully randomizing five amino acids would require analysis of 3.2 million 

(205 ) peptides. This problem is additionally amplified as antimicrobial fitness landscapes, such 

as the one displayed Fig. 1.3, might not align with other desirable fitness landscapes36. For 

example, screening for better antimicrobial activity against specific bacteria might increase the 

toxicity towards eukaryotic cells or decrease the antimicrobial activity against other bacteria36. 

In order to cover large parts of AMP fitness landscapes, methods have to be developed to 

strongly increase experimental throughput.  
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Fig. 1.3 | Fitness landscape of an AMP. Fitness 
landscapes can be created by altering the chemical 
space of an AMP and  measuring the antimicrobial 
activity of the resulting AMP. Changing sequence 
parameters can include modifying to specific amino 
acids to drastically change physicochemical 
properties such as overall charge or hydrophobicity, 
but can also include substituting to all other 
canonical amino acids. When changing sequence 
parameters of a natural AMP (“Starting point”), the 
resulting AMPs may become more active (a lighter 
green) but may also decrease in antimicrobial 
activity (darker green). Fitness landscapes become 
more complicated (multidimensional) if more 
sequence parameters are included. This is a 
hypothetical example.  
 

 

 

 

 

One option to circumvent large screening campaigns and still analyze AMP fitness landscapes 

is the use of computational methods. Such tools usually exploit the information stored on AMP 

databases such as the amino acid sequences, physicochemical parameters, or annotated 

biological functions. To predict a specific function of a peptide or to make design suggestions 

for AMP optimization, they apply methods using artificial intelligence such as quantitative 

structure-activity relationships (QSAR)86 or machine learning87 including neural network-based 

deep learning88. If we implement increasing levels of mechanistic and functional understanding 

of AMPs into improved computational methods, it can be expected that the AMP-based drug 

discovery process will be considerably accelerated. 

 

Next to computational methods, also experimental techniques have been optimized to improve 

the throughput of AMP screenings. As technologies involving DNA manipulation, synthesis, 

and sequencing experienced huge advances, methods involving the recombinant production 

of peptides are increasingly applied for AMP library screenings. Hit identification is 

straightforward in these screens as the input genotype (DNA) is linked to the peptide output, 

and the DNA can be easily recovered and read out after the peptide has displayed its activity. 

Many of these high-throughput approaches are based on display technologies. For example, 

phage display was used to screen for a strong membrane damaging peptide using a 12-mer 

random peptide library that was sampled for ligands with increased affinity for the cell surface 

of E. coli89. Other attempts are based on bacterial self-screening - a negative selection process 

in which the expression of an active AMP limits the growth of the bacterium that is synthesizing 

the AMP90. In a recent approach, next-generation sequencing (NGS) was used to study peptide 

populations in a self-killing approach in which a potentially membrane-damaging peptide was 

tethered to the cell surface of the producing bacterial host91. Most of these recombinant high-
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throughput methods rely on the production of linear peptides using the regular synthesis 

machinery of E. coli. A recent method developed at the ETHZ Bioprocess Laboratory 

demonstrated that also the antimicrobial activity of AMPs with an intricate PTM can be 

screened in high-throughput. In this method producer cells and sensor bacteria were co-

localized in alginate beads (“nanoFleming” platform), and a library of 6,000 different and post-

translationally modified lantibiotics was screened for antimicrobial activity92.  

 

1.4 Scope of this thesis 

So far, most biosynthetic high-throughput approaches have relied on random amino acid 

residue substitutions or low-throughput diversification strategies and resulted in AMPs with 

mediocre activity or only minor activity improvement91,93,94. Eventually, we want to increase the 

number and most importantly, the quality of promising AMP in clinical pipelines. As high-

throughput screening methods are an essential part of drug discovery, we aim to evolve 

methods for the massively-parallelized discovery and optimization of AMPs.  

 

In Chapter 2 of this thesis, we aim to develop an AMP discovery method that exploits the 

growing mountain of data available on genetic and AMP databases. As naturally-derived 

molecules have been valuable starting points in the past, we aim to mine all available genetic 

sequences for naturally encoded peptides with a certain degree of sequence similarity to 

already known AMP sequences and subsequently screen them for antimicrobial activity. A 

created library consists of thousands of highly diverse peptide sequences that cannot be 

economically chemically synthesized or generated using molecular biological tools. We thus 

aim to take advantage of recent advances in microarray-based synthesis technology for their 

template synthesis and recombinant E. coli for their production. The antimicrobial activity of all 

peptides can be assessed by combining E. coli self-screening and deep-sequencing, thereby 

circumventing large-scale AMPs syntheses and functional analyses. Next to AMP discovery, 

the combination of E. coli self-screening and deep-sequencing can be implemented to 

accelerate sequence to function studies or activity optimizations of AMPs. In Chapter 3, we 

aim to optimize the antimicrobial activity of an intracellularly active AMP and improve its 

prospects to be used in clinically relevant settings. The greatest challenge is to functionally 

assess a large number of possible peptide variants, which arise due to the combinatorial 

explosion when mutating multiple amino acids simultaneously. We hence aim to perform a 

two-step mutational approach. First, we screen large numbers of randomly diversified AMP 

variants to get a broad overview of the antimicrobial fitness landscape of the initial AMP. In a 

second step, these results can guide a rational peptide-engineering approach that targets 

selected residues of the peptide. Screening this focused set of peptides generates a second 
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fitness landscape that allows the identification of peptide candidates with amino acid 

combinations improving their antimicrobial activity. Such optimized variants have a great 

chance to enter the clinical development path. Lastly, in Chapter 4, we describe additional 

methods that need to be developed to successfully analyze AMP candidates derived from 

Chapter 2 and Chapter 3.  
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2.1 Abstract  

High-throughput methods are fundamental for the discovery and characterization of bioactive 

peptides. Employing recombinant microbes, we developed Mex to address two major 

limitations in the field: peptide synthesis and functional analysis. Using Mex, the activity of 

10,663 naturally occurring peptides including nearly all currently known AMPs was profiled. 

The method provides unparalleled insight into functionally diverse and previously unknown 

antimicrobial peptides. 
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2.2 Introduction 

Natural compounds are fundamental for drug discovery as they provide the biological 

relevance and structural diversity required to identify drug-like pharmacophores73. Owing to 

their high structural complexity and their ability to penetrate tissues and membranes, peptides 

are becoming increasingly important for many therapeutic areas59. Especially antimicrobial 

therapies have a very strong demand for novel compounds due to rising antimicrobial 

resistance7. Although about 3,000 antimicrobial peptides (AMPs) have already been 

discovered34, advances in genome sequencing and mining95 provide an ever-increasing 

number of peptides with elusive functions78.  

 

Large peptide libraries can be screened for antimicrobial activity using bacteria self-screening 

protocols. Here, peptides are expressed from their encoding DNA template and then 

accumulate either in the cytosol, the periplasm or at the bacterial surface90,91. If antimicrobial, 

their expression negatively impacts the proliferation rate or survival of the expressing cell. 

Sequencing of the peptide-encoding DNA of such impaired cells allows for the identification of 

antimicrobials in large pools of uncharacterized peptides. However, previous self-screening 

approaches failed to deliver large fractions of highly active peptides91,93, or were unsuited for 

the screening of big libraries90. 

 

We gathered naturally-encoded peptides from peptide and genomic sequence databases and 

assayed them for antimicrobial activity using massively parallelized growth assays (Mex). 

Combined, the method delivered a rich collection of functionally diverse and highly active 

AMPs. 
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2.3 Results and discussion 

We first designed a library of naturally-encoded peptides. For this, we collected the amino acid 

sequences of 3,063 peptides with experimentally validated activity (“PARENTS” from here on) 

from the AMP database (APD)34 (Fig. 2.1a). Notably, PARENTS differed considerably with 

respect to the host from which they were derived, length, physiochemical properties, chemical 

modifications, 3D-structure, and sequence (Fig. 2.1a/b). Next, we applied tblastn on the 

translated nucleotide databases accessible through the NCBI77 using the amino acid sequence 

of the PARENTS as queries. This search yielded 36,898 amino acid sequences with a similarity 

of ≥ 21.1% to the PARENTS (“SIMILARS” from here on). Unlike the PARENTS, few SIMILARS have 

been synthesized or experimentally tested. However, owing to their natural origin and similarity 

to the PARENTS, a fraction of the SIMILARS is likely to display antimicrobial properties96,97. For 

technical reasons (Methods), we applied a cut-off of 42 amino acids in peptide chain length 

and selected SIMILARS with at least 62.2% sequence similarity. In this way, a library of 2,122 

PARENTS and 10,300 SIMILARS (Fig. 2.1b) was obtained. Examination of the final library 

indicated net charges from -10 to +15 and hydrophobicity of -3.5 to 2.9 (GRAVY scale; 

Supplementary Fig. 2.1). Additionally, we were able to allocate the origin of 7,497 of these 

peptides to the kingdom animalia, 74 to fungi, 678 to bacteria, and 2,485 to plantae 

(Supplementary Fig. 2.2).  

 

For Mex, we converted the peptides into corresponding oligonucleotides (Supplementary Fig. 

2.3), retrieved the latter as a pool after chemical synthesis on a microarray, and ligated the 

sequences into a plasmid on which their expression was controlled by the tightly regulated 

PBAD promotor (Fig. 2.1c). We then transformed the model organism, E. coli TOP10, with the 

peptide-encoding DNA library. Due to a high sequence bias in the initial oligonucleotide pool 

(Supplementary Fig. 2.4), we only identified 10,663 different peptide-encoding DNA sequences 

(listed by ID in Supplementary Table 2.1) in E. coli using next-generation sequencing (NGS). 
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Fig. 2.1 | Screening of AMPs using Mex. a) Biological diversity of PARENTS. PARENTS are derived from the 
AMP database (APD). They have experimentally proven biological activity, e.g. antibacterial (Gram-negative 
and/or Gram-positive bacteria), antifungal, or antimammal (hemolytic or anticancer). They originate from 
species of various kingdoms of life and differ considerably by length, charge, chemical modification (among 
others: SS = disulfide bridges, A = amidation, U = terminal Rana box, C = backbone cyclization, T = thioether 
bridges, D = d-amino acids, W = dehydration, J = sidechain cyclization, L = lipidation, Q = terminal glutamate, 
E = acetylation, G = glycosylation, K = hydroxylation, - = no modififcation reported), and 3D-structure (Beta = 
beta-sheet, Bridge = disulfide bond, Helix = alpha-helix, Helix-Beta = alpha-helix and beta-sheet, Rich = rich 
in unusual amino acids, Unknown = no reported structure). b) Sequence distances of the complete peptide 
library. Pairwise sequence distance between 2,112 PARENTS (BLOSUM62) as a basis for hierarchical 
clustering. SIMILARS found using tblastn for each PARENTS’ search query are stacked as towers on the tips of 
the dendrogram. c) Mex workflow: Design & Optimization: Peptide sequences are reverse translated into E. 
coli codon-optimized nucleotide sequences. Synthesis: All peptide-encoding sequences are synthesized as 
oligonucleotides. Cloning: The sequences are inserted into plasmids. Transformation: E. coli TOP10 is 
transformed with the generated peptide-encoding DNA library. Growth: Strains are incubated in shaking flasks, 
peptide expression is induced and plasmids are isolated. NGS: peptide-encoding DNA sequences are counted 
at four time points using NGS. d) Growth curves of all 10,663 peptide-expressing strains, expressed as OD 
for a specific peptide-expressing strain (ODID; average of n=3). Coloring from yellow to dark blue indicates 
higher growth inhibitory effects based on ODID of last sampling point. Curves reaching a higher ODID than eight 
(0.7 %) are omitted for clarity. 

To assess the antimicrobial activity of the DNA-encoded peptides, we performed Mex and 

generated growth curves for each of the 10,663 peptide-expressing E. coli strains. To do 

so, we inoculated three liquid cultures each with 500 million transformed cells, and induced 

peptide synthesis after four cell doublings (Supplementary Fig. 2.5). Because the 

expression of an AMP should inhibit the growth of the expressing host, the propagation 

rate of the peptide-encoding DNA will also be reduced. Hence, we harvested bacteria at 

the time of induction as well as 1.5 h, 3.0 h, and 4.5 h post-induction and used NGS to 

count reads for each peptide-encoding DNA. To derive growth curves (Fig. 2.1d), we 

calculated the abundance of each strain (ID) using the respective NGS read counts and 

multiplied these with the measured cell concentration of the entire liquid cultures (OD) 

thereby obtaining an approximation of the strain-specific concentrations (ODID) at each 

sampling point. Comparing ODID of all peptide-expressing strains after 4.5 h, we found that 

intracellular expression of 1,240 peptides (11.6%) significantly inhibited the growth of their 

host (“Mex-actives” from here on; Wald’s test, p-value (p)<0.05, adjusted for multiple 

testing (adj.); Supplementary Fig. 2.6). The remaining peptides did not show growth 

inhibition in Mex, likely because they are not antimicrobial at all or require chemical 

modifications not introduced in E. coli, could not access their (e.g. extracellular) target, or 

did not reach inhibitory concentrations due to limited mRNA or peptide stability. 

Next, we confirmed that the intracellularly synthesized peptides also inhibited growth if the 

strains were grown individually. For this, we selected 110 peptide-expressing strains 

experiencing different levels of growth inhibition in Mex and measured their growth in 

microtiter plate wells (Supplementary Fig. 2.7a/b). As the growth curves recorded in Mex 

and microtiter plates were comparable (Supplementary Fig. 2.7c), we concluded that the 

complex dynamic of the Mex-culture did not bias the results. 
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Screening 10,663 peptides at once allowed us to address several research questions. 

Firstly, we sought to confirm that our approach of exploiting sequence similarities to known 

AMPs indeed allowed us to identify antimicrobials. In fact, 1,035 out of 1,240 Mex-actives 

(83 %) were SIMILARS, i.e. peptides whose functions were not reported on the APD. A 

closer look revealed that for 310 inactive PARENTS we found at least one active SIMILAR. 

As an example, PARENT Apo5 APOC1667 APD (nomenclature: name of PARENT on 

APD ID Origin), itself inactive, yielded 27 SIMILARS of which one showed eight amino acid 

differences to the PARENT and displayed antimicrobial activity (Supplementary Fig. 2.8). 

We argue that the amino acids by which the inactive PARENT and the active SIMILAR differed 

were of high importance for activity and necessary for evading the abovementioned 

reasons for failed growth inhibition in Mex. Furthermore, 47 PARENTS spawned an 

overrepresentation of active SIMILARS (Fisher’s exact test, adj. p<0.05; Supplementary Fig. 

2.9). Examples include Myticin-B (21/31), which spawned 31 SIMILARS, of which 21 were 

active, and PepG1 (11/11). This indicates that the respective peptide sequences have 

considerable plasticity and can accommodate multiple amino acid exchanges without 

losing activity. We argue that these peptides might be well suited for additional 

modifications performed for instance in the course of lead optimization programs98. 

Secondly, we evaluated the phylogeny of the hosts from which the inhibitory peptides were 

derived. For this, all peptides of the library were grouped taxonomically based on their 

natural host. We then calculated the fraction (%) of Mex-actives within the ranks Kingdom 

and Class (Fisher’s exact test; Supplementary Fig. 2.10). Mex-actives were significantly 

underrepresented (p<0.05) among bacteria (8.5%), amphibians (7.7%), and mammals 

(10.3%) but overrepresented (p<0.05) in insects (13.4%), birds (25%), ray-finned fishes 

(15.6%) and bivalves (31.8%). Since insects contain by far the most species in the animal 

kingdom, this indicates a huge and so far undiscovered pool of antimicrobials in insects.  

Thirdly, as cationic and hydrophobic peptides generally display antimicrobial activity30, we 

wondered whether growth inhibition in Mex was biased by the physiochemical properties 

of peptides. However, linear regression analysis indicated no correlation of growth 

inhibition with hydrophobicity (correlation = 0.04) and charge (correlation = -0.01; 

Supplementary Fig. 2.11a). Furthermore, among the 47 PARENTS with overrepresented 

active SIMILARS, there was no clear relationship between charge or hydrophobicity and 

growth inhibition (Supplementary Fig. 2.11b). We thus conclude that growth inhibition in 

Mex-actives is driven by the specific antimicrobial activity of a peptide either damaging the 

cytoplasmic membrane or binding and inhibiting other cellular components. 
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Lastly, we characterized the 50 most growth inhibitory (38 SIMILARS, 12 PARENTS) peptides 

in Mex using different assays (Supplementary Fig. 2.12). We first used two biosensor 

constructs, containing the cspA and recA promoters, which upon activation are indicative 

of translation impairment99 and DNA damage100, respectively. The results indicated 

translational impairment for 11 and DNA damage for 12 peptide-expressing strains (one-

sided t-test, adj. p<0.05; Fig. 2.2b; Supplementary Fig. 2.13), which suggests intracellular 

targets for these peptides. For example, Metalnikowin IIA8984 APD, Metalnikowin III9011 APD, 

known ribosomal inhibitors, and Pyrrhocoricin7122 NCBI, whose PARENT is also a ribosomal 

inhibitor, caused the strongest indication for translational impairment39. Next, we measured 

membrane damage by quantifying propidium iodide (PI) uptake. Expression of 11 peptides 

resulted in membrane damage, with the strongest damages observed for Delta Lysin I 

SIMILARS whose PARENT is a membrane pore inducing bacteriocin from Staphylococcus 

(Supplementary Fig. 2.13, Supplementary Table 2.3). Interestingly, all 11 peptides that 

caused membrane damage significantly inhibited growth already after 1.5 h in Mex (Wald’s 

test, p<0.05) (Fig. 2.2a; Supplementary Fig. 2.14) while for 25 peptides, and especially for 

those with putative intracellular targets, growth inhibition started only after 4.5 h (Fig. 2.2a; 

Supplementary Fig. 2.14). Noteworthy, delay of the growth inhibition onset is indicative for 

peptides that interact with an intracellular target101. We concluded that this effect could be 

observed in Mex and hence reanalyzed all growth curves recorded for the Mex-actives. 

Growth was significantly inhibited after 1.5 h for 806 peptides (65%) suggesting membrane 

damage (Supplementary Table 2.1) but only after 4.5 h in the case of the remaining 434 

peptides, suggesting interaction with an intracellular target. As the transition from the 

discovery pipeline to the patient is often hampered by the general toxicity of membrane 

damaging peptides53, Mex could hence be a valuable tool for the high-throughput discovery 

of AMPs that do not predominantly rely on this mechanism. 
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Fig. 2.2 | Characterization of the 20 most active peptides in Mex a) Growth curves of the 20 most active 
peptides. Colored lines are Mex-recorded growth curves (average of n=3) determined via ODID approximation 
(header: ‘rank: PARENT name’). Black lines are growth curves (n=3, error bars: 2σ) determined via OD 
measurement in microtiter plates of individually grown strains. Horizontal dashed lines, in black (OD) or colored 
in green (ODID), show final values measured 4.5 h post-induction of a strain synthesizing the inactive control 
peptide HNP-13425 APD (obtained from Supplementary Fig. 2.14). In each facet, we state if we obtain a p<0.05 
(Wald’s test) for significant growth inhibition after 1.5 h in Mex. b) Potential mechanisms of action. Each radar 
plot shows the mean SOS-response (DNA; activation of the recA promoter; n=3), translation inhibition 
(Translation; activation of the cspA promoter; n=3), and membrane-damage (Membrane; PI stained cells in 
percent; n=2) obtained after peptide expression in E. coli TOP10. Only the maximum and minimum values are 
reported in digits. The center represents values measured for the negative control peptide HNP-13425 APD. 
Lower values are scaled to the center. Membrane damage is attributed if more than 10% of cells were PI-
positive (underlined). For SOS and Translation, signals are reported relative to the signal obtained for the 
inactive control peptide HNP-13425 APD. A significant increase (one-sided t-test, adj. p<0.05) compared to the 
inactive control is indicated by an asterisk (*). c) Antimicrobial activity in clinically relevant assays. Mean MIC-
values are recorded (n=3) in microtiter plate assays using chemically synthesized peptides. (*) = against the 
screening strain E. coli TOP10; p.f. = purification failed. 
 
Finally, we chemically synthesized 15 out of the 20 most growth inhibitory peptides in Mex 

and determined their minimal inhibitory concentrations (MIC; Fig. 2.2c) for E. coli TOP10. 

For five, no MIC was obtained; however, as four of these five were either PARENT or 

derived from PARENTS known to not deliver a MIC with E. coli (Supplementary Table 2.3), 

we believe that these peptides exerted activity in the cytosol (directly at the place of their 

synthesis) but could not reach their target when applied externally. Remarkably, ten of the 

15 peptides for which MICs were recorded, very efficiently inhibited the growth of E. coli 

(MICs: 0.4 - 20 µM; mean = 3.7 µM; median = 1 µM), a concentration range that qualifies 

as a starting point for drug development19. These results indicate that even though 

synthesized cytosolically, Mex-active peptides also strongly inhibited growth when added 

to cells externally. Additionally, we selected the most active SIMILAR HFIAP-14545 NCBI and 

measured activity against other clinically relevant Gram-negative and -positive bacteria. 

SIMILAR HFIAP-14545 NCBI inhibited growth of these strains (MICs: 0.4 - 5.6 µM; Fig. 2.2c), 

which suggests a broad activity spectrum even though Mex had been performed using E. 

coli.  

 

Taken together, Mex is suitable for the rapid discovery of naturally-occurring, and 

functionally-diverse AMPs. We argue that Mex will enable de novo design or optimization 

of peptides by directed evolution approaches and we envision its application also in drug 

resistant (e.g. Pseudomonas aeruginosa or Acinetobacter baumannii) or recombinant 

strains used as reporters for microbial models relevant 

  



 25 

2.4 Methods 

Chemicals and reagents  
Unless otherwise stated, all chemicals, reagents, and primers were obtained from Sigma 

Aldrich (Buchs, CH). Restriction enzymes and their buffers were obtained from New 

England Biolabs (Ipswich, USA). Synthetic genes were obtained from Integrated DNA 

Technologies (Leuven, BE) or Twist Bioscience (San Francisco, USA). Kits for plasmid 

isolation and DNA purification were obtained from Zymo Research (Irvine, USA). Peptides 

in either purified (>90%) or crude format were obtained from Pepscan (Lelystad, NL). 

Sanger-sequencing was done at Microsynth (Balgach, CH).  

 

Bacterial strains and cultivations 
Unless otherwise stated, all experiments were performed using Escherichia coli TOP10 

(F– mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 

galU galK λ– rpsL(StrR) endA1 nupG; Thermo Fisher Scientific, Waltham, USA). In this 

study, all cultivations were performed either in 14 ml polypropylene tubes (Greiner, 

Kremsmuenster, AT), filled with 5 ml of lysogeny broth (LB) medium (Difco, Becton 

Dickinson, Franklin Lakes, USA), or in 96-deep-well polypropylene plates (Greiner, 

Kremsmuenster, AT) filled with 500 µl of LB-medium. All samples were incubated at 37°C 

with agitation on a shaker (Kuhner, Birsfelden, CH) operated at 200 r.p.m. and 25 mm 

amplitude. All media were supplemented with the appropriate antibiotic for plasmid 

maintenance (50 μg ml−1 kanamycin; 100 μg ml−1 carbenicillin) and 1 % (w/v) D-glucose for 

repression of gene expression from catabolite-repression sensitive promoters such as 

PBAD. In the case of peptide expression experiments, cultures were incubated without D-

glucose and 0.3 % (w/v) of the inducer L-arabinose was used for induction. For all 

cultivations on solid medium, 15 mg ml-1 agar (Difco) was added to the broth, and 

incubation was performed without shaking in an incubator (Kuhner) at 37°C. If not 

indicated differently, the optical densities (OD) of bacterial cultures were determined by 

measuring light scattering at 600 nm using a UV/VIS spectrophotometer (Eppendorf, 

Hamburg, DE). 

 

In silico generation of peptide library 
We collected all peptide sequences (called “PARENTS”) available on the ‘AMP Database’ 

(APD)34 in May 2017 (http://aps.unmc.edu/AP/main.php, or 

https://wangapd3.com/main.php). These sequences were used as input queries to find 

sequence-similar peptide sequences in the NCBI non-redundant nucleotide collection 

(nr/nt)77,  a collection that holds sequences from GenBank, European Molecular Biology 

http://aps.unmc.edu/AP/main.php
https://wangapd3.com/main.php
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Laboratory (EMBL), DNA Databank of Japan (DDBJ), and Reference Sequence database 

(RefSeq), as well as translated protein information from the protein database (PDB). By 

applying tblastn102, 170,300 additional peptide sequences (called SIMILARS) were found. 

Because we were limited to 12,412 different peptides with a maximum length of 42 amino 

acids (the chosen platform for the synthesis of the peptide-encoding oligonucleotides 

allowed 12’412 different sequences with a maximal length of 170 bases), we discarded 

SIMILARS with sequence similarity to the respective parent of less than 62.2%. The 

following parameters were used for the tblastn search: maximum sequences = 100; matrix 

= BLOSUM62; gap cost = 11.1; word size = 6; active low complexity filter; adjustment = 

conditional compositional score matrix adjustment.  

 

Sequence distance among PARENTS and SIMILAR 
To visualize sequence diversity among PARENTS, we created a sequence-based 

phylogenetic tree. We performed pairwise global alignment of all PARENT sequences using 

the Needleman-Wunsch algorithm, as implemented in the R Bioconductor package 

‘Biostrings’ (https://bioconductor.org/packages/release/bioc/html/Biostrings.html). The 

BLOSUM62 substitution matrix was used to compute the alignment scores, which were 

converted into pairwise distances following the method Scoredist103. Based on the pairwise 

distances between PARENTS, we used hierarchical clustering with average linkage to 

compute a dendrogram of sequences reflecting their similarities. PARENTS and their 

tblastn-derived SIMILARS were consolidated into groups, which were named after the 

PARENT from the APD (http://aps.unmc.edu/AP/main.php, or 

https://wangapd3.com/main.php). In the sequence-based phylogenetic tree, each SIMILAR 

was stacked on top of its PARENT at the tip of the dendrogram. A SIMILAR may appear 

multiple times if it was found multiple times in the tblastn search using different PARENTS.   

 

Peptide-encoding DNA architecture 

The corresponding oligonucleotide sequences of the peptide library were synthesized 

using microarray technology supplied from CustomArray Inc. (now GeneString, 

Piscataway, USA). The chosen platform allowed 12’412 different oligonucleotides with a 

maximal length of 170 bases. A generic oligonucleotide design employing four functional 

units was created (Supplementary Fig. 2.3): A coding unit, a filler unit, and two universal 

units for amplification. This process was automated for each sequence by using an in-

house written script in R. The coding unit contained the reverse translation of the peptide 

amino acid sequence into a codon-optimized DNA for E. coli. We always chose the most 

abundant codon for each amino acid. In cases in which restriction sites had been 

introduced that could potentially interfere with subsequent manipulations, the crucial codon 

https://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://aps.unmc.edu/AP/main.php
https://wangapd3.com/main.php
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was replaced by the second most abundant one for this amino acid. The filler sequence 

was added to compensate for the various lengths of peptide genes (shortest coding 

sequence = 15 nucleotides, longest coding sequence = 126 nucleotides) and adjust the 

total of filler and coding unit to 129 nucleotides for all members of the library. To do so, we 

first added a UAA stop codon to the end of the coding sequence and then added 

downstream a semi-random sequence, ensuring a GC content of 40% for the filler 

sequence and limiting the number of identical nucleotides following each other to three. 

By adding this filler sequence we maximized sequence disparity at the DNA level (many 

coding sequences are homologs) thereby potentially increasing both synthesis and, later, 

sequencing quality. Two amplification units, of 23 and 18 bases, respectively, were 

appended upstream and downstream of the coding sequence and filler unit and contained 

the ribosomal binding site and restriction sites for the enzymes PstI and HindIII. Two 

amplify the peptide-encoding DNA, primer 1: CTGCACAAAGCTTACGTG, complementary 

to the upstream amplification unit, and primer 2: CACGTAAGCTTTGTGCAG, reverse 

complementary to the downstream amplification unit were used. The final 170 bases long 

oligonucleotide sequences as synthesized are listed by ID in Supplementary table 2.2 

(erroneous sequences were discarded).  

 

Peptide-encoding DNA cloning 
The chemically synthesized and single-stranded oligonucleotides were separated from 

their array and we received them as a pool. This pool was aliquoted in 10 mM Tris-Cl, 1 

mM EDTA, pH 8 and deep-frozen at -80°C. The pool was amplified by polymerase chain 

reaction (PCR) in a 50 µl reaction using 5 ng of the template and 10 µM HPLC-purified 

primer 1 and primer 2, complementary to the amplification sites, and 25 µl of Phusion® 

High-Fidelity PCR Master Mix with HF buffer. The amplification was performed using 25 

cycles of 98°C for 15 s, 55°C for 20 s, and 72°C for 5 s. The now double-stranded peptide-

encoding DNA sequences were purified using a DNA purification kit. DNA concentration 

was measured using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific) and 

500 ng of the purified product was used for a restriction digest using enzymes HindIII-HF 

and PstI-HF in Cutsmart buffer. The digested product was again purified using a DNA 

purification kit and ligated to plasmid pBAD104 (Thermo Fisher Scientific) digested with the 

same enzymes. This plasmid harbored the tightly controllable PBAD promoter for peptide 

gene expression, a pBR322 replication of origin, and a resistance gene encoding for beta-

lactamase. For ligation, pBAD was purified using a 1% agarose gel and a DNA gel 

recovery kit after digestion. Next, T4 ligase (800 units) was used to ligate 100 ng of cut 

pBAD vector and 10 ng peptide-encoding DNA sequences in T4 ligase buffer (molar ratio 

of 7:1 insert:vector). The ligation mix was incubated for 14 h at 16°C. The ligation product 
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was dialyzed in deionized water using filters (MilliporeSigma, Burlington, USA) and 1 µl of 

the mix was used to transform 20 µl of CloneCatcher™ Gold DH5G Electrocompetent E. 

coli (Genlantis, Burlington, USA) cells using electroporation. Recovered cells were plated 

and incubated overnight on LB agar plates supplemented with carbenicillin. Afterward, 

~500,000 colonies were washed off the plates using LB medium, and the plasmids 

containing the peptide-encoding DNA sequences were extracted from 2.5*109 cells using 

a plasmid isolation kit. An aliquot of 5 ng of these plasmids was used to transform E. coli 

TOP10 cells using the protocol from the transformation above. A total of 1’000’000 colonies 

were recovered from the plates after overnight incubation by washing with LB medium, the 

suspension was diluted to OD = 1 with LB-medium, glycerol was added to a final 

concentration of 20% (v/v), and aliquots of 500 million cells were stored at -80°C. 

 

Growth experiment 
Three aliquots of E. coli TOP10 harboring the peptide-encoding DNA sequences on the 

pBAD plasmid were thawed and added to three 1 l baffled shake flasks containing 100 ml 

of LB medium + 100 μg ml−1 carbenicillin. The cultures were grown for roughly 7.5 h at 

37°C. When the OD reached 0.2, the cultures were supplemented with L-arabinose to a 

final concentration of 0.3 % (w/v) to induce peptide expression. Cell samples were taken 

from each biological replicate at the point of induction and 1.5 h, 3 h, and 4.5 h post-

induction. The plasmids were extracted from all samples using a plasmid isolation kit. 

 

NGS 
For the generation of Mex growth curves, peptide-encoding DNA sequences on plasmids, 

collected from the three replicates across four time points during the growth experiment, 

were sequenced by NGS. Additionally, the abundance of peptide-encoding DNA 

sequences in the original oligonucleotide pool and after transformation of the assay strain 

E. coli TOP10 was assessed by NGS as well. Peptide-encoding DNA sequences were 

amplified by primer 1 and primer 2 using 100 ng of plasmid and the PCR-amplification 

protocol mentioned before, but only for 10 cycles to avoid amplification bias. The 

amplification product was purified using an agarose gel. Single Index PentAdapters from 

Pentabase were used to prepare PCR-free libraries with the KAPA HyperPrep Kit (now 

Roche, Basel, CH) according to the manufacturer's specifications. Libraries were 

quantified using the qPCR KAPA Library Quantification Kit. Libraries were pooled and 

sequenced PE 2x151 with an Illumina HiSeq 2500 using v4 SBS chemistry. Roughly 10% 

genomic PhiX library as spike-in to increase sequence diversity. Basecalling was done 

with bcl2fastq v2.20.0.422. The resulting fastq files were processed using in-house 

software written in R and C. This software aligns each sequence to our reference table of 
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12’412 sequences linking peptide-encoding DNA sequences and peptide sequence, 

identifies mismatches and sequencing errors, and counts how often each peptide-

encoding DNA sequence was sequenced in each sample. NGS read counts for each 

sequence analyzed in Mex were listed with a unique identifier (ID) in Supplementary Table 

2.2. 

 

Generation of Mex growth curves  
We used the standard workflow of DESeq2105 (NGS read count normalization, dispersion 

estimates, and Wald’s tests) to analyze NGS read counts. Only sequences that passed 

independent filtering were included in further analyses (= 10,633). To draw growth curves 

for each peptide-expressing strain, we calculated the log2-fold changes of NGS read 

counts (listed for each ID in Supplementary table 2.2) between the time of induction and 

all other time points (1.5 h, 3.0 h, and 4.5 h post-induction). A Bayesian shrinkage 

estimator was employed to shrink the log2 fold-change for each ID (lfcShrinksID) between 

all time points using the R/Bioconductor package ‘apeglm’106. To draw the Mex growth 

curves, we calculated a strain-specific ODID at each time point according to equation (1). 

OD values at the specific time points were averaged values from all three biological 

replicates (Supplementary Fig. 2.5). The ODID (0 h) for each peptide-expressing strain was 

set to 0.2 at the time of induction as lfcShrinkID (0 h) = 0 and OD = 0.2. This enabled us to 

compare peptide-expressing strains of different abundancies (see Supplementary Fig. 

2.6). ODID
 values can be interpreted as the OD values that would have been measured 

when incubating the respective strain individually in the same experiment, i.e. in this case 

in LB medium in a 100 ml shake flasks. 

                   ODID(t) = OD(t) × 2lfcShrinkID(t)                                 (1) 

To find Mex-active peptides, we also performed a one-sided Wald’s test, with the 

alternative hypothesis that the expression of a given peptide leads to a reduced ODID 1.5 

h and 4.5 h post-induction. We rejected the null hypothesis at significance level alpha = 

0.05. Peptides with a p<0.05 (after adjustment for multiple testing using the Benjamini-

Hochberg method) after 4.5 h are considered Mex-active peptides. Peptides with p<0.05 

after 1.5 h do significantly inhibit growth already after 1.5 h. All values and results are 

reported in Supplementary table 2.1. 

 

Monoseptic growth experiments 
Taking the ODID (4.5 h) of each peptide-expressing strain, we could rank all peptides by 

their growth inhibitory effect. We selected 110 peptides (Ranks 1-50, 100-119, 1000-1019, 

and 10,000-10,019) and then generated an identical copy of the strain previously used in 
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Mex for its expression. First, the corresponding peptide-encoding DNA-sequences were 

synthesized as gene fragments. An aliquot of 400 ng of each gene fragment was directly 

used for a restriction digest using enzymes HindIII-HF and Pst-HF in Cutsmart buffer. The 

product was purified using a DNA purification kit. Next, T4 ligase (800 units) was used to 

ligate 50 ng of identically digested pBAD vector and 10 ng of purified gene fragment in T4 

ligase buffer for 14 h at 16°C. The ligation product was purified using a DNA purification 

kit. An aliquot of 5 µl of the purified ligation product was then used to transform chemically 

competent E. coli TOP10 cells. From the resulting colonies, we isolated one strain, 

sequence-verified the correct assembly of the expression plasmid, and stored it after 

overnight growth in glycerol at -80°C. For the growth experiment, we first re-isolated single 

colonies on solid media and then picked three clones, incubated them separately 

overnight, and inoculated them into 200 µl fresh LB medium containing 0.3 % (w/v) L-

arabinose to a final OD of 0.01 into 96-well microtiter plates (Greiner). Growth was 

recorded by measuring OD in a Tecan Infinite 200 PRO (Tecan, Männedorf, CH) for 4.5 h 

(37°C, 1.5 mm orbital shaking). 

 

Enrichment analyses 
We used Fisher’s exact test to assess the over- or underrepresentation of Mex-actives in 

various groups. This amounts to a hypergeometric test to assess the significance of 

drawing n active peptides in a group of k, from a population of size N containing K active 

peptides. We rejected the null hypothesis at significance level alpha = 0.05. Groups with 

a p<0.05 had a significantly different representation of active peptides compared with the 

overall population. When adjusting for multiple testing, we used the Benjamini-Hochberg 

method. 

 

Peptide classifications  
The physicochemical parameters of the peptides were calculated at pH 7 using the R 

package ‘Peptides’ (https://cran.r-project.org/package=Peptides). For charge, we used the 

method by Lehninger107. For hydrophobicity, we used the calculations by KyteDoolittle108. 

The information for each PARENT such as the name, chemical modification, activity, 3D-

structure, was extracted from the APD website (http://aps.unmc.edu/AP/main.php, or 

https://wangapd3.com/main.php) using an in-house R script. The information on the 

species from which a specific peptide sequence originated, was extracted from the tblastn 

search and the APD website. The entire taxonomic classifications (kingdom, phylum, 

class) for each species were extracted, if available, from the Global Biodiversity 

Information Facility Data Portal (https://gbif.org) using the R package ‘taxize’ 

https://cran.r-project.org/package=Peptides
http://aps.unmc.edu/AP/main.php
https://wangapd3.com/main.php
https://gbif.org/
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(https://cran.r-project.org/package=taxize). The results are summarized in Supplementary 

Table 2.1. 

 

Purification of chemically synthesized peptides  
Peptides were obtained from Pepscan (Lelystad, NL) in >90% purity or in crude format 

and subsequently purified to >90% purity in-house. For the latter, crude peptides were 

dissolved in 5 ml DMSO and 15 ml 0.1% aqueous trifluoroacetic acid, TFA. HPLC-

purification of the dissolved crude peptides was performed on an ӒKTAexplorer 

chromatography system (GE Heathcare, SE). The entire peptide sample was loaded onto 

a RP C18 column (PRONTOSIL 120 C18 10 µm, 250 x 20 mm, 50 x 20 mm precolumn, 

Bischoff, Leonberg, DE), heated to 30°C and operated at a flow rate of 10 ml min-1 using 

0.1% aqueous TFA as solvent A and acetonitrile supplemented with 0.1% TFA as solvent 

B. The ratios of A to B were adapted for each peptide and typical values are given below. 

The column was equilibrated with the peptide-specific mixture of solvent A and solvent B 

0-20%) prior to injection. After injection and an initial wash step of 6 min a gradient was 

imposed with the same mixture, and then a gradient was applied, in the course of which 

the amount of solvent B was increased to 50-90 % in 40 min. The column was washed 

with 95 % solvent B for 8 min and equilibrated with the specific solvent A/solvent B mixture 

for the next run for 13 min. Peptide elution was monitored spectrophotometrically at 205 

nm, and generally the main peptide peak was collected. The sample was frozen at -80 °C 

for >2 h and lyophilized (approx. 18 h) using a freeze-dryer (Alpha 2-4 LDplus, Christ, DE), 

connected to a vacuum pump (RC6, Vacuubrand, DE). The lyophilized peptides were 

dissolved in 1 ml DMSO and stored at ‐20 °C. The concentration of the peptide stocks was 

determined via HPLC using an Agilent 1200 series HPLC system. Each peptide stock was 

analyzed as a 1:100 dilution in water. An aliquot of 10 μl of the peptide stock was injected 

onto an RP‐C18 column (ReproSil‐Pur Basic C18, 50 x 3 mm, Dr. Maisch, Germany) 

operated with water supplemented with 0.1 % TFA as solvent A and acetonitrile 

supplemented with 0.1 % TFA as solvent B. Separation was performed using the same 

concentration profile previously used for purification. The concentration was measured 

using the integrated peak area at 205 nm and then calculated using peptide-specific 

absorption properties109,110. 

 

Measurement of the MIC 
On the same day at which MIC assays were executed, purified peptides were thawed and 

the concentration was determined by HPLC as described before. E.coli TOP10 cells were 

grown in Mueller Hinton Broth (MHB) or diluted MHB (25 % of the original strength) 

overnight to stationary phase. Diluted MHB has been frequently used to assay AMPs111. 

https://cran.r-project.org/package=taxize
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The cultures were then supplemented with 20 % glycerol, aliquoted, and frozen at -80°C. 

For MIC measurements, a frozen stock of the cells was thawed, resuspended in MHB or 

25% MHB to adjust to a density of 5*105 cells ml-1 in the experiment, and distributed to 

microtiter plate wells by an automated liquid handling system (Hamilton, Bonaduz, CH). 

Then the peptides were added by the liquid handling system in 2-fold dilutions using 

minimum of 100 µg ml-1 as the highest concentration. MICs were determined as broth 

microdilution assay in 384-well flat bottom polypropylene plates (Falcon® 96-Well Flat-

Bottom Microplate) adapted from the protocol of Wiegand et al.112. The plates were sealed 

airtight and incubated for 18 h without shaking at 37°C before reading the OD using a 

Tecan Infinite 200 PRO plate reader. The MIC value corresponded to the concentration at 

which no growth of the bacterial strain was observed (< 5% of the OD value of the growth 

control). MIC experiments were performed at least in triplicate. 

 

Membrane damage assay 
We selected the peptide-expressing strains of rank 1-50 in Mex that we had previously 

constructed for the monoseptic growth assay. Additionally, we selected the strain 

expressing the inactive control peptide HNP-13425 APD, a peptide known to be inactive if 

expressed in E.coli91. Each strain was re-isolated on solid media from frozen stock and 

incubated overnight. Then, two colonies were picked and incubated overnight in 96-deep-

well polypropylene plates. These cultures were used to inoculate fresh media containing 

0.3 % (w/v) L-arabinose to a final OD of 0.01 into 96-well microtiter plates. The plates were 

then incubated on for 4.5 h (37 °C, 1.5 mm orbital shaking). After 4.5 h, an aliquot of 50 µl 

of cell suspension a Tecan Infinite 200 PRO plate reader was added to 150 µl of 

phosphate-buffered saline into a fresh 96-well microtiter plate. Propidium iodide (PI) was 

added to a final concentration of 1 µg ml-1. PI is a DNA-intercalating dye that cannot pass 

an intact cytoplasmic membrane113. For each sample, PI fluorescence (λEx= 579 nm / λEm= 

616 nm) of ~10,000 cells were analyzed using a flow cytometer LSR Fortessa (BD 

Biosciences, Allschwil, CH). To determine the membrane damaging properties of each of 

the expressed peptides, we calculated the fraction of cells in percent for which a PI uptake 

was measured using the software FlowJo V10 (BD Biosciences).  

 

Stress response assay 
We selected peptide-expressing strains of rank 1-50, previously generated for the 

monoseptic growth assay. Additionally, we selected the strain expressing the inactive 

control peptide HNP-13425 APD. Moreover, two plasmids (cloning vector: puA66) containing 

either the promoter of the gene for recombinase A (PrecA) or for the gene for cold shock 
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protein A (PcspA) were purified from the E. coli Alon collection114. Both plasmids contained 

a transcriptional fusion of their promoter with a downstream gene for green fluorescent 

protein (gfp), an additional kanamycin resistance cassette, and a pSC101 origin of 

replication.  We transformed each of the 51 peptide-expressing E. coli strains with each of 

the two plasmids to generate 102 different strains and incubated them overnight on solid 

media. Then, three colonies were picked and incubated overnight. These cultures were 

used to inoculate fresh media containing 0.3 % (w/v) L-arabinose to a final OD of 0.05 into 

96-well microtiter plates. We recorded OD and GFP expression (λEx 488 nm/λEm 530nm) 

after 1.5 h and 4.5 h using a Tecan Infinite 200 PRO (37 °C, 1.5 mm orbital shaking). For 

each strain, we calculated the specific fluorescence change between the two time points 

(GFP/OD (4.5 h) - GFP/OD (1.5 h)). Statistical significance was calculated by one-sided t-

tests, adjusted for multiple testing by Benjamini-Hochberg, using the signal of HNP-13425 

APD as null distribution. We rejected the null hypothesis at significance level alpha = 0.05. 

 

Data availability 
All relevant information for each peptide analyzed in Mex (amino acid sequences, 

physiochemical properties, taxonomical information, p-values, ODID-values, link to APD) is 

provided in Supplementary Table 2.1. NGS read counts and all peptide-encoding DNA 

sequences are provided in Supplementary Table 2.2. Tables are available at 

https://polybox.ethz.ch/index.php/s/2t4a886WXCOZqaA using the password 

BPL2021+MeX. The computational workflow to reproduce the analysis of Supplementary 

Table 2.1 and generate growth curves of each peptide expressing-strain is available on 

GitHub (https://github.com/derpkoch/MeX) and in the Supplementary code section. NGS 

data are available at the NCBI Sequence Read Archive (SRA) under accession number 

PRJNA686958. Additional data that support the findings of this study are available from 

the corresponding author upon reasonable request.  

https://polybox.ethz.ch/index.php/s/2t4a886WXCOZqaA
https://github.com/derpkoch/MeX
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2.5 Supplementary figures 
Supplementary Fig. 2.1 | Predicted physiochemical 
properties of peptides in the library. All peptides of the 
library are plotted according to their charge and 
hydrophobicity at pH 7 and colored by their length. Mean 
charge = +2.3; mean hydrophobicity (GRAVY scale) = 
0.0; mean length = 27 amino acids. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
Supplementary Fig. 2.2 |Taxonomical classification of the peptide library. All peptides of the library are 
grouped by their taxa in rank kingdom, phylum, and class of the host from which their sequences had been 
derived. Only groups comprised of at least 20 peptides are displayed. Phyla and classes are colored by their 
kingdom (left). 
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Supplementary Fig. 2.3 | Sequence architecture of peptide-encoding DNA sequences as used for synthesis. 
Each DNA sequence contains a peptide coding sequence (green), a unique filler sequence (black) used for 
standardizing sequence length to 170 nucleotides, and two universal amplification sites (yellow) used for both, 
cloning and amplification. The coding sequences are generated by reverse translation of the respective peptide 
amino acid sequence followed by codon optimization for expression in E. coli. Amplification sites at the 5’ and 
3’ end are the same for all inserts and contain restriction sites for subsequent integration into the multiple 
cloning site of the expression plasmid.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 2.4 | Relative abundance of peptide-encoding DNA sequences before and after cloning. 
Peptide-encoding DNA sequences in the original synthesized oligonucleotide pool (yellow) and after insertion 
into a plasmid and transformation of E. coli TOP10, as used for the growth experiment (purple) are counted 
by NGS. All counts are relative to the most abundant peptide-encoding sequence Chensinin-1CEb2720 NCBI, 
which appears 2,720 times (oligonucleotide pool) and 5,466 times (growth experiment), respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 2.5 | Growth of E. coli TOP10 expressing the peptide-encoded DNA library. a) 
Optical density at 600 nm (OD) is recorded over 8 h. Three 1 liter shake flasks containing 100 ml of LB-medium 
each are inoculated with 500 million cells of E. coli TOP10 carrying the peptide-encoded DNA library at -2.5 h 
(time reported relative to the time of induction). Peptides are expressed after 4 generations (0.0 h; OD~0.2) by 
adding L-arabinose (asterisk). Cell samples for NGS are isolated from each replicate at the time of induction, 
and 1.5 h, 3.0 h, and 4.5 h post-induction (arrows). b) Log10 transformed data of (a) for calculation of the 
specific growth rate (µ).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 2.6 | Growth inhibition as determined by ODID at 4.5 h recorded for 10,663 peptide-
expressing strains. ODID-values are recorded for each of the peptide-expressing strains and are averaged 
from the three replicates. Mex-active peptides (purple) significantly (Wald's test, adj. p<0.05) reduce the ODID 
of their expressing strain after 4.5 h while Mex-inactive peptides (yellow) fail to do so. Note that some 
candidates may also fail to reach statistical significance in the performed Mex-activity test due to low NGS read 
counts or high variance between replicates (Supplementary Table 2.2). 
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Supplementary Fig. 2.7 | Growth of peptide-
expressing E. coli strains in Mex and in monoseptic 
cultures. a) All peptide-expressing strains are 
ranked by their growth inhibition after 4.5 h (= 
ranked by their ODID (4.5 h)) and selected 
representatives were then subdivided into four 
groups: purple = rank 1-50 (average ODID (4.5 h) = 
1.0); blue = rank 100-119 (average ODID (4.5 h) = 
2.0); green = rank 1,000-1,019 (average ODID (4.5 
h) = 3.3); and yellow = rank 10,000-10,019 
(average ODID (4.5 h) = 5.4) and HNP-13425 APD 
(negative control, rank 2172, ODID (4.5 h) = 3.7 ). 
b) Overlay of growth curves recorded by Mex 
(colored lines; average of n=3) and during 
monoseptic growth of the same strains in microtiter 
plates (black lines; n=3, error bars = 4s). Numbers 
on top of each recording correspond to Mex-
derived activity rank. c) Boxplot of ODID(4.5 h) and 
OD (4.5h) of the peptide-expressing strains in the 
different subgroups identified in (a). Note the 
different scales on the x-axis. Rank 1-50: average 
OD (4.5h) = 0.2. Rank 100-110: average OD (4.5h) 
= 0.35. Rank 1,000-1,019: average OD (4.5h) = 
0.4. Rank 10,000-10,019: average OD (4.5h) = 
0.42. 
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Supplementary Fig. 2.8 | Analysis of Apo5 APOC1-derived SIMILARS. a) Amino acid sequence alignment of 
all 36 SIMILARS of the Apo5 APOC1677 APD PARENT. The inactive PARENT, derived from Chinese alligator (Alligator 
sinensis), and the only Mex-active similar (Apo5 APOC19989 NCBI) derived from American pika (Ochotona 
princeps) differ by nine amino acids. The top shows the consensus sequence plot. b) Overlay of growth curves  
recorded by Mex (colored line, an average of n=3) and via monoseptic growth in microtiter plates (black line; 
n=3, error bars = 2σ), of E. coli TOP10 cells expressing  Apo5 APOC1677 APD and Apo5 APOC19989 NCBI. 
Horizontal dashed lines, in black (OD) or colored in green (ODID), show final values measured 4.5 h post-
induction of a strain synthesizing the inactive control peptide HNP-13425 APD (obtained from results displayed in 
Supplementary Fig. 2.14). 
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Supplementary Fig. 2.9 | Overrepresentation of active SIMILARS derived from 47 PARENTS. For 47 PARENTS 
(names on the left), Mex-actives were significantly overrepresented among the SIMILARS identified in the 
similarity search (Fisher’s exact test, adj. p<0.05). The ODID (4.5 h) values for the individual peptide-expressing 
strains within a group of PARENTS and SIMILARS are shown as dots (left) and the total number of active and non-
active peptides for each of the 47 parents as bars (right).   
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Supplementary Fig. 2.10 | Influence of the physicochemical properties of peptides on Mex-activity. a) 
Charge (top) and hydrophobicity (bottom) of each peptide assayed by Mex are plotted against ODID (4.5h). 
Linear fits (both p<0.01, R2<0.001, 10,661 DF) are displayed for the entire peptide library (blue line) b) Charge 
(left) and hydrophobicity (right) are displayed for the 47 groups of PARENTS and their SIMILARS containing an 
overrepresentation of Mex-positives (Fisher’s exact test, adj. p<0.05) as shown in Supplementary Fig. 2.9. 
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Supplementary Fig. 2.11 | Taxa-specific Mex-activity in rank kingdom and class. All peptides tested by 
Mex are clustered taxonomically according to the host from which they were derived. The percentage of Mex-
actives in the cluster is written next to (or inside) each circle. Compared to the 11.6% Mex-actives in the entire 
library, taxa in which Mex-actives are over- (yellow) or underrepresented (purple) are highlighted (p<0.05). 
Only clusters with more than 20 peptides are displayed. The circle area is representative of the total number 
of peptides within each cluster. 
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Supplementary Fig. 2.12 | Assays to characterize the antimicrobial effect. (a-c) The 50 most active 
peptides in Mex (ranks 1-50; by ODID (4.5 h)) are expressed intracellularly in a strain of E. coli TOP10 with or 
without a plasmid that expresses the gene for a reporter protein (green fluorescent protein, gfg) under the 
control of a promoter whose activity has been linked before to a specific stress response. a) Analysis of 
membrane damage by quantification of propidium iodide (PI) uptake. b-c) Quantification of GFP indicating the 
interference with intracellular targets by eliciting an SOS stress response indicative of DNA damage (readout 
via PrecA (promoter of E. coli’s recA gene)) or a cold shock response indicative of translation inhibition (readout 
via PcspA (promoter E. coli’s cspA gene)). d) Method to determine the minimal inhibitory concentration (MIC). 
The 20 most Mex-active peptides are synthesized chemically, purified, and added to cultures of E. coli TOP10 
and other pathogens. 
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Supplementary Fig. 2.13 | Characterization of the 50 most active peptides in Mex as addition to Fig. 
2.2. Potential mechanisms of action. Each radar plot shows the mean SOS-response (DNA; activation of the 
recA promoter; n=3), translation inhibition (Translation; activation of the cspA promoter; n=3) and membrane-
damage (Membrane; PI stained cells in percent; n=2) obtained after peptide expression in E. coli TOP10. 
Only the maximum and minimum values are reported in digits. The center represents values measured for 
the negative control peptide HNP-13425 APD. Lower values are scaled to the center. Membrane damage is 
attributed if more than 10% of cells were PI-positive (underlined).  For SOS and Translation, signals are 
reported relative to the signal obtained for the inactive control peptide HNP-13425 APD. A significant increase 
(one-sided t-test, adj. p<0.05) compared to the inactive control is indicated by an asterisk (*). 
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Supplementary Fig. 2.14 | Characterization of the 50 most active peptides in Mex as addition to Fig. 2.2. 
Growth curves of the 50 most active peptides. Colored lines are Mex-recorded growth curves (average of n=3) 
determined via ODID approximation (header: ‘rank: parent name’). Black lines are growth curves (n=3, error 
bars: 4s) determined via OD measurement in microtiter plates of individually grown strains. Horizontal dashed 
lines, in black (OD) or colored in green (ODID), show final values measured 4.5 h post-induction of a strain 
synthesizing the inactive control peptide HNP-13425 APD. In each facet, we state if we obtain a p<0.05 (Wald’s 
test) for significant growth inhibition after 1.5 h in Mex. 
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2.6 Supplementary code 
--- 

Authors: "Philipp Koch, Mathias Cardner" 
Date:"18.12.2020" 

--- 

Load packages and data 
library(tidyverse) 
library(DESeq2) 
 

Load Supplementary Table 2.2 containing NGS read counts for each peptide-encoding 
DNA listed by ID. 

countData <- read.csv("Supplementary Table 2.2.csv") %>% 
  column_to_rownames("ID") %>% 
  as.matrix() 

Pre-process 

DESeq2 uses the first level of time point as the baseline for DE tests. Since we want to 
compare against 𝑡𝑡0, we relevel it to be the first level of timepoint. (This is also necessary 
for using lfcShrink later). We leave 𝑡𝑡3 as the last level, since this is the final condition of 
interest. 

timepoint <- parse_number(colnames(countData)) %>% factor() %>% relevel("0") 
batch <- sub(".*\\d", "", colnames(countData)) 
colData <- data.frame(row.names = colnames(countData), 
                      timepoint = timepoint, 
                      batch = factor(batch)) 

DESeq2 uses the last term of the design formula for contrasts, which in our case should 
be timepoint. 

dds <- DESeqDataSetFromMatrix(countData, colData, ~ batch + timepoint) 
dds <- dds[rowSums(counts(dds)) > 1,] 
#saveRDS(rownames(dds), "IDs_used_in_DESeq.rds") 

Differential expression (abundancy) analysis 

Fit DESeq model. Data from all time points and replicates are used to estimate dispersion, 
but only the contrast 𝑡𝑡3, corresponding to 4.5 h past induction, and 𝑡𝑡1, corresponding to 
1.5 h past induction, vs. 𝑡𝑡0, the time point for induction will be computed and tested in the 
end. 

dds.Wald <- DESeq(dds, parallel = TRUE) 
#saveRDS(dds.Wald, "dds_Wald.rds") 

Since we are interested in growth inhibitory peptides, i.e. those whose log2-fold change at 
𝑡𝑡3 and 𝑡𝑡1 vs 𝑡𝑡0 is negative, we set altHypothesis = "less". 

res.Wald <- results(dds.Wald, name = "timepoint_3_vs_0", altHypothesis = "less", 
                    alpha = 0.05, parallel = TRUE) 

 
res.Wald$pvalue.t1 <- results(dds.Wald, name = "timepoint_1_vs_0", altHypothesis = "les
s",alpha = 0.05, parallel = TRUE)$pvalue 
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res.Wald$padj.t1 <- results(dds.Wald, name = "timepoint_1_vs_0", altHypothesis = "less"
,alpha = 0.05, parallel = TRUE)$padj 
#saveRDS(res.Wald, "res_Wald.rds") 

Shrink log2-fold changes vs time point 0 

Use apeglm to compute shrunken log2-fold changes at time point X vs 0. 

lfcShrunk1 <- lfcShrink(dds.Wald, coef = "timepoint_1_vs_0", type = "apeglm", 
                        parallel = TRUE) 
lfcShrunk2 <- lfcShrink(dds.Wald, coef = "timepoint_2_vs_0", type = "apeglm", 
                        parallel = TRUE) 
lfcShrunk3 <- lfcShrink(dds.Wald, coef = "timepoint_3_vs_0", type = "apeglm", 
                        parallel = TRUE) 

Add shrunken log2-fold changes to DESeq2 result and add the lfcShrinkXSE containing 
the corresponding “standard error”. 

res.merged <- res.Wald 
res.merged$lfcShrink1 <- lfcShrunk1$log2FoldChange 
res.merged$lfcShrink1SE <- lfcShrunk1$lfcSE 
 
res.merged$lfcShrink2 <- lfcShrunk2$log2FoldChange 
res.merged$lfcShrink2SE <- lfcShrunk2$lfcSE 
 
res.merged$lfcShrink3 <- lfcShrunk3$log2FoldChange 
res.merged$lfcShrink3SE <- lfcShrunk3$lfcSE 

Calculate strain-specific concentrations (ODID) at each time point to create 
growth curves for each peptide-expressing strain 

Compute mean optical densities, extracted from the shake flask experiments across time 
points. 

log2meanODratios <- tibble(t0A = 0.1995, 
                           t0B = 0.2, 
                           t0C = 0.1995, 
                           t2A = 2.25, 
                           t2B = 2.19, 
                           t2C = 2.135, 
                           t1A = 0.705, 
                           t1B = 0.704, 
                           t1C = 0.697, 
                           t3A = 4.085, 
                           t3B = 4.305, 
                           t3C = 3.83) %>% 
  tidyr::gather(condition, OD) %>% 
  # Group ODs by time point, and compute the mean. 
  mutate(timepoint = parse_number(condition)) %>% 
  group_by(timepoint) %>% 
  summarise(meanOD = mean(OD)) %>% 
  ungroup()  

Compute the ODID of each strain across all time points. 

# Function for computing the relative number of cells 
ODID <- function(x) { 
  OD <- log2meanODratios %>% 
    filter(timepoint == x) %>% 
    pull(meanOD) 
  return(2^res.merged[[paste0("lfcShrink", x)]]*OD) 
} 
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res.merged$ODID_t0 <- 0.2 
res.merged$ODID_t1 <- ODID(1) 
res.merged$ODID_t2 <- ODID(2) 
res.merged$ODID_t3 <- ODID(3) 

Generate a database file containing all relevant information on the peptides that 

passed independent filtered in Mex. 
dictionary <- read.csv("Supplementary Table 2.2.csv") %>% 
  select(ID,Sequence,DNAsequence) 
 
Database <- res.merged %>% 
  as.data.frame() %>% 
  rownames_to_column("ID") %>% 
  as_tibble() %>% 
  left_join(dictionary %>% 
              mutate(ID = as.character(ID))) %>% 
   filter(!is.na(padj)) %>% 
  distinct(AAsequence, .keep_all = T) 

Session info 
sessionInfo() 
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3.1 Abstract  

Intracellularly active antimicrobial peptides are promising candidates for new antibiotics. 

However, drug development for those molecules is challenging as their large size spans 

an enormous sequence space, overwhelming the capabilities of current medicinal 

chemistry methods by far. We built a high-throughput peptide development platform that 

incorporates rapid investigation of the fitness landscape of peptides and enables rational 

optimization of their antimicrobial activity. The platform is based on deep mutational 

scanning of the DNA encoded peptides and employs highly parallelized bacterial self-

screening coupled to next-generation sequencing as readout for bioactivity. As a starting 

point, we used Bac71-23, a 23 amino acid residues long variant of bactenecin-7, a potent 

translational inhibitor and one of the most researched proline-rich antimicrobial peptides. 

Using the platform, we simultaneously analyzed the bioactivity of >600’000 peptide 

variants exploring the fitness landscape of Bac71-23. This dataset guided the design of a 

focused library of ~160’000 variants and the identification of Bac7PS as lead candidate 

with improved bioactivity. Bac7PS showed high activity against multidrug-resistant clinical 

isolates of E. coli and was less dependent on SbmA, a transporter commonly used by 

proline-rich antimicrobial peptides to reach the intracellular site of activity. Furthermore, 

Bac7PS displayed low toxicity against eukaryotic cells and demonstrated good efficacy in 

a murine septicemia model induced by Escherichia coli. We demonstrated that our 

platform can be used to establish a fitness landscape of antimicrobial peptides and 

furthermore showed its usefulness in the support of hit to lead identification and lead 

optimization of antimicrobial drug candidates.  
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3.2 Introduction 

The drug development field is in urgent need of novel compounds to deliver the next 

generation of antibiotics for combating multidrug-resistant (MDR) bacteria7. Several 

promising leads have been identified in the group of antimicrobial peptides (AMPs), some 

of which are currently in clinical trials47. However, most AMP candidates fail in clinical 

trials36, often because a majority of these molecules act via disruption of bacterial 

membranes, a mode of action (MoA) that is prone to cause off-target toxicity against 

human cells53. 

 

Proline-rich AMPs usually do not lyse but kill bacteria by interfering with the activity of 

intracellular targets such as ribosomes39 and therefore might have the potential for a more 

specific antimicrobial action. One of the most intensively researched proline-rich AMPs is 

bactenecin-7 (Bac7). It is a 60 amino acids long linear peptide that was isolated first from 

bovine neutrophils115. For exerting its antimicrobial activity against bacteria, Bac7 first 

crosses the outer membrane of Gram-negative bacteria via not yet fully elucidated 

mechanisms and then traverses the inner membrane through the SbmA transporter116. 

Consequently, SbmA loss considerably decreases susceptibly to Bac7 and its absence 

from other bacterial families restricts the activity spectrum of Bac7 to Gram-negative 

Enterobacteriaceae117,118, a family of bacteria currently listed as ‘critical priority’ by the 

WHO14. In vitro studies on Bac7 truncates indicated that the two N-terminal arginine 

residues are needed for efficient uptake119 and its C-terminus can be truncated resulting 

in peptides with a length of 35, 23, and 16 amino acids that display only a minor loss of 

activity118. Moreover, the activity can be increased towards specific strains via mild 

modulation of the amino acid sequence119–121. The standard workflow to assess the activity 

of AMP variants relies on chemical methods for their synthesis followed by evaluation of 

the growth inhibitory effect with bacterial pathogen models and clinical isolates. Due to 

limited throughput and high peptide synthesis costs, these studies can typically deliver 

only very few data points generated for mildly modified peptides by single amino acid 

exchanges performed in the course of alanine or lysine scans120,98. This generally provides 

only a poor coverage of the antimicrobial fitness landscape. 

 

To greatly expand the coverage of such fitness landscapes, deep mutational scanning 

(DMS) methods can be used, which grant access to millions of variants and data points in 

single experiments122. Most frequently, these methods are used to study the functional 

consequence of single amino acid residue substitutions in proteins123, since introducing 

multiple substitutions leads to a combinatorial explosion. In DMS, first, large protein 
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libraries are produced by systematically varying the coding DNA sequence via chemical 

DNA synthesis or error-prone PCR (epPCR)70. Then, the protein variants are expressed 

recombinantly in cells and exposed to a selection pressure such as survival of the host or 

screening based on the expression of fluorescent reporter proteins. Finally, next-

generation sequencing (NGS) is used to quantify the abundance of the protein-encoding 

DNA before and after selection or sorting124. Recently, a study investigated single amino 

acid residue substitution of the proline-rich AMP apidaecin to determine critical interactions 

with the ribosome125. However, DMS has never been exploited as a platform for hit to lead 

identification and optimization of antimicrobials. If applied successfully, the coverage of 

the AMP fitness landscape could be greatly increased, guiding the design of novel and 

improved AMP drug candidates. 

 

In this study, we modified the 23 amino acid truncate of Bac7, from here on referred to as 

Bac71-23, in two DMS rounds. In the first round, we screened a Bac71-23 library consisting 

of 601,551 randomly mutagenized variants and assessed their growth inhibition when 

expressed intracellularly in E. coli, a so-called self-screening91. This enabled us to 

generate a fitness landscape, describing the effect of each amino acid residue substitution 

on growth inhibition. Guided by these results, we performed a second DMS round on a 

focused, semi-rationally designed library of Bac71-23 covering 156,779 variants. After 

assessing the effect on growth inhibition of each variant, we were able to extract the most 

activity-enhancing amino acid residue combination and built a new-to-nature peptide 

called Bac7PS with high activity towards a broad-panel of bacterial pathogens, low toxicity 

against eukaryotic cells and good efficacy in in vivo studies.  
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3.3 Results  

DMS of Bac71-23 using random mutagenesis 
First, we aimed to identify all residues essential for growth inhibition and those with 

potential for activity optimization of Bac71-23. For this, we randomly mutagenized the Bac71-

23 coding gene by a highly error-prone version of PCR and ligated the modified fragments 

into plasmids allowing their expression from the tightly regulated PBAD promotor. We 

transformed E. coli TOP10, serving for intracellular peptide expression and as a microbial 

pathogen model (Fig. 3.1a). We then recorded growth curves for 94 randomly selected 

strains in microtiter plates and found that about half of the Bac71-23 variants suppressed 

the growth of the respective host upon expression (Supplementary Fig. 3.1). To assess 

the antimicrobial effect of a much larger proportion of the randomly mutated library at once, 

we grew around 500 million cells containing the peptide library in a shake flask (n=3; 

Supplementary Fig. 3.2), induced peptide expression, and counted the abundance of the 

specific peptide-encoding DNA at the time of induction and 4 h later by NGS. We used the 

change of DNA abundance as a proxy for the degree of growth inhibition because if peptide 

expression limits the growth of its host, it also limits the propagation of the peptide-

encoding DNA91. We calculated the log2 fold-change in DNA abundance and ranked all 

peptides from most growth inhibitory (lowest negative log2 fold-change) to least growth 

inhibitory (highest positive log2 fold-change) (Fig. 3.1a). In total, we counted the 

abundance of 601,551 different peptides covering 398 peptides with one mutation (87% 

out of 460 possible variants), 21,567 double mutants (21% out of 101,200 possible 

variants), 185,993 triple mutants (1.3% out of ~14 million possible variants) and 228,433 

quadruple mutants (0.01% out of ~1.4 billion possible variants) (Supplementary Fig. 3.3).  

 

Fitness landscape of Bac71-23 

Analysis of the generated data set indicated that 489,520 variants had low read counts 

(less than 50 read counts at the time of induction), which may result in false abundance 

values (log2-fold change values) in NGS-based screenings126. Therefore, we transformed 

the log2 fold-change describing the degree of growth inhibition using a Bayesian 

Shrinkage Estimator106, yielding a more robust estimation even at low read counts. 

Additionally, many amino acid substitutions were highly underrepresented in the library; 

for example, we found the amino acid tryptophan at position 17 or methionine at position 

11 in only one peptide, while glycine on position 1 appeared in 2,685 different peptides 

(Supplementary Fig. 3.4). To overcome these differences and measure the effect of a 

particular amino acid residue substitution, we investigated whether these substitutions  

were significantly enriched in higher or lower growth inhibitory peptides using a 
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permutation scheme, thereby generating a fitness landscape of Bac71-23 (Fig. 3.1b). For 

250 out of 483 possible single amino acid substitutions (23 positions x 21 amino acids 

including truncation by insertion of a stop codon), we could not detect a significant link to 

growth inhibition (white boxes in Fig. 3.1b), mainly because those amino acids were 

underrepresented in the library (Supplementary Fig. 3.4 & 5). For 233 amino acid 

substitutions, we detected a strong influence on growth inhibition. We analyzed this fitness 

landscape and found that the ‘RLPRPR’ motif on position 9-14 as well as the arginine 

residue on position 6 was most crucial for growth inhibition in Bac71-23 variants (yellow 

boxes in Fig. 3.1b). Additionally, the random incorporation of stop codons in any of the first 

16 positions mostly eliminated the growth inhibitory effect, while insertion at one of the 

following seven positions did not eliminate this effect entirely. This  points towards an 

essential (minimal) length of active Bac71-23 of 16 amino acids (*in Fig. 3.1b).  

 

Amino acid residue substitutions at positions 3, 5, 7, and 15 as well as at positions 17-23 

near the C-terminus, seemed to improve the growth inhibiting effect relative to the parental 

Bac71-23. Thus, next to residues essential for the growth inhibitory effect, we also detected 

eleven positions that offered room for optimization of the growth inhibitory potential of the 

peptide. However, extracting guidance for the activity optimization of Bac71-23  from the 

present activity landscape beyond the identification of critical positions might not be very 

efficient for two reasons: Firstly, more than 100 amino acid substitutions were too 

underrepresented in the library to infer statistical significance concerning their influence 

on growth inhibition (Supplementary Fig. 3.5; p-value>0.1; Benjamini-Hochberg adjusted). 

Secondly, as Bac7 and truncates thereof are already very active, single or even double 

substitution may not suffice to considerably increase activity when tested in regular MIC-

assays, as already shown previously120. As our data hardly covered combinations of amino 

acid substitutions because those appeared rarely in the error-prone library (e.g. there are 

>109 possible combinations of  four amino acid residues in Bac71-23), we decided to create 

in-depth knowledge on amino acid residue combinations and performed a second round 

of DMS on a more focused Bac71- 23 library, guided by our first Bac71-23 fitness landscape. 
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Fig. 3.1 | DMS of Bac71-23 epPCR library. a) DMS workflow. epPCR: The Bac71-23 DNA is amplified at high 
error rate using an error-prone DNA polymerase in the presence of Mn2+. Cloning: The DNA sequences are 
inserted into plasmids with inducible promoters. Transformation: E. coli TOP10 is transformed with the 
generated peptide-encoding DNA library. Growth experiment: The transformants are grown together in a single 
shaking flask (n=3), peptide expression is induced and plasmids are isolated. NGS: peptide-encoding DNA 
sequences are counted at the time of induction and 4 h later using NGS. Analysis: For each peptide-encoding 
DNA the log2-fold change is determined (ratio of NGS counts between the two time points). Histogram the 
log2-fold change of all 601,551 variants. Ranking: Peptide sequences are ranked by the degree of the 
observed growth inhibition. The more negative a log2-fold change, the higher the observed growth inhibition 
and vice versa. b) Bac71-23 fitness landscape. For each amino acid residue substitution, the enrichment in 
higher or lower growth inhibitory peptides is determined. Then a z-score (z) is calculated that corresponds to 
the number of standard deviations by which the calculated enrichment lies above (+) or below (-) a null ––
distribution that shows no enrichment. z is empirically divided into four groups, corresponding to very positive 
(yellow; z>=40), positive (green; z>=4), negative (blue; z<=-4), or very negative (purple; z<=-40) effects on 
growth inhibition. No effect on growth inhibition is detected if the z is close to 0 (white; -4<z<4). Black dots 
correspond to the Bac71-23 wild-type amino acids. The underlined positions are chosen as targets for the 
subsequent site-saturation mutagenesis. Black dots correspond to the Bac7 parental amino acid residue at 
each position. 
 
  
DMS of Bac71-23 using comprehensive site-directed mutagenesis 
For the focused analysis, we first performed saturation mutagenesis at four positions of 

Bac71-23 (204 = 160,000 possible variants). From the eleven positions that seemed to offer 

promiscuity with regard to the accommodation of amino acid substitutions in the first 

activity landscape (Fig. 3.1b), we chose to saturate positions 5 and 18-20. Position 5 was 

selected as it is not part of the crucial N-terminal ‘RRIR’ motif important for cellular uptake 

and ribosomal binding, nor of position 6-13 representing a conserved core region among 
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proline-rich AMPs127. Positions 18-20 were selected to increase our knowledge about the 

effect of C-terminal amino acid residue substitutions, as Bac7 variants longer than the 

most frequently studied Bac71-16 were shown to have a broader activity spectrum118. 

Furthermore, little is known from crystallization studies about the importance of the activity 

of residues downstream of position 16127,128. The focused library was generated by site-

saturation mutagenesis, using one NNK codon for position 18 and a mixture of codons 

NDT, VMA, ATG, and TGG as described by Tang et al.129 for the remaining positions. This 

reduced the need for oversampling for cloning and NGS drastically, as it limits the bias in 

amino acid distribution compared to less restricted codon schemes, such as the NNK 

codon-scheme130. We again grew the entire library in a single flask (Supplementary Fig. 

3.6), sequenced the peptide-encoding DNA at the time of induction and 4.5 h later, and 

used the relative DNA abundance as a proxy for the degree of growth inhibition of each 

peptide variant (similarly to the DMS workflow display in Fig. 3. 1a). In total, we were able 

to identify 156,779 Bac71-23 derivatives, covering 98% of all possible variants. 

 

We then quantified the effect on growth inhibition of a particular amino acid residue 

substitution, similarly to the treatment of the previous library. As each amino acid 

substitution (e.g. alanine in position 5) appeared in roughly 8,000 different peptides 

(1*203=8,000; one residue in a specific position fixed and combined with the entire set of 

possible substitutions at the remaining three positions), we did not need to use a 

permutation scheme as for the first library. We first inferred the effect of single amino acid 

residue substitutions by applying a modified version of the gene-set enrichment analysis 

(GSEA) proposed by Subramanian et al.131. Here, enrichment curves for each site and 

each amino acid (Fig. 3.2a) are drawn after ranking all peptides according to the growth 

inhibitory effect (log2 fold-change). From those curves, we computed the area under the 

curve (AUC) giving a value between -1 and 1. Positive AUC-values indicate that the amino 

acid residue substitution is enriched in peptides with a high growth inhibitory effect, while 

negative AUC-values indicate enrichment in peptides with low growth inhibitory effect. 

AUC-values close to 0 indicated no enrichment in either fraction (Fig. 3.2a). As observed 

during the error-prone library diversification approach discussed above, substituting the 

wild-type amino acid residues at all four positions could result in peptides with enhanced 

growth inhibitory effect (Fig. 3.2b). Peptides that had tyrosine and alanine residues at all 

four positions experienced the strongest increase and decrease in growth inhibition, 

respectively (Fig. 3.2b). Even though these analyses revealed the effect of each single 

amino acid residue substitution at all four positions in higher detail, they did not reveal the 

effect of residue combinations, likely needed to achieve an even higher increase relative 

to Bac71-23.  
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Fig. 3.2 | DMS of Bac71-23 site-saturation mutagenesis library. a) Enrichment curves. Peptides are ranked 
according to their growth inhibitory effect and a running enrichment score for each amino acid residue at each 
of the four substitution sites is calculated. Increasing y-values (positive slope) correspond to enrichment in that 
particular ranking segment. For example, irrespective of the substitution site, alanine (A) is enriched in the 
peptides in the lower third of the ranked peptides, i.e. those with low(er) growth inhibitory effect. In contrast, 
tyrosine (Y) is enriched (again, irrespective of the substitution site) in the upper half of the ranked peptides, 
i.e. those with high(er) growth inhibitory effect. From each curve, the area under the curve (AUC) was 
extracted. Positive (negative) AUC-values represent an enrichment among growth inhibitory peptides on left 
side of the x-axis (among not growth inhibitory peptides on the right side of the x-axis). An example is shown 
for the E residue at position 5 (AUCE5). b) AUC-values for each amino acid residue substitution extracted from 
each curve. Effects on growth inhibition are empirically divided into five groups: very beneficial (yellow; 
AUC≥0.2), positive (green; AUC≥0.1), no effect (white; -0.1<AUC<0.1), negative (blue; AUC≤-0.1) or very 
negative (purple; AUC≤-0.2). Black dots correspond to the Bac7 parental amino acid residue at each position. 
 
Combination of amino acid residues  
Effects of amino acid residue substitutions in proteins or peptides can be non-additive 

when they appear in combination83,132, that is, they can become larger (cooperative) or 

smaller (antagonistic) than the sum of the individual effects132. These non-additive effects, 

from here on referred to as interactions, appear due to conformational changes of the 

peptide enabling or restricting target binding, introduction or removal of protease cut sites, 

or changes of the physicochemical properties such as charge, hydrophobicity, or solubility 

above or below a certain threshold at which biological functions are affected. As we had 

almost fully saturated position 5, 18, 19, and 20, we can be sure to have most amino acid 

residue combinations in the library. We thus aimed to extract the most beneficial 

combinations and then investigate whether interactions contributed to the extent of the 

growth inhibitory effect.  
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First, we extracted those amino acid residue combinations which, if combined in a peptide, 

lead to most and least growth inhibitory peptides. A specific combination of four amino 

acids (quadruple combination) only appears in one peptide in the investigated peptide 

library, and as previously mentioned, DNA abundance-based rankings can be slightly 

error-prone with variants with low read counts. They should thus be regarded as a 

qualitative instead of a quantitative measure. To create a nevertheless statistically sound 

dataset, we investigated the effect on growth inhibition of each of the 32,000 different triple 

combinations (203 × �43�; or 8,000 possibilities of combining three amino acid residues at 

four positions), each appearing in 20 different peptides (20 possible combinations for the 

fourth amino acid). We used significant pattern mining133 to extract significantly enriched 

triple combinations of amino acids among the 10% and 25% (arbitrary thresholds) most 

and least growth inhibitory peptides (results for all triple combinations in Supplementary 

Table 3.1). Based on these results, we found that peptides with alanine-proline-proline on 

positions 5, 18, and 19 were the least growth inhibitory (Table 3.1). Surprisingly, even 

though peptides with a methionine residue on position 20 or a histidine residue on position 

19 did not show beneficial effects on growth inhibition when looking only at single amino 

acid residue substitutions (Fig. 3.2b), peptides with triple residue combinations of tyrosine-

phenylalanine-methionine and asparagine-histidine-asparagine on positions 18-20 were 

most growth inhibitory (Table 3.1). Additionally, even though peptides with the single 

residue substitution to tyrosine at each position were most growth inhibitory (Fig. 3.2b), 

peptides with three tyrosine residues did not rank among the most growth inhibitory ones 

(Table 3.1). These differences strongly indicated interactions between amino acid 

residues. However, we were not able to fully quantify an interaction of amino acid residues 

using significant pattern mining because the analysis used only part of the data set, in our 

case 20% and 50% of all peptides. 

Table 3.1: Subset of relevant triple amino acid combinations obtained by significant pattern mining. The first 
four columns indicate the positions. “–“ indicates that this position has been intentionally kept open. The fifth 
column indicates the respective p-value for significant enrichment in either the 10% most or 10% least growth 
inhibitory peptides. Columns six and seven indicate the number of peptides containing the respective 
combination among the top 25% and top 10% most inhibitory peptides (ranked according to the shrunken log2 
fold-change). All possible combinations were ranked from most to least enriched in the top 10% of the most 
growth inhibitory peptides. 

Rank Pos. 5 Pos. 18 Pos. 19 Pos. 20 p-value # within 25% 
most actives 

# within 10% 
most actives 

1 - Y F M 1.9*10-6 20 20 
2 - N H N 1.9*10-6 20 20 
3 C N N - 3.8*10-6 20 19 

454 Y - Y Y 1.0*10-3 14 11 
4,815 Y Y Y - 0.3 3 10 
32,000 A P P - 1.9*10-6 0 0 
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To fully quantify interactions between amino acid residue combinations, we investigated if 

the calculated effect on growth inhibition, the AUC, for each amino acid residue at each 

position changed upon conditioning the same calculation on a second amino acid residue 

at another position (AUC conditional). For example, we compared the effect on growth 

inhibition for the single substitution histidine residue on position 5 (AUCH5) to the effect on 

growth inhibition of histidine residue on position 5 among peptides that have a cysteine 

residue introduced at position 18 (AUCH5 | C18; note that the latter is a subset of the former). 

As the difference between AUCH5 | C18 and AUCH5
 is small, we concluded that the cysteine 

residue on position 18 does not influence the growth inhibitory effect of the histidine 

residue on position 5 and that these two amino acid residues behave additively and hence 

are not interacting (Fig. 3. 3a). We calculated such differences between all possible double 

combination of amino acid residues across the four sites and found that 96.1% are in the 

range of [-0.09,0.09] (within interquartile range (IQR) ± 1.5*IQR of all values; covering 

boxplot and whiskers) and thus effectively did not interact with each other (Fig. 3.3b; all 

data in Supplementary Table 3.2). However, we detected 187 amino acid residues with 

interactions: 83 of these displayed a strongly cooperative effect on the growth inhibitory 

effect of a second amino acid residue, and the remaining 104 residues displayed a strongly 

antagonistic effect. For example, we observed cooperativity for the residue combinations 

tyrosine-phenylalanine and asparagine-histidine on positions 18 and 19, which are both 

part of significantly enriched triple combinations (Table 3.1). On the other hand, we 

observed antagonistic effects for a combination of two tyrosine residues on positions 18 

and 19, on positions 5 and 18, and positions 18 and 20. Additionally, every combination of 

two proline residues on positions 18, 19, and 20 showed strong antagonistic effects for 

growth inhibition. In general, aromatic amino acid residues (57), as well as proline (24), 

and arginine residues (18) caused most interactions, while we saw the least interactions 

for residues of amino acid serine (0), valine (1), and glutamate (2) (Supplementary Fig. 

3.7). Moreover, we measured most interactions among amino acid residues on 

neighboring positions, e.g. between residues on positions 19 and 20, or 19 and 18 (Fig. 

3b). Interestingly, we also discovered cooperativity between the proline and phenylalanine 

residues on positions 19 and 20, which is part of the Bac71-23 wild type sequence. 

Ultimately, the most growth inhibitory combination of three amino acid residues that we 

could identify by this analysis among peptides in this library was the residue combination 

tyrosine-phenylalanine-methionine on positions 18-20, including a cooperative interaction 

between a phenylalanine and tyrosine residues, possibly increasing target binding. Among 

all 20 possible peptides with this combination, the most growth inhibitory peptide had an 

isoleucine residue at position 5. This specific Bac71-23 variant P5I R18Y L19F P20M is from 

here on referred to as Bac7PS. 
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Fig. 3.3 | Interactions of amino 
acid residue combinations. a) 
Examples of amino acid residue 
combinations (right) resulting in 
an increased, a decreased, or 
unchanged AUC when 
compared to the single 
substitution (left). Peptides are 
ranked on the x-axis according to 
their effect on growth inhibition. 
AUCF19 strongly increases for 
peptides that have tyrosine 
residue at position 18. AUCH5 
remains similar among peptides 
with a cysteine residue at 
position 18. AUCP19 strongly 
decreases for peptides with a 
proline residue at position 18. 
For easier interpretation of the 
conditional AUCs, the curves 
were smoothened using cubic 
spline interpolation. b) 
Interactions of all 4,800 amino 
acid residue combinations. For 
each of the 20 amino acid 
residues at each of the four 
positions, there are 60 (20*3) 
possibilities to interact with a 
second amino acid residue. 
Interactions (shown on the y-
axis) are calculated by 
subtracting the AUC calculated 
for the single substitution = 
AUCAA2 (values for the single 
substitution from Fig. 3.2b) from 
the AUC using an amino acid 
residue (AA2) in combination 
with another amino acid residue 
(AA1) = AUCAA2 | AA1. An 
interaction is measured when the 
differences are larger 
(cooperative) than 0.09 or 
smaller (antagonistic) than -0.09 
(=outliers of a boxplot containing 
all interaction values; IQR ± 1.5 
*IQR). 
 

 
In vitro activity characterization of Bac7PS and Bac71-23 
To investigate if the amino acid residue substitutions suggested by the two rounds of DMS 

might also translate into the improved antimicrobial performance of Bac7PS when applied 

extracellularly, we characterized Bac7PS in different in vitro experiments and compared it 

directly to Bac71-23. Both peptides were synthesized by solid-phase peptide synthesis and 

purified by reversed-phase high-performance liquid chromatography to 92% (Bac7PS) and 

95% (Bac71-23) purity. We first evaluated the in vitro antimicrobial activity against the 

microbial pathogen model used for DMS (E. coli TOP10) by measuring the minimal 

inhibitory concentration (MIC) of the peptides following CLSI standards112. We included 

the transporter-loss mutant E. coli BW25113 ΔsbmA134 which had been previously 
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described to limit Bac7 uptake and activity135, together with its parental strain E. coli 

BW25113134. The set was complemented by strain E. coli ATCC 25922, a quality control 

strain often used in clinical microbiology. Remarkably, we found an approximately twofold 

reduction in MIC when applying Bac7PS from outside to the DMS strain E. coli TOP10 

(MIC of 2.1 µM for Bac7PS, 4.6 µM for Bac71-23), suggesting that our strategy had indeed 

allowed for a variant with higher antimicrobial activity. Furthermore, externally applied 

Bac7PS showed activity against the transporter-loss mutant BW25113 ΔsbmA, while 

Bac71-23 was not active, even at the highest concentration tested (Table 3.2). Interestingly, 

the MIC for the quality control strain was similar for both peptides (2.6 µM for Bac7PS, 

2.8 µM for Bac71-23). To investigate the potential of Bac7PS against a broader panel of 

strains we determined the MICs of both peptides against a set of 45 E. coli clinical isolates 

collected from Swiss hospitals, of which 23 strains carried the information for extended-

spectrum beta-lactamase (ESBL) or a carbapenemase (CRE) and thus can be considered 

as multidrug resistant (MDR). For the clinical isolates, the antimicrobial activity of Bac7PS 

clearly exceeded that of Bac71-23 with an MIC50 for Bac7PS of 2.9 µM and for Bac71-23 of 

7.5 µM (Fig. 3.4a; Table 3.2). Remarkably, Bac7PS showed good activity even against 

MDR strains, and its activity was improved by a similar factor for these strains relative to 

Bac71-23. Thus, the observed improvements in our DMS approach for intracellularly 

expressed peptides translated well into in vitro properties.  

Table 3.2: Susceptibility assays. MIC-values are averaged from quadruplicate experiments in full MHB 2 
medium. “>” indicates no activity at the highest measured concentration. Hemolysis assays and toxicity 
measurement were performed in triplicates. The therapeutic index (TI) is calculated by dividing the IC50 values 
measured against HEK 293 cells by the MIC50 obtained from the clinical isolates (see Fig. 3.4a). 

 MIC against E.coli strains [µM] Hemolysis of mouse 
red blood cells [%] 

Toxicity 
IC50 [µM] TI 

Peptide TOP10 ATCC 
25922 

BW 
25113 

BW 
25113 
∆sbmA 

Clinical 
isolates 
(MIC50) 

1 x MIC 4 x MIC HEK 293 Toxicity 
/ MIC 

Bac71-23 4.6 2.8 7.4 >33.2 7.5 2.1% 6.4% 1460 195 

Bac7PS 2.1 2.6 3.6 19.9 2.9 3.1% 3.8% 521 180 

 

We next investigated whether an increased propensity to damage membranes could be 

the reason for the improved antimicrobial activity of Bac7PS. Membrane damage is the 

most frequent way AMPs kill bacteria and is often discussed as reason for high toxicity 

against eukaryotic cells53, but Bac71-23 does not damage membranes at its MIC. 

Consequently, we wanted to investigate if Bac7PS might have acquired a tendency to 

damage membranes and thus an increased risk for applications in vivo. We followed a 

protocol using a variant of the green fluorescent protein (GFP) and propidium iodide (PI) 

as markers for membrane damage in bacteria exposed to AMPs136. In our experiment, 

membrane damage is indicated by the uptake of the (otherwise membrane-impermeable) 

dye PI and/or by the leakage of intracellularly expressed GFP. For both peptides, Bac71-23 
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and Bac7PS, we could confirm that the integrity of the membrane is neither affected at the 

MIC nor at concentrations 8-fold above the MIC (~1% PI-positive cells for Bac71-23 and 

Bac7PS, ~99% of cells retained GFP levels). In contrast, the membrane-active peptide 

melittin rapidly induced PI uptake and loss of GFP (Fig. 3.4b). However, at approximately 

16-fold above its MIC (~35 µM), we noticed minor membrane damage of cells treated with 

Bac7PS, indicated by loss of GFP (26% of cells lost GFP) and minor uptake of PI (~3% 

PI-positive cells). The effects were more pronounced when comparing these peptides in 

MHB I medium, which is not cation adjusted and therefore potentially less ionic, an effect 

often taken advantage of to increase membrane interaction of AMPs30,111 (Supplementary 

Fig. 3.8). To ensure that this absence of membrane-damaging properties at relevant 

concentrations was not limited to bacterial membranes, we performed a hemolysis assay 

using red blood cells from mice. We did not detect strong lysis (<4%) when applying Bac7 

and Bac7PS at the MIC measured for E. coli ATCC 25922 and only very minor lysis (<7%) 

when applying a four times higher concentration (Table 3.2). Thus the growth inhibitory 

activity of Bac7PS was still not based on membrane damage. However, the loss of the 

dependency on the inner membrane SbmA transporter as seen for increased activity 

against the SbmA knockout strain (Table 3.1) and possibly the slight increase of 

membrane damage at higher peptide concentration (Fig. 3.4b & Supplementary Fig. 3.8) 

could indicate a higher degree of membrane interaction that could potentially lead to 

increased membrane crossing and thus uptake.   

 

We also investigated the effect of the changes in Bac7PS on the expected main activity, 
protein synthesis inhibition, and performed a translation inhibition assay. We determined 

the inhibitory effect on cell-free ribosomal translation by incubating Bac7PS  and Bac71-23 

(concentration range: 800 µM to 0.08 µM in 2.5-fold dilutions steps) with bacterial (E. coli 

ATCC 25922) and human (HEK-293) lysates together with the mRNA that encoded a 

luciferase protein. We measured the luminescence of each sample at each concentration 

(n>6) and extracted the IC50-value, the concentration at which half-maximal inhibition of 

luminescence was achieved. Bac7PS showed a mean reduction of ~10% of the IC50  (Fig. 

3.4c) compared to Bac71-23 at the E. coli ribosome, which did however not reach statistical 

significance (p-value=0.15, Wilcoxon rank-sum test). Surprisingly, Bac7PS displayed a 

reduced IC50 of ~38% to the HEK ribosome when compared to Bac71-23 (p-value<10-5, 

Wilcoxon rank-sum test). However, similarly to Bac71-23, the binding of Bac7PS to the 

eukaryotic ribosome remained much weaker (IC50 = 4.23 µM) compared to the bacterial 

ribosome (IC50 = 0.59 µM). Bac7PS thus remained a strong and selective inhibitor of the 

bacterial ribosome. We hypothesize that the identified cooperative amino acid combination 

incorporated into Bac7PS increases the binding of the peptide to the ribosomes compared 
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to Bac71-23, but that this improved binding cannot be significantly detected for the E. coli 

ribosome using the in vitro translation inhibition assay. 

 

While low MIC values are desirable for any antibiotic substance, it is equally important that 

the substance is not too toxic to eukaryotic cells. We hence tested the influence of Bac7PS 

on cells of the human embryonic kidney cell line 293 (HEK) by quantifying the reduction of 

the compound 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which 

only occurs if cells are metabolically active and viable137. We measured an increase of 

toxicity of Bac7PS with an IC50 of 521 µM compared to an 1460 µM for Bac71-23 (Table 

3.2). However, the therapeutic index (TI) remained larger than 180 for both peptides, 

suggesting good suitability for the use in mammalian systems. 

 

 
Fig. 3.4 | In vitro activity characterization of Bac71-23 and Bac7PS. a) MICs of a panel of clinical isolates of 
E. coli (n=45), including MDR bacteria (ESBL, CRE, n=25). b) Membrane damage assays measuring GFP 
loss (% of cells that lost GFP fluorescence) and PI uptake (% cells that gained PI fluorescence) when 
incubating E. coli TOP10 cells together with peptides added at different concentrations in full MHB II for 30 
min. MIC of melittin against E. coli TOP10 is 5.0 µM (data not shown). c) In vitro translation assays. IC50 values 
are extracted from a luminescence assay translating firefly luciferase mRNA and peptide concentration in a 
range between 800 µM and 0.08 µM (n=6). 
 

Finally, we investigated the efficacy of Bac7PS in a murine septicemia infection model 

(Fig. 3.5a). The maximal dose at which all CD-1 mice survived intraperitoneal (IP) Bac7PS 

treatment for 3 days was 50 mg kg-1 (Supplementary Fig. 3.9). Additionally, we saw that a 



 64 

second administration of 40 mg kg-1 Bac7PS was also tolerated by the animals (data not 

shown). For the efficacy study, we decided to use two concentration of Bac7PS and apply 

them twice: 30 mg kg-1, a concentration close to the maximum tolerated dose, and 10 mg 

kg-1. IP infection of CD-1 mice using E. coli ATCC 25922 resulted in death of all 10 mice 

after 72 h if treated using the vehicle control and survival of all mice when treated with 30 

mg kg-1 ciprofloxacin (CIP) (Fig. 3.5b). Bac7PS showed a dose-dependent efficacy at 

which 80% of the mice survived at 30 mg kg-1 and 60% of mice survived at 10 mg kg-1 

peptide concentration.  

 

 
Fig. 3.5 | In vivo efficacy of Bac7PS. a) Efficacy study scheme, applying Bac7PS to mice infected with E. 
coli ATCC 25922. b) Survival rates after IP infection. Study was performed as described in a). 
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3.4 Discussion 

DMS methods have been widely applied to study proteins138, optimize enzymes139, or to 

accelerate the understanding of therapeutic activity (including the study of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) therapeutics)140. One of the major 

advantages of DMS screens is to circumvent large-scale in vitro assessments of protein 

variants using recombinant expression and purification124. This advantage can be even 

larger when screening AMPs, which would otherwise need to be synthesized using solid-

phase peptide synthesis. To the best of our knowledge, this is the first time DMS was 

applied to study and optimize an AMP.  

 

We present for the first time an in-depth characterization of the importance of growth 

inhibition of each amino acid residue exchange in Bac71-23, which might guide future Bac71-

23 optimization campaigns. Much of the information we acquired using intracellularly 

synthesized peptides is in high agreement with previously reported data using chemically 

synthesized peptides. We retrieved the core motif of Bac71-23 between positions 6 and 14 

as most important which seems to be evolutionarily conserved among proline-rich AMPs39. 

By the random insertion of stop codons, we found that peptides shorter than 16 amino 

acids are inactive. As the peptides in our assay are synthesized in the cytosol, we 

attributed the loss of activity to weaker ribosomal binding, confirming earlier research141 

but contrasting recent claims that the loss of antimicrobial activity of Bac71-15 is due to 

impaired uptake into the cytosol39,119. Strikingly, we found that the C-terminus of Bac71-23 

offered a large potential for optimization even though most research currently focuses on 

substitution of the first 16 residues120,121. Unlike the core-motifs of proline-rich AMPs, which 

well overlapped in the crystal structure when bound to the ribosome, the C-termini of those 

peptides showed large variations127. The higher spatial flexibility of the upper ribosome 

chamber is illustrated by the fact that also Gram-positive targeting macrolide antibiotics 

bind in that region142 and that longer Bac7 variants (60 or 35 amino acids by length) 

showed a broader (against different Gram-negative bacteria) antimicrobial activity than 

their shorter counterparts118. Surprisingly, we found that insertion of a tyrosine residue is 

one of the most activity enhancing single amino acid residue substitutions in the site-

specific library, especially at positions 18 and 19. Interestingly, even though a tyrosine 

residue is not present in full-length Bac7 comprised of 60 amino acids, it is common among 

other proline-rich AMPs39,143, potentially because, similarly to arginine residues, an 

aromatic residue can well fill the space and interact with the amino acid residues or 

ribonucleotides of the surrounding ribosomal exit tunnel120.  
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Concerning the applied intracellular screening method, we note that such a method might 

enable finding better binders to the ribosome or other intracellular targets, variants with 

increased membrane damaging properties at a lower concentration, or variants that reach 

higher intracellular concentration because of increased solubility, mRNA stability, or 

proteolytic resistance. However, uptake across the outer and inner membrane, for 

example through a transporter such as SbmA, cannot be selected for in screens in which 

the peptides are synthesized intracellularly. As for the proline-rich peptides used for this 

study the N-terminal ‘RRIR’ motif seems to be most critical for cellular uptake118,141, we 

decided not to modify this part and accepted the risk for contracting unknown effects 

regarding uptake when modifying other regions of Bac71-23. However, in a scenario in 

which a variant is highly active if synthesized intracellularly but not taken up if added to 

cells from outside, its uptake could be increased post-screen, e.g. by fusing it to motifs of 

cell-penetrating peptides144. 

 

Our intricate analysis protocol to extract auspicious amino acid combinations enabled us 

to design Bac7PS, which excels over the Bac71-23 parent in terms of antimicrobial activity 

against our screening strain E. coli TOP10 even when the peptides are added 

extracellularly. We observed a broader activity spectrum of Bac7PS against clinical 

isolates including MDR bacteria compared to Bac71-23 and a decreased dependency on 

the SbmA transporter. As Bac71-23 was largely inactive against the SbmA transporter 

knockout strain (Table 3.2), this improvement is a very favorable new property, potentially 

making resistance development for bacteria harder. We partially attribute the activity gain 

to the increased ability to penetrate membranes as an alternative route of uptake, which 

was accompanied by a slight increase in membrane damage at higher concentration 

compared to Bac71-23. This hypothesis could be supported by the fact that aromatic amino 

acids, such as the now introduced tyrosine residue at position 18 or the phenylalanine 

residue at position 19, are known to enhance membrane penetration145. Very similar 

effects were observed by the study of Mardirossian et al. relying on the chemical synthesis 

of 133 Bac71-16 derivatives120. The most active candidate mentioned in that study, a peptide 

called B7-005 incorporating multiple tryptophan residues was also more active against a 

broader panel of bacteria and a SmbA knockout. However, B7-005 was not more active 

against the initial screening strain and seemed to show slightly decreased inhibition of 

protein translation. On the contrary, we hypothesize that part of the gain in activity of 

Bac7PS results from an increased binding to the ribosome, which might correlate with the 

observed cooperativity between the phenylalanine and tyrosine residues in our peptide. 

Even though the small difference (of 10%) in increased binding to the E. coli ribosome 

compared to Bac71-23 was not statistically significant, we measured an increased binding 
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to the human ribosome, which was however still bound at much lower affinity. Due to the 

absence of the SmbA transporter in human cells and the high selectivity of AMPs towards 

bacterial over human membranes, Bac7PS is a very promising candidate as an 

antimicrobial.  

 

Bac7PS and Bac71-23 were non-toxic to human cells and displayed a far higher TI 

compared to most other AMP146. It is difficult to link the activity increase of Bac7PS 

compared to Bac71-23 measured in vitro, to in vivo experiments. There has only been a 

single report examining the efficacy of a Bac7 derivative in vivo147. Here, the authors 

treated mice infected with Gram negative Salmonella typhimurium intraperitoneally with 

30 mg kg-1 of Bac71-35 (a 35 amino acid long version), which increased the mean survival 

from 10 to 24.5 days compared to untreated mice147. In our study, we showed that mortality 

can be strongly reduced in mice after a lethal infection with E. coli, causing death among 

all untreated mice within 30 h, by applying 10 mg kg-1 of our optimized compound Bac7PS.  

 

We provided the first example of successful AMP optimization by DMS resulting in a 

potential AMP lead candidate. Our generated fitness landscapes might inspire further 

engineering approaches on Bac71-23 
 and the entire method could be easily expanded to 

studying structure-activity-relationships of other intracellularly active or even membrane 

damaging AMPs if displaying the peptides on the surface91. We envision coupling this 

method to directed evolution approaches to further increase the activity of AMP or using it 

in drug-resistant strains.   
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3.5 Methods 

Chemicals and reagents  
Unless otherwise stated, all chemicals, reagents and primers were obtained from Sigma 

Aldrich (Buchs, CH). Restriction enzymes and their buffers were obtained from New 

England Biolabs (Ipswich, USA). Kits for the isolation of plasmid isolation and DNA 

purification kits were obtained from Zymo Research (Irvine, USA). Peptides in either 

purified (>90%) or crude format were obtained from Pepscan (Lelystad, NL) or Genescript 

(Piscataway Township, USA). Sanger-sequencing was done at Microsynth (Balgach, CH).  

 
Bacterial strains and cultivations 
Unless otherwise stated, all experiments were performed using E. coli TOP10 (F– mcrA 

Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK 

λ– rpsL(StrR) endA1 nupG; Thermo Fisher Scientific, Waltham, USA). In this study, 

overnight cultivations were performed either in 14 ml polypropylene tubes (Greiner, 

Kremsmuenster, AT), filled with 5 ml of lysogeny broth (LB) medium (Difco, Becton 

Dickinson, Franklin Lakes, USA), or in 96-deep-well polypropylene plates (Greiner, 

Kremsmuenster, AT) filled with 500 µl of LB-medium. All samples were incubated at 37°C 

with agitation on a shaker (Kuhner, Birsfelden, CH) operated at 200 r.p.m. and 25 mm 

amplitude. All media were supplemented with the appropriate antibiotic for plasmid 

maintenance (50 μg ml−1 kanamycin; 100 μg ml−1 carbenicillin) and 1 % (w/v) D-glucose for 

repression of gene expression from catabolite-repression sensitive promoter PBAD. In the 

case of peptide expression experiments, cultures were incubated without D-glucose and 

0.3 % (w/v) of the inducer L-arabinose was used for induction. For all cultivations on solid 

medium, 15 mg ml-1 agar (Difco) was added to the broth, and incubation was performed in 

an incubator (Kuhner) at 37°C. If not indicated differently, the optical densities (OD) of 

bacterial cultures were determined by measuring light scattering at 600 nm using a UV/VIS 

spectrophotometer (Eppendorf, Hamburg, DE). 

 

Generation of the randomly mutagenized Bac71-23 library   
To mutate the Bac71-23 gene randomly, we used an error-prone polymerase chain reaction 

(epPCR). We amplified the Bac71-23 gene using primer 1 and primer 2 (Table 3.3), which 

bind upstream of the first codon, including the start codon, and downstream of the last 

codon, not including the stop codon. For amplification, we used the Pfu DNA Polymerase 
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exo- mutant§§ (D141A/E143A), Pfu reaction buffer including dNTP’s and 0.3 mM final 

concentration of MnCl2 to increase the error rate. The amplification was performed using 

30 cycles of 98°C for 10 s, 60°C for 15 s, and 72°C for 10 s. The PCR product (118 bp in 

length) was purified using a 1.5% agarose gel and a DNA gel recovery kit. 500 ng of the 

purified product was used for a restriction digest using enzymes HindIII-HF and PstI-HF in 

Cutsmart buffer. The digested product was again purified using a DNA purification kit and 

ligated to plasmid pBAD104 (Thermo Fisher Scientific) previously digested with the same 

enzymes using T4 ligase (800 units). The ligation product was dialyzed in deionized water 

using filters (MilliporeSigma, Burlington, USA) and 1 µl was used to transform 20 µl of 

CloneCatcher™ Gold DH5G Electrocompetent E. coli (Genlantis, Burlington, USA) cells 

using electroporation. Recovered cells were plated and incubated overnight on LB agar 

plates supplemented with carbenicillin. Approximately 5.6 million colonies were washed 

off several plates using LB medium and the plasmids containing the peptide-encoding 

DNA sequences were extracted from 2.5*109 cells using a plasmid isolation kit. An aliquot 

of 5 ng of these plasmids was used to transform E. coli TOP10 cells using the protocol 

from the transformation above. Approximately 10 million colonies were recovered from the 

plates after overnight incubation by washing with LB medium, the suspension was diluted 

to OD = 1 with LB medium, glycerol was added to a final concentration of 20% (v/v), and 

aliquots of 500 million cells were stored at -80°C. 

 

Generation of the focused Bac71-23 library   
A focused, semi-rational strategy was pursued to generate diversity at positions 5, 18, 19, 

and 20 in the Bac71-23 peptide. These sites were simultaneously randomized on the genetic 

level by site-saturation mutagenesis using a single NNK codon for position 18 and a 

mixture of codons as suggested in the small intelligent approach129 for the remaining three 

positions (see Table 3.3 for sequences and mixing ratios). Degeneration was introduced 

by using the QuikChange technique148, amplifying the pBAD plasmid containing the Bac71-

23 gene using a mixture of 20 oligonucleotides at a final concentration of 0.3 µM and 

Phusion® High-Fidelity PCR Master Mix in HF buffer. The amplification was performed 

using 20 cycles of 98°C for 10 s, 60°C for 15 s, and 72°C for 10 s. The PCR product was 

treated with the enzyme Dpn1 to remove the template plasmid and subsequently purified 

using a DNA purification kit. The purified product was used to transform 20 µl of 

CloneCatcher™ Gold DH5G Electrocompetent E. coli (Genlantis, Burlington, USA) cells 

using electroporation. Transformation, recovery and storage was performed as explained 

                                            
§§ Generated, produced, and purified by Dr. Luzius Pestalozzi from the ETHZ BPL 

https://www.nature.com/articles/nature19114#MOESM447
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for the random mutagenesis protocol, but this time we recovered approximately 2.3 million 

(E. coli Clonecatcher), and approximately 1.9 million (E. coli TOP10) colonies.  
Table 3.3 | Primers and genes used 

ID Sequence (5’-3’) Description Mixing ratios 
site-saturation 

Primer 1  
TGTCTGCAGAGGAGATATAAATG 

amplification 
forward  

Primer 2 
TGCACAAAGCTTACGTG 

amplification 
reverse  

Primer 3 GTCTGCAGAGGAGATATAAATGCGGAGAAT
AAGANDTCGGCCACCTAGACTGCC 

forward primer  
site-saturation 240 

Primer 4 GTCTGCAGAGGAGATATAAATGCGGAGAAT
AAGAVMACGGCCACCTAGACTGCC 

forward primer  
site-saturation 120 

Primer 5 GTCTGCAGAGGAGATATAAATGCGGAGAAT
AAGAATGCGGCCACCTAGACTGCC 

forward primer  
site-saturation 20 

Primer 6 GTCTGCAGAGGAGATATAAATGCGGAGAAT
AAGATGGCGGCCACCTAGACTGCC 

forward primer  
site-saturation 20 

Primer 7 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GAHNAHNMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 144 

Primer 8 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GTKBAHNMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 72 

Primer 9 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCATAHNMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 12 

Primer 10 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCCAAHNMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 12 

Primer 11 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GAHNTKBMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 72 

Primer 12 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GTKBTKBMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 36 

Primer 13 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCATTKBMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 6 

Primer 14 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCCATKBMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 6 

Primer 15 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GAHNCATMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 12 

Primer 16 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GTKBCATMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 6 

Primer 17 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCATCATMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 1 

Primer 18 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCCACATMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 1 

Primer 19 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GAHNCCAMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 12 

Primer 20 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GTKBCCAMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 6 

Primer 21 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCATCCAMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 1 

Primer 22 ACAAAGCTTACGTGCTGACTTAAGGCCGAG
GCCACCAMNNTGGACGCGGGCGC 

reverse primer  
site-saturation 1 

Bac71-23 
gene 

ATGCGGAGAATAAGACCTCGGCCACCTAGA
CTGCCTAGACCGCGCCCGCGTCCATTACCA
TTCCCTCGGCCTTAA 

Bac71-23 gene 
following the PBAD 
promoter  

 

Single-strain growth experiments 
To assess the antimicrobial effect of single peptides when expressed intracellularly in 

E. coli TOP10, a monoclonal strain carrying the pBAD plasmid containing a single peptide 

was picked from solid media, incubated overnight, and inoculated into a fresh LB medium 

containing 0.3 % (w/v) L-arabinose to a final OD of 0.01 into 96-well microtiter plate 
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(Greiner). Growth of strains was recorded by measuring OD in a Tecan Infinite 200 PRO 

(Tecan, Männedorf, CH) for at least 4 h (37°C, 1.5 mm orbital shaking).  

 

Parallel growth experiment  
To assess the antimicrobial effect of multiple peptides in parallel when expressed 

intracellularly in E. coli TOP10, previously prepared aliquots containing E. coli plasmid 

libraries created by either random mutagenesis or site-saturation mutagenesis were used. 

For both approaches, three aliquots containing approximately 500 million cells each of E. 

coli TOP10 harboring peptide-encoding DNA sequences on the pBAD plasmid were 

thawed and added to three 1 l baffled shake flasks containing 100 ml of LB medium + 

100 μg ml−1 carbenicillin. The cultures were grown for roughly 7 h at 37°C. When the OD 

reached approximately 0.2, the cultures were supplemented with L-arabinose to a final 

concentration of 0.3 % (w/v) to induce peptide expression. When analyzing the randomly 

mutagenized library, cell samples were taken from each biological replicate at the point of 

induction and 4 h post-induction. When analyzing the library created by site-saturation 

mutagenesis, cell samples were taken from each biological replicate at the point of 

induction and 4.5 h post-induction. The plasmids were extracted from all samples using a 

plasmid isolation kit. 

 

NGS 
Peptide-encoding DNA sequences on plasmids, collected from both experiments (three 

replicates across the different time points) were sequenced using NGS. To first amplify the 

peptide-encoding DNA we used primer 1 and primer 2 (Table 3.3), 100 ng of plasmid, and 

using 10 cycles of 98°C for 10 s, 60°C for 15 s, and 72°C for 10 s. The amplification product 

was purified using an agarose gel. Single Index PentAdapters from Pentabase were used 

to prepare PCR-free libraries with the KAPA HyperPrep Kit (now Roche, Basel, 

CH) according to the manufacturer's specifications. Libraries were quantified using the 

qPCR KAPA Library Quantification Kit. Libraries were pooled and sequenced single read 

with 101 cycles using an Illumina NovaSeq 6000 SP flow cell. Roughly 10% genomic PhiX 

library was used as spike-in to increase sequence diversity. Base-calling was done with 

bcl2fastq v2.20.0.422. The resulting fastq files were processed using the software 

Geneious Prime 2020 (Biomatters, Auckland, NZ) and an in-house software written in R. 

For the randomly mutagenized library, we first discarded all sequences that missed the 

combination of a start codon and 69 bases downstream stop codon. Next, we discarded 

all sequences that appeared less than five times in at least two replicates. Next, all DNA 

sequences were translated and the resulting peptide sequences were counted for each 
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replicate and time point. All NGS counts can be seen in Supplementary Table 3.3. For the 

site-saturation library, we first discarded all sequences that did not have a start codon and 

69 bases downstream stop codon, translated the DNA sequences into peptide sequences, 

aligned them to our reference table of 160,000 possible peptide variants, and counted 

them for each replicate and time point. All NGS counts can be seen in Supplementary 

Table 3.4. 

 

Ranking of peptides based on log2-fold change derived growth inhibition  
To analyze the NGS read counts of both libraries, we used the standard workflow of 

DESeq2105 (NGS read count normalization, dispersion estimates, and Wald’s test). We 

calculated the log2-fold changes of the NGS read counts (listed for each peptide in 

Supplementary Table 3.3 and 3.4) between the time of induction and 4.0 h (random 

mutagenesis) as well as 4. h (focused library) post-induction. A Bayesian shrinkage 

estimator was employed to shrink the log2 fold-change for each sequence using the 

R/Bioconductor package ‘apeglm’106. Finally, the shrunken log2 fold-change was used as 

a proxy for growth inhibition of each peptide, as the propagation rate of the peptide-

encoding DNA would follow the growth rate of the respective host. The most growth 

inhibitory peptide corresponded to the most negative fold change; the least active peptide 

corresponded to the most positive fold change. Thus, a ranking from least to most active 

peptides of both libraries could be established. The ranked peptide list from the randomly 

mutagenized library can be found in Supplementary Table 3.5. The ranked peptide list 

from the focused library can be found in Supplementary Table 3.6. 

 

Enrichment curve-derived AUCs to quantify effects on growth inhibition  
To determine the effect of amino acid residue substitutions on growth inhibition, we applied 

a variation of the gene set enrichment analysis (GSEA) proposed by Subramanian et al.131 

This adjusted method was based on drawing what we refer to here as enrichment curve 

plots (see Fig. 3.2a). In those plots, each value on the x-axis represented a peptide ranked 

by their shrunken log2 fold-changes, giving rise to the ranked peptide set 𝐿𝐿. More active 

peptides are assigned to the left spectrum of the x-axis, while less active peptides are 

assigned to the right spectrum of the x-axis. For each single amino acid residue 

substitution, e.g. alanine at position 1, we defined 𝑆𝑆 to be a set of all peptides that exhibit 

this substitution. Each y-value indicated whether the corresponding peptide pertains to the 

peptide-set under study or not. Formally, if a peptide 𝑝𝑝𝑖𝑖 in the ranked list 𝐿𝐿 pertains to the 

peptide set 𝑆𝑆, its value is defined as 
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    𝑃𝑃ℎ𝑖𝑖𝑖𝑖(𝑆𝑆, 𝑖𝑖) = ∑
𝑝𝑝𝑖𝑖∈𝑆𝑆;𝑗𝑗≤𝑖𝑖

1
|𝑆𝑆|

                                (1) 

If, on the other hand, peptide 𝑝𝑝𝑖𝑖 is not present in the set 𝑆𝑆, its value will correspond to 

              𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆, 𝑖𝑖) = ∑
𝑝𝑝𝑖𝑖∉𝑆𝑆;𝑗𝑗≤𝑖𝑖

1
𝑁𝑁−|𝑆𝑆|

                          (2) 

where 𝑁𝑁 corresponds to the total number of peptides in the ranked list.  

To describe the enrichment concisely, Subramanian et al. developed a so-called 

enrichment score (ES) that is defined as the maximum deviation of 𝑃𝑃ℎ𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 from zero. 

Here, we proposed a slightly different approach, which we referred to as the area under 

the curve (AUC). Compared to the ES, the AUC describes the complete dynamics of the 

enrichment curves. We computed the AUCs as follows: 

               𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆) = 1
|𝐿𝐿|

∑
𝑖𝑖=1,...,|𝐿𝐿|

[𝑃𝑃ℎ𝑖𝑖𝑖𝑖(𝑆𝑆, 𝑖𝑖) + 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆, 𝑖𝑖)].        (3)        

Positive AUC-values indicated that the corresponding set 𝑆𝑆 is overrepresented in growth 

inhibitory peptides (top of the list); while negative AUC values indicate that the 

corresponding peptide set is overrepresented in less growth inhibitory peptides (bottom of 

the list). AUC values close to zero indicated that the peptide set was randomly distributed 

across the list, or exhibited bimodal behaviors. 

In cases where the peptide-set 𝑆𝑆 is small, i.e. if there are only few observations for an 

amino acid residue substitution, the computation of meaningful enrichment curves and 

AUCs can be misleading. To present a more robust measurement for the randomly 

mutagenized Bac71-23 library, in which many amino acid residue substitutions were 

seldom, we resorted to a permutation scheme that allowed us to derive better estimates 

of the effect of each amino acid residue substitution on growth inhibition. These 

permutation schemes relied on drawing from the null distribution, i.e. assuming that a 

single substitution, in the following denoted as 𝑆𝑆𝑀𝑀, is not overrepresented in either or lower 

active peptides. The following scheme is executed for each permutation: 

1. Randomly permute the peptides in list 𝐿𝐿, giving rise to permuted list 𝐿𝐿, which 

destroys the activity-based ranking 

2. Compute enrichment curves for permuted list 𝐿𝐿 and single substitution 𝑆𝑆𝑀𝑀 

3. Compute the permuted 𝐴𝐴𝐴𝐴𝐴𝐴(𝑆𝑆𝑀𝑀) 
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This scheme is repeated 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 times, where commonly 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 103, or 104, giving rise to 

the null distribution of the AUC values. This distribution can then be used to derive z-scores 

as 

               𝑧𝑧𝑆𝑆𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆)−mean(𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑀𝑀))

std(𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑀𝑀))
                      (4) 

Z-scores represented how many standard deviations the observed AUC-value differed 

from the mean of all AUC-values derived from the null distribution. A large positive z-score 

indicated an enrichment of 𝑆𝑆𝑀𝑀 among higher growth inhibitory peptides, a large negative 

z-score denote enrichment of 𝑆𝑆𝑀𝑀 among less growth inhibitory peptide. Z-scores close to 

zero imply that the observed measurement lies close to the mean of the null distribution. 

We furthermore computed a two-sided p-value (𝑝𝑝𝑆𝑆𝑀𝑀) to assess the statistical significance 

of the observed measurements under the null hypothesis. It is defined as 

    𝑝𝑝𝑆𝑆𝑀𝑀 = #abs(𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑀𝑀)≥𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝑀𝑀))
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

                     (5) 

To account for multiple testing, p-values were adjusted using the Benjamini-Hochberg 

procedure with a false discovery rate of 𝛼𝛼 = 0.1. 

 
Significant pattern mining to rank amino acid residue combinations 
Significant pattern mining emerged recently within the field of machine learning7 and is 

devoted to finding patterns that occur significantly more often in one group of observations 

versus another group of observations. Here, we defined a pattern to be any combination 

of amino acids residues present in our data set. In our specific case, there exist patterns 

of length one, two, and three, referred to as single, double, or triple combinations in the 

main text, respectively. To find significant patterns in the data set, we first had to generate 

two classes. We achieved this by using our activity-based ranking of peptides according 

to the shrunken log2 fold change and focus our analysis on the most and least growth-

inhibitory 10% and 25% of all peptides. To identify patterns that occur significantly more 

often in either the strongest or the weakest sequences, we applied a tool named fast 

automatic conditional search (FACS)8. It is based on the creation of a 2-by-2 contingency 

table for each pattern, and a subsequent two-sided Fisher’s exact test (enrichment in either 

10% or 25% most or least growth inhibitory peptides). Results from all triple combinations 

can be seen in Supplementary Table 3.1. 
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Determination of interactions between amino acid residue combinations 
The AUC describes the effect of amino acid residue substitutions on growth inhibition and 

can be calculated as described in equation (1-3). We defined the conditional AUC as the 

AUC calculated for a single substitution 𝑆𝑆 using a ranked peptide set 𝐿𝐿′ containing only 

peptides that exhibition a fixed amino acid residue at a specific position. To determine if 

two amino acid residues interact (behave non-additively), we calculated the difference 

between the AUC calculated for the conditional ranked peptide set 𝐿𝐿′ (with a size of 

approximately 8,000 peptides) and the AUC calculated for the entire ranked peptide set 𝐿𝐿 

(with a size of approximately 160,000 peptides). See Fig. 3.3a for examples. These 

differences were calculated for all possible 4’800 (considering both directions of the 

combinations, as they are not symmetrical) double combinations (see Supplementary 

Table 3.2). By creating a boxplot of all resulting values, we defined that all amino acid 

residue combinations which resulted in values that lie in between both whiskers of the 

boxplot (1.5 times the lower limit of the IQR to 1.5 times the upper limit of the IQR) do not 

show an interaction, i.e. behave additively. Non-additivity in the form antagonism, i.e. one 

amino acid residue decreased the effect of the other amino acid residue on growth 

inhibition, was discovered for combinations with values below -0.09. Non-additivity in the 

form of cooperativity, i.e. one amino acid residue increased the effect of the other amino 

acid residue on growth inhibition was discovered for combinations with values above 0.9. 

Purification of chemically synthesized peptides  
Peptide Bac71-23 (H-RRIRPRPPRLPRPRPRPLPFPRP-OH) and Bac7PS (H-

RRIRIRPPRLPRPRPRPYFMPRP-OH) were obtained from Pepscan (Lelystad, NL) or 

Genscript (Piscatawa, USA) in >90% purity or in crude format and subsequently purified 

to >90% purity in house. For the latter, crude peptides were dissolved in 5 ml DMSO and 

15 ml 0.1% aqueous trifluoroacetic acid, TFA. RP-HPLC-purification of the dissolved crude 

peptides was performed on an ӒKTAexplorer chromatography system (GE Heathcare, 

SE). The entire peptide sample was loaded onto a C18 column (PRONTOSIL 120 C18 AQ 

10 µm, 250 x 20 mm, 50 x 20 mm precolumn, Bischoff, Leonberg, DE), heated to 30°C 

and operated at a flow rate of 10 ml min-1 using 0.1% aqueous TFA as solvent A and 

acetonitrile supplemented with 0.1% TFA as solvent B. The ratios of A to B were adapted 

for each peptide and typical values are given below. The column was equilibrated with the 

peptide-specific mixture of solvent A and solvent B (0-20%) prior to injection. After injection 

and an initial wash step of 6 min, a gradient was imposed with the same eluent mixture, 

and then a gradient was applied, in the course of which the amount of solvent B was 

increased to 50-90 % in 40 min. The column was washed with 95 % solvent B for 8 min 

and equilibrated with the specific solvent A/solvent B mixture for the next run for 13 min. 
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Peptide elution was monitored spectrophotometrically at 205 nm and generally, the main 

peptide peak was collected. The sample was frozen at -80 °C for >2 h and lyophilized 

(approx. 18 h) using a freeze-dryer (Alpha 2-4 LDplus, Christ, DE), connected to a vacuum 

pump (RC6, Vacuubrand, DE). The lyophilized peptides were dissolved in 1 ml DMSO and 

stored at ‐20°C. The concentration of the peptide stocks was determined via HPLC using 

an Agilent 1200 series RP-HPLC system. Each peptide stock was analyzed as a 1:100 

dilution in water. An aliquot of 10 μl of the peptide stock was injected onto an C18 column 

(ReproSil‐Pur Basic C18, 50 x 3 mm, Dr. Maisch, DE) operated with water supplemented 

with 0.1 % TFA as solvent A and acetonitrile supplemented with 0.1 % TFA as solvent B. 

Separation was performed at a flow rate of 0.6 ml min-1 using the same concentration 

profile previously used for purification. The concentration was measured using the 

integrated peak area at 205 nm and then calculated using peptide-specific absorption 

properties109,110. 

 
Measurement of the MIC  
Bacterial cells were grown in cation-adjusted Mueller Hinton Broth (MHB II) overnight to 

stationary phase. The cultures were then supplemented with 200 g l-1 glycerol, aliquoted, 

and frozen at -80°C. For MIC measurements, an aliquot of the cells was thawed, 

resuspended in MHB II to a final volume of 750 µl and cell concentration of 1 x 106 CFU 

ml-1. The purified peptides were thawed and the concentration was determined by RP-

HPLC as described before. The peptides were diluted with sterile water to 4-fold the 

desired assays starting concentration and to a final volume of 50 µl. Pipetting of the MIC 

dilution series was done by a Hamilton Microlab STAR Liquid Handling System (Hamilton, 

Bonaduz, CH) and in 384-well plates (PP, F-bottom, 781201, Greiner, Kremsmünster, AT) 

with a final assay volume of 40 µl. The first well of each MIC dilution series was filled with 

20 µl of 2-fold concentrated MHB II, wells 2-11 with 20 µl of MHB II, and well 12 with 40 µl 

MHB II (sterility control). Next, 20 µl of the peptide dilution was added to the first well, 

mixed, and a log2 serial dilution was performed from well 1-10 (20 µl transfer volume). 

Well 11 served as growth control (i.e., no peptide added). In the last step, 20 µl of the 

bacterial cell suspension was added to well 1-11 either using the pipetting robot (E. coli 

TOP10, BW25113, BW25113 ΔsbmA and ATCC 25922) or by a manual pipette (E. coli 

clinical isolates). The plates were sealed airtight and incubated for 18 h without shaking at 

37°C before reading the OD using an Infinite 200 PRO plate reader (Tecan, Männedorf, 

CH). The MIC value corresponded to the concentration at which no growth of the bacterial 

strain was observed (< 5% of the OD value of the growth control) and was evaluated using 
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a custom-written script in the programming language R. Each MIC value was determined 

in technical replicate. 

 

Membrane damage assay 
For membrane damage assays, the bacterial strain E. coli ATCC 25922 [pSEVA271-

sfGFP] and the peptide dilutions were prepared as described for the MIC measurements 

but by scaling all volumes 5-fold and using 96-well plates (PP, U-bottom, 650201, Greiner, 

Kremsmünster, AT) with a final assay volume of 200 µl. The bacterial strain suspension 

was furthermore supplemented with 20 µg ml-1 propidium iodide (PI, from a 1 mg ml-1 stock 

in DMSO) just before pipetting the assay. After 1 h incubation at room temperature the cell 

membrane integrity was assessed by flow cytometry using a Fortessa Analyzer (BD 

Biosciences) and appropriate filters for GFP and PI (488 nm laser with 530/30 nm 

bandpass filter and 579 nm laser with 610/20 nm bandpass filter). The fractions of PI-

positive and PI-negative cells, as well as GFP-positive and GFP-negative cells, were 

determined with the same gate for all populations using the FlowJo V10 software (BD 

Biosciences). The membrane integrity assay was performed in triplicate. 

 

In vitro toxicity assay 
HeLa epithelioid cervix carcinoma cells (93021013, Sigma Aldrich) were routinely 

cultivated in Dulbecco's MEM High Glucose (DMEM, with L-Glutamine, without phenol red, 

1-26P32, Bioconcept, Allschwil, CH), supplemented with 10% Fetal Bovine Serum (FBS, 

heat inactivated, sterile filtered, F9665, Sigma Aldrich) and 100 IU ml-1/100 µg ml-1 

Penicillin/Streptomycin (4-01F00, Bioconcept) at 37°C with 5% CO2. Cells were split at a 

confluency of ≤ 90% (every three to four days) and maintained for max. 10 passages 

before a fresh aliquot of cells were seeded. For the tox assay, cells were cultivated for at 

least two passages after thawing, detached from the cultivation flask using Trypsin-EDTA 

(25300054, Gibco, Thermo Fisher Scientific), centrifuged at 200 x g for 4 min, and washed 

once by resuspending the pellet in an equal volume of Dulbecco’s Phosphate Buffered 

Saline (DPBS, D8537, Sigma Aldrich). The DPBS was removed by another centrifugation 

step and the cell pellets were resuspended in fresh, prewarmed DMEM. The cell 

concentration was determined using a Countess 2 device (Thermo Fisher Scientific) and 

approx. 5000 cells were seeded into wells of a 96-well plate (F-bottom, PS, 655180, 

Greiner) together with 100 µl DMEM. The last row of each plate was filled with DMEM only. 

After cell seeding, the plate was incubated for 24 h at 37°C with 5% CO2. The following 

day, a log2 dilution series of the peptides were prepared as described for the MIC assays 

but using a 96-well plate (V-bottom, PP, 651201, Greiner) with a final volume of 50 µl. For 
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the first well, 2-fold concentrated DMEM medium was used, in wells 2-9 and 11, DMEM 

medium was used. Well 10 served as killing control (100% DMSO) and well 11 as non-

treated control (no peptide added). From the cell culture plate, 50 µl of the medium in each 

well (except the last row) was removed, discarded, and replaced with the 50 µl of liquid 

from the equivalent well on the peptide dilution plate. The plate was incubated again for 

24 h at 37°C with 5% CO2. After incubation, 10 µl of (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) solution (from a 5 mg ml-1 stock in DPBS) was added 

to each well. The plate was then incubated for 2 h. After incubation, the cell culture medium 

containing residual MTT was removed from each well. The formed formazan crystals were 

dissolved by adding 100 µl of DMSO to each well. The formazan content in each well was 

determined by measuring the absorbance at 575 nm using an Infinite M1000 PRO plate 

reader (Tecan) and corrected for light scattering by subtracting the absorbance at 690 nm 

used as the reference wavelength. For each dilution series, the IC50 value was determined 

by computing a weighted n-parameters logistic regression using the “nplr” package in R 

(https://CRAN.R-project.org/package=nplr). The in vitro toxicity assay was performed in 

triplicate. 

 

Hemolysis assay 
Mouse blood was obtained from the ETH Phenomics Center. The erythrocytes were 

isolated by centrifugation at 500 x g for 10 min and removal of the blood plasma. The cells 

were washed three times by gently resuspending them in an equal volume of DPBS 

followed by centrifugation. After the last resuspension, the cells were diluted 1:50 in DPBS. 

For the hemolysis assay, a log2 serial dilution of each peptide was prepared as described 

for the MIC but using DPBS and a 96-well plate (U-bottom, PP, 650201, Greiner) with a 

final volume of 100 µl. As lysis control, 2.5% Triton-X100 in DPBS was used in well 10, 

well 11 served as non-treated control (no peptide added), and well 12 as blank. To each 

well of the dilution plate, 100 μl of the red blood cells suspension was added. The plate 

was incubated for 1 h at 37°C. After the incubation, the plate was centrifuged at 500 x g 

for 10 min and 100 µl of the supernatant was transferred to a clean 96-well plate (F-bottom, 

PS, 655101, Greiner). The absorbance was measured at 540 nm using an Infinite M1000 

PRO plate reader (Tecan) and corrected by the measurements from the untreated wells. 

The lysis of each peptide concentration was expressed relative to the lysis control (set as 

100% lysis). The hemolysis assay was performed in triplicate. 

 

 

 

https://cran.r-project.org/package=nplr
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In vitro translation inhibition assay 
To measured inhibition of the E. coli ATCC 2522 or HEK 293 ribosome, an S30 extract 

from E. coli or HEK 293 cells was purified according to two protocols described 

elsewhere149,150. Bac71-23 and Bac7PS were dissolved in water and 0.3% Tween20 at a 

concentration of 3 mM. The two peptides were dispensed into white 96-well plates 

(Eppendorf) using the TECAN D300e digital dispenser using the largest concentration of 

800 µM and then in 2.5-fold dilutions steps until a concentration of 0.08 µM was reached. 

The suspension volume for all drugs was normalized to 1.5 µl (E. coli S30) and 2.0 µl (HEK 

S30) containing 0.3% Tween20. The E. coli translation master mix contained 4 µl E. coli 

S30 extract, 0.2 mM amino acid mix, 6 µg tRNA (Sigma), 0.4 µg hFluc mRNA, 0.3 µl 

protease inhibitor (cOmplete, EDTA-free, Roche), 12 U RNAse inhibitor (Ribolock, Thermo 

Scientific), 1.3 µl H2O and 6 µL S30 premix without amino acids (Promega) per 15 µl total 

reaction volume. The HEK translation master mix contained 7 µl HEK S30 extract, 20 mM 

Hepes-KOH buffer pH 7.4, 95 mM potassium acetate, 10 U RNAse inhibitor (Ribolock, 

Thermo Fisher), 0.125 mM amino acid mix, 12.5 mM creatine phosphate, 0.25 U creatine 

phosphokinase, 1.25 mM ATP, 0.25 mM GTP, 0.5 µg hFluc mRNA, 1.875 mM DTT and 

2.9 mM magnesium acetate per 20 µl total reaction volume. 13.5 µl (E. coli) and 18 µl 

(HEK) of the translation master mix was added to each well to result in a total reaction 

volume of 15 μl and 20 μl, respectively. Plates were sealed with transparent foil and 

incubated for 1 hour at 37°C. After incubation, 75 µl of luciferase assay reagent (Promega) 

was added to each well, and luminescence was read using the plate reader BIO-TEK 

FLx800 (Witec AG, Littau, CH). Regression analysis for IC50 calculation was performed 

using Graphpad Prism version 8.3.0 by using the built-in equation: [log(inhibitor) vs. 

response – Variable slope (four parameters)] with the built-in fitting method: least squares 

(ordinary) fit. Y=Bottom + (Top-Bottom)/(1+10^((X-LogIC50))). 

 

Animals 
CD-1 mice (7 weeks-old, 27-28g female) were used (Charles River, France). These 

animals were housed for a week of acclimation period before experiment in a protected 

area in the ‘Centre de Zootechnie de l’Université de Bourgogne’  (Biosafety level 2 facility) 

and fed ad libitum according to the current recommendations by the European Institute of 

Health. Housing took place in rooms where a 12h/12h light/dark cycle is applied, the 

temperature ranges from 18 to 21°C and the relative humidity from 45 to 65%. Animal 

facility is authorized by the French authorities (Agreement N° C 21 464 04 EA). Animal 

housing and experimental procedures were performed according to the French and 

European Regulations and NRC Guide for the Care and Use of Laboratory Animals. All 
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procedures using animals were submitted to the Animal Care and Use Committee C2EA 

agreed by French authorities. Any animal showing poor conditions (20% body weight loss, 

signs of pain or distress, lack of activity) was humanely euthanized. 

 
In vivo toxicity and efficacy 

For animal experiments, Bac7PS was synthesized at Genscript as acetate salt and with a 

purity of 92%. The peptide was reconstituted in Dulbecco's phosphate-buffered saline 

(DPBS) at a concentration of 200 mg ml-1 and sterile filtered. All animal experiments were 

performed at Vivexia (Dijon, FR) according to a protocol submitted and approved by the 

local ethic committee and authorities (Ethics Committee of Burgundy and the Ministère de 

l’Enseignement Supérieur, de la Recherche et de l’Innovation). First, the maximum 

tolerated dose (MTD) for the peptide was determined by testing different peptide doses in 

8 groups with 5 animals per group. The peptide solution was administered once by 

intraperitoneal (IP) injection with a volume of between 94 and 240 µl (depending on the 

weight of the animal and the dosage) and the animals were monitored for 2 h hours 

following the injection, then 6 to 8 h later, and then once or twice a day, depending on the 

clinical status, up to 5 days post injection. For each group a different, predefined peptide 

dose was tested (500, 50, 100, 75, 15, 25, 30, and 40 mg kg-1) and a last group was tested 

at two injections (each 40 mg kg-1), administered with 4 h time difference. The MTD was 

defined as dose where no dead animals were observed 2 days after injection. Second, the 

in vivo efficacy of the peptide was tested in a murine septicemia model induced by E. coli 

ATCC 25922. For this, a total of 4 groups with 10 animals per group were infected by IP 

injection of the bacterial inoculum (1 x 106 CFU per animal, +5% mucin) and each group 

was treated differently: A first group received ciprofloxacin (as positive control) 

administered IP, once (1 h post infection) at a dose of 30 mg kg-1. A second group received 

DPBS (as vehicle control) administered IP, once (1 h post infection). The two other groups 

received the peptide, administered IP, twice (1 and 4 h post infection) either at a dose of 

10 mg kg-1 or of 30 mg kg-1. As endpoint the wellbeing and survival rate, on a twice daily 

based evaluation for up to 3 days, was monitored. 

 

Data availability 
All Supplementary tables and supplementary data can be accesses using the following 

link https://polybox.ethz.ch/index.php/s/FF8FLP7fPK8FSG1 and password 

BPL2021+Bac7PS. The computational workflow to reproduce the NGS count data 

analysis and ranking of peptides is available on GitHub 

(https://github.com/derpkoch/Bac7). NGS data are available at the NCBI Sequence Read 

https://polybox.ethz.ch/index.php/s/FF8FLP7fPK8FSG1
https://github.com/derpkoch/Bac7
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Archive (SRA) under accession number PRJNA730488. Additional data that support the 

findings of this study are available from the corresponding author upon reasonable 

request.  
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3.6 Supplementary figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 3.1 | Intracellular expression of randomly mutated Bac71-23 variants. 94 randomly 
picked E. coli TOP10 strains harboring 94 Bac71-23 variants were grown in microtiter plates (yellow lines). 
Peptide expression was induced at the start of incubation. Bac71-23 wild-type was added as the positive control 
(purple line). The inactive control peptide HNP-1 was added as the negative control (green line). 45% of all 
peptides do not reach >50% of the final OD of the negative control.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 3.2 | Growth of E. coli TOP10 expressing the Bac71-23 error-prone library. OD is 
recorded over 6 h. Three 1 liter shake flasks containing 100 ml of LB-medium each are inoculated with 500 
million cells of E. coli TOP10 carrying the peptide-encoded DNA library at -2.5 h (time reported relative to the 
time of induction). Peptides are expressed after 4 generations (0.0 h; OD~0.2) by adding L-arabinose (0.3% 
final; asterisk). Cell samples for NGS are isolated from each replicate at the time of induction and 4 h post-
induction (arrows). 
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Supplementary Fig. 3.3 | Histogram of Bac71-23 variants. The amino acid edit distance from each of 601,551 
peptides to the wild-type Bac71-23 is calculated. Most peptides  (38%; 228,433) of the library are quadrupole 
mutants with four amino acid residue exchanges to Bac71-23. ~99% of all peptides have between zero (wild-
type) and seven amino acid residue substitutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 3.4 | Amino acid residue counts per position. For each position, the number of amino 
acid residues observed among all 601,551 peptides of the library was counted. Only two residues were not 
observed: tryptophan on position 11 and methionine on position 16. Framed amino acid residues correspond 
to the Bac71-23 wild-type amino acid residue at each position.  
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Supplementary Fig. 3.5 | Statistical significance of the observed growth inhibitory measurements for 
each amino acid substitution. Complementary to calculating the z-score, a two-sided-p-value is calculated 
to assess the statistical significance of the observed measurements. p-values were adjusted using the 
Benjamini-Hochberg procedure with a false discovery rate of 𝛼𝛼 = 0.1. Grey boxes represent the amino acid 
residue substitution of which the calculated effect on growth inhibition is statistically not significant. Black dots 
correspond to the Bac7 parental amino acid residue at each position. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 3.6 | Growth of E. coli TOP10 expressing the Bac71-23 focused library. OD is recorded 
over 5.5 h. Three 1 liter shake flasks containing 100 ml of LB-medium each are inoculated with 500 million 
cells of E. coli TOP10 carrying the peptide-encoded DNA library at -2 h (time reported relative to the time of 
induction). Peptides are expressed after 4 generations (0.0 h; OD~0.2) by adding L-arabinose (0.3% final) 
(asterisk). Cell samples for NGS are isolated from each replicate at the time of induction and 4.5 h post-
induction (arrows). 
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Supplementary Fig. 3.7 | Interactions observed per amino acid residue. For each amino acid residue, the 
occurrences of interactions at all positions were counted. No antagonistic was effect detected for glutamate 
and valine residues. No interaction was detected for serine. On average, most interactions were observed for 
proline, arginine, and aromatic amino acid residues and least interactions for non-polar amino acid residues. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Fig. 3.8 | Membrane damage assay. Membrane damage assays measuring PI uptake of 
the cells (% cells are given that gained PI fluorescence) and sfGFP loss (% of the cells are given that lost 
sfGFP fluorescence) when incubating E. coli TOP10 cells with various peptide concentrations in full MHB I. 
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Supplementary Fig. 3.9 | In vivo toxicity. Bac7PS is applied intraperitoneally and survival of five CD-1 mice 
is measured for each concentration. A repeated administration of 40 mg kg-1 4 h after the first dosing does not 
influence survival of mice (asterisk). Survival did not change over the course of 2 days. 
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4.1 Introduction 

One holdup in the antimicrobial discovery process is the determination of the MoA of 

antimicrobials151. Even for heavily used antibiotics such as chloramphenicol, discovered in 

1948, the exact mechanism of action (MoA) is not fully understood152. Hence methods are 

being developed to determine the MoA of antibiotics151,153–155. Most of these methods are 

however not applicable in high-throughput and largely focus on small molecule antibiotics. 

In this chapter, I briefly summarize our experiments to develop methods for MoA 

determination that can be applied in high-throughput to determine if an AMP has an 

intracellular target or if it damages the bacterial membrane. These methods have been 

briefly introduced already in Chapter 2 and Chapter 3 and their development is reported 

here in full.   

4.1.1 Bioreporter to determine the mechanism of action of 
antimicrobials  

Bacteria have to withstand various environmental stresses such as lack of nutrients, 

changes in pH or temperature, oxidation, or the encounter of antimicrobials. To adapt to 

those changes, bacteria regulate pathways involved in transcription, translation, or the 

stability of proteins or RNA, using so-called stress regulatory networks156. The primary 

mechanism for this adaption occurs on the transcriptional level (RNA synthesis) by 

controlling the expression of regulons – groups of genes that are controlled by the same 

regulator156. RNA synthesis is directed by the DNA-dependent RNA polymerase (RNAp) 

in complex with one of a variety of sigma (σ) factors, which bind to RNAp and allow the 

enzyme to interact with specific classes of promoter sequences156. As the extent of the 

response by these transcriptional regulatory networks, in general, correlates with the level 

of stress156, transcriptional bacterial reporter systems (or “bioreporters”) have been widely 

used to study environmental changes. In this regard, a bioreporter is defined as a bacterial 

cell harboring a genetic circuit (often genetically engineered) that transduces the cellular 

sensory–regulatory response to environmental factors into a quantifiable signal originating 

from a reporter protein157. This signal can then be used as a measure for the degree of 

cellular stress in a dose-dependent manner.  

 

Different bioreporter systems have been used to differentiate between MoAs of 

antibiotics99,158,159. A useful collection of suitable bioreporter is the ‘Alon collection’114. This 

collection consists of a collection of low-copy plasmids harboring transcriptional fusions a 

variant of the green fluorescent protein (gfp) gene called to one of 1,900 different E. coli 

promoters (75% of all known E. coli promoters). This design allows the linking of activity 
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of the corresponding promoter and thus the cellular regulatory response to the expression 

of GFP. Thus, the use of such bioreporters allows for fast and parallel analysis and 

quantification of cellular stresses by, for example, plate readers, flow cytometers, or 

microscopes. To this end, the ‘Alon collection’ specifically has been applied for studying 

promoter activity at a genomic level160, or as a toxicological pre-screen for 

pharmaceuticals, among others100. However, a thorough analysis of the usability of the 

‘Alon collection’ to detect the MoA of antimicrobials is missing.  

4.1.2 Methods to detect antimicrobial-induced membrane 
damage 

All currently known antimicrobial peptides (AMPs) show some degree of membrane 

activity, the extent of which is dependent on their concentration and the medium or buffer 

in which they are investigated. The reason for this is that irrespective of their MoA most 

AMPs interact with membranes to either disrupt them (membrane permeabilizing AMPs) 

or to translocate across and reach intracellular or periplasmic targets (intracellularly active 

AMPs; Fig. 1.1). In general, these initial interactions are promoted by the cationic and 

amphiphilic (both hydrophilic and lipophilic) nature of AMPs, which allow them to 

accumulate at the anionic surfaces of the cell and the cytoplasmic membrane and 

eventually interact with fatty acyl chains of membrane phospholipids (reviewed in30). 

 

There are several reasons why it is of interest to determine if a peptide exerts activity 

primarily via membrane rupture. Firstly, membrane damage is often associated with off-

target toxicity towards human cells53 which is assessed in preclinical studies and often 

expressed as the therapeutic index (TI)146. Here, the concentration of peptides required to 

lyse eukaryotic cells or other cytotoxic damage is divided by their minimal inhibitory 

concentration (MIC) against bacteria, and the resulting ratio is the TI. A high TI in lead 

candidates is considered important because it might eventually lead to an increased 

therapeutic window when developed into a drug. Membrane damaging peptides typically 

show low TI and are therefore frequently not considered in subsequent drug development 

steps53,146. Secondly, next to having a high TI, peptides that do not lyse membranes but 

target other components of the cells, so-called intracellularly active peptides, might reveal 

novel antimicrobial targets. To date however, only a few of those molecules have been 

discovered and characterized46.  

 

There are many methods to detect membrane damage inflicted by an antimicrobial, such 

as fluorescence - or atomic force spectroscopy161,162, but most of them are very laborious 
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and therefore unsuited for high-throughput analyses and the characterization of larger 

peptide libraries. To quantify bacterial membrane damage, some more user-friendly 

methods were proposed that can also be used in high-throughput studies. In general, these 

rely on the uptake of propidium iodide (PI), a membrane-impermeable dye that binds to 

nucleic acids113 or the release of intracellularly expressed proteins such as GFP or β-

galactosidase (βGal)163,164. PI uptake is usually measured on the single-cell level via 

quantification of red PI-fluorescence in cells by flow cytometry. On the other hand, the GFP 

or βGal system is preferably used on the culture level, as the proteins need to be quantified 

in supernatants. Here the release of βGal into the medium is measured by quantifying the 

rate at which o-nitrophenyl-β-D-galactopyranoside (ONPG) is converted to the yellow-

colored o-nitrophenol (ONP) using UV/VIS spectrometry. GFP in the supernatant can be 

quantified by using fluorescence spectroscopy.   

4.1.3 Aim of the study 
Firstly, we aimed to exploit the ‘Alon collection’ to find suitable bioreporters that would 

allow us to classify antibiotic compounds according to different MoAs. We hypothesized 

that a promoter, which is part of a stress response network activated upon, for example, 

membrane damage, DNA damage (SOS-response), or inhibition of protein translation, is 

specifically upregulated when the cells are treated with compounds causing those 

damages. Ideally, we could use these bioreporters to discriminate the MoA of added 

antibiotics and intracellularly expressed AMPs, which, to the best of our knowledge, has 

never been tried before. For this, we first conducted extensive literature research on stress 

promoters. Subsequently, we experimentally validated their usability as a bioreporter 

system. Out of 40 potential E. coli bioreporters from the ‘Alon collection’, two bioreporters 

including the promoter of cold shock protein A (cspAp) or recombinase A (recAp) worked 

best to distinguish between compounds interfering with protein biosynthesis or with the 

SOS-response, respectively.  

 

Secondly, we aimed to compare different protocols for the detection of antimicrobial-

induced membrane damage. Based on our results, we propose to use single-cell analysis 

based on a dual-staining method using recombinantly produced GFP and externally added 

PI as reporters as the most suitable method to differentiate between membrane 

permeabilizing and intracellularly active peptides.  
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4.2 Results 

4.2.1 Experimental validation of ‘Alon collection’-derived 
bioreporters 

We first performed literature research on transcriptional stress responses and retrieved 40 

different promoters, their corresponding σ factor, and native functions of the genes 

immediately following the promoter (Table 4.1). We focused on promoters that are 

available in the ‘Alon collection’ and that are part of four different stress response networks 
which seemed particularly appropriate for identifying promoters that respond to antibiotic 

stress: envelope/membrane, protein biosynthesis, general/metabolic, and SOS-response. 

Table 4.1. Promoters investigated in this study. Promoter were empirically separated into four stress 
response networks. 

Stress response 
network  

Required σ 
factor  

Promoter 
name  

Function of expressed gene immediately 
following the promoter 

Envelope/Membrane σ54 pspBp Important for membrane integrity  
 Unknown minCp Inhibition of cell division  
 σ24 plsBp Phospholipid biosynthesis  
 σ24 degPp Periplasmic protease  
 σ70 ppiAp Periplasmic peptidyl-prolyl cis-trans isomerase 
 σ54, 32 ibpBp Hsp, molecular chaperone  
 σS, 54, 70, 24 rpoEp Response to periplasmic stress, σE factor of RNA 

polymerase 
 σ24 skPp Periplasmic chaperone  
Protein biosynthesis Unknown rpmpB 50S ribosomal component  
 σ70 rpsBp 30S ribosomal component  
 σ70 rpsJp 30S ribosomal component  
 σ70 cspAp Cold shock response  
 σ70 ssrAp Ribosome rescue  
 σ54, 32 ibpBp Heat shock protein, molecular chaperone 
 σS, 54, 70, 24 rpoHp σ32, heat shock response  
 σ70 rpsUp 30S ribosomal component  
 unknown smpBp RNA binding 
 σ70, 24 tufAp Elongation factor  
General/metabolic σS, 70 oxyRp Oxidative stress transcription factor  
 σ70 katGp Catalase, H2O2 degradation  
 σ70 trxCp Oxidative  (general stress)ductase  
 σS, 70 bolAp Activator of morphogenic pathway (general stress) 
 σ70 inaAp pH stress response  
 σ70 sodAp Superoxide dismutase 
 σ70 marRp Multidrug efflux pump  
 σ70 soxSp Oxidative and antibiotic stress response  
 σS tolCp Multidrug efflux factor  
 σ70 uspAp General stress protein  
 σ70 emrAp Multidrug efflux factor  
 σ70, 32 clpBp Molecular chaperone  
 σ54, 32 htpGp HSP90 family, heat shock  
DNA/SOS-response σS, 70 gyrBp DNA gyrase  
 unknown yoaAp Helicase, post-replication repair  
 σ70 polBp Polymerase mutation repair and bypass  
 σ70 recap Main SOS response effector  
 σ70 uvrBp Nucleotide excision repair subunit  
 σ70 dinGp DNA damage-inducible helicase  
 σ32 ybfEp DNA damage inducible protein 
 σ70 sulAp SOS dependent cell division inhibitor  
 σ70 lexAp SOS response regulator  
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Next, we selected antibiotics and stressors, available at our laboratory at the time, that 

target processes involved in at least one of the four stress response networks. Polymyxin 

B (PxB) damages membranes. Chloramphenicol, tetracycline, spectinomycin and 

streptomycin, as well as the proline-rich AMP bactenecin7 (Bac7) interfere with protein 

synthesis. Ampicillin (Amp) inhibits cell wall synthesis, eventually leading to cell lysis. We 

empirically assigned Amp to the general/metabolic stress response network as we 

speculated Amp might introduce stress on a global level. Hydrogen peroxide (H2O2) was 

assigned to the general/metabolic and to the DNA/SOS network as it causes oxidative 

stress but also induces damage to DNA. Finally, methylgloxal (MG) and mytomycin C (mC) 

as well as the AMP dermaseptin were assigned to the DNA/SOS stress response network. 

A detailed description of their MoA can be found in Table 4.2. 

Finally, we performed three assays (Fig. 4.1a) using the antibiotics displayed in Table 4.2 

to validate the expected function of bioreporters with the selected promoters. For this, we 

constructed a panel of bioreporter strains based on E. coli MG1655, and each of which 

carried a reporter plasmid with one of the promoters under study, as suggested by 

Zaslaver et. al114. 

a. Responsiveness: we tested if a given promoter (expected to be part of a specific 

stress network) indeed responded in an expected way to a specific antibiotic 

(expected to trigger the same specific stress network).  

b. Selectivity: for all promoters that were found inducible in a), we tested if they also 

responded to antibiotics that elicit stress in at least one other stress response 

network. 

c. Responsiveness upon intracellular synthesis: if a promoter was found responsive 

AND selective, we tested if it responded to the intracellular expression of a small 

set of AMPs.  
 
Table 4.2. Antibiotics and stressors used in this study. Antibiotics and other stressors were selected to 
deploy MoAs, which interfere with at least one of the four considered stress response networks. 

Stress response 
network 

Antibiotic or 
stressor name 

MIC* 
[μg ml-1] 

Description of MoA 

Envelope/membrane Polymyxin B (PxB) 2 Permeabilizes the plasma membrane 
through pore formation.  

Protein biosynthesis Chloramphenicol 
(Cmp) 

5 Irreversibly binds to a receptor site on the 
50S subunit of the bacterial ribosome, 
inhibiting peptidyl transferase.  

 Tetracycline (Tet) 1.5 Prevents the attachment of aminoacyl-
tRNA to the ribosomal acceptor (A) site. 

 Spectinomycin 
(Spec) 

20 Binds to the bacterial 30S ribosomal 
subunit and interferes with peptidyl tRNA 
translocation. 

 Streptomycin 
(Strep) 

10 Modifies association between 50S and 
30S, yielding aberrant initiation 
complexes and blocking ribosome cycle. 
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 Bactenecin7 (Bac7) Intracellular Inhibits protein translation by blocking the 
ribosomal exit tunnel  

General/metabolic Ampicillin (Amp) 20 Inhibits transmembrane surface enzymes 
catalyzing transpeptidation of the 
peptidoglycans in the bacterial cell wall. 

 Hydrogen Peroxide 
(H2O2) 

2505 Leads to different types of oxidative 
structural damages. 

DNA/SOS-response Mitomycin C (mC) 10 Inhibits DNA replication and transcription. 
 Methylglyoxal (MG) 50 Reacts with guanine residues of nucleic 

acids, interfering with DNA and RNA 
dynamics. 

 Hydrogen Peroxide 
(H2O2) 

2505 Leads to different types of oxidative 
structural damages. 

 Dermaseptin Intracellular Binds to DNA. Damages membranes. 
Disturbs protein translation. 

*minimal inhibitory concentration (MIC) values were taken from literature when measured against an E.coli 
strain 
 

We first tested the responsiveness of all bioreporters at the MIC of a specific antibiotic and 

four and 16-fold above and below the MIC. We did not measure response for 31 out of 40 

bioreporters. For example, the plsBp bioreporter, which is part of the membrane stress 

response network (Table 4.1), did not show any response upon addition of the membrane 

active PxB (Fig. 4.1b). On the other hand, nine bioreporters did show a response, as 

exemplified for the cspAp bioreporter response to Tet (Fig. 4.1b). In addition to the cspA 

bioreporter, the bioreporters containing rpsUp, recAp, polBp, sulAp, lexAp, katGp, oxyRp, 

and clpBp were responsive. For all nine promoters, we measured the strongest 

transcriptional response when testing at subinhibitory concentrations of antibiotics, a 

phenomenon known as hormesis165, and hence further used only concentration at MIC or 

below. We next tested the selectivity of the response of the designated set of bioreporters. 

Of the nine responsive promoters, only cspAp, rpsUp (both protein translation), and recap 

(DNA/SOS-response), were selective towards antibiotics targeting a single stress-

response network (summary of cspAp bioreporter and recAp bioreporter results in Fig. 

4.1c). All other promoters were responsive to at least one antibiotic or stressor from 

another stress response network and were thus excluded.   

 

Lastly, we tested the responsiveness upon an intracellular synthesis of AMPs. For this, we 

transformed bioreporters already harboring reporter plasmids with cspap, recAp and rpsUp 

with a second plasmid either carrying the gene for the 23 amino acid long derivative of 

Bac7 (Bac71-23), a peptide that inhibits protein translation166, or for dermaseptin, a peptide 

that, among other MoAs, damages membranes and interferes with DNA synthesis26. 

Expression of Bac71-23 induced a slight recAp bioreporter response while strongly inducing 

the expression of GFP under the control of the cspAp and rpsUp, which is consistent with 

Bac71-23 inhibiting protein translation (Fig. 4.1d). Dermaseptin strongly induced the recAp 

and rpsUp and did not induce cspAp, which is in agreement with dermaseptin disturbing 
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DNA synthesis. We hence decided to use the cspAp and recAp bioreporter to detect MoA 

of both extracellularly as well as intracellularly applied antimicrobials involved in protein 

synthesis inhibition or DNA damage. 

 
Fig. 4.1. | Characterization of bioreporters derived from the ‘Alon collection’  
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a) Experimental workflow. Responsiveness: all bioreporters from Table 4.1 were tested using antibiotics or 
stressors from Table 4.2 that target processes involved in the same stress response network. Selectivity: 
remaining bioreporter were tested against antibiotics that target processes involved in the remaining different 
stress response networks. Responsiveness to the intracellular expression: responsiveness of bioreporters was 
measure when AMPs were expressed intracellularly. Colors correspond to different stress response networks 
(promoters and antibiotics): red (protein biosynthesis), purple (general/metabolic), brown (membrane), blue 
(DNA/SOS-response), and yellow (water control). b) Example of one extracellularly responsive (left) and one 
non-responsive bioreporter (right). c) Summary of cspAp and recAp bioreporter responses to externally added 
antibiotics at subinhibitory concentrations. Bars represent the bioreporter response shown as GFP 
fluorescence (λEx 488 nm/λEm 530 nm) divided by OD (n=6; error bars = two standard deviations) d) Summary 
of cspAp and recAp bioreporter responses to intracellularly expressed antimicrobials (n=3; σ=1*sd). Control 
corresponds to the mean response of three intracellularly expressed AMPs that were inactive in previous 
experiments (results not shown). 

4.2.2 Methods to detect membrane damage 
To identify a fast and reproducible method for the detection of antimicrobial-induced 

membrane damage, we optimize an assay relying on the single-cell format. We evaluated 

these methods by using four antimicrobials: two known for lysis (colistin and melittin) and 

two know for a non-lytic MoA (Amp, Bac71-23) (see Table 4.3). With these reference 

compounds, uptake of externally added PI combined with a loss of recombinantly 

produced GFP from E. coli TOP10 quantified by flow cytometry on the other hand. 

Table 4.3: Antimicrobial controls for assay validations. 
Class Name MIC* (ug ml-1) Description of MoA 

Non-lytic Amp 20 Inhibits transmembrane surface enzymes 
catalyzing transpeptidation of the 
peptidoglycans in the bacterial cell wall. 

Non-lytic Bac71-23 6 Inhibits protein translation by blocking the 
ribosomal exit tunnel  

Lytic Colistin 0.1 Disrupts outer and inner membrane 
Lytic Melittin  10-30 Forms pores into outer and inner 

membrane 
*minimal inhibitory concentration (MIC) values were extracted from literature or were derived from our own 
experiments. 
 

Uptake of PI is a straightforward method to measure bacterial membrane damage in single 

cells by flow cytometry113. However, when assessing PI uptake to detect AMP-induced 

membrane damage we encountered very poor reproducibility between experiments, 

especially if PI was incubated for more than 1 h with antimicrobial-treated cells, or when 

high antimicrobial concentrations had been used (see results of melittin below; Fig. 4.2b). 

This could for example be attributed to a tendency to achieve complete lysis of cells 

allowing for leakage of DNA from severely damaged cells. We thus decided to develop a 

dual-staining method by combining the analysis of PI entry and GFP loss from 

antimicrobial-treated cells. Such a method had already been proposed before to detect 

alcohol-induced membrane damage136. To do so, we cultured bacteria that constitutively 

express GFP and treated them with compounds using cell concentrations as proposed for 

MIC assays112 (5*105 cells*ml-1, equivalent to an optical density at 600 nm (OD) =0.001). 

To detect membrane damage, we added PI and measured the percentage of PI-positive 
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and GFP-negative cells among 10,000 cells by flow cytometry. While optimizing the 

protocol, we noticed an increased resilience of E. coli TOP10 towards lytic antibiotics if 

grown to stationary phase. We hence ensured incubation during the exponential growth 

phase by adapting the cultivation procedure. The final workflow to detect membrane 

damage using single-cell analysis can be seen in Fig. 4.2a. We were able to correctly 

assign Bac71-23, Amp, and colistin to their respective non-lytic and lytic MoAs when using 

them at their MIC (Fig. 4.2b). Bac71-23 did not lyse cells at its MIC (no GFP release or PI 

uptake) but showed some membrane activity at >10 times higher concentration, which is 

in accordance with literature data117. Amp did not show membrane damaging properties 

even if provided at >100 times the MIC (no GFP release or PI uptake). Colistin strongly 

damaged the membranes even below its MIC and damage increased in a concentration-

dependent manner. At its MIC, around 75% of all cells suffered from severe membrane 

damage. Melittin also strongly damaged membranes at and below its MIC as visualized 

by almost 100% GFP release. However, PI uptake did not increase at concentrations 

around the MIC and even seemed to decrease at higher concentrations. We attribute this 

to severe and complete membrane damage caused by the pore formation of melittin, which 

would result in leakage of intracellular components such as DNA to which PI should bind. 

As a result, no cell-specific PI-positive signal could be obtained. This confirmed the need 

for a dual stain approach. In summary, for the four selected antimicrobial reference 

compounds, we were able to distinguish between unharmed cells, slight membrane 

damage, and cells that experienced complete membrane damage (Fig. 4.2c). In fact, GFP 

as a single-staining method sufficed for reporting the effect of most of the antibiotics used 

here. However, if membrane-damaging properties of intracellularly expressed AMPs or in 

strains not readily accessible to recombinant GFP expression are tested, PI remains the 

preferred alternative and should thus be included.  
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Fig. 4.2 | Flow cytometric single-cell analysis for detection of AMP-induced membrane damage. a) 
Workflow: E.coli TOP10 cells harboring a plasmid containing a constitutively expressing gfp gene are 
incubated with antimicrobials, using cell concentration of 5*106 cell ml-1, similarly to standardized MIC 
assays112. The fraction of PI- and GFP-positive cells are determined by flow cytometry and can be compared 
to a negative control represented by cells grown in the absence of antimicrobials. b) Percentage of GFP- and 
PI-positive cells when using the optimized protocol of a) using the antimicrobial reference compounds of Table 
4.3. Bars represent the means of technical triplicates. Error bars = two standard deviations. c) Scheme to 
illustrate the hypothesis for explaining possible outcomes of the optimized dual staining protocol.  
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4.3 Discussion and conclusion 

First, we evaluated 40 different bioreporters of the ‘Alon collection’ and their usability to 

discriminate between different MoA of antibiotics and AMPs. Some of the promoters 

covered in our list had already been applied successfully by others to study the MoA of 

different antibiotics but failed to deliver the predicted result in our study159. One reason 

might be that we applied more stringent criteria for bioreporter selectivity. Furthermore, 

some of the authors used bioreporters based on luminescence reporter proteins, or 

tryptophan auxotrophy-based instead of an antibiotic-based plasmid-selection system, 

which might interfere with the endogenous stress response to antibiotics158. Our results 

indicated that the cspAp and recAp bioreporter displayed the highest selectivity towards 

detecting antibiotic-induced stresses in processes involved in protein translation and DNA 

synthesis, respectively (Fig. 4.1c). Similar observations were made by others while 

characterizing the cspAp response in a βGal-based reporter system99.  

 

To the best of our knowledge, we showed for the first time that cspAp and recAp 

bioreporter can also be applied to detect the MoA of intracellularly produced AMPs. We 

showed that stress responses seemed to be similar between AMPs that inhibit the 

ribosome after their own ribosomal synthesis and externally added ribosomal inhibitors. 

The assay performance to detect stress response induced by intracellularly expressed 

AMPs could be optimized by limiting peptide expression levels to reach subinhibitory 

intracellular peptide concentrations. This could be achieved by including a titratable 

promoter, or by the use of weaker ribosomal binding sites in front of the gene that encodes 

the AMP. Lastly, as membrane damage is the most common MoA of AMPs, it would be 

desirable to design a bioreporter to also detect such damages. However, none of the 

membrane bioreporters tested by us was responsive to externally added peptides that 

damage membranes, and therefore we did not test them for membrane damage caused 

by intracellularly produced AMPs, either. We recently discovered work by others158, which 

used a bioreporter harboring the promoter of micF, encoding an RNA that regulates the 

expression of an outer membrane porin167, to detect membrane damage upon externally 

added antibiotics. This promoter is not present in the ‘Alon collection’, but could be 

synthetically produced, cloned in one of our constructs, and investigate for its suitability to 

detect membrane damage caused by intracellularly expressed AMPs. 

 

Secondly, we investigated approaches to detect antibiotic- or AMP-induced membrane 

damage. We propose to incubate strains with antimicrobials at their MIC to differentiate 

between membrane-lytic compounds and compounds that mainly target intracellular 
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processes of the cell. For the economical usage of usually limiting research components 

such as synthetically produced AMPs, we optimized a dual-staining protocol, based on 

uptake of PI and release of GFP, using flow cytometry-based analysis of single-cells. 

Because of its simplicity, PI uptake studies are used widely to detect membrane damage 

of AMPs91. However, in the case of AMPs that strongly damage membranes such as 

meltittin, limited PI uptake might be incorrectly interpreted and would need further dose-

dependent or kinetic investigation. However, in these cases, the complete loss of 

intracellularly produced GFP can be indicative of complete membrane damage and thus 

the correct assignment toward membrane damaging peptides can still be applied.   
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4.4 Methods 

Chemicals and reagents  
Unless otherwise stated, all antibiotics, chemicals, and other reagents were obtained from 

Sigma Aldrich (Buchs, CH). Kits for plasmid isolation were obtained from Zymo Research 

(Irvine, USA). Peptides in either purified (>90%) or crude format were obtained from 

Pepscan (Lelystad, NL) or Sigma Aldrich (Buchs). 

 

Bacterial strains and cultivations 
All experiments using ‘Alon collection’-derived bioreporter were performed using E. coli 

MG1655 (K-12 F– λ– ilvG– rfb-50 rph-1) carrying the pUA66 plasmid containing a pSC101 

origin of replication, a kanamycin resistance cassette, and the intergenic regions cloned 

by Zaslaver et al containing the respective promoters that control the expression of 

GFPmut2 reporter114. For all other experiments we used E. coli TOP10 (F– mcrA Δ(mrr-

hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK λ– 

rpsL(StrR) endA1 nupG; Thermo Fisher Scientific, Waltham, USA). In this study, all 

cultivations were performed in 14 ml polypropylene tubes (Greiner, Kremsmuenster, AT), 

filled with 5 ml of lysogeny broth (LB) medium (Difco, Becton Dickinson, Franklin Lakes, 

USA). All samples were incubated at 37°C with agitation on a shaker (Kuhner, Birsfelden, 

CH) operated at 200 r.p.m. and 25 mm amplitude. All media were supplemented with the 

appropriate antibiotic for plasmid maintenance (50 μg ml−1 kanamycin; 100 μg ml−1 

carbenicillin). For all cultivations on solid medium, 15 mg ml-1 agar (Difco) was added to 

the broth, and incubation was performed without shaking in an incubator (Kuhner) at 37°C. 

If not indicated differently, the OD of bacterial cultures was determined by measuring light 

scattering at 600 nm using a UV/VIS spectrophotometer (Eppendorf, Hamburg, DE). 

 
Bioreporter-based detection of externally added antimicrobials 

We picked strains directly from frozen stocks of the ‘Alon collection’, incubated them 

overnight in LB, and inoculated them into fresh medium to an OD of 0.05 on the next 

morning. We then grew the cells until OD~0.5 (~108 cells ml-1) and distributed 100 µl of 

cells into 96-well microtiter plates (Greiner). In those plates, antimicrobial compounds 

diluted in 100 µl fresh rich medium were added according to a given experimental layout 

(see Fig. 4.1a). Commonly, antimicrobial were applied at their MIC as well as at four and 

16-times higher and lower concentrations. The plates were incubated for 3-4 h at 37 C 

with light shaking in a plate reader (Tecan Infinite 200 PRO; Tecan, Männedorf, CH) and 

OD and GFP fluorescence (λEx 488 nm/λEm 530nm) were measured every 1000 seconds. The 

magnitude of the stress response was determined as the GFP/OD value compared to the 
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negative control (water added). Bioreporters were not considered for further 

characterization if their response in all wells (GFP/OD) did not increase by more than 2-

fold at compared to the negative control (water added) after 3.8 - 4.3h. 

 

Bioreporter-based detection of intracellularly expressed AMPs 

To test the response to intracellularly expressed AMPs, a selection of the ‘Alon collection’-

derived bioreporter cells were co-transformed with the mid-copy pBAD104 plasmid, carrying 

an ampicillin resistance and either the gene encoding for Bac71-23, dermaseptin, or inactive 

control peptides (tachyplesin, HNP-1, and pleurocidin) under the control of the inducible 

PBAD  promoter. The double transformed strains were incubated identical to the experiment 

using externally added antimicrobials. 100 µl cells were distributed into 96-well microtiter 

plates (Greiner) containing 100 µl of rich medium containing 0.6% L-arabinose for induction 

of peptide expression.  The plates were incubated and measured identical to the 

experiment measuring externally added antimicrobials. 

 
Table 4.4 Genes used in this study that were expressed from the pBAD plasmid 

Gene Sequence (5’-3’) 
Bac71-23 ATGCGGAGAATAAGACCTCGGCCACCTAGACTGCCTAGACCGCGCCCGCGT

CCATTACCATTCCCTCGGCCTTAA 
Dermaseptin ATGGCGTTGTGGAAGACGATGTTGAAAAAGTTGGGGACGATGGCGCTTCACG

CAGGCAAAGCGGCGCTTGGCGCCGCCGCAGATACTATTTCCCAGGGCACGC
AGTAGTAG 

Tachyplesin ATGAAATGGTGTTTTCGCGTGTGCTACCGTGGCATCTGTTATCGTCGCTGTCG
TTGATAG 

HNP-1 ATGGCGTGTTACTGCCGCATTCCTGCTTGTATCGCAGGCGAACGCCGTTACG
GTACTTGTATTTATCAAGGTCGCCTTTGGGCCTTTTGCTGCTAG 

Pleurocidine ATGGGATGGGGTTCGTTTTTCAAAAAGGCCGCCCACGTAGGGAAACATGTCG
GAAAGGCCGCGTTGACTCACTACCTTTGATGA 

 

Membrane damage assay 
For flow cytometric assays, E. coli TOP10 harboring a plasmid containing GFP under the 

control of the constitutive promoter J23118 (BioBrick:BBa_K823014), a kanamycin 

resistance cassette and an pBR322 origin of replication, were grown overnight in rich 

medium to stationary phase. The cultures were then used to inoculate (1:100) into fresh 

medium grown until exponential phase (~OD = 0.5), then put on ice for 20 min and finally 

diluted to 6*105 cells ml-1 with medium containing a final concentration of 1 µg ml-1 

propidium iodide (PI). Next, 50 µl of cell suspension were added to microtiter plate wells 

containing 50 µl medium with a 2-fold dilution series of the test compound. This was 

performed in triplicates. Cells and compounds were incubated at room temperature for 

30 min without shaking. For each sample, the GFP and PI fluorescence of 10,000 cells 

was measured using a flow cytometer LSR Fortessa (BD Biosciences), equipped with the 

appropriate optical configuration (488 nm laser with 530/30 nm bandpass filter and 579 nm 
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laser with 610/20 nm bandpass filter). To determine the membrane damaging properties, 

we calculated the percentage of GFP retaining and PI acquired cells using the FlowJo V10 

software (BD Biosciences). 
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 Conclusion and outlook 
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Traditional drug discovery efforts, that is identifying new chemical or biological entities 

(NCEs, NBEs) that selectively bind to disease-related targets in the human body, have 

decreased in output over the last 80 years. These drug discovery models might eventually 

be replaced by emerging technologies such as cell, gene, or immunotherapy, or even 

tissue engineering or regenerative medicine. However, even if these technologies 

succeeded in curing all diseases arising within the human body, there would still be a vast 

repertoire of ever-changing and evolving pathogens, including both bacteria and viruses, 

that impose an imminent threat to human health. As the treatment of such infectious 

diseases mostly depends on the interaction with targets specific to pathogens, it will be 

pivotal to continue investing in methods for the discovery of NCEs and NBEs as anti-

infective drugs, especially as pathogens quickly adapt to established therapies due to 

evolutionary processes. This is particularly crucial in light of the emerging AMR crisis, 

which is a global problem of great economic and environmental magnitude. Antimicrobial 

drug discovery is seminal to combat AMR and I thus aimed to make a contribution to the 

antimicrobial drug discovery field shown in this doctoral thesis. We developed methods for 

both the discovery (Chapter 2) and optimization (Chapter 3) of ribosomally produced 

AMPs. We used the pathogen model E. coli TOP10 for intracellular peptide expression 

and self-screening, and NGS as the assay readout.  

 

For our discovery platform, we used a rationally designed AMP library containing naturally 

encoded peptides that we discovered on genetic databases by using sequence-similarity 

to already known AMPs. The peptide-encoding DNA sequences were synthesized on DNA 

chips (microarray supported oligonucleotide synthesis) and expressed intracellularly in 

E. coli. Other NGS-based self-screening assays use simple endpoint measurement to 

screen for antimicrobial peptides. Mex however uses the kinetic recording in order to 

construct growth curves for each peptide-expressing strain. This enabled us not only to 

reliably differentiate between active and inactive AMPs, largely exceeding competing 

approaches in terms of hit-rate but also to determine the speed at which their specific MoA 

leads to cell death. We attributed fast growth inhibition to peptides that cause stronger 

membrane damage and delayed onset of a strong growth inhibitory effect to peptides that 

inhibit intracellular processes. We confirmed this hypothesis by further investigating the 

MoA of a selected subset of Mex-active peptides. In my point of view, the ability to identify 

membrane-damaging peptides via Mex could greatly accelerate the AMP discovery 

process: antimicrobials with strong membrane damage have been associated with 

increased toxicity towards eukaryotic cells, and could thus be eliminated early on in 

screening campaigns. Furthermore, the resolution of kinetic data can be enhanced by for 

example running the experiments with increased numbers of replicates, time points, and 
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higher sequencing depth. Such a rich data set could subsequently be exploited using 

machine learning algorithms that were trained on growth data of AMPs derived from the 

APD for which detailed MoA studies had been performed. Such experiments could further 

strengthen the applicability of a Mex-based pre-selection of potential peptide leads, or 

eventually, be used for the tailored discovery of AMPs employing specific MoA.  

 

In general, though, the discovery of AMPs could be massively expanded. The screening 

capacity of a Mex is a function of the initial library size, its ‘quality’ (sequence distribution 

bias), the transformation efficiency of the pathogen model, the resolution of the kinetic 

aspect, and available sequencing depth. Within the scope of a Mex-screening campaign 

(feasible, timely, economical), the limiting factor is the initial library synthesis platform. 

From the start of this project until now, the costs for pooled oligonucleotides synthesis 

have dropped dramatically and commercial platforms are now able to synthesize 

oligonucleotides with up to 300 bases each, compared to 170 bases about 4 years ago. 

Also, the ‘quality’ of these libraries improved, as indicated, for instance, by a minimized 

sequence distribution bias, which greatly reduces the need for oversampling in all 

subsequent steps to cover the entire library in the experiment. Thus, taking these 

improvements into account, current platforms can be expanded to screen libraries of more 

than 100’000 different peptides of a length of 90 amino acids without large increases in 

costs or changing any of our downstream analysis methods. I expect further technological 

advances in the field of nucleotide synthesis in the upcoming years and thus even further 

increases in Mex-throughput and scope.  

 

Next to discovering novel active AMPs, we used our bacterial self-screening platform to 

functionally analyze and optimize the ribosomal inhibitor Bac71-23. Contrary to the 

discovery pipeline, which was comprised of diverse and naturally-derived peptides, we first 

randomly and then semi-rationally altered the sequence of Bac71-23 using molecular 

biological tools. This resulted in hundreds of thousands of synthetic peptide variants, which 

we screened for antimicrobial activity using Mex. This allowed us to generate an 

antimicrobial fitness landscape across Bac71-23, which we exploited to design Bac7PS, a 

variant with four amino acid residues differences to Bac71-23. Compared to our discovery 

approach, which was limited by microarray-based synthesis to generate the library, the 

throughput of our optimization approach was limited by standard molecular biology 

operations (cloning, transformation) and DNA sequencing. To evaluate the Bac71-23 library, 

we generated roughly 1 billion sequence reads, which is already about one-tenth of what 

is currently possible in a single run (using an Illumina NovaSeq 6000 S4 flow cell) and 

does not leave much room to further increase throughput at this point. With our setup, we 
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provided one of the largest (the functional consequence of all amino acid residue 

exchanges) and most thorough (the functional consequence of multiple amino acid residue 

combinations) experimental analyses of the sequence space of any AMP to date. The 

optimized peptide variant Bac7PS strongly improved in antimicrobial properties over the 

already highly active Bac71-23 and is currently being evaluated in initial pre-clinical 

assessments. Traditional AMP design approaches cannot experimentally assess peptide 

libraries well when substituting multiple amino acid residues in a peptide due to the 

exponential increase of possible peptide variants. These approaches thus often suffer from 

low amounts of data points. I believe that our concept will not only inspire optimizations of 

other intracellularly active AMPs. In fact, it will open up new possibilities in studying 

structure-activity-relationship in AMPs and eventually guide advanced machine learning 

methods for the prediction of tailor-made AMPs.  

 

Our AMP discovery and optimization platform can be easily expanded. For example, 

screening campaigns can be extended to other transformable pathogens, including 

resistant or persistent bacteria. Overall, I argue that a transition from standard low-

throughput functional assays such as MIC-determinations to modalities that use NGS 

enables a step-change in terms of throughput, especially when exploiting recent 

developments in chemical DNA synthesis technology and molecular engineering. 

Together, these two developments have the power to entirely transform the process of 

developing therapeutic entities from gene-based templates. Of note, this does not only 

apply to antimicrobials, but can be extended to any human disease model, which can be 

reproduced in a microbe, or to the challenging field of protein-protein interactions.  

 

I believe that using our high-throughput methods can greatly accelerate the research and 

development of antimicrobials, but it still solves only a small piece of the antibiotic-AMR 

puzzle. For one, it is clear that AMP starting points need further development into lead 

candidates by chemical optimizations to ensure in vivo efficacy and safety. More strikingly 

though, there many additional revolutionary concepts that look at the function or the 

screening of novel antimicrobials from a more integrative perspective, including pathogen 

metabolism, in vivo behavior, or synergism with human host factors. Especially now, as 

the world suffers from a pandemic caused by the severe acute respiratory syndrome 

coronavirus type 2 (SARS-CoV-2), I noticed that a single and isolated solution to a global 

problem can only bring local and temporary relief. Only with a combined effort that includes 

innovative drug discovery-based approaches in the private or governmental sector as well 

as efforts in financing, regulation, and the education of the general population, we will be 

able to emerge successfully from upcoming global challenges, including AMR.   
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