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Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult
somatic cells using four Yamanaka transcription factors. Since their discovery, the
stem cell (SC) field achieved significant milestones and opened several gateways in
the area of disease modeling, drug discovery, and regenerative medicine. In parallel,
the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-
associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering,
allowing the generation of genetically modified cell lines and achieving a precise genome
recombination or random insertions/deletions, usefully translated for wider applications.
Cardiovascular diseases represent a constantly increasing societal concern, with
limited understanding of the underlying cellular and molecular mechanisms. The
ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9
technology could enable the systematic investigation of pathophysiological mechanisms
or drug screening for potential therapeutics. Furthermore, these technologies can
provide a cellular platform for cardiovascular tissue engineering (TE) approaches by
modulating the expression or inhibition of targeted proteins, thereby creating the
possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review
will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof
to the field of cardiovascular TE. In particular, the clinical translatability of such
technologies will be discussed ranging from disease modeling to drug screening and
TE applications.

Keywords: human induced pluripotent stem cells (hiPSCs), CRISPR-Cas9, cardiovascular tissue engineering,
regenerative medicine, cardiovascular disease modeling, 3D cell culture systems
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INTRODUCTION

Historic Considerations: Stem Cell
Research and the Foundation of Induced
Pluripotent Stem Cells
Stem cells (SCs) were first described in 1961 by Drs. James A.
Till and Ernest A. McCulloch at Toronto University, where they
discovered that mouse bone marrow-derived SCs possessed the
unique ability to differentiate toward a multitude of different
cell types (Till and McCulloch, 1961), thus laying the foundation
for SC research. SCs are characterized by two properties: (i)
self-renewal, which allow their indefinite division, producing
unaltered daughter cells and (ii) the ability to exit self-renewal
and differentiate into specialized cells giving rise to the three
germ layers (i.e., ectoderm, mesoderm, and endoderm) (Wobus
and Boheler, 2005). Naturally occurring SCs are classified by
their self-renewal and differentiation potential: (i) totipotent SCs
can differentiate into any cell type and can create an entire
organism, the zygote is an example of totipotent cells; (ii)
pluripotent SCs have the potential to differentiate into any cell
type stemming from the cell lineages (ectoderm, mesoderm, and
endoderm), human embryonic SCs (hESCs) is an example of
pluripotency; (iii) multipotent SCs can differentiate into cells
from a specific lineage, e.g., very small embryonic-like SCs
(VSELs), which are early development SCs from adult tissues;
(iv) oligopotent SCs can differentiate into a small number of
cell types from a specific tissue, such as adult SCs; and (v)
unipotent SCs, or progenitor cells, can differentiate into a single
cell type (Zakrzewski et al., 2019; Liu et al., 2020). Artificially
derived SCs, or human induced pluripotent SCs (hiPSCs), are
reprogrammed from a terminally differentiated cell, but carry
the same potency as hESCs. Additionally, nuclear transfer SCs
(NTSCs), where the nucleus of a zygote is replaced with a somatic
cell, are less effective than reprogrammed iPSCs (Zakrzewski
et al., 2019; Liu et al., 2020). In 1962, the technique of somatic
cell nuclear transfer (SCNT) provided the first evidence that
terminally differentiated cells could reprogram into a pluripotent
state (Gurdon, 1962; Wilmut et al., 1997). The year 1998 marked
the discovery of the first hESCs, by James Thomson (Thomson
et al., 1998), and the early 2000s demonstrated the fusion between
hESCs and somatic cells that confirmed the potential to revert
cells potency state to enable their reprogramming (Tada et al.,
2001). iPSCs were first reported in 2006 by reprogramming
innate adult somatic cells using four specific genes, octamer-
binding transcription factor-3/4 (Oct3/4) and sex-determining
region Y-box 2 (Sox2), combined to either c-Myc or kruppel-
like factor-4 (Klf4), and homeobox protein nanog (Nanog) or
lin-28 homolog A (Lin28) (Takahashi and Yamanaka, 2006;
Okita et al., 2007; Takahashi et al., 2007; Yu et al., 2007;
Figure 1).

hiPSC Technology: Advantages and
Disadvantages
The field of SCs considerably changed following the discovery
of hiPSCs, and the emergence of reprogramming technology
enabled the use of disease-specific hiPSCs, thereby circumventing

the (ethical) limitations of hESCs (Wobus and Löser, 2011). In
comparison with hESCs, the use of hiPSCs presents multiple
advantages, such as reduced ethical requirements, high degree of
dedifferentiation, high proliferation rate, and self-renewal ability
(Wobus and Löser, 2011; Kumar et al., 2017). Such properties
allow for the generation of libraries that can be used for the
development of drug screening/response platforms, significantly
reducing the related production costs (Wobus and Löser, 2011).

Additionally, allogenic hiPSCs can be reprogrammed from
individual patients, thus retaining patient-specific properties,
such as genetic information, and display no immunogenicity after
transplantation (Guha et al., 2013). Hence, hiPSC-based therapies
present a unique potential not only for disease modeling but also
for precision medicine by establishing novel treatment strategies
based on patient-specific phenotypes (Chun et al., 2011; Matsa
et al., 2016). Furthermore, hiPSC’s capability to undergo almost
indefinite proliferation cycles and the possibility to perform
single cell clonal expansion make hiPSCs a reliable cell source for
genome engineering approaches (Grobarczyk et al., 2015; Hotta
and Yamanaka, 2015). Within the past decade, the application of
these technologies has revolutionized several research areas, such
as regenerative medicine, disease modeling, drug discovery, and
human developmental biology demonstrating the reproducibility
of this methodology (Kwon et al., 2018; Nikolić et al., 2018;
Spitalieri et al., 2018; Cota-Coronado et al., 2019; Savoji et al.,
2019; Figure 1).

Nevertheless, hiPSCs also present limitations related to the
way they are produced. Former reprogramming approaches
used retro- or lentiviruses as delivery system for transcription
factors for somatic cell reprogramming arises safety concerns
in regard to the integration of the viral system in the host
genome, which can ultimately lead to genetic alteration, thus
increasing tumorigenicity risks (Howe et al., 2008; Higuchi et al.,
2015). More recent approaches aim at reducing the genetic
alterations caused by reprogramming via non-integrating viruses
(e.g., Sendai virus), episomal vectors, or through direct delivery
of reprogramming factors, such as protein or mRNA to generate
integration free hiPSCs (Kim et al., 2009; Okita et al., 2011; Diecke
et al., 2015; Schlaeger et al., 2015; Rohani et al., 2016).

hiPSC Technology: Regulatory
Considerations and Clinical Application
As previously mentioned, the differentiation potential of hiPSCs
and the numerous application possibilities of hiPSC-derived
products are enormous; however, their clinical translation is
still considerably hampered. Lack of scalable differentiation
protocols, undifferentiated cell contaminates, as well as unknown
in vivo hiPSC functionality and their potential to generate
teratomas still limit the broader clinical application of such
technology. To foster the use of hiPSCs and their derived
products into the clinics, research groups are focusing on the
establishment of reliable protocols for the isolation, generation,
proliferation, and differentiation of hiPSCs following GMP-
compliant regulations. In addition, preclinical efficacy and safety,
ethical compliance, and respect of the regulatory guidelines need
to be established a priori (Haake et al., 2019).
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FIGURE 1 | Generation and application of hiPSCs. Somatic cells are harvested from patients and reprogrammed into patient-specific hiPSCs. The hiPSCs can then
be differentiated into different cell types, such as cardiomyocytes, smooth muscle cells, and endothelial cells, which can be used in different applications. Adapted
from servier medical art, licensed under a Creative Commons Attribution 3.0 Unported License.

The rapid technology translation that hiPSCs are experiencing
often reveals the gaps and limitations that still need to be faced,
for example, genetic instability, immunogenicity, epigenetic
abnormalities (Ben-David and Benvenisty, 2011; Laurent et al.,
2011; Zhao et al., 2011; Liu et al., 2017; Bragança et al., 2019;
Ratajczak, 2019), as well as publication bias and late translation
into clinics after their generation, which can ultimately cause
misuse of the patient genetic code (Wolinetz and Collins, 2020).
In this regard, guidelines that protect the cell donors’ rights must
be granted in order to protect future patients. This is of great
concern as several clinical trials on hiPSCs are ongoing, some of
which focusing on cardiovascular diseases (CVDs) (Deinsberger
et al., 2020). Given the rapid propagation of such technology,
the establishment of regulatory guidelines for disease modeling,
drug discovery, and clinical translation is a must and has to be
enlightened by the regulatory offices and SC societies.

Rise of Genome Editing Technologies
and CRISPR-Cas9
The idea of genomic information exchange via exogenous DNA
homology recombination (HR) was initially demonstrated by
Oliver Smithies (Smithies et al., 1985). This discovery was
followed by the identification of meganucleases, which were able
to introduce double strand breaks (DSBs) at specific sites in
the genome, thus improving the insertion of exogenous DNA
(Choulika et al., 1995; Cohen-Tannoudji et al., 1998). These
findings opened the path for the development of the zinc finger
nuclease (ZFN) technology in 2009, of transcription activator-
like effector nuclease (TALEN) in 2011, and finally of clustered
regularly interspaced short palindromic repeats (CRISPR) in
2013 (Geurts et al., 2009; Tesson et al., 2011; Gasiunas et al.,
2012; Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013b;
Wang et al., 2013; Figure 2A). The CRISPR system originates
from the defense mechanism found in archaea and bacteria
(Terns and Terns, 2011). To be fully functional, the CRISPR
system requires: (i) a DNA endonuclease, i.e., the CRISPR-
associated protein 9 (Cas9), that cleaves the DNA specifically
at the protospacer adjacent motif (PAM) and (ii) a small RNA
molecule, known as the single guide RNA (sgRNA), that allows
the CRISPR-Cas9 to target the specific genomic location and
induce a DSB (Jinek et al., 2012; Anders et al., 2015; Figure 2A).

The DSB triggers DNA repair via two different pathways, non-
homologous end joining (NHEJ) or homology-directed repair
(HDR) (Jinek et al., 2012; Gaj et al., 2013; Mali et al., 2013a;
Figure 2A). NHEJ repair is a process that does not require
a homology template and can thus introduce insertions or
deletions (indel) at the cleavage site, thus causing a gene knockout
if the indel occurs in an exon (Wyman and Kanaar, 2006;
Hsu et al., 2014). To the contrary, HDR uses a homology
DNA template to obtain high-fidelity repair, thereby allowing
precise DNA insertions (Wyman and Kanaar, 2006; Hsu et al.,
2014; Lin et al., 2014; Maruyama et al., 2015). In addition,
further modifications of CRISPR-Cas9 allowed the development
of single base editing, a fusion of cytidine or adenosine deaminase
enzymes with Cas9, that enables single genetic modification
without DSB (Komor et al., 2016; Porto et al., 2020). Within
this technique, sgRNA targets the CRISPR-Cas9 base editor
to the specific sequence of DNA. Subsequently, the cytidine
deaminase induces the conversion of cytosine to uracil first,
and then to thymine, with adenine as complementary base.
On the other side, the adenine deaminase converts adenine
into inosine, which is recognized as guanine, with cytosine as
complementary base (Komor et al., 2016; Porto et al., 2020;
Figure 2B). Besides the ability of CRISPR-Cas9 to permanently
modify the genome, modifications of the catalytic site of the Cas9
nuclease allowed the generation of dead Cas9 (dCas9), which
retains the specific binding ability to DNA, without inducing
DSB (Qi et al., 2013; Hsu et al., 2014). Furthermore, fusion
of dCas9 to transcription activators (e.g., VP16, VP64, p65) or
transcription repressors (e.g., KRAB, SID) allowed to retarget
CRISPR-Cas9 toward gene expression modulation (Dominguez
et al., 2016; Mahas et al., 2018; Figure 2C). The CRISPR-
Cas9 technology currently represents an established gene editing
tool, which expands our understanding of genetic diseases
by restoring genome integrity, and provided disease-specific
cells for drug testing (Wang et al., 2014c; Zhang et al., 2014;
Hinson et al., 2015).

CRISPR-Cas9 Technology: Regulatory
Considerations and Clinical Application
The enthusiasm around CRISPR-Cas9 technology has garnered
a great degree of attention since its first reported use in 2013
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A B C

FIGURE 2 | Genome editing tools. (A) Zinc finger nucleases (ZNFs) and transcription activator-like effector nucleases (TALENs) recognize specific genomic sites with
their specific DNA-binding proteins, zinc finger and transcription activator-like repeats. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) is
directed to the specific genomic site with the help of the protospacer adjacent motif (PAM) in red and the sequence of the single guide RNA (sgRNA) in blue. Once
the specific genomic site is recognized, the catalytical subunits, Flavobacterium okeanokoites type IIS restriction enzyme (FokI), or CRISPR-associated protein 9
(Cas9) induces a double strand brake (DSB) and can be repaired either by non-homologous end joining that can lead to insertion/deletion or homology-directed
repair with the help of DNA template that allows the introduction of specific mutations. (B) Catalytically inactive Cas9 or dead Cas9 (dCas9) fused to a deaminase
(e.g., cytidine or adenine) can result in the conversion of cytosine–guanine base pairs to thymine–adenine or vice versa, without the need of a DSB. A = adenine,
T = thymine, C = cytosine, G = guanine, U = uracil, I = inosine. (C) An additional variation of dCas9 fused to a transcriptional activator/repressor can induce
transcriptional activation/repression of the targeted gene.

(Musunuru, 2017b). However, the ethical (moral), biomedical,
safety, and legal concerns regarding the use of such application
to the medical (clinical) field are gaining importance (Brokowski
and Adli, 2019). In 2015, the National Academics of Sciences,
Engineering, and Medicine (NASEM) compiled one of the most
extensive risk analysis reports on the use of such genome
editing tools on humans (Brokowski and Adli, 2019). Finally, the
committee agreed on somatic genome editing experimentation,
but did not allow human genome modifications nor any kind
of enhancement (Memi et al., 2018; Brokowski and Adli, 2019).
In this regard, CRISPR-Cas9 technology is significantly helpful
for the improvement of immunotherapies, organoid engineering,
drug target identification, and disease-gene modifications (Singh
et al., 2019). Particularly, this system offers the great potential
to progress therapies against HIV, hemophilia, cancer, and any
number of yet uncurable diseases (Singh et al., 2019).

HiPSC APPLICATIONS FOR
CARDIOVASCULAR RESEARCH

The mammalian heart has limited regenerative capacity and
is subjected to multiple genetic or non-genetic dysfunctions,
thus resulting in heart diseases and/or failure (Skrzynia et al.,
2014; Doppler et al., 2017). Currently, small and large animal
models are used to study human heart diseases, yet inter-species
differences as well as anatomical and physiological dissimilarities

complicate the clinical translation of safe and effective therapies
(Milan and MacRae, 2005; Camacho et al., 2016). Among the
existing SC therapies, hiPSCs emerge as a potential cell source for
CVD modeling and treatment (Park and Yoon, 2018; Sadahiro,
2019; Parrotta et al., 2020). Besides the possibility to generate
hiPSCs from patients’ somatic cells and giving access to patient-
specific cells, there is an added ability of hiPSCs to proliferate
indefinitely, maintain the genetic information of their host, and
differentiate into any cell type. This makes hiPSCs an ideal cell
source to investigate CVD originating from acquired genetic
or congenital defects thus establish a better understanding of
the pathological mechanisms and molecular functions regulating
cardiac disorders, thereby opening the path for the development
of new diagnostic and therapeutic approaches (Matsa et al., 2016;
Parrotta et al., 2020).

hiPSC-Derived Cardiomyocytes
Over the years, several attempts have been made to establish
hiPSC differentiation protocols that imitate the signaling
pathways involved in embryonic cardiovascular development to
obtain functionally mature cardiac cells (Skrzynia et al., 2014).
Initially, differentiation of hiPSCs into cardiomyocytes (CMs)
involved single cell suspension cultures. This induced hiPSCs to
spontaneously aggregate and form embryoid bodies (EBs), thus
mimicking embryogenesis (Maltsev et al., 1993; Yang et al., 2008).
Following EB formation, cells differentiated into the three germ
layers and finally acquired CM properties (Zhang et al., 2009;
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Zwi et al., 2009). However, despite the promising differentiation
outcomes, the presence of serum in the medium made EB-
based approaches prone to variability between samples, thus
compromising the reproducibility level (Osafune et al., 2008).
Subsequent improvements of EB-based differentiation protocols
employed cytokines and growth factors, such as Wnt proteins,
bone morphogenetic proteins (BMPs), activin A, and Notch
signals, combined to their respective selective inhibitors (Chau
et al., 2006; Laflamme et al., 2007; Wang et al., 2011; Lian
et al., 2012; Burridge et al., 2014; Bastakoty et al., 2016; Abad
et al., 2017), thus increasing the efficiency of differentiation.
Simplified procedures were additionally established to eliminate
the EB formation process by using a monolayer-based system
(Paige et al., 2010; Zhang et al., 2012; Kadari et al., 2015;
Talkhabi et al., 2016). Furthermore, the development of the two-
step differentiation protocols enabled the derivation of cardiac
progenitor cells (CPCs) from hiPSCs, followed by a second
differentiation step where either CMs, smooth muscle cells
(SMCs), or endothelial cells (ECs) could be obtained (Kattman
et al., 2011; Cao et al., 2013).

However, the limitations for the differentiation approaches
reported so far are that hiPSC-derived cardiac cells are
heterogenous and lack cellular maturity, which subsequently
result in fetal CM function and morphology (Veerman et al.,
2015; Machiraju and Greenway, 2019). hiPSC-derived CM
immaturity impairs the proper modeling of adult CVD due to
the inability to fully reiterate aging-related disease phenotypes, as
well as of genetic-related pathologies, thus negatively influencing
their use for drug development and screening (Veerman et al.,
2015; Goversen et al., 2018; Machiraju and Greenway, 2019).
To overcome the lack of mature and homogenous hiPSC-CMs,
new elaborate strategies were employed to include long-term
culture periods, the use of hormones in the differentiation
medium, mechanical or electrical stimulation, and the use of
in vivo environments (Chan et al., 2013; Kamakura et al.,
2013; Yang et al., 2014; Ruan et al., 2016; Cho et al., 2017;
Kadota et al., 2017; Ebert et al., 2019; Machiraju and Greenway,
2019). These latest studies resulted in increased hiPSC-CM
mitochondria generation, sarcomere maturation, change of
energy source to fatty acid instead of glucose, as well as an
enhanced electrophysiological metabolism and response electro-,
mechanical-, or pharmacological stimulation (Chan et al., 2013;
Kamakura et al., 2013; Yang et al., 2014; Ruan et al., 2016; Cho
et al., 2017; Kadota et al., 2017; Ebert et al., 2019; Machiraju and
Greenway, 2019).

hiPSCs and CVD Modeling
An efficient reproduction of human diseases requires a relevant
and precise model that recapitulates the pathophysiological
mechanisms of the disease itself (Savoji et al., 2019). In vitro
cell cultures and animal models can only recapitulate some
physiological features of human diseases, but not the entire
pathophysiological profile (Savoji et al., 2019). In fact, a broader
application of existing in vitro disease models can be limited
by the over simplification of in vitro approaches, the availability
of patient-specific cells, and their limited proliferation potential,
as in the case of CMs (Savoji et al., 2019). In this context,

hiPSCs represent a promising cell source, owing to features
such as human origin, unlimited proliferation capacities, and
potential to differentiate into any cell type. Pioneering studies
established hiPSCs from patients suffering from specific genetic
conditions, thereby enabling the generation of disease models to
mimic their particular molecular mechanisms (Park et al., 2008).
Disease modeling based on hiPSCs generated great progress in
the field of cardiovascular research, eventually providing the tools
to acquire a more precise understanding of the underlying CVD
mechanisms and to develop new therapeutic approaches. The
ability of hiPSCs to maintain the genetic profile of the host while
differentiating into cardiac-derived cells, such as CMs, SMCs, and
vascular ECs, enabled the production of robust in vitro CVD
models (Parrotta et al., 2020). Here, cardiac disorders including
cardiomyopathies, channelopathies, and structural-based cardiac
defects will be further discussed.

Cardiomyopathies
Cardiomyopathies encompass a number of disorders related to
distinct genetic mutations, such as hypertrophic cardiomyopathy
(HCM), dilated cardiomyopathy (DCM), arrhythmogenic right
ventricular cardiomyopathy (ARVC), and left ventricular non-
compaction (LVNC), and are defined by structural or functional
dysfunction of the myocardium (Sisakian, 2014; Hannah-
Shmouni et al., 2015).

HCM is one of the most common genetically inherited
cardiomyopathies and is linked to ventricular and septum
hypertrophy caused by hypertrophic CMs and fibrosis, resulting
in decreased cardiac function (Wexler et al., 2009; Argulian et al.,
2016). Hypertrophy of CMs is due to mutations in the genes
responsible for sarcomere function, such as myosin heavy chains
(MYH6, MYH7), myosin binding protein C (MYBPC3), troponin
I (TNNT2, TNNT3), and tropomyosin-α-1 chain (TMP1)
(Girolami et al., 2010; Sisakian, 2014). hiPSC technology allowed
to better characterize HCM using patient-specific hiPSC-derived
CMs harboring a MYH7 mutation (Lan et al., 2013; Dementyeva
et al., 2019; Filippo Buono et al., 2020). A first study showed the
potential of hiPSCs to mimic HCM phenotypes, such as enlarged
cells, sarcomeric dysfunction, arrhythmia, and impaired calcium
(Ca2+) handling, by using hiPSC-derived CMs from 10 patients
carrying a missense mutation in the MYH7 gene (A663H)
(Lan et al., 2013). Findings on Ca2+ handling abnormalities
allowed the identification of specific Ca2+-channel blockers (e.g.,
verapamil) and their function in restoring physiological Ca2+

regulation, hence averting HCM phenotype (Lan et al., 2013).
An additional study on HCM using patient-specific hiPSC-
derived CMs broadened our understanding of the underlying
disease mechanisms and thereby enabled the development of
new therapeutic approaches (Han et al., 2014). Particularly, the
study used hiPSC-derived CMs harboring a missense mutation
in the MYH7 gene (R442G) in combination with genome-wide
transcriptomics to investigate signaling pathways involved in the
developmental process of CMs. This enabled the identification
of potential therapeutic targets, such as Wnt, FGF, and Notch
pathways (Han et al., 2014).

DCM represents one of the most common diagnoses in
patients requiring heart transplantation and is associated with
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functional and structural impairment of the heart (Jacoby and
McKenna, 2012). DCM relates to inherited gene mutations
involved in sarcomeric protein synthesis [e.g., titin (TTN),
MYH7, lamin A/C proteins (LMNA), desmin (DES)] or genes
encoding ion channels [e.g., sodium channel protein type 5
subunit α (SCN5A)] (Gerull et al., 2002; Hershberger and
Morales, 2007; Herman et al., 2012; Mcnally et al., 2013;
Schultheiss et al., 2019). The use of patient-specific hiPSC-
derived CMs again enabled to mimic the mutations causing
the pathophysiological phenotype of DCM, thereby providing
a better understanding of its underlying molecular and cellular
mechanisms (Siu et al., 2012; Sun et al., 2012; Tse et al., 2013;
Wang et al., 2014b; Hinson et al., 2015; Karakikes et al., 2015b;
Lin et al., 2015; Wu et al., 2015; Wyles et al., 2016; Lee et al., 2017;
Streckfuss-Bömeke et al., 2017; Yang et al., 2018; Shah et al., 2019).

Additionally, hiPSC technology allowed the modeling and
the consequent discovery of specific therapeutic approaches for
other cardiomyopathies, such as ARVC (Thiene et al., 2007;
Caspi et al., 2013; Kim et al., 2013; Ma et al., 2013a) or
LVNC (Kodo et al., 2016). In the case of ARVC, patient-
specific hiPSC-derived CMs presenting the mutated PKP2
gene allowed the establishment of an ARVC in vitro model
by exposing hiPSC-derived CMs to induce metabolic aging
conditions (Kim et al., 2013). A subsequent study showed that
ARVC PKP2 mutation resulted in the upregulation of Wnt
and PPAR-γ pathways and lipid accumulation, which allowed
the identification of 6-bromoindirubin-3′-oxime (BIO) as an
inhibitor of glycogen synthase kinase 3β and a potential treatment
to reduce lipid accumulation (Caspi et al., 2013). LVNC was
successfully modeled with hiPSC-derived CMs and showed
abnormal signaling of transforming growth factor β (TGF-β) due
to a mutation of cardiac transcription factor T-box protein 20
(TBX20), thus impairing proper compaction of CMs (Arbustini
et al., 2016). Moreover, the correction of the mutation using
CRISPR-Cas9 and inhibition of TGF-β allowed to restore normal
phenotype (Kodo et al., 2016).

Overall, the implementation of hiPSC-derived CMs in the
development of CVD-related models provided evidence of their
ability to model complex cellular phenotypes and contributed
to a better understanding of a number of involved mechanisms
in the disease. Moreover, the knowledge obtained from hiPSC-
based CVD models uncovered novel treatment approaches.
Nevertheless, there are remaining questions regarding the
heterogeneity and immaturity of the hiPSC-derived CMs that
need to be further investigated to be able to utilize hiPSC
technology to completely model CVDs.

Channelopathies
Channelopathies are the result of mutations in genes encoding
ion channels and transporters and hence lead to a cardiac
electrophysiology impairment (Abriel et al., 2015; Bezzina
et al., 2015; Spears and Gollob, 2015). Disorders classified as
channelopathies are congenital long QT syndrome (LQTS) and
catecholaminergic polymorphic ventricular tachycardia (CPVT),
which induce arrhythmias, ventricular fibrillation, and seizures
ending with death (Abriel et al., 2015; Bezzina et al., 2015; Spears
and Gollob, 2015). The introduction of hiPSC technology allowed

for extensive studies into the underlying mechanisms of such ion
channel-related disorders (Sala et al., 2019).

LQTS is characterized by a delay in the cell membrane
repolarization after contraction and ventricular arrhythmias,
ultimately leading to heart arrest, and it is the first and
most studied arrhythmic syndrome using hiPSC-based models
(Abrams et al., 2010; Sala et al., 2019). LQTS exists in more than
10 different subtypes, but research has mainly focused on LQTS1,
LQTS2, and LQTS3, which result from a genetic mutation
of the potassium voltage-gated channel subfamily Q member
1 (KCNQ1), subfamily H member 2 (KCNH2), and sodium
voltage-gated channel α-subunit 5 (SCN5A), respectively (David
et al., 2014). In-depth studies of such arrhythmic syndromes
paved the way for the use of hiPSCs as well as for disease modeling
(Moretti et al., 2010). Several studies carried out with patient-
specific hiPSCs containing a mutation in the KCNQ1, KCNH2,
or SCN5A gene displayed strong similarities in the derived
CMs, such as prolonged action potential, reduced potassium
or sodium currents, and subsequent impairment of the ion
channel’s behavior (Itzhaki et al., 2011; Matsa et al., 2011; Egashira
et al., 2012; Lahti et al., 2012; Bellin et al., 2013; Mehta et al.,
2014; Wang et al., 2014c; Jouni et al., 2015; Ma et al., 2015).
Further understanding of channelopathy molecular mechanisms
facilitated by hiPSC-derived CMs showed that specific treatments
using potassium and sodium ion channel inhibitors restore
proper CM function (Fatima et al., 2013; Ma et al., 2013b;
Terrenoire et al., 2013; Mehta et al., 2014; Malan et al., 2016).

CPVT comprises two subtypes; CPVT1 arises from mutations
in the cardiac ryanodine receptor 2 (RYR2), and CPVT2 is caused
by a mutation in the calsquestrin-2 (CASQ2) gene (Leenhardt
et al., 2012; Roston et al., 2017). Both phenotypes result in
tachyarrhythmias triggered by stress and exercise (Swan et al.,
1999; Liu et al., 2013). RYR2 is responsible for the outflow of Ca2+

from the sarcoplasmic reticulum during depolarization, whereas
CASQ2 proteins bind Ca2+ in the sarcoplasmic reticulum
(Leenhardt et al., 2012; Roston et al., 2017). Multiple hiPSC-
based models recapitulated CPVT phenotypes, as well as showed
elevated diastolic Ca2+ concentrations, reduced Ca2+ in the
sarcoplasmic reticulum, and increased arrhythmias (Jung et al.,
2012; Kujala et al., 2012). Furthermore, the use of hiPSC-
based models identified new therapeutics, such as dantrolene,
β-blockers, and flecainide (Itzhaki et al., 2012; Jung et al., 2012;
Preininger et al., 2016; Sasaki et al., 2016).

Collectively, the introduction of hiPSC-derived CMs in
the modeling of channelopathies allowed for the acquisition
of a new knowledge into the mechanisms of cardiovascular
electrophysiology. This further established novel therapeutic
approaches to attenuate the observed pathophysiological
conditions (Swan et al., 1999; Liu et al., 2013; Roston et al.,
2017). However, the strength of the clinical translation of such
technology is limited due to the lack of complete maturity of
hiPSC-derived CMs, which still remains an issue that needs
further investigation.

Structural Defects
Structural heart diseases typically feature an abnormality in the
structure of the heart, valves, and/or vasculature and represent
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a rapidly growing CVD area that has been successfully modeled
using hiPSC technology (Peng et al., 2019). In particular, hiPSC-
derived models for bicuspid valvular and aortic calcification
identified mutations in the notch homolog 1 (NOTCH1) gene
(Garg et al., 2005; Theodoris et al., 2015). Additionally, the
generation of hiPSC-derived SMCs allowed to recapitulate
the multiple features of supravalvular aortic stenosis (SVAS)
including mutations in the elastin (ELN) gene (Ge et al., 2012;
Kinnear et al., 2020). Thus, hiPSC-derived models provide a
great tool to investigate cellular function as well as the molecular
mechanisms behind such diseases, ultimately leading to new
therapeutic approaches (Ge et al., 2012; Chailangkarn and
Muotri, 2017; Kinnear et al., 2020).

HiPSCS FOR TISSUE ENGINEERING
APPLICATIONS

Regenerative Medicine
hiPSC-based technology accelerated drug development and their
safety evaluation by providing tools to investigate various disease
mechanisms and to screen for potential treatments. Although
the current therapeutic approaches provide a treatment option
for specific diseases, they do not induce regeneration of the
damaged cardiac tissues to this date (Altara et al., 2016).
Therefore, the discovery of patient-specific hiPSCs offered a
potential novel treatment option to replace damaged cardiac
tissue and opened a new chapter in the field of regenerative
medicine (Menasché, 2018; Wang et al., 2018; Paik et al., 2020).
Furthermore, owing to the ability of potentially differentiating
into any desired cell type, hiPSCs provide a means to patient-
specific cardiac tissue regeneration, thus facilitating allogeneic
transplantation (Šarić et al., 2008; Zhang et al., 2009; Narsinh
et al., 2011; Kishino et al., 2020). The first studies using hiPSC-
derived CMs to restore cardiac diseased tissue involved the direct
injection of cells in the damaged area (Nelson et al., 2009;
Ye et al., 2014; Shiba et al., 2016; Liu et al., 2018). However,
despite the promising initial results, the implementation of
hiPSC technology into the clinic faces multiple challenges (Ma
et al., 2011). One of the main limitations is due to the hiPSC-
derived CM purity and the risk of teratoma formation post-
transplantation caused by the presence of undifferentiated cells
(Ma et al., 2011). Nowadays, several methods are in place to
overcome this lack of cell purity, such as the use of lactose instead
of glucose supplemented medium to eliminate undifferentiated
cells (Ma et al., 2011; Zhang et al., 2012). As already mentioned,
another limitation is the immature phenotype of hiPSC-derived
CMs (Lundy et al., 2013; Machiraju and Greenway, 2019),
as well as the low engraftment efficiency of the implanted
CMs after single cell transplantation (Lemcke et al., 2018; Park
et al., 2019). Therefore, cardiovascular regenerative medicine
shifted from single cell injections of hiPSC-derived CMs toward
alternative approaches to improve engraftment. By using tissue
engineering (TE) approaches, such as cell aggregates or patches,
cell retention and engraftment efficiency were greatly improved
(Masumoto et al., 2012; Emmert et al., 2013a,b; Wendel et al.,
2015). This led the field of cardiovascular regenerative medicine

toward the implementation of three-dimensional (3D)-based
culture systems.

3D Cell Culture System
A major step toward the generation of cardiovascular tissue
is to recapitulate the molecular environment, which is
best accomplished by using 3D culture systems, such as
scaffold-based, organoids, and organs-on-a-chip technologies
(Zimmermann et al., 2002a, 2004; Clevers, 2016; Günter
et al., 2016; Rosales and Anseth, 2016; Madl et al., 2018;
Ronaldson-Bouchard and Vunjak-Novakovic, 2018). While
two-dimensional culture systems are the standard approach in
cardiovascular research, these fail to recapitulate the complex
cellular composition and extracellular interactions existing in
native tissues. In order to properly mimic cardiac function, it is
therefore important to consider the 3D tissue composition to re-
create the cardiovascular cellular and extracellular environments.
The use of 3D culture systems presents the ability to closely
mimic the in vivo structure, microenvironment, cell–cell
interaction, and cell–extracellular matrix (ECM) interaction,
making it an interesting technology for disease modeling,
drug development/screening, and TE applications (Fong et al.,
2016; Correia et al., 2018; Chaicharoenaudomrung et al., 2019).
Different 3D culturing approaches are available, including
non-scaffold-based systems (e.g., spheroids and organoids) and
scaffold-based systems (e.g., tissue-engineered constructs), that
recapitulate ECM features.

hiPSCs in Cardiac Spheroids
Cardiac spheroids are typically used to mimic the native 3D
cellular environment by including multiple cell types in a
self-assembly process (Polonchuk et al., 2017; Hoang et al.,
2018; Yan et al., 2019). In this context, the number of cells
used to generate the spheroids can have an impact on the
viability of cells, especially the ones forming the core, due to
reduced oxygen supply when the spheroids diameter exceeds
beyond diffusion barrier limit (Tan et al., 2017). Different
studies generated spheroids by combining hiPSC-derived CMs
with structural heart cells, such as cardiac fibroblasts (CFs),
in order to closely recapitulate the native microenvironment
of the myocardium (Polonchuk et al., 2017; Tan et al.,
2017; Hoang et al., 2018; Mattapally et al., 2018; Yan et al.,
2019). A recent study generated cardiac spheroids by co-
culturing hiPSC-derived CMs with CFs and cardiac ECs and
exposed them to various Food and Drug Administration
(FDA)-approved drugs to test their potential as platform for
cardiotoxicity assay (Archer et al., 2018). A different study
produced cardiac spheroids, representative of the morphology
and biochemistry of myocardial tissue out of hiPSC-derived
CMs, hiPSC-derived CFs, and cardiac ECs (Polonchuk et al.,
2017). Furthermore, the hiPSC-based cardiac spheroids allowed
to investigate the underlying cardiotoxicity mechanisms of
doxorubicin (Polonchuk et al., 2017). Another relevant study
used cardiac spheroids composed of CMs and mesenchymal
stem cells (MSCs) derived from hESCs as an in vitro platform
to model fibrosis (Lee M.O. et al., 2019). Treatment of the
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cardiac spheroids with TGF-β induced a fibrotic phenotype
(Lee M.O. et al., 2019).

hiPSCs in Cardiac Organoids
Similar to spheroids, organoid culture systems are described as
a 3D approach that includes a specific cellular organization
and a precise architecture that ultimately relies on a
process of self-assembly (Lancaster and Knoblich, 2014;
Chaicharoenaudomrung et al., 2019; Hofbauer et al., 2020). Since
the first in vitro creation of the murine small intestinal organoid
(Sato et al., 2009), many fields have been using organoid-based
culture systems to mimic and recapitulate organ-like tissue
architecture and cellular composition (Sato et al., 2009; Huch
et al., 2013; Lancaster et al., 2013; Chen et al., 2017). The
development of hiPSC technology opened the path for the
development of patient-specific hiPSC-based organoids required
to re-create functional cardiac organoids (Mills et al., 2017;
Richards et al., 2017). Other studies aimed at producing 3D
vascular networks organoids by means of an in vitro co-culture of
hiPSC-derived ECs with vascular cells, such as pericytes (Kusuma
et al., 2013; Orlova et al., 2014; Chan et al., 2015). A more recent
study generated organoids that recapitulated blood vessels, by
differentiating hiPSCs in suspension into the mesodermal lineage
prior to inducing EC differentiation. The resulting blood vessel
organoid displayed morphological and functional similarities
with native human blood vessels when implanted in the kidney
capsule of mice (Wimmer et al., 2019). However, the self-
assembly process used in most organoid procedures is still one of
the limiting factors for a consistent generation of cardiovascular
tissues. Specifically, this process is not yet defined, but is rather
a random method resulting into heterogenous organoids in
regard of cell composition, size, and shape (Brassard and Lutolf,
2019). Particularly, the size of the organoids is limited due to
the manufacturing approach, thus impairing the application of
organoids to regenerative medicine (Brassard and Lutolf, 2019).
Nonetheless, the application of hiPSC-derived cardiac organoids
to disease modeling presents multiple advantages in precision
medicine by allowing the simultaneous study of a large variety
of phenotypes, but also a robust technology applicable in drug
development and screening (Mills et al., 2017; Voges et al.,
2017; Hoang et al., 2018; Nugraha et al., 2018; Mills et al., 2019;
Nugraha et al., 2019; Filippo Buono et al., 2020).

hiPSCs for Cardiovascular Tissue-Engineered
Constructs
TE aims to recreate functionally native tissue by recapitulating
the exact cellular composition and ECM structure by means of
bioengineering methodologies. The final purpose is to replace a
diseased tissue or organ and/or develop and test new therapeutics.
The application of TE to the medical field is of high clinical
relevance for the regeneration of tissues with limited self-
regenerative potential, such as the heart, pancreas, bone, and
cartilage (Risbud et al., 2001; Sepulveda et al., 2002; Niknamasl
et al., 2014; Emmert et al., 2017).

The classical TE approach relies on the combination of cells
and biocompatible scaffolds to engineer tissue constructs with
similar properties to native tissues. In this context, the scaffold

not only is responsible for the structural support of the seeded
cells but also can impact different functional aspects, such as cell
survival, proliferation, and differentiation (Vunjak-Novakovic
et al., 2011; Buikema et al., 2013; Chun et al., 2015). The first
engineered heart tissue was developed using rat CMs cultured
on a scaffold (Zimmermann et al., 2002b). This pioneered
the development of novel approaches using various synthetic
(e.g., polylactide, polyglycolide, lactide and glycolide copolymer,
polycaprolactone, and polyisopropylacrylamide) and/or natural
(e.g., collagen, cellulose, chitosan, hyaluronic acid, silk fibroin,
and decellularized native tissue) (Vunjak-Novakovic et al., 2011;
Buikema et al., 2013; Chun et al., 2015) scaffolds in the pursuit
to optimize cardiovascular tissue-engineered constructs (Murry
et al., 1996; Planat-Benard et al., 2004; Ravichandran et al., 2013;
Wendel et al., 2014). The advent of PSCs, more specifically
hiPSCs, offered access to an unlimited source of autologous
cells with the ability to theoretically differentiate into any cell
type in the body. Furthermore, the combined use of a scaffold,
hiPSCs, and their metabolites provided the ability to generate
personalized scaffolds, thus creating a tool with tremendous
application potential (Noor et al., 2019). The first engineered
cardiovascular tissue construct was based on the differentiation of
ESCs into CMs and displayed the potential of PSCs to recapitulate
metabolic and mechanical functions of the native myocardium
(Stevens et al., 2009).

One fundamental aspect of tissue-engineered constructs,
which strongly impact their in vivo behavior once implanted, is
their fabrication method. While cardiac patches are generated
by stacking cell monolayers to produce a functional tissue, 3D
cardiac tissues make use of scaffolds to optimize cell proliferation,
differentiation, and survival and mimic myocardium ECM
structure and composition (Eschenhagen et al., 1997; Sawa
et al., 2012). Various studies produced cardiac tissues using the
cell sheet approach with hiPSC-derived cardiac cell types and
induced in vivo recovery of damaged heart tissue (Masumoto
et al., 2014; Masumoto et al., 2016; Ishigami et al., 2018).
Nonetheless, the number of layers comprising the cardiac cell
sheet has to be limited to maximize oxygen and nutrients
diffusion and avoid tissue necrosis, which was improved using
a biodegradable biomaterial to facilitate oxygen and nutrient
transfer (Matsuo et al., 2015). In the same research framework,
the combination of 3D scaffolds and hiPSC technology was
explored to generate cardiac tissue constructs and establish new
approaches to treat cardiovascular-related defects (e.g., vascular
grafts and heart valves). In this context, TE approaches were
combined with hiPSC-derived ECs and hiPSC-derived SMCs to
produce vessels and/or valvular constructs, which recapitulated
the physiological features of their native counterparts (Nakayama
et al., 2015). A recent study used hiPSC-derived vascular SMCs
cultured on polyglycolic acid (PGA) scaffold to manufacture
vessel substitutes, which presented similar mechanical resistance
as the clinically used prosthesis (Luo et al., 2020).

Valvular heart disease (VHD) is another type of cardiac
defect that may benefit from hiPSC technology. VHD remains
as one of the major heart problems and requires replacement
to restore proper valvular function in the majority of patients
(Kheradvar et al., 2015). The currently available prostheses are
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either mechanical or bioprosthetic valves (Poulis et al., 2020),
and although they represent the current standard of care,
both substitutes still present with significant limitations (e.g.,
degeneration, thromboembolic risk, need for anticoagulation
treatment) as reviewed elsewhere (Head et al., 2017; Fioretta
et al., 2020b; Poulis et al., 2020). Particularly, TE approaches
could provide a potential solution to overcome the current
limitations by generating tissue-engineered heart valves (TEHVs)
with the ability to grow and remodel within the patient (Schmidt
and Hoerstrup, 2006; Emmert and Hoerstrup, 2017). In this
context, multiple cell and SC sources have been investigated for
the generation of ready-available regenerative TEHVs (Cambria
et al., 2017; Emmert, 2017). At the dawn of this technology,
autologous cells and tissue sources were cultured in a bioreactor
system to favor cell proliferation and ECM production (Weber
et al., 2012b; Fioretta et al., 2018). However, the technical and
logistical challenges of this TE approach (i.e., cell isolation and
expansion, donor-to-donor variability, and unknown in vivo
remodeling outcomes) led to the implementation of one-
step interventions (Emmert et al., 2017). In this context,
bioresorbable polymer-based TEHVs were adopted preclinically
in combination with pre-seeding procedures using autologous
SCs [bone marrow mononuclear cells (BMMCs) and fetal
cells] to modulate the early in vivo inflammatory response
(Emmert et al., 2011, 2012, 2014; Weber et al., 2011, 2012a;
Fioretta et al., 2020a). However, further studies need to clarify
the remodeling effects that SCs can develop in combination
to the valvular hemodynamic conditions in order to exclude
potential deleterious effects on the implanted substitute as well
as guarantee long-term functionality and adaptive remodeling
(Fioretta et al., 2020a; Mela, 2020). Akin to the use of hiPSC-
derived SMCs for the generation of vascular grafts, the use of
hiPSCs derivatives could be of high potential in the production
of autologous TEHV.

Moreover, the combination of natural or synthetic scaffolds
with hiPSC technology for TE constructs demonstrated that
along with providing proper cell adhesion and proliferation,
scaffold vascularization was triggered and favored tissue
remodeling of the TE construct once implanted (Gaballa et al.,
2006; Miyagi et al., 2011; Shi et al., 2011; Geng et al., 2018; Lee A.
et al., 2019). Particularly, proven the promising preclinical and
clinical outcomes of decellularized tissue-engineered matrices
(Schmidt et al., 2010; Driessen-Mol et al., 2014; Emmert et al.,
2018; Lintas et al., 2018; Motta et al., 2018, 2019, 2020), such
starting materials could provide an interesting substrate to be
implemented within the hiPSCs therapies options.

DRUG DEVELOPMENT AND SCREENING

The preclinical development of new therapeutics or drugs
involves multiple processes, such as drug screening, in vitro
and in vivo pharmacological and pharmacokinetic activity
assessments, and safety analysis (Gromo et al., 2014). The
discovery of hiPSCs provided a new platform that significantly
changed preclinical drug screening and development (Paik
et al., 2020). The combination of hiPSCs to next-generation

sequencing, genome-wide association studies, and libraries of
molecules allowed for the establishment of a powerful cell-based
platform, which enabled the investigation of potential therapeutic
molecules (del Álamo et al., 2016; Sharma et al., 2018; Paik
et al., 2020). The application of an hiPSC-based platform
to cardiovascular pharmacology facilitated the generation of
patient-specific and disease-specific cell sources, such as hiPSC-
derived CMs, that exhibited pathophysiological phenotypes
similar to the one observed in diseased patients, thus providing a
screening platform for existing and new drugs (Chun et al., 2011;
del Álamo et al., 2016; Matsa et al., 2016; Sharma et al., 2018).
In particular, the use of hiPSC-derived CMs as a screening tool
to investigate the safety of drugs used in the treatment of HCM
(such as metoprolol and verapamil) was successfully proven (Han
et al., 2014). Furthermore, patient-specific hiPSC-derived CMs
were employed to assess the cardiotoxicity of chemotherapeutics,
such as doxorubicin and trastuzumab, showing how prolonged
exposure to such drugs, induced decreased cell viability,
perturbation in Ca2+ management, mitochondrial malfunction,
and contraction impairment (Burridge et al., 2016; Chaudhari
et al., 2016; Kitani et al., 2019). The available high-throughput
assays and high-scale production of hiPSC-derived CMs enabled
the simultaneous screening of multiple drugs on different lines
of hiPSC-derived CMs, thus generating a faster assessment of
drug-induced cardiotoxicity (del Álamo et al., 2016; Denning
et al., 2016; Blinova et al., 2018; Grimm et al., 2018; Millard
et al., 2018; Sharma et al., 2018; Burnett et al., 2019). Drug
cardiotoxicity represents one of the main concerns in cancer
treatment; thus, the development of hiPSC-based therapies
provided an unprecedented advantage to evaluate and discover
the cardiovascular toxicity of specific drugs, prior to clinical trials
(Sharma et al., 2018).

Although 2D in vitro cell models are routinely used, such
technologies lack the structural complexity, electrophysiology,
and expression profile of human tissues, which can reduce
the fidelity of the model and impair accurate characterization
of drug effects and toxicity predictions on cells (Veerman
et al., 2015; Machiraju and Greenway, 2019). In fact, the cell
types constituting human organs are co-dependent for the
exchange of molecules promoting growth, cell–cell interaction,
and cell–ECM interaction (Paschos et al., 2015). The advent
of 3D cell culture systems allowed to generate a more faithful
representation of the cardiac cellular microenvironment, thus
overcoming the limitations of 2D culture systems (Fong et al.,
2016; Correia et al., 2018; Ronaldson-Bouchard et al., 2018). It
has been suggested that the presence of 3D architecture and
ECM influences the drug diffusion and dose-dependent toxicity,
thereby providing a more reliable readout than 2D screening
systems (Langhans, 2018; Zuppinger, 2019). The implementation
of TE approaches further promoted a transition from 2D to 3D
models in the drug screening processes. In this regard, several
achievements have been made in the development of hiPSC-
based tissue-engineered 3D cardiac platforms (Langhans, 2018;
Zuppinger, 2019). As an example, hiPSC-derived CMs were used
to manufacture multilayered 3D cardiac tissues and adopted to
characterize drug-induced cardiotoxicity of various known drugs,
such as doxorubicin, hERG-type potassium channel blockers, and
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isoproterenol (Takeda et al., 2018). Other approaches involve 3D
printing of micro-physiological platforms simulating heart tissue,
which were implemented in drug studies (Polini et al., 2014; Lind
et al., 2017). To be noticed, a recent study developed an organoid-
based platform and established a method to investigate drug-
induced cardiotoxicity at the tissue level (Richards et al., 2020).

HiPSCS AND GENOME EDITING
TECHNOLOGIES FOR
CARDIOVASCULAR APPLICATIONS

The study of site-specific nucleases (SSNs) started with the
findings that DNA DSBs were repaired by the cell repair
machinery using the HDR or NHEJ pathway (Rouet et al.,
1994a,b). Subsequently, SSNs were implemented as a tool to
engineer the genome at targeted sites. The initial nucleases were
found to be hybrid proteins, known as ZFNs and TALENs, and
were followed by the latest, CRISPR-Cas9 (Musunuru, 2013). The
discovery of these nucleases revolutionized the field of genome
engineering and biomedicine (Musunuru, 2013). While ZFNs
and TALENs specific targeting relies on a protein-based system
with customized specificity to DNA, CRISPR-Cas9 specific DNA
targeting is RNA-guided and relies on a gRNA of 20 nucleotides
(Corrigan-Curay et al., 2015). CRISPR-Cas9 has quickly become
the most used gene editing technology due to the simplicity and
adaptability of the RNA-based targeting system, which is easily
customized to target any wanted sequence in the genome (Sander
and Joung, 2014; Corrigan-Curay et al., 2015). These molecular
editing tools have the ability to induce a DSB at a desired location
in the genome, thus leading to either NHEJ or HDR for DNA
repair. This allows for the introduction of a targeted mutation
related to a diseased phenotype or to correct a disease-causing
mutation (Cong et al., 2013). Progress in genome engineering
methods, especially using CRISPR-Cas9, led the way for the
development of isogenic cell lines, which in turn allowed for the
introduction or correction of a desired mutation and, thus, the
generation of several disease models (Hockemeyer and Jaenisch,
2016). Furthermore, the combination of hiPSC technology
and the improvement of hiPSC differentiation protocols with
CRISPR-Cas9 gene editing tools have established powerful
approaches for SC-related research, human disease modeling,
and drug development/screening (Schwank et al., 2013; Johnson
and Hockemeyer, 2015; Matano et al., 2015; Musunuru, 2017a).

Off-target effects are a limitation in the use of CRISPR-Cas9
technology and other gene editing tools (De Masi et al., 2020).
Off-target effects arise from unspecific targeting of the Cas9
nuclease, due to non-specific binding of the designed sgRNA
sequence (Fu et al., 2013; Tycko et al., 2016; Naeem et al.,
2020). The design of sgRNA is therefore very important to
properly guide the Cas9 nuclease and aims to the minimization
of unspecific genome binding (off-target events). Several studies
assessed the off-target occurrence in specific cell lines showing
that the frequency is cell-dependent (Fu et al., 2013), and that
iPSCs have a low off-target occurrence (Smith et al., 2014;
Veres et al., 2014). Nevertheless, off-target effects still represent
a limitation that requires further investigation to broaden the

clinical use of such gene editing tools (Rincon et al., 2015; Naeem
et al., 2020). An additional constraint that can affect gene editing
efficiency is linked to the delivery system (e.g., electroporation,
micro-injection, transfection, lipofection, or viral vector) and
the format of the Cas9 nuclease components [e.g., plasmid,
mRNAs, or ribonucleoprotein complex (RNP)] (Lino et al.,
2018). Depending on the format of Cas9, cells and/or tissues are
subjected to a prolonged exposure; thus, transient expression of
the Cas9 using RNP format is preferable to limit off-target effects
and avoid unwanted gene editing (Moore et al., 2015; Liang et al.,
2017; Sakuma et al., 2018; Singh et al., 2018).

The implementation of gene editing technology to CVD
modeling using hiPSCs produced isogenic hiPSCs, thus creating
genetically matched cells containing only selected inserted
mutations. This system could correlate specific mutations to
the observed phenotype (Dzilic et al., 2018) as well as generate
hiPSC-based disease models that recapitulated CVD (Wang et al.,
2014a; Kodo et al., 2016; de la Roche et al., 2019; Garg et al.,
2019; Mcdermott-roe et al., 2019). Besides introducing specific
mutations, various studies showed the potential of CRISPR-
Cas9 in the correction of single genetic mutations related to
various diseases, such as HCM, DCM, and LQTS (Karakikes
et al., 2015b; Limpitikul et al., 2017; Seeger et al., 2019). In
addition to gene editing, the CRISPR-Cas9 system also possesses
the ability to regulate gene expression. The development of a
catalytically inactive form of the Cas9 nuclease, known as dCas9,
repurposed Cas9 into a protein able to specifically bind DNA and
interfere with the gene expression, when targeted to a promoter
or a regulatory sequence using a gRNA (Gilbert et al., 2013;
Qi et al., 2013). Studies showed that the combination of the
dCas9 with a transcriptional repressor and the specific targeting
of the dCas9 toward a promoter or a regulatory sequence
induced a downregulation of the targeted gene (Gilbert et al.,
2013; Mandegar et al., 2016). Alternatively, studies demonstrated
that coupling of dCas9 to a transcriptional activator induced
the recruitment of gene effectors, thus leading to an increased
expression of the gene in question (Maeder et al., 2013).

Moreover, studies showed the ability of gene editing tools
to repurpose terminally differentiated cells, without having
to go through a pluripotent state (Gao et al., 2013). Recent
investigations showed the possibility of direct reprogramming
of terminally differentiated fibroblasts into skeletal myocytes
by targeting dCas9 coupled to an activator toward the Myod1
gene, inducing high expression of myogenic markers, thus
promoting differentiation from fibroblast directly into skeletal
myocytes (Chakraborty et al., 2014). This approach could directly
generate CMs and other relevant cardiac lineages in vivo, by
reprogramming resident CFs to restore and regenerate damage
tissue after injury.

The advances in gene editing and hiPSCs technologies
triggered the research of novel therapeutic approaches including
the possibility to either correct or introduce genetic mutations
in patient-specific hiPSCs (Hockemeyer and Jaenisch, 2016).
Furthermore, the pluripotency of hiPSCs provided massive
potential to differentiate edited hiPSCs into any required cell
type (e.g., CMs or cardiovascular-related cells). These autologous
cells can then be transplanted back into the patient, thus
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circumventing the immunological response (Kishino et al.,
2020). As previously mentioned, the transplantation and viability
efficiency of single cells is highly dependent on the cells
engraftment into the damaged tissue, which in the case of the
heart has been proven very low (Lemcke et al., 2018; Park et al.,
2019). In many cases, the host tissue requires the engraftment of
a high number of corrected cells to overcome the diseased area.
Advances in TE provided the necessary tools to overcome the
limitations of single cell transplantation allowing the generation
of bioengineered constructs, such as cardiac patches, vascular
grafts, and heart valves (Matsuo et al., 2015; Nakayama et al.,
2015; Fioretta et al., 2018; Lee A. et al., 2019; Luo et al., 2020).
In this context, patient-specific somatic cells can be minimally
invasively harvested, reprogrammed into hiPSCs, gene edited to
correct disease-causing mutations, and then re-differentiated into
the required cell types to produce autologous tissue constructs
that could be implanted into the patient without stimulating
an immune response. Furthermore, the CRISPR-Cas9 system
has shown the ability to manipulate the immunogenicity of
hiPSC-based tissue constructs by inducing the expression of
immune suppressive molecules, thus reducing rejection by the
host immune system (He et al., 2017; Zhao et al., 2020).
Specifically, CRISPR-Cas9 has been used to generate hiPSCs
lacking the human leukocyte antigen (HLA), thus reducing
their immunogenicity (Han et al., 2019; Jang et al., 2019;
Zhao et al., 2020).

While still in its infancy, the avenue of gene editing technology
provides new opportunities to tackle the many challenges of

disease modeling, regenerative medicine, and TE. Genome
editing completely changed the landscape of cardiovascular
research and has been demonstrated to be a powerful tool to study
and manipulate genome-related molecular function.

DISCUSSION

Therapeutic approaches to treat CVDs and regenerate severely
impaired tissues are under continuous development. However,
to date, except heart transplantation for advanced heart failure,
no curative treatments are available. The discovery of hiPSCs
has provided the researchers a novel tool to investigate the
underlying mechanisms of human diseases, including CVD. The
high proliferative capacity and the ability to differentiate into any
cardiac cell type opened the path for the generation of in vitro
disease models, recapitulating the biomolecular and structural
pathologies arising from cell mutations. The parallel advances
of genome engineering technologies, such as CRISPR-Cas9,
further optimized disease modeling processes using hiPSCs.
Furthermore, the combination of hiPSCs and CRISPR-Cas9
technologies gave a new perspective for personalized medicine, by
providing the necessary tools to correlate the disease phenotype
with the underlying environmental, genetic, and molecular
mechanisms for each individual patient (Hsu et al., 2014;
Karakikes et al., 2015a). Indeed, several studies demonstrate that
not only the influence of the patient’s genetic profile but also
the environmental exposure affects the development of a disease

FIGURE 3 | Therapeutic potential of hiPSC technology combined to gene editing and tissue engineering. The figure describes the potential applications of hiPSCs
and gene editing. First, hiPSCs would be generated from the reprogramming of patient-specific healthy or diseased somatic cells. Second, gene editing tools, such
as CRISPR-Cas9, would then generate isogenic cell lines harboring specific genetic mutations in the healthy hiPSCs, but also correct disease-causing mutations in
the patient populations. The generated hiPSCs could then be re-differentiated into various cell types and/or tissue. Finally, the differentiated isogenic hiPSCs could
be implemented in drug development/screening processes, biobanking, disease modeling, and tissue engineering. On the other side, the differentiated diseased
hiPSCs could be further employed for disease modeling and drug development/screening. When genetic mutations are corrected, then cell-based therapy and
tissue regeneration purposes can be applied. Adapted from servier medical art, licensed under a Creative Commons Attribution 3.0 Unported License.
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and its outcome. In other words, each human being presents
discrepancies in disease initiation and progression, reinforcing
the importance of personalized medicine (Loscalzo and Handy,
2014; Smith and White, 2014). In this context, hiPSCs represent
a promising cell source, giving access to patient-specific hiPSC-
derived cardiac cells that retain the genetic background and the
environmental influence of the patient they originate from, thus
allowing to monitor and recapitulate the patient’s phenotype
and their response to drugs (Engle and Puppala, 2013; Liang
et al., 2013; Figure 3). Furthermore, CRISPR-Cas9 technology
brings another tool to investigate the impact of genetic variation
against the environmental influence, by creating isogenic hiPSC
lines harboring a specific mutation out of healthy donor hiPSCs
and comparing the resulting phenotype with the one of hiPSCs
reprogrammed from diseased patients (Hsu et al., 2014; Dzilic
et al., 2018). In addition, the combination of hiPSC technology
with organoid/3D cell culture systems was used to generate
biobanks, which could be used in various contexts, such as drug
discovery, and as proof-of-concept for genetic disease correction
in combination with CRISPR-Cas9, before proceeding to clinical
trials (Geurts et al., 2020; Figure 3).

To properly study CVD origins and their 3D environment,
future treatment strategies should implement co-culture systems
of hiPSC-derived CMs with other cardiac cell types and TE
approaches to closely mimic in vivo pathologies. Such approaches
would recapitulate cell–cell and cell–matrix interactions, but may
also provide answers to CVDs that arise from cells interacting
with CMs. For instance, two examples of diseases that would
benefit from such an approach would be Marfan syndrome,
which leads to cardiovascular defects because of dysfunctional
connective tissue (Pepe et al., 2016), and the hypoplastic left heart
syndrome (HLHS) (Miao et al., 2020).

Looking at translational potential, the development of new
drugs is a long and tedious process that aims at the identification
of potential drug-induced adverse effects (e.g., cardiotoxicity)
(Ovics et al., 2020). The implementation of hiPSCs in the drug
development pipeline will therefore enable to assess patient-
specific drug responses and to perform early drug de-risking,
thus reducing the number of “bad” lead compounds candidates
progressing from the pre-clinical to clinical trials (Figure 3).

Next, the pluripotency potential of hiPSCs could also be
further combined to the genetic tool CRISPR-Cas9 aiming at
the generation of isogenic cell lines for regenerative medicine.
These isogenic hiPSCs can then be differentiated into the
desired cell types and be used as a building block to create
constructs for the replacement of damaged cardiovascular tissues
(Figure 3). This process can be applied to personalized tissue
regeneration by using a patient-specific cell for the production of
autologous tissue constructs, thereby avoiding immunogenicity
issues. Furthermore, the potential of CRISPR-Cas9 to generate
HLA deficient hiPSCs would grant a universal cell source
with reduced immunogenicity. This will eradicate the need for
autologous hiPSCs for cardiac regeneration, thereby reducing
time and cost constraints associated with patient-specific cells.

However, hiPSCs still present some concerns that need to
be addressed before their safe and effective translation into the
clinical setting will be possible. Studies showed that hiPSCs

can be subject to chromosomal aberrations, which can either
be inherited from the parental cells or arise from the cellular
reprogramming or prolonged culture periods, finally impacting
their differentiation potential and disease modeling (Mayshar
et al., 2010; Yoshihara et al., 2017). Moreover, hiPSC-derived
CMs are subject to specific limitations, such as the lack of
heterogenous cell population after differentiation into CMs and
lack of maturity (Gherghiceanu et al., 2011; Bedada et al., 2014;
Veerman et al., 2015; Koivumäki et al., 2018). These aspects
considerably limit the ability of hiPSCs-derived CMs to reliably
mirror the complete phenotype of mature CMs. Furthermore, the
immature phenotype reduces the ability of hiPSC-derived CMs to
model CVDs that manifest at a later developmental stage.

TE strategies present also some limitations that need to
be addressed before their broader clinical translation, such
as scaffolds biocompatibility and mechanical properties, cell–
cell interactions, cell–ECM interactions, and the vascularization
potential. Nonetheless, the rapid evolution in hiPSC and CRISPR-
Cas9 technologies combined to TE strategies carries an enormous
potential to advance the field of regenerative cardiovascular
research to the next level.

CONCLUSION

The discovery of patient-specific hiPSCs has revolutionized
the field of cardiovascular research. The differentiation
potential of hiPSCs into CMs and their ability to retain the
genetic background enable the generation of CVD models
and investigate the underlying mechanisms responsible for
pathological phenotype. On the other hand, advances in genome
engineering promoted by the CRISPR-Cas9 technology enabled
the generation of isogenic hiPSCs owing to specific genetic
mutations but also the correction of single mutations involved
in CVDs. Hence, hiPSC and CRISPR-Cas9 technologies are
providing a novel treatment option for personalized medicine,
and the potential combination of hiPSCs and CRISPR-Cas9
together with TE approaches could allow the generation of
specific 3D disease models systems and various tissue-engineered
constructs for cardiovascular regenerative purposes.
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