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Nonlinear Model Predictive Control for Coordinated Traffic Flow
Management in Highway Systems

Kimia Chavoshi and Anastasios Kouvelas

Abstract— The growing level of freeway traffic congestion
comprises an everyday life issue with social, economic, and envi-
ronmental implications for modern metropolitan areas. There is
evidence that Variable Speed Limits (VSL) and Ramp Metering
(RM) are two effective practical approaches to ameliorate traffic
congestion. In this work we use the augmented METANET
model, which is one of the most widely used macroscopic models
for freeway traffic, to demonstrate the positive effects that these
approaches can have on traffic flow and congestion. Since the
modified METANET is a nonlinear model, nonlinear model
predictive control (NLMPC) is a control method pathway for
this system. It performs as a recursive on-line finite-horizon
optimization of nonlinear problems, subject to the system
dynamics and additional constraints, and has the privilege of
prediction of future system states. We utilized the NLMPC
method for the coordination of VSL and RM in highway
networks. We simulate the implementation of the proposed
control method on a freeway that contains a typical setting of
on-ramps, off-ramps, as well as a lane drop that creates a phys-
ical bottleneck. The simulation results demonstrate significant
improvement in the traffic flow conditions and provide useful
insights about the way that VSL and RM manage to achieve
this improvement. Understanding the special characteristics of
capacity drop in highways, and how to ameliorate it, is crucial
for future large-scale implementations.

I. INTRODUCTION

During the past decades freeway traffic has attracted a
lot of attention from the literature, due to its crucial impact
on safety, economy and the environment. Prior studies have
proposed different approaches to improve traffic condition on
freeway networks. Ramp Metering (RM) and Variable Speed
Limits (VSL) have been widely considered as two effective
methods to regulate the traffic flow on the freeway. RM
methods provide better traffic conditions by controlling the
on-ramp inflow on the freeway mainstream. RM strategies
can be categorized as local and coordinated.

Local RM regulates the on-ramp inflow based on its
neighbourhood traffic information, in order to ameliorate the
local traffic conditions. ALINEA, presented in [1], is one of
the most popular methods in this category, that employs a
feedback control method. Although local ramp metering is
well-known and widely used, especially due to its simplicity,
it is easy to show that when looking at a bigger area it is sub-
optimal and can be outperformed by coordinated RM strate-
gies. Coordinated methods regulate the on-ramps inflows by
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utilizing system-wide traffic information, in order to enhance
the overall network performance. Various methods have been
presented in the literature for coordinated ramp metering;
for instance [2] applied a reinforcement learning method to
deal with equity issues (i.e. users from different on-ramps
have equal access to the mainline). Moreover, [3] presented
a multi-objective nonlinear optimization that includes two
cost functions, for traffic and safety (based on a risk index
model). A model predictive hierarchical control method is
developed in [4], where the structure is composed from
an estimation, an optimization, and a direct control layers,
with focus on optimizing the total time spent. Note that
various RM methods have been frequently implemented on
motorways around the world. Nevertheless, the efficiency of
these strategies deteriorates when they have to deal with high
demands, or in cases of considering the equitable allocation
of benefits among users (see [5] for more details).

VSL is another actuator that compared to RM can provide
more direct and efficient control of traffic flow on the
mainline of a freeway. Many different methods have been
studied that apply VSL in order to improve freeway traffic
conditions. For instance, [6] has proposed a model predictive
control (MPC) approach. An optimal control strategy based
on minimization of L2 quadratic error to the desired outflow
was developed by [7]. In another work, [8] studied VSL for
a case study with connected vehicles, and designed a multi-
objective optimization function to simultaneously optimize
mobility, safety and environmental sustainability.

The integration of RM and VSL methods provides the
opportunity to control mainline traffic flow conditions, while,
at the same time, considering the equity and on-ramp queuing
aspects. The study in [9] developed a feedback lineariza-
tion VSL approach, coordinated with ALINEA/Q as a RM
strategy, in order to maximize the flow rate and manage
the on-ramp queues simultaneously. The combination of
ALINEA and HERO as local and coordinated RM, respec-
tively, together with a VSL algorithm is proposed by [10].
Furthermore, the work in [11] developed an MPC approach
to compute the optimal coordination of RM and VSL.
Although the proposed control methods for the combination
of RM and VSL have presented promising results, this
problem still requires more attention. The structure of the
model that is considered in this MPC approach leads to a
recursive Mixed Integer Non-Linear Problem (MINLP) opti-
mization. By increasing the number of variables in MINLP,
the computational time increases with an exponential rate.
Consequently, the benchmark network that has been studied
in the aforementioned paper is a simplified network that



consists only of one on-ramp.
In the current work, we aim at developing a Non-Linear

Model Predictive Control (NLMPC) approach for the coordi-
nation of RM and VSL, and study the results of applying the
developed control method on a more complicated case study
with a more complex configuration of on-ramps, off-ramps
and a mainline lane drop. Contrary to [11], we modify the
model by using an approximation method that simplifies the
optimization from MINLP to a Non-Linear Problem (NLP).
This simplification accelerates the computational time and
make the NLMPC approach more practical for real world
application.

The rest of the paper is organized as follows. The macro-
scopic model of the freeway traffic flow and the impact of
implementing RM and VSL methods are described in Section
2. In Section 3, we explain our methodology and outline the
NLMPC as a method to deal with nonlinear systems. The
case study used for the simualtion experiments is presented in
Section 4. Afterwards, we investigate the simulation results
for the uncontrolled case study and the controlled case study
when coordinated RM and VSL are applied based on the
NLMPC concept. Finally, Section 5 presents some useful
insights, the conclusions and future work.

II. METANET MODEL

Many models have been developed to describe traffic flow
in the macroscopic level. They model the traffic flow by
formulating the dynamics of fundamental macroscopic traffic
characteristics such as flow, density, and speed. According
to the level of partial derivatives that the models cover,
they are categorized as first order, second order and higher
order models. METANET is one of the macroscopic second
order traffic flow models, which is widely used for freeway
networks. It represents the dynamics of traffic flow in terms
of density and speed in the discretized time and space
domains.Supposing a general segment i (discretized space
that includes one on-ramp and one off-ramp) of a freeway
with length ∆i and λi number of lanes at a discrete time step
k. We denote with qi−1(k) the inflow that enters segment i
from the upstream segment, and similarly, qi(k) denotes the
outflow of segment i that moves to the downstream segment.
The variables ri(k) and si(k) denote the on-ramp outflow
and the off-ramp inflow, respectively. METANET express the
dynamics of the traffic flow in segment i as follows [12]:

ρi(k + 1) = ρi(k)+

T

∆iλi

(
qi−1(k)− qi(k) + ri(k)− si(k)

)
,

(1)

si(k) = βi(k)qi(k), (2)

vi(k + 1) = vi(k)+

T

τ
(V (ρi(k))− vi(k)) +

T

∆i
vi(k)(vi−1(k)− vi(k))−

vT

τ∆i

ρi+1(k)− ρi(k)

ρi(k) +K
− δT

∆iλi

ri(k)vi(k)

ρi(k) +K
,

(3)

V (ρi(k)) = vf,i exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiã
, (4)

qi(k) = ρi(k)vi(k)λi, (5)

where ρi(k) (veh/km/lane), qi(k) (veh/h) and vi(k) (km/h)
denote the traffic density, flow, and speed, respectively, in
segment i at time step k. Based on (1), also known as
conservation equation, the difference between total input
flows (i.e. qi−1(k) and ri(k)) and total amount of output
flows (i.e. qi(k) and si(k)) in segment i, results in the
change of density ρi(k). The exiting rate βi(k) denotes the
ratio of si(k) to qi−1(k). Equation (3) corresponds to the
dynamics of speed and is composed by four different terms.
The first is the so-called relaxation term, which demonstrates
the tendency of vehicles to achieve the desired speed (i.e.
the stationary speed V (ρi(k))). The second and third terms
model the impact of spatial heterogeneity. The fourth term
represents the speed drop caused by merging phenomena in
case of including an on-ramp. The variable T is the time step
(in sec) and τ , v, K, and δ denote model parameters that
tune the weight of these four parts in the speed dynamics.
The relationship between stationary speed and traffic flow
is described by the well-known Fundamental Diagram (FD),
demonstrated in equation (4), where vf,i and ρcr,i represent
the free flow speed and critical density, respectively. The
original METANET model does not represent the effects of
applying VSL and RM on freeway; therefore, we modify the
METANET to describe impacts of VSL and RM utilization.

A. VSL modification on METANET model
Hegyi et al. in [11] proposed an extended version of

equation (4) as follows:

V (ρi(k)) =

min

Å
(1 + α)vVSL,i(k), vf,i exp

Å−1

ai

Å
ρi(k)

ρcr,i

ãaiãã (6)

where vVSL,i(k) is the speed limit on segment i. The term
(1 + α) denotes the non-compliance factor that models the
disobedience of drivers towards speed limits. According
to the above equation, the desired speed is the minimum
between the limited speed caused by VSL and the desired
speed derived from the FD without considering the VSL
impact.

B. RM modification on METANET model
The inflow of the non-equipped on-ramps is derived by

considering three terms. The first term is Q0 and denotes the
on-ramp flow capacity due to the physical characteristics of
the infrastructure (i.e. number of lanes). The second term,
also called supply of space, represents the effect of the
mainline congestion. Finally, the third term, also known as
demand for space, represents the actual demand flow and is
composed by the new arrivals di(k) (veh/h) and the vehicles
already waiting in the ramp queue wi(k) (veh). According
to equation (7), for the RM equipped on-ramps, the inflow
to the mainline is a portion of outflow in absence of RM.
That is formulated as:

ri(k) = ci(k)×

min
(
Q0, Q0

ρmax,i − ρi(k)

ρmax,i − ρcr,i
, di(k) +

wi(k)

T

)
,

(7)



wi(k + 1) = wi(k) + T (di(k)− ri(k)), (8)

where ci(k) is the metering rate that is bounded by ci(k) ∈
[cmin, 1], with cmin denoting the minimum admissible value.
Finally, the dynamics of the on-ramp queue length wi(k) are
presented in equation (8), where di(k) denotes the on-ramp
demand flow (veh/h).

C. Dynamical System Definition

We summarize the METANET model described above
with the form of a dynamical system as follows:

X(k + 1) = f(X(k),U(k),D(k)) (9)

Y(k) = h(X(k)) (10)

∀i, 1 ≤ i ≤ N (11)

X(k) = [ρi(k), vi(k), wi(k)]T (12)

U(k) = [vVSL,i(k), ci(k)]T (13)

D(k) = [di(k), βi(k)]T (14)

Y(k) = [ρi(k), vi(k)]T (15)

where, N is the number of segments; X(k) is the system’s
state vector which consists of the densities, mean speeds,
and queue lengths of all freeway segments; U(k) is the
vector with the input (control) signals, which contains speed
limits and metering rates of the whole network. Note that the
on-ramp demands and off-ramp exiting rates are considered
disturbances and are denoted with the vector D(k). Finally,
Y(k) is the output vector that is assumed the same as the
state vector. Based on the presented METANET model f(·) is
a nonlinear vector function with a high order of complexity.

III. METHODOLOGY

In this work, the objective is to develop a coordinated
control of VSL and RM in order to reduce congestion
propagation and improve the traffic conditions on freeways.
Non-Linear Model Predictive Control (NLMPC) is a straight-
forward control pathway to deal with nonlinear systems. It
performs as a recursive on-line optimization of nonlinear
problems subject to the system dynamics and additional
constraints. In principle, the MPC type of controllers have the
advantage of taking into account the impact of the predicted
future behavior of the system into the current control signal
designing.

In this study, we use METANET as the predictive model of
macroscopic traffic flow on highway networks. In the modi-
fied version of METANET, equations (6)-(7), which describe
the impacts of applying VSL and RM, contain minimum
operators. In general, one can model the minimum operator
by using an auxiliary binary variable in the optimization
language. Therefore, in this problem the NLMPC appears
as a recursive MINLP optimization. Either increasing the
prediction horizon or the number of cells results in increasing
the number of integer variables, and consequently the com-
putational time grows exponentially. This drawback makes
the designed NLMPC approach impractical for large-scale

real networks. In order to tackle this problem we propose
to approximate the minimum operators with a continuous
function. The work in [13] has presented a log-sum-exp
convex function f(x) = log(ex1 + ex2 + · · · + exn) that
is bounded as below:

max(x1, x2, . . . , xn) ≤ f(x) ≤
max(x1, x2, . . . , xn) + log(n).

(16)

The above inequalities indicate that log-sum-exp function is
an approximation of maximum operator, and thus the concept
of a quasi-maximum function can be used. Quasi-maximum
is a smooth approximation of the maximum operator:

max(x1, x2, . . . , xn, λ) '
log(eλx1 + eλx2 + · · ·+ eλxn)

λ
,

(17)

where λ is a setting parameter; larger λ increases the accu-
racy of the approximation. In this paper, we can prevent the
usage of integer variables by applying the quasi-maximum
to approximate the min{·} operators in the predictive model.
Therefore, the optimization transformes to a recursive NLP
which requiers less computational time compared with the
recursive MINLP version that is applied in [11]. In order to
justify this claim, we re-simulated the case study in [11] and
applied the NLP method. The results indicate that the average
computation time for one iteration of MPC is 1.13 s that is
extremely faster than the 6 s reported by [11]. Subsequently,
we define a quadratic cost function form as follows:

min
U(k), 1≤k≤kc

kp−1∑
j=1

Ns∑
i=1

(ρi(j)− ρcr,i)2 + (vi(j)− vcr,i)2+

ω

Ns∑
i=1

(vi(kp)− vcr,i)2 + (ρi(kp)− ρcr,i)2

(18)
where, Ns is the number of segments included in the freeway
stretch under study. In fact, the optimization problem can
be described as searching for the control signals U(k)
(RM rate and speed limits) that minimize the error of the
density and speed with their corresponded desired values. In
equation (18) ρcr,i and vcr,i are the desired densities and
speeds, respectively, that correspond to the critical point in
the FD of the segment i. The critical point represents the
optimal functioning point of the traffic flow in each segment.
Therefore, this cost function results in trying to regulate
the traffic flow close to the critical point in the FD. We
denote ω as a weight to emphasise the importance of the
final state of the system at the end of the prediction horizon
in the cost function. In this study, we consider the control
horizon kc equal to the prediction horizon kp. By increasing
the prediction horizon one can get more intuition about the
future; therefore, the predicted trajectory is more accurate.
However, increasing the prediction horizon will consequently
increase the computational time and result in time-expensive
solutions. In order to find an appropriate value we investigate
the relationship between prediction horizon and performance
of the controlled system. Vehicle Hours Traveled (VHT) is



a well-known criterion to evaluate performance of traffic
networks, and is computed as follows:

VHT = T

K∑
j=1

Ns∑
i=1

ρi(j)vi(j)∆(i, j)+T

K∑
j=1

Nor∑
i=1

wi(j) (19)

where K is the total simulation time. Figure 1 presents the
effect of prediction horizon on VHT. By increasing the pre-
diction horizon to more than 6 time steps, the improvement
gained in terms of VHT is insignificant. In our experiments
we choose to consider a prediction horizon of 9 time steps.
Furthermore, in order to obtain reasonable solutions, the
states and control signals need to be bounded by physical and
operational constraints. The constraints on the state variables
are derived from the fundamental diagram and are as follows:

0 ≤ ρi(k) ≤ ρi,max (20)

0 ≤ vi(k) ≤ vf,i (21)

0 ≤ wi(k) (22)

We also define constraints on the control signals. Since the
implementation of RM cannot block the on-ramp inflow
completely, the RM rate is restricted by a lower bound
(cmin = 0.2), which is the minimum admissible value. On
the other hand, the speed limit has also lower and upper
bounds. Obviously, the speed limit cannot exceed the free
flow speed; in addition, a lower bound (vmin = 50 km/h) is
considered due to safety reasons.

Cmin ≤ ci(k) ≤ 1 (23)

vmin ≤ vVSL,i ≤ vf,i (24)

IV. CASE STUDY

The main concept that we have considered when struc-
turing the case study, is to demonstrate the performance
of the control methodology in ameliorating the congestion
under a relatively complex yet realistic network configuration
and topology. The synthetic highway stretch that has been
designed for the current case study is shown in Figure 2(a).
The lane drop together with the on-ramp located at the
ninth segment create a physical bottleneck that increases
the risk of congestion that can spill-back towards the up-
stream segments of the freeway. Consequently, we expect
to observe reductions in the amounts of off-ramps outflows
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Fig. 2. (a) The case study highway stretch structure; (b) the demand input
patterns for the case study.

that will aggravate congestion. Both on-ramps are equipped
with RM infrastructure. Finally, we assume that VSL can
be implemented on every segment along the freeway. Fig-
ure 2(b) depicts the designed network demand patterns (i.e.
the mainstream inflow and the arriving flows at the on-ramps)
. Table I presents the calibrated values of the parameters of
METANET model and the FDs.

V. SIMULATION RESULTS

In this section, we present the obtained results from
the macroscopic traffic simulation. The simulation duration
is 6000 sec, and we investigate two different scenarios:
No Control (NC), and coordinated RM and VSL MPC-
based control (RM&VSL). We compare the results of the
simulations for the aforementioned scenarios and we study
various aspects that can provide insights for other large-
scale implementations. Figure 3 demonstrates the traffic flow
characteristics based on flow, density and velocity for the two
different scenarios. We can observe from the first column
that for the uncontrolled freeway, a congestion is triggered
in segment 8, which is downstream of the lane drop and
upstream of the second on-ramp (see also Figure 2). The
congestion then spills-back to the upstream segments of the
freeway. By analysing the density and speed diagrams of
NC scenario one can conclude that as moving towards the
upstream of the freeway, the congestion levels become even
higher. The densities reach values that are very close to
jam density for the first three segments of the highway. In
addition, the speed is close to zero and the freeway is close to
become blocked. The diagrams of the second column depict
the results of coordinated RM and VSL implementation.
It is clear that the congestion disappears by applying the
NLMPC control. Essentially, RM control improves the traffic
flow conditions through managing the traffic inflows from
the on-ramps to the mainline and VSL control can further
enhance the performance of RM control; it provides further



TABLE I
THE SIMULATION PARAMETERS VALUES.
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Fig. 3. The flow, density and speed diagrams of NC and coordinated RM and VSL control scenarios applied on the METANET model.

advantages for the traffic flow, as by inducing lower speeds
on the freeway segments it enables the system to serve higher
flows.

In addition, we evaluate the performance of the two
scenarios based on VHT metric. For the NC scenario the
VHT is equal to 1238.6 veh.h; implementing coordinated
RM and VSL control reduces this value to 891.2 veh.h, which
corresponds to 28.1%. Furthermore, Figure 4 presentes the
boundary, on-ramps, and aggregated queues diagrams. The
comparison of the aggregated queue diagrams depicts that
the coordinated control results in decreasing the aggregated
queue lengths compared to the NC scenario. Hence, we can
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diagrams for NC and coordinated RM and VSL control scenarios applied
on the METANET model.

conclude from the integral of these diagrams (which express
the contributions of different queues in VHT), that RM and
VSL method increases the amount of queening vehicles, and
consequently the delays in the calculation of VHT; however,
at the same time it increases the fluidity in the mainline of
the freeway, which is beneficial for the total VHT of the
system.

If we want to investigate the functional characteristics
of the control methods we can observe Figure 5, which
demonstrates the applied metering rates and variable speed
limits. Moreover, this Figure depicts the coordination aspect
of the control method. As we expected, the RMs are activated
over long time periods; however, in correspondence with the
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Fig. 6. (a) The off-ramps inflow diagrams for NC and coordinated RM
and VSL control scenarios; (b) the TMS and SMS diagrams for coordinated
RM and coordinated RM and VSL control scenario.

results of queuing patterns, in RM and VSL control scenario,
the RM rate is lower for the downstream on-ramp. The
variable speed limits diagram displays that VSL is mostly
activated at the last three segments of the highway, where
the lane drop appears. It enhances the actual capacity of
the last segments and regulates the flow in the proximity
of the bottleneck. Furthermore, the diagrams of RM and
VSL scenario demonstrate that the application of VSL on
the 5th and 6th segments can compensate for the function
of RM. We can conlude that utilizing VSL as traffic flow
actuators can smooth the merging phenomena and further
improve congestion around bottleneck areas. Figure 6(a)
demonstrates the patterns of off-ramps outflows. The inte-
grals of the areas below the different curves of a specific
off-ramp are equal and indicate the number of vehicles that
exit the freeway from this specific off-ramp over the whole
simulation horizon. Figure 6(a) reports faster emptying of the
network for the coordinated RM and VSL control scenario.
Finally, the two scenarios are compared based on Time Mean
Speed (TMS) and Space Mean Speed (SMS) diagrams in
Figure 6(b). For the NC scenario, there is a notable drop
in the SMS diagram due to congestion, which reduces the
SMS level to almost 20 km/h. Figure 6(b) indicates that
implementing the coordinated control scenario is useful to
prevent this drop in the SMS diagram and maintains the SMS
value always higher than 95 km/h. Furthermore, utilizing
the coordinated scenarios increases the TMS level in all
segments for this case study, with an improvement range
between 16 km/h and 42 km/h.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed an NLMPC method for the
coordinated control of traffic flow on highway networks.
In the methodology we proposed to utilize the quasi max-
imum function in order to approximate the cumbersome
part of the predictive model. This approximation simplifies
the optimization from an MINLP to an NLP. Afterwards,
we simulated the macroscopic traffic flow model for a
freeway with multiple on-ramps, off-ramps, and a lane drop.
The results demonstrate that implementing the coordinated
control scenario prevents congestion and enhances the traffic
conditions. The proposed method decreases the VHT for
28.1% in comparison to the uncontrolled scenario. The MPC
method can achieve optimal coordination, nevertheless, it
results in a recursive NLP optimization which also has its
drawbacks. As future work, we would like to focus on the
linearization of METANET model to simplify the NLP and
apply concepts from Linear Optimal Control.
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