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REVIEW

Artificial intelligence in drug discovery: recent advances and future perspectives
José Jiménez-Luna a, Francesca Grisoni a, Nils Weskampb and Gisbert Schneider a

aDepartment of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; bBoehringer Ingelheim Pharma GmbH & Co. KG, Biberach an 
Der Riss, Germany

ABSTRACT
Introduction: Artificial intelligence (AI) has inspired computer-aided drug discovery. The widespread 
adoption of machine learning, in particular deep learning, in multiple scientific disciplines, and the 
advances in computing hardware and software, among other factors, continue to fuel this develop
ment. Much of the initial skepticism regarding applications of AI in pharmaceutical discovery has started 
to vanish, consequently benefitting medicinal chemistry.
Areas covered: The current status of AI in chemoinformatics is reviewed. The topics discussed herein 
include quantitative structure-activity/property relationship and structure-based modeling, de novo 
molecular design, and chemical synthesis prediction. Advantages and limitations of current deep 
learning applications are highlighted, together with a perspective on next-generation AI for drug 
discovery.
Expert opinion: Deep learning-based approaches have only begun to address some fundamental 
problems in drug discovery. Certain methodological advances, such as message-passing models, 
spatial-symmetry-preserving networks, hybrid de novo design, and other innovative machine learning 
paradigms, will likely become commonplace and help address some of the most challenging questions. 
Open data sharing and model development will play a central role in the advancement of drug 
discovery with AI.
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1. Introduction

Machine learning algorithms have been widely applied for compu
ter-assisted drug discovery [1–3]. Deep learning approaches, that is, 
artificial neural networks with several hidden processing layers [4,5], 
have recently gathered renewed attention owing to their ability to 
perform automatic feature extractions from the input data, and 
their potential to capture nonlinear input–output relationships. 
These properties of deep learning techniques complement tradi
tional machine learning approaches that rely on human-crafted 
molecular descriptors [6,7]. Drug discovery has experienced 
a relatively late resurgence in the interest for deep learning[8], 
which already led to an unprecedented explosion of novel model
ing approaches and applications [9–12]. Many areas of the chemical 
sciences have already benefited from the ever-advancing develop
ments in deep learning [13–15]. This opinion article delineates, 
through examples, some of the aspects that have allowed deep 
learning methodologies to flourish, and in some cases, outperform 
the existing approaches in chemoinformatics. Specifically, ligand- 
based quantitative structure-activity/property relationship (QSAR/ 
QSPR), as well as structure-based modeling, de novo molecular 
design, and synthesis prediction are addressed (Figure 1). We also 
highlight the limitations of contemporary artificial intelligence (AI) 
in each of the considered topics and predict how it could shape the 
future landscape of computer-assisted drug discovery.

2. State of the art applications of artificial 
intelligence

2.1. QSAR/QSPR and structure-based modeling with 
artificial intelligence

QSAR/QSPR modeling has come a long way since its inception 
more than 50 years ago [16]. The impact of these computa
tional models on drug discovery is undeniable, evidenced by 
the successful prediction of biological activity and pharmaco
kinetic parameters, viz. absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) [17–21]. For ligand-based 
QSAR/QSPR modeling, the structural features of molecules (e. 
g. as pharmacophore distribution, physicochemical properties, 
and functional groups) are commonly converted into 
machine-readable numbers using the so-called molecular 
descriptors [7]. The spectrum of hand-crafted molecular 
descriptors is wide[7], aiming to capture a variety of aspects 
of the underlying chemical structure. In general, QSAR/QSPR 
approaches have transitioned from the use of simpler models, 
such as linear regression and k-nearest neighbors, toward 
more universally applicable machine learning techniques, 
such as support vector machines (SVM) and gradient boosting 
methods (GBM) [15], aiming to address more complex and 
potentially nonlinear relationships between the chemical 
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structure and its physicochemical/biological properties, often 
at the expenses of intepretability [22].

Deep learning is not a new technique [23]. Artificial neural 
networks in chemoinformatics had their first heyday in the 
1990s when many of the current concepts were pioneered 
[24–26], including deep and adaptive network architectures, 
self-organizing maps, recurrent systems for sequence and 
time-series analysis, and autoencoders. However, deep net
works had their final breakthrough arguably after their success 
in the Merck Molecular Activity Challenge in 2012 [27]. While 
there is some controversy as to whether the latter type of 
models are superior performance-wise to other approaches (e. 
g. gradient boosting machines [28]) when using the same set 
of descriptors [29], deep learning methods offer several advan
tages. Arguably, the most important one is that deep networks 
can perform automatic feature extraction during the training 
procedure. Graph neural networks [12] (also referred to as 
message-passing approaches) and recurrent neural networks 
[30] in particular, are able to generate internal context-specific 
representations of molecular structures. In the specific case of 
graph neural networks, this is achieved by learning latent 
atom and bond representations during the training process. 
Therefore, deep learning approaches are promising for model
ing tasks for which classical descriptors had not been initially 
engineered. Examples include the modeling of peptides [31], 
macrocycles, and proteolysis-targeting chimeras (PROTACs) 
[32]. Another potential advantage of deep architectures is 
their applicability to multitask learning [33–35], which aims 
to find a common internal representation that is useful for 
a set of related endpoints (not to be confused with multi- 
output learning which does not explicitly exploit related infor
mation between the tasks to be learned). As drug discovery is 
a multiparameter optimization challenge [36], multitask learn
ing might make more efficient use of correlated data in com
mon scenarios where the entirety of a molecular library is not 
exhaustively tested on all endpoints of interest, and without 

the need for prior imputation. The idea of multi-output QSAR 
modeling, aiming to relate a set of predefined chemical 
descriptors to observable endpoints, had been explored 
before the rise of popularity of deep learning approaches 
[37–42]. Despite the promise of multitask learning, to date, 
only modest performance improvements over single-task 
models have been reported [43–46].

A well-known drawback of deep learning is its poor perfor
mance in medium-to-low data scenarios [47]. Some chemoge
nomic-based approaches might provide further insight in 
these scenarios by exploiting additional genomic or biological 
interactome data sources [48]. In addition, recent advances in 
‘few-shot’ learning [49] (i.e. a set of approaches that can use 
prior knowledge to obtain better generalization when data is 
scarce) and meta-learning [50] (i.e. a family of methods that 
aims to develop a set of learnable parameters that can quickly 
adapt to new, unseen tasks) hold promise in mitigating some 
of these issues. Along those lines, purely data-driven 
approaches for molecular property predictions are, in contrast 
to techniques that are (fully or partially) physics-based, funda
mentally limited in their ability to extrapolate and make reli
able predictions for unseen compound classes. Physics- 
inspired machine learning approaches and additional active 
learning strategies (i.e. approaches where the model has a role 
in requesting specific training data for improved generaliza
tion) provide additional tools to overcome these limitations 
[51,52]. The success of these strategies, will furthermore criti
cally depend on how well their specific implementations cope 
with data sparsity, given that suitable sources that would 
allow for efficient data imputation are often scarce [53].

Deep-learning models have also been widely criticized for their 
notorious debugging difficulty and ‘black-box’ character [54]. In 
contrast, the manual development of domain-specific features 
[55,56] (i.e. descriptors specifically engineered with a specific 
task in mind) still holds the potential to integrate background 
knowledge in a more human-intelligible way. Explainable AI tech
niques could offer partial solutions to these problems by provid
ing comprehensible interpretations of the decision-making 
process undertaken by deep learning approaches [57]. 
Continued development of feature attribution techniques [58] (i. 
e. approaches that aim to highlight the overall importance of an 
input) instance-based explanations (e.g. counterfactuals, model- 
generated examples that are conditioned on user-defined 
queries) [54], and attention-based networks [59] will help narrow 
the gap between deep learning and drug-discovery specialists. 
Hence, close collaboration between these fields is imperative.

Another commonly-claimed disadvantage of deep-learning 
approaches is their high computational cost. Without specia
lized hardware such as consumer-grade graphical processing or 
tensor-processing units, deep learning typically entails longer 
training and evaluation times than many other machine- 
learning approaches. While the previous statement holds true 
under most scenarios, deep-learning models can learn in an 
online setting by naturally taking advantage of its most popular 
training strategy, i.e. stochastic gradient-descent optimization 
[60]. This has the advantage of scaling linearly with respect to 
the size of the training dataset, and thus it does not require the 
latter to be entirely loaded into the system’s memory. We argue 
that the capability to train deep learning models stochastically 

Article highlights

� Ligand-based drug discovery built on novel deep learning tech
niques, such as message-passing neural networks, could facilitate 
the discovery of new chemical entities.

� Deep learning techniques embedding three-dimensional symme
tries as well as chemical information into their architecture bear 
promise for structure-based and conformation-aware modelling.

� The combination of rule-based and rule-free approaches will 
further the capability of AI to deliver synthesizable bioactive mole
cules and explore new regions of chemical space.

� Explainable AI, multitask, and meta-learning will pave the way for 
a new generation of predictive models with increased interpret
ability and robust performance in low-data regimes.

� Natural language processing models will become commonplace 
solutions in both retrosynthesis and forward synthesis prediction. 
Additional effort will be drawn towards related problems such as 
the prediction of reaction conditions.

This box summarizes key points contained in the article.
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on sequential, random, batches of data can make them more 
suitable than other alternatives in big data scenarios [61]. 
A related issue is that predictive deep learning tends to require 
significantly more human expertise in many practical scenarios 
compared to other, more thoroughly tested approaches. For 
instance, while one can train a well-performing random forest 
model with a relatively small effort for hyperparameter tuning, 
our understanding of contemporary deep learning approaches 
is not yet at the level of reliable defaults, although recent theory 
suggests that this may change in the near future [62].

Furthermore, neural networks might provide the right 
answers for misleading reasons (i.e. the so-called Clever Hans 
effect [63]) and have a tendency to produce overly confident 

predictions, even when these are evidently wrong [64]. This is 
further exacerbated in the context of property prediction in 
drug discovery, as experiments under similar conditions can 
provide significantly different measurements. This drawback 
might be alleviated in the next few years with the wider 
adoption of uncertainty estimation techniques, either with 
deep learning approaches that have uncertainty directly 
embedded into their design, such as Bayesian neural networks 
[65], or post hoc techniques such as ensemble learning [66].

Remarkable progress has also been made in the structure-based 
prediction of protein-ligand activities which, unlike classical QSAR, 
requires a co-crystal or a docked pose to generalize over different 
targets. Many classical approaches modeled an explicit, predefined 

Figure 1. Schematic diagram of the transition between classical and modern methodologies for some relevant problems in drug discovery, such as QSAR/QSPR 
modeling, de novo drug design, and synthesis planning. Abbreviations: ML, machine learning; SVM, support vector machine; RF, random forest; QSAR/QSPR, 
quantitative structure-activity/property relationship; NN, neural network; SE(3), special Euclidean group in three-dimensions; NLP, natural language processing; 
MCTS, Monte Carlo tree search.
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mathematical relationship of the protein-ligand complex via partial 
least squares or multiple linear regression, in order to accurately 
consider the contribution of individual descriptors (e.g. physico
chemical properties) for a target property [67–71]. Approaches 
making use of more advanced as well as more flexible non-linear 
models, such as random forests or support vector machines, 
appeared in the 2000s [72], and became popular in the early 
2010s, coupled with a wide range of descriptors such as protein- 
ligand atom pair counts [73], property-encoded shape distributions 
[74], or basic atomic interactions [75]. Similar to its purely ligand- 
based counterpart, this particular subfield has recently witnessed 
the advent of deep learning and used it to its advantage. Early 
approaches were inspired by the advances of computer vision and 
image recognition which were mostly driven by convolutional 
neural networks [76], and ultimately adapted for bioactivity predic
tion [77–80]. Others studies used graph-based approaches in con
junction with distance and angle-based featurizations toward the 
same goal [10]. Some of these were reported to provide incremen
tal performance improvements over previous approaches in struc
ture-based virtual screening and lead optimization competitions 
[81,82], although it is argued whether some well-known bench
marks tend to favor ML-based scoring functions over classical ones 
[83]. In keeping with an increased interest in interpretable AI, recent 
attempts toward explaining structure-based convolutional neural 
network models have shown that these are able to highlight 
relevant protein-ligand interactions in comprehensible terms, 
such as hydrogen bridging and π-π stacking [79].

Approaches based on three-dimensional convolutional 
neural networks, however, possessed certain theoretical lim
itations, namely the lack of rotational invariance with respect 
to the input, a desirable property when modeling atomistic 
systems. How to overcome this issue has recently become 
a very active area of research, with newly developed neural 
network architectures such as Euclidean Neural Networks [
84–86] and SchNet [87], featuring equivariance with respect to 
the special Euclidean group in three-dimensions (SE(3)) (i.e. 
rotations and translations) directly embedded into their 
design. These architectures have already been applied to sev
eral molecular tasks, such as the prediction of electronic prop
erties of molecules [88]. Research in this direction is expected 
to intensify in the near future, opening up fresh modeling 
opportunities.

Given the growth of deep learning applications in drug 
discovery and the fact that these methods benefit from large 
training sets, diligent data curation and proper benchmarking 
of newly developed models is mandatory. The availability and 
size of chemical compound libraries has improved over the 
past few years, with databases such as ZINC [89] and ChEMBL 
[90] representing a commonly-used starting point for ligand- 
based projects. A similar trend was observed for structure- 
based modeling, for which databases such as PDBbind [91] 
and BindingDB [92] provide highly detailed structural informa
tion on protein-ligand complexes, as well as their associated 
bioactivity data. Recent progress in the field of protein struc
ture prediction and determination warrants optimism that 
structural information for many more drug targets will 
become available in the future [93,94].

Much has already been invested in open and standar
dized assessments of machine learning methodologies in 

the context of cheminformatics. For example, the 
MoleculeNet benchmarking suite [9] aims to facilitate 
model testing by providing a timely evaluation of many 
popular deep learning architectures for drug-related prop
erty predictions in well-curated datasets from areas such as 
biophysics, physical chemistry, and physiology. Nonetheless, 
while we have argued that the amount of public data is 
increasing at a fast pace, most of the structural activity/ 
property relationship data are still generated by commercial 
research organizations, publishers, and pharmaceutical com
panies [95–97], which often consider the generated data as 
a differentiating asset to be kept confidential. Recent devel
opments have shown that molecular structures can often be 
partially recovered from molecular descriptors, which may 
further complicate data sharing even at the latent feature 
level [98]. Attempts to overcome such limitations, for exam
ple, by developing federated and intellectual property (IP)- 
preserving learning techniques, are underway [99].

With regards to model evaluation, it is now known that 
testing performance on sets drawn from a database in 
a pseudo-random fashion can produce overly confident 
results. Alternatives such as scaffold-based [100] or time- 
based splits [101], which try to approximate the course of 
a lead optimization project, are potentially more informative. 
However, one should keep in mind that there is no such 
thing as a ‘one-split-fits-all’ strategy, as each evaluation por
trays model performance in a different applicability domain. 
Furthermore, even though prospective applications should 
be considered the gold standard for model benchmarking, 
we note that these are not necessarily straightforward and 
are not devoid of biases either [102]. However, while the lack 
of benchmarking consensus is not ideal, it has not prevented 
machine-learning scoring functions [103] to be surprisingly 
predictive in some virtual screening campaigns [104]. 
Additionally, many efforts have been dedicated to the use 
of proper performance metrics for classification and regres
sion models, and the limitations thereof [105–108].

2.2. De novo drug design with artificial intelligence

De novo design, the generation of novel molecular entities with 
desired pharmacological properties from scratch [109], can be 
considered as one of the most challenging computer-assisted 
tasks in drug discovery, due to the cardinality of the chemical 
space of drug-like molecules (estimated to range in the order of 
1060–10100) [110,111]. De novo molecule generation faces the 
problem of combinatorial explosion due to the number of 
different atomic types and molecular topologies one could 
investigate [112]. Depending on the information used to guide 
the de novo design, the respective approaches can either be 
ligand-based, structure-based, or a mixture of both.

Ligand-based methodologies may be divided into two 
major categories: (i) rule-based approaches, which use a set 
of construction rules for molecule assembly from a set of 
‘building blocks’ (i.e. reagents or molecular fragments), and 
(ii) rule-free approaches, which do not employ explicit con
struction rules. One of the ancestors of contemporary rule- 
based de novo design is the Topliss scheme [113], for the 
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stepwise generation of analogs of an active lead compound to 
maximize potency [113]. Contemporary approaches are based 
on applying a given set of molecular transformations for 
optimization, such as matched molecular pairs [114,115], or 
rules-of-thumb for functional group and molecular framework 
modification [116]. Synthesis-oriented approaches explicitly 
include synthesis rules for building block assembly and ligand 
generation. These approaches are useful, for instance, to 
design synthetically accessible libraries [117,118], such as BI 
CLAIM [119] and CHIPMUNK [120]. Since the late 1990s, hybrid 
approaches, such as TOPAS [121], DOGS [122], and DINGOS 
[123], have been developed to steer the generation of novel 
compounds by simultaneously maximizing both their similar
ity to known bioactive ligands and the chemical synthesizabil
ity of the designs.

‘Rule-free’ approaches aim to directly generate molecules with 
desired properties without the need for molecular construction 
rules. Contemporary approaches are often based on generative 
deep learning models [124], which sample new molecules from 
a learned latent molecular representation. Although these 
approaches have gained popularity in the last few years, the idea 
of sampling from a numerical representation of molecules for de 
novo design dates back to the ‘inverse QSAR’ problem formulated 
in the pioneering work of Skvortsova and Zefirov in the early 1990s 
[125–127]. Inverse QSAR leverages an existing QSAR model to 
identify the descriptor values corresponding to a desired property, 
and uses this information for molecule generation [128–131]. The 
latter approaches pose several challenges, such as the existence of 
multiple solutions for any given property and the issue of reverse- 
decoding molecular descriptors into valid structures. Generative 
deep learning overcomes some of these issues by modeling the 
underlying distribution of a given set of molecules, and then gen
erating novel compounds by sampling from the learned distribu
tion [132]. The most commonly used generative models are those 
borrowed from the field of natural language processing, coupled 
with Simplified Molecular Input Line Entry Systems (SMILES) [133]. 
These models are trained to learn the SMILES ‘syntax’ (i.e. how to 
generate a chemically valid string) on chosen ‘semantics’ (i.e. bioac
tivity or other desired molecular properties). They are mostly based 
on recurrent neural networks [134,135], coupled with transfer 
[134,135] or reinforcement learning [136–138]. Other popular deep- 
learning-based generative learning models, such as variational 
autoencoders [139], or generative adversarial networks [140,141] 
have also been commonly reported, as well as others based on 
graph convolutions [142,143]. Recently, instances of conditional 
generative approaches have been suggested, which leverage addi
tional information guiding the design, such as three-dimensional 
shape [144], drug-likeness [142], synthesizability [142,145], molecu
lar descriptors values [146], and gene expression signatures [147]. 
A major upcoming challenge in this context will be the definition of 
balanced objective functions that enable complex and constrained 
multi-parameter optimizations, similarly to those used in Pareto 
[148] or in desirability-based approaches [149–152], that are typi
cally required in drug discovery.

Fueled in part by the rapid development of novel genera
tive neural network approaches, the number of ligand-based 
design methods has skyrocketed. A recent review [153] 
reported more than 40 new models that were developed in 
the last couple of years. This explosion of potential drug- 

design tools has motivated researchers to evaluate and bench
mark generative approaches in a fair and standardized man
ner. Recent efforts include the MOSES [154] and GuacaMol 
platforms [155], which implement several popular neural gen
erative models, as well as more classical models (e.g. genetic 
algorithms [156]), and provide several metrics for their com
parison. While de novo design tools are in general more 
difficult to evaluate retrospectively than predictive methods, 
some of the commonly used metrics are: (i) validity of the 
generated molecular representations and novelty of the cor
responding molecules, (ii) similarity to known compounds in 
terms of chemical and biological properties [157], and (iii) 
scaffold and fragment diversity.

Rule-based and rule-free approaches have different advan
tages. Rule-based methods, by relying on preexisting knowl
edge, such as building blocks and reaction rules, can generate 
molecules that are often readily synthesizable and possess the 
desired physicochemical properties. However, the chemical 
diversity of the designs is influenced by the hard-coded rules 
and the chosen building block libraries. Rule-free approaches 
learn directly from the data without the need of hard-coded 
design/similarity rules, thus theoretically allowing a broader 
exploration of the chemical space. As a downside, this free
dom of exploration risks the generation of compounds that 
are more difficult, if not impossible, to synthesize. Mixed 
approaches combining rule-free and rule-based methods 
might represent a promising middle ground for the design 
of novel bioactive and synthesizable molecular entities. 
Recently, a mixed strategy showed promise in designing 
bioactive molecules in a rule-free manner, while at the same 
time retaining synthesizability within a microfluidics system, 
thanks to a set of predefined virtual reactions [145].

To date, most of the deep-learning-based de novo design 
studies have focused on ligand-based approaches. Structure- 
based generative design constitutes a promising complemen
tary research direction for targeting orphan receptors and 
hitherto unexplored macromolecules [158]. These approaches, 
which typically leverage information about the ligand-binding 
site (e.g. by fragment linking or growing109), to the best of our 
knowledge, have not been yet permeated extensively by deep 
learning. However, initial developments for ligand design have 
emerged by taking into account the shape and properties of 
the binding pocket [159–161].

2.3. Automated synthesis planning with artificial 
intelligence

The majority of all known organic compounds can be synthesized 
with a limited number of robust reactions [162]. However, reliable 
and fully automated synthesis planning in chemistry is a challenge 
that is yet to be met [163]. Part of the reason is owing to the 
extensive chemistry expertise that is required for efficient forward 
and retrosynthetic planning [164]. Synthesis planning with AI has 
a rich history, dating back to the 1970s in the field of computer- 
aided retrosynthetic prediction [165]. Increased computational cap
abilities, the advent of big data, and the development of novel 
algorithms for deep learning and optimization, have resulted in 
a resurgence of AI for synthetic organic chemistry. In retrosynthesis, 
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where the main goal is to recursively design efficient synthetic 
routes for a molecule of interest, rule-based methods 
[122,123,166] are indisputably valuable. These aim to suggest retro
synthetic pathways via reaction mechanism encoding and skeletal 
building. One of their main limitations is their dependency on 
explicit chemical transformations/reactions. These usually entail 
manual construction and curation. The field has recently drawn 
inspiration from natural language processing methods, such as 
sequence-to-sequence models [167] and transformer models 
[168]. This line of research is motivated by the observation that 
the rank distribution of fragments in organic molecules is similar to 
that of words in the English language [169]. Rule-free approaches 
typically consider products in a text-based representation (e.g. 
SMILES), and process them via an encoder-decoder architecture, 
which is subsequently used to predict the corresponding synthetic 
precursors at a one-step reaction distance [170]. Improvements 
over this architecture feature the use of tiered neural networks 
[171], whose goal is to partition the retrosynthesis prediction pro
blem into reaction type classification and reaction rule selection 
steps. This separation, inspired by a previously reported molecular 
similarity method [172], was shown to achieve performance gains 
over previous baselines.

While most of the above-described methods focus on the 
linear one-step retrosynthesis problem, a more realistic sce
nario faces a rapidly exploding combinatorial problem. 
Inspired by progress in reinforcement learning, one of the 
most important breakthroughs in the last few years came 
from the widespread usage of sophisticated search methods, 
such as Monte Carlo Tree Search [173], to efficiently navigate 
through chemical reaction spaces [174]. A recent study [175] 
has attempted to elucidate both reactants and reagents via 
the use of transformer models, employing one-step precursor 
predictions in combination with the construction of hyper- 
graphs (i.e. directed acyclic graphs where edges can link multi
ple nodes simultaneously), which represent synthetic path
ways. In order to find a reasonable synthetic pathway, these 
hyper-graphs are explored with beam search, aided by 
a Bayesian-like probability scheme that is biased toward the 
suggestion of chemically simpler precursors [172].

Forward synthesis planning distinguishes itself from retro
synthesis. While the latter might be solvable by leveraging 
existing reaction databases, forward synthesis would require 
information from reactions that yield no product whatsoever. 
The current chemical reaction databases are heavily skewed 
toward productive reaction data [176]. There is a critical 
demand for additional data, such as experimental conditions 
(e.g. solvent and temperature) or side-product information. 
With the aim of addressing some of these limitations, several 
steps have been taken to expand known reaction databases 
with negative reaction outcomes [177], and thereby, create 
new customized data compilations for automated synthesis 
planning [178].

Some of the earlier approaches ranked candidate products 
using hard-coded reaction templates derived from data 
[177,179]. Proof-of-concept machine learning ranked reaction 
templates, when the details of reactants and reagents were 
given [180]. Newer approaches aim to directly rank products 
by viewing the chemical reaction prediction problem as 
a graph transformation task [181,182]. Driven by advances in 

quantum mechanics, another set of approaches opted for 
using first-principle calculations (e.g. density functional theory) 
to evaluate the energy barriers of a particular reaction. 
However, this approach is computationally prohibitive for 
medium-to-large systems. The accurate prediction of energies 
and forces [183] via quantum-mechanical machine learning 
might help bridge this gap in the near future. With regard to 
template-free forward synthesis prediction, natural language 
processing approaches based on transformer [184] or recur
rent neural network architectures [185] are also becoming 
popular. These have reported a top-1 reactant accuracy 
above 90%. Other recent alternative deep learning approaches 
[186,187] have opted to encode reaction prediction as an 
electron rearrangement exercise alongside the usage of mes
sage-passing neural networks. The latter approach, however, 
requires filtering reactions where electron flow is not directly 
identifiable, which excludes many relevant organic ones.

3. Expert opinion

Evidence suggests that AI applications are starting to become 
ubiquitous in drug discovery and design. These techniques are 
slowly living up to some of the community’s expectations, 
with remarkable advances in QSAR modeling, de novo mole
cular design, and synthesis planning, among others. However, 
whether these techniques will actually prove useful by aiding 
researchers to design and synthesize ‘better drug candidates 
faster’ still remains to be demonstrated [188,189].

In the context of ligand-based property prediction, meth
ods relying on more ‘raw’ chemical representations (e.g. graph 
neural networks and SMILES-based recurrent neural networks) 
can be anticipated to perform at least on-par with standard 
descriptor-based models. Moreover, deep learning approaches 
are easily adaptable to a wider class of chemical entities and 
modeling tasks, and allow for a more efficient use of data, for 
example, via multitask and online learning. In contrast, con
formation-aware deep learning, especially considering meth
odologies that embed three-dimensional symmetries into 
their design, are still in their infancy. Nonetheless, rapid pro
gress can be expected toward their application in drug dis
covery and related areas, such as quantum mechanics and 
material science, particularly as a proxy for first-principle cal
culations, which are computationally more demanding.

In de novo drug design, we have been slowly witnessing an 
augmentation of rule-based approaches along with rule-free 
approaches in the past few years. While the latter hold pro
mise in exploring unseen regions of the chemical space, they 
also come with limitations, such as limited synthesizability. 
Mixing rule-free and rule-based methods (i.e. ‘hybrid’ meth
ods) might provide a pragmatic solution. Particular attention 
will be drawn toward generative approaches that can exploit 
additional sources of information, such as some of the pio
neering works including gene expression [120], conforma
tional space [123], and ligand binding site information 
[131,132].

For automated synthesis planning and reaction prediction, 
advanced natural language processing will continue to inspire and 
drive innovation. Much needed attention will be drawn to commonly 
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less explored topics, such as yield estimation, side-product formation, 
and the prediction of suitable reaction conditions. Advances in 
robotics and reinforcement learning will lay the groundwork for 
fully automated synthesis in the next few years.

The newfound interest in explainable AI [57], with meth
odologies such as feature attribution [190], instance-based 
molecular counterfactual explanation [191], and uncertainty 
estimation [64], will increase the acceptance of AI-supported 
drug discovery. The development and validation of these 
techniques will require further interdisciplinary research. 
Special consideration will also be given to approaches that 
can exploit information in low-data regimes, such as transfer 
learning [192], as well as multi-task and meta-learning [193]. 
The barriers against learning and prospectively applying 
deep learning approaches have been greatly lowered for 
interested practitioners in the last few years. The current 
trend suggests that these methods will be increasingly 
accessible in the foreseeable future, with the continued 
development of general high-level research and deployment 
software packages [194,195], as well as comprehensible 
documentation.
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