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The exponential scaling of modern com-

pute power (Moore’s law) and data

storage capacity (Kryder’s law), as well

as the collection and curation of big

datasets, have been key drivers of the

recent deep learning (DL) revolution in

artificial intelligence (AI). This revolu-

tion, which makes use of artificial neural

network (ANN) models that are trained

on dedicated GPU clusters, has afforded

important breakthroughs in science and

technology, ranging from protein

folding prediction to vehicle automa-

tion. At the same time, several out-

standing challenges prohibit the use of

DL technology in resource-bounded

applications. 

Among these issues, the quest for low-

latency, low-power devices with on-

demand computation and adaptability

has become a field of competition. A

number of approaches have emerged

with candidate solutions to these prob-

lems. These include highly efficient

hardware specifically designed to carry

out the core tensor operations which

compose ANN models (especially for

mobile devices), cloud-based compute

farms to supply on-demand compute to

internet-connected systems (held back

by access and relevant privacy con-

cerns) and more. 

Brain-inspired methods have also

emerged within this sphere. After all,

the mammalian brain is a prime

example of a low-power and highly

flexible information processing system.

Neuromorphic computing is the name

of the field dedicated to instantiating

brain-inspired computational architec-

tures within devices. In general, neuro-

morphic processors feature the co-loca-

tion of memory and compute, in con-

trast to traditional von-Neumann archi-

tectures that are used by modern com-

puters. Other key features include asyn-

chronous communication of the sub-

processors (there is no global controller

of the system), and data-driven compu-

tation (computing only takes place with

significant changes in the input). A

number of companies and academic

research groups are actively pursuing

the development of such neuromorphic

processors (Intel’s Loihi, IBM’s

TrueNorth, SpiNNaker, and

BrainScaleS, to name a few) [1]. These

developments progress apace. 

We expect that brain-inspired learning

rules can become a major driver of

future innovation for on-board neuro-

morphic learning. In particular, the

above described architectural design
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The success of deep learning is founded on learning rules with biologically implausible properties,

entailing high memory and energy costs. At the Donders Institute in Nijmegen, NL, we have

developed GAIT-Prop, a learning method for large-scale neural networks that alleviates some of the

biologically unrealistic attributes of conventional deep learning. By localising weight updates in

space and time, our method reduces computational complexity and illustrates how powerful

learning rules can be implemented within the constraints on connectivity and communication

present in the brain.

Figure�1:�Comparison�of�standard�backpropagation�with�our�proposed�GAIT-Prop�method.�In�sections�A)�and�B),�circles�indicate�layers�of�a�deep

neural�network.�A)�In�backpropagation,�all�neuron�activations�yi in�each�layer�i�of�the�network�need�to�be�stored�during�a�forward�pass,�and�then

the�network�activity�halted�so�that�that�weights�can�be�updated�in�a�separate�backward�pass�based�on�a�global�error�signal.�B)�In�GAIT-Prop,�a

top-down�perturbation�circuit�is�described�which�can�transmit�target�values�ti�required�to�compute�weight�updates�locally�at�each�unit�by�making

use�of�the�dynamics�of�the�system.�C)�Under�particular�constraints,�GAIT-Prop�produces�identical�weight�updates�compared�to�Backprop.�D)�This

is�also�exhibited�during�training�where�on�a�range�of�benchmark�datasets�(MNIST,�KMNIST,�and�Fashion�MNIST)�GAIT-Prop�matches�the

performance�of�backpropagation.



choices for neuromorphic chips pre-

cisely match the constraints faced by

neurons in brains (local memory and

compute, asynchronous communica-

tion, data-driven computation and

more).

Unfortunately, the computations

required to carry out the traditional gra-

dient-based training of ANNs (known

as backpropagation of error) break the

properties of both neuromorphic archi-

tectures and real neural circuits. Error

computations in the typical format

require non-local information, which

implies that the memory distributed

across the sub-processing nodes would

need to communicate in a global

fashion (Figure 1A). For this reason

alone, the traditional methods for back-

propagation of error are undesirable for

neuromorphic “on-chip” training.

Furthermore, computations associated

with learning and inference (i.e., the

application of the ANN) are carried out

in separate phases, leading to an unde-

sirable “blocking” phenomenon. By

comparison, the brain does not appear

to require non-local computations for

learning. Thus, by finding solutions to

brain-inspired learning, we might arrive

at solutions to “on-chip” training of

neuromorphic computing.

Recent developments in brain-inspired

learning have produced methods which

meet these requirements [2]. In partic-

ular, our group recently developed a

method (GAIT-Prop [3]) to describe

learning in ANN models. GAIT-Prop

relies on the same system dynamics

during inference and training (Figure

1B) such that no additional machinery

is required for gradient-based learning.

When the system is provided with an

indication of the “desired” output of the

system (a training signal), it makes use

of theoretically determined inter-neuron

connectivity to propagate this desired

signal across the network structure

through the activities of the network

units. The change in activity can then be

used by each individual neuron to carry

out relevant updates.

Importantly, under some limited con-

straints, the updates produced by the

GAIT-Prop algorithm precisely match

those of the very powerful backpropa-

gation of error method (Figure 1C).

This ensures that we can achieve

matching performance despite the local

and distributed nature of the GAIT-Prop

algorithm (Figure 1D). Our algorithm

also provided for understanding how a

desired network output can be trans-

lated into target outputs for every node

of an ANN system. Since our method

relies on error signals being carried

within the dynamics of individual units

of the network (requiring no specific

“error” nodes) it requires less computa-

tional machinery to accomplish

learning. This feature is ideal for neuro-

morphic systems as it ensures simplicity

of node dynamics while enabling high

accuracy.

We see our approach and extensions

thereof, in which systems that learn are

close to indistinguishable in their

dynamics to the systems carrying out

inference computations, as an important

step in the development of future neuro-

morphic systems, as it mitigates the

complexities associated with standard

learning algorithms. Systems equipped

with this capability could be embedded

in mobile devices and would be capable

of learning with data locally, also

thereby reducing privacy concerns

which are common in an era of cloud-

computing and mass data storage.
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Humans are prone to errors when it

comes to recollecting details about past

experiences. Much research has

addressed the questions of which details

our memory chooses to store and which

are systematically discarded. Until

recently we have not had methods to

learn the complex statistics to which

memory has adapted to (natural statis-

tics) so there is little data available

about how these systematic failures link

to natural stimulus structure. 

Researchers at the Wigner Research

Center for Physics, Budapest, have

addressed this challenge using varia-

tional autoencoders, a new method in

machine learning that learns a latent

variable generative model of the data

statistics in an unsupervised manner [1].

Latent variable generative models aim

to identify the features that contribute to

the generation of the data and every

single data point is encoded as a combi-

Memory Failures Provide Clues 

for more Efficient Compression 

by Dávid G. Nagy, Csenge Fráter and Gergő Orbán (Wigner Research Center for Physics)

Efficient compression algorithms for visual data lose information for curbing storage capacity

requirements. An implicit optimisation goal for constructing a successful compression algorithm is to

keep compression artifacts unnoticed, i.e., reconstructions should appear to the human eye to be

identical to the original data. Understanding what aspects of stimulus statistics human perception

and memory are sensitive to can be illuminating for the next generation of compression algorithms.

New machine learning technologies promise fresh insights into how to chart the sensitivity of memory

to misleading distortions and consequently lay down the principles for efficient data compression.


