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A B S T R A C T

Sequential decision-making is an iterative process between a learning agent and
an environment. We study the stochastic setting, where the learner chooses an
action in each round and the environment returns a noisy feedback signal. The
learner’s objective is to maximize a reward function that depends on the chosen
actions. This basic model has many applications, including adaptive experimental
design, product recommendations, dynamic pricing and black-box optimization.

The combination of statistical uncertainty and the objective to maximize reward
creates a tension between exploration and exploitation: The learner has to carefully
balance between actions that provide informative feedback and actions estimated to
yield a high reward. The fields of bandit algorithms and partial monitoring study
methods to resolve the exploration-exploitation trade-off optimally, using various
regularity assumptions on the feedback-reward structure.

Two of the most widely used methods are optimistic algorithms and Thompson
sampling, which have been successfully applied in numerous settings and come
with strong theoretical guarantees. More recently, however, an increasing amount
of evidence shows that optimism and Thompson sampling are not universal explo-
ration principles. In structured models with correlated feedback, clearly suboptimal
actions sometimes provide informative feedback that outweighs their cost. Mean-
while, optimistic approaches and Thompson sampling discard such actions early
on, which leads to inefficient exploration.

An alternative and less studied design principle is information-directed sampling
(IDS), originally proposed in the Bayesian setting. The main contribution in this
thesis is a frequentist interpretation of the IDS framework, complemented with
frequentist performance guarantees for several settings with linear reward and
feedback structure. Using the IDS approach, we resolve the long-standing challenge
to find an asymptotically instance-optimal algorithm for linear bandits that is
simultaneously minimax optimal. We further extend the IDS approach to the more
general linear partial monitoring setting, making the method applicable to a vast
range of previously studied models for sequential decision-making. Along the way,
we develop the theory of information-directed sampling, uncover a connection to
primal-dual methods and propose computationally faster approximations. Lastly,
we discuss extensions of the IDS framework to contextual decision-making and the
kernelized setting and highlight example applications.
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Z U S A M M E N FA S S U N G

Sequentielle Entscheidungsfindung ist ein iterativer Prozess zwischen einem Agen-
ten und einer Umgebung. Wir untersuchen den Fall, in dem der Agent in jeder
Runde eine Aktion auswählt und die Umgebung ein verrauschtes Feedbacksignal
zurückgibt. Das Ziel des Lernenden ist es eine Belohnungsfunktion zu maximieren,
die von den gewählten Aktionen abhängt. Dieses Grundmodell hat viele Anwen-
dungen, einschließlich adaptivem Design von Experimenten, Produktempfehlungen,
dynamischer Preisgestaltung und Black-Box-Optimierung.

Die Kombination aus statistischer Unsicherheit und dem Ziel die Belohnung zu
maximieren erfordert einen Kompromiss zwischen Exploration und Exploitation:
Der Lernende muss sorgfältig zwischen Aktionen abwägen, die informatives Feed-
back liefern, und solchen die voraussichtlich eine hohe Belohnung erzielen. Die
Gebiete der Bandit-Algorithmen und Partial Monitoring erforschen Lösungswege,
welche optimal zwischen Exploration und Exploitation abwägen, unter Verwendung
verschiedener Regelmäßigkeitsannahmen an die Feedback-Belohnungsstruktur.

Zwei der am häufigsten verwendeten Methoden sind optimistische Algorithmen
und Thompson-Sampling, die in zahlreichen Fällen erfolgreich angewendet wurden
und starke theoretische Garantien bieten. In letzer Zeit zeigen jedoch immer mehr
Resultate, dass Optimismus und Thompson-Sampling keine universellen Explorati-
onsprinzipien sind. In strukturierten Modellen mit korreliertem Feedback können
eindeutig suboptimale Aktionen manchmal informatives Feedback liefern, das
die Kosten überwiegt. Optimistische Ansätze und Thompson-Sampling verwerfen
solche Aktionen frühzeitig, was zu einer ineffizienten Exploration führt.

Ein alternatives und weniger untersuchtes Entwurfsprinzip ist Information-
Directed Sampling (IDS), das ursprünglich im Bayes’schen Model vorgeschlagen
wurde. Der Hauptbeitrag in dieser Arbeit ist eine frequentistische Interpretation des
IDS-Frameworks, sowie frequentistische Performance-Guaranteen für verschiedenen
Umgebungen mit linearer Belohnungs- und Feedbackstruktur. Mit dem IDS-Ansatz
lösen wir das schon lange bestehende Problem einen asymptotisch optimalen Al-
gorithmus für lineare Bandits zu finden, der gleichzeitig minimax-optimal ist. Wir
erweitern den IDS-Ansatz zudem auf Partial Monitoring, wodurch die Methode auf
eine Vielzahl zuvor untersuchter Modelle für die sequentielle Entscheidungsfindung
anwendbar ist. Desweiteren entwickeln wir die Theorie für Information-Directed
Sampling, decken einen Zusammenhang mit Primal-Dual-Methoden auf und schla-
gen rechnerisch schnellere Approximationen vor. Zuletzt diskutieren wir Erweite-
rungen des IDS-Frameworks für die kontextbezogene Entscheidungsfindung sowie
Kernel-Methoden und heben Beispielanwendungen hervor.
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N O TAT I O N

A action set
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Σ symbol set in finite partial monitoring

ρ sub-Gaussian variance

Ψt(µ) information ratio
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∆̂t(a) gap estimate

It(a) information gain

γn total information gain

βt,1/δ confidence coefficient
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1
I N T R O D U C T I O N

The fields of bandit algorithms and partial monitoring study strategies for
sequential decision-making under uncertainty. The setting is formalized as a
round-based game between a learner and an environment. At the beginning
of each round, the learner chooses an action, and the environment reveals a
stochastic feedback signal. The learner then receives a reward that depends
on the action and is correlated with the feedback. To maximize the total
reward, the learner has to carefully balance actions that lead to informative
feedback and actions estimated to yield a high reward. This trade-off is
known as the exploration-exploitation dilemma. The topic of this thesis is
about understanding the exploration-exploitation trade-off under specific
structural assumptions on how the feedback and the reward are generated.

The basic bandit setting dates back to Thompson [159], who proposed it
for designing adaptive allocation schemes in clinical trials. Since then, ban-
dit algorithms have found many more applications, and the field has grown
rapidly in recent years. For a broader introduction, we refer the reader to
the excellent books by Lattimore & Szepesvari [103] and Slivkins [149].

In this work, we focus on the stochastic version of the bandit problem,
where the feedback for each action is sampled from a fixed distribution.
There is also the adversarial bandit setting, where the data is adversarially
generated [15]. We do not further expand in this direction here. A common
characteristic of most bandit problems is that the environment is stateless.
This means the feedback for a specific action is sampled from the same
distribution in all rounds. Hence, unlike in reinforcement learning [157],
the learner does not face a planning problem.

Let us first give some applications. Bandit algorithms are an attractive
tool to optimize high-throughput internet services such as recommender
systems and online advertising [6, 66, 107, 158]. In this scenario, the system
presents the user a set of options, for example, a list of movies that the
user might like. The goal is to learn the user’s preferences through the
interaction and, at the same time, maximize the success rate that the user
chooses one of the presented options. The important twist is that the
learner faces an online learning problem: The data acquired by the policy
early on is used later to optimize the decisions, and care is required to

1



2 introduction

avoid an unfavorable selection bias. On the other hand, probing too many
unsuccessful options comes at the cost of eventually turning the user away.

Another application is dynamic pricing [94]. Here, the learner represents a
salesperson who wants to price a product optimally. The price the customer
is willing to pay is unknown initially, but for each offer, the learner observes
whether the customer buys the product or not. The learner then adapts the
price based on this feedback in a way to maximize the revenue.

More generally, the bandit setting is related to the field of adaptive
experimental design [37, 41, 57]. For instance, bandit algorithms can be
used to design customer surveys and for A/B testing. With a continuous
action set, the bandit problem essentially becomes that of zero-order noisy
optimization. In this context, the field of Bayesian optimization is understood
to solve a similar problem, [119, 145], and the algorithms are based on
similar ideas [152]. Techniques from bandit algorithms are also used in the
tree-search algorithm that is behind the celebrated success of AlphaGo [95,
148], and are used to develop reinforcement learning algorithms [157].

A longer list of applications and further references have been conveniently
compiled by Bouneffouf, Rish & Aggarwal [26] and in the book by Lattimore
& Szepesvari [103, §1.2]. We will mention more examples as we go, and
Chapter 8 is dedicated to applications of the algorithmic ideas developed
in this thesis.

Among many algorithms designed for the stochastic bandit setting, two
approaches stand out. The first is the upper confidence bound (UCB) algo-
rithm [13, 99]. The idea is to compute a high-probability upper bound
on the reward of each action based on the accumulated feedback. UCB
algorithms choose the action with the largest plausible reward and, in that
sense, are optimistic about the outcome.

The second popular approach is Thompson sampling [138, 159], which is
a randomized strategy that samples actions according to their posterior
probability of being optimal in a Bayesian model of the rewards. UCB and
Thompson sampling are known to satisfy strong theoretical guarantees and
are widely successful in practice. They have also been adapted beyond the
basic bandit setting, for example, in reinforcement learning [77, 125, 153].

More recently, however, there is evidence that the optimism principle and
Thompson sampling are not universal recipes for exploration [103, 105].
The reason is that both methods are designed to choose only actions that
might be optimal. In settings where the feedback is correlated, actions that
are known to be suboptimal sometimes provide a substantial amount of
information that outweighs the cost. Such actions are never chosen by UCB
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or Thompson sampling, which is why these approaches can be inefficient
in models with structured feedback.

In this thesis we focus on an alternative design principle proposed by
Russo & Van Roy [135] called information-directed sampling (IDS). The idea
is to myopically optimize a trade-off between information and the estimated
cost of choosing a suboptimal action. Without getting too formal yet, we
denote by A the set of actions and the set of sampling distribution over
actions by P(A). Let ∆̂t(µ) be an estimate of the expected loss of sampling
actions from a distribution µ in round t, compared to the best action in
hindsight. Further, assume that we quantify the expected information
from the feedback with a function It(µ). Information-directed sampling is
defined to optimize the following trade-off:

µIDS
t = arg min

µ∈P(A)

∆̂t(µ)2

It(µ)
(1.1)

Previous work [111, 135] and the theoretical analysis we present in this
thesis show that IDS satisfies strong guarantees for regret minimization in
an exceptionally wide range of settings. Our analysis goes well beyond
the previous work and provides new insights into how IDS solves the
exploration-exploitation trade-off. An interesting and previously little
explored feature of IDS is that it adapts to the hardness of the problem.
This is an important property, because not every instance encountered in
practice is as difficult as the theoretical analysis suggests. We will also be
specific about the computational complexity required to compute the trade-
off defined by Eq. (1.1). In most cases, we provide pseudo code to efficiently
compute or approximate the IDS algorithm, and the implementation often
requires only a few lines of code. Last but not least, IDS is often competitive
with state of the art methods on numerical benchmarks.

basic notation Before we introduce the setting formally, we settle on
the basic mathematical notation that is used throughout. The real numbers
are R, and R≥0 denotes the non-negative reals. The standard Euclidean
norm is ‖ · ‖ and the Euclidean inner product is 〈·, ·〉. The Euclidean basis
in Rd is e1, . . . , ed. The identity matrix in Rd×d is 1d. For a positive (semi-
)definite, symmetric matrix A ∈ Rd×d and a vector v ∈ Rd, the associated
matrix (semi-)norm is ‖v‖2

A = 〈v, Av〉. The smallest and largest eigenvalues
of a matrix A are denoted by λmin(A) and λmax(A), respectively. For two
square matrices A, B, A � B means that B− A is positive semi-definite.
The operator norm of a matrix C is ‖C‖2 =

√
λmax(C>C).
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For a set C ⊂ Rd we define dim(C) as the dimension of the affine hull
of C. The diameter is diam(C) = supx,y∈X ‖x− y‖. The relative interior of
a convex set C is relint(C) = {x ∈ C : ∀y ∈ C ∃λ > 1 : λx + (1− λ)y ∈ C},
and the set of extreme points is ext(C).

The space of Borel probability measures on a topological set S is P(S).
The support of a distribution is supp(µ). For measurable functions F : S →
R and a distribution µ ∈P(S), we extend the argument linearly to denote
the Lebesgue integral F(µ) =

∫
X F(s)dµ(s). For finite S and where more

convenient, we use vector notation, including inner products to denote
evaluation of functions, for example F(s) = 〈es, F〉. Occasionally, we use
the Dirac measure on s ∈ S , denoted by es to match the interpretation as a
standard basis vector.

1.1 regret minimization

Let A be a compact set of actions. Sometimes, we additionally require
that A is finite, which is then specified in the relevant context. The reward
function fθ : A → R is parameterized by θ ∈ M, whereM is the model class.
At the beginning of the game, the learner knows both A andM, but the
reward function is unknown. The interaction between the learner and the
environment is on time steps t = 1, . . . , n. In practice, it is often useful to
have strategies that do not rely on the knowledge of the horizon n.

The learner’s actions are defined by a policy πn = (µt)n
t=1 that consists

of an adaptive sequence of sampling distributions µt ∈P(A). At time t, the
learner samples an action at from µt, and obtains a feedback yt. The filtration
Ft is the σ-algebra generated by the observation history {as, ys}t−1

s=1. We
abbreviate the conditional probability and expectation with Pt[·], P[·|Ft]
and Et[·], E[·|Ft].

So far, we have not specified the feedback. Bandit feedback is defined
as the reward of the chosen action, yt = fθ(at) + εt, subject to zero-mean
observation noise εt. This type of feedback is the topic of Chapters 3 to 5.
Throughout, we assume that the noise is light-tailed, which allows us to
make use of standard concentration results for estimation. Concretely, we
require that εt is conditionally independent of at and ρ-sub-Gaussian,

∀η ∈ R, Et[exp(ηεt)|at] ≤ exp(η2ρ2/2) . (1.2)

Partial monitoring uses a more general feedback structure, which we
preview below in Section 1.2.3 and then study in detail in Chapters 6 to 8.
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The generalized feedback model includes most stateless online learning
problems, including full information and semi-bandit models.

The learner’s objective is to maximize the sum of rewards ∑n
t=1 fθ(at)

collected in n rounds. Equivalently, the learner minimizes the loss relative
to the best solution in hindsight, which leads us to the expected regret,

Rn(π, θ), E

[
n

∑
t=1

fθ(a∗)− fθ(at)

]
. (1.3)

The expectation is over the randomness of the policy and the noise. When
the policy and the instance is clear from the context, we omit the dependence
of the regret on πn and θ, and write Rn = Rn(πn, θ). We denote by
∆(a), maxb∈A fθ(b)− fθ(a) for the suboptimality gap of an action a ∈ A.
The regret ∆(at) suffered at time t is also called the instantaneous regret,
and the cumulative regret is written as Rn(πn, θ) = E[∑n

t=1 ∆(at)]. We are
primarily interested in two ways of bounding the regret: worst-case regret
and instance-dependent regret, which we formally define next.

1.1.1 Worst-case Regret

The worst-case regret is defined over a fixed model classM,

Rn(π,M), sup
θ∈M

Rn(π, fθ) .

Besides the horizon n, an upper bound on the worst-case regret depends
on quantities that are known to the learner at the beginning of the game:
the model class M, the action set A and properties of the observation
likelihood like the sub-Gaussian noise variance. However, the supremum
makes the bound independent of the parameter θ ∈ M that defines the
instance the learner is facing. We say a policy π has no regret on the model
class M if lim supn→∞

1
nRn(π,M) → 0, which requires the learner to

query eventually (near-) optimal actions most of the time.

1.1.2 Instance-dependent and Asymptotic Regret

The difficulty of the learning problem also varies with the instance f . Some
instances can be significantly easier compared to the worst-case realization.
It is therefore of interest to bound the instance-dependent regret, Rn(π, θ),
where we allow the bound to additionally depend on the instance defined
by θ ∈∈ M. Achieving near-optimal bounds on the instance-dependent
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regret is often a challenging endeavor, and a less demanding starting point
is to study the appropriately normalized asymptotic regret,

lim sup
n→∞

Rn(π, θ)

log(n)
.

1.2 multi-armed bandits and beyond

The simplest and most extensively studied case is the multi-armed bandit
setting, where the action set is finite, and the model class contains all func-
tions that map actions to a bounded reward, e.g. M = [0, 1]A. Traditionally,
the literature refers to actions as arms, which pictorially stands for levers
of a gambling slot machine that the player can pull to obtain a random
reward [32]. The arms are independent, in the sense that reward observations
from one action do not allow to infer the reward of any other action.

A widely successful idea for exploration is the optimism principle, which
refers to choosing actions that promise the potentially largest reward. The
reasoning is that when the optimism is justified, the learner obtains a high
reward. Otherwise, when the reward is significantly smaller than expected,
the estimates are updated, and consequently, the action is excluded from
future experimentation. The strategy is designed to rule out sub-optimal
actions systematically and is often highly effective in practice. Adaptation of
the optimism principle to the bandit setting dates back to Lai & Robbins [99],
who formalized the idea with upper confidence bound (UCB) strategies.
The first finite-time analysis of UCB in the multi-armed bandit setting is by
Auer, Cesa-Bianchi & Fischer [14].

A different approach is by Gittins [65], who derived score functions for
each arm from a dynamical programming solution in a Bayesian model with
discounted reward. The agent that maximizes the Gittins indices is a Bayes-
optimal policy, that satisfies a distinct relation to the UCB approach [134].

For action sets of size k = |A|, a carefully balanced algorithm based on
the upper confidence bound approach achieves worst-case regret at most

Rn ≤ O(
√

nk) ,

and, at the same time, instance-dependent regret that satisfies

lim
n→∞

Rn

log(n)
≤ ∑

a∈A:∆(a)>0

2
∆(a)

.

The result and variants are by Audibert & Bubeck [12], Degenne & Perchet
[49], and Ménard & Garivier [117]. The bound on the worst-case regret
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matches the order of the lower bound by Auer et al. [15] and the asymptotic
bound matches the lower bound by Lai & Robbins [99] exactly.

1.2.1 Structured Bandits

The general case with arbitrary model classM is known as the structured
bandit setting [43] and provides flexibility to impose structural constraints on
the reward function such as linearity, Lipschitz continuity or unimodality.
The general structured setting is used in Chapter 4, whereas all other
chapters assume a linear reward and feedback model. In Chapter 7 we
discuss parameter sets with convex constraints.

information-directed sampling Similar to the optimism principle,
the IDS framework describes a way to design algorithms for different
settings. As briefly described in Eq. (1.1), IDS is defined to optimize the
sampling distributions on a trade-off between squared expected regret and
information gain. The original formulation by Russo & Van Roy [135] is in
the structured bandit setting with a Bayesian prior on the parameter. This
includes linear feedback as a special case, which was explicitly analyzed
in the same paper. We defer a formal and more detailed introduction of
information-directed sampling to Chapter 2.

1.2.2 Stochastic Linear Bandits

In the linear bandit model, M ⊂ Rd is a compact set of d-dimensional
parameters, and the actions are represented by features A ⊂ Rd. The
reward function is defined by a parameter θ ∈ M such that fθ(a) = 〈a, θ〉.
Linear bandits date back to Abe & Long [4] and have been extensively
studied since then. An overview of the existing work is given below.

There are many reasons for studying the linear case. Unlike in the multi-
armed bandit setting, the linear structure allows the learner to estimate
the reward of an action without directly observing it. This also means that
regret bounds do not necessarily scale with the number of actions, and
we can get meaningful bounds even for large or continuous action sets.
Linear least-squares estimation conveniently offers analytically tractable
inference. The linear structure also implies that observations are correlated
in a way that makes the exploration-exploitation trade-off much more
subtle, in particular for asymptotically optimal exploration. Lastly, the
choice of action features provides considerable flexibility; ultimately with
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kernel methods, where the basis is chosen in a Hilbert space that represents
continuous sets of non-linear functions. We roughly categorize previous
work in the following.

optimistic approaches Upper confidence bound algorithms were
first adapted to the linear bandit setting by Auer [13]. The analysis was later
refined by Dani, Hayes & Kakade [46], Rusmevichientong & Tsitsiklis [132]
and Abbasi-Yadkori, Pál & Szepesvári [3]. The latter work introduces the
self-normalized confidence sets for online least-squares regression, which
we repeatedly use in this thesis. Note that in the linear bandit setting, the
upper confidence bound algorithm is sometimes abbreviated as LinUCB to
distinguish it from the algorithm for the independent arm case, or OFUL for
“optimism in the face of uncertainty linear bandit algorithm” [3]. Here we
write UCB for all upper confidence type algorithms and explicitly specify
the way the confidence bounds are defined in the relevant context.

thompson sampling As mentioned in the introduction, the first bandit
algorithm is by Thompson [159], and the method is known today as Thomp-
son sampling. The strategy is defined to sample actions according to their
probability of being optimal in a Bayesian model of the reward function. A
connection between Thompson sampling and UCB algorithms is established
by Russo & Van Roy [136], who provided the first bound on the Bayesian re-
gret in the linear setting. An elegant information-theoretic analysis is by the
same authors Russo & Van Roy [137], which then lead to the information-
directed sampling framework. The first frequentist analysis of Thompson
sampling for linear bandits is by Agrawal & Goyal [7], and an alternative
proof with an optimistic interpretation is by Abeille & Lazaric [5].

Thompson sampling is a widely popular method due to its simplicity
and wide applicability when a Bayesian posterior is available [138]. The
method is often accredited superior empirical performance compared to
UCB algorithms [38]. Arguably, this is mainly due to tighter concentration
of the Bayesian credible sets, which make explicit use of the Bayesian realiz-
ability assumption. There is evidence that carefully tuned UCB algorithms
are competitive with Thompson sampling [138, §7.4] and [103, §36.2].

explore-then-commit and phased exploration A simple and
more explicit way to implement the exploration-exploitation trade-off is by
introducing phases that alternate between exploration and exploitation. In
the exploration phase, the learner uses a fixed sampling strategy to reduce
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the uncertainty about the unknown maximizer. In exploitation rounds,
the learner chooses the empirically best action. The effectiveness of this
approach largely depends on the design of the exploration distribution,
which is directly related to experimental design. This approach has been
successfully applied to the linear bandit setting by Abbasi-Yadkori, Antos
& Szepesvári [2] and Rusmevichientong & Tsitsiklis [132]. Interestingly,
a carefully designed algorithm that sequentially eliminates sub-optimal
actions with an i.i.d. sampling scheme achieves better bounds than the
UCB approach in some cases, see Lattimore & Szepesvari [103, §22]. Some
asymptotic algorithms also rely on a forced exploration to initialize the
estimates [72, 104]. More recently, Wagenmaker, Katz-Samuels & Jamieson
[169] combine optimal experimental design with a phased elimination-style
algorithm to derive finite-time guarantees that scale with the Gaussian
width of the action set.

asymptotically optimal algorithms Lattimore & Szepesvári
[104] showed that algorithms based on optimism or Thompson sampling
are not asymptotically optimal in the linear setting. They proposed an
approach based on the explore-then-commit framework that computes an
estimate of the optimal allocation and updates the allocation to match the
predicted target. Combes, Magureanu & Proutiere [43] follow a similar plan
for the more general structured bandit setting. This idea was subsequently
extended to the contextual setting by Hao, Lattimore & Szepesvari [72].
Unfortunately, these algorithms are not really practical and do not enjoy
reasonable minimax regret. More recently, Jun & Zhang [79] refined this
technique in the structured setting with a finite model class to avoid forced
exploration and the knowledge of the horizon. Similarly, Van Parys &
Golrezaei [166] use a dual formulation of the lower bound to devise an
algorithm that achieves the optimal asymptotic regret up to a constant and
avoids resolving for the predicted optimal allocation at every round.

A different route is taken by Degenne, Shao & Koolen [50], who translate
the Lagrangian of the lower bound into a fictitious two-player game, where
the saddle point corresponds to the optimal asymptotic regret. Using
tools from online convex optimization [74, 124], this leads to a family
of asymptotically optimal algorithms, which incrementally update the
allocation in each round based on primal-dual updates on the Lagrangian
of the lower bound. The concurrent work by Tirinzoni et al. [160] is also
a primal-dual method, and unlike previous methods both worst-case and
asymptotically optimal. The approach further applies to the contextual
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case. We explore a connection between information-directed sampling
and primal-dual methods in Chapter 4 and a contextual version of IDS in
Chapter 8.

kernel methods Algorithms for the kernelized linear bandit setting
make use of the kernel trick to avoid a direct representation of the feature
vectors, and instead only rely on computation of inner products [130, 143].
The advantage is that one can represent the reward function in a poten-
tially infinite-dimensional reproducing kernel Hilbert space (RKHS). The
choice of kernel function and the norm of the parameter correspond to a
smoothness prior on the reward function. Cumulative regret of kernelized
versions of UCB is studied by Abbasi-Yadkori [1], Chowdhury & Gopalan
[42], Srinivas et al. [152], and Valko et al. [164]. A kernelized analysis of
Thompson sampling is by Chowdhury & Gopalan [42]. The main contri-
bution of this line of work is to replace the (potentially infinite) dimension
with an appropriate notion of an effective dimension. Closely related in this
context is also the field of Bayesian optimization [119] with a large body of
work and applications on its own. For further details, the reader is referred
to the surveys by Shahriari et al. [145] and Frazier [60].

1.2.3 Linear Stochastic Partial Monitoring

Partial monitoring generalizes the linear bandit framework by decoupling
the feedback signal from the reward. This makes it an extremely flex-
ible framework that models numerous stateless online decision-making
problems studied in the literature. A simple example is dynamic pricing,
which we mentioned in the introduction. Partial monitoring encompasses
many other common settings such as dueling bandits [176], bandits with
graph feedback [115] and cascading bandits [98]. We present more detailed
examples in Chapters 6 to 8.

In the linear variant of the setting, each action a ∈ A is associated with
a d-dimensional feature vector φa ∈ Rd. The reward fθ(a) = 〈φa, θ〉 is
defined by a parameter θ ∈ Rd in the same way as in the linear bandit
model. The difference is that in partial monitoring, the learner does not
observe the reward directly. Instead, each action a ∈ A has an associated
linear feedback operator Ma : Rd → Rm, and the observation in round t is
yt = Mat θ + εt where εt is a sub-Gaussian random vector in Rm.
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finite partial monitoring The partial monitoring framework was
first introduced by Rustichini [139]. The general class of partial monitoring
games has a rich geometric structure [16, 106] where the achievable worst-
case regret rate depends on precise observability conditions. Classifying
games according to the difficulty of the exploration-exploitation trade-off is
an essential part of previous work. The complete classification of all finite
games is achieved in a line of work by Antos et al. [9], Bartók et al. [16], Cesa-
Bianchi, Lugosi & Stoltz [35], Lattimore & Szepesvári [106], and Piccolboni
& Schindelhauer [128], with a focus on the stochastic version of the problem
in the work by Bartók, Pál & Szepesvári [17] and Bartók, Zolghadr &
Szepesvári [18]. Asymptotics for finite games are known as well [96].
Partial monitoring with prior information was studied by Vanchinathan,
Bartók & Krause [167], and with side-information by Bartók & Szepesvári
[19]. Thompson sampling has been analyzed for games that satisfy a strong
local observability condition by Tsuchiya, Honda & Sugiyama [162].

linear partial monitoring The linear version of the problem and
a phased exploration scheme is due to Lin et al. [109]. Another phased
exploration method was proposed by Chaudhuri & Tewari [40]. Both
algorithms rely on oracle solvers for the offline problem and are therefore
suitable for potentially exponential action sets. However, the analysis and
algorithm design is tailored to a global observability assumption (formally
defined in Section 6.2), and is not adaptive towards more benign cases
where faster rates are possible. The analysis of Thompson sampling by
Tsuchiya, Honda & Sugiyama [162] also applies in the linear setting but
requires a strong local observability assumption.

The use of information-directed sampling for partial monitoring has been
suggested already by Russo & Van Roy [135], and in fact, some of the
examples in this work capture the spirit of partial monitoring. However, to
the best of our knowledge, there is no prior work that provides an explicit
formulation of IDS for the partial monitoring setting.

1.3 contributions

In this thesis, we develop a frequentist version of information-directed sam-
pling. Using the IDS design principle, we derive novel algorithms for regret
minimization in linear bandits and partial monitoring, each complemented
with strong theoretical performance guarantees. A reading guide and
overview of the contributions is given below:
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• In Chapter 2, we formally introduce information-directed sampling
and present general results that are useful throughout. This includes
a new approximation of IDS that is computationally more efficient.

• In Chapter 3, we develop an algorithm for heteroscedastic linear ban-
dits based on the frequentist IDS principle. Using the tools from the
second chapter, we derive bounds on the worst-case regret that match
the best-known bounds for UCB in the homoscedastic case, but can be
better by an arbitrarily large factor when the noise is heteroscedastic.

• In Chapter 4, we uncover a fundamental connection between IDS and
primal-dual methods for regret minimization on structured bandits.
Our analysis sheds light on how IDS balances the trade-off between
regret and information in the asymptotic regime.

• In Chapter 5, we build on the primal-dual analysis and introduce an
information gain function, for which IDS is asymptotically instance-
optimal and (nearly) minimax optimal on linear bandits, resolving
a long-standing challenge. The resulting algorithm is remarkably
simple, anytime, and has the same computational complexity as UCB.

• In Chapter 6, we generalize the IDS algorithm to the linear partial
monitoring framework. We show that the same IDS algorithm is
worst-case optimal in all linear games with finitely many actions. The
result is complemented with a classification of linear partial monitor-
ing with finitely many actions, showing that the regret rate is either
0, Θ̃(

√
n), Θ̃(n2/3) or Ω(n).

• In Chapter 7, we refine the analysis for linear partial monitoring for
parameter sets with convex constraints. We then apply these results
to the classical finite partial monitoring setting, where the param-
eter is in the simplex, and show that IDS matches the established
classification result for finite partial monitoring.

• In Chapter 8, we conclude the technical part with two extensions: A
contextual formulation of linear partial monitoring and a kernelized
variant of IDS. We further supply a set of example applications, in-
cluding contextual customer surveys, dueling bandits, robust regret
minimization, and Bayesian optimization with gradient observations.

• Lastly, in Chapter 9 briefly compare the Bayesian and frequentist IDS
frameworks and conclude with a list of open problems.
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1.3.1 Publications and Collaborations

This thesis would not have been possible without my advisor, Andreas
Krause, and many of the ideas presented here have been shaped in our
meetings. To a large extend, the results on partial monitoring are joint work
with Tor Lattimore. I further enjoyed collaborating with my colleagues on
numerous ideas. Individual contributions are accredited in more detail
at the end of each chapter. Results presented and not otherwise cited
are by the author and collaborators. The thesis is based on the following
conference papers:

• Kirschner, J. & Krause, A. Information Directed Sampling and Bandits
with Heteroscedastic Noise in Proc. International Conference on Learning
Theory (COLT) (July 2018)

• Kirschner, J., Lattimore, T. & Krause, A. Information Directed Sampling
for Linear Partial Monitoring in Proc. International Conference on Learning
Theory (COLT) (July 2020)

• Kirschner, J., Lattimore, T., Vernade, C. & Szepesvári, C. Asymptotically
Optimal Information-Directed Sampling in Proc. International Conference
on Learning Theory (COLT) (Aug. 2021)

• Kirschner, J. & Krause, A. Bias-Robust Bayesian Optimization via Dueling
Bandits in Proc. International Conference on Artificial Intelligence and
Statistics (AISTATS) (July 2021)

further publications The following publications of the author and
collaborators are more broadly relevant to the topic of this thesis, but
have not been directly included. The first is an heuristic extension of IDS
to reinforcement learning, using the ideas developed in Chapter 3. The
numerical results show that the IDS approach leads to improvements on
the Atari benchmark suite [21].

• Nikolov, N., Kirschner, J., Berkenkamp, F. & Krause, A. Information-
Directed Exploration for Deep Reinforcement Learning in Proc. International
Conference on Learning Representations (ICLR) (May 2019)

The second set of publications studies variants of the bandit model, such as
linear bandits with stochastic context, distributionally robust optimization
and best arm identification. The last publication in the list below makes
use of the primal-dual approach that we explore in Chapter 4.
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• Kirschner, J. & Krause, A. Stochastic Bandits with Context Distributions
in Proc. Neural Information Processing Systems (NeurIPS) (Dec. 2019)

• Mutný, M., Kirschner, J. & Krause, A. Experimental Design for Optimiza-
tion of Orthogonal Projection Pursuit Models in Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI) (Feb. 2020)

• Kirschner, J., Bogunovic, I., Jegelka, S. & Krause, A. Distributionally
Robust Bayesian Optimization in Proc. International Conference on Artificial
Intelligence and Statistics (AISTATS) (Aug. 2020)

• Jourdan, M., Mutný, M., Kirschner, J. & Krause, A. Efficient Pure Explo-
ration for Combinatorial Bandits with Semi-Bandit Feedback in Algorithmic
Learning Theory (2021), 805

Lastly, in collaboration with Nicole Hiller, Jochem Snuverink, Jaime Coello
and Rasmus Ischebeck at the Paul Scherrer Institute, we developed data
driven tuning methods for particle accelerators, using techniques from
kernelized bandits. These works focus on practical aspects of Bayesian
optimization, including safety constraints and high-dimensional settings.
We successfully deployed our methods on the Swiss Free Electron Laser
[SwissFEL, 118] and the High-Intensity Proton Accelerator [HIPA, 144].
While these projects did not fit the scope of the thesis, the application has
shaped a few examples presented in Chapter 8.

• Kirschner, J., Mutný, M., Hiller, N., Ischebeck, R. & Krause, A. Adaptive
and Safe Bayesian Optimization in High Dimensions via One-Dimensional
Subspaces in Proc. International Conference for Machine Learning (ICML)
(June 2019)

• Kirschner, J., Nonnenmacher, M., Mutný, M., Hiller, N., Adelmann,
A., Ischebeck, R. & Krause, A. Bayesian Optimization for Fast and Safe
Parameter Tuning of SwissFEL in Proc. International Free-Electron Laser
Conference (FEL2019) (June 2019)



2
I N F O R M AT I O N - D I R E C T E D S A M P L I N G

Information-directed sampling (IDS) is a design principle, that, like the
optimism principle, leads to different algorithms in different settings. The
framework was introduced with a Bayesian analysis by Russo & Van Roy
[135]. We briefly review the Bayesian formulation of IDS and related results
in Section 2.3. All other results in this chapter are purely algorithmic, and
do not rely on a modeling assumption.

We assume that the learner is provided a gap estimate ∆̂t : A → R≥0 and
an information gain It : A → R≥0 at the beginning of each round t. We
assume that ∆̂t and It are continuous (which only really is a restriction if A
is not finite). For the purpose of this chapter, there is no need to commit to
specific choices yet, but we will develop concrete choices for both ∆̂t and It
in the subsequent chapters.

Naturally, the gap estimates and information gain are computed using
observations from previous rounds, and are therefore predictable on the
filtration Ft. We also require that It is not zero everywhere. The IDS
distribution µIDS

t is defined to optimize the trade-off between squared
expected regret and expected information gain:

µIDS
t = arg min

µ∈P(A)

{
Ψt(µ),

∆̂t(µ)2

It(µ)

}
. (2.1)

IDS is defined as the policy πIDS
n = (µIDS

t )n
t=1 that samples at ∼ µIDS

t in
round t. A minimizer always exists on compact A and can be chosen
arbitrarily if the IDS distribution µIDS

t is not unique. The objective Ψt(µ) is
called the information ratio of the sampling distribution µ ∈P(A). Some-
times, we overload the notation and write Ψt(a) = Ψt(ea) were ea is a Dirac
on action a ∈ A. Intuitively, a small information ratio requires the learner
to sample actions from a distribution with small expected regret and large
information gain. Since there is only a certain amount of information, even-
tually the information gain is vanishing and the learner has to play actions
with small regret. The complete approach is summarized in Algorithm 1.

15
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Algorithm 1: Information-Directed Sampling

Input: Action set A, gap estimate ∆̂t : A → R≥0, information gain
It : A → R≥0

1 for t = 1, 2, 3, . . . , n do

2 µt ← arg min
µ∈P(A)

{
Ψt(µ) =

∆̂t(µ)2

It(µ)

}
// IDS distribution

3 Sample at ∼ µt, observe feedback yt

a regret inequality The information ratio appears as a central quan-
tity in the regret analysis. To understand how, consider any adaptive policy
πn = (µt)n

t=1. We first bound the estimated cumulative regret:

E

[
n

∑
t=1

∆̂t(at)

]
= E

[
n

∑
t=1

∆̂t(µt)

]
= E

[
n

∑
t=1

√
Ψt(µt)It(µt)

]

≤

√√√√E

[
n

∑
t=1

Ψt(µt)

]
E

[
n

∑
t=1

It(at)

]
(2.2)

The first step uses the tower rule, E
[
∆̂t(at)

]
= E

[
Et
[
∆̂t(at)

]]
= E

[
∆̂t(µt)

]
.

The second equality uses the definition of the information ratio, and the
(2.2) follows from the Cauchy-Schwarz inequality and another application
of the tower rule. Note that IDS is the policy that myopically minimized
the first sum in the upper bound. The second sum is the total information
gain, which we abbreviate with

γn ,
n

∑
t=1

It(at) . (2.3)

For the regret Rn = E[∑n
t=1 ∆(at)], Eqs. (2.2) and (2.3) imply

Rn = E

[
n

∑
t=1

∆̂t(at)

]
+ E

[
n

∑
t=1

∆(at)− ∆̂t(at)

]

≤

√√√√E

[
n

∑
t=1

Ψt

]
E[γn] + E

[
n

∑
t=1

∆(at)− ∆̂t(at)

]
. (2.4)

This is as far as we can go without a more concrete setting, and specific
choices for the gap estimate and information gain. We summarize the
re-occurring arguments used in the IDS analysis:
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i) The gap estimate ∆̂t(a) is chosen as a high-probability upper bound on
the true gap ∆(a). This way, the estimation error E

[
∑n

t=1 ∆(at)− ∆̂t(at)
]

contributes only negligibly to the overall regret.

ii) The total information gain γn = ∑n
t=1 It(at) can be interpreted as the

sample complexity of identifying the best action and typically has a
logarithmic dependence on the horizon.

iii) The information ratio is bounded in a way that for any sampling path
up to time t, there exists a sampling distribution µt with bounded
information ratio, Ψt(µt) ≤ α.

By Eq. (2.4), the policy πn = (µt)n
t=1 constructed from iii) has regret at most

Rn(πn, f ) ≤
√

nE[α]E[γn] +
n

∑
t=1

E
[
∆(at)− ∆̂t(at)

]
.

Moreover, the bound is non-trivial under the premises i-ii). The usefulness
of the bound stems from the fact that we can explicitly design sampling
distributions that achieve a small information ratio as in iii). The same
bound automatically applies by definition to the IDS algorithm, and we do
not have to know exactly which action is realized as a sample from the IDS
distribution. It has already been demonstrated by Russo & Van Roy [135]
that bounds derived with this way are (near) optimal in many settings, and
we will see further examples in this thesis. In the next section we study
properties of the information ratio and the IDS distribution. The regret
bounds are formalized in Section 2.2.

2.1 properties of the information ratio

The information ratio Ψt(µ) has many remarkable properties that make it a
far more tractable object than it suggests at first sight. The existence of the
IDS distribution µIDS

t = arg minµ∈P(A) Ψt(µ) is immediate for finite action
sets, and is formally proven for compact A in Lemma 2.1. The information
ratio and the IDS distribution further satisfy the following properties:

i) The IDS distribution is invariant under constant re-scaling of the gap
estimate or the information gain (Lemma 2.2).

ii) The function µ 7→ Ψt(µ) is convex on P(A) (Lemma 2.3).

iii) The support of IDS distribution µIDS
t can always be chosen on at most

two actions that satisfy an affine-linear relationship (Lemma 2.4).
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iv) For two actions, the IDS distribution µIDS
t has an analytic closed form

(Lemma 2.5).

v) The expected regret of the IDS distribution is not too far from greedy,
specifically ∆̂(µIDS

t ) ≤ 2 mina∈A ∆̂(a) (Lemma 2.6).

vi) The information ratio obtained by a distribution that randomizes only
between the greedy action ât = arg mina∈A ∆̂t(a) and one other action
inA\{ât} is within a constant factor 4

3 of the optimal ratio (Lemma 2.7).

Properties ii) and iii) were established by Russo & Van Roy [135] for finite
action sets, and we only provide the technical extension to compact A. The
fact that the IDS distribution can always be chosen with a support on at
most two actions is frequently used in the following, and has implications
for computation as discussed in Section 2.1.1. In Chapter 4 we show that
the two actions chosen by IDS correspond to exploration and exploitation
in a precise mathematical sense.

Lemma 2.1 (Existence). Let A be compact, ∆̂t : A → R≥0 continuous and It :
A → R≥0 continuous and not zero everywhere. Then there exists a µ∗ ∈P(A)
such that Ψt(µ∗) = infµ∈P(A) Ψt(µ).

Proof. The claim essentially follows from the fact that P(A) is compact
in the weak*-topology, which is also the topology that makes the maps
µ 7→ ∆̂t(µ) and µ 7→ It(µ) continuous. More specifically, pick a sequence
(µj)

∞
j=1 in P(A) such that Ψt(µj)→ infµ∈P(A) Ψt(µ) as j→ ∞. Note that

µj is a tight sequence of probability distributions because A is compact.
Prokhorov’s theorem [129] guarantees the existence of a subsequence µji
converging weakly to some µ∗ ∈P(A). By definition of weak convergence
of probability measures, ∆̂t(µji )→ ∆̂t(µ∗) and It(µji )→ It(µ∗). By the as-
sumption that It(·) is not zero everywhere, we have It(µ∗) > 0. Continuity
of the map (v, w) 7→ v2/w on [0, ∞)× (0, ∞) completes the proof.

Lemma 2.2 (Invariance). The information ratio is invariant under re-scaling of
the gap estimate and the information gain.

Proof. Immediate.

Lemma 2.3 (Convexity [135, Proposition 6]). Ψt(µ) is convex in µ.

Proof. Note that (v, w) 7→ v2/w is convex on the domain R× (0, ∞) as
shown in [27, Chapter 3]. Further, µ 7→ (∆̂t(µ), It(µ)) is an affine function
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on P(µ). Since Ψt(µ) = ∆̂t(µ)2/It(µ) can be written as a composition of a
convex and an affine function, the result follows.

The next lemma extends Russo & Van Roy [135, Prop. 6] to compact A.

Lemma 2.4 (Support). The IDS distribution µIDS
t ∈ arg minµ∈P(A) Ψt(µ) can

always be chosen such that | supp(µIDS
t )| ≤ 2. Further, for a ∈ A define

ht(a), 2 ∆̂t(µ
∗)∆̂t(a)−Ψt(µ

IDS
t )It(a) .

Then any a ∈ supp(µIDS
t ) satisfies ht(a) = minb∈A ht(b) = ∆̂t(µIDS

t )2.

Proof. We claim that

ht(a) = min
b∈A

ht(b) for all a ∈ supp(µIDS
t ) . (2.5)

We first show how this implies all other claims. Choose any minimizing
distribution µ∗ ∈ arg minµ∈P(A) Ψt(µ), not necessarily supported on two

actions. Taking the expectation of ht(a) on µ∗ gives ht(µ∗) = ∆̂t(µ∗)2. Let
amin = arg mina∈supp(µ∗) ∆̂t(a) and amax = arg maxa∈supp(µ∗) ∆̂t(a). Then
we can define µIDS(p) = (1 − p)eamin + peamax , where ea is a Dirac on
a ∈ A and p ∈ [0, 1] is a trade-off probability. We can choose p∗ such
that ∆̂t(µIDS(p∗)) = ∆̂t(µ∗) and let µIDS

t = µt(p∗). By Eq. (2.5) we get
It(µIDS

t ) = It(µ∗). Therefore Ψt(µ∗) = Ψt(µIDS
t ) and µIDS

t is a minimizing
distribution with support size at most 2.

To show Eq. (2.5), let Ψ∗t = minµ∈P(A) Ψt(µ) and define for µ ∈P(A),

Ht(µ), ∆̂t(µ)
2 − It(µ)Ψ∗t .

Note that Ht has the same minimizers as Ψt. To see this, observe that
H(µ) ≥ 0 and Ht(µ∗) = 0, which shows one direction. For the converse,
assume that µ′ minimizes H(µ′), i.e. Ht(µ′) = 0, which immediately gives
Ψt(µ′) = Ψt(µ∗). Let a = arg minb∈supp(A) ht(b) which exists by compact-
ness and continuity of h. Define the measure µλ = (1− λ)µ∗+ λea obtained
from shifting mass to a. Since µ∗ is a minimizer of Ht, we must have that

0 ≤ d
dλ

Ht(µλ)|λ=0 = 2∆̂t(µ
∗)(∆̂t(ea)− ∆̂t(µ

∗))− (It(ea)− It(µ
∗))

= ht(a)− ht(µ
∗) .

The claim follows after rearranging.
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Lemma 2.5 (Closed form). Let 0 < ∆1 ≤ ∆2 denote the gaps of two actions and
0 ≤ I1, I2 the corresponding information gain. Define the ratio

Ψ(p) =
((1− p)∆1 + p∆2)

2

(1− p)I1 + pI2
.

Then the optimal trade-off probability p∗ = arg min0≤p≤1 Ψ(p) is

p∗ =

0 if I1 ≥ I2

clip[0,1]

(
∆1

∆2−∆1
− 2I1

I2−I1

)
else,

where we define ∆1/0 = ∞ and clip[0,1](p) = max(min(p, 1), 0).

Proof. The case I1 ≥ I2 is immediate, because any p > 0 increases the
numerator and decreases the denominator. For the remaining part we
assume I1 < I2. The derivative is

d
dp

Ψ(p) =

(
∆1 + p(∆2 − ∆1)

)(
(∆2 − ∆1)(2I1 + p(I2 − I1))− ∆1(I2 − I1)

)
(I1 + p(I2 − I1))2 .

Lemma 2.3 implies that Ψ(p) is convex on the domain [0, 1]. Solving for
the first order condition Ψ′(p) = 0 gives p0 ,

∆1
∆2−∆1

− 2I1
I2−I1

. If p0 ∈ [0, 1]
we are done. Otherwise, note that p0 < 0 implies Ψ′(0) > 0 and p0 > 1
implies Ψ′(1) < 0, which follows from calculating the sign of both factors
in the nominator. Convexity on [0, 1] implies that clipping p0 to [0, 1] leads
to the correct solution.

We frequently use this lemma in the following way. Assume that µ̃ ∈
P(A) is a sampling distribution, possibly chosen as a Dirac on some action
a ∈ A. Let ât = arg mina∈A ∆̂t(a) be the action with the smallest estimated
gap and denote δt = ∆̂t(ât). Then

min
µ∈P(A)

Ψt(µ) ≤ min
p∈[0,1]

(
(1− p)δt + p∆̂t(µ̃)

)2

(1− p)It(ât) + pIt(µ̃)

≤ min
p∈[0,1]

(
(1− p)δt + p∆̂t(µ̃)

)2

pIt(µ̃)
.
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The first inequality is by restricting the sampling distribution as a mixture
between a Dirac on ât and µ̃t. The second inequality uses that It(ât) ≥ 0. If
we minimize the right-hand side using Lemma 2.5, we get

Ψt(µ
IDS
t ) ≤


4δt(∆̂t(µ̃)−δt)

It(µ̃t)
if 2δt ≤ ∆̂t(µ̃)

∆̂t(µ̃)
2

It(µ̃)
else.

(2.6)

Lemma 2.6 (Almost greedy). Let ât = arg mina∈A ∆̂t(a) be the greedy action,
chosen arbitrarily if not unique. The IDS distribution µIDS

t satisfies

∆̂t(µ
IDS
t ) ≤ 2∆̂t(ât) .

Proof. Note that by definition, the information ratio cannot be improved by
shifting mass to ât and discarding the information It(ât),

Ψt(µ
IDS
t ) ≤ min

p∈[0,1]

{(
(1− p)∆̂t(µIDS

t ) + p∆̂t(ât)
)2

(1− p)It(µIDS
t )

, ψ(p)

}
.

Note that the gradient of ψ(p) cannot be negative at p = 0. Hence

0 ≤ d
dp

ψ(p)|p=0 =
2∆̂t(µIDS

t )∆̂t(ât)− ∆̂t(µIDS
t )2

It(µIDS
t )

.

Rearranging yields the claim.

Lemma 2.7 (Approximate IDS). Define the restricted set of sampling distribu-
tions Pa = {ea(1− p) + eb p : b ∈ A, p ∈ [0, 1]} that randomize between a fixed
a ∈ A and a second action b ∈ A. Let ât = arg mina∈A ∆̂t(a) be the greedy
action. Define µ̃t = arg minµ∈Pât

Ψt(µ) as the distribution that minimizes the
information ratio among distribution in Pât . Then

Ψt(µ̃t) ≤
4
3

min
µ∈P(A)

Ψt(µ) ,

and the bound is tight for general ∆t and It. Further, if 2∆̂t(ât) ≤ ∆̂t(b) for all
b ∈ A with ∆̂t(b) > ∆̂t(ât), then Ψt(µ̃t) = minµ∈P(A) Ψt(µ).

Proof. By Lemma 2.4 it suffices to consider three actions with gaps ∆1 <
∆2 < ∆3 and information gain I1, I2, I3. Let Ψ12, Ψ13 and Ψ23 denote the
ratio obtained by minimizing the trade-off only between the actions indi-
cated in the subscript. Assume that Ψ∗ = Ψ23 = min{Ψ12, Ψ13, Ψ23} and
let Ψ̃ = min{Ψ12, Ψ13}. The claim follows if we show Ψ̃ ≤ 4

3 Ψ∗.
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Note that we can assume that I1 = 0, since this choice does not affect Ψ23
and can only make Ψ̃ larger. Further, by Lemma 2.2, we can normalize the
gaps and information gain such that ∆1 = 1 and Ψ̃ = 1.

We show that Ψ∗−1 ≤ 4
3 . First, we make some calculations with the help

of Lemma 2.5. The trade-off probability between actions 2 and 3 is

p23 =
∆2

∆3 − ∆2
− 2I2

I3 − I2
,

and we require that the trade-off is non-trivial, 0 < p23 < 1. The ratio Ψ23 is

Ψ23 =
4(∆2 I3 − ∆3 I2)(∆3 − ∆2)

(I3 − I2)2 .

We complete the proof with two cases. For the first case, we assume
1 < ∆2 < ∆3 ≤ 2. We again use Lemma 2.5 to compute Ψ12 = ∆2

2/I2 and
Ψ13 = ∆2

3/I3. In fact, we can assume that Ψ12 = Ψ13 since that does not
affect Ψ̃ and only makes Ψ∗ smaller. The normalization Ψ̃ = 1 implies that
I2 = ∆2

2 and I3 = ∆2
3. Hence,

Ψ−1
23 =

(I3 − I2)
2

4(∆2 I3 − ∆3 I2)(∆3 − ∆2)

=
(∆2

3 − ∆2
2)

2

4(∆2∆2
3 − ∆3∆2

2)(∆3 − ∆2)

=
(∆3 + ∆2)

2

4∆2∆3
≤ 9

8
.

The last inequality holds for 1 ≤ ∆2, ∆3 ≤ 2, and note that the constraint
on p23 is satisfied.

For the second case, assume that 1 < ∆2 ≤ 2 < ∆3. In this case
Ψ13 = 4(∆3 − 1). The same normalization argument implies I2 = ∆2

2
and I3 = 4(∆3 − 1). With this, the ratio Ψ23 is

Ψ−1
23 =

(I3 − I2)
2

4(∆2 I3 − ∆3 I2)(∆3 − ∆2)

=
(4(∆3 − 1)− ∆2

2)
2

4(4∆2(∆3 − 1)− ∆3∆2
2)(∆3 − ∆2)

, ϕ(∆2, ∆3) .

To eliminate ∆3 we compute the derivative

d
d∆3

ϕ(∆2, ∆3) =
(∆2 − 2)3(∆2 − 2∆3 + 2)(−∆2

2 + 4∆3 − 4)
4∆2(∆2 − ∆3)2((∆2 − 4)∆3 + 4)2 > 0
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The inequality holds for all 1 ≤ ∆2 ≤ 2 < ∆3. Hence it suffices to consider
the limit

lim
∆3→∞

ϕ(∆2, ∆3) =
42

4(4∆2 − ∆2
2)

=
4

∆2(4− ∆2)
≤ 4

3
.

The last inequality holds for 1 ≤ ∆2 ≤ 2 and the constraint on p23 is satis-
fied. By Lemma 2.6, Ψ23 cannot be optimal if ∆2 > 2 = 2∆1. Finally, note
that the bound is tight in the same limit.

2.1.1 Computation of the IDS distribution

Given access to the gap estimates ∆̂t(a) and information gain It(a) for each
action a ∈ A, we can compute the IDS distribution efficiently on finite
action sets of size k = ‖A| [135, §6.2]. The idea is to make use of Lemma 2.4,
which shows that the IDS distribution µIDS

t can always be chosen with a
support on two actions. In particular, we can compute the optimal trade-
off for all k(k + 1)/2 pairs of actions using the closed form provided in
Lemma 2.5, which leads to an overall computation complexity of O(k2).
However, the quadratic runtime in the number of actions is a limiting factor
for larger action sets. Standard algorithm often use score functions over
actions, that can be optimized in O(k) steps, which is significantly faster.

To improve the sample complexity, we compute the action ât ∈ A that
minimizes the estimated gaps in O(k). Then we find the minimal informa-
tion ratio among distribution that randomize only between ât and some
other action b ∈ A, using O(k) computation steps in total. Lemma 2.7
guarantees that the ratio obtained this way is at most a factor of 4

3 worse
than the optimal ratio. We refer to this algorithm as approximate IDS. Note
that the regret bound in Eq. (2.4) and all other bounds introduced in the
next section scale directly with the information ratio. Regret bounds for the
exact IDS policy based on these results therefore immediately translate to
the approximate version.

2.2 general regret bounds

We start by restating the regret bound Eq. (2.2) formally and in slightly
generalized form.
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Theorem 2.1 (IDS regret). Let G ⊂ [n] be a random subset of rounds such that
the membership t ∈ G is predictable on the filtration Ft. Then

E

[
∑
t∈G

∆̂t(at)

]
≤

√√√√E

[
∑
t∈G

Ψt(µt)

]
E

[
∑
t∈G

It(at)

]

Proof. The claim follows similar to Eq. (2.2) with the Cauchy-Schwarz
inequality, the definition of the information ratio and two applications of
the tower rule:

E

[
∑
t∈G

∆̂t(at)

]
= E

[
∑
t∈G

∆̂t(µt)

]
= E

[
∑
t∈G

√
Ψt It(µt)

]

≤

√√√√E

[
∑
t∈G

Ψt(µt)

]
E

[
∑
t∈G

It(at)

]
.

Let us write down a few immediate consequences of Theorem 2.1 for
later use. Note that these bounds hold for any policy πn = (µt)n

t=1, whereas
IDS is defined as the policy that myopically optimizes the upper bound.
Recall that the total information gain is γn = ∑n

t=1 It(at).

Corollary 2.1. Assume that Ψt(µt) ≤ αt holds for an Ft-predictable sequence
(αt)n

t=1 and denote ᾱn = 1
n ∑n

t=1 αt. Then

Rn ≤
√

E[ᾱn]E[γn]n +
n

∑
t=1

E
[
∆(at)− ∆̂t(at)

]
.

Proof. Immediate from Theorem 2.1.

The previous result already reflects the fact that the information ratio is
a time-dependent quantity. This plays a crucial role in deriving instance-
dependent regret bounds. Denote by δt = mina∈A ∆̂t(a) the smallest esti-
mated gap. It is reasonable to require that ∆̂t(a) is a consistent estimator of
the true gaps, which in particular implies that δt → 0. If 2δt ≤ mina 6=ât ∆̂t(a)
a direct calculation with the help of Lemma 2.4 yields

min
µ∈P(A)

Ψt(µt) ≤ min
b 6=ât

min
p∈[0,1]

∆̂t((1− p)eât + peb)
2

pIt(b)
≤ 4δt min

b∈A
∆̂t(b)− δt

It(b)
.

We can therefore expect that the ratio can be bounded relative to the smallest
estimated gap. We make use of this in the next two corollaries.
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Corollary 2.2. Let Bt = 1
(
∆̂t(a) ≥ ∆(a) : ∀a ∈ A

)
be the indicator of rounds

where all gap estimates are conservative. Denote the smallest estimated gap by
δt = mina∈A ∆̂t(a) and assume that BtΨt(µt) ≤ 4δtζt holds almost surely for a
non-decreasing, Ft-predictable sequence (ζt)n

t=1. Then

Rn ≤ 4 E[ζnγn] +
n

∑
t=1

E[(1− Bt)∆(at)] .

Proof. Define re-scaled gap estimates ∆̃t(a) = Bt∆t(a) and information gain
Ĩt(a) = ζt It(a). The corresponding information ratio satisfies Ψ̃t ≤ 4δt by
assumption. Using Theorem 2.1 we find

E

[
n

∑
t=1

∆̃t(µt)

]
≤

√√√√E

[
n

∑
t=1

4Btδt

]
E

[
n

∑
t=1

ζt It(at)

]

≤

√√√√E

[
n

∑
t=1

4∆̃(at)

]
E[ζnγn] ,

where the second inequality follows from δt ≤ ∆̃t(at) and the assumption
that ζt is non-decreasing. Squaring both sides and solving for the regret
yields the claim.

The next corollary strengthens the previous result by a factor 4 if the
estimation errors can be controlled in stronger sense.

Corollary 2.3. Assume that Ψt ≤ 4δtζt holds almost surely for a non-decreasing,
Ft-predictable sequence (ζt)n

t=1. Then

Rn ≤ E[ζnγn] +
n

∑
t=1

E
[
∆(at)− (∆̂t(at)− δt)

]
.

Proof. Using that 4xw ≤ (x + w)2 for x, w ∈ R, we find

E

[
n

∑
t=1

∆̂t(at)− δt

]
≤ 1

4
E

[
n

∑
t=1

δt

]−1

E

[
n

∑
t=1

∆̂t(at)

]2

.

Applying Theorem 2.1 and the assumption Ψt ≤ 4δtζt, we get

E

[
n

∑
t=1

∆̂t(at)− δt

]
≤ 1

4
E

[
n

∑
t=1

δt

]−1

E

[
n

∑
t=1

4δtζn

]
E[γn] = ζnE[γn] .

The claim follows.
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2.2.1 Generalized Information Ratio

The regret bound of Corollary 2.1 is at most O(
√

nE[γn]), provided that
the estimation errors of the gaps can be controlled. For the information gain
functions that we use, the total information gain typically contributes only
logarithmically. In partial monitoring, however, the feedback can be such
that the regret of the learner is at least Ω(n2/3) [16]. This suggests that one
should use a different exponent in the information ratio and replace the
Cauchy-Schwarz inequality with Hölder’s inequality. To this end, Lattimore
& György [102] introduced the generalized information ratio,

Ψλ,t(µ),
∆̂t(µ)λ

It(µ)
. (2.7)

It is straightforward to adapt the previous result to get the a regret rate of
order n1−1/λ if the learner minimizes Ψλ,t(µ). That means, however, that
in models where the achievable rate depends on the instance, we need to
manually change the algorithm. Perhaps surprisingly, the following lemma
shows that the IDS distribution obtained as a minimizer of Ψ2,t(µ) remains
close to a minimizer of Ψλ,t(µ) for λ ≥ 2.

Lemma 2.8 (Lattimore & György [102, Lemma 21]). Let µIDS
t be the IDS

distribution µIDS
t = arg minµ∈P(A) Ψ2,t(µ). Then for all λ ≥ 2,

Ψλ,t(µ
IDS
t ) ≤ 2λ−2 min

µ∈P(A)
Ψλ,t(µ

2) .

The next lemma generalizes the regret bound using the generalized
information ratio. A similar bound on the Bayesian regret is given by
Lattimore & György [102, Theorem 4].

Theorem 2.2. Assume that Ψλ,t(µt) ≤ αt holds almost surely for a Ft-predictable
sequence (αt)n

t=1, and let ᾱn = 1
n ∑n

t=1 αt. Then

Rn ≤ (E[ᾱn]E[γn])
1
λ n1− 1

λ +
n

∑
t=1

E
[
∆(at)− ∆̂t(at)

]
.

Proof. The claim follows along the lines of Theorem 2.1 and Corollary 2.2
and by using Hölder’s inequality instead of Cauchy-Schwarz. In particular,

E

[
n

∑
t=1

∆̂(at)

]
= E

[
n

∑
t=1

(Ψλ,t It(µt))
1/λ

]
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(i)
≤ E

[
n

∑
t=1

Ψ
1

λ−1
t

]1− 1
λ

E

[
n

∑
t=1

It(at)

] 1
λ

(ii)
≤ E

[
n

∑
t=1

α
1

λ−1
t

]1− 1
λ

E[γn]
1
λ

(iii)
≤ E

[( n

∑
t=1

αt

) 1
λ−1 n

λ−2
λ−1

]1− 1
λ

E[γn]
1
λ

(iv)
≤ n

λ
λ−1 E[ᾱn]

1
λ E[γn]

1
λ .

We used (i) and (iii): Hölder’s inequality, (ii): definitions of αt and γn,
and (iv): Jensen’s inequality and the definition of ᾱn.

2.2.2 High-Probability Bounds

Our definition of the regret Rn includes the expectation over the random-
ness of the policy and the environment, and therefore provides no control
on the tails of regret distribution. A remedy is to define the pseudo regret,

PRn ,
n

∑
t=1

∆(at) . (2.8)

In the frequentist, non-asymptotic analysis of algorithms for the linear
bandit setting, high-probability bounds on the pseudo regret seem to be
prevalent [3, 5, 7, 46]. One reason is that in practice the confidence level
provides a convenient tuning parameter. It was also noted in [103, §9.2]
that optimizing just the expected regret can lead to high variance of the
regret distribution. Of course, high-probability bounds can be integrated to
a bound in expectation.

In our case, statements on the expected regret are slightly simpler while
preserving the main ideas. For completeness we also provide bounds on the
pseudo regret but restrict ourselves to one basic result. The first observation
is that for deterministic policies, the pseudo regret is bounded without
extra work. Assume that the sampling distribution µt at time t is a Dirac
on some action at. Using the Cauchy-Schwarz inequality, we find

n

∑
t=1

∆̂t(at) =
n

∑
t=1

√
Ψt(at)It(at) ≤

√
n

∑
t=1

Ψt(at)
n

∑
t=1

It(at) . (2.9)
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Let us assume for simplicity that the gap estimates are chosen as upper
bound to the true gaps, ∆(at) ≤ ∆̂t(at), for all t ∈ [n] with probability
1− δ. Then the pseudo regret of any deterministic strategy with bounded
information ratio Ψt(at) ≤ α0 satisfies with probability 1− δ,

PRn ≤
√

α0γnn .

To obtain a meaningful bound, we still needs to control the total information
gain γn = ∑n

t=1 It(at), which is a random quantity. For the choices of the
information gain considered in this thesis, we prove almost-sure worst-case
bounds on γn that immediately lead to concrete bounds. In fact, Eq. (2.9) is
essentially the same argument used in the analysis of UCB [46].

A similar high-probability regret bound for randomized policies such
as IDS further needs to account for the randomness from sampling the
actions from the distribution µt. The next results provides a bound with
the same scaling. This assures that the randomness of the policy does not
significance impact the tails of regret distribution. It is also important to
note that the bound only appears in the analysis and does not affect the
algorithm design.

Theorem 2.3 (IDS regret – high-probability bound). Let δ ∈ [0, 1]. Assume
that ∆(at) ≤ ∆̂t(at) holds with probability at least 1− δ

2 . Further assume that
∆̂(at) ≤ B, It(at) ≤ J and Ψt(µt) ≤ α0 holds almost surely for all t ∈ [n] and
J ≥ 1. Then, with probability at least 1− δ,

PRn ≤ 2.5
√

α0n
(
γn +O

(
J log J

δ

))
+O

(
B log n

δ

)
Proof. We start be expanding the estimated regret and using Cauchy-
Schwarz.

n

∑
t=1

∆̂t(at) =
n

∑
t=1

∆̂t(µt) +
n

∑
t=1

(
∆̂t(at)− ∆̂t(µt)

)
.

The second sum is a martingale difference sequence. Denote the sum over

the conditional variances by Vn = ∑n
t=1 E

[(
∆̂t(at)− ∆̂t(µt)

)2
]
. Freedman’s
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inequality combined with a peeling argument (Lemma A.1, Appendix A)
shows

n

∑
t=1

(
∆̂t(at)− ∆̂t(µt)

)
≤ max

{
4B log

2n + 2
δ

, 2

√
Vn log

2n + 2
δ

}
(i)
≤ max

{
4B log

2n + 2
δ

, 2

√
n

∑
t=1

B∆̂t(µt) log
2n + 2

δ

}
(ii)
≤ 4B log

2n + 2
δ

+
1
4

n

∑
t=1

∆̂t(µt)

The last step (ii) uses 2
√

xw ≤ x + w for x, w ≥ 0. Step (i) follows with the
Bhatia-Davis inequality (Lemma A.4, Appendix A) and ∆̂t(at) ∈ [0, B],

E
[(

∆̂t(at)− ∆̂t(µt)
)2
]
≤
(

B− ∆̂t(µt)
)
∆̂t(µt) ≤ B∆̂t(µt) .

We continue to bound the estimated regret,

n

∑
t=1

∆̂t(at) ≤
5
4

n

∑
t=1

∆̂t(µt) ≤
5
4

√
n

∑
t=1

Ψt(µt)
n

∑
t=1

It(µt) .

It remains to bound another martingale difference sequence defined by the
information gain. Using that It(at) ∈ [0, J], Lemma A.3 in Appendix A
leads to the following bound:

n

∑
t=1

It(µt) ≤ 2
n

∑
t=1

It(at) +O
(

J log
( J

δ

))
.

The claim follows with a union bound over all events such that the inequal-
ities hold simultaneously.

2.3 bayesian information-directed sampling

Information-directed sampling was first introduced by Russo & Van Roy
[135] and analyzed for Bayesian regret, which is formally defined below.
We refer to this algorithm as Bayesian IDS to distinguish it from other
variants that we introduce later in this thesis. The Bayesian setting uses a
prior distribution over the parameters, which allows to define information
theoretic concepts such of entropy and mutual information. The regret
analysis is based on established tools from information theory and requires
only few assumptions.
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Assume that the parameter spaceM is associated with a sigma algebra
and the learner is equipped with a prior distribution F ∈ P(M). The
Bayesian regret is defined in expectation over the prior,

BRn(π, F ), Eθ∼F [Rn(π, θ)] = E

[
n

∑
t=1

fθ(a∗)− fθ(at)

]
. (2.10)

For the rest of the section, we assume that k = |A| is finite. Note that in the
Bayesian interpretation, the optimal action a∗ = a∗(θ) is random, since it
depends on the realization of θ ∼ F . Conditioned on the history, we define
the probability that an action a ∈ A is optimal under the posterior as

qt(a), Pt(a = a∗) .

The Shannon entropy of a∗ under the posterior distribution is

Ht(a∗), − ∑
a∈A

qt(a) log qt(a) .

The conditional entropy of a∗ is defined using the conditional probabilities
qt(a|at, yt), Pt(a = a∗|at, yt) as follows,

Ht(a∗|at, yt), Et

[
− ∑

a∈A
qt(a|at, yt) log qt(a|at, yt)

]
,

where the conditional expectation is over the random outcome of at and yt.
The mutual information between the observation yt and the optimal action
a∗ is defined as the entropy reduction

It(a∗, yt|at = a), Ht(a∗)−Ht(a∗|yt, at = a) .

The Bayesian learner has the advantage of knowing the posterior distribu-
tion of a∗, which is used to define gap estimates and information gain,

∆̂t(a) = Et[∆(a∗)− ∆(a)] and IMI
t (a), It(a∗; yt|at = a) . (2.11)

Bayesian IDS is the policy that optimizes the information ratio in Eq. (2.1)
defined with the quantities in Eq. (2.11). The analogue result to Theorem 2.1
is presented below. Note that Bayesian IDS myopically optimizes the bound.

Theorem 2.4 (Bayesian regret [135, Prop. 1]). LetA be finite and πn = (µt)n
t=1

be any policy. Then the Bayesian regret satisfies

BRn(π, F ) ≤
√

ᾱnH(a∗)n ,

where ᾱn , 1
n ∑n

t=1 E[Ψt(µt)] is the average expected information ratio.
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Worst-case bounds on the Bayesian information ratio have been derived
by Russo & Van Roy [135] for a variety of settings. Without making further
assumptions other than bandit feedback yt = f (at) + εt with independent
noise, the information ratio defined by Eq. (2.11) satisfies almost surely

min
µ∈P(A)

Ψt(µ) ≤ Ψt(µ
TS
t ) ≤ |A|

2
, (2.12)

where µTS
t (a), qt(a) is the Thompson sampling policy πTS

n , see [137,
Prop. 3]. The entropy satisfies H(a∗) ≤ log(|A|). Combining Theorem 2.4
and Eq. (2.12), we find that Bayesian regret of IDS satisfies

BRn(π
IDS
n , F ) ≤

√
1
2 |A| log(|A|)n .

Note that the argument implies the same bound for Thompson sampling.
The bound is order optimal for general prior distributions up to the loga-
rithmic factor [30]. The proof of the result is strikingly simple. It only relies
on telescoping the information gain and bounding the information ratio
for the Thompson sampling distribution using Pinsker’s inequality. Tighter
bounds on the information ratio are known for various settings, see [137]
and there are also examples where the bound of IDS is significantly better
than the bound for Thompson sampling [135].

2.4 contributions and related work

The foundations of information-directed sampling (IDS) are by Russo &
Van Roy [135], who introduced the framework in the Bayesian bandit
setting. The idea emerged from an elegant information-theoretic analysis
of Thompson sampling by the same authors [137]. The central argument
using the Cauchy-Schwarz inequality to decompose the cumulative regret
appears already in the analysis of UCB by Dani, Hayes & Kakade [46].

Unless otherwise stated, the results presented in this chapter are based
on work by the author and collaborators:

• Kirschner, J. & Krause, A. Information Directed Sampling and Bandits
with Heteroscedastic Noise in Proc. International Conference on Learning
Theory (COLT) (July 2018)

• Kirschner, J., Lattimore, T. & Krause, A. Information Directed Sampling
for Linear Partial Monitoring in Proc. International Conference on Learning
Theory (COLT) (July 2020)
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• Kirschner, J., Lattimore, T., Vernade, C. & Szepesvári, C. Asymptotically
Optimal Information-Directed Sampling in Proc. International Conference
on Learning Theory (COLT) (Aug. 2021)

The generalized information ratio and regret bound is by Lattimore &
György [102], introduced here for the sake of cleaner proofs. An earlier
version of the regret bound in Theorem 2.2 for the special case λ = 3 is by
the author and collaborators, [90, Theorem 3]. Lemma 2.7 is a novel result.

Beyond the application in bandits, the information ratio has been proven
useful in other applications. Most notably, an extension of Sion’s minimax
theorem shows that the adversarial worst-case regret equals the minimax
Bayesian optimal regret over all prior distributions. By deriving Bayesian
algorithms with prior-independent bounds on information ratio, this argu-
ment leads to non-constructive regret bounds on the adversarial worst-case
regret, see Bubeck & Eldan [29], Lattimore [101], and Lattimore & Szepesvári
[105]. The information-ratio is also related to the stability term in follow-the-
perturbed-leader (FTRL) and mirror descent, see Lattimore & György [102].

Lattimore & Szepesvári [105] analyze the information ratio with general
divergences. An information gain based on the Tsallis-entropy is studied
by Kalkanlı & Özgür [82]. An information-theoretic analysis of Thompson
sampling on large action sets with linear reward functions is by Dong & Roy
[52], and the result was recently extended to non-Gaussian distributions by
Hamidi & Bayati [71].



3
H E T E R O S C E D A S T I C L I N E A R B A N D I T S

We now introduce the stochastic linear bandit setting. We start by reviewing
confidence bounds for linear least-squares estimation. The caveat is that
bandit algorithms collect data adaptively, hence results from i.i.d. estimation
do not apply directly. Instead, we use a online confidence set that makes no
assumption on how the sequence of actions is generated. Variants of this
result will be used in most chapters that follow. Using the concentration
result, we construct the gap estimates in a way such that the estimation
error is controlled.

The frequentist information gain is defined by the log-determinant po-
tential, which can be understood as measuring the volume reduction of the
confidence ellipsoid. This leads us to a first frequentist version of information-
directed sampling for stochastic linear bandits. Using the results from
Chapter 2, we then derive bounds on the regret that match the best known
bounds for UCB in this setting.

Beyond the standard assumptions, we address the case of heteroscedastic
noise, where the variance of the observation noise depends on the chosen
action. In the more general noise model, we show that IDS outperforms
UCB and Thompson sampling on some instances by an arbitrarily large
factor. This illustrates a limitation of optimistic approaches and Thompson
sampling, which do use a measure of informativeness for their action choice.

setting In the linear bandit setting, we identify the actions with d-
dimensional features A ⊂ Rd. The reward function is defined by a pa-
rameter θ ∈ M ⊂ Rd such that fθ(a) = 〈a, θ〉. We make the following
boundedness assumptions: The true parameter is bounded with ‖θ‖ ≤ B,
and the actions are bounded with ‖a‖ ≤ L for all a ∈ A. When the learner
chooses an action at ∈ A at time t, the feedback is yt = 〈at, θ〉+ εt. We
model heteroscedasticity by assuming that the noise εt is conditionally
ρ(at)2-sub-Gaussian for a fixed noise function ρ : A → R≥0 as defined in
Eq. (1.2). Note that we use the frequentist bandit framework, where the
reward function is fixed in advance and regret is defined as in Eq. (1.3).

33
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3.1 online linear least-squares

Most bandit algorithms rely on estimating the reward function in one
way or another. In the linear setting with sub-Gaussian observation noise,
a least-squares estimator for the unknown parameter is justified. Given
observations (as, ys)

t−1
s=1 from rounds 1, . . . , t− 1 and a regularizer λ > 0,

the regularized linear least-squares estimator is

θ̂ls
t , arg min

θ∈Rd

t−1

∑
s=1

(
〈as, θ〉 − ys

)2
+ λ‖θ‖2 .

An analytic closed form is easily computed as

θ̂ls
t = V−1

t

t−1

∑
s=1

asys , where Vt =
t−1

∑
s=1

asa>s + λ1d .

We use the convention that V1 = λ1d. There is an abundant amount of
work that studies least-squares estimation. In the bandit setting, care is
required since the data is generated adaptively by the learner. In particular,
the action at chosen at time t depends on the history (as, ys)

t−1
s=1, and we

cannot rely on results that require independent observations. The next
lemma provides a self-normalized concentration inequality for the regularized
least squares estimator that holds for adaptive data.

Lemma 3.1 (Abbasi-Yadkori, Pál & Szepesvári [3, Theorem 2]). Let (at)∞
t=1

be a Ft-adapted sequence in A with corresponding observations yt = 〈at, θ〉+ εt,
where ‖θ‖ ≤ B and εt is conditionally ρ-sub-Gaussian, i. e.

∀η ∈ R, Et[exp(ηεt)|at] ≤ exp(η2ρ2/2) .

Let E ls
t,δ , {θ ∈ Rd : ‖θ− θ̂ls

t ‖2
Vt
≤ βls

t,δ} be the confidence ellipsoid with confidence

coefficient βls
t,δ =

(
ρ
√

2 log 1
δ + log

( det(Vt)
det(V1)

)
+
√

λB
)2

. Then

P
[
∀t ≥ 1, θ ∈ E ls

t,δ

]
≥ 1− δ .

Note, the confidence coefficient βls
t,δ is Ft-predictable and can be directly

used in the algorithm. For the analysis, it is often useful to derive upper
bounds with an explicit dependence on problem parameters such as the
dimension. The following bound follows from a simple calculation that
relates the determinant and the trace [104, Lemma 19.4]:

log
(

det Vn

det V1

)
≤ d log

(
1 +

nL2

dλ

)
. (3.1)
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3.1.1 Heteroscedastic Least-Squares

When the observation noise is heteroscedastic, intuitively we expect that
nosier observations carry less information and therefore should receive
less weight in the estimation. The generalized Gauss-Markov theorem [8]
suggests that the observation should receive a weight inversely proportional
to the noise variance. The weighted regularized least-squared estimator is,

θ̂wls
t , arg min

θ∈Rd

t−1

∑
s=1

1
ρ(as)2

(
〈as, θ〉 − ys

)2
+ λ‖θ‖2 . (3.2)

An analytic closed form is again readily computed as

θ̂wls
t = W−1

t

t−1

∑
s=1

1
ρ(as)2 asys , where Wt =

t−1

∑
s=1

1
ρ(as)2 asa>s .

The next result extends Lemma 3.1 to the weighted least-squares estimator.

Lemma 3.2. Let (at)∞
t=1 be a Ft-adapted sequence in A with corresponding

observations yt = 〈at, θ〉+ εt, where ‖θ‖ ≤ B and εt is conditionally ρ(at)2-sub-
Gaussian, i. e.

∀η ∈ R, Et[exp(ηεt)|at] ≤ exp(η2ρ(at)
2/2) .

Let Ewls
t,δ , {θ ∈ Rd : ‖θ − θ̂wls

t ‖2
Wt
≤ βwls

t,δ } be the confidence ellipsoid with

weighted precision matrix Wt and βwls
t,δ =

(√
2 log 1

δ + log
( det(Wt)

det(W1)

)
+
√

λB
)2

.
Then

P
[
∀t ≥ 1, θ ∈ Ewls

t,δ

]
≥ 1− δ .

Proof. Let ãt = at/ρ(at) and ỹt = yt/ρ(at). Note that ỹt = 〈ãt, θ〉 + ε̃t,
where ε̃t = εt/ρ(at) is 1-sub-Gaussian noise. The result follows as direct
consequence of Lemma 3.1 applied to the sequence (ãt, ỹt)∞

t=1.

3.2 ids for heteroscedastic linear bandits

For the remainder of this chapter, we settle on the weighted least-squares
estimator defined in Eq. (3.2) and the confidence set of Lemma 3.2. To
define information-directed sampling, we need an estimate ∆̂t(a) of each
gap ∆(a) = maxb∈A〈b− a, θ〉 and an information gain function It(a). These
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Algorithm 2: IDS for Heteroscedastic Linear Bandits
Input: Action set A, regularizer λ > 0, norm bound B, noise function

ρ : A → R≥0
1 for t = 1, 2, 3, . . . , n do
2 Wt ← ∑t−1

s=1 ρ(as)−2asa>s + λ1d // least-squares estimation

3 θ̂wls
t ←W−1

t ∑t−1
s=1 ρ(as)−2asys

4 β1/2
t ←

√
2 log(t2) + log

( det(Wt)
det(W1)

)
+
√

λB

// gap estimates

5 ∆̂t(a)← maxb∈A〈b, θ̂wls
t 〉+ β1/2

t ‖b‖W−1
t
−
(
〈a, θ̂wls

t 〉 − β1/2
t ‖a‖W−1

t

)
6 It(a)← 1

2 log
(

1 + ρ(a)−2‖a‖2
W−1

t

)
// information gain

7 µt ← arg minµ∈P(A)
∆̂t(µt)2

It(µt)
// IDS distribution

8 at ∼ µt
9 Choose at, observe yt ∼ 〈at, θ〉+ εt

are introduced in the next two sections. The resulting version of IDS is
summarized in Algorithm 2. We discuss implementation and computational
complexity in Section 3.2.3, and present a bound on the worst-case regret
that matches the best known bounds for UCB on homoscedastic noise
in Section 3.2.4. In Section 3.2.5 we argue that on some instances with
heteroscedastic noise, upper confidence bound algorithms and Thompson
sampling perform arbitrarily worse than IDS. Variants of the algorithm
and the analysis are collected in Section 3.3, including a gap-dependent
logarithmic regret bound.

3.2.1 Gap Estimates

Anticipating the use of the IDS regret bound in Corollary 2.1, we need to
make sure that the expected sum of estimation errors E

[
∑n

t=1 ∆(at)− ∆̂t(at)
]

is bounded. This motivates a conservative choice of the gap estimate, which
we define as

∆̂t,δ(a), max
b∈A
〈b, θ̂wls

t 〉+ β1/2
t,δ ‖b‖W−1

t
−
(
〈a, θ̂wls

t 〉 − β1/2
t,δ ‖a‖W−1

t

)
. (3.3)
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Note, ∆̂t,δ(a) is chosen as high-probability upper bound to the true gap
∆(a). Specifically, if the parameter estimate θ̂wls

t is well concentrated such
that θ ∈ Ewls

t,δ , we have

∆(a) = max
b∈A
〈b− a, θ̂wls

t 〉+ 〈b− a, θ − θ̂wls
t 〉

≤ max
b∈A
〈b− a, θ̂wls

t 〉+ ‖b− a‖W−1
t
‖θ − θ̂wls

t ‖Wt

≤ max
b∈A
〈b− a, θ̂wls

t 〉+
(
‖b‖+ ‖a‖W−1

t

)
β1/2

t,δ = ∆̂t(a) . (3.4)

The first inequality is by Cauchy-Schwarz, and the second inequality uses
that θ ∈ Ewls

t,δ and the triangle inequality. For the bound on the expected
regret, we choose δ = 1/t2 and define ∆̂t(a), ∆̂t,1/t2(a). Assume that the
gaps are bounded, maxa∈A ∆(a) ≤ ∆max. By our boundedness assumption,
we always have ∆max ≤ 2LB. Using Eq. (3.4), we find

E

[
n

∑
t=1

∆(at)− ∆̂t(at)

]
≤ ∆max

n

∑
t=1

P[∆(at) > ∆̂t(at)]

≤ ∆max

n

∑
t=1

1
t2 ≤ O(∆max) . (3.5)

3.2.2 Information Gain

Theorem 2.1 bounds the cumulative regret in terms of the information ratio
and the total information gain. For the IDS policy πt = (µIDS

t ), we get

E

[
n

∑
t=1

∆̂t(µ
IDS
t )

]
≤
√

n

∑
t=1

min
µ∈P(A)

∆̂t(µ)2

It(µ)

n

∑
t=1

It(at) .

To obtain a meaningful bound, we need to choose the information gain
such that the information ratio is not too large, and at the same time, the
total information gain grows only slowly. The following choice is inspired
from the UCB analysis [3, 46] and satisfies both criteria:

IDET
t (a),

1
2

log
(

1 + ρ(a)−2‖a‖2
W−1

t

)
. (3.6)

Note that the information gain scales naturally with the sub-Gaussian
noise variance in a way that actions with noisier observations are less infor-
mative. With the help of the matrix determinant lemma (Lemma D.1),
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we can rewrite the information gain as IDET
t (a) = 1

2 log(det(Wt+1)) −
1
2 log(det(Wt)). Therefore, the total information gain is

γn =
n

∑
t=1

IDET
t (at) =

1
2

log
(

det(Wn+1)

det(W1)

)
. (3.7)

Note that the log-determinant ratio also appears in the confidence set and
we can use Eq. (3.1) to derive an upper bound on γn that does not depend
on the sequence of actions.

The information gain in Eq. (3.6) also has a Bayesian interpretation.
For a Gaussian prior N (0, λ1d) on the true parameter θ and a Gaussian
likelihood yt ∼ N (〈at, θ〉, ρ(at)2), the posterior distribution of θ at time t
is N (θ̂wls, Wt). The mutual information between the parameter and the
outcome is exactly

It(θ; yt|at = a) =
1
2

log
(

det
(
Wt + ρ(a)−2aa>

)
det(Wt)

)
=

1
2

log
(

1 + ρ(a)−2‖a‖2
W−1

t

)
= IDET

t (a) .

The same mutual information was already considered as a variant in the
Bayesian IDS framework by Russo & Van Roy [135, Section 9.2].

3.2.3 Computational Complexity

Algorithm 2 is efficient for finite actions sets of size k. In each round, all
quantities related to the least-squares estimator are calculated incrementally
(Lemma D.2) using basic linear algebra operations in O(d2). The gap
estimates and the information gain are computed for each action using
O(d2k) operations. Note that the maximum that appears in the definition of
the gap estimate is attained by the UCB action and can be computed at the
beginning of each round. Last, we need to compute the IDS distribution and
sample from it. As discussed in Section 2.1.1, in general, this can be done
in O(k2) steps. Using the approximate version of IDS, the computation
complexity is reduced to O(k) while preserving the guarantees up to a
constant factor. In this case the overall complexity over n rounds is O(d2kn),
which matches the complexity of UCB.

The same reasoning also applies when A is a polytope with k extreme
points. For general compact action sets, the theory continues to hold but
computation is more difficult. The proposed version of IDS requires to
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compute the UCB action, which is known to be intractable for the elliptical
confidence set without further approximations [46]. In addition, we need
to minimize the information ratio. It is an open problem to determine if
this step can be solved efficiently for a more general class of action sets, for
example, using the fact that the information ratio is a convex function of
the distribution (Lemma 2.3).

3.2.4 Worst-Case Regret

If we combine Corollary 2.1 and use Eq. (3.5) to bound the estimation error,
we arrive at the following inequality:

Rn(π
IDS
n , θ) ≤

√√√√E

[
n

∑
t=1

Ψt(µIDS
t )

]
E[γn] +O(∆max) (3.8)

To bound the information ratio, define ρmin = mina∈A ρ(a) and recall that
‖a‖ ≤ L. In particular, ‖a‖2

W−1
t
≤ ‖a‖2

W−1
0
≤ L2

λ . Using that log(1 + x) ≥ x
2w

for all w ≥ 1 and x ∈ [0, w], we find that

IDET
t (a) =

1
2

log
(

1 + ρ(a)−2‖a‖2
W−1

t

)
≥ 1

4
min

(
λL−2, ρ(a)−2

)
‖a‖2

W−1
t

. (3.9)

In the following, we abbreviate βt = βt,1/t2 and we define the UCB action
aUCB

t , arg maxa∈A〈a, θ̂wls
t 〉 + β1/2

t ‖a‖W−1 . The gap estimate of the UCB
action is

∆̂t(aUCB
t ) = max

b∈A
〈b, θ̂wls

t 〉+ β1/2
t ‖b‖W−1

t
−
(
〈aUCB

t , θ̂wls
t 〉 − β1/2

t ‖aUCB
t ‖W−1

t

)
= 2β1/2

t ‖aUCB
t ‖W−1

t
.

With the last two displays combined, we arrive at the following bound on
the information ratio:

Ψt(µ
IDS
t ) = min

µ∈P(A)
Ψt(µ) ≤

∆̂t(aUCB
t )2

IDET
t (aUCB

t )

≤ 16βt max
(

L2/λ, ρ(aUCB
t )2

)
. (3.10)
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We complete the bound on the regret using Eq. (3.8):

Rn(π
IDS
n , θ) ≤

√√√√E

[
n

∑
t=1

Ψt(µIDS
t )

]
E[γn] +O(∆max)

≤ 4

√√√√E

[
n

∑
t=1

βt max
(

L2/λ, ρ(aUCB
t )2

)]
E[γn] +O(∆max)

≤ 4 max
(

L/
√

λ, ρmax

)√
nE[βn]E[γn] +O(∆max) .

For the last inequality, we used that βt is a non-decreasing sequence and
introduced the worst-case noise ρmax = maxa∈A ρ(a). Note that the con-
fidence coefficient satisfies βn =

√
2γn−1 + 4 log(n) +

√
λB. Using the

argument presented in Eq. (3.7) applied to Wn, the total information gain
is at most γn ≤ O(d log(nL2/(dλρ2

min)). The inverse scaling with the mini-
mum noise ρmin = mina∈A ρ(a) comes from rescaling the actions inversely
proportional to the noise variance. This is not totally unexpected, because
for ρ(a) → 0 we get It(a) → ∞. On the other hand, simply thresholding
the noise function away from zero avoids this dependency. The result is
summarized in the following theorem.

Theorem 3.1 (Worst-Case Regret). Assume that ‖θ‖ ≤ B, maxa∈A ‖a‖ ≤ L
and maxa∈A ρ(a) ≤ ρmax. Then the regret of IDS as in Algorithm 2 satisfies

Rn ≤ 4 max
(

L/
√

λ, ρmax

)√
nE
[
βn,1/n2

]
E[γn] +O(∆max) .

In particular, Rn ≤ O
(
ρmaxLBd

√
n log(n)

)
.

If we keep only the horizon, the sub-Gaussian variance, and the di-
mension, the bound is Rn ≤ O(dρmax

√
n log(n)). For action sets that are

exponentially large in the dimension, this is the best one can hope for up
to the logarithmic factor [46]. On the other hand, when k = |A| is small
our bound matches the bound of UCB, but a simple elimination algorithm
[103, §22] has regret at most O(

√
n log(k)d). The extra

√
d comes from the

concentration bound in Lemma 3.1, which cannot be improved without
using more specific properties of the action history [103, Exercise 20.1].

3.2.5 A Limitation of Optimism and Thompson Sampling

So far, we have proved a regret bound that depends on the worst-case
noise value ρmax, reassuring in particular that the proposed algorithm is
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Figure 3.1: A numerical simulation of Example 7.5. The plots show the regret
difference between IDS and UCB after 1000 steps, averaged over 100 runs. Darker
colors / positive values correspond to instances where IDS outperforms UCB.
The left plot shows IDS defined with IDET defined in Eq. (3.6). The right plot
shows IDS defined with IUCB defined in Eq. (3.13) and discussed in Section 3.3.3.
Note that as ε→ 0, the gap of the informative actions gets smaller, whereas for
ρ→ ∞, the best action becomes less informative.

a sensible approach in the standard linear bandit setting. We now argue
that for some instances with heteroscedastic noise, IDS exploits the noise
information in a way that UCB and Thompson sampling do not.

To formalize the optimistic approach for linear bandits, we assume that
at time t, the learner has access to a confidence set Et ⊂ Rd that contains the
true parameter with high probability. The confidence set is computed using
all available data at time t and thus may include the noise information of the
observation history. The upper confidence bound approach is to choose the
action with the largest plausible reward, aUCB

t = arg maxa∈Amaxθ∈Et〈a, θ〉.

Example 3.1. Let Bη = {a ∈ Rd : ‖a‖ = η} be the d-dimensional unit
sphere with radius η > 0. As an illustrative example, we choose an action
set consisting of two concentric spheres, A = B1 ∪ B1−ε for ε ∈ (0, 1). Note
that for any parameter θ 6= 0, an action a ∈ B1−ε is never optimal. This
means that an optimistic approach only chooses actions on the outer sphere.
When the noise is homoscedastic, one can argue that the actions with larger



42 heteroscedastic linear bandits

norm provide a better signal-to-noise ratio. With heteroscedastic noise,
however, this is no longer the case. Specifically, we can define

ρ(a) =

ρ∗ if a ∈ B1

1 if a ∈ Bη .

For 1 � ρ∗, actions in B1−ε are much more informative and reduce the
overall regret through the improved estimation. In an ideal world, we would
now compute instance-dependent and minimax lower bounds and relate
them to the regret of IDS. However, the version of IDS is not asymptotically
optimal and a minimax calculation is rather involved and would require us
to make artificial choices on the model class and the noise function. Instead,
we restrict ourselves to two limiting considerations.

First, we let ε → 0. In this case, the regret of actions in B1−ε is only
marginally larger than the regret of actions in B1. Among actions with
(almost) the same regret, IDS prefers the action with larger information
gain. When 1� ρ∗, the information gain of an action in B1−ε is larger than
for actions in B1. Hence, IDS prefers a ∈ B1−ε and consequently the regret
scales with O(d√n log(n)), whereas for UCB it is O(ρ∗d√n log(n)).

A second variant is to fix ε ∈ (0, 1) and let ρ∗ → ∞. In this limit, the
actions on B1 provide no information at all. This instance is a special case
of a globally observable partial monitoring game, which we will discuss in
detail in Chapter 6. For this case, one can show that Algorithm 2 has regret
at most O((n log(n))2/3d1/3). The result essentially follows as a special
case of Theorem 6.1. On the other hand, the regret of UCB is linear, since it
obtains no information from the action it chooses. A numerical simulation
of this example is in Fig. 3.1.

We note that the failure mode of Thompson sampling is very similar.
Thompson sampling chooses at = arg maxa∈A〈a, θ̃t〉, where θ̃t is a sample
from a Bayesian posterior model of the parameter. That means that, as for
UCB, Thompson sampling never chooses actions on Bη , even if they are
more informative.

We emphasize that both UCB and Thompson sampling use noise informa-
tion for estimation, for example in the construction of confidence sets or the
posterior distribution. The failure happens when trading regret and infor-
mation: Optimistic algorithms and Thompson sampling only choose actions
that appear plausible optimal, and neglect provably suboptimal actions
even if they are very informative. It is the same limitation that causes these
approaches to be asymptotically suboptimal in the linear bandit model
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(even with homoscedastic noise) and ill-suited for the more general partial
monitoring model, which we will see in Chapters 5 and 6.

3.3 variants

We present several variants of the regret bound presented in Theorem 3.1.

3.3.1 High-Probability Bound

Algorithm 2 satisfies a high-probability bound on the pseudo regret PRn
defined in Eq. (2.8), if we replace the gap estimates with ∆̂t,δ, where δ ∈ [0, 1]
is the confidence level chosen by the user. The next results shows that this
version of IDS satisfies a high-probability bound on the regret.

Theorem 3.2. With the same assumptions as in Theorem 3.1, the pseudo regret of
Algorithm 2 with gap estimates ∆̂t,δ(a) satisfies with probability at least 1− δ,

PRn ≤ O
(

dρmaxLB
√

n log
( n

δ

))
.

Proof. Along the lines of Eq. (3.10), it follows that

Ψt(µ
IDS
t ) ≤ ∆̂t(aUCB

t )2

It(aUCB
t )

≤ 16βt,δ max
(

L2/λ, ρ(aUCB
t )2

)
.

The claim follows from Theorem 2.3.

3.3.2 Gap-Dependent Bound

Instance-dependent bounds are the topic of Chapter 5, but already here
we can derive a gap-dependent logarithmic bound for finite action sets.
We define the minimum gap ∆min = arg mina 6=a∗ ∆(a), and require that
the optimal action is unique. To obtain a gap-dependent bound, we need
to implement the following immediate improvement to the algorithm.
When the optimal action is uniquely identified with high probability, we
deterministically choose the empirically best action ât = arg mina∈A ∆̂t(a).
A sufficient condition to check is

Mt = 1

(
max
b 6=ât
〈b, θ̂wls〉+ β1/2

t,1/t2‖b‖W−1
t
≥ 〈ât, θ̂wls〉 − β1/2

t,1/t2‖ât‖W−1
t

)
,
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When Mt = 0 and assuming the parameter estimate is sufficiently concen-
trated such that θ ∈ Et, then it holds that ât = a∗. We can preserve the
algorithmic template of IDS by defining the gap estimate as follows:

∆̂+
t (a) =

∆̂t(a)Mt if a = ât ,

∆̂t(a) else.
(3.11)

We refer to rounds with Mt = 0 as exploitation rounds and note that with the
gap estimate ∆̂+

t (a), in such rounds IDS chooses ât deterministically and
Ψt(µIDS

t ) = 0. Rounds with Mt = 1 are called exploration rounds. With the
gap estimate Eq. (3.11), IDS satisfies a logarithmic, gap-dependent bound
that is summarized in the next theorem. It is also easy to see that the result
of Theorem 3.1 continues to hold.

Theorem 3.3 (Gap-Dependent Regret). For finite action sets with unique op-
timal action and minimum gap ∆min, IDS defined with gap estimate Eq. (3.11)
satsifies

Rn ≤ O
(
ρmax∆−1

mind2 log(n)2)
Proof. Corollary 2.2 combined with Eq. (3.5) implies that

Rn ≤ 4ζE
[
βn,1/n2 γn

]
+O(∆max) ,

provided that we show Ψt(µt) ≤ 4ζδtβt in rounds t where ∆(a) ≤ ∆̂t(a) for
all a ∈ A. Hence, the result follows if we show that

Ψt ≤ 64δtβt max(λL−2, ρmax)∆−1
min . (3.12)

Note that by reusing the worst-case bound on the information ratio from
Eq. (3.10), the result is immediate if 4δt ≥ ∆min. The bound also follows
trivially if Mt = 0. On the contrary case, we get 4δt ≤ ∆min ≤ ∆̂t(b) for all
b 6= a∗ and the fact that we assume ∆(a) ≤ ∆̂t(a) for all a ∈ A. In particular,
it must be that ât = a∗. We can now upper bound the information ratio as
follows:

min
µ∈P(A)

Ψt(µ) ≤ min
b 6=ât

min
p∈[0,1]

∆̂t((1− p)eât + peb)
2

pIt(b)
≤ min

b 6=ât

4δt∆̂t(b)
It(b)

.

The first inequality restricts the set of sampling distributions and drops the
information gain of ât. The second inequality is satisfied with p = δt

∆̂t(b)−δt
.

We define the set of plausible maximizers,

Mt =
{

a ∈ A : 〈a, θ̂wls〉+ β1/2
t,1/t2‖a‖W−1

t
≥ max

b 6=ât
〈b, θ̂wls〉 − β1/2

t,1/t2‖b‖W−1
t

}
.
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Note that Mt = 1 implies |Mt| > 1. Consider the action with the largest un-
certainty among the plausible maximizers, ct = arg maxc∈Mt

‖c‖−1
Wt

. Note
that by our assumptions,

∆min ≤ ∆̂t(ct) ≤ 2β1/2
t ‖ct‖W−1

t
.

Combining the two displays and Eq. (3.9), we find

Ψt ≤ 64δtβt max(λL−2, ρmax)∆−1
min .

This completes the proof.

3.3.3 Directed Information Gain

The information gain in Eq. (3.6) is motivated from the worst-case analysis.
Also, the Bayesian interpretation as mutual information It(θ; yt|at = a)
suggests that it is a conservative choice since it incentivizes IDS to learn
the parameter uniformly well. This intuition is confirmed in experiments,
where the version of IDS shown in Algorithm 2 is often over-explorative.
An improvement is to choose an information gain that reflects more closely
what we actually care about: Identifying the optimal action. Of course
the learner does not know the optimal action, but can use a surrogate.
Certainly, the learner has to reduce the uncertainty about the value of the
UCB action aUCB

t = arg maxa∈A〈a, θ̂wls
t 〉 + β1/2

t ‖a‖W−1 . This leads to the
following information gain:

IUCB
t (a),

1
2

log
(
‖aUCB

t ‖2
V−1

t

)
− 1

2
log
(
‖aUCB

t ‖2
(Wt+ρ(a)−2aa>)−1

)
(3.13)

Relative to the information gain It(a) defined in Eq. (3.6), IUCB
t (a) satisfies

the following properties. For any a ∈ A. the new information gain is never
larger, IUCB

t (a) ≤ It(a) with equality at the UCB action, IUCB
t (aUCB

t ) =
It(aUCB

t ). Hence, the proof that we provided for Theorem 3.1 continues to
hold true if we replace the information gain in Algorithm 2 with IUCB

t (a).
With homoscedastic noise, this algorithm is naturally biased towards UCB,
and in experiments the two algorithms are hardly distinguishable. On the
other hand, with heteroscedastic noise, IDS chooses actions that reduce
the uncertainty about the outcome of the UCB action, even if the UCB
action itself is not informative, for example in the instance we illustrated in
Section 3.2.5.
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3.3.4 Deterministic Information-Directed Sampling

An interesting observation is that the upper bound on the information ratio
in Eq. (3.10) does not make use of randomization. This implies that in
the bandit setting, it suffices to optimize the information ratio over Dirac
distributions:

aDIDS
t = arg min

a∈A

∆̂t(a)2

It(a)
. (3.14)

We refer to this algorithm as deterministic IDS. However, we remark already
that randomization is a crucial ingredient for the asymptotic analysis and
the bounds for partial monitoring in Chapters 5 and 6.

In the homoscedastic case, deterministic IDS defined in Eq. (3.14) is
closely related to the UCB algorithm. For simplicity, assume that the
regularization parameter λ is chosen large enough such that ‖a‖V−1

1
≤ 1 for

all a ∈ A. The information gain satisfies

1
2
‖a‖2

V−1
t
≤ 2IDET

t (a) = log(1 + ‖a‖2
V−1

t
) ≤ ‖a‖2

V−1
t

, Ĩt(a) ,

which we also used in the proof. This implies that IDS defined with Ĩt(a)
satisfies the same bounds on the regret, up to constant factors. In the next
lemma we show that deterministic IDS defined with the information gain
Ĩt is equivalent to the UCB algorithm. For a related result, see [170, Lemma
2.1].

Lemma 3.3. The UCB action aUCB
t = arg maxa∈A〈a, θ̂t〉+ β1/2

t ‖a‖V−1
t

mini-
mizes the deterministic information ratio,

Ψt(aUCB
t ) = min

a∈A
∆̂t(a)2

Ĩt(a)
.

Proof. A directed calculation confirms that the information ratio of the UCB

action is Ψt(aUCB) =
∆̂t(aUCB

t )2

Ĩt(aUCB
t )

= 4βt. Moreover, any a ∈ A satisfies

∆̂t(a)2

Ĩt(a)
=

(
maxb∈A〈b, θ̂t〉+ β1/2

t ‖b‖V−1
t
−
(
〈a, θ̂t〉 − β1/2

t ‖a‖V−1
t

))2

‖a‖2
V−1

t

≥ 4βt .
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Figure 3.2: Performance on a randomly generated and fixed action set. With
homoscedastic noise, shown on the left, all methods perform similarly. Only IDS
with IDET performs slighly worse unless the sampling distribution is restricted
to a Dirac. The fast-suffix indicates approximate IDS sampling (Section 2.1.1),
which closely follows the exact version. Deterministic IDS (Eq. (3.14)) is specified
with the dirac-suffix. With heteroscedastic noise, performance is more varied.
Marker a) shows the improvement obtained with UCB when using a weighted
least-squares estimator opposed to the homoscedastic baseline that uses a uniform
noise upper bound. This improvement is from better estimation, but the noise
information is not directly used to determine the action choice. Marker b) shows
the improvement gained from better exploration on top of estimating the parameter
with weighted least-squares. This demonstrates the importance of using the noise
both for estimation and exploration

3.4 numerical results

We empirically demonstrate that using noise information can be beneficial
on synthetic example. We choose a randomly generated instance with
k = 30 actions in R3. The result is show in Fig. 3.2. For a systematic
benchmark with Example 7.5, see Fig. 3.1.

3.5 contributions and related work

The frequentist version of information-directed sampling for heteroscedastic
linear bandits and the worst-case bounds on the regret are published in:
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• Kirschner, J. & Krause, A. Information Directed Sampling and Bandits
with Heteroscedastic Noise in Proc. International Conference on Learning
Theory (COLT) (July 2018)

The gap-dependent bounds presented in this chapter are novel, using the
techniques by Kirschner, Lattimore, Vernade & Szepesvári [91].

Heteroscedastic bandits have been studied before, but mostly in the
multi-armed bandit model. The lower bounds on the asymptotic regret
apply directly to heteroscedastic noise distributions, see, for example, the
work by Burnetas & Katehakis [31]. Cowan, Honda & Katehakis [44] study
multi-armed bandits with unknown variance and derive an asymptotically
optimal algorithm. Related results on active learning with heteroscedastic
noise and a linear feedback model are by Chaudhuri, Jain & Natarajan [39].

Heteroscedasticity arises naturally in many applications and has been
identified as a key challenge in applications of Bayesian optimization [45].
Note that the algorithm presented in this chapter can be kernelized. For
details, we refer to the paper [87]. Kernelized methods are detailed in the
more general partial monitoring formulation in Section 8.2.



4
A C O N N E C T I O N T O P R I M A L - D UA L M E T H O D S

Previous work on information-directed sampling has focused primarily
on worst-case analysis, and these results motivated the definition of the
information ratio [135, 137]. This chapter’s focus is on asymptotic properties
of information-directed sampling, which, so far, are less well understood.
The main result is a fundamental connection between the IDS distribution
and a primal-dual approach to solve the asymptotic regret lower bound.
The connection is a surprising result because IDS was not explicitly design
for the asymptotic regime. Primal-dual methods recently attracted attention
in the bandit literature for asymptotic and non-asymptotic exploration in
structured bandits [48, 50, 160]. As a by-product, we provide efficient
solvers for the asymptotic regret lower bound, which are required in several
previous works [72, 79, 104].

setting We work in the structured bandit setting with a finite action set
A, and finite model classM⊂ RA consisting of functions mapping actions
to reward. When the learner chooses an action at ∈ A, the observation yt is
a sample from a specified distribution ϑθ,at ∈ P(R) that depends on the
action and the instance θ ∈ M. For example, in the linear bandit setting
with uni-variate Gaussian noise, ϑθ,a = N (〈a, θ〉, 1), but the results here do
not rely on a specific distributional form.

The optimal action for θ ∈ M is a∗(θ) = arg maxa∈A fθ(a). The set of
alternative parameters is C∗(θ) = {ν ∈ M : a∗(θ) 6= a∗(ν)}. A policy π is
called consistent if Rn(π, θ) ≤ o(np) for all p > 0 and all θ ∈ M.

Theorem 4.1 (Combes, Magureanu & Proutiere [43]). The asymptotic regret
of any consistent policy π on the instance θ ∈ M is at least

lim inf
n→∞

Rn(π, θ)

log(n)
≥ c∗(θ) ,

where c∗(θ) is specified by the following optimization problem:

c∗(θ) = inf
α∈RA≥0

∑
a∈A

α(a)( fθ(a∗)− fθ(a))

s.t. min
ν∈C∗(θ) ∑

a∈A
α(a)DKL(ϑa,θ‖ϑa,ν) ≥ 1 (4.1)

49
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Intuitively, the cost of the optimization corresponds to the regret when
playing according to the allocation α, while the constraints require the
policy to gather enough statistical evidence to infer the best action. The
restriction to consistent polices is necessary, because otherwise we can
define a policy to always play a∗ ∈ A, which results in zero regret when a∗

is indeed optimal, but linear regret otherwise.
Our next goal is to derive sequential strategies to solve Eq. (4.1). We

present the algorithmic results in the oracle setting, where the exact cost and
constraint vectors are known. This way we can focus on the main ideas,
while avoiding complications that arise from the statistical estimation errors.
In Chapter 5, we implement the results for stochastic linear bandits.

Let us fix a true instance θ ∈ M and write a∗ = a∗(θ) and C∗ = C∗(θ).
Mainly for simplicity, we assume that a∗ is unique. As before, the gaps
are ∆(a) = fθ(a∗)− fθ(a). We define constraint vectors hν ∈ RA≥0 as hν(a) =
DKL(ϑθ,a‖ϑν,a) for all ν ∈ M. With this notation, the lower bound (4.1) is
written as a linear covering program with |C∗| constraints,

c∗ = inf
α∈RA≥0

∑
a∈A

α(a)∆(a) s.t. ∀ν ∈ C∗, ∑
a∈A

α(a)hν(a) ≥ 1 . (4.2)

Note that there is no cost for allocating on the optimal action a∗ since
the corresponding gap is zero. Since the constraint vectors are also non-
negative, we can always choose a solution with α(a∗) = ∞ (defined in
the appropriate limit). Following the terminology of Jun & Zhang [79],
a constraint hν is docile if hν(a∗) > 0. Docile constraints are satisfied by
playing a∗ alone which does not increase the regret.

In the following, we assume that 0 < c∗ < ∞, which requires the obser-
vation distributions ϑθ,a to be such that the program is feasible. Further, the
solution is non-trivial in the sense that the learner has to choose at least one
sub-optimal action. For simplicity, we assume that hν(a) ≤ 1 for all ν ∈ C∗
and a ∈ A, which can always be achieved by rescaling the constraints. We
also require that |C∗| ≥ 2, as the approach is trivial for |C∗| = 1. As a
side remark, the case c∗ = 0 is particularly challenging in the stochastic
bandit setting because an asymptotically optimal learner needs to identify
a∗ within o(log(n)) rounds, and then only play the optimal action [79].

A policy πn = (µt)n
t=1 defines a cumulative allocation αn = ∑n

t=1 µt ∈ RA.
We say an allocation is asymptotically optimal and consistent at rate βn if

lim
n→∞

∆(αn)

βn
≤ c∗, and ∀ν ∈ C∗, lim

n→∞

hν(αn)

βn
≥ 1 . (4.3)

The lower bound suggests a choice which satisfies limn→∞ βn = log(n).
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Algorithm 3: Primal-Dual Solver for Eq. (4.2)
Input: Action set A, model classM, instance θ, horizon n, rate βn
Assume: No docile constraints, i. e. hν(a∗) = 0 for all ν ∈ C∗.

1 α0 ← 0 ∈ RA

2 η ←
√

2(βn + 1) log(|C∗|)
3 ∆(a)← maxb∈A fθ(b)− fθ(a), ∀a ∈ A
4 hν(a)← DKL(ϑθ,a‖ϑν,a), ∀a ∈ A and ν ∈ M
5 for t = 1, 2, 3, . . . , n do
6 if minν∈C∗ hν(αt−1) > βn then
7 µt ← ea∗

8 else
9 qt(ν)← exp

(
− ηhν(αt−1)

)
, ∀ν ∈ C∗

10 It(a)← ∑ν∈C∗ qt(ν)hν(a), ∀a ∈ A
11 ct ← arg minc 6=a∗

∆(c)
It(c)

12 µt ← ect

13 αt ← ∑t
s=1 µt

14 return αn

4.1 online convex optimization

In this section, we review an approach due to Garg & Koenemann [63]
and Arora, Hazan & Kale [11], which solves covering LPs – such as the
oracle lower bound – using online convex optimization (OCO). A similar idea
has recently inspired bandit algorithms for best arm identification [48] and
regret minimization [50]. The approach sets up a fictitious two-player game
that converges to the saddle point of the Lagrangian,

max
λ≥RC∗≥0

min
α∈RA≥0

{
L(α, λ), ∆(α)− ∑

ν∈C∗
λν(hν(α)− 1)

}
.

Strong duality holds and we can interchange the maximum and minimum.
Note that the dual variables are on an unbounded space, but it turns out
that we can normalize them. The Karush–Kuhn–Tucker conditions are

∆(x)− ∑
ν∈C∗

λνhν(x) = 0 (stationarity)

∀ν ∈ C∗, λν(hν(α)− 1) = 0 (complementary slackness)
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Combining both and using that c∗ = ∆(α∗) we find c∗ = ∑ν∈C∗ λν. This
implies that c∗ normalizes the dual variables, and we define qν , λν/c∗.
The normalized Lagrangian is

L̄(α, q) = ∆(α)− c∗ ∑
ν∈C∗

qν(hν(α)− 1) , (4.4)

where q ∈ P(C∗) is now a distribution over the constraints. Recall that
the allocation αn = ∑n

t=1 µt is chosen sequentially. In each iteration of the
game, first the dual player (or q-learner) chooses a distribution qt ∈P(C∗)
over the constraints. Then, the response of the primal player is a distribution
µt ∈P(A) over actions. The linear loss of the q-learner is defined by the
response µt of the primal player,

lt(q), ∑
ν∈C∗

qt(ν)hν(µt) . (4.5)

Given the choice qt of the q-learner, we define the combined constraint
vector It , ∑ν∈C∗ qt(ν)hν ∈ RA≥0, which satisfies It(µt) = lt(qt). The primal
response that defines the policy πn = (µt)n

t=1 is

µt =


ea∗ if min

ν∈C∗
hν(αt−1) > βn ,

ect else, where ct = arg mina∈A\a∗
∆(a)
It(a) .

(4.6)

The approach is summarized in Algorithm 3. As written, the approach only
works in the case without docile constraints, which can easily be fixed by
allocating a∗ explicitly. Note that the action ct defined in Eq. (4.6) satisfies

∆(ct)

It(ct)
= min

c 6=a∗
∆(c)
It(c)

(i)
= min

{
∆(α) : α ∈ RA≥0 s.t. It(α) ≥ 1

} (ii)
≤ c∗ . (4.7)

The equality (i) uses that there are no docile constraints, and that the
optimization program with one constraint It is optimally solved by the
allocation with α(a) = 1(a = ct)It(ct)−1. The inequality (ii) follows with
the optimal allocation α∗ as defined by Eq. (4.2). Using Eq. (4.7), we bound
the regret,

Rn(πn, θ) = ∆(αn) =
n

∑
t=1

∆(µt) ≤
n

∑
t=1

c∗ It(µt) = c∗
n

∑
t=1

lt(qt) .

So far, we have related the regret to the cumulative loss of the q-learner. We
introduce the q-learner regret,

Qn ,
n

∑
t=1

lt(qt)−min
ν∈C∗

n

∑
t=1

lt(ν) =
n

∑
t=1

lt(qt)−min
ν∈C∗

hν(αt) .
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Note that the algorithm is defined to explicitly control minν∈C∗ hν(αt−1).
The difference is bounded by the assumption hν(a) ≤ 1, hence

min
ν∈C∗

n

∑
t=1

lt(ν) = min
ν∈M

hν(αn) ≤ βn + 1 .

This allows us to write the regret Rn in terms of Qn,

Rn(π, θ) ≤ c∗(βn + 1 +Qn) . (4.8)

The literature on online convex optimization offers plenty of algorithms to
turn the last display into a meaningful bound [124]. For concreteness, we
choose the exponential weights learner [110, 168],

qt(ν) ∝ exp

(
−η

t−1

∑
s=1

ls(ν)

)
,

with a suitably chosen learning rate η > 0. A regret bound for this choice
of q-learner is given in the next lemma.

Lemma 4.1. With learning rate η =
√

2 log(|C∗|)(βn + 1) and assuming that
the best loss in hindsight satisfies minν∈C∗ ∑n

t=1 lt(ν) ≤ βn + 1, the regret of the
exponential weights learner is at most,

Qn ≤ 2
√

2 log(|C∗|)(βn + 1) .

Proof. The regret bound is a standard result, c. f. [124]. The proof is short
enough to show it here. Denote the cumulative loss by Lt(ν) = ∑t−1

s=1 lt(ν).
Exponential weights is equivalent to follow the regularized leader (FTRL),

qt = arg min
q∈P(C∗)

Lt(q) +
1
η

ψ(q) ,

with the entropy function ψ(q) = ∑ν∈C∗ q(ν) log(q(ν)) as a regularizer [146].
For learning rate η > 0, we define

ψη(q),
1
η

(
ψ(q)− min

q′∈P(C∗)
ψ(q′)

)
.

The next inequality follows from telescoping Orabona [124, Lemma 7.1],

Qn ≤ −
1
η

min
q∈P(C∗)

ψη(q) +
n

∑
t=1

(
[Lt+1 + ψη ](qt)− [Lt+1 + ψη ](qt+1)

)
.
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For the first term, we immediately get − 1
η minq ψ(q) ≤ log(|C∗ |)

η . The sum
is often referred to as the stability term. The increments are bounded as
follows,

[Lt+1 + ψη ](qt)− [Lt+1 + ψη ](qt+1) ≤ [Lt+1 + ψη ](qt)− [Lt+1 + ψη ](q̃) ,

where q̃t = arg minq∈P(C∗) Lt+1 + ψη ∝ exp(−ηLt+1). After some algebraic
manipulations, we arrive at

[Lt+1 + ψη ](qt)− [Lt+1 + ψη ](q̃)

= lt(qt) +
1
η

log

(
∑

ν∈C∗
qt(ν) exp

(
− η(lt(ν))

))

≤ lt(qt) +
1
η

(
∑

ν∈C∗
qt(ν) exp

(
− η(lt(ν))

)
− 1

)
≤ η

2 ∑
ν∈C∗

qt(ν)(lt(ν))2 ≤ η

2
lt(qt) .

The first inequality uses log(v) ≤ v − 1 for all v ≥ 0, and the second
inequality uses exp(−v) ≤ 1− v + v2

2 for all v ≥ 0. The last inequality uses
again boundedness, lt(ν) ≤ 1. All that remains is to solve for the regret:

Qn ≤
1
η

log(|C∗|) + η

2

n

∑
t=1

lt(qt) =
1
η

log(|C∗|) + η

2

(
Qn + min

ν∈C∗
Ln(ν)

)
Provided that the best loss in hindsight satisfies minν∈C∗ Ln(ν) ≤ βn + 1, a
feasible choice of the learning rate is η =

√
2 log(|C∗|)(βn + 1). Hence

Qn ≤ 2
√

2 log(|C∗|)(βn + 1) .

The result allows us to complete the bound on the policy regret Eq. (4.8).
Further note that the approach is asymptotically consistent according to
Eq. (4.3) if βn/n→ 0. We summarize the result in the following theorem.

Theorem 4.2. On any instance without docile constraints, Algorithm 3 returns
an allocation that is asymptotically optimal and consistent. Furthermore, the regret
of the corresponding policy πn satisfies

Rn(πn, θ) ≤ c∗(βn + 1) + 2c∗
√

2 log(|C∗|)(βn + 1) .

An immediate extension to the result is to replace the q-learner with
AdaHedge [47, 54], which avoids the need to know the horizon while
preserving the same scaling of the q-learner regret.
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Algorithm 4: Information-Directed Sampling with Oracle Access
Input: Action set A, model classM, instance θ, horizon n, rate βn,

estimation error sequence (δt)n
t=1

1 α0 ← 0 ∈ RA

2 η ←
√

2(βn + 1) log(|C∗|)
3 for t = 1, 2, 3, . . . , n do
4 if minν∈M hν(αt−1) > βn then
5 µt ← ea∗

6 else
7 ∆̂t(a)← ∆(a) + δt, ∀a ∈ A
8 qt(ν)← exp

(
− ηhν(αt−1)

)
, ∀ν ∈ C∗

9 It(a)← ∑ν∈C∗ qt(ν)hν(a), ∀a ∈ A

10 µt ← arg minµ∈P(A)
∆̂t(µt)2

It(µt)
11 αt ← ∑t

s=1 µt

12 return αn

4.2 information-directed sampling as primal-dual method

We are now in the position to establish a connection between IDS and the
primal-dual approach presented in the previous section. Let (δt)n

t=1 be a
positive sequence with δn → 0 and ∑n

t=1 δt → ∞ as n → ∞. We refer to δt
as the estimation error. Assuming still that the reward function is known,
we define gap estimates as ∆̂t(x), ∆(x) + δt. The choice anticipates the
definition for the gap estimate that we will use in the next chapter. More
importantly, ∆̂(a) ≥ δt > 0 ensures that IDS is defined in a meaningful way
and does not degenerate to the greedy algorithm that just plays a∗. Using
the same notation as in the previous section, the combined constraints
It = ∑ν∈C∗ qt(ν)hν ∈ RA≥0 define the information gain, where qt ∈ P(C∗)
is computed by the q-learner. The information gain and the gap estimate
define an oracle version of information-directed sampling,

µIDS
t = arg min

µ∈P(A)

{
Ψt(µ) =

∆̂t(µ)2

It(µ)

}
.

We follow this strategy as long as minν∈C∗ hν(αt) < βn. Once all constraints
are satisfied, we choose the optimal action a∗. The approach is summarized
in Algorithm 4.
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A direct connection between IDS and the primal-dual method is obfus-
cated by the fact that the information ratio uses squared gaps, whereas
we argued previously that one should play arg mina 6=a∗ ∆(a)/It(a). The
link becomes clear when we compute the information ratio in the limit
δt → 0 and It(a∗) → 0. Both assumptions are reasonable in the statistical
setting. Clearly, a consistent gap estimate of a∗ has to approach zero. The
information gain of a∗ has to satisfiy It(a∗) ≤ o(1), if we expect a∗ to be
played Ω(n) times on a horizon n and require that the total information
gain γn = ∑n

t=1 It(at) grows at most sublinearly on the horizon. Specifically,
we assume that

2δt ≤ min
a 6=a∗

∆̂t(a) , (4.9)

or, equivalently, δt ≤ mina 6=a∗ ∆(a), ∆min. Requiring that the estimation
error is smaller than the minimum gap is a natural assumption, since the
learner has to identify a∗ and allocate Ω(n) plays to the best action, whereas
for large n, sub-optimal actions should receive at most O(log(n)) plays in
the optimal allocation. Using Eq. (4.9) and assuming there are no docile
constraints, we bound the information ratio with Lemma 2.5,

min
µ∈P(A)

∆̂t(µ)2

It(µt)
≤ min

a 6=a∗
4δt∆̂t(a)

It(a)
= min

a 6=a∗
4δt∆(a)

It(a)
≤ 4δtc

∗ . (4.10)

The last inequality is by Eq. (4.7) and Eq. (2.6). Without docile constraints, it
holds that It(a∗) = 0, and the IDS distribution is µIDS

t = (1− pt)ea∗ + ptect

where ct = arg mina 6=a∗ ∆(a)/It(a) and the trade-off probability is pt =
δt/∆(ct). Notably, the estimation error does not bias the cost/constraint
ratio that determines ct.

An argument along the lines of the analysis in the previous section
provides a bound on the regret similar to Theorem 4.2. A more direct
argument uses the generic IDS regret bound in Corollary 2.3, which states
that when Ψt(µt) ≤ 4δtζ, then

Rn(πn, θ) ≤ ζ E[γn] +
n

∑
t=1

E
[
∆(at)− (∆̂t(at)− δt)

]
= ζ E[γn] .

The second equality uses the definition of the oracle gap estimates. To
keep the otherwise synthetic analysis simple, we assume that the ora-
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cle algorithm is initialized with a estimation error sequence that satisfies
δt ≤ mina 6=a∗ ∆(a). The regret bound then reads

Rn(πn, θ) ≤ c∗
n

∑
t=1

It(µt) ≤ c∗(βn + 1) + 2c∗
√

2 log(|C∗|)(βn + 1) .

The inequality uses Lemma 4.1 and the fact that the best q-loss in hindsight
is explicitly controlled by the design of the algorithm. Arguing that the
allocation is consistent according to Eq. (4.3) is more delicate. In particular,
when δt = 0 or δt is approaching zero too fast, then IDS just plays a∗ and
the constraints are never satisfied. We noted before that the probability
of sampling a sub-optimal action is pt = δt/∆(ct). Hence requiring that
∑∞

t=1 δt = ∞ while βn/n → 0 guarantees that the constraints are satisfied
eventually. The result is summarized in the next theorem.

Theorem 4.3. On an instance without docile constraints, the policy πn defined by
Algorithm 4 with estimation error sequence (δt)n

t=1 such that 2δt ≤ mina 6=a∗ ∆̂t(a)
satisfies

Rn(πn, θ) ≤ c∗(βn + 1) + 2c∗
√

2 log(|C∗|)(βn + 1) .

Moreover, when limn→∞ ∑n
t=1 δt = ∞ and βn/n → 0, the allocation defined by

the policy is asymptotically consistent.

4.2.1 Docile Constraints

We can also analyze the case with docile constraints, where hν(a∗) > 0 for
one or multiple ν ∈ C∗. Denote by α̃∗(a) = α∗(a)1(a 6= a∗) the optimal
allocation on suboptimal actions. For a trade-off parameter η ∈ [0, 1],
we define µ̃t(η), (1− η)ea∗ + ηα̃∗‖α̃∗‖−1

1 and η∗t = δt‖α̃∗‖1/c∗ for which
∆̂t(µ̃t(η∗t )) = 2δt. The distribution µ̃(η) explicitly randomizes between a∗

and the normalized allocation over sub-optimal actions prescribed by the
lower bound. Further, let hmin = min{hν(a∗) : ν ∈ C∗, hν(a∗) > 0} be the
smallest docile constraint coefficient. Then, using again Eq. (2.6),

min
µ∈P(A)

∆̂t(µ)2

It(µt)
≤ 4δt∆̂t(µ̃(η∗t ))

It(µ̃(η∗t ))
≤ 4δtc

∗max

(
1,

δt(c∗hmin)
−1

1− δt‖α̃∗‖1
c∗

)
. (4.11)

The second inequality follows from noting that ∆(µ̃t(η)) = ηc∗‖α̃∗‖−1
1 , and

It(µ̃t(η)) ≥ (1− η)hmin +
η

‖α̃∗‖1
≥ min

(
(1− η)hmin,

η

‖α̃∗‖1

)
.
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Replacing Eq. (4.9) with a marginally stronger condition 3δt ≤ mina 6=a∗ ∆̂t(a),
we get 2δt‖α̃∗‖1 ≤ c∗, and Eq. (4.11) simplifies to

min
µ∈P(A)

∆̂t(µ)2

It(µt)
≤ 4δt∆̂t(µ̃(η∗t ))

It(µ̃(η∗t ))
≤ 4δtc

∗max
(

1, 2δt(c
∗hmin)

−1
)

. (4.12)

Theorem 4.4. For an instance with docile constraints, the regret of Algorithm 4
with estimation error sequence (δt)n

t=1 such that 3δt ≤ mina 6=a∗ ∆̂t(a) satisfies

Rn(πn, f ) ≤
n

∑
t=1

1(2δt > hminc
∗)2δt + c∗(βn + 1) + 2c∗

√
2 log(|C∗|)(βn + 1)

Proof. By Lemma 2.6, we always have ∆̂t(µIDS
t ) ≤ 2δt. The regret bound

follows by we separately treating time steps where 2δt(c∗hmin)
−1 > 1, and

using Corollary 2.3 combined with Eq. (4.12) otherwise.

Comparing Theorems 4.3 and 4.4 reveals a discontinuity as hmin → 0.
Note that hmin > 0 requires to play a∗ while the constraints are not yet
satisfies, which means the learner is still uncertain about the identity of
a∗. On the other hand, the asymptotically optimal allocation is computed
in the limit where the best action is known, effectively eliminating all
docile constraints at no cost. Without docile constraints the situation is
different, since the cost of identifying a∗ solely depends on the structure of
the sub-optimal actions.

4.2.2 Worst-Case Regret

Interestingly, we can also obtain a bound on the regret that does not depend
on the instance. By Lemma 2.6,

Rn(π, f ) ≤
n

∑
t=1

∆̂t(µt) ≤ 2
n

∑
t=1

δt .

The bound previews how IDS maintains control on the worst-case regret
in the roll-in phase where δt ≤ mina 6=a∗ ∆(a) is not satisfied. In the sta-
tistical setting with bandit information, it is reasonable to expect that
δt ≤ C

√
log(t)/t. The bound then implies that Rn ≤ C

√
n log(n).
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4.2.3 IDS as Best-Response

In hindsight, the primal-dual connection also manifests in Lemma 2.4,
which characterizes the support of the IDS distribution. After rearranging,
the lemma shows that any a ∈ supp(µIDS

t ) is a minimizer of the function

gt(a) = ∆̂t(a)− Ψt(µt)

2∆̂t(µt)
It(a)

n→∞≈ ∆̂t(a)− c∗ It(a) .

The limiting statement holds provided that δt → 0 and It(a∗)→ 0, which
implies Ψt(µt) ≈ 4c∗δt and ∆̂t(µt) ≈ 2δt. Therefore, the IDS distribution
can be understood as best-response in the primal-dual game defined by
the normalized Lagrangian Eq. (4.4), where the dual variables are chosen
by the q-learner. Lemma 2.4 also implies that the best response is not
necessarily unique. The information ratio imposes a particular trade-off
that for δt = mina∈A ∆̂t(a)→ 0 leads to randomization between the greedy
action ât = arg mina∈A ∆̂t(a) and an informative action.

4.3 contributions and related work

The results in this chapter are based on Appendix D in the following work:

• Kirschner, J., Lattimore, T., Vernade, C. & Szepesvári, C. Asymptotically
Optimal Information-Directed Sampling in Proc. International Conference
on Learning Theory (COLT) (Aug. 2021)

The exposition here is more detailed and extends the previous work by ex-
plicitly allowing docile actions. The primal-dual approach to solve covering
LPs is based on work by Garg & Koenemann [63] and was previously used
for regret minimization in the bandit setting by Degenne, Shao & Koolen
[50]. The formulation presented here differs from this work in that it avoids
a re-parametrization of the allocation.

While our analysis provides a promising plan to derive asymptotically
optimal algorithms for the structured bandit setting, there are many delicate
technical challenges in the stochastic estimation setting that require further
ideas. We will work out the details for the linear bandit setting in the next
chapter, but a more generic analysis beyond the Gaussian linear models is
left for future work.





5
A S Y M P T O T I C O P T I M A L I T Y

Unlike in the multi-armed bandit setting where Thompson sampling and
UCB are instance-optimal, designing asymptotically optimal algorithms
for linear bandits is much more challenging. It is known that algorithms
based on optimism or Thompson sampling are not asymptotically optimal
in the linear setting [104]. This fact is illustrated in Example 5.1 below.
Asymptotic optimality of Bayesian IDS was already suggested by Russo
& Van Roy [135, Section 7.3] based on numerical studies on multi-armed
bandits, but so far no instance-dependent analysis is known. The version of
IDS that we introduced in Chapter 3 satisfies a gap-dependent bound but
is quite far from instance-optimal.

We now follow the plan outlined in the previous chapter: Using the
connection between IDS and the primal-dual formulation of the lower
bound, we design an information gain that leads to an asymptotically optimal
version of IDS for linear bandits. Without much additional effort, we show
that the same IDS algorithm is close to minimax optimal and satisfies a finite-
time gap-dependent bound with benign lower order terms. Surprisingly,
the information gain that we derive from the primal-dual setup is related
to the mutual information used in the Bayesian IDS algorithm in the large
data limit. This hints towards a deep connection between the information
theoretic analysis of Bayesian IDS and the optimal frequentist regret.

setting Recall that in the linear bandit setting, actions are represented
by d-dimensional features A ⊂ Rd, and the reward function fθ(a) = 〈a, θ〉
is linearly parameterized by θ ∈ M ⊂ Rd. When the learner chooses an
action at ∈ A in round t, the observation is yt = 〈at, θ〉+ εt, where εt is
ρ-sub-Gaussian observation noise. In line with all previous work focusing
on the asymptotic setting, we assume that the action set is finite with k, |A|
and the optimal action a∗(θ) = arg maxa∈A〈a, θ〉 is unique. Eliminating
these assumptions is a delicate and possibly nontrivial challenge left for
future work. For technical reasons, we assume that the parameter set
M ⊂ Rd is a polytope and we require diam(A) ≤ 1 and diam(M) ≤ 1.
Recall the definition of the sub-optimality gap ∆(a) = 〈a∗ − a, θ〉 and the
smallest gap, ∆min = mina 6=a∗ ∆(a). For actions a, b ∈ A, we denote by

61
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Hb
a = {ν ∈ M : 〈a − b, ν〉 ≥ 0} the half-space of parameters where the

reward of a is at least the reward of b. The set of alternative parameters

C∗(θ) = {ν ∈ M : a∗(ν) 6= a∗(θ)} = ∪a 6=a∗(θ)Ha∗(θ)
a

contains all parameters where the optimal action is different from a∗(θ).
We omit the dependence on the instance θ when there is no ambiguity.

asymptotic lower bound We already introduced the asymptotic
lower bound for structured bandits in Theorem 4.1. Here we specialize the
result to the linear setting with Gaussian noise. For an allocation α ∈ RA≥0
over actions we define the covariance matrix V(α) = ∑a∈A α(a)aa>. Let c∗

be the solution to the following convex program,

c∗(θ), inf
α∈RA≥0

∑
a∈A

α(a)〈a∗ − a, θ〉 s.t. min
ν∈C∗

1
2‖ν− θ‖2

V(α) ≥ 1 . (5.1)

The optimization minimizes the regret over (unbounded) allocations α
that collect sufficient statistical evidence to reject all parameters ν ∈ C∗
for which an action a 6= a∗ is optimal. Note that for a fixed ν ∈ Rd, the
constraints are linear in the allocation, ‖ν− θ‖2

V(α) = ∑a∈A α(a)〈ν− θ, a〉2.
The next theorem states the asymptotic regret lower bound for Gaussian
noise. A policy π is called consistent if for all θ ∈ M and p > 0 it holds that
Rn(θ, π) = o(np). Assuming consistency is required to rule out policies
that are defined to always play a fixed action a∗, which incurs zero regret
when a∗ is indeed optimal, but linear regret on other instances.

Theorem 5.1 (Asymptotic Lower Bound). Any consistent algorithm π for the
linear bandit setting with Gaussian noise has regret Rn(π, θ) at least

lim inf
n→∞

Rn(θ, π)

log(n)
≥ c∗(θ) .

The result as stated here is by Combes, Magureanu & Proutiere [43]. It
follows from a more general result by Graves & Lai [68].

Example 5.1 (End of Optimism). This example of a 2-dimensional linear
bandit was used by Lattimore & Szepesvári [104] to show that algorithms
based on optimism and Thompson sampling are not asymptotically optimal
in the linear setting. The paper is titled “The End of Optimism? An
Asymptotic Analysis of Finite-Armed Linear Bandits”. Since then, the
instance is known as the ‘end of optimism‘ example, although it was already
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Figure 5.1: The ’end of optimism’ example.

introduced earlier by Soare, Lazaric & Munos [150, Appendix A]. There
are three arms a1 = (1, 0), a2 = (1− ε, 2ε) and a3 = (0, 1) with a tuning
variable ε > 0. The true parameter is θ = (1, 0) which makes action a1
optimal. The situation is illustrated in Fig. 5.1. The colored regions C1, C2
and C3 depict cells, defined as the subset of parameters in R2 for which
a1, a2 or a3 is optimal respectively. Let θ̂t be the least-square estimate
after t rounds and Vt = ∑3

i=1 αt(i)aia>i the covariance matrix, where after
t rounds action i ∈ {1, 2, 3} has been played αt(i) times in total. When
the confidence ellipsoid Et = {θ : ‖θ − θ̂t‖2

Vt
≤ c log(n)} is contained in

the cell C1, the learner has identified the best action with high probability.
Algorithms based on optimism and Thompson sampling quickly rule out
the suboptimal arm a3 and just play either a1 or a2. The twist is that the third
arm is still informative for determining a∗, and in fact an asymptotically
optimal algorithm plays only on {a1, a3}. To see why, note that any no-
regret learner plays a∗ a lot, therefore the parameter is well-estimated
along the direction (1, 0). It remains to shrink the confidence ellipsoid
approximately along the direction (0, 1). Choosing arm a2 means the
learner updates the covariance with Vt+1 ← Vt + a2a>2 , which implies that
the Vt-norm of (0, 1) increases about ε2 while the instantaneous regret
suffered is ε. On the other hand, when the learner chooses a3, the regret
is 1 while the Vt-norm also increases by 1. Hence, an optimistic algorithm
has asymptotic regret that scales with Rn ≈ log(n)/ε, but the regret of an
optimal algorithm is only Rn ≈ 1 · log(n).
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Algorithm 5: Asymptotically Optimal IDS
Input: Finite action set A

1 s← 1
2 for t = 1, 2, 3, . . . , n do
3 Vs ← ∑s−1

i=1 aia>i + 1d

4 θ̂s ← V−1
s ∑s−1

i=1 aiyi // least-squares estimate

5 âs ← arg maxa∈A〈a, θ̂s〉 // empirically best action

6 βs,1/δ ← (
√

2 log δ−1 + log det(Vs) + 1)2

7 aUCB
s ← arg maxa∈A〈a, θ̂s〉+ β1/2

s,1/s2‖a‖V−1
s

// UCB action

// gap estimates

8 ∆̂s(a)←
(

maxb∈A〈b, θ̂s〉+ β1/2
s,1/s2‖b‖V−1

s

)
− 〈b, θ̂s〉

9 ν̂s(c)← arg min
ν∈Hâs

c
‖ν− θ̂s‖2

Vs
// see Eq. (5.9)

10 ms ← minc 6=âs
1
2‖ν̂s(c)− θ̂s‖2

Vs

11 ηs ← minl≤s m−1/2
l log(k)

12 qs(c)← exp(−ηs‖ν̂s(c)− θ̂s‖2
Vs
)

// information gain†

13 Is(a)← 1
2 ∑c 6=âs qs(c)

(
|〈ν̂s(c)− θ̂s, a〉|+ β1/2

s,1/s2 ‖a‖V−1
s

)2

14 if ms ≥ 1
2 βs,1/(t log(t)) then

15 Choose âs // exploitation (disregard data)

16 else

17 µs ← arg minµ∈P(A)
∆̂s(µ)2

Is(µ)
// IDS distribution

18 Sample as ∼ µs, observe ys = 〈as, θ∗〉+ εs
19 s← s + 1 // exploration step counter

† We normalize the q-weights in the analysis, but this is not required for the algorithm.

5.1 asymptotically optimal information-directed sampling

The learner interacts the environment is on rounds t = 1, . . . , n where the
horizon n is unknown. We distinguish between exploration and exploitation
rounds. In exploitation rounds, a∗ is identified with high probability and
the algorithm plays the action it estimates to be optimal. In exploration
rounds, we sample from the IDS distribution. Exploration steps are indexed
by t1, . . . , tsn , where sn is the total number of exploration rounds.
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We refer to s and t as local and global time respectively, and to sn as the
effective horizon. To avoid double indexing, the mapping s 7→ ts is implicit.
The convention is that an s-index refers to the local time quantities, whereas
a t-index refers to global time quantities. For example, the action chosen at
time ts is as and the observed reward is ys. Similarly, an action as at local
time s has a global time correspondence at = ats . In exploration rounds, the
algorithm is defined to sample the action as from the IDS distribution µIDS

s ,

µIDS
s = arg min

µ∈P(A)

{
Ψs(µ),

∆̂s(µ)2

Is(µ)

}
.

The exploitation conditions, and the gap estimates ∆̂s(a) and information
gain Is(a), defined for each s ≥ 1, are introduced in the following. The
complete procedure is summarized in Algorithm 5.

5.1.1 Least-Squares and Exploitation Rounds

All estimated quantities are defined using data collected in exploration
rounds, whereas observation data from exploitation rounds is discarded.
Let θ̂s , V−1

s ∑s−1
i=1 aiyi be the regularized least squares estimator with co-

variance matrix Vs , ∑s−1
i=1 aia>i + 1d, computed with data {(ai, yi)}s−1

i=1 . The
empirically best action is âs , arg maxa∈A〈a, θ̂s〉. We assume that the learner
has a concentration coefficient βs,δ that satisfies

P[∃ s ≥ 1 with ‖θ̂s − θ‖2
Vs
≥ βs,δ] ≤ δ . (5.2)

For concreteness, we use the choice provided in Lemma 3.1, which is

β1/2
s,δ ,

√
2 log δ−1 + log det(Vs) + 1 . (5.3)

The reader might be worried about the log determinant term, which is
known to create an asymptotically suboptimal dependence on the dimen-
sion, and can be improved with a different choice of the confidence co-
efficient [104, 160]. On the other hand, βs,δ ≤ 2 log δ−1 +O(d log(s)) by
Eq. (3.1), and we circumvent this shortcoming by limiting the amount
of data the algorithm collects to sn = O

(
poly(log(n)

)
. In this case, the

log determinant only contributes to lower order terms, log det(Vsn) ≤
O(d log(sn)) ≤ O(d log log(n)). We also exploit this property for other
steps in the analysis, but it is unclear whether it is essential or not.

For all c 6= âs, let ν̂s(c) = arg min
ν∈Hâs

c
‖ν− θ̂s‖2

Vs
be the closest parameter

to θ̂s in Vs-norm for which c is better than âs. This is a strongly convex
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objective over the convex setHâs
c , hence ν̂s(c) can be computed efficiently. In

practice, we can drop the constraints on the parameter set (i.e. setM = Rd),
in which case ν̂s(c) can be computed in closed form, see Eq. (5.9) below.
Exploitation rounds t (with corresponding local time s = st) are defined by
the exploitation condition,

ms , 1
2 min

c 6=âs
‖ν̂s(c)− θ̂s‖2

Vs
≥ 1

2 βst ,1/(t log(t)),
1
2 β

glob
t , (E)

which guarantees that with probability (t log(t))−1 there exists no plausible
alternative parameter ν 6= θ̂s, such that an action a 6= âs is optimal for ν.

5.1.2 Gap Estimates

Define βs , βs,1/s2 . At local time s, the gap estimate is

∆̂s(a), max
b∈A
〈b− a, θ̂s〉+ β1/2

s ‖b‖V−1
s

. (5.4)

Note that we use a different confidence level in the definition of the gap
estimate and for the exploitation condition (E). We point out that the only
explicit dependence on the global time t is in the exploitation condition.
The gap estimate is an upper bound on the true gap, provided θ̂s is well
concentrated, i.e. ‖θ̂s − θ‖2

Vs
≤ βs,

∆(a) = max
b∈A
〈b− a, θ〉 = max

b∈A
〈b− a, θ − θ̂s〉+ 〈b− a, θ̂s〉

(i)
≤ max

b∈A
‖b− a‖V−1

s
‖θ − θ̂s‖Vs + 〈b− a, θ̂s〉

(ii)
≤ max

b∈A
〈b, θ̂s〉+ β1/2

s ‖b‖V−1
s
− (〈a, θ̂s〉 − β1/2

s ‖a‖V−1
s
)
(iii)
≤ 2∆̂s(a) . (5.5)

Inequality (i) follows from the Cauchy-Schwarz inequality, (ii) uses the
definition of the confidence scores and the triangle inequality, and (iii)
uses ∆̂s(a) ≥ β1/2

s ‖a‖V−1
s

. The gap estimate of the empirically best action
âs is δs , ∆̂s(âs). Equivalently, the gap estimate can be written as ∆̂s(a) =
〈âs − a, θ̂s〉+ δs, and therefore we refer to δs as the estimation error. The UCB
action is aUCB

s , arg maxa∈A〈a, θ̂s〉+ β1/2
s ‖a‖V−1

s
.

The choice of the confidence coefficient in exploration and exploitation
rounds is justified in the following lemma. It shows that the regret accumu-
lated in rounds where the estimate is inaccurate is negligible.
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Lemma 5.1. Define the indicator Bs = 1

(
βs ≥ ‖θ̂s − θ‖2

Vs

)
for rounds s where

the confidence bounds at level βs are valid. Let ∆max = maxa∈A ∆(a). Then

Rn ≤ E

[
sn

∑
s=1

∆s(as)Bs

]
+O

(
∆max log log(n)

)
.

Proof. Abbreviate χs , ‖θ̂s − θ‖2
Vs

. Naturally, the regret decomposes into
exploration and exploitation rounds.

Rn = E

[
n

∑
s=1

∆(at)

]
(i)
≤ E

[
sn

∑
s=1

∆(as)Bs + ∆max

( sn

∑
s=1

1(βs < χs) +
n

∑
t=1

1

(
β

glob
t < χst

))]
(ii)
≤ E

[
sn

∑
s=1

∆(as)Bs + ∆max

sn

∑
s=1

1
s2 + ∆max

n

∑
t=1

1
t log t

]
(iii)
≤ E

[
sn

∑
s=1

∆(as)Bs

]
+O(∆max log log(n)) .

For (i) we used the boundedness assumption on the gaps. For (ii), note
that by Eq. (5.2), P[βs < χs] ≤ 1

s2 and P[β
glob
t < χst ] <

1
t log t . Lastly, (iii)

bounds the sums.

5.1.3 Information Gain

Recall that ν̂s(c) = arg min
ν∈Hâs

c
‖ν− θ̂s‖2

Vs
is the closest alternative to θ̂s in

Vs-norm for which âs is not optimal. The asymptotic information gain is

IA
s (a), 1

2 ∑
c 6=âs

qs(c)
(
|〈ν̂s(c)− θ̂s, a〉|+ β1/2

s ‖a‖V−1
s

)2
, (5.6)

where the mixing distribution qs ∈ P(A) is defined so that

qs(c) ∝

0 if c = âs ,

exp
(
− ηs

2 ‖ν̂s(c)− θ̂s‖2
Vs

)
otherwise .

(5.7)

As we explained in Chapter 4, the q-weights are interpreted as dual vari-
ables that are chosen by an exponential weights learner. The learning rate is
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set to ηs , minl≤s m−1/2
l log(k), where ms , 1

2 minc 6=âs ‖ν̂s(c)− θ̂s‖2
Vs

. The
definition of the learning rate is to ensure that ηs is monotonically decreas-
ing, which is used explicitly in the proof. The weights qs can be understood
as soft-min approximation of the minimum constraint value,

ms ≤ 1
2 ∑

c 6=âs

qs(c)‖ν̂s(c)− θ̂s‖2
Vs
≤ ms +

log(k)
ηs

. (5.8)

The statement follows from Lemma 5.2 below. We remark that the log(k)
factor in the learning rate is chosen to cancel the log(k) in the soft-min
bound, which makes our worst-case regret bound independent of k. Other
trade-offs that affect the lower order terms in the analysis are possible.
Since ηs appears in multiple bounds, there is no uniquely optimal choice.

Note that up to the standard boundedness assumptions, the proposed
algorithm is essentially hyper-parameter free. Nonetheless, the confidence
parameter βs,1/δ and the learning rate ηs used in the definition of Is provide
some tuning knobs to improve performance in practice. Empirically, the
exact value of ηs has only a minor impact on the performance in our
experiments, as shown in Figs. 5.3 and 5.4 and discussed in Section 5.3.

Lemma 5.2 (Softmin approximation). A1, . . . Ak ≥ 0 be a sequence of positive
numbers and Amin = mini∈[k] Ai. Let qi ∝ exp(−ηAi) be exponential mixing
weights with η > 0. Then

∑
i∈[k]

qi Ai ≤ Amin +
log(k)

η
.

Furthermore, the mixing weights qi are bounded as follows,

1
k

exp
(
− η(Ai − Amin)

)
≤ qi ≤ exp

(
− η(Ai − Amin)

)
.

Proof. Let ψ∗η(A) = 1
η log

(
∑i∈[k] exp(ηAi))

)
be the Fenchel conjugate of

the normalized entropy function. A small calculation confirms that q =
∇Aψ∗η(−A). By convexity of ψ∗η ,

∑
i

qi Ai = 〈∇ψ∗η(−A), A〉 ≤ ψ∗η(0)− ψ∗η(−A) ≤ 1
η log(k) + Amin .

The last inequality follows from

ψ∗η(−A) = η−1 log
(

∑
i

exp(−ηAi)
)

≥ η−1 log
(

exp(−η min
i

Ai)
)
= −Amin .
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For the bound on the mixing weights, note that the claim is equivalent to
the following bound on the normalization constant,

exp(−ηAmin) ≤∑
i

exp(−ηAi) ≤ k exp(−ηAmin) .

5.1.4 Computational Aspects

There are three kinds of operations in the algorithm. First, using elemen-
tary matrix operations, we can update V−1

s , det(Vs) and θ̂s incrementally
(Lemma D.2), and note that the s-index terms only need to be updated after
exploration rounds. It can be checked that O(kd2sn) operations are needed
over all n rounds to compute this part. Second, the optimization problem
that defines the alternative parameters ν̂s(c) is a quadratic program with
d variables and linear constraints 〈ν̂s(c), c− âs〉 ≥ 0 and ν̂s(c) ∈ M. Such
optimization problems can be solved very efficiently in practice and in
O(ld3) time in the worst case for model sets M with l constraints. Note,
the analysis suggests that we can tolerate an additive numerical error on
the information gain of order O((s log(s))−1). In practice, we can drop the
constraints onM, in which case ν̂s(c) has an analytical closed form,

ν̂s(c) = θ̂s − 〈θ̂s ,âs−c〉
‖âs−c‖2

V−1
s

V−1
s (âs − c) . (5.9)

Third, computation of the IDS distribution is done in O(k2) steps or ap-
proximated in O(k) as discussed in Section 2.1.1. A closer inspection of
the asymptotic analysis reveals that the bound is attained on a distribution
that randomizes between the greedy action âs and some other (informa-
tive) action, hence the approximate IDS distribution is sufficient to achieve
asymptotic optimality.

With all improvements, the overall complexity is O(n + kd2sn) over n
rounds, where the linear term comes from checking whether to explore or
exploit. This can be improved by simply computing after each exploration
round when the next exploration round will occur.

5.1.5 Regret Bounds

The regret bounds for Algorithm 5 come in three flavours:

• In Theorem 5.2, we show a rate-optimal worst-case regret bound of
Rn ≤ O(d

√
n log(n)). The proof bounds the information ratio by a

constant, and the information gain using the elliptic potential lemma.
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• In Theorem 5.3, we derive a gap-dependent logarithmic regret bound
of Rn ≤ O

(
d3∆−1

min log(n)2). The proof uses an instance-dependent
bound on the information ratio, that is attained by a distribution
closely related to Thompson sampling.

• In Theorem 5.4, we show that the proposed algorithm is asymptoti-
cally optimal, that is Rn ≤ c∗ log(n) + o(log(n)). The result relies on
improving the bounds on the information ratio and the information
gain in the asymptotic regime.

Theorem 5.2 (Worst-case regret). The regret of Algorithm 5 is bounded by

Rn ≤ O
(
d log(n)

√
n
)

.

We remark that our bound matches the bound of UCB, but is worse
by a factor

√
d than basic elimination algorithms [103, §23], that achieve

O(
√

d log(k)n) when the number of actions is small. Before the proof, we
show a worst-case bound on the total information γn = ∑sn

s=1 IA
s (as).

Lemma 5.3 (Total information). For any sequence of actions a1, . . . , asn , the
total information gain γn = ∑sn

s=1 IA
s (as) is bounded as follows,

γn ≤ 2
(

β
glob
n +

(
β

glob
n
)1/2

+ βsn

)
d log(sn) ≤ O

(
(d log(n))2) .

Proof. Note that

sn

∑
s=1

IA
s (as) =

1
2

sn

∑
s=1

(
∑

c 6=âs

qs(c)|〈ν̂s(c)− θ̂s, as〉|+ β1/2
s ‖as‖V−1

s

)2

≤
sn

∑
s=1

∑
c 6=âs

qs(c)〈ν̂s(c)− θ̂s, as〉2 + βs‖as‖2
V−1

s

(i)
≤

sn

∑
s=1

∑
c 6=âs

qs(c)
(
‖ν̂s(c)− θ̂s‖2

Vs
+ βs

)
‖as‖2

V−1
s

(ii)
≤

sn

∑
s=1

(
min
c 6=âs
‖ν̂s(c)− θ̂s‖2

Vs
+

2 log(k)
ηs

+ βs

)
‖as‖2

V−1
s

(iii)
≤
(

β
glob
n + (β

glob
n )1/2 + βsn

) sn

∑
s=1
‖as‖2

V−1
s

(iv)
≤
(

β
glob
n + (β

glob
n )1/2 + βsn

)
2d log det(Vsn) .
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Step (i) uses the Cauchy-Schwarz inequality, and (ii) the soft-min bound
for the q-weights in Eq. (5.8). For (iii), ms = 1

2 minc 6=âs ‖ν̂s(c) − θ̂s‖2
Vs
≤

1
2 β

glob
n holds by definition in all exploration rounds and the choice ηs =

minl≤s m−1/2
l log(k) and lastly, (iv) bounds the elliptic potential as stated

below in Lemma 5.4. Considering that log det(Vsn) ≤ O(d log(sn)) and
βsn ,1/δ = 2 log 1

δ +O(d log(sn)) completes the proof.

Lemma 5.4 (Elliptical potential lemma). Assume that ‖as‖2
V−1

s
≤ 1 and

‖as‖ ≤ 1. Then

sn

∑
s=1
‖as‖2

V−1
s
≤ 2 log det(Vsn) ≤ 2d log

(
1 +

sn

d

)
.

A proof can be found in [3, Lemma 11]. Note that by diam(A) ≤ 1 and the
choice V0 = 1d, the assumptions of the lemma are always satisfied for our
setting.

Proof of Theorem 5.2. Provided an almost-sure bound Ψs(µIDS
s ) ≤ α0 on the

information ratio, by Corollary 2.1 the regret satisfies

Rn ≤
√

α0E[γn]n +
n

∑
t=1

E
[
∆(at)− ∆̂t(at)

]
,

Lemma 5.1 shows that with our choice of confidence level, the error term
is at most O(∆max log log(n)) where ∆max = maxa∈A ∆(a) is the maximum
gap. Further, the total information gain satisfies γn = ∑sn

s=1 IA
s (as) ≤

O(d2 log(n)2) by Lemma 5.3 above. We complete the proof with a bound
on the information ratio. Since µIDS

s is chosen by IDS to minimize Ψs,

Ψs(µ
IDS
s ) = min

µ∈P(A)
Ψs(µ) ≤

∆̂s(aUCB
s )2

IA
s (aUCB

s )
≤ 2 . (5.10)

The last inequality follows from the fact that ∆̂s(aUCB
s ) = β1/2

s ‖aUCB
s ‖V−1

s
and bounding

IA
s (aUCB

s ) =
1
2 ∑

c 6=âs

qs(c)
(
|〈ν̂s(c)− θ̂s, aUCB

s 〉|+ β1/2
s ‖aUCB

s ‖Vs
−1
)2

≥ 1
2 βs‖aUCB

s ‖2
V−1

s
,

where we used that qs is defined as a distribution supported on A \ âs.
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Our next result is an instance-dependent logarithmic regret bound. The
proof follows along the same lines as the worst-case regret bound, but
replaces the worst-case bound on the information ratio with an instance-
dependent bound. Interestingly, our bound is attained by a distribution
with a close resemblance with Thompson sampling.

Theorem 5.3 (Gap-dependent regret). The regret of Algorithm 5 is bounded by

Rn ≤ O
(

∆−1
mind3 log(n)2

)
.

Besides universal constants, the O-notation in the theorem statement
hides only the constants required for boundedness of A andM. The proof
makes use of the following lemma, which shows an instance-dependent
bound on the information ratio. Recall that δs = ∆̂s(âs) is the gap estimate
of the empirically best action, and ∆̂s(a) = δs + 〈âs − a, θ̂s〉.
Lemma 5.5. Let s be a local time with ‖θ̂s − θ‖2

Vs
≤ βs. Then the optimal

information ratio is bounded as follows,

min
µ∈P(A)

Ψ(µ) ≤ 4δs(8d + 9)
∆min

.

Proof. Let λ ≥ 2 be a constant to be chosen later. If 2λδs ≥ ∆min, then
minµ∈P(A) Ψs(µ) ≤ 4λδs

∆min
by (5.10). Hence we may assume 2λδs ≤ ∆min in

the following. By Eq. (5.5), for all s with ‖θ̂s − θ‖2
Vs
≤ βs and a 6= a∗, it

holds that ∆min ≤ 2∆̂s(a), so in particular âs = a∗. Define µ̃s =
1
2 eâs +

1
2 qs

to be the uniform mixture1 of qs and a Dirac at âs. Let ∆̄s(a) = 〈θ̂s, âs − a〉
and note that ∆̄(µ̃s) ≥ (λ− 1)δs ≥ δs by the assumption λ ≥ 2. Therefore,
by Lemma 2.5 and Eq. (2.6),

min
µ∈P(A)

Ψs(µ) ≤ min
p∈[0,1]

(1− p)δs + p∆̂s(µ̃s)

pIs(µ̃s)
≤ 4δ∆̄s(µ̃s)

Is(µ̃s)
. (5.11)

Note that we can bound the information gain IA
s (µ̃s) as follows,

IA
s (µ̃s) ≥ 1

2 ∑
a∈A

µ̃s(a) ∑
c 6=âs

qs(c)〈ν̂s(c)− θ̂s, a〉2

= 1
2 ∑

c 6=âs

qs(c) min
ν∈Hâs

c

‖ν− θ̂s‖2
V(µ̃s)

. (5.12)

1 With a Laplace approximation, the weights qs(c) correspond to the posterior probability of an
action c being preferred over âs by the Bayesian model with Gaussian prior and likelihood
(Section 5.1.7). As such, the distribution µ̃s resembles the top-two Thompson sampling approach
proposed by Russo [133].
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On the other hand, we can bound the gap ∆̄s(a) = 〈θ̂s, âs − a〉,

〈θ̂s, âs − a〉 = min
ν:〈ν,a−âs〉≥0

‖ν− θ̂s‖V(µ̃s)‖âs − a‖V(µ̃s)−1

≤ min
ν∈Hâs

a

‖ν− θ̂s‖V(µ̃s)‖âs − a‖V(µ̃s)−1 .

The inequality follows from Hâs
a ⊂ {v : 〈v, a− âs〉 ≥ 0}. Combining the last

display with the definition of µ̃s, the fact that âs = a∗ and Cauchy-Schwarz,

∆̄s(µ̃s)
2 ≤ 1

4 ∑
a 6=â

qs(a) min
ν∈Hâs

a

‖ν− θ̂s‖2
V(µ̃s) ∑

a 6=â
qs(a)‖âs − a‖2

V(µ̃s)−1

(i)
≤ (1 + d) ∑

a 6=â
qs(a) min

ν∈Hâs
a

‖ν− θ̂s‖2
V(µ̃s)

(ii)
≤ 2(1 + d)Is(µ̃s) .

For (i) we used that ∑a 6=âs qs(a)‖a‖2
V(µ̃)−1 ≤ 2 ∑a 6=âs qs(a)‖a‖2

V(qs)−1 = 2d

and ‖âs‖2
V(µ̃s)−1 ≤ 2, and (ii) follows from Eq. (5.12). Next, for a 6= âs,

∆̄s(a) = ∆̂s(a)− δs ≥ 1
2

∆min − δs ≥ 1
2

(
1− 1

λ

)
∆min .

By the definition of µ̃s we have ∆̄s(µ̃s) ≥ 1
4 (1− 1/λ)∆min and with Eq. (5.11),

min
µ∈P(A)

Ψs(µ) ≤
4δs∆̄s(µ̃s)

Is(µ̃s)
=

4δs∆̄s(µ̃s)2

∆̄s(µ̃s)Is(µ̃s)
≤ 32δs(1 + d)

∆min
(
1− 1

λ

) .

The claim follows with λ = 8(1 + d) + 1.

Proof of Theorem 5.3. Denote χs , ‖θ̂s − θ‖2
Vs

. Using the bound on the infor-
mation ratio from Lemma 5.5 and Theorem 2.1, we get

E

[
sn

∑
s=1

∆̂s(as)1(χs ≤ βs)

]2

≤ 4(8d + 9)
∆min

E

[
n

∑
t=1

δs

]
E[γn] .

Using that δs ≤ ∆̂s(as) and solving for the regret yields

E

[
sn

∑
s=1

∆̂s(as)1(χs ≤ βs)

]
≤ 4(8d + 9)

∆min
E[γn] .

The estimation error towards the actual regret is bounded by Lemma 5.1,
and the claim follows with ∆(as)1(χs ≤ βs) ≤ 2∆̂s(as)1(χs ≤ βs).
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Our next result shows that Algorithm 5 is asymptotically optimal. The
proof requires that the optimal action is not zero, which is used in Lemma 5.8
to bound the effective horizon sn. The lemma states that the logarithm of the
expected horizon is a lower order term, E[log(sn)] ≤ O(log log(n)‖a∗‖−1),
which, for example, is used to bound the log-determinant term in the con-
fidence coefficient Eq. (5.2). We point out that for ‖a∗‖ = 0, the geometry
of the lower bound is fundamentally different, because the optimal action
provides no information. Whether the assumption is necessary or an artifact
of the analysis remains to be determined. Alternatively, we can also replace
the gap estimates with thresholded gaps ∆̂+

s (a) = 〈âs − a, θ̂s〉+ δ+s , where
δ+s = max(δs, s−1/2). We think that with this definition of the gap estimate
and minor changes in the proofs, the statement of the next theorem holds
without restrictions and Theorems 5.2 and 5.3 remain valid. Since it is
unclear if the assumptions is required and to keep the exposition simple,
we present analysis for the gap estimates without thresholding.

Theorem 5.4 (Asymptotic regret). Algorithm 5 is asymptotically optimal,

lim
n→∞

Rn

log(n)
= c∗ ,

where c∗ is the solution to the lower bound Eq. (5.1) and we assume that ‖a∗‖ > 0.

The proof exploits the primal-dual interpretation from Chapter 4 and
is given in Section 5.2. In particular, we show that the information ratio
satisfies Ψs(µs) ≤ 4δs

(
c∗ +O(χ1/2

s m−1/2
s + δs)

)
asymptotically, where χs =

‖θ̂s − θ‖2
Vs

is the self-normalized estimation error. Further, we relate the
definition of the information gain to the regret of an exponential weights
learner, which leads to an improved bound on the total information gain
γn = ∑sn

s=1 IA
s (as) ≤ log(n) + o(log(n)). Up to a few technicalities, the

regret bound then follows from Corollary 2.3.
A noteworthy feature of the proof is that it avoids all but one concentra-

tion inequality (used in the definition of the gap estimate), which makes
many steps of the analysis significantly simpler. We also remark that the
lower order terms on the regret can be obtained explicitly from the analysis.
Similar to the concurrent work by Tirinzoni et al. [160], the lower order
terms contain additive polynomial functions of instance-dependent quanti-
ties such as the inverse minimum gap. When included as a multiplicative
constant in front of the log(n) term, these terms create an exponential
dependency on some instance-dependent parameters. However, it should
be stressed that the gap-dependent bound in Theorem 5.3 has much milder
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dependencies in the lower order terms, suggesting that the transition to the
asymptotic regime is in fact well controlled.

5.1.6 Optimistic Information Gain

Our definition of the information gain ensures that asymptotically,

IA
s (a) ≈ 1

2 ∑
c 6=âs

qs(c)〈ν̂s(c)− θ̂s, a〉2 .

In finite time, however, the mean estimates can be inaccurate. The definition
of the information gain in Eq. (5.6) can be interpreted as an optimistic ver-
sion of the asymptotic term. This term is an essential ingredient in the proof
of Theorem 5.2, which in turn is used in the logarithmic bounds. Note that
the optimistic term is closely related to the information gain that we used in
Chapter 3. Since this choice is mainly motivated from a worst-case perspec-
tive, empirically it can lead to over-exploration in the finite-time regime.

A closer inspection of the worst-case regret proof, in particular Eq. (5.10),
reveals that the optimistic term is only needed for the UCB action. This
motivates the following definition:

IA-UCB
s (a) = 1

2 ∑
c 6=âs

qs(c)
(
|〈ν̂s(c)− θ̂s, a〉|+ 1

(
a = aUCB

s

)
β1/2

s ‖a‖V−1
s

)2 .

(5.13)

The optimistic term for the UCB actions is similar to the variant that we
already proposed in Section 3.3.3. With a few additional steps in the proof
of Lemma 5.10 and Theorem 5.4, the resulting algorithm is shown to satisfy
the same regret bounds as presented in Theorems 5.2 to 5.4. Since the
proofs are very similar, we omit the details. We compare both information
gain functions numerically in Section 5.3.

Another idea is to tighten the definition of the alternative parameters.
The cell of a ∈ A is the set Ca = {ν ∈ M : maxc∈A〈ν, c − a〉 = 0} that
contains all parameters ν with a∗(ν) = a. This motivates the definition

ν̃s(a) = arg min
ν∈Ca

‖ν− θ̂s‖2
Vs

.

For c 6= âs we let q̃(c) ∝ exp(−η‖ν̃s(c)− θ̂s‖2
Vs
) and define

IA-CELL
s (a), 1

2 ∑
c 6=âs

q̃s(c)
(
|〈ν̃s(c)− θ̂s, a〉|+ β1/2

s ‖a‖V−1
s

)2
. (5.14)
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Note, all bounds that we obtain hold true for IDS defined with IA-CELL
s

as well. The only change in the proof is to replace Hâs
a with Ca. This is

possible because C∗ = ∪a 6=a∗Ca = ∪a 6=a∗Ha∗
a , hence the change is simply a

different decomposition of the set of alternative parameters C∗ into convex
regions. One might expect faster convergence from the fact that q̃s is more
concentrated, but empirically we find little difference compared to Is. The
numerical results are in Fig. 5.7 and discussed below in Section 5.3. On
the other hand, for unconstrained parameter setsM, we can compute ν̂s(c)
in closed form (Eq. 5.9), whereas ν̃s(c) can only be computed by solving a
positive definite quadratic program with k linear constraints for each action
c 6= âs. Interestingly, however, the information gain (5.14) is related to the
Bayesian mutual information Is(ys; a∗|as = a) as we explain next.

5.1.7 Approximations of the Mutual Information

We introduced the Bayesian IDS algorithm in Section 2.3. The information
gain function that was primarily analyzed in the Bayesian framework by
Russo & Van Roy [135] is the mutual information

IMI
t (a) = It(yt; a∗|at = a) = Ht(a∗)−Ht(a∗|yt, at = a) .

The second equality rewrites the mutual information as the entropy reduc-
tion on a∗, which is a random variable in the Bayesian setting. Computation
of the posterior distribution is tractable with a Gaussian prior N (0, λ−1) on
the parameter and Gaussian observation likelihood yt ∼ N (〈at, θ〉, 1). In
this case the posterior distribution is N (θ̂t, V−1

t ). However, computing the
mutual information requires further evaluations of d-dimensional integrals
which is challenging even with Gaussian distributions.

As a remedy, Russo & Van Roy [135] proposed the following variance-based
information gain

IVAR
t (a), Et

[(
Et[〈a, θ〉|a∗]−Et[〈a, θ〉]

)2
]
= Et

[
〈ν̄t(a∗)− θ̂t, a〉2

]
. (5.15)

The last step uses that Et[θ] = θ̂t and we defined ν̄t(a) = Et[θ|a∗ = a].
Russo & Van Roy further showed that the variance-based information gain
is a lower bound to the mutual information, IMI

t (a) ≥ 2IVAR
t (a), while, at

the same time, the information ratio is still bounded in the Bayesian setting
with linear reward [135, Proposotion 7]. Importantly, Eq. (5.15) can be
approximated for a moderate number of actions using samples from the
posterior distribution.
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The variance-based information gain is related to IA-CELL
t in Eq. (5.14).

We compute the posterior probability q̄t(c), Pt[a∗ = c] with a Laplace
approximation of the integral over the cell Cc = {θ ∈ M : a∗(θ) = c},

q̄t(c) =
1√

(2π)d det(Vt)

∫
Cc

exp
(
− 1

2‖ν− θ̂t‖2
Vt

)
dν

≈ Q−1
c exp

(
− 1

2‖ν̃t(c)− θ̂t‖2
Vt

)
,

where ν̃t(a) = arg minν∈Ca
‖ν− θ̂s‖2

Vs
. Similarly, in the Laplace limit, the

conditional distribution Pt[θ|a∗ = a] is concentrated at ν̃t(a), which allows
us to approximate ν̄t(a) ≈ ν̃t(a). This leads us to

IVAR
t (a) ≈ ∑

c 6=a∗
q̄t(c)〈ν̃t(a)− θ̂t, a〉2 ,

which resembles the definition of the cell-based information gain in Eq. (5.14).
Using the Laplace argument, we can also compute the mutual information

more directly. Assuming that the posterior is well-concentrated, there exists
an action ā∗t with q̄t(ā∗t ) ≈ 1. For all c 6= ā∗t and interpolation variable
τ ∈ [0, 1], we define the conditional weights

q̄τ
t (c|a), q̄t(c) exp

(
− τ

2 〈ν̃t(c)− θ̂t, a〉2
)

,

and qτ
t (ā∗t |a), 1−∑c 6=ā∗t

qτ
t (c|a). Using the approximate posterior proba-

bilities, the entropy reduction up to first order is

It(yt; a∗|at = a) ≈ − ∑
c∈A

q̄t(c) log q̄t(c) + ∑
c∈A

(
q̄τ

t (c|a) log(q̄τ
t (c|a)

)∣∣
τ=1

≈ ∑
c∈A

d
dτ

(
q̄τ

t (c|a) log(q̄τ
t (c|a)

)∣∣
τ=1

= −1
2 ∑

c 6=ā∗t

q̄t(c)〈νc − θ, a〉2 log

(
q̄t(c)

1−∑c′ 6=ā∗t
q̄t(c′)

)
.

Using that −x log x ≥ x for x � 1, the last expression can be lower bounded
to arrive at a form similar to the cell-based information gain Eq. (5.14).

Lastly, we numerically compare the different information gain functions
on Example 5.1, where the UCB strategy is asymptotically suboptimal. The
result is in Fig. 5.2 for the following information gain functions:

• IA-CELL
t , defined in Eq. (5.14).
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Figure 5.2: Comparison of information gain functions on the ‘end of optimism’
example with ε = 0.01. The information gain functions are evaluated on the same
trajectory of IDS with IA-UCB

t , and normalized such that ∑a∈A It(a) = 1. On this
instance, a1 is optimal, a2 is ε-suboptimal, and a3 is 1-suboptimal, but asymp-
totically more informative than action a2. The learner immediately identifies
action a3 as suboptimal, and the UCB action is one of the first two actions. Hence
IUCB
t , which measures entropy reduction of the UCB action, is large for actions

a1 and a2. All other information gain functions assign a vanishing score to a1,
because a1 is played a Ω(t) times and consequently the direction is well estimated.
Also visible is that the lower-order terms of the IA

t and IA-UCB
t are increasingly

dominated by the asymptotic term. IVAR
t is approximated using 104 samples

from the posterior distribution, and converges much faster than the information
gain functions based on the q-learner, which uses a more conservative learning
rate. Not shown is that the approximation with posterior samples is unstable on
a larger horizon without increasing the number of samples accordingly. Finally,
IDET
t shows a similar behaviour as the asymptotic information gain functions on

this example, but it is easy to construct action sets where they differ.

• IA-UCB-CELL
t , as in Eq. (5.13) with cell-based alternatives.

• IVAR
t , defined in Eq. (5.15).

• IDET
t , defined in Eq. (3.6).

• IUCB
t , defined in Eq. (3.13).

The asymptotic information gain based on half-spaces in Eqs. (5.6) and (5.13)
is not shown since it was empirically identical with the cell-based variant.

While our reasoning here is rather informal, we think that it warrants a
more formal investigation in the future. Such results could be fruitful in
two directions. First, interpreting the mutual information as an approxi-
mation of a dual loss could lead to an instance-dependent analysis for the
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Bayesian IDS algorithm, either on the frequentist or Bayesian regret. Second,
the Bayesian information gain might serve as a starting point to design
more effective information gain functions in the frequentist framework, for
example adapted to other likelihood functions and regularizers.

5.2 asymptotic regret : proofs

The proof of Theorem 5.4 relies on improved bounds on the information
ratio and the total information gain in the asymptotic regime. These are
provided after the main proof in Sections 5.2.1 and 5.2.2.

Proof of Theorem 5.4. We denote χs , ‖θ̂s − θ‖2
Vs

and Bs , 1(χs ≤ βs). With
Lemma 5.1 we get

Rn ≤ E

[
sn

∑
s=1

∆(as)Bs

]
+O

(
log log(n)

)
Recall that ms =

1
2 minc 6=âs ‖ν̂s(c)− θ̂s‖2

Vs
. Let λ ≥ 0 be a trade-off parame-

ter, which in hindsight is chosen as λ = log(n)−2/3 ≤ 1
4 for n large enough.

We decompose the exploration rounds into three disjoint sets that capture
different regimes as βs/ms → 0 and δs → 0:

S1 =
{

s ∈ [sn] : βs
ms

> λ, χs ≤ βs

}
S2 =

{
s ∈ [sn] : βs

ms
≤ λ, δ2

s
16 > βs

ms
, χs ≤ βs

}
S3 =

{
s ∈ [sn] : δ2

s
16 ≤

βs
ms
≤ λ, χs ≤ βs

}
In particular, we can write

E

[
sn

∑
s=1

∆(as)Bs

]
= E

[
∑

s∈S1

∆(as)

]
+ E

[
∑

s∈S2

∆(as)

]
+ E

[
∑

s∈S3

∆(as)

]
.

We address the three terms in order. We will see that the last term (S3)
contributes c∗n log(n) + o(log(n)), whereas all other terms are lower order.

sum over S1 : By Theorem 2.1, we have

E

[
∑

s∈S1

∆̂(as)

]2

≤ E

[
∑

s∈S1

Ψs(µ
IDS
s )

]
E

[
∑

s∈S1

IA
s (as)

]
.
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To bound the information-ratio, the definition of S1 implies the conditions
of Lemma 5.5, which combined with δs ≤ ∆̂s(as) yields

∑
s∈S1

E
[
Ψs(µ

IDS
s )

]
≤ O

(
d

∆min

)
∑

s∈S1

E
[
∆̂s(as)

]
.

The total information gain on S1 is bounded using the same steps as in the
proof of Lemma 5.3,

∑
s∈S1

IA
s (as) ≤ ∑

s∈S1

(
ms +

log(k)
ηs

+ βs
)
‖as‖2

V−1
s

(i)
≤ ∑

s∈S1

(
βs(λ

−1 + 1) + log(k)
ηs

)
‖as‖2

V−1
s

(ii)
≤ O

(
λ−1d2 log(sn)

2 + d3/2 log(n)1/2 log(sn)
)

,

where (i) follows because ms < βsλ−1 for s ∈ S1 and (ii) from the elliptic
potential (Lemma 5.4) and using that log(k)η−1

s ≤ (β
glob
n )1/2. Combining

and rearranging the last three displays and using ∆(as)Bs ≤ 2∆̂s(as)Bs with
Bs = 1 for s ∈ S1 yields

E

[
∑

s∈S1

∆(as)

]
≤ O

(
λ−1∆−1

mind3E[log(sn)
2] + ∆−1

mind5/2 log(n)1/2E[log(sn)]
)

.

sum over S2 : First note that χs ≤ βs < ms implies âs = aUCB = a∗. For
any a ∈ A,

β−1/2
s δs − ‖a‖V−1

s

(i)
= ‖a∗‖V−1

s
− ‖a‖V−1

s

(ii)
≤ ‖a∗ − a‖V−1

s

(iii)
≤ 1

(2ms)1/2 − χ1/2
s

(iv)
≤ 2

m1/2
s

(v)
<

δs

2β1/2
s

, (5.16)

where (i) follows because âs = aUCB
s = a∗, implying that δs = β1/2

s ‖a∗‖V−1
s

.
(ii) follows from the triangle inequality, (iii) from Lemma 5.6 and (iv)
because χs ≤ ms/4. Finally, (v) holds since δ2

s /16 > βs/ms. With a = as

and rearranging yields δs ≤ 2β1/2
s ‖as‖V−1

s
and hence

∑
s∈S2

E
[
∆̂s(as)

]
= ∑

s∈S2

E
[
∆̂s(µs)

] (i)
≤ 2 ∑

s∈S2

E[δs] ≤ 4 ∑
s∈S2

E
[

β1/2
s ‖as‖V−1

s

]
,
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where (i) uses ∆̂s(µs) ≤ 2δs (Lemma 2.6). From here, we can apply Cauchy-
Schwarz in a similiar manner as in Theorem 2.1, to get

E

[
∑

s∈S2

β1/2
s ‖as‖V−1

s

]2

≤ E

[
∑

s∈S2

β1/2
s m−1/2

s

]
E

[
∑

s∈S2

m1/2
s β1/2

s ‖as‖2
V−1

s

]

≤ E

[
∑

s∈S2

∆̂s(as)

]
O
(
d2 log(n)1/2E

[
log(sn)

2
])

.

For the last inequality, we used that 4β1/2
s m−1/2

s ≤ δs ≤ ∆̂s(as), the elliptic
potential (Lemma 5.4) and ms ≤ βsn ,n log(n) ≤ O(log(n) + d log(sn)). Hence,
combining the last two displays and ∆s(as) ≤ 2∆̂s(as), we get

E

[
∑

s∈S2

∆(as)

]
≤ O

(
d2 log(n)1/2E

[
log(sn)

2
])

.

sum over S3 : Denote ∆̄s(a) = 〈θ̂s, âs − a〉. Note that âs = a∗ continues
to hold, and hence

E

[
∑

s∈S3

∆(as)

]
≤ E

[
∑

s∈S3

∆̄s(as)

]
+ E

[
∑

s∈S3

χ1/2
s ‖a∗ − as‖V−1

s

]
. (5.17)

For the second sum, note that by Lemma 5.7 the information gain of as 6= a∗

is lower bounded by a constant, IA
s (as) = Ω

(
∆2

mind−1). As in Eq. (5.16),
Lemma 5.6 implies

χ1/2
s ‖a∗ − as‖V−1

s
≤ 2χ1/2

s m−1/2
s 1(as 6= a∗) ≤ O

(
λ1/2d∆−2

min IA
s (as)

)
.

Summing the last display inside the expectation and using Lemma 5.3
yields

E

[
∑

s∈S3

χ1/2
s ‖a∗ − as‖V−1

s

]
≤ O

(
λ1/2d log(n)E[log(sn)]

)
.

For the first sum in Eq. (5.17), we use 4xz ≤ (x + z)2 and the fact that
∆̂s(µs) = ∆̄s(µs) + δs, to get

E

[
∑

s∈S3

∆̄s(µs)

]
≤ 1

4
E

[
∑

s∈S3

δs

]−1

E

[
∑

s∈S3

∆̂s(µs)

]2

≤ 1
4

E

[
∑

s∈S3

δs

]−1

E

[
∑

s∈S3

Ψs(µs)

]
E

[
∑

s∈S3

Is(as)

]
(5.18)



82 asymptotic optimality

The second inequality is by Theorem 2.1. The main steps follow. Lemma 5.10

in Section 5.2.1 bounds the information ratio,

Ψs(µs) ≤ 4δs(c
∗ +O(δs + χ1/2

s m−1/2
s ) ≤ 4δs(c

∗ +O(λ1/2)) ,

where the last inequality uses δs/4 ≤ β1/2
s m−1/2

s ≤ λ1/2. In particular,

1
4

E

[
∑

s∈S3

δs

]−1

E

[
∑

s∈S3

Ψs(µs)

]
≤ c∗ +O(λ1/2) .

It remains to bound the information gain on S3. We denote ls(qs) =

∑c 6=a∗ qs(c)〈ν̂s(c)− θ̂s, as〉2. Note that since âs = a∗ on S3, ls(qs) = IA
s (as).

Further, let Js = 1

(
242ηsχs‖as‖2

V−1
s
≤ 1; χs‖as‖2

V−1
s
≤ 1

)
. It is easy to verify

that for small enough λ, Js = 1 for all s ∈ S3. Hence, by Lemma 5.12 in
Section 5.2.2 and using that ms ≤ log(n) + log log(n) +O(d log(sn)),

E

[
∑

s∈S3

IA
s (as)

]
= E

[
∑

s∈S3

ls(qs)

]
≤ E

[
sn

∑
s=1

Jsls(qs)

]
≤ log(n) +O

(
log(n)1/2E

[
log(sn)

2
])

.

With the bounds on the information ratio and information gain, we find

E

[
∑

s∈S3

∆̄s(µs)

]
≤
(
c∗ +O(λ1/2)

)(
log(n) +O(log(n)1/2E

[
log(sn)

2
]
)
)

.

Hence we conclude

E

[
∑

s∈S3

∆(as)

]
≤ c∗ log(n) +O

(
λ1/2 log(n)

)
.

Finally, with Lemma 5.8, we get that E[log(sn)b] ≤ O(log log(n)). There-
fore, with λ = log(n)−2/3 all terms except for c∗ log(n) are of lower order
and the claim follows.

The following technical calculation relates the minimum constraint value
ms to the norm ‖a∗ − a‖V−1

s
for any a ∈ A.

Lemma 5.6. Let ms =
1
2 minc 6=âs ‖ν̂(c)− θ̂s‖2

Vs
. Assume that ‖θ̂s− θ‖2

Vs
< 2ms

and maxa∈A ∆(a) ≤ 1. Then âs = a∗ and further, for all a ∈ A,(
(2ms)

1/2 − ‖θ̂s − θ‖Vs

)
‖a∗ − a‖V−1

s
≤ 1 .
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Proof. Since ms =
1
2 mina 6=âs minν∈Ca ‖ν− θ̂s‖2

Vs
, the assumption that ‖θ̂s −

θ‖2
Vs

< 2ms implies that âs = a∗(θ̂s) = a∗(θ). Further, for any a ∈ A,

0 ≤ min
ν:‖ν−θ̂s‖2

Vs≤2ms

〈ν, a∗ − a〉 = 〈θ̂, a∗ − a〉 − (2ms)
1/2‖a∗ − a‖V−1

s

≤ 〈θ, a∗ − a〉+ (‖θ̂s − θ‖Vs − (2ms)
1/2)‖a∗ − a‖V−1

s
.

Using ∆(a) = 〈θ, a∗ − a〉 ≤ 1 and rearranging completes the proof.

It is useful to know that when IDS chooses actions other than a∗, the
information gain is large as quantified by the next lemma.

Lemma 5.7 (Constant information gain). Assume that âs = a∗ and 2δs ≤
∆̂s(a) for all a 6= âs. If cs 6= a∗ is contained in the support of the IDS distribution
supp(µs), then the information gain of cs is at least a constant,

IA
s (cs) ≥

∆2
min

8(8d + 9)
.

Proof. Note that by cs ∈ supp(µs) and Lemma 2.4,

IA
s (cs) =

(
2∆̂s(cs)− ∆̂s(µs)

) ∆̂s(µs)

Ψs(µIDS
s )

≥ 2δs
(
∆̂s(cs)− δs

)
Ψs(µIDS

s )
≥ ∆̂s(cs)δs

Ψs(µIDS
s )

.

We first used that δs ≤ ∆̂s(µ) ≤ 2δs (Lemma 2.6) and then the assumption
that 2δs ≤ ∆̂s(cs). Further, 2∆̂s(cs) ≥ ∆min, and by Lemma 5.5,

Ψs(µ
IDS
s ) ≤ 4δs(8d + 9)

∆min
.

Combining the inequalities yields the result.

The next lemma bounds the effective horizon. It is the only result that
makes use of the assumption ‖a∗‖ > 0.

Lemma 5.8. Assume that ‖a∗‖ > 0. Then the number of exploration steps sn in
Algorithm 5 is bounded in expectation,

E
[
s1/2

n

]
≤ O

(
d2∆−1

min log(n)2‖a∗‖−1
)

.

In particular, for any fixed x ≥ 1, we have E[log(sn)x] ≤ O(log(log(n))x).
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Proof. By Theorem 5.3,

E

[
sn

∑
s=1

δs

]
≤ E

[
sn

∑
s=1

∆̂s(as)

]
≤ O

(
d2∆−1

min‖a∗‖−1 log(n)2
)

.

We can assume that 2δs < ∆min, since there are at most O
(
d2∆−2

min log(n)2)
steps where this condition is not satisfied. In particular, the assumption
implies that a∗ = âs, since for all a 6= a∗, 2∆̂s(a) ≥ ∆min. Therefore,

δs = max
b∈A
〈b− a∗, θ̂s〉+ β1/2

s ‖b‖V−1
s
≥ β1/2

s ‖a∗‖V−1
s
≥ ‖a∗‖s−1/2 .

The last inequality follows from since λmax(Vs) ≤ s. Hence further

E

[
sn

∑
s=1

δs

]
≥ ‖a∗‖

(
s1/2

n −O
(
d∆−1

min log(n)
))

.

This proves the first claim. For the second part, note that log(s)x is concave
for s ≥ exp(x− 1). Hence

E[log(sn)
x] = 2xE

[
log(s1/2

n )x
]
≤ 2xE

[
log
(

max(s1/2
n , exp(x− 1))

)x
]

≤ 2x log(E
[
s1/2

n

]
+ exp(x− 1))x

≤ O(log(log(n))x) .

5.2.1 Asymptotic Bound on the Information Ratio

We define α∗ ∈ (R≥0 ∪ {∞})k as the allocation that attains the lower bound
in Eq. (5.1), obtained in the appropriate limit. Note that the optimal
allocation satisfies α(a∗) = ∞. Denote by α̃∗(a) = α∗1(a 6= a∗) the optimal
allocation on the sub-optimal actions, which is always finite. The next
lemma quantifies the increase in regret if we truncate the optimal allocation
on α(a∗) to a finite value. Recall that C∗ = {ν ∈ M : a∗(ν) 6= a∗(θ)} is the
set of alternative parameters defined for the true paramater θ ∈ M.

Lemma 5.9 (Truncated optimal allocation). Let α∗λ(a) = α̃∗ + λ1(a = a∗)
be the optimal allocation, truncated on a∗ such that α∗λ(a∗) = λ. There exists a
constant C(θ,A) that depends only on the instance and the action set, and such
that for all ν ∈ C∗,

1
2‖ν− θ‖2

V(α∗λ)
≥ 1− 2C(θ,A)‖α̃∗‖1λ−1 .
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Proof. Assume 2C(θ,A)‖α̃∗‖1 ≤ λ, otherwise the claim is immediate. Let
α̃∗(x) = α∗1(x 6= a∗) be the optimal allocation on sub-optimal actions. We
have

1
2‖ν− θ‖2

V(α∗λ)
= 1

2‖ν− θ‖2
V(α̃∗) +

λ
2 〈ν− θ, a∗〉2 .

If λ〈ν− θ, a∗〉2 ≥ 2 the claim follows. Hence we may assume 〈ν− θ, a∗〉2 ≤
2λ−1. In other words, ν is in a (2/λ)1/2-neighbourhood of the affine
subspace, which is defined by a∗ and offset θ. Now we fix any a 6= a∗, such
that ν ∈ Ha∗

a and define H∗a = Ha∗
a ∩ {ν : 〈ν− θ, a∗〉 = 0} as the intersection

of the affine subspace with Ha∗
a . This is the set of parameters in Ha∗

a , which
is indistinguishable from observations of a∗. By definition, ν∗ ∈ H∗a satisfies
〈ν∗ − θ, a∗〉 = 0, hence by definition of the optimal allocation,

1
2‖ν∗ − θ‖2

V(α̃∗) =
1
2‖ν∗ − θ‖2

V(α∗) ≥ 1 .

We expect the same holds approximately for ν with 〈ν− θ∗, a∗〉2 ≤ 2λ−1.
To make this formal, we require thatM is a polytope. Lemma 5.11 with an
appropriate shift of the parameter space and λmax(V(α̃∗)) ≤ ‖α̃∗‖1 imply

min
ν∗∈H∗a

‖ν− ν∗‖2
V(α̃∗) ≤ C(θ,A)‖α̃∗‖1〈ν− θ, a∗〉2 (5.19)

≤ 2λ−1C(θ,A)‖α̃∗‖1 ≤ 1 ,

where the last two inequalities use the case assumptions. Let us fix ν∗ to be
the minimizer of the left-hand side. By the reverse triangle inequality,

1
2‖ν− θ‖2

V(α∗λ)
= 1

2‖ν− θ‖2
V(α̃∗) +

λ
2 〈ν− θ, a∗〉2

≥ 1
2 (‖ν∗ − θ‖V(α̃∗) − ‖ν− ν∗‖V(α̃∗))

2 + λ
2 〈ν− θ, a∗〉2 .

The case ‖ν∗ − θ‖V(α̃∗) ≥ 2 is again immediate, so we may assume
√

2 ≤
‖ν∗ − θ‖V(α̃∗) ≤ 2. Expanding the square leaves us with

1
2‖ν− θ‖2

V(α∗λ)
≥ 1− 2‖ν− ν∗‖V(α̃∗) +

λ
2 〈ν− θ, a∗〉2

(i)
≥ 1− 2(C(θ,A)‖α̃∗‖1〈ν− θ, a∗〉2)1/2 + λ

2 〈ν− θ, a∗〉2
(ii)
≥ 1− 2C(θ,A)‖α̃∗‖1λ−1 .

For (i) we use the choice ν∗ and Eq. (5.19). For (ii) we minimize over
〈ν− θ, a∗〉. This completes the proof.
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The previous result equips us to derive a bound on the information ratio
that relates to the asymptotic regret c∗.

Lemma 5.10 (Asymptotic information ratio). Define χs , ‖θ̂s − θ‖2
Vs

and
ms =

1
2 minc 6=a∗ ‖ν̂s(c)− θ̂s‖2

Vs
. Assume that 4χs ≤ ms and χs ≤ βs. Then,

Ψs(µ
IDS
s ) ≤ 4δs

(
c∗ +O(χ1/2

s m−1/2
s + δs)

)
,

for χ1/2
s m−1/2

s → 0 and δs → 0.

Proof. Not surprisingly, the proof strategy is to bound the information
ratio with a distribution informed from the lower bound in Eq. (5.1). First
note that the assumption ms ≥ 4χs implies âs = a∗ by Lemma 5.6. We
introduce a shorthand ∆̄s(a) = 〈θ̂s, âs − a〉 for the estimated mean gap and
let µ̃ ∈ P(A) be a distribution with 2δs ≤ ∆̂(µ̃) = δs + ∆̄s(µ̃). Then, by
Lemma 2.5,

min
µ∈P(A)

Ψs(µ) ≤ min
0≤p≤1

(
(1− p)∆̂s(a∗) + p∆̂(µ̃)

)2

pIs(µ̃)

=
4δs(∆̂s(µ̃)− δs)

Is(µ̃)
=

4δs∆̄s(µ̃)

Is(µ̃)
. (5.20)

Note that the last ratio is invariant in constant rescaling µ̃, so we easily
get rid of normalization factors. Recall that α̃∗ is the optimal allocation
over suboptimal actions, as defined at the beginning of the section. We
let α∗λ(a) = α̃∗(a) + λ1(a = a∗) be the truncated optimal allocation and
µ̃λ = α∗λ/(‖α̃∗‖1 + λ) be the corresponding normalized distribution. Using
Cauchy-Schwarz, we get

∆(µ̃λ)− ∆̄s(µ̃λ) ≤ ‖θ̂s − θ∗‖Vs max
a 6=a∗
‖a∗ − a‖V−1

s

≤ χ1/2
s

(2ms)1/2 − χ1/2
s
≤ 2χ1/2

s

m1/2
s

.

The second inequality uses Lemma 5.6 and the definition χs = ‖θ̂s − θ‖2
Vs

.
The last inequality simplifies the expression with the assumption 4χs ≤ ms.
Note that ∆(µ̃λ) =

c∗
‖α̃∗‖1+λ

. Hence, to satisfy δs ≤ ∆̄s(µ̃λ), it is sufficient to
satisfy the following constraint on λ,

δs ≤
c∗

‖α̃∗‖1 + λ
− 2χ1/2

s

m1/2
s

.
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At equality, we get

λ =
c∗

δs +
2χ1/2

s
m1/2

s

− ‖α̃∗‖1 .

Note that as δs → 0 and ms → ∞, we get an unbounded allocation as
expected. Next, we compute the approximation errors. Using Lemma 5.6,

∆̄(α∗λ) = ∆(α̃∗) + ∑
x 6=a∗

α̃∗(a)〈θ̂s − θ, a∗ − a〉

≤ c∗ +
‖α̃∗‖1χ1/2

s

(2ms)1/2 + χ1/2
s
≤ c∗ + 2‖α̃∗‖1χ1/2

s m−1/2
s .

To bound the approximation error of Is(α∗λ), note that χs = ‖θ̂s − θ‖2
Vs
≤ βs

implies

Is(α
∗
λ) =

1
2 ∑

a∈A
α∗λ(a) ∑

c 6=a∗
qs(c)

(
|〈ν̂s(c)− θ̂s, a〉|+ β1/2

s ‖a‖V−1
s

)2

≥ 1
2 ∑

a∈A
α∗λ(a) ∑

c 6=a∗
qs(c)〈ν̂s(c)− θ, a〉2

= 1
2 ∑

c 6=a∗
qs(c)‖ν̂s(c)− θ‖2

V(α∗λ)

≥ 1− 2C(A, θ)‖α̃∗‖1λ−1 .

The last step is by Lemma 5.9. Finally, the proof is completed by plugging
α∗λ in Eq. (5.20) and using c∗+A

1−B = c∗ + A+c∗B
1−B :

Ψs(µs) ≤
4δs∆̄s(α∗λ)

Is(α∗λ)
≤ 4δs

(
c∗ + 2‖α̃∗‖1χ1/2

s m−1/2
s + 2c∗C(A, θ)‖α̃∗‖1λ−1) .

Since λ−1 = O
(
c∗−1(δs + 2χ1/2

s m−1/2
s

))
for χ1/2

s m−1/2
s → 0 and δs → 0, we

get

Ψs(µs) ≤ 4δs
(
c∗ +O(χ1/2

s m−1/2
s + δs)

)
.

The error bound in Lemma 5.9 makes use of the following technical
lemma on convex polytopes.

Lemma 5.11 (Convex Polytopes). Let K be a convex polytope. For unit vector
η ∈ Rd, let K0 = {v ∈ K : 〈v, η〉 = 0} be the intersection of K with a (d− 1)-
dimensional hyperplane, which is assumed to be non-empty. Then there exists a
constant C > 0 such that for all w ∈ K,

min
v0∈K0

‖v0 − w‖2 ≤ C〈w, η〉 .
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Proof. Let P = {v ∈ K : 〈v, η〉 ≥ 0}, which is also a convex polytope. We
first show there exists a C > 0 such that for all w ∈ P ,

min
v0∈K0

‖v0 − w‖2 ≤ C〈w, η〉 . (5.21)

The result follows from a symmetric argument for {v ∈ K : 〈v, η〉 ≤ 0}. To
establish Eq. (5.21), let V ⊂ Rd be the vertices of P , which is a finite set.
Define h : P \ K0 → R by

h(w) = max
v∈K0

〈η, w− v〉
‖w− v‖ .

Clearly, 1/C , minv∈V:〈v,η〉>0 h(v) > 0. Hence, the mapping ϕ : V → K0

such that ϕ(v) = v for v ∈ K0 and ϕ(v) = arg maxx∈K0

〈η,v−x〉
‖v−x‖ satisfies

‖v− ϕ(v)‖2 ≤ C〈η, v − ϕ(v)〉. Given any w ∈ P , let α be a probability
distribution on V such that w = ∑v∈V α(v)v and let v0 = ∑v∈V α(v)ϕ(v) ∈
K0. Then,

‖w− v0‖2 =

∥∥∥∥∥∑
v∈V

α(v)v− ∑
v∈V

α(v)ϕ(v)

∥∥∥∥∥
2

≤ ∑
v∈V

α(v)‖v− ϕ(v)‖2

≤ C ∑
v∈V

α(v)〈η, v− ϕ(v)〉

= C〈η, w〉 .

5.2.2 Asymptotic Bound on the Information Gain

The next lemma uses the interpretation of the information gain as the
loss of the exponential weights learner to tighten the bound on the total
information gain in the asymptotic regime. In the statistical setting, the
connection is only approximately true. For instance, on time steps s where
a∗ 6= a∗(θ̂s), the qs-weights are not even defined on the same support as the
q-weights used in the primal-dual setup. This is the reason for the fairly
technical assumptions in the lemma, that are also chosen with their use in
the proof of Theorem 5.4 in mind.

Lemma 5.12. Let q∗s (c) ∝ exp(−ηs‖ν̂s(c)− θ̂s‖2
Vs
) be mixing weights defined

on A \ a∗ (i. e. also when âs 6= a∗), with ν̂s(c) = arg min
ν∈Ha∗

c
‖ν− θ̂s‖2

Vs
for
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all c 6= a∗. Define the loss ls(qs) = ∑c 6=a∗ q∗s (c)〈ν̂s(c)− θs〉2 and the indicator

Js = 1

(
242ηsχs‖as‖2

V−1
s
≤ 1; χs‖as‖2

V−1
s
≤ 1

)
, where χs , = ‖θ̂s − θ‖2

Vs
. Then

E
[

∑sn
s=1 Jsls(q∗s )−mina 6=a∗ ‖ν̂sn(a)− θ̂sn‖2

Vsn

]
≤ O

(
log(n)1/2E

[
log(sn)2]) .

The statement is a regret bound for the exponential weights learner that
defines the q∗s -weights, which excludes the loss of the learner on steps
where Js = 0. The difference to standard online learning bounds is that we
are interested in the baseline loss Ls(a) = 1

2‖ν̂s(a)− θ̂s‖2
Vs

, which does not
exactly equal the sum of instantaneous loss ∑sn

s=1 ls(a).

Proof of Lemma 5.12. We make use of the formulation of the exponential
weights algorithm in the mirror descent framework, in particular the fol-
low the regularized leader (FTRL) algorithm [146]. To this end, let ψ(q) =

∑c 6=a∗ q(c) log(q(c)) be the entropy function defined for q ∈P(A \ a∗). For
learning rate η > 0, we define

ψη(q) =
1
η

(
ψ(q)− min

q′∈P(A\a∗)
ψ(q′)

)
.

We denote ψs = ψηs . The choice of mixing weights q∗s can be equivalently
written as

q∗s = arg min
q∈P(A\a∗)

Ls(q) + ψs(q) .

Denote Qn = ∑sn
s=1 Jsls(q∗s )−minc 6=a∗ ‖ν̂sn(c)− θ̂sn‖2

Vsn
. The following in-

equality is easily verified by telescoping [124, Lemma 7.1],

Qn ≤ −
1

ηsn

min
q′

ψ(q′) +
sn

∑
s=1

(
[Ls + Jsls + ψs](q∗s )− [Ls+1 + ψs+1](q∗s+1)

)
.

For the first term, we immediately get − 1
ηs

minq′ ψ(q′) ≤ log(k)
ηsn

. The sec-
ond term is sometimes referred to as stability term. We first address
steps s where Js = 1. Define q̃s+1 = arg minq∈P(A\a∗)[Ls+1 + ψs](q) ∝
exp(−ηsLs+1). Using that the learning rate is decreasing, we get

[Ls + ls + ψs](q∗s )− [Ls+1 + ψs+1](q∗s+1)

≤ [Ls+1 + ψs](q∗s )− [Ls+1 + ψs](q̃s+1) + [Ls + ls − Ls+1](q∗s ) . (5.22)

Note that Ls+1 exhibits an intricate dependence on the outcome ys, whereas
all other quantities appearing in the last display are Fs-predictable. Using
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that q̃s+1 is a minimizer of Ls+1 + ψs and the definition of the Bregman
divergence Dψ(p‖q) = ψ(p)− ψ(q)− 〈∇ψ(q), p− q〉, we find

[Ls+1 + ψs](q∗s )− [Ls+1 + ψs](q̃s+1) =
1
ηs

Dψs(q
∗
s , q̃s+1)

=
1
ηs

∑
c 6=a∗

q∗s (c) log
q∗s (c)

q̃s+1(c)
.

Using that log(x) ≤ x− 1 for all x > 0, we find

∑
c 6=a∗

q∗s (c) log
q∗s (c)

q̃s+1(c)

= ηs[Ls+1 − Ls](q∗s ) + log
(

∑
c 6=a∗

q∗s (c) exp
(
− ηs(Ls+1(c)− Ls(c))

))
≤ −1 + ηs[Ls+1 − Ls](q∗s ) + ∑

c 6=a∗
q∗s (c) exp

(
− ηs(Ls+1(c)− Ls(c)))

= ∑
c 6=a∗

q∗s (c)
∞

∑
i=2

(−ηs(Ls+1(c)− Ls(c)))i

i!
.

A technical calculation which directly bounds the moments of the subgaus-
sian noise under the conditional expectation E[·|Fs] with the condition
Js = 1, is summarized in Lemma B.3 in Appendix B. This yields

sn

∑
s=1

JsEs[[Ls+1 + ψs](q∗s )− [Ls+1 + ψs](q̃s+1)]

≤
sn

∑
s=1

Js

ηs
∑

c 6=a∗
q∗s (c)Es

[
∞

∑
i=2

(−ηs(Ls+1(c)− Ls(c)))i

i!

]

≤
sn

∑
s=1

∑
c 6=a∗

q∗s (c)O
(

ηs
(
χs‖as‖2

V−1
s

+ ‖ν̂s(c)− θ̂s‖2
Vs
‖as‖2

V−1
s

))
≤ O

(
log(n)1/2 log(sn)

2
)

The last step makes use of Lemma 5.2, ηsms ≤ β1/2
sn ,1/(n log n) ≤ O(log(n)1/2 +

log(sn)1/2) and Lemma 5.2. Going back to Eq. (5.22), still for the case where
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Js = 1, it remains to bound the shift term Ss(a), Ls(a) + ls(a)− Ls+1(a).
We have

Es[Ss(q∗s )]
(i)
≤ 2‖as‖2

V−1
s

(
∑x 6=a∗ qs‖ν̂s(x)− θ̂s‖Vs χ1/2

s + χs + 1
)

(ii)
≤ 2‖as‖2

V−1
s

(√
∑x 6=a∗ qs‖ν̂s(x)− θ̂s‖2

Vs
χ1/2

s + χs + 1
)

(iii)
≤ 2‖as‖2

V−1
s

((
(ms + log(k)/ηs)χs

)1/2
+ χs + 1

)
.

Here, (i) follows from the Lemma B.1 in Appendix B, Cauchy-Schwarz and
taking the expectation; (ii) is Jensen’s inequality and (iii) is the softmin
inequality (Lemma 5.2). Hence, using that ms ≤ βsn ,n log(n) ≤ O(log(n) +
log(sn)) and the elliptic potential lemma (Lemma 5.4), we find

sn

∑
s=1

Es[Ss(q∗s )] ≤ O
(

log(sn)
2 log(n)1/2) .

Lastly, we address Eq. (5.22) for the case Js = 0, which then reads

[Ls + ψs](qs)− [Ls+1 + ψs+1](qs+1) ≤ Ls(qs+1)− Ls+1(qs+1) . (5.23)

We can reuse Lemma B.2 to find,

Es[Ls(qs+1)− Ls+1(qs+1)] ≤ O
(
χs‖as‖2

V−1
s

+ |〈ν̂s − θ̂s, as〉|+ 〈ν̂s − θ̂s, as〉2
)

≤ O
(
χs‖as‖2

V−1
s

+ 1)
)

.

Using that when Js = 0 we have 1 ≤ χs‖as‖2
Vs

, or 1 ≤ 242ηsχs‖as‖2
V−1

s
, with

Lemma 5.4 we sum up these terms to

sn

∑
s=1

Es[Ls(qs+1)− Ls+1(qs+1)] ≤
sn

∑
s=1
O(χs‖as‖2

V−1
s
) ≤ O(log(sn)

2)

The claim follows.

5.3 numerical results

We compare IDS with UCB [3] and SOLID [160], the latter being the only
other method that is both asymptotically and worst-case optimal. Refer to
[160] for further experiments where SOLID is compared to OAM [72] and
Thompson sampling.
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Figure 5.3: Averaged performance on randomly generated action sets in R2 with
k = 6 actions. Note that SOLID++ and IDS-IA-UCB

t are competitive with UCB.

To enable a fair comparison, we use the same confidence coefficient βt
defined in Eq. (5.2) for all algorithms. We also run the same experiments
with the confidence coefficient derived by [160], but we found no significant
difference in the results. For SOLID, we use the default hyper-parameters
suggested by Tirinzoni et al. [160, Appendix K]. As recommended by the
authors, we further implemented a heuristic variant, SOLID++, which is
optimized for better performance in finite time and does not reset the
sampling distribution at the beginning of each phase.

IDS is implemented as in Algorithm 5 but with unconstrained parameter
set (M = Rd), which allows us to compute the parameter ν̂s(x) in closed
form. We also use the approximate IDS sampling strategy (Section 2.1.1),
which we show performs similarly compared to exact sampling. Except for
in the experiment where we empirically optimize ηs and βs, all frequentist
variants of IDS satisfy the theoretical guarantees presented in this chapter.

We set the variance of the noise to ρ2 = 0.1 and scale βs accordingly,
which is chosen so that the asymptotic regime is observed after fewer
rounds relative to ρ2 = 1. All results are averaged over 100 runs and we
display 95% confidence regions.

random action sets In the first experiment, we randomly sample
6 actions drawn uniformly from the unit sphere at the beginning of each
run. The results are shown in Fig. 5.3. All policies except for SOLID have
comparable averaged performances, but the latter is not optimized for
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Figure 5.4: The ‘end of optimism’ example with ε = 0.01. Note that SOLID,
IDS-IA

t and IDS-IA-UCB
t clearly outperform UCB in the asymptotic regime. The

heuristically optimized SOLID++ does enter the asymptotic regime in our simu-
lations.

worst-case regret. IDS-IUCB performs similar to UCB, followed by IDS with
information gain IA.

the end of optimism? Example 5.1 is an instance where optimistic al-
gorithms such as UCB behave sub-optimally. The action set has three actions
x1 = [1.0, 0.0], x2 = [1− ε, 4ε], x3 = [0.0, 1.0] for a tuning variable ε ∈ (0, 1)
and θ = [1.0, 0.0]. The lower bound constant is c∗n = 6.4, independent of ε
and computed for noise variance ρ2 = 0.1, whereas for UCB, the regret is at
least Ω(1/ε) as ε→ 0. In our experiment, we choose ε = 0.01 which suffices
to highlight the difference in the asymptotic regret on the horizon n = 106.

Results in this setting are shown in Fig. 5.4. As expected, UCB’s asymp-
totics show a suboptimal log-slope, but it is surprisingly followed by
SOLID++. Despite our attempts, we are presently not able to provide
a good explanation for this result and it might require a more involved
analysis of the SOLID++ heuristic. However, both versions of IDS and the
theoretical SOLID reach the optimal asymptotic around t = 105 (104 for
SOLID), and significantly outperform UCB on that problem. An interesting
observation is that IDS-IA-UCB performs better in finite time, whereas IDS-
IA reaches the asymptotic regime earlier. This is in line with the empirical
behavior of the information gain functions, shown in Fig. 5.2.

tuning ηs and β s As presented, Algorithm 5 is hyperparameter free.
In practice, it is possible to improve performance significantly by empirically
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Figure 5.5: The matrix shows the regret on randomly generated action sets after
n = 104 steps for different values of βs and ηs. The first observation is that the
regret can be significantly reduced by choosing a smaller value of βs. On the other
hand, tuning the q-learning rate ηs affects performance marginally. Tuning only
βs and setting ηs = 1/

√
βs as suggested by the theory leads to near optimal

results.
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Figure 5.6: The matrix shows the regret on the ‘end of optimism’ example after
n = 106 steps for different values of βs and ηs. The observations are similar as
for Fig. 5.5. Note that IDS is consistently better than UCB for any value of βs.
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Figure 5.7: Comparison of information gain functions defined on cells and
halfspaces respectively, as well as exact and approximate sampling from the IDS
distribution. Note that all variants with the same information gain achieve similar
performance within the standard error. In the right plot, the y-axis is scaled to
make the difference visible.

optimizing the confidence parameter βs and the q-learning rate ηs. We show
how both parameters affect the performance on randomly generated action
sets and the ‘end of optimism’ example in Figs. 5.5 and 5.6. The main find-
ing is that the learning rate ηs only marginally affects performance. On the
other hand, the theoretical value of βs appears to be conservative, and per-
formance can be improved by at least one order of magnitude with a much
smaller value for βs than validated by the theory. It is commonly known
that a smaller confidence parameter improves performance of the UCB
algorithm, but so far little theory is known to explain this effect [c. f. 70].

cell-based information gain On the same examples, we compare
the cell-based information gain in Eq. (5.14) with the information gain
defined on halfspaces in Eq. (5.6). We further study if the approximate
sampling strategy described in Section 2.1.1 impacts the performance com-
pared to sampling the IDS distribution exactly. The results in Fig. 5.7 show
that on our (arguably small) examples, there is no statistically significant
difference between the different variants.

comparison with bayesian methods In our last empirical bench-
mark, we include Bayesian methods, specifically Thompson sampling (TS)
and an approximation of Bayesian IDS. Our implementation of Bayesian
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Figure 5.8: Comparison with Bayesian methods. Our results show that Bayesian
IDS outperforms frequentist methods, even when setting βs = 1.

Algorithm d = 2, k = 6 d = 5, k = 50

Bayes-IDS-IVAR 561.7±58.8 2560.0±78.4

Bayes-IDS-IVAR-fast 544.4±69.7 1771.9±40.5

IDS-IA−UCB 50.5±22.6 798.5±233.5

IDS-IA−UCB-fast 45.7±18.8 106.8±28.6

IDS-IDET 52.7±11.6 888.5±75.6

IDS-IDET-fast 42.0±9.7 76.1±19.6

UCB 26.9±7.7 23.9±5.7

TS 21.6±5.9 22.2±6.9

Table 5.1: Runtime comparison on random action sets with horizon n = 105. The
table shows mean and standard-deviation of the runtime in seconds on 50 runs,
computed on a single core at 2.30GHz. The fast-suffix indicates the approximate
IDS sampling as in Section 2.1.1.
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IDS uses the variance-based information gain defined in Eq. (5.15), and
we approximate the Bayesian gap estimates and information gain using
104 posterior samples per round as suggested in [135, Algorithm 6]. The
performance plots are in Fig. 5.8. Thompson sampling significantly outper-
forms UCB and the frequentist IDS variants, unless we set βs = 1, which,
as noted before, improves performance of the frequentist methods. The
approximation of Bayesian IDS is the most effective on our benchmark,
outperforming the best frequentist method on the ‘end of optimism’ exam-
ple roughly by a factor two. Lastly, we show runtime of all methods on a
horizon n = 106 in Table 5.1. Note that despite the approximation, Bayesian
IDS is computationally much more demanding, whereas the frequentist IDS
is only about a factor of 5 slower than Thompson sampling on instances in
R5 with k = 50 actions.

5.4 contributions and related work

The asymptotic analysis of information-directed sampling is by the follow-
ing authors:

• Kirschner, J., Lattimore, T., Vernade, C. & Szepesvári, C. Asymptotically
Optimal Information-Directed Sampling in Proc. International Conference
on Learning Theory (COLT) (Aug. 2021)

Besides the overall invigorating collaboration, the author gladly acknowl-
edges that the proof of Lemma 5.11 was contributed by Tor Lattimore. The
numerical experiments in Section 5.3 are joint work with Claire Vernade.

As we mentioned in the introduction, a sequence of work establishes
asymptotically optimal algorithms for linear bandits [43, 72, 79, 104]. Ar-
guably, these methods are not very practical and also not worst-case optimal
without further modifications. The first work that explores primal-dual
methods for regret minimization in structured bandits is by Degenne, Shao
& Koolen [50]. It is not know if this approach is worst-case optimal. In
our notation, their algorithm corresponds to choosing the action with the
best information-regret trade-off cs = arg minc∈A ∆̂s(c)/Is(c). IDS instead
asymptotically randomizes between a∗ and cs, which allows it to maintain
the worst-case regret bound.

The IDS algorithm presented here is among the first algorithms known
to be both asymptotically optimal and (nearly) worst-case optimal. The
only other approach to achieve this is by Tirinzoni et al. [160], which
appeared online concurrently with our preprint. Interestingly, their method,
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named SOLID, is also a primal-dual approach, which on a high level shares
similarity with our analysis. On the other hand, there are many important
differences. The SOLID approach is based on a different formulation of
the Lagrangian that keeps the minimum over C∗ in Eq. (5.1). That means
the dual variable is one-dimensional, but also the Lagrangian is no longer
smooth in the primal variable. SOLID is defined by alternating optimistic
sub-gradient steps on the allocation and the dual variable.
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L I N E A R S T O C H A S T I C PA RT I A L M O N I T O R I N G

Partial monitoring is a framework for sequential decision-making in which
the learner does not directly observe the reward [139]. Instead, the learner
observes a feedback from a distribution that is correlated with the reward in
a way specified by the model. Decoupling the reward from the observation
emphasizes the exploration-exploitation trade-off. It also adds a great
amount of flexibility, and a majority of stateless online decision-making
problems can be viewed as a special case of partial monitoring.

Our focus is on the stochastic version of the problem with a linear reward
and observation structure, which is sometimes referred to as combinatorial
partial monitoring [40, 109]. Linear partial monitoring strictly generalizes
linear bandits. It also captures full-information and semi-bandit feedback,
and more exotic models such as dueling bandits. We will discuss more
examples in Section 6.1, after we have introduced the model formally.

The main contribution in this chapter is a version of IDS for linear partial
monitoring. We show that IDS achieves the optimal worst-case regret
rate in terms of the horizon in all games with finitely many actions. The
result is complemented with a classification theorem showing that, up to
logarithmic factors, the minimax regret of linear finite-action games is either
0, Θ̃(n1/2), Θ̃(n2/3) or Ω(n). All upper bounds are achieved with the same
IDS algorithm and without tuning hyper-parameters.

setting Let A be a compact action set. To add flexibility, we use
an explicit action-feature mapping φa : A → Rd, a 7→ φa. As before,
a fixed parameter θ ∈ Rd defines the reward function fθ(a) = 〈φa, θ〉
and gaps ∆(a) = maxb∈A〈φb − φa, θ〉. We assume that the model set M
contains the Euclidean ball M ⊃ {θ ∈ Rd : ‖θ‖ ≤ 1} and is bounded
with maxθ∈M ‖θ‖ ≤ B for some B ≥ 1. We refer to such parameter sets as
directionally unconstrained. The inclusion of the unit ball is explicitly used
in the construction of the lower-bounds, whereas the upper bounds only
require the norm bound.

For each action a ∈ A, the observation is specified by a linear feedback
map Ma : Rd → Rm, written as a matrix in Rm×d. If the learner chooses
an action at ∈ A in round t, the observation is an m-dimensional vector

99
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yt = Mat θ + εt. The noise vector εt ∈ Rm is assumed to be conditionally
independent and ρ-sub-Gaussian, that is

∀ u ∈ Rd , ‖u‖ = 1 , ∀ η > 0 , Et[exp(ηu>εt)|at] ≤ exp(η2ρ2/2) .

Throughout, we make the following boundedness assumptions. The
feedback maps satisfy ‖Ma‖2 ≤ L where ‖ · ‖2 is the operator norm, and
the action set satisfies diam(A) ≤ 1. Combined with the assumption that
‖θ‖2 ≤ B, this implies ∆(a) ≤ B for all a ∈ A. The functions a 7→ φa and
a 7→ Ma are continuous to ensure existence of the IDS distribution.

6.1 examples

The framework of linear partial monitoring captures many applications
and models for sequential decision-making that have been studied indepen-
dently in the literature. We provide some examples below.

Example 6.1 (Linear Bandits). The linear bandits model and the nota-
tion we used in previous chapters is recovered by setting φa = a = M>a .
Heteroscedastic bandits (Chapter 3) with A ⊂ Rd and noise function
ρ : A → R≥0 are modeled with φa = a and Ma = φa/ρ(a).

Example 6.2 (Full Information Feedback). The observation operators can
be defined to yield more information than in the bandit case, up to revealing
the parameter in each round, e. g. Ma = 1d. Unlike in online learning
where the data is adversarial, full information feedback in the stochastic
setting reduces to an estimation problem. In particular, nothing prevents
the learner from playing the estimated greedy action in each round. This is
exactly what IDS does, since the information gain is the same for all actions.

Example 6.3 (Graph-Structured Feedback). Semi-bandit feedback or side-
observations refer to models between full information and bandit feedback.
Semi-bandit feedback can be specified with a feedback graph [34, 115]. When
choosing an action, the learner observes the reward of all adjacent actions
in the graph defined on the action set. Formally, assume thatW ⊂ A×A
is a set of (directed) edges. For each a ∈ A, the feedback map is defined to
reveal the reward of all adjacent actions,

Ma = [φc : c ∈ A s.t. (a, c) ∈ W ]> .

We ignore the technicality that the observation dimension now in general
depends on the action. If we explicitly require that the edge set contains
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all self-loops (a, a) ∈ W for all a ∈ A, then the graph feedback structure
naturally interpolates between bandit feedback (empty graph) and full
information (fully connected graph). We point out that [111] studied a
version of Bayesian IDS in this setting.

Example 6.4 (Dueling Bandits). In dueling bandits, the learner chooses
pairs of actions and receives feedback on which of the two actions has
higher reward [156, 175]. We emphasize that the dueling bandit model has
many intricate variants and a vast literature on its own [22]. By far not
every dueling bandit is easily modeled as a partial monitoring game. With
additional assumptions, Gajane & Urvoy [62] demonstrated that the utility-
based dueling bandit problem can be formulated as a partial monitoring
game. Here we focus on a similar setup with quantitative feedback on
the reward difference of the chosen actions, opposed to the more common
binary signal. The quantitative variant has received relatively little attention
in the literature and has some interesting applications in robust regret
minimization, which we detail on in Section 8.2.4.

Formally, let I be a ground set of actions with an associated feature
mapping φ : I → Rd, a 7→ φa. The action set is A = I × I . For any
(a, b) ∈ A, we define utility-based dueling feedback by the feedback map
Ma,b = φa − φb. Hence, when choosing the action pair (at, bt), the learner
observes the reward difference yt = 〈φat − φbt , θ〉+ εt. The learner collects
(unobserved) reward for both actions, corresponding to features φa,b = φa +
φb. We remark that the sub-Gaussian likelihood combined with appropriate
boundedness of the reward includes the standard binary feedback model
with yt ∈ {−1, 1} as a special case.

Example 6.5 (Localized Dueling Bandits). We propose a variant of the
dueling bandit that combines the graph structure from Example 6.3 with
dueling feedback. Concretely, we allow utility-based dueling feedback as in
Example 6.4 only for actions that are connected in the graph. To learn the
reward difference between actions that are not neighbors, the learner has to
combine dueling observations from a path that connects the two actions.
For general action features, the learner can only hope to learn all reward
differences if the graph is connected.

Example 6.6 (Combinatorial Partial Monitoring). In the combinatorial bandit
problem the typical requirement is that the offline problem arg maxa∈A〈φa, θ〉
can be solved efficiently for all θ ∈ M. The action set can be exponentially
large, and learning algorithms for this scenario are designed to only use
the solver for the offline problem. The IDS algorithm we introduce in



102 linear stochastic partial monitoring

this chapter is not oracle efficient, although the theory still applies. The
combinatorial setting is the motivation for the linear partial monitoring
setting in the work by Lin et al. [109] and Chaudhuri & Tewari [40], and
both previously proposed methods are oracle efficient.

The combinatorial version of the multi-armed bandit setting [36] makes
more specific assumptions on the feedback sturucture. Let I be an index
set with associated features φa for a ∈ A. The action set is a set of subsets
A ⊂ 2I . The reward for choosing an action a ∈ A is the sum of rewards
fθ(a) = ∑i∈a〈φi, θ〉. Equivalently, the features for a are ∑i∈a φi. Two variants
for the feedback maps are commonly considered: i) bandit feedback, that is
Ma = φa, and ii) semi-bandit feedback,Ma = [φi : i ∈ a]>.

An important special case is the batch setting where the learner chooses
B actions at once, i. e. A = {a ⊂ I : |a| = B}. The example also displays
the exponential blow-up of the action set. Finding an version of IDS
that exploits the combinatorial structure for efficient computation is an
interesting question for future work.

Example 6.7 (Transductive Bandits). In the transductive bandit setting,
the learner obtains informative feedback only on a set of actions that is
dedicated for exploration. At the same time, the objective is to achieve low
regret on a different target set of actions, that when played, do not reveal
information. The setting was recently proposed by Fiez et al. [56] in the
context of best arm identification. A toy example that fits into this category
is that of “apple tasting” [35]. In each round the learner is presented an
apple, and decides whether to taste it. Tasting determines if the apple is
rotten or not. Apples that have been tasted cannot be sold anymore and
incur a fixed cost. Not tasting the apple comes with the risk of selling a
rotten apple, which also incurs a cost but is not observed. The reader who
prefers whisky tastings is encouraged to read the paper by Fiez et al. [56],
which also contains additional examples.

6.2 local and global observability

How fast the learner can determine a near optimal action in a partial moni-
toring game depends on the geometric structure of actions and feedback.
Some more terminology is useful. An action a ∈ A is called Pareto optimal if
φa is an extreme point of the convex hull of the features, conv(φa : a ∈ A).
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A linear partial monitoring game is called finite if it has finitely many Pareto
optimal actions. The set of actions that are optimal for θ ∈ M is

A∗(θ) = {a ∈ A : 〈φa, θ〉 = max
b∈A
〈φb, θ〉} ,

which is defined on sets E ⊆ Rd by A∗(E) = ∪θ∈EA∗(θ). A game is called
globally observable if

∀a, b ∈ A , φa − φb ∈ span(im(M>c ) : c ∈ A) . (6.1)

The condition for global observability in Eq. (6.1) ensures that for any two
actions a, b ∈ A and parameter θ ∈ M, the reward difference 〈φa − φb, θ〉
can be estimated from data collected by the learner using appropriate
actions. A game is called locally observable if for every convex set E ⊂ Rd,

a, b ∈ A∗(E) , φa − φb ∈ span(im(M>c ) : c ∈ A∗(E)) . (6.2)

Local observability is a stronger assumption than global observability,
and leads to improved regret. The definition implies that the learner can
estimate any reward difference among actions that appear plausible optimal
for confidence set E ⊂ M, by playing only on the same set of actions.

In Section 6.4.1 we give several equivalent definitions of local and global
observability, which are used in the construction of the lower bounds and
are sometimes easier to check. The reader familiar with partial monitoring
is assured that our definitions coincide with the classical notion based on
the neighborhood graph, which we formally show in the same section.

6.2.1 Alignment Constants

The regret upper bounds rely on quantifying the notions of global and
local observability. In particular, the conditions in Eqs. (6.1) and (6.2) can
be satisfied while the signal-to-noise ratio of the observations from the
feedback maps Ma is arbitrarily small. The constants that appear in the
analysis depend on the degree to which the learner can efficiently gain
information, which roughly depends on how well the observation operator
Mat is aligned with a direction φa − φb in which we aim to improve the
accuracy of our estimation.

For a convex set E ⊂ M, we define the extended plausible maximizer set,

A+(E), {a ∈ A : φa ∈ conv(φb : b ∈ A∗(E)) . (6.3)
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One easily checks that any a ∈ A+(E) satisfies ∆(a) ≤ maxb∈A∗(E) ∆(b),
hence A+(E) contains actions for which the regret is not larger than for
any action in A∗(E). The worst-case alignment for E is

α(E), max
ν∈Rd

max
a,b∈A∗(E)

min
c∈A+(E)

〈φa − φb, ν〉2
‖Mcν‖2 . (6.4)

The fact that the direction of ν is unconstrained in the maximization reflects
the assumption that the affine hull ofM spans Rd. Note that the fraction
is scale-invariant in ν. One should think of ν ∈ Rd as a small perturbation
of the parameter θ that flips the sign of the loss differences 〈φa − φb, θ + ν〉,
whereas the denominator captures how efficiently the learner can detect
such a change with a statistical test.

The definition of α(E) relates to global and local observability in a precise
way. In particular, a game is globally observable if and only if α(M) < ∞.
A game is locally observable, if and only if for all convex E ⊂ M, we get
α(E) < ∞. The equivalence follows from Lemma 6.1 below and Lemma 6.6
in Section 6.4.1. On locally observable games with infinite action sets,
note that supE⊂M α(E) = ∞ is possible, which can slow down learning
arbitrarily without further assumptions. This is one of the reasons the
classification result in Section 6.4 holds only for finite action sets.

The next lemma provides an upper bound on the alignment constant that
depends directly on the feedback maps.

Lemma 6.1. Let E ⊂ M be convex and locally observable in the sense that

∀ a, b ∈ A∗(E) , φa − φb ∈ span(im(M>c ) : c ∈ A+(E)) .

Let l = |A+(E)| be the number of actions in the extended plausible maximizer
set of E . Denote by M = (M>c : c ∈ A+(E))> ∈ Rml×d the matrix that
stacks the feedback maps and by r = rank(M) ≤ d the rank of M. Further,
let B ⊂ A+(E) be any subset of |B| ≤ r actions such that the matrix stack
B = (M>c : c ∈ A+(E))> ∈ Rmr×d has rank(B) = r ≤ d. Then

α(E) ≤ max
a,b∈A∗(E)

min
w∈Rml

M>w=φa−φb

 ∑
c∈A+(E)

‖wc‖
2

≤ rλmin(B>B)−1 .

Proof. Let a, b ∈ A∗(E) with a 6= b. By assumption, there exists a w ∈ Rlm

such that φa − φb = M>w with w 6= 0. Then,

〈φa − φb, ν〉2 = 〈M>w, ν〉2 = 〈w, Mν〉2 =

(
∑

c∈A+(E)
〈wc, Mcν〉

)2

,
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where we denote by wc ∈ Rm the weights corresponding to Mc. An
application of the Cauchy-Schwarz inequality shows:

〈φa − φb, ν〉2
maxc∈A+(E) ‖Mcν‖2 ≤

(
∑c∈A+(E) ‖wc‖‖Mcν‖

)2

maxc∈A+ ‖Mcν‖2 ≤
(

∑
c∈A+(E)

‖wc‖
)2

.

The first claim in the lemma follows by optimizing over the estimation
vectors w. We compute a specific solution with the matrix B specified in
the lemma statement. Let w̃ = (BB>)†B(φa − φb) where (BB>)† denotes
the pseudo inverse of (BB>). Therefore, using the properties of the pseudo
inverse and ‖φa − φb‖ ≤ 1,(

∑
c∈B
‖w̃c‖

)2

≤ r‖w̃‖2 ≤ rλmax

(
B>(BB>)†(BB>)†B

)
= rλmin(B>B)−1 .

6.2.2 Examples

Example 6.8 (Locally Observable Games). From the examples mentioned
in Section 6.1, the following models are locally observable.

• With bandit feedback, the reward difference of any two actions a, b ∈ A
can be estimated by playing both actions, which means bandits are
locally observable. Specifically waφa + wbφb = φa − φb is satisfied
for wa = −wb = 1, hence with Lemma 6.1, we get α(E) ≤ (‖wa‖+
‖wb‖)2 = 4 for any E ⊂ M. The heteroscedastic bandit feedback
we discussed in Chapter 3 can be modeled by letting φa = a and
M>a = ρ(a)−1φa.

• Semi-bandit and full-information feedback contain more information
than the bandit observation, hence are locally observable.

• The dueling bandit model as defined in Example 6.4 is locally observ-
able. To compute the alignment constant, assume that φa,b, φa′ ,b′ ∈
A∗(E) for some E ⊂ M. But then also φc,c ∈ A∗(E) for all c ∈
{a, a′, b, b′} since two different actions are never uniquely optimal. It
follows that (a, a′), (b, b′) ∈ A+(E). Estimating the reward difference
between (a, b) and (a′, b′) with observations from A+(E) is done as
follows:

φa,b − φa′ ,b′ = φa + φb − (φa′ + φb′) = w1Ma,a′ + w2Mb,b′ ,
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which is satisfied for w1 = w2 = 1. Therefore, α(E) ≤ 4 by Lemma 6.1.
We note that the upper bounds directly depend on the alignment
constants and are tight for the linear bandit model. In this sense,
the utility-based dueling bandit model is not more difficult than the
bandit setting.

Example 6.9 (Globally Observable Games). The following games are glob-
ally observable, but not necessarily locally observable.

• For a (simplified) version of the localized dueling bandit (Example 6.5),
let d > 3 and consider the action set A = [d] with features φ = ea and
feedback maps defined for a < d as

Ma = ea − ea+1 ,

and Md = 0. The learner only observes the reward difference of two
consecutive actions in the natural ordering. Clearly, for any a < b ∈ A,
we can write φa− φb = ∑b−1

c=a φc, hence the game is globally observable
with α(M) ≤ d2. On the other hand define the following convex set:

E = [1, 2]× [−1, 0]× · · · × [−1, 0]︸ ︷︷ ︸
d−2 times

×[1, 2]

When θ ∈ E , playing either the first or the last action is optimal, i. e.
A∗(E) = {1, d}. However, estimating the reward difference φ1 − φd
is only possible by playing the other actions, which are provably
suboptimal for θ ∈ E . This means the game is not locally observable.

• Transductive games (Example 6.7) are not locally observable in gen-
eral, since the learner suffers a constant regret for information.

6.3 ids for linear partial monitoring

In this section, we introduce a version of IDS for linear partial monitoring.
The first step is to generalize the previous definitions of the gap estimate
and the information gain function to the new feedback model. In round t,
the least-squares estimator with regularizer λ > 0 is

θ̂t = arg min
θ∈Rd

t−1

∑
s=1
‖Mas θ − ys‖2 + λ‖θ‖2 = V−1

t

t−1

∑
s=1

M>as ys , (6.5)

where the covariance matrix is Vt = ∑t−1
s=1 M>as Mas +λ1d. For the analysis we

require that λ ≥ L2, which implies that ‖MaV−1
t M>a ‖2

2 ≤ 1
λ‖Ma M>a ‖2

2 ≤ 1.
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Algorithm 6: IDS for Linear Partial Monitoring
Input: Action set A, feature maps φa, feedback maps Ma, regularizer

λ > 0, norm bound B > 0, noise variance ρ2.
1 for t = 1, 2, 3, . . . , n do
2 Vt ← ∑t−1

s=1 Mas M>as + λ1d // least-squares estimation

3 θ̂t ← V−1
t ∑t−1

s=1 M>as ys

4 β1/2
t ← ρ

√
log det(Vt) + 2 log(t2) +

√
λB

// gap estimates

5 ∆̂t(a)← min
{

maxb∈A〈φb − φa, θ̂t〉+ β1/2
t ‖φb − φa‖V−1

t
, B
}

6 IDET
t (a)← 1

2 log
(

1m + MaV−1
t M>a

)
// information gain

7 µt ← arg minµ∈P(A)
∆̂t(µt)2

IDET
t (µt)

// IDS distribution

8 at ∼ µt
9 Choose at, observe yt = 〈Mat , θ〉+ εt

This assumption can be lifted with a minor modification of the proof while
preserving the same scaling. The corresponding confidence set is

Et,δ = {θ ∈ Rd : ‖θ − θ̂t‖2
Vt
≤ βt,δ} .

A direct extension of Lemma 3.1 shows that with the confidence coefficient

β1/2
t,δ = ρ

√
log
(

det(Vt)
det(λ1d)

)
+ 2 log 1

δ +
√

λB and provided that ‖θ‖ ≤ B,

P[∀t ≥ 1, θ ∈ Et,δ] ≥ 1− δ .

In the algorithm we use βt , βt,1/t2 and Et , Et,1/t2 . The gap estimate is

∆̂t(a) = min
{

max
b∈A
〈φb − φa, θ̂t〉+ β1/2

t,1/t2‖φb − φa‖V−1
t

, B
}

, (6.6)

which is explicitly truncated using that ∆(a) ≤ B. The estimate is chosen
so that with high probability ∆(a) ≤ ∆̂t(a) for all a ∈ A and all rounds t.
For the information gain we use

IDET
t (a) = 1

2
log det

(
1m + MaV−1

t M>a
)

. (6.7)

The definition generalizes the information gain function we used in Sec-
tion 3.2.2. The Bayesian analogue is the mutual information It(θ; yt|at = a)
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when using a Gaussian prior and likelihood function. As before, the total
information gain is computed with the help of the matrix determinant
lemma (Lemma D.1) and telescoping,

γn =
n

∑
t=1

IDET
t (at) =

1
2

(
log det(Vn+1)− log det(λ1d)

)
.

Note that β1/2
n = ρ

√
γn−1 + log( 1

δ ) +
√

λB. Along the same lines of (3.1),
it follows that

γn ≤ d log
(

1 + nmL2

dλ

)
. (6.8)

The complete IDS algorithm for linear partial monitoring is summarized
in Algorithm 6. Since the maximum in the definition of ∆̂t(a) depends on
a, in general we need O(d2|A|2) operations per round to compute all gaps
on a finite action set. In Section 6.3.2, we show that a different definition
can be used, which reduces the computation complexity to O(d2|A|) while
preserving the theoretical guarantees.

6.3.1 Regret Bounds

The first result is a regret bound for globally observable games. Assuming
only global observability means that the learner has to play clearly subop-
timal actions to obtain information in general. As an instructive example,
considers the case where a single action ã ∈ A provides full-information
feedback, Mã = 1d, whereas all other actions, including the optimal action,
provide no information (e.g. Ma = 0). A short calculation and Lemma 2.5
confirm that IDS samples the informative action ã with probability

p̃t = min
(

δt

∆̂t(ã)− δt
, 1
)

,

where δt = mina∈A ∆̂t(a) is the smallest gap estimate. Let Tã(t) be the
number of times the informative action has been chosen up to step t.
Ignoring log factors and constants, a reasonable scaling for the smallest
gap is δt = Tã(t)−1/2. Since the cost for ã is at least constant, we can
approximately fix pt = δt, and compute the update step Et[Tã(t + 1)] =
Tã(t) + Tã(t)−1/2. If we initialize with Tã(1) = 1 and simulate the dynamics
(or solve the limiting differential equation), we find that Tã(n) ≈ n2/3.
Hence, in the example the regret of IDS is Rn ≈ n2/3.
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The example captures the most difficult scenario, since in any globally
observable game, the learner can estimate all gaps and the cost per step is
bounded. The theorem below follows this intuition, and confirms that the
regret of IDS in all globally observable games is at most Rn ≤ Õ(n2/3).

Theorem 6.1. On any globally observable game the regret of IDS (Algorithm 6)
satisfies,

Rn ≤ n2/3(32α(M)BE[βn]E[γn])
1/3 +O(B) .

With the bound on βn and γn from Eq. (6.8) and λ ≥ L2, the regret bound
translates to Rn ≤ O((α(M)LB)1/3(dn log(n)2/3)). Bounds on the align-
ment constant generally depend on the feedback maps as in Lemma 6.1.
The lower bounds in Section 6.4 show that the dependence on n cannot
be improved for globally observable finite games that are not locally ob-
servable, up to logarithmic factors. In infinite games, the situation is more
complicated. Curvature of the action set can lead to fast rates, even if
the local observability condition is not satisfied, as we show in work with
collaborators [90, §2.4].

Proof of Theorem 6.1. We start by establishing an inequality which shows
the existence of an action with large information gain compared to the gap
estimate of the greedy action. Let â = arg maxa∈A〈φa, θ̂t〉. Clearly,

min
a∈A

∆̂t(a) ≤ max
b∈A
〈φb − φâ, θ̂t〉+ β1/2

t ‖φb − φâ‖V−1
t

≤ β1/2
t max

a,b∈A
‖φa − φb‖V−1

t
.

We continue with the squared norm and the shorthand α = α(M),

max
a,b∈A

‖φa − φb‖2
V−1

t
= max

ν∈Rd
max
a,b∈A

〈φa − φb, V−1/2
t ν〉2

‖ν‖
(i)
≤ α max

ν∈Rd
max
c∈A
‖M>c V−1/2

t ν‖2

‖ν‖2

= α max
c∈A

λmax(M>c V−1
t Mc)

(ii)
≤ 2α max

c∈A
log det(1m + M>c V−1

t Mc)

= 4α max
c∈A

IDET
t (c) .
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For (i) we used the definition of the alignment constant in Eq. (6.4). For
(ii), we used the inequality x ≤ 2 log(1 + x) for x ∈ [0, 1] and that the
eigenvalues of M>c V−1

t Mc are bounded in [0, 1] by the assumption that
λ ≥ L2 and ‖Mc‖ ≤ L. Combining the last two displays shows that

min
a∈A

∆̂t(a)2 ≤ 4αβt max
c∈A

IDET
t (c) . (6.9)

It remains to bound the information ratio.

Ψt(µ
IDS
t )

(i)
≤ min

c∈A
4δt∆̂t(c)
IDET
t (c)

(ii)
≤ min

c∈A
4δtB

IDET
t (c)

(iii)
≤ 16αβtB

∆̂t(ât)

(iv)
≤ 32αβtB

∆̂t(µIDS
t )

(6.10)

Step (i) follows from (2.6) and for (ii) we used that ∆̂t(c) ≤ B. Then, (iii)
follows from Eq. (6.9), and the last step (iv) uses Lemma 2.6. Rearranging
shows that the generalized information ratio (Eq. (2.7)) is bounded,

Ψ3,t(µ
IDS
t ) =

∆̂t(µIDS
t )3

IDET
t (µIDS

t )
≤ 32αβtB .

The result follows from Theorem 2.2 and noting that the confidence level is
chosen such that ∑n

t=1 E
[
∆(at)− ∆̂t(at)

]
≤ O(B).

Local observability is a stronger assumption that greatly eases learn-
ing and allows for faster regret rates. We say a game is uniformly lo-
cal observable if α0 = supE⊂M convex α(E) < ∞. Finite locally observable
games are always uniformly local observable. The next theorem shows
that the regret of IDS on uniformly local observable games is at most
O(
√

α0E[βn]E[γn]n). More precisely, α0 can be replaced with the average
alignment ᾱn = 1

n ∑n
t=1 α(Et) ≤ α0, defined on the sequence of confidence

sets realized by the algorithm. This shows how IDS adapts towards the
current instance of the partial monitoring game, and can sometimes lead to
faster rates even on games that are not globally observable.

From the proof of the theorem it is evident that randomization is not
necessary to bound information ratio in locally observable games. Deter-
ministic IDS, which optimizes the ratio over a deterministic action choice
aDIDS

t = arg mina∈A Ψt(a), achieves the same upper bound with our analy-
sis. Randomization is however essential for globally observable games.

Theorem 6.2. On any locally observable game, IDS satisfies

Rn ≤ 4
√

E[ᾱnβn]E[γn]n +O(B) ,

where ᾱn = 1
n ∑n

t=1 α(Et) is the averaged realized local alignment constant.
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Further bounding γn and βn using Eq. (6.8) and λ ≥ L2 yields regret
Rn ≤ O

(√
nE[αn]L d log(n) + B

)
. In particular, for bandits and dueling

bandits we have α(Et) ≤ 4 and the regret is Rn ≤ O(
√

nd log(n)). On
linear bandits, the bound is the same as for UCB and matches the lower
bound on large action sets up to logarithmic factors [103, §24].

Proof of Theorem 6.2. Local observability allows to restrict the action choice
to plausible maximizers A∗(Et). Fix any c ∈ A∗(Et) and let νc ∈ Et be a
paramater for which c is optimal. Then

∆̂t(c)
(i)
≤ max

b∈A
max
ν∈Et
〈φb − φc, ν〉

(ii)
= max

b∈A∗(Et)
max
ν∈Et
〈φb − φc, ν− νc〉+ 〈φb − φc, νc〉

(iii)
≤ max

b∈A∗(Et)
max
ν∈Et
〈φb − φc, ν− νc〉

(iv)
≤ 2β1/2

t max
b∈A∗(Et)

‖φb − φc‖V−1
t

.

For (i) we used the definition of the gap estimate and dropped the trunca-
tion. For (ii) observe that the first maximum is attained on A∗(Et). Step
(iii) is by the choice of νc, and (iv) uses Cauchy-Schwarz and the definition
of Et. Hence, for all c ∈ A∗(Et),

∆̂t(c) ≤ 2β1/2
t max

a,b∈A∗(Et)
‖φa − φb‖V−1

t
.

The same inequality holds for c ∈ A+(Et) by the definition of the ex-
tended plausible maximizer set in Eq. (6.3), and because the function
φ 7→ maxν∈Et ,b∈A〈φb − φ, ν〉 is convex. Similar to Eq. (6.9) and using the
definition of the local alignment constant, we get

∆̂t(c)2 ≤ 16βtα(Et) max
c̃∈A+(Et)

IDET
t (c̃) .

We bound the information ratio by optimizing over Dirac distributions
supported on A+(Et),

Ψt(µ
IDS
t ) ≤ min

c∈A+(Et)

∆̂t(c)2

IDET
t (c)

≤ 16βtα(Et) .

The result follows from Corollary 2.1 and bounding the estimation error.



112 linear stochastic partial monitoring

6.3.2 A Faster Gap Estimate

The maximum that appears in the definition of the gap estimate ∆̂t(a) in
Eq. (6.6) cannot be computed independently of a. This can be improved by
introducing the empirical maximizer ât = arg maxa∈A〈φa, θ̂t〉:

∆̂t(a) = max
b∈A
〈φb − φa, θ̂t〉+ β1/2

t ‖φb − φa‖V−1
t

≤ max
b∈A
〈φb − φa, θ̂t〉+ β1/2

t ‖φb − φât‖V−1
t

+ β1/2
t ‖φât − φa‖V−1

t

≤ 2
(

max
b∈A
〈φb − φa, θ̂t〉+ β1/2

t ‖φb − φât‖V−1
t

)
.

The upper bound warrants an alternative definition of the gap estimate,

∆̃t(a), max
b∈A
〈φb − φa, θ̂t〉+ β1/2

t ‖φb − φât‖V−1
t

. (6.11)

In particular, ut , maxb∈A〈φb, θ̂t〉+ β1/2
t ‖φb − φât‖V−1

t
is independent of a

and we can compute the gap estimate via ∆̃t(a) = ut − 〈θ̂t, φa〉.
The argument above is easily repeated to show ∆̃t(a) ≤ 2∆̂t(a). Hence,

Algorithm 6 defined with the gap estimate ∆̃t(a) is immediately seen to
satisfy the same regret bounds up to a constant multiplicative factor as in
Theorems 6.1 and 6.2. The constants can be improved by more carefully
reproducing the steps in the proof. The asymptotic analysis in Chapter 5

uses a similarly relaxed estimator and the analysis suggests that nothing
is lost in the limit of a large horizon. Combined with the approximate
version of IDS (Section 2.1.1) and incremental updates for the least-square
estimate, the overall complexity is thus reduced toO(|A|d2n) over n rounds,
compared to O(|A|2d2n) required for the direct implementation.

6.3.3 Directed Information Gain

The definition of information gain function in Eq. (6.7) is a conservative
choice that is primarily motivated by the worst-case analysis. It captures
the increase of the log-determinant potential and does not depend on the
current estimate of the parameter or an estimate of the best action.

For a fixed w ∈ Rd we define the directed information gain,

It(a; w),
1
2

(
log
(
‖w‖2

V−1
t

)
− log

(
‖w‖2

(Vt |Ma)−1

))
. (6.12)

The definition corresponds to the mutual information I(〈w, θ〉; yt|at = a)
which measures the Gaussian entropy reduction of θ projected onto the
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subspace spanned by w. The next lemma shows that the new information
gain is strictly smaller, It(a; w) ≤ It(a), which can be interpreted as an
information processing inequality. In particular, the total information gain can
be bounded as before.

Lemma 6.2 (Information processing). For any w ∈ Rd and a ∈ A, it holds
that It(a; w) ≤ It(a).

Proof. The proof uses basic linear algebra, specifically the Sherman-Morrison
formula (Lemma D.2) and the matrix determinant lemma (Lemma D.1).

2It(a; w)

= log

 ‖w‖2
V−1

t

‖w‖2
(Vt |Ma)−1


= − log

1− w>V−1
t Ma(1m + M>a V−1

t Ma)−1M>a V−1
t w

‖w‖2
V−1

t


≤ max

v∈Rd :‖v‖2=1
− log

(
v>v− v>V−1/2

t Ma(1m + M>a V−1
t Ma)

−1M>a V−1/2
t v

)
= max

v∈Rd :‖v‖2=1
− log

(
v>
(

1d −V−1/2
t Ma(1m + M>a V−1

t Ma)
−1M>a V−1/2

t

)
v
)

= log
(

λmax

((
1d −V−1/2

t Ma(1m + M>a V−1
t Ma)

−1M>a V−1/2
t

)−1
))

.

≤ log
(

det
(

1d −V−1/2
t Ma(1m + M>a V−1

t Ma)
−1M>a V−1/2

t

)−1
)

= log det
(

1m + M>a V−1
t Ma

)
= 2IDET

t (a) .

The second inequality follows because all eigenvalues of the matrix inside
the determinant are not smaller than 1, and then using the generalized
matrix determinant lemma to rewrite the expression.

A direction w ∈ Rd that reliably measures the progress toward idenfiying
the true maximizer is the most uncertain direction in the set of plausible
maximizers,

wt = arg max
w=φa−φb

a,b∈A∗(Et)

‖w‖2
V−1

t
. (6.13)

Intuitively, as long as ‖wt‖V−1
t

> 0, there is ambiguity in the plausible
maximizer set, that if not resolved, can lead to linear regret of the learner.
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From a lower bound perspective, one could argue that wt is the direction in
which the adversary can increase the regret the most with a perturbation
of the parameter θ + ηwt for η ∈ R. This motivates the information gain
It(a; wt). Note that the definition relies on computing the set of plausible
maximizers, which is a more expensive operation compared to computing
the undirected information gain It(a).

We know already that the information gain It(a; wt) is smaller than It(a),
but it is not yet clear if the information ratio is still bounded. The next
lemma provides an affirmative answer.

Lemma 6.3. Let E ⊂ M be a convex subset and let w = φa − φb for some
a, b ∈ A∗(E). Then

‖w‖2
V−1

t
≤ 4α(Et) max

c∈A+(E)
It(c; w) .

Proof. First, note that 1
2 (1d + M>c V−1

t Mc) � 1d by our assumption that
‖Mc‖2 ≤ L and λ ≥ L2. Hence

‖M>c V−1
t w‖2 ≤ 2w>V−1

t Mc(1m + M>c V−1
t Mc)

−1M>c V−1
t w .

By definition of the alignment constant (Eq. (6.4)),

α(E) ≥ min
c∈A+(E)

〈φa − φb, V−1
t w〉2

‖M>c V−1
t w‖2

= min
c∈A+(E)

‖w‖4
V−1

t

‖M>c V−1
t w‖2

.

Hence, combining the last two displays and rearranging,

‖w‖2
V−1

t
≤ α(E) max

c∈A+(E)
‖M>c V−1

t w‖2

‖w‖2
V−1

t

≤ 2α(E) max
c∈A+(E)

w>V−1
t Mc(1m + M>c V−1

t Mc)−1M>c V−1
t w

‖w‖2
V−1

t

.

Since x ≤ − log(1− x) for all x ∈ [0, 1], for the fraction we get

w>V−1
t Mc(1m + M>c V−1

t Mc)−1M>c V−1
t w

‖w‖2
V−1

t

≤ log

1− w>V−1
t Mc(1m + M>c V−1

t Mc)−1M>c V−1
t w

‖w‖2
V−1

t


= log

(
‖w‖2

V−1
t

)
− log

(
‖w‖2

(Vt |Mc)−1

)
= 2It(a; w) .

This completes the proof.
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The inequality provided by the lemma is the essential step in the regret
analysis that bounds the information ratio. The lemma implies that Algo-
rithm 6 defined with information gain IPM

t (a), It(a, wt) achieves the same
regret bounds as in Theorems 6.1 and 6.2.

Corollary 6.1. Define IDS with the directed information gain IPM
t (xa; wt) as in

Eqs. (6.12) and (6.13). Then, on globally observable games, the regret satisfies

Rn ≤ n2/3(32α(M)BE[βn]E[γn])
1/3 +O(B) .

On locally observable games, the regret satisfies

Rn ≤ 4
√

E[ᾱnβn]E[γn]n +O(B) ,

where ᾱn = 1
n ∑n

t=1 α(Et) is the averaged realized local alignment constant.

6.4 classification of finite linear games

The upper bounds for IDS show that for globally observable games the
regret is Õ(n2/3), while for locally observable games it is Õ(n1/2). Of
course, if there is only one Pareto optimal action (or duplicates, i. e. actions
a, b with φa = φb), then the regret vanishes for any algorithm that just plays
this action.

Assumption 6.1. For the remainder of this section we assume that A is finite.

The classification theorem complements the upper bounds by showing
that this is the best the learner can hope for in linear games with finitely
many actions. The minimax regret on a model setM is defined by taking
the infimum of the worst-case regret over all possible policies π = (πt)n

t=1,

R∗n = inf
π

sup
θ∈M

Rn(π, θ) .

Theorem 6.3 (Classification). The minimax regret of any finite linear partial
monitoring game withM = {θ ∈ Rd : ‖θ‖ ≤ 1} satisfies

R∗n =



0 if there is only one Pareto optimal action or duplicates,

Θ̃(n1/2) for locally observable games,

Θ̃(n2/3) for globally observable games,

Ω(n) otherwise .
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Proof. Finite partial monitoring games can be completely classified by con-
sidering a graph structure known as the neighborhood graph [106]. The
classification theorem follows by proving that for games that are not glob-
ally observable, the regret is linear in the worst case. For globally observable
games that are not locally observable the regret is Ω(n2/3) and that for
locally observable games with more than one Pareto optimal action it is
Ω(n1/2). The lower bounds are supplied in Appendix C. The proof is
completed by combining upper and lower bounds, and carefully checking
that all cases have been covered.

6.4.1 Neighborhood Graph

In the context of the lower bounds, it is useful to know that our definitions
of local and global observability coincide with the classical notions derived
from the neighborhood graph, that are now standard in finite partial moni-
toring [16, 106]. The definition of global observability is further equivalent
with the existence of a global observer set [109], defined a set of actions B ⊂ A
such that span(im(M>b ) : b ∈ B) = span(φa − φb : a, b ∈ A).

Let Φ = {φa : a ∈ A} be the set of features. Recall that an action a ∈ A
is Pareto optimal if φa is an extreme point of conv(Φ). An action a is
called degenerate if the feature φa is on the boundary of conv(Φ), but not an
extreme point. Degenerate actions can be optimal, but never uniquely so.
Actions with features in the interior of conv(Φ) are called dominated and
are never optimal.

The situation is illustrated in Figure 6.1. Given an action a ∈ A, the cell
of a is the set of parameters for which action a is optimal:

Ca = {θ ∈ M : a = a∗(θ)} .

Since A is finite, conv(Φ) is a polytope and Ca is either the singleton {0}
or a polyhedral cone intersected withM. An action a is Pareto optimal if
dim(Ca) = d, which can be seen by observing that Ca is the normal cone of
a with respect to the convex body conv(Φ). Pareto optimal actions a and
b are called neighbours if dim(Ca ∩ Cb) = d− 1, where the dimension of a
polytope is defined as the dimension of the smallest affine space containing
it. The neighbourhood relation defines a connected graph on the set of
Pareto optimal actions. For neighboring Pareto optimal actions a and b let
Nab = {c ∈ A : Ca ∩ Cb ⊆ Cc}. Note that, besides a and b, Nab contains
only degenerate actions c with dim(Cc) = d− 1.
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Figure 6.1: Green vectors are Pareto optimal, blue ones are degenerated and red
are dominated. The light blue cones associated with each Pareto optimal action
indicate the direction of θ for which that action is optimal.

Lemma 6.4. The following conditions equivalently characterize globally observable
games with directionally unconstrained parameter sets.:

i) For all actions a, b ∈ A, φa − φb ∈ span(im(M>c ) : c ∈ A).
ii) For all Pareto optimal actions a, b ∈ P , φa − φb ∈ span(im(M>c ) : c ∈ A).

iii) There exists a global observer set.

Proof. For the implication (ii⇒ i), note that Pareto optimal actions are the
extreme points of conv(Φ), therefore any φa for a ∈ A can be written as a
convex combination of Pareto optimal actions. (i⇒ iii) follows by taking A
as global observer set. (iii⇒ ii) immediately follows from the definition of
a global observer set.

The next lemma clarifies the relation of neighboring actions and local
observability. Note that the result does not make any assumptions about
the model set, which will be used later.

Lemma 6.5. Let A be finite and E ⊂ Rd be any convex set. Then

i) All Pareto optimal actions in A∗(E) are connected on the neighborhood graph.

ii) For two Pareto optimal actions a, b ∈ A∗(E) it holds that Nab ⊂ A∗(E).
iii) For any a ∈ A∗(E), φa can be written as convex combination of Pareto

optimal actions in A∗(E).
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Proof. For points x, y ∈ Rd, we denote [x, y] = {tx + (1− t)y : t ∈ [0, 1]}.

i) The proof is intuitively simple. Take any Pareto optimal actions a, b ∈
A∗(E) and let θa ∈ Ca and θb ∈ Cb. Then take the chord [θa, θy] ⊂
C and consider the path (ai)

n
i=1 defined by the cells that intersect

[θa, θb] ∪ Cai 6= ∅. There is a technicality that this chord may pass
through intersections of cells that have dimension d− 2. A perturbation
and dimension argument fixes the proof. For a formal proof, see [90,
Lemma 28] or the similar result in [105, Lemma 23].

ii) Let a, b ∈ A∗(E) be Pareto optimal actions. Pick any θ ∈ Ca ∩ Cb ∩ C.
If c ∈ Nab, we have Ca ∩ Cb ⊂ Cc, hence θ ∈ Cc and c is optimal for θ.
Therefore c ∈ A∗(E).

iii) Let F be the lowest dimensional face of conv(Φ) containing a ∈ A∗(E).
Assume that a is in the interior of F (otherwise it would be an extreme
point and so Pareto optimal). Then let θ be a parameter such that a
is optimal. H = {v : 〈φa − v, θ〉 = 0} is a supporting hyperplane of
conv(F). Hence F is a subset of H. Note that H ∩ {φa : a ∈ A∗(θ)}
contains features from actions that are optimal for θ. Therefore all
extreme points of F are in A∗(E) and since φa is in the convex hull of
the extreme points of F the result follows.

The next lemma shows that observability can be characterized in terms
of the neighborhood relation.

Lemma 6.6. The following conditions equivalently characterize locally observable
games:

i) For all convex E ⊂ M and a, b ∈ A∗(E),

φa − φb ∈ span(im(M>c ) : c ∈ A+(E)) .

ii) For any convex E ⊂ M and a, b ∈ A∗(E),

φa − φb ∈ span(im(M>c ) : c ∈ A∗(E)) .

iii) For any two neighboring Pareto optimal actions a, b ∈ P ,

φa − φb ∈ span(im(M>c ) : c ∈ Nab) .

Proof. For neighouring Pareto optimal actions a, b, consider the set of pa-
rameters Eab , conv(relint(Ca ∪ Cb)) ⊂ M. The proof is based on the
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observation that Nab = A∗(Eab) = A+(Eab). For general E , we can write
A∗(E) = E∗(∪a,b∈A∗(E),a,bneighboursEab) and use a chaining argument.

“i)⇒ ii)”. Immediate since A∗(E) ⊂ A+(E).
“ii) ⇒ iii)”. Let a, b ∈ A be neighboring Pareto optimal actions. Pick

θ ∈ relint(Ca ∩ Cb). Then Nab = A∗(θ) by Lemma 6.5 and therefore φa −
φb ∈ span{Ma : x ∈ A∗(E)} by i).

“iii) ⇒ i)”. Let a, b ∈ A∗(E). First note that by Lemma 6.5, iii), φa − φb
can be written as linear combination of Pareto optimal actions in A∗(E).
Therefore we can assume that a, b are Pareto optimal. By Lemma 6.5, i),
there exists a sequence (ai)

l
i=1 of Pareto optimal actions with a1 = a and

al = b, such that ai, ai+1 are neighbors and {ai : i = 1, . . . , l} ⊂ A∗(E).
By assumption, φai − φai−1 ∈ span{Mc : c ∈ Naiai−1}. Since φa − φb =

∑l−1
i=1 φai − φai+1 the claim follows by noting that Naiai−1 ⊂ A+(E).

6.5 remarks on asymptotic optimality

The information gain functions in this chapter are motivated from the worst-
case perspective and are conservative in practice. Assuming a gap separa-
tion condition, it is possible to prove a logarithmic gap-dependent bound
on the regret, using the technique introduced in Section 3.3.2. However, as
in the linear case, these bounds are far from instance-optimal in general.

The asymptotic lower bound for linear partial monitoring with finitely
many actions follows from existing results. As in the linear bandit setting,
the asymptotic regret is defined by the convex optimization problem similar
to Eq. (5.1). The only difference that for allocations α ∈ RA≥0, the covariance
V(α) = ∑a∈A α(a)M>a Ma is defined using the feedback maps:

c∗(θ), inf
α∈RA≥0

∑
a∈A

α(a)〈φa∗ − φa, θ〉 s.t. min
ν∈C∗(θ)

1
2‖ν− θ‖2

V(α) ≥ 1 .

The set of alternative parameters is C∗(θ) = ∪a 6=a∗(θ)Ca, where the cell Ca
is defined in Eq. (7.1) and depends on M. The asymptotic lower bound
can be similarly stated as in Theorem 5.1: For any consistent policy πn, the
asymptotic regret is at least lim infn→∞ R(πn, θ)/ log(n) ≥ c∗.

An educated guess to extend the information gain function in Eq. (5.6) is

IA
s (a), 1

2 ∑
c 6=âs

qs(c)
(
‖Ma(ν̂s(c)− θ̂s)‖+ β1/2

s ‖Ma‖V−1
s

)2
, (6.14)
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Figure 6.2: Simulation of randomly generated dueling bandit instances with
d = 2, k = 6 (left) and the localized dueling bandit setting (Example 6.9) with
d = 3 (right). Note that the y-axis on the left has logarithmic scale. In the dueling
bandit setting IDS with IPM

t and IDET
t is competitive with MaxInP. The GCB and

PEGE approach are designed for the globally observable setting, and are much
more conservative. In the localized dueling bandit setting GCB and PEGE tuned
for logarithmic regret out perform IDS. This is not totally unexpected, since both
approaches uniformly explore with a global observer set that, in this example,
is close to the optimal allocation. In general, however, these methods are not
competitive with IDS unless the exploration distribution is optimized. Results
are averaged over 100 runs and the confidence region shows the standard error.

where we define the alternative parameters in the same way as before,

ν̂s(c) = arg min
θ:〈φa−φâs ,θ〉≥0

‖θ̂s − ν‖2
Vs

,

and ‖Ma‖V−1
s

, ‖MaV−1
s M>a ‖2 for the operator norm. The mixing weights

q(c) are defined as in Eq. (5.7). The notion of the local time s introduced in
Section 5.1 can be used to ensure that the optimistic term β1/2

s ‖Ma‖V−1
s

is
asymptotically vanishing. The gap estimate can be defined as in Eq. (6.11).
We leave it as a challenge for the future to work out potentially non-trivial
details on asymptotic optimality in the general partial monitoring setting.

6.6 numerical results

We present numerical results in the utility-based dueling bandit setting,
defined in Example 6.4. This game is locally observable. For a globally
observable game that is not locally observable, we simulate the localized
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dueling bandit setting described in Example 6.9. As baselines we com-
pare to GCB by Lin et al. [109], and PEGE by Chaudhuri & Tewari [40].
For the latter, the authors propose different variants tuned for worst-case
regret (PEGE-wc) and for logarithmic regret (PEGE-log). Both GCB and
PEGE require a global observer set, defined as a subset of actions such that
dim(im(M>c ) : c ∈ A) = dim(φa− φb : a, b ∈ A). Finding efficient observer
sets and exploration distributions is itself a difficult question. As suggested
in the previous work, we randomly order the action set and incrementally
add actions to the global observer set until the dimensionality condition
is satisfied. Recent progress on designing more efficient exploration dis-
tribution in the (semi-)bandit setting is by Wagenmaker, Katz-Samuels &
Jamieson [169], but adaptation of these results to the partial monitoring
setting is still outstanding. In the dueling bandit setting, we additionally
compare to the maximum informative pair (MaxInP) strategy by Saha &
Gopalan [140]. The approach plays the actions corresponding to the most
uncertain pair defined in Eq. (6.13). It is similar to IDS with the directed
information gain IPM

t (a; wt) (Eq. (6.12)). However, the strategy fails in the
globally observable case, since it only explores plausibly optimal actions.
The results are shown in Fig. 6.2.

6.7 contributions and related work

The results present in this chapter are based on the following publication:

• Kirschner, J., Lattimore, T. & Krause, A. Information Directed Sampling
for Linear Partial Monitoring in Proc. International Conference on Learning
Theory (COLT) (July 2020)

Contributions entirely by Tor Lattimore are the lower bounds (Appendix C),
which are included for completeness, Fig. 6.1 and regret bounds on convex
action sets (not included, for details see the conference paper). For related
work in the partial monitoring setting, see Section 1.2.3.
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C O N S T R A I N E D PA R A M E T E R S E T S

In the previous chapter, we assumed that the parameter set contains the
unit ball in Rd, which we refer to as the directionally unconstrained setting.
Of course, the regret upper bounds are still valid for smaller parameter
sets. However, additional constraints on M mean that the adversarial
construction in the lower bound is more restricted, which in some cases
implies faster rates. This also suggests that there is room to improve the
upper bounds. We start with two examples.

Example 7.1. DefineM = [0, 1]d and let the action set A = {a, b} contain
two actions with features φa = −φb = (1, . . . , 1) ∈ Rd. Given the constraints
on M, action b is never uniquely optimal. A good algorithm should
therefore not attempt to estimate the gap 〈φa − φb, θ〉, and always play
action a, independent of the feedback maps. On the other hand, with a
directionally unconstrained parameter set, action b is clearly optimal for
θ = φb. Hence, without feedback the game is hopeless, and the learner
suffers linear regret in the worst-case.

Example 7.2. The situation is even more delicate if the affine hull ofM has
dimension smaller than d. LetM = {λ · e1 : λ ∈ R} contain just the first
coordinate axis. For actions A = {a, b} with features φa = −φb = e1 ∈ Rd,
either a or b is optimal depending on the sign of 〈e1, θ〉. Consider feedback
maps Ma = −Mb = (1, . . . , 1). Clearly, the feedback suffices to determine
the optimal action, whereas in the directionally unconstrained case, the
game is not globally observable according to Eq. (6.1).

Another prominent example that requires constraints is the linear for-
mulation of finite partial monitoring, which we discuss in more detail in
Section 7.3.

setting The notation is the same as in the previous chapter. We assume
that M ⊂ Rd is convex, non-empty and compact. For the algorithm, we
require that linear optimization overM is feasible and that the Euclidean
projection ontoM can be computed efficiently. To keep the notation simple,
we also assume ‖Ma‖2 ≤ 1, diam({φa : a ∈ A}) ≤ 1 and maxθ∈M ‖θ −
θ0‖ ≤ 1 for some prior estimate θ0 ∈ M.

123
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7.1 local and global observability

To classify Examples 7.1 and 7.2 and correctly, we need to refine the def-
initions of local and global observability to take the geometry ofM into
account. The linear span of parameter differences is denoted by

V = span({ω− ν : ω, ν ∈ M}) .

From a lower bound perspective, this is the set of directions available to an
adversary to perturb the parameter in way that changes the optimal action,
but is hard to detect for the learner. The orthogonal projection onto V is
denoted by PV : Rd → Rd, defined such that im(PV ) = V .

Recall that the cell of a ∈ A is defined as the set of parameters for which
a ∈ A is optimal,

Ca , {θ ∈ M : a∗(θ) = a} . (7.1)

An action is called Pareto optimal if dim(Ca) = dim(V). An action is called
degenerate if dim(Ca) = dim(V)− 1, and dominated if Ca = ∅. The set
of all Pareto optimal actions is P . The reader may check that the notions
are equivalent with the definitions that we introduced in Section 6.2 in the
directionally unconstrained setting.

The definition of global observability is extended to the constrained case
by introducing the projection onto V and checking the inclusions there. A
game with parameter constraints is called globally observable if

∀ a, b ∈ P , PV (φa − φb) ∈ span(im(PVM>c ) : c ∈ A) . (7.2)

The global alignment constant is

αV , max
ν∈V

max
a,b∈P

min
c∈A
〈φa − φb, ν〉2
‖Mcν‖2 . (7.3)

For the locally observable case, we first need a more precise version of
the extended maximizer set. First, recall the set of plausible maximizers for
E ⊂ M is A∗(E) = {a ∈ A : maxν∈E maxb∈A〈φb − φa, ν〉 = 0}. The set of
plausible Pareto optimal actions for E ⊂ M is

P∗(E) = {a ∈ P : a ∈ A∗(E)} .

The extended plausible Pareto set is defined as

P+(E) = {a ∈ A : PVφa ∈ conv(PVφb : b ∈ P∗(E))} .
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We say E ⊂ M is observable, if

a, b ∈ P∗(E) , PV (φa − φb) ∈ span(im(PVM>c ) : c ∈ P+(E)) . (7.4)

A game is called locally observable if all convex subsets E ⊂ M are
observable. The local alignment constant for E is

αV (E), max
ν∈V

max
a,b∈P∗(E)

min
c∈P+(E)

〈φa − φb, ν〉2
‖Mcν‖2 . (7.5)

As a caveat to the reader, our definitions should be understood as sufficient
conditions for the upper bounds. We have not yet proven lower bounds
or a classification theorem for general constrained parameter sets. Even
though our definitions are motivated from the construction of the lower
bounds, it is possible that the conditions can be weakened. However, for
the special case of finite partial monitoring, we show in Section 7.3.2 that
our definitions are equivalent to the established classification.

7.2 ids with parameter constraints

The key step to improve the upper bounds is to intersect the confidence
ellipsoid Et with the model setM, and define the gap estimate accordingly,

∆̂t(a) = max
θ∈Et∩M

max
b∈A
〈φb − φa, θ〉 .

Without further modifications, using this gap estimate in Algorithm 6 leads
to improved regret rates, including in the examples given at the beginning
of this section. However, the regret bound obtain this way still scales
unfavorably with the dimension d, instead of quantities such as dim(V) or
dim(span(im(M>c ) : c ∈ A)) that can be much smaller than d. To improve
the dependency on the dimension, we define the subspace of V observed
by the feedback maps,

W = span(im(PVM>c ) : c ∈ A) . (7.6)

The dimension of r, dim(W) satisfies

r ≤ min{dim(V), dim(im(M>c ) : c ∈ A)} ≤ min{d, mk} . (7.7)

Naturally, the learner can parameterize the estimate directly in W , since
any direction ν⊥ ∈ W⊥ is either not observed or the parameters in M
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are invariant in this direction. Let W : Rr → Rd be the linear embedding
with im(W) = W and W>W = 1r. The least-squares estimate on W with
regularizer λ > 1 and prior estimate θ0 ∈ M is

ϑ̂t = arg min
ϑ∈Rr

t−1

∑
s=1
‖MasWϑ + (1d −WW>)θ0 − ys‖2 + λ‖ϑ−W>θ0‖2 .

(7.8)

Let Wt = ∑t−1
s=1(MatW)>(Mat W)+ 1r. The confidence set in Rd is defined by

Et,δ = {θ ∈ Rd : ‖W>θ − ϑ̂t‖2
Wt
≤ βWt,δ} ,

where βWt,δ , (σ2
√

2 log 1
δ + log det(Wt)

det(λ1r)
+
√

λ)2. Note, the confidence set is

unconstrained on W⊥ and satisfies P[∀t ≥ 1, θ ∈ Et,δ] ≥ 1− δ. As before,
we set βWt = βWt,1/t2 and Et = Et,1/t2 .

To define a gap estimate that can be computed in O(|A|) steps, let
θ̂Mt , arg minθ∈M ‖W>θ − ϑ̂t‖2

Wt
be a parameter in the model set, that is

closest to the mean estimate ϑ̂t on W in Wt-norm. The empirically best
action is ât , arg maxa∈A〈φa, θ̂Mt 〉. The gap estimate is defined using the
relaxation at ât,

∆̂Wt (a), δt + max
θ∈Et∩M

〈φât − φa, θ〉, where δt , max
θ∈Et∩M

max
b∈A
〈φb − φât , θ〉 .

(7.9)

Note that the gap estimate can be computed by solving 2k linear programs
overM with positive semi-definite quadratic constraints. The gap estimate
satisfies ∆(a) ≤ ∆̂Wt (a) with probability 1− 1/t2 in all rounds. Lastly, the
information gain is

IWt (a) = 1
2

log det
(
1m + (MaW)W−1

t (MaW)>
)

, (7.10)

and the total information gain is γWn = 1
2 log det(Wt+1). The main advan-

tage of introducing the projection is that the bounds on βWt and γWn scale
with r ≤ d. Further, the learner directly works with r-dimensional quanti-
ties instead of the over-parameterized parameter in Rd. The improvement
is important in finite partial monitoring, where the dimension d is often
exponential in r.

It remains to check that the information ratio is still bounded. The worst-
case regret bound for the globally observable case is summarized in the
next theorem.
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Theorem 7.1. On any game with constrained parameter set and bounded global
alignment αV as defined in Eq. (7.3), the regret of IDS with gap estimates ∆̂Wt
(Eq. (7.9)) and information gain IWt (Eq. (7.10)) satisfies,

Rn ≤ n2/3
(

32αVE
[

βWn
]
E
[
γWn
])1/3

+O(1) .

Proof. The proof follows along the lines of Theorem 6.1, where we need to
check that the projections do not remove important information and using
the definition of the alignment constant in Eq. (7.3).

The only difference is in the way we upper bound the gap estimate. Note
that for ât = arg maxa∈A〈φa, θ̂Mt 〉 it holds that

δt = ∆̂Wt (ât) = max
θ∈Et∩M

max
b∈P
〈φb − φât , θ〉

≤ max
θ∈Et∩M

max
b∈P
〈φb − φât , θ − θ̂Mt 〉 .

Without loss of generality, we choose ât ∈ P . Using the definition of the
global alignment constant αV , we find

∆̂Wt (ât)
2 ≤ max

θ∈Et∩M
max
b∈P
〈φb − φât , θ − θ̂Mt 〉2

≤ αV max
θ∈Et∩M

max
c∈A
‖Mc(θ − θ̂Mt )‖2

= αV max
θ∈Et∩M

max
c∈A
‖McWW>(θ − θ̂Mt )‖2 = (?) .

The equality follows from McWW>(θ − θ̂Mt ) = Mc(θ − θ̂Mt ), which holds
by the definition of W, and the fact that (θ − θ̂Mt ) ∈ V . Continuing,

(?)
(i)
≤ αV max

θ∈Et∩M
max
c∈A

max
ṽ∈Rr

‖McWV−1/2
t ṽ‖

‖ṽ‖2 ‖V1/2
t W>(θ − θ̂Mt )‖2

(ii)
≤ 4αVβWt max

c∈A
λmax

(
McWV−1

t (McW)>
)

≤ 16αVβWt max
c∈A

It(c) . (7.11)

The upper bounds (i) and (ii) follow from basic linear algebra, and (ii)
further uses that {θ, θ̂Wt } ⊂ Et. The remaining steps for bounding the
information ratio and the regret are the same as in Eq. (6.10).

The locally observable case is summarized in the next theorem.
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Theorem 7.2. On any game with constrained parameter set the regret of IDS with
gap estimates ∆̂Wt (Eq. (7.9)) and information gain IWt (Eq. (7.10)) satisfies,

Rn ≤ 8
√

E[ᾱVn βWn ]E[γWn ]n +O(1) ,

where ᾱVn = 1
n ∑n

t=1 αV (Et ∩M) is the average realized local alignment (Eq. (7.5)).

Proof. Again, the proof is very similar to the proof of Theorem 6.2. Let c ∈
P+(Et ∩M) be any action in the extended plausible Pareto set. Repeating
the steps leading to Eq. (7.11) for the local version, we find

∆̂Wt (c) ≤ 2 max
ν,ω∈Et∩M

max
a,b∈P∗(Et∩M)

〈φa − φb, ν−ω〉 .

And consequently,

∆̂t(c)2 ≤ 4 max
ν,ω∈Et∩M

max
c′∈P+(Et∩M)

‖Mc′(ν−ω)‖2

≤ 16βWt αV (Et ∩M) max
c′∈P+(Et∩M)

λmax
(
(Mc′W)Vt(Mc′W)>

)
≤ 64βWt αV (Et ∩M) max

c′∈P+(Et∩M)
It(c′) .

The bound on the information ratio is now immediate. Note, the increase
by a factor 2 compared to Theorem 6.2 is from using the faster version of
the gap estimate.

7.3 finite stochastic partial monitoring

In this section, we complete the picture by deriving bounds for IDS in the
classical finite partial monitoring setting, using the results established for
constrained parameter sets. As in the unconstrained case, the regret bounds
for IDS match the established classification of finite partial monitoring. The
result follows by showing that the classical definitions match the definitions
we introduced for the constrained setting in Section 7.1. We further derive
specialized bounds on the alignment constants.

Historically, the finite setting is often formulated with losses instead of
rewards. For consistency with our presentation, we use the equivalent setup
with rewards. The loss formulation is easily recovered by flipping the sign
of the feature vectors. A finite partial monitoring game consists of actions
A = [k], a finite set of signals Σ = [m] used for the feedback and a finite set
of outcomes X = [d] that determines reward and feedback for each action.
Reward and feedback are defined by,
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i) a reward function R : A×X → [0, 1],

ii) a signal function Φ : A×X → Σ.

The learner has access to both R and Φ. In each round t = 1, . . . , n of the
game, the learner chooses an action at ∈ A. In the stochastic version of
the problem, the outcome xt is sampled from an unknown and fixed dis-
tribution ϑ ∈P(X ). The learner observes a signal σt = Φ(at, xt) ∈ Σ and
obtains reward R(at, xt). Neither the reward nor the outcome is revealed
to the learner.

Let us introduce vector notation to describe the finite setting in the
linear framework. Let ea ∈ Rk, ex ∈ Rd and eσ ∈ Rm be the basis vec-
tors corresponding to action a ∈ A, outcome x ∈ X and signal σ ∈ Σ.
We use R ∈ Rk×d as a matrix and function interchangeably, such that
e>a Rex = R(a, x). Further, we introduce reward features φa = R>ea ∈ Rd,
defined as the row of R corresponding to action a. For each action a ∈ A,
the observation matrix Sa ∈ {0, 1}s×d is such that e>σ Saex = 1(Φ(a, x) = σ).
We use the symbol Sa instead of Ma to emphasize the particular structure
of the feedback map. The distribution ϑ ∈P(X ) is identified with a vector
in the (d− 1)-dimensional probability simplex. In particular, Saϑ is the dis-
tribution over the observed signals for action a ∈ A. If the learner chooses
action at ∈ A in round t, and the outcome is xt ∈ X , then the corresponding
observation vector is yt = eσt = Sat ext ∈ Rm. The best action is

a∗ = arg max
a∈A

{
Ex∼ϑ[R(a, x)] = 〈φa, ϑ〉

}
,

which is chosen arbitrarily if it is not unique.

7.3.1 Examples

Let us first give a few examples typically encountered in the finite setting.

Example 7.3 (Multi-Armed Bandits). In games with bandit information,
the learner observes the reward of each action a ∈ A by playing it. Since
we allow only finitely many signals, the reward of each arm is also one of
finitely many values. For Bernoulli bandits with k arms specifically, A = [k],
Σ = {0, 1} and X = {0, 1}k. The reward and feedback functions are

R(a, x) = Φ(a, x) = xa .

A consequence of the finite partial monitoring setup is that the parameter
dimension d = 2k is exponentially large in the number of arms. However,
the subspaceW in Eq. (7.6) has dimension r ≤ 2k.
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Example 7.4 (Dynamic Pricing). One of the most notable applications
of finite partial monitoring is dynamic pricing. This game is between a
seller and a potential customer. The learner takes the role of the seller
with the goal to optimally price a product. The action and outcome sets
are a (discrete) set of prices corresponding to an offer and the price the
customer is willing to pay, e.g. A = X = {$1, $2, $3}. The feedback is
whether the customer buys the product (a ≤ x, Φ(a, x) = y), or not (a > x,
Φ(a, x) = n). The reward consists of a fixed opportunity cost c > 0 and the
difference between the offer and the price the customer would have payed,
R(a, x) = (a− x)1(a ≤ x)− c1(a > x). With c = 2 and X , A as above, the
corresponding loss and signal matrices are:

R =

 0 −1 −2

−2 0 −1

−2 −2 0

 Φ =

y y y

n y y

n n y


Example 7.5 (Linear Counter Example). Consider the finite game defined
by reward and signal matrices

R =

(
1 1

0 0

)
, Σ =

(
0 0

0 0

)
.

The signal matrix uses only one symbol, therefore the learner cannot dis-
tinguish the outcomes. However, the rewards are such that the first action
is always optimal, so in finite partial monitoring a good algorithm has
zero regret. On the other hand, an algorithm for the linear setting has
to account for the case when ϑ = (−

√
2,−
√

2), and the second action is
optimal. Consequently, any learner suffers linear regret on at least one
of the two cases. The different assumptions on ϑ mean that this game is
hopeless in the directionally unconstrained linear setting, while in finite
partial monitoring it is trivial.

7.3.2 Classification of Finite Partial Monitoring

As in the linear case, the smallest possible regret that a learner can hope to
achieve depends on the structure of the reward and signal functions. For
example, in bandit games the optimal worst-case regret is Θ(n1/2), but for
dynamic pricing it is Θ(n2/3) [16]. It is also easy to construct examples
where the learner immediately knows the best action and suffers no regret;
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as well as instances where the feedback is insufficient to determine the
optimal action, and consequently linear worst-case regret is unavoidable.

Significant effort has been put into classifying all possible cases, and it
is now understood that any finite game belongs to one of four categories:
trivial, easy, hard and hopeless. The definitions of the game categories is
based on the geometric structure of R and Φ. Our presentation follows the
standard terminology [e.g., 18]. As before, the cell Ca of action a ∈ [k] is
defined as the set of outcome distributions for which a is optimal,

Ca = {λ ∈P(X ) : ∀b ∈ [k], (ea − eb)
>Rλ ≥ 0} .

An action with dim(Ca) = d − 1 is called Pareto optimal and degenerate
otherwise if Ca is not empty. Degenerate actions can be optimal, but not
uniquely so. The set of Pareto optimal actions is P ⊂ A. Actions a
and b are called a duplicate if φa = φb. Note that duplicate actions may
differ on the signal function. A game is called non-degenerate if it has no
degenerate actions and no duplicates. Two pareto optimal actions a, b
are called neighbors if dim(Ca ∩ Cb) = d− 2. The neighborhood Nab of two
neighbouring actions a and b is the set of actions

Nab = {c ∈ A : dim(Ca ∩ Cb ∩ Cc) = d− 2} .

Some illustrated examples are given by Lattimore & Szepesvari [103, §37].
Recall that the features in finite partial monitoring are defined as φa , R>ea.
A finite partial monitoring game is called globally observable if

∀a, b ∈ P : φa − φb span(im(S>c ) : c ∈ A) . (7.12)

A finite partial monitoring game is called locally observable if

∀ neighboring a, b ∈ P , φa − φb span(im(S>c ) : c ∈ Nab) . (7.13)

Using the notion of local and global observability, the game categories are
defined as follows:

trivial : Games with only one Pareto optimal action or duplicates.

easy : Locally observable games that are not trivial.

hard : Globally observable games that are not easy or trivial.

hopeless : Games that are not globally observable or trivial.

The classification theorem establishes the regret rate for each category.
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Theorem 7.3 (Classification of finite partial monitoring, [16, 105]). For any
finite partial monitoring game, the minimax regret R∗n satisfies

R∗n =



0 for trival games,

Θ(n1/2) for easy games,

Θ(n2/3) for hard games,

Ω(n) otherwise, for hopeless games .

The classification theorem for finite stochastic partial monitoring was
proved separately by a number of authors, many of whom ultimately
collaborated in writing a comprehensive journal paper [16], which left only
logarithmic factors on the table. These were later resolved by Lattimore &
Szepesvári [105].

As we have pointed out already, the classification result for the linear
case in Section 6.4 and the finite case do not imply each other. Naturally,
the upper bounds in the unconstrained linear case apply in the finite setting
but are not necessarily tight, as evident by Example 7.5. Another difference
is that the linear setting permits infinite observation (and action) spaces,
which are not usually covered by existing results in the finite setting.

7.3.3 Simplex Constraints

In finite partial monitoring, the parameter that defines the reward 〈φa, ϑ〉
is a distribution ϑ ∈P(X ) over outcomes. Therefore, the model set is the
simplexM = {θ ∈ [0, 1]d, ‖θ‖1 = 1}. The difference space V = span({ν−
ω : ν, ω ∈ M} is such that V⊥ = span(1d), where 1d ∈ Rd is the vector of
all ones. Consequently, the projection map PV satisfies ker(PV ) = span(1d).

In the setting with general parameter constraints, the estimation condi-
tions in Eqs. (7.2) and (7.4) are based on projected features and feedback
maps. Coincidentally, the direction 1d removed by the projection PV is the
only direction that is always observed with the feedback maps Sa. In other
words, the zero-one structure of Sa implies that 1d ∈ span(im(S>a ) : c ∈ A).
It also explains why the projection does not appear in the classical def-
initions of local and global observability for finite games in Eqs. (7.12)
and (7.13). The projection is however essential to correctly classify games
with general parameter constraints such as Examples 7.1 and 7.2.

The next lemma clarifies the relation between global observability in
finite games defined in Eq. (7.12), and the definition of the global alignment
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constant αV in Eq. (7.3). Let S = (S>c )>c∈A ∈ Rmk×d be the matrix formed
by vertically stacking the observation matrices. An estimation vector for
a pair of pareto optimal actions a and b is a vector wab ∈ Rmk such that
S>wab = φa − φb. By definition, for any x ∈ X ,

R(a, x)− R(b, x) = 〈φa − φb, ex〉 = ∑
c∈A
〈wc

ab, Scex〉 ,

where wc
ab ∈ Rm are the coordinates of wab associated with action c. Simi-

larly to Lemma 6.1, we can bound the alignment constant by bounding the
norm of the estimation vector.

Lemma 7.1. A finite partial monitoring game is globally observable if and only if
αV < ∞. In this case further

αV ≤ max
a,b∈P

min
S>wab=φa−φb

(
∑

c∈A
‖wc

ab‖
)2

≤ mdkd+2 ,

where the minimum is over estimation vectors wab ∈ Rmk and wc
ab ∈ Rm denotes

the subset of coordinates corresponding to action c ∈ A.

Proof of Lemma 7.1. The proof of the first inequality is almost identical to
the unconstrained linear case Lemma 6.1. Note that by the definition of
global observability, there exists a vector w ∈ Rmk such that φa − φb = w>abS.
The inequality follows by optimizing over the estimation vectors,

αV = max
a,b∈P

max
ν:〈ν,1〉=0

min
c∈A
〈φa − φb, ν〉2
‖Scν‖2

= max
a,b∈P

max
ν:〈ν,1〉=0

min
c∈A
〈w>abS, ν〉2
‖Scν‖2

= max
a,b∈P

max
ν:〈ν,1〉=0

(
∑c∈A〈wc

ab, Scν〉
)2

maxc∈A ‖Scν‖2

≤ max
a,b∈P

(
∑

c∈A
‖wc

ab‖
)2

.

To obtain the second inequality, note that by [103, Proposition 37.18], wc
ab

can be chosen so that ‖wc
ab‖∞ ≤ d1/2kd/2. The result follows from the

Cauchy-Schwarz inequality to bound ‖wc
ab‖ ≤

√
m‖wc

ab‖∞.
The equivalence follows if we show that a, b ∈ P with φa − φb /∈

span(im(S>c ) : c ∈ A) implies αV = ∞. Note that because a, b are Pareto
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optimal, there exists distributions νa, νb ∈P(X ) such that |〈φa − φb, νa −
νb〉| > 0. We can choose ν as the projection of νa − νb onto φa − φb, for
which we get Scν = 0 for all c ∈ A by assumption, hence αV = ∞.

In the next lemma, we bound αV (E) for locally observable games and
make a connection to the definition of local observability. For a pair of
Pareto optimal actions a, b ∈ P , let Eab be the convex hull of the relative
interior of Ca ∪ Cb.

Lemma 7.2. A finite partial monitoring game is locally observable if and only if
for all pairs of neighbors a and b, αV (Eab) < ∞. In this case,

αV (Eab) ≤ min
w>abS=φa−φb

(
∑

c∈Eab

‖wc
ab‖
)2

≤ md|Nab|d+2 ,

where wab ∈ Rmk. Further, for convex E ⊂P(X ) with non-empty interior and
assuming that P∗(E) contains more than one non-duplicate Pareto optimal action,
P∗(E) = ∪a,b∈P∗(E),neighbors Eab and

αV (E) ≤
(

∑
a,b∈P∗(E)

a,b neighbors

αV (Eab)
1/2
)2

≤ 4mdkd+2 .

For non-degenerate games, αV (E) ≤ 4k2m3.

Proof. The proof of the equivalence and the bound on αV (Eab) follows
along the lines of Lemma 7.2. The decomposition of P∗(E) as a union
over the neighborhoods of pareto optimal action a, b ∈ P∗(E) follows from
Lemma 6.5. The bound on αV (E) is obtained as direct consequence of the
decomposition. The bound on αV (E) for non-degenerate games follows
from [103, Proposition 37.18], which shows that for these games wc

ab can be
chosen to be zero for c /∈ {a, b} and ‖wc

ab‖∞ ≤ m otherwise.

7.3.4 IDS for Finite Partial Monitoring

We are now in the position to apply IDS for the constrained setting to finite
partial monitoring. The definitions for the gap estimate and the information
gain are specialized from Eqs. (7.9) and (7.10), with the simplex as model
set,M = {θ ∈ [0, 1]d, ‖θ‖1 = 1}. The space generated by difference vectors
in M is V = {v ∈ Rd, 〈v, 1d〉 = 0}, where 1d ∈ Rd is the vector of all
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Algorithm 7: IDS for Finite Partial Monitoring

Input: Regularizer λ, prior estimate θ0 ∈P(X ), norm bound
‖θ − θ0‖ ≤ B, embedding W : Rr → Rd

1 for t = 1, 2, 3, . . . do
// Embedded regularized least-squares:

2 ϑ̂Wt ← arg minϑ∈Rr ∑t−1
s=1 ‖SasWϑ− ys‖2 + λ‖ϑ−W>θ0‖2

3 θ̂Mt ← arg minθ∈P(X ) ‖W θ̂Wt − ϑ̂Wt ‖2
Wt

// projected estimate

4 β1/2
t ← 2

√
2 log(t) + log

(
det(Wt)
det(λ1r)

)
+
√

λB

5 Et = {θ ∈ Rd : ‖W>θ − ϑ̂Wt ‖2
Wt
≤ βt} // confidence set

6 ât ← arg maxa∈A〈φa, θ̂Mt 〉 // best action

7 δt , maxθ∈Et∩P(X ) maxb∈A〈φb − φât , θ〉 // estimation error

8 ∆̂Wt (a)← δt + maxθ∈Et∩P(X )〈φât − φa, θ〉 // gap estimates

9 IWt (a)← 1
2

log det
(
1m + (MaW)W−1

t (MaW)>
)

// info. gain

10 µt ← arg minµ∈P(A)
{

Ψt(µ) =
∆̂t(µ)

2

It(µ)

}
// IDS distribution

11 Choose at ∼ µt, observe eσt ∼ Sat ϑ

ones. Also recall the definition ofW in Eq. (7.6) and r = dim(W). Refer to
Algorithm 7 for the complete algorithm.

Before the regret bounds, we address two remaining technical differences
in finite partial monitoring. The first is that the observation likelihood is
defined by the outcomes. This means, the noise is added on the parameter,
whereas in the linear formulation we assumed that the noise is added to
the evaluation. Fortunately, the proof of the confidence set in Lemma 3.1 is
flexible enough to accommodate this change. The new result is summarized
in the next lemma.

Lemma 7.3. Assume the outcome distribution ϑ ∈P(X ) satisfies ‖ϑ− ϑ0‖ ≤ B.
Let (xt)n

t=1 be a i.i.d. sequence sampled from ϑ. For any sequence of actions
a1, . . . an with corresponding observations yt = Sat ext , the least squares estimator
ϑ̂t defined in (7.8) satisfies for all δ ∈ [0, 1],

P[∀t ≥ 1, ‖ϑ̂−W>ϑ‖2
Wt
≤ βt,1/δ] ≥ 1− δ ,

where β1/2
t,1/δ = 2

√
2 log 1

δ + log
(

det(Wt)
det(λ1r)

)
+
√

λB.
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Although not quite an immediate result, the claim follows along the lines
of [3, Theorem 2]. The proof is deferred to the end of the section.

The second difference is that we can use the special structure of the
feedback maps Sa to derive more specific bounds on the information gain
and the confidence coefficient.

Lemma 7.4. The total information gain γn = ∑n
t=1 It(at) for Eq. (7.10) with

Ma = Sa satisfies

γn ≤ r log

(
1 +

n

∑
t=1

rank(Sat)

)
≤ r log

(
1 +

rn
λ

)
.

Proof. Telescoping shows that γn = log det Wn+1 − log det(λ1r). Denote
by w1, . . . wr the eigenvalues of Wn+1. By the inequality of arithmetic and
geometric means,

det(Wn+1) =
r

∏
i=1

wi ≤
(

1
r

tr(Wn+1)

)r
=

(
λ +

1
r

n−1

∑
t=1

tr(W>S>at SatW)

)r

The result follows by noting that

tr(W>S>at SatW) = ‖SatW‖2
F ≤ rank(Sat)‖Sat W‖2

2

≤ rank(Sat)‖Sat‖1‖W‖∞ ≤ rank(Sat)r ≤ r2 .

For the last step, we used that ‖Sat‖1 ≤ 1, ‖W‖∞ ≤
√

r‖W‖2, and lastly
W>W = 1r, hence ‖W‖2 ≤

√
r.

With the last two lemmas, the regret bounds for finite partial monitoring
follow from Theorems 7.1 and 7.2.

Corollary 7.1. On globally observable finite partial monitoring games, IDS
(Algorithm 7) satisfies

Rn ≤ O
(
(mdkd+2)1/3(rn log(nr))2/3

)
.

On locally observable finite partial monitoring games, the regret is at most

Rn ≤ O
(√

mdkd+2n r log(nr)
)

.

On non-degenerate, locally observable finite partial monitoring games, the regret
is at most

Rn ≤ O
(

ks3/2√n r log(nr)
)

.
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On trivial games, mina∈A ∆̂t(a) = 0 in all rounds, and IDS always plays the
Pareto optimal action.

The upper bounds match the classification result in Theorem 7.3. Notably,
the algorithm does not make explicit use of the cell structure and adapts to
the different game categories automatically. Lastly, we provide the proof of
the confidence bound with parameter noise.

Proof of Lemma 8.3. The proof is almost identical to [3, Theorem 2], therefore
we sketch only the key steps. For outcome xt, define the parameter-noise
vector ξt = ext − ϑ, where ϑ ∈ P(X ) ⊂ Rd is the outcome distribution.
First, using the closed form solution of the least-squares estimator, we find

‖ϑ̂t −W>ϑ‖Wt ≤ ‖∑t−1
s=1 W>S>as Sas ξs‖W−1

t
+
√

η‖ϑ− ϑ0‖ .

Consider any a ∈ A and note that for a unit vector u ∈ Rm,

|u>Saξt| ≤ ‖u‖∞‖Saξt‖1 ≤ ‖Saext − Saϑ‖1 ≤ 2 .

Hence Saξt is a 4-subgaussian random vector in Rm. For any ν ∈ Rr define

Qt(ν) = exp

(
1
2
〈ν,

t−1

∑
s=1

W>S>as Sas ξs〉 −
1
2
‖ν‖2

Wt

)
.

Note that Qt is a super-martingale:

Et[Qt+1] = QtEt

[
exp

(
1
2
〈ν, W>S>at Sat ξt〉 −

1
2
‖Wν‖2

S>at Sat

)]
≤ Qt .

The last step follows from,

Et

[
exp

(
1
2
〈ν, W>S>at Sat ξt〉

)]
= Et

[
exp

(
1
2
〈Sat Wν, Sat ξt〉

)]
= Et

[
exp

(
1
2
‖SatWν‖〈 SatWν

‖SatWν‖ , Sat ξt〉
)]

≤ exp
(

1
2
‖Sat Wν‖2

)
= exp

(
‖Wν‖2

S>at Sat

)
.

The inequality follows because Sat ξt is a 4-subgaussian vector. Finally, let
h = N (0, (η1r)−1). Then the following Gaussian integral can be computed
in closed-form,

Q̄t =
∫

Rd
Qt(ν)dh =

(
det(η1r)

det(Wt)

)1/2

exp

(
1
2
‖

t−1

∑
s=1

W>S>as Sas ξs‖2
W−1

t

)
.

The result follows using a maximal inequality on supt≥1 log Q̄t.
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7.4 contributions and related work

The results on finite partial monitoring and constrained parameter sets were
developed together with Tor Lattimore and Andreas Krause. For related
work on partial monitoring, see Section 1.2.3.



8
E X T E N S I O N S A N D A P P L I C AT I O N S

In the last chapter before the conclusion, we present two extensions of
the IDS framework, demonstrating the generality of the results. First, in
Section 8.1, we introduce a novel contextual formulation of linear partial
monitoring that generalizes the well-known linear contextual bandit setting.
When the context is sampled from a fixed distribution, we extend the
definition of the information ratio to include the expectation over the
randomness of the context. By optimizing the contextual information ratio,
we obtain IDS sampling distributions that include the context distribution
for exploration.

Second, in Section 8.2, we derive a kernelized version of IDS. This signifi-
cantly increases the range of possible applications, for example, by making
use of practically relevant smoothness priors. We also supply a variety of
example applications that illustrate the way the framework can be used
in practice. The examples include kernelized dueling bandits as well as a
novel bias-robust algorithm for regret minimization.

8.1 contextual partial monitoring

In the contextual bandit problem, the learner receives a context in each
round before choosing an action. In applications, the context represents
additional information available to the learner, such as, for example, tem-
perature measurements, daytime, or the profile of a user visiting a website.
These factors can change from round to round and are not controlled by the
learner, but the reward depends on both the context and the chosen action.

Formally, let Z be a context set and zt ∈ Z the context presented at
time t. To avoid measure theoretic complications and ensure computability,
we assume that the action and context sets are finite. The reward function
f : A × Z → R is extended with the contextual argument. For each
context z ∈ Z , a subset of actions Az ⊂ A is available for playing. The
learner competes with the best action a∗(z) = arg maxa∈Az f (a, z) chosen

139
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in hindsight for each the context z ∈ Z among the set Az. For a sequence
of contexts (zt)n

t=1, we define the contextual regret,

Rn(π, f , (zt)
n
t=1) = E

[
n

∑
t=1

f (a∗(zt), zt)− f (at, zt)

]
.

A contextual linear partial montioring game is defined by three functions:

A : Z → 2A , z 7→ Az (available actions)

φ : A×Z → Rd , (a, z) 7→ φz
a (reward features)

M : A×Z → Rm×d , (a, z) 7→ Mz
a (observation maps)

We further define the joint action spaceAZ , ×z∈ZAz. The reward function
is parameterized with a single θ ∈ Rd shared among all contexts such that
fθ(a, z) = 〈φz

a, θ〉. The feedback in round t for action at and context zt is
yt = Mz

aθ + εt, where εt ∈ Rd is conditionally independent ρ-sub-Gaussian
noise. The linear contextual partial monitoring strictly generalizes the linear
contextual bandit setting.

In the next two sections, we develop IDS policies for the contextual
partial monitoring setting. The first variant directly extends the algorithm
proposed in Section 6.3 and optimizes the sampling distribution of each
context. For the second variant, we assume that the context is sampled
from a fixed distribution. We will see that this allows for much weaker
conditions where no-regret is possible.

For simplicity, we focus on the case with directionally unconstrained set
M = {θ ∈ Rd : ‖θ‖ ≤ 1} and assume boundedness of the observation
and reward features ‖Mz

a‖2 ≤ 1 and diam(φ(a, z) : a ∈ A, z ∈ Z) ≤ 1.
Note that estimation can be done in the same way as before, using the
least-squares estimator θ̂t and confidence set Et defined in Section 6.3.

8.1.1 Conditional IDS

In the first step, we directly extend the definitions of the gap estimate and
the information gain to the contextual argument. For the gap estimate,
we use the computationally faster version from Section 6.3.2. Let ât(z) =
arg maxa∈A〈φz

a, θ̂t〉 be the empirically best action for context z ∈ Z . The
gap estimate is

∆̂t(a, z) = min
{

max
b∈Az
〈φz

b − φz
a, θ̂t〉+ β1/2

t ‖φz
b − φz

ât(z)
‖V−1

t
, 1
}

. (8.1)
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The (undirected) information gain for action a ∈ A and context z ∈ Z is

IDET
t (a, z) = 1

2
log det(1 + Mz>

a V−1
t Mz

a) . (8.2)

Conditional IDS is the policy that optimizes the information ratio for the
observed context,

µIDS
t (zt) = arg min

µ∈P(Azt )

{
Ψ(µ, zt) =

∆̂t(µ, zt)2

It(µ, zt)

}
. (8.3)

The computational complexity required to find the minimizer of the in-
formation ratio is the same as in the non-contextual case, since the IDS
distribution is computed only for the given context. For the analysis, we
extend the notion of the alignment constant for any convex E ⊂ M with
the contextual argument,

αz(E) = max
ν∈Rd

max
a,b∈A∗z (E)

min
c∈A+

z (E)

〈φz
a − φz

b, ν〉2
‖Mz

c ν‖2 , (8.4)

where we define contextual extensions of the (extended) plausible maxi-
mizer as follows:

Az
∗(E) = ∪θ∈E{a ∈ Az : 〈φz

a, θ〉 = max
b∈Az
〈φz

b, θ〉} ,

Az
+(E) = {a ∈ Az : φz

a ∈ conv(φz
b : b ∈ Az

∗(E))} .

The next two results are immediate extensions of the upper bound for
globally and locally observable games. These bounds are only meaningful if
the game is globally or locally observable for each observed context zt ∈ Z .

Corollary 8.1. For any Ft-predictable sequence (zt)n
t=1 in Z , the regret of condi-

tional IDS satisfies,

Rn ≤ n2/3(32E[ᾱnβn]E[γn])
1/3 +O(1) ,

where ᾱn = 1
n ∑n

t=1 αzt(M) is the average global alignment on the observed
sequence of contexts.

Proof. The claim follows along the lines of Theorem 6.1, noting that the
generalized information ratio (Eq. (2.7)) is bounded as follows:

Ψ3,t(µ
IDS
t ) =

∆̂t(µIDS
t )3

IDET
t (µIDS

t )
≤ 32αzt(M)βt .

For the last step of the proof, we make use of Theorem 2.2 using a time-
dependent bound on Ψ3,t.
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Corollary 8.2. For any Ft-predictable sequence (zt)n
t=1 in Z , the regret of condi-

tional IDS satisfies

Rn ≤ 4
√

E[ᾱnβn]E[γn]n +O(1) ,

where ᾱn = 1
n ∑n

t=1 αzt(Et) is the average local alignment constant for the sequence
of confidence sets (Et)n

t=1 realized by the algorithm.

Proof. Along the lines of Theorem 6.2.

In particular, in the bandit setting αzt(Et) ≤ 4 holds independently of
the context (c. f. Example 6.1). Therefore, Corollary 8.2 recovers the same
bounds as UCB in the linear contextual bandit setting. Moreover, we
immediately get a regret bound for the contextual extension of the dueling
bandit setting in Example 6.4.

8.1.2 Using the Context Distribution for Exploration

Perhaps surprisingly, the contextual case allows for much weaker conditions
under which the learner can achieve sublinear regret. This is possible if
the learner exploits the distribution of contexts. Here we study the case
where the context follows a fixed and known distribution χ ∈P(Z). If the
distribution is unknown, it is natural to replace χ with an online estimate
of the context distribution, c. f. [160]. It is instructive to think about some
examples:

Example 8.1 (Non-Informative Context). Consider the case where for some
z ∈ Z the learner obtains no information, i. e. Mz

a = 0 for all a ∈ Az; we call
these non-informative contexts. For such non-informative contexts, the only
sensible choice is the greedy action. The learner has to explore in rounds
where information is available and the sampling distribution needs to be
sufficiently diverse to account for rounds where the learner is forced to play
greedily. Note that while there can be vanishing information gain in some
rounds, the expected information gain with respect to the distribution χ is
non-zero. A natural application is in customer surveys: Clients who agree
to provide feedback can be asked specifically targeted questions, whereas
feedback from other customers is never observed.

Example 8.2 (Greedy Exploration). Another interesting case is when feed-
back from the optimal action in each context is sufficiently diverse to allow
estimation of the parameter without further exploration. In such cases, the
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greedy algorithm can be highly effective. This effect has been studied in
the bandit literature before [20, 72]. One can think of the context as part
of the action space, where the sampling distribution is imposed by the
environment.

The conditional version of IDS in Eq. (8.3) does not depend on the
context distribution χ. It is easy to see that it behaves sub-optimally in
both examples, and the bounds in Corollaries 8.1 and 8.2 become vacuous
when a context occurs where the information gain is zero for all actions. To
understand how the randomness of the context affects the regret bounds, we
include the contextual distribution in the information ratio. By optimizing
the marginals of the joint distribution over action and context, we obtain an
IDS algorithm that leverages the contextual distribution for exploration.

Denote by P×(AZ ) = ×z∈ZP(Az) the joint space of marginal sampling
distributions for each context. For context distribution χ ∈ P(Z) and
marginals ξ ∈P×(AZ ), we define the integrated features

φ
χ
ξ ,

∫
Z

∫
Az

φz
adξ(a, z)dχ(z) ,

and we let φ
χ
a , φz

ea , where ea for a ∈ AZ is a deterministic choice in each
context. The gap estimate for context distribution χ and marginals ξ is
defined as

∆̂χ
t (a, z), min

{
max
b∈AZ

〈φχ
b − φz

a, θ̂t〉+ β1/2
t ‖φ

χ
b − φ

χ
ât
‖V−1

t
, 1
}

. (8.5)

Up to the truncation, Jensen’s inequality shows that this gap estimate is
never worse than the conditional gap defined in Eq. (8.1):

max
b∈AZ

〈φχ
b − φ

χ
ξ , θ̂t〉+ β1/2

t ‖φ
χ
b − φ

χ
ât
‖V−1

t

≤
∫
Z

∫
A

max
b∈AZ

〈φz
b − φz

a, θ̂t〉+ β1/2
t ‖φz

b − φz
ât
‖V−1

t
dξ(a, z)dχ(z) . (8.6)

Note that the right-hand side of the last equation can be computed in
O(|A||Z|) steps, compared to the left-hand side, which requires O(|A||Z|)
steps in general.

As information gain we use the same definition as in Eq. (8.2) with the
convention that

Iχ
t (ξ) =

∫
Z

∫
Az

It(a, z)dξ(a, z)dχ(z) .
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Contextual IDS is defined to optimize the marginals ξ ∈PZ ,

ξIDS
t , arg min

ξ∈P×(AZ )

{
Ψχ

t (ξ) =
∆̂χ

t (ξ)
2

Iχ
t (ξ)

}
. (8.7)

The action at ∼ ξIDS
t (·, zt) is sampled from the marginal corresponding to

the observed context zt. In the joint minimization of the information ratio,
the contextual distribution now χ contributes to exploration and a smaller
information ratio.

Note that optimizing the marginals is computationally more demanding
than just optimizing the sampling distribution conditioned on the con-
text. Since the information ratio is a convex function of the distribution
(Lemma 2.3), we can optimize the marginals using standard solvers. A par-
ticularly simple implementation is with the Frank-Wolfe algorithm [59, 76],
as solving linear functions over P×(AZ ) is immediate. The contextual IDS
algorithm with Frank-Wolfe is summarized in Algorithm 8. A numerical
demonstration of the contextual setting is in Fig. 8.1.

Before presenting the regret bounds, we extend the definition of the
alignment constant. Let E ⊂ Rd be a convex set. The definition of plausible
maximizers is extended to the product space AZ∗ (E), ×z∈ZA∗z (E) and
AZ+(E), ×z∈ZAz

+(E). The expected alignment for χ ∈P(Z) is

αχ(E), max
ω∈Rd

max
a,b∈AZ∗ (E)

min
c∈AZ+(E)

〈φχ
a − φ

χ
b , ω〉2∫

Z ‖Mz
c(z)ω‖2dχ(z)

. (8.8)

The next lemma shows that this definition is strictly better than the con-
ditional alignment constant αz(E) for fixed z ∈ Z . Moreover, the lemma
shows that αχ(E) is bounded as long as for all z ∈ Z and a, b ∈ Az, there
exists some other context z′ ∈ Z that occurs with positive probability and an
action c ∈ Az′ such that the gap 〈φz

a − φz
b, ν〉 can be estimated from observa-

tions of c in context z′. This includes cases where αz(E) = ∞, for example,
when there is no information available in context z. The more general
definition captures the intuition that the learner can wait for a realization
of the context z′ to collect the data for estimating the gap 〈φz

a − φz
b, ν〉 more

easily and at low cost.

Lemma 8.1. Let αχ(E) be the expected alignment (8.8) and αz(E) the conditional
alignment (8.4). Then, for any E ⊂ Rd convex and χ ∈P(Z) it holds that

αχ(E) ≤
∫
Z

αz(E)dχ(z) ≤ max
z∈supp(χ)

αz(E) ,
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Algorithm 8: Contextual IDS with Frank-Wolfe
Input: Action set A, context set Z , context distribution χ ∈P(Z),

Frank-Wolfe steps lFW.
1 for t = 1, 2, 3, . . . , n do

// gap estimates & information gain

2 ∆̂t(a, c), ∀a ∈ A, z ∈ Z // Eq. (8.1) or (8.5)

3 It(a, z), ∀a ∈ A, z ∈ Z // Eq. (8.2)

4 ξ
(1)
t (a, z)← 1/|A|, ∀a ∈ A, z ∈ Z

5 for l = 2, . . . , lFW do
6 ∆̄(l) ← ∑z∈Z , ∑a∈A λ(z)ξ(l−1)

t (a, z)∆t(a, z)

7 Ī(l) ← ∑z∈Z , ∑a∈A λ(z)ξ(l−1)
t (a, z)It(a, z)

// Gradient ∇ξΨχ
t (ξ

(l−1)
t ), up to a positive factor:

8 G(l)(a, z)← 2λ(z)∆t(a, z)∆̄(l) Ī(l) − λ(z)It(a, z)(∆̄(l))2

// Frank-Wolfe step

9 for z ∈ Z do
10 a∗z ← arg maxa∈A G(l)(a, z)

11 ξ
(l)
t (a, z)← (1− 1

l )ξ
(l−1)
t (a, z), ∀a ∈ A

12 ξ
(l)
t (a∗z , z)← 1

l
13 Observe context: zt ∼ χ

14 Sample action: at ∼ ξ
(lFW)
t (·, zt)

15 Choose at, observe yt = 〈Mzt
at , θ〉+ εt

and,

αχ(E) ≤ max
ν∈Rd

max
z∈Z ,a,b∈A∗z (E)

min
z′∈Z ,c∈A+

z′ (E)

〈φz
a − φz

b, ν〉2
χ(z′)‖Mz′

c ν‖2 .

Further, for any Dirac distribution ez on z ∈ Z , equality holds: αez(E) = αz(E).

Proof. The first claim follows from noting that the map (p, q) 7→ p2/q
is convex on R×R≥0 and Jensen’s inequality applied to the probability
measure χ. The second claim follows with 〈φχ

a − φ
χ
b , ν〉2 ≤ maxz∈Z 〈φz

a −
φz

b, ν〉2 and
∫
Z ‖Mz

c(z)ω‖2dχ(z) ≥ χ(z′)‖Mz′
c(z′)ω‖2 for any z′ ∈ Z . The last

claim is immediate from the definitions.
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Theorem 8.1. For fixed χ ∈P(Z) and context sequence (zt)n
t=1 sampled inde-

pendently from χ, the regret of contextual IDS (Eq. (8.7)) satisfies,

Rn ≤ n2/3(32E[ᾱnβn]E[γn])
1/3 +O(1) ,

where ᾱn = 1
n ∑n

t=1 αχ(M) is the average global alignment of the observed se-
quence of contexts.

Proof. The proof is very similar to the proof of Theorem 6.1. Note that for a
fixed a ∈ AZ , we can interpret the gap estimate ∆̂χ

t (a) as a non-contextual
gap on the extended action space AZ with features φ

χ
a . Recall that ât ∈ AZ

is defined as ât(z) = arg maxa∈Az〈φz
a, θt〉. It follows from the same steps in

the aforementioned theorem,

∆̂χ
t (ât) ≤ β1/2

t max
a,b∈AZ∗ (M)

‖φχ
a − φ

χ
b ‖V−1

t
.

We abbreviate α = αχ(M) and continue the bound on the norm of the
feature difference,

max
a,b∈AZ

‖φχ
a − φ

χ
b ‖2

V−1
t

= max
ω∈Rd

max
a,b∈AZ∗ (M)

〈φχ
a − φ

χ
b , V−1/2

t ω〉2
‖ω‖2

≤ α max
ω∈Rd

max
c∈AZ+(M)

∫
Z ‖Mz

c(z)V
−1/2
t ω‖2dχ(z)

‖ω‖2

≤ α max
c∈AZ+(M)

∫
Z

λmax(Mz
c(z)V

−1
t Mz>

c(z))dχ(z)

≤ 4α max
c∈AZ+(M)

Iχ
t (c)

Note also that in the directionally unconstrainted case, AZ+(M) = AZ . The
information ratio is bounded by optimizing the trade-off between ât and
ct = arg maxc∈AZ Iχ

t (c). Similar to Eq. (2.6),

Ψt(ξ
IDS
t ) ≤ min

c∈A
4δt∆̂t(c)
IDET
t (c)

(i)
≤ min

c∈A
4δt

IDET
t (c)

(ii)
≤ 16αβt

∆̂t(ât)

(iii)
≤ 32αβt

∆̂t(ξIDS
t )

.

For (i) we used that ∆̂t(c) ≤ 1 and (ii) follows from the previous two
displays combined. Lastly, (iii) uses ∆̂χ

t (ξ
IDS
t ) ≤ 2∆̂χ

t (ât), which follows
from a similar argument as in the proof of lemma Lemma 2.6. Clearly, by
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definition, the information ratio cannot be improved by shifting mass from
the marginals ξIDS

t to ât in each context,

Ψt(ξ
IDS
t ) ≤ min

p∈[0,1]

{(
(1− p)∆̂χ

t (ξ
IDS
t ) + p∆̂χ

t (ât)
)2

(1− p)Iχ
t (ξ

IDS
t )

, ψ(p)

}
.

Hence, the gradient of ψ(p) cannot be negative at p = 0, which yields

0 ≤ d
dp

ψ(p)|p=0 =
2∆̂χ

t (ξ
IDS
t )∆̂χ

t (ât)− ∆̂χ
t (ξ

IDS
t )2

Iχ
t (ξ

IDS
t )

.

The claimed inequality follows by rearranging. This completes the bound
on the generalized information ratio (Eq. (2.7)):

Ψχ
3,t(ξ

IDS
t ) =

∆̂χ
t (ξ

IDS
t )3

Iχ
t (ξ

IDS
t )

≤ 32αβt .

The proof is concluded with Theorem 2.2 and bounding the estimation
error.

Theorem 8.2. For fixed χ ∈P(Z) and context sequence (zt)n
t=1 sampled inde-

pendently from χ, the regret of contextual IDS (Eq. (8.7)) satisfies,

Rn ≤ 4
√

E[ᾱnβn]E[γn]n +O(1) ,

where ᾱn = 1
n αχ(Et) is the average local alignment constant for the sequence of

confidence sets (Et)n
t=1 realized by the algorithm.

Proof. Again, we refer to the proof of Theorem 6.2 for more details. Note
that for any c ∈ A+(Et),

∆̂χ
t (ât) ≤ 2β1/2

t max
a,b∈AZ∗ (Et)

‖φχ
a − φ

χ
b ‖V−1

t

Then, using a similar argument as in the proof of Theorem 6.1, it follows
from the definition of αχ(Et) that

max
a,b∈AZ∗ (Et)

‖φχ
a − φ

χ
b ‖2

V−1
t
≤ 4αχ(Et) max

c∈AZ+(Et)
Iχ
t (c)

Hence, deterministically choosing ct = maxc∈AZ+(Et)
Iχ
t (c) in each context

leads to a bounded information ratio,

Ψχ
t (ξ

IDS
t ) ≤ ∆̂χ

t (ct)2

Iχ
t (ct)

≤ 16βtα
χ(Et) .

The claim follows from Corollary 2.1 and bounding the estimation error.
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Figure 8.1: Numerical results in the contextual setting. The left plots shows
randomly generated instances in R4 with 20 actions, 5 contexts and uniform
context distribution. The right plot shows a simulation of the customer survey
setting described in Section 8.1.4 using a ice cream rating data set. Results are
averaged over 100 runs and the confidence region shows standard error. The
FW-suffix indicates the contextual version where we optimize the marginals with
100 and 1000 Frank-Wolfe steps, and C-suffix is conditional IDS. Optimizing the
marginal distribution shows a clear advantage on randomly generated instances
and on the ice cream data set with bandit feedback. However, 100 Frank-Wolfe
steps are not sufficient to find the IDS distribution on the random instances, and
the learner suffers linear regret after ∼ 1000 steps.

8.1.3 Illustrating Example: Improving Air-Quality and Traffic Flow

A naturally varying context in many application captures environmen-
tal conditions such as temperature or humidity. As a concrete example,
consider the problem of optimizing traffic flow in a city. On each day,
we can test a set of design parameters a ∈ A that affect the traffic flow.
The objective is based on air-quality measurements from sensors spread
across locations X ⊂ R2 in the city. Lastly, forecasted weather conditions
z ∈ Z can be used to predict the air quality. We assume access to features
φz

a,x ∈ Rd that model the air quality fx(a, z) = 〈φz
a,x, θ〉 at each measurement

station x ∈ X for design a ∈ A and weather conditions z ∈ Z .
A weighted sum of air-quality measurements f (a, z) = ∑x∈X wx fx(a, z)

serves as target objective. Cumulative regret is a sensible metric in this case,
because experimentation on the design space directly affects the air-quality.
Moreover, the linear model can be used to account for correlation among
the measurements. For example, nearby measurement stations are expected
to yield similar measurements. Lastly, weather conditions z are assumed to
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follow a known distribution χ ∈P(Z), that, for example, can be estimated
from historical data.

Note that the learner has access to the individual measurement stations
fx(at, zt) for all x ∈ X , and not all of them are necessarily used in the
weighted target. From the partial monitoring perspective, the setup is
modeled using the following reward features and feedback maps:

φ
χ
a = ∑

x∈X
wx

∫
Z

φz
adχ(z) ,

Mz
a = [φz

a,x]x∈X ∈ R|X |×d .

8.1.4 Illustrating Example: Best Ice Cream in Town

Our next example is about optimizing customer surveys. For concreteness,
assume we are helping a Gelateria to improve ice cream recipes based on
feedback from their customers. There are l different flavours of ice cream
and each flavour z ∈ [l] has an associated design space Iz. The simplest
case is A/B testing, where each Iz is restricted to two options. The joint
design space is Adesign = ×l

z=1Iz. An ice cream recipe for flavour z is
associated with a feature vector φz

a ∈ Rd that depends on a ∈ Adesign.
Customers choose ice cream according to a fixed and known distribution

χ ∈P(I). Since the ice cream is for take-away, in general, the customers do
not come back for feedback. However, offering ice cream for free, customers
can be persuaded to provide detailed feedback on the recipe corresponding
to the chosen flavour. To accommodate the two options, we extend the
action space to Ã = Adesign × {ask, sell}. The cost of feedback is captured
in the reward function, which is defined for action ãt = (at, actiont) as

f (ãt, zt) = 〈φzt
at , θ〉1(actiont = sell) .

The features and feedback maps are defined correspondingly as

φ
χ
a,sell =

l

∑
z=1

χ(z)φz
a , Mz

a,sell = 0

φ
χ
a,ask = 0 , Mz

a,ask = φz
a

Numerical results for the survey feedback setting are shown in Fig. 8.1 using
a data set of ice cream ratings1. We simulate the setting as defined above for
5 flavors with 4 design options each, and compare to bandit feedback, where
the learner observes the reward for each action at no additional cost.

1 https://www.kaggle.com/tysonpo/ice-cream-dataset

https://www.kaggle.com/tysonpo/ice-cream-dataset
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8.2 kernelized partial monitoring

Linear partial monitoring is a highly flexible framework, considering that
there is no assumption on the action-feature maps φa other than compact-
ness of the feature space. This only really becomes a restriction if A is
not finite. Pushing this to an extreme, we let H be a Hilbert space over
R with norm ‖ · ‖H and inner product 〈·, ·〉H. We identify the reward
function with a vector in θ ∈ H, and choose a H-valued action-feature map
a 7→ φa. By the Riesz representation theorem, we can equivalently identify
φa with a linear functional in the dual H∗. Similarly, the feedback maps are
modeled as linear operators Ma : H → Rd that observe the parameter on
the subspace im(M∗a ), where M∗a is the adjoint mapping. While this adds a
great amount of flexibility, it poses two additional challenges.

First, the feature dimension can be large or infinite, which renders regret
bounds with a dependence on the dimension vacuous. In previous work
on kernelized bandits, this is addressed by replacing the dimension by an
appropriate notation of an effective dimension [164] or directly bounding
the log-determinate that appears in the confidence bounds and the total
information gain [152, 163]. We will return to this point in Section 8.2.2.

Second, calculating the least-square estimate in the feature space in
general requires O(d2) memory and computation steps, which becomes
prohibitive if d is large. Kernelized methods circumvent this limitation
using a representer theorem [64, 85, 142], also known as to as kernel trick.
Kernel methods are widely popular in machine learning [143], and several
kernelized bandit algorithms have been analyzed [1, 40, 152, 164, 165]. More
broadly, by interpreting kernel regression as a Gaussian process [83, 130],
the field of Bayesian optimization is understood to solve a closely related
problem [119, 152].

8.2.1 Kernel Regression for Partial Monitoring Feedback

The observations yt = Mat θ + εt define a least-square estimate with regu-
larizer λ > 0 in the Hilbert space H,

θ̂t , arg min
θ∈H

t−1

∑
s=1
‖Mas θ − ys‖2 + λ‖θ‖2

H
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An immediate observation is that the regularized least-squares solution is
always contained in a finite-dimensional subspace spanned by the data,

θ̂t ∈ span(im(M∗as) : s ∈ [t− 1]) .

In other words, the least-squares solution can be parameterized using
coefficients α1, . . . , αt−1 ∈ Rm such that θ̂t = ∑t−1

s=1 M∗as αi. We are interested
in sufficient conditions to ensure that the coefficients and, in particular,
the evaluations maps 〈φa, θ̂t〉 can be computed efficiently. Define the joint
evaluation mapping for a, b ∈ A,

Ja,b : H → Rm+1, f 7→ [φa f , (Mb f )>]> . (8.9)

The lemma below guarantees that the reward estimate f̂t(a), 〈φa, θ̂t〉 can
be computed efficiently from finite-dimensional quantities, provided that
we can compute the covariance of actions kφ(a, b), 〈φa, φb〉 ∈ R, feedback
kM(a, b), Ma M∗b ∈ Rm×m and action-feedback kφ,M(a, b), φa M∗b ∈ R1×m.
The required operators are summarized by a kernel function, that naturally
defines a vector-valuded reproducing kernel Hilbert space (RKHS) [10, 126].
For a modern introduction, see also [33, Definition 2.1].

Lemma 8.2 (Partial Monitoring Representer Theorem). Assume that the
subspace span(im(J∗a,b) : a, b ∈ A) ⊂ H is a Rm+1-valued RKHS over A with
evaluation functionals Ja,b defined in Eq. (8.9) and a known corresponding kernel

k : A2 ×A2 → R(m+1)×(m+1), k(a, b, a′, b′) = Ja,b J∗a′ ,b′ .

For reward evaluations of the least-square solution, the following holds:

f̂t(a), 〈φa, θ̂t〉 = kt(a)>(Kt + λ1m(t−1))
−1yt ,

which is defined in terms of finite-dimensional expressions:

yt , [y>1 , . . . , y>t−1]
> ∈ Rm(t−1) (the observation vector)

Kt , [Mar M∗as ]r,s=1,...,t−1 ∈ Rm(t−1)×m(t−1) (kernel matrix)

kt(a), [φa M∗as ]
>
s=1,...,t−1 ∈ Rm(t−1) (evaluation weights)

In particular, the quantities above are defined by the kernel:

k(a, b, a′, b′),

[
kφ(a, a′) kφ,M(a, b′)

kφ,M(a′, b)> kM(b, b′)

]
=

[
φaφ∗a′ φa M∗b′
Mbφ∗a′ Mb M∗b′

]
.
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If H is a real-valued RKHS over k with kernel k : A × A and kernel
features ka ∈ H, the lemma recovers standard kernel regression for bandit
feedback with φa = Ma = ka. Below, we illustrate in several examples how
the extra generality is useful in settings beyond the standard bandit model.

Proof of Lemma 8.2. We define the map

Φt : H → R(t−1)m , θ 7→ [(Ma1 θ)>, . . . , (Mat−1 θ)>]> (8.10)

as the stack of evaluation maps in the observation history. Ignoring
computability issues, the least-square solution is θ̂t = V−1

t Φ∗t yt, where
Vt : H → H, θ 7→ (Φ∗t Φt + λ1H)θ is an invertable linear map and 1H is the
identity operator. The claim follows with the identity (Φ∗t Φt + λ1H)−1Φ∗t
= Φ∗t (ΦtΦ∗t + λ1t)−1 and replacing the inner products with the kernel
expressions.

In order to make use of the estimator in the IDS algorithm, we also need
a kernelized statement of the confidence bounds, which we provide in the
next lemma.

Lemma 8.3. Let Vt = ∑s−1
s=1 M∗as Mas + λ1H and Et,δ = {θ ∈ H : ‖θ‖2

Vt
≤ βt,δ}

where β1/2
t,δ = ρ

√
2 log 1

δ + log det(1 + λ−1Kt) + λ1/2B. Let (at)∞
t=1 be a Ft-

adapted sequence of actions and corresponding observations yt = Mat θ + εt ∈ Rm

with conditionally independent ρ-sub-Gaussian vector εt. If ‖θ‖H ≤ B, then

P[∀t ≥ 1, θ ∈ Et] ≥ 1− δ .

Further, with probability at least 1− δ, for all t ≥ 1,

| f̂t(a)− f̂t(b)− ( f (a)− f (b))| = |〈φa − φb, θ̂t − θ〉| ≤
√

βt,δψt(a, b) ,

where ψt(a, b), 1
λ

(
ψ(a, b)− (kt(a)− kt(b))>(Kt +λ1)−1(kt(a)− kt(b))

)
and

the kernel metric is ψ(a, b), kφ(a, a) + kφ(b, b) − 2kφ(a, b). The evaluation
weights kt(a) and kernel matrix Kt are defined in Lemma 8.2.

Proof. The confidence set is the same as [1, Corollary 3.15] applied to the
observation maps. For the second claim, note that ψt(a, b) = ‖φa − φb‖2

V−1
t

.

The statement in the lemma follows using Cauchy-Schwarz and computing
the feature uncertainty with the Sherman-Morrison identity (Lemma D.2),

λV−1
t = 1H −Φ∗t (ΦtΦ∗t + λ1)−1Φt ,

where Φt is defined as in Eq. (8.10).
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8.2.2 Kernelized Information-Directed Sampling

Equipped with the representer theorem and the confidence bound from the
previous section, we can define kernelized gap estimates and kernelized
information gain functions for information-directed sampling. We use the
relaxed gap estimate from Section 6.3.2, which is computationally simpler.
Let f̂t(a) as defined in Lemma 8.2, and βt , βt,1/t2 and ψt(a, b) as defined
in Lemma 8.3. The kernelized gap estimate is

∆̂t(a) = f̂t(ât)− f̂t(a) + (βtψt(ât, a))1/2 , (8.11)

where ât = arg maxa∈A f̂t(a) is the empirical maximizer. Other variants of
the gap estimate are derived similarly. The (undirected) information gain
corresponding to Eq. (6.7) is

IDET
t (a) = 1

2
log det

(
1m +

1
λ

(
kM(a, a)− Lt(a)K−1

t Lt(a)>
))

, (8.12)

where Lt(a) = MaΦ∗t ∈ Rm×(t−1)m and Φt is the kernel design matrix
defined in Eq. (8.10). The total information gain is

γn =
1
2

log det(1 + λ−1Kt+1) .

The theoretical guarantees for IDS Theorems 6.1 and 6.2 stated in terms
of the confidence coefficient βn and the total information gain γn =

∑n
t=1 IDET

t (at) are not affected by the change of representation. The log-
determinant log det(1 + λ−1Kt) can often be bounded independent of the
dimension of H. For the large class of Mercer kernels, the literature has
produced bounds depending on the decay of the eigenvalues in the Mercer
decomposition [121, 152], summarized in [163]. A kernelized version of the
directed information gain Eq. (6.12) can be derived similarly.

8.2.3 Example: Kernelized Dueling Bandits

We present a kernelized version of the linear dueling bandit variant in-
troduced in Example 6.4. Let I be a ground set of actions. The action
space A = I × I consists of pairs of elements in the ground set. In the
utility-based dueling feedback model, the reward and feedback is determined
by a utility function g : I → R. Upon choosing the pair at = (a1

t , a2
t ) ∈ A in

round t, and the learner observes the reward difference

yt = g(a1
t )− g(a2

t ) + εt , (8.13)
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Algorithm 9: Approximate IDS for Dueling Feedback
Input: Ground set I

1 for t = 1, 2, 3, . . . do
2 ât ← arg maxa∈I ĝt(a) // Eq. (8.14)
3 ∆̂g

t (a)← δt + ĝt(ât)− ĝt(a) // Eq. (8.15)
4 It(a, c)← 1

2 log(1 + ψt(a, c)) // Eq. (8.16)

5 ct, pt ← arg minc∈I ,p∈[0,1]
((1−p)δt+p(δt+∆̂g

t (ât ,c)))
2

pIt(ât ,c)

6 Bt ∼ Bernoulli(pt)
7 if Bt == 1, then
8 (a1

t , a2
t )← (ât, ct)

9 yt ←DuelingFeedback(a1
t , a2

t ) // Eq. (8.13)

10 else
11 (a1

t , a2
t )← (ât, ât) // No feedback

and suffers instantaneous regret f (a1
t , a2

t ) = g(a1
t ) + g(a2

t ) for both actions.
Provided that ‖g‖∞ ≤ 1, the sub-Gaussian noise εt can be defined such that
the feedback is binary yt ∈ {−1, 1} as in the standard dueling model, but
this is not a requirement.

Let H(I) be an RKHS with kernel function k : I × I and assume that the
utility function g ∈ H(I) satisfies ‖g‖H ≤ B. For an action a ∈ I , denote
by ka ∈ H(I) the kernel features of the evaluation functionals, which satisfy
k(a, b) = 〈ka, kb〉H. The features and evaluation maps corresponding to
our reward and feedback model are φa,b = ka + kb and Ma,b = ka − kb.
The covariance between reward and feedback for actions a = (a1, a2) and
b = (b1, b2) is

kM(a, b) = k(a1, b1)− k(a2, b1)− k(a1, b2) + k(a2, b2)

kφ,M(a, b) = k(a1, b1) + k(a2, b1)− k(a1, b2)− k(a2, b2) .

Hence, the kernel matrix and evaluation weights at time t are

Kt = [k(a1
r , a1

s )− k(a2
r , a1

s )− k(a1
r , a2

s ) + k(a2
r , a2

s )]r,s=1,...,t−1 ,

kt(a) = [k(a1, a1
s ) + k(a2, a1

s )− k(a1, a2
s )− k(a2, a2

s )]s=1,...,t−1 .

With the above, we can directly apply Algorithm 6 and the corresponding
results. A caveat is that the size of action space |A| scales quadratically
in the size of the ground set |I|. This leads to O(|I|2) computation com-
plexity per round, even with the relaxed gap estimate Eq. (8.11) and the



8.2 kernelized partial monitoring 155

approximate IDS distribution. This can be improved, by directly estimating
the utility function g and using the dueling structure, as we explain next.

kernelized dueling ids Recall that yt = [y1, . . . , yt−1]
> is the vector

that collects the observations and let {(a1
s , a2

s )}t−1
s=1 be the action history. Note

that for any a ∈ I we can recover estimates for the utility g(a) via ĝt(a) =
1
2 f̂t
(
(a, a)

)
. Using evaluation weights kg

t (a), [k(a, a1
s ) − k(a, a2

s )]s=1,...,t−1,
we define the estimate

ĝt(a) = kg
t (a)>(Kt + λ1t−1)

−1yt . (8.14)

The maximizer of the estimated utility function is ât = arg maxa∈I ĝt(a).
Note that the pair (ât, ât) ∈ A is the greedy action for pair-wise evaluations.
Define

δt , max
b∈I

ĝt(b)− ĝt(ât) + (βtψ
g
t (b, ât))

1/2 ,

where we use βt = βt,1/t2 as in Lemma 8.3 and let ψ
g
t (a, b), ‖ka − kb‖2

V−1
t

,

which is computed with the kernel metric ψg(a, b), k(a, a) + k(b, b) −
2k(a, b) as follows:

ψ
g
t (a, b) = 1

λ

(
ψg(a, b)− (kg

t (a)− kg
t (b))

>(Kt + λ1t−1)
−1(kg

t (a)− kg
t (b))

)
.

The gap estimate for the utility function is defined for any a ∈ I ,

∆̂g
t (a), δt + ĝt(ât)− ĝt(a) , (8.15)

which is directly extended to pairs ∆̂t(a1, a2), ∆̂g
t (a1) + ∆̂g

t (a2). Lastly, the
information gain Eq. (8.12) for a pair of actions (a1, a2) simplifies to

It(a1, a2) =
1
2

log
(
1 + ψ

g
t (a1, a2)

)
, (8.16)

The key observation is that it suffices to optimize the information ratio
over the set B = {(ât, b) : b ∈ I}. Note that B contains the greedy action
choice (ât, ât) for which It(ât, ât) = 0. The approximate IDS algorithm
restricted to the subset B therefore randomizes between the greedy pair
(ât, ât) and some other action pair in (ât, b) ∈ B, that provides information
on the reward difference g(ât)− g(b). Concretely, let

ct, pt , arg min
c∈I ,p∈[0,1]

(
(1− p)2δt + p(δt + ∆̂g

t (c))
)2

pIt(ât, c)
. (8.17)
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The trade-off probability pt(c) is obtained with Lemma 2.5 in closed-form,

pt(c) = min

(
2δt

∆̂g
t (c)− δt

, 1

)
.

The approximate dueling policy then samples at = (ât, ât) with probability
(1− pt) and at = (ât, ct) with probability pt. We denote the corresponding
sampling distribution by µduel

t . To bound the information ratio for µduel
t ,

we let B∗t = {b ∈ I : ĝt(ât)− g(b) ≤ (βtψt(b, ât))1/2}. Note that

δt = max
b∈I

ĝt(b)− ĝt(ât) + (βtψ
g
t (b, ât))

1/2

= max
b∈B∗t

ĝt(b)− ĝt(ât) + (βtψ
g
t (b, ât))

1/2

≤ max
b∈B∗t

(βtψ
g
t (b, ât))

1/2 . (8.18)

The inequality follows by noting that ĝt(b) ≤ ĝt(ât) by definition of ât. The
information-ratio is bounded by playing deterministically on B∗t ,

Ψt(µ
duel
t ) =

∆̂t(µduel
t )2

It(µduel
t )

≤ min
b∈B∗t

∆̂t(ât, b)2

It(ât, b)
= min

b∈B∗t

(δt + ∆̂g
t (b))

2

It(ât, b)

≤ 9βtψt(at, b)
It(at, b)

.

The second inequality follows from Eq. (8.18) and noting that any b ∈ B∗t
satisfies ∆̂g

t (b) ≤ (2βtψt(b, ât))1/2. Lastly, assuming that the regularizer
is chosen large enough such that ψt(a, b) ≤ 1 holds for all a, b ∈ I , we
get It(ât, b) ≥ 4ψt(ât, b). Therefore, Ψt(µduel

t ) ≤ 36βt. A regret bound for
approximate dueling IDS follows with the established technique. The next
corollary summarizes the result.

Corollary 8.3. Assume that the feedback satisfies Eq. (8.13) for a function g ∈
H(I) with bounded norm ‖g‖H ≤ B and ρ-sub-Gaussian observation noise. Then
the regret of the dueling IDS (Algorithm 9) satisfies

Rn ≤ O(
√

nβnγn) .

Using the same argument as in Section 3.3.2 and assuming that the
optimal action is unique, it is also possible to show a gap-dependent regret
R ≤ O(∆−1

minβnγn), where ∆min is the minimum gap of the utility function g.
This translates to O(∆−1

mind2 log(n)2) regret for finite-dimensional parameter.
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We remark that the worst-case analysis justifies the use of a deterministic
action choice. The main difference is that the deterministic algorithm
only chooses the greedy pair (ât, ât) when δt = 0, i. e. when the optimal
action has been identified with probability 1− t−2. On the other hand, the
randomized IDS distribution samples the greedy pair as soon as δt ≤ ∆̂g

t (ct).
The efficient version of IDS for dueling bandits is summarized in Algo-

rithm 9. In conclusion, by directly using the dueling structure, we reduced
the computation complexity per round from O(|I|2) to O(|I|), which
makes the approach applicable to much larger actions.

8.2.4 Example: Bias-Robust Bayesian Optimization

A perhaps unexpected application of the utility-based dueling bandit model
is in robust regret minimization. We discuss a bandit setting, where the
feedback is adversarially biased in way that is not directly observed by the
learner. Additive confounded bandit feedback is defined as follows:

y̌t = f (at) + κt + εt , (8.19)

where εt is conditionally independent ρ-sub-Gaussian noise and κt ∈ R

is a time-dependent confounding term that is chosen adversarially and is
hidden from the learner.

Applications of the confounded feedback model include robust opti-
mization with feedback from physical sensing devices that are subject
to calibration errors or time-dependent drift [80, 93, 151]. For example,
feedback drift is a substantial challenge in some applications of Bayesian
optimization, such as tuning design parameters of particle accelerators [92,
116, 141]. In the context of mobile health applications, a similar model was
investigated in [69] to handle non-stationary user feedback. Another appli-
cation area is adversarial attacks on bandit algorithms, which was recently
studied with various assumptions on the confounding sequence [24, 25,
108, 114]. For further discussion of potential applications, see [89].

Clearly, sublinear regret in the feedback model Eq. (8.19) is not possible
without further restrictions. Here, we assume that κt is chosen by the
adversary at the beginning of round t, independent of the action choice
of the learner. This is an extension of the confounded linear bandit setting,
proposed and analyzed by Krishnamurthy, Wu & Syrgkanis [97] for linear
f . More concretely, we consider the following two cases:

a) The bias κt is bounded, |κt| ≤ Cmax and fixed at the beginning of round
t, but can otherwise arbitrarily depend on (as, ys)

t−1
s=1.
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b) The difference between two consecutive bias terms is bounded, |κt −
κt−1| ≤ Dmax and κt is fixed at the beginning of round t− 1, but can
otherwise arbitrarily depend on (as, ys)

t−2
s=1.

Note that the best action a∗ = arg maxa∈A f (a) and the regret can be defined
as before, since both quantities are invariant under additive shift of the
reward function.

reduction to dueling bandits The observation model (8.19) allows
the adversary to absorb any additive shift of the reward, i.e. f̃ (a) = f (a)+C
for C ∈ R, hence rendering feedback for f (a) and f̃ (a) indistinguishable.
In general, the learner can only hope to recover the true function up to an
additive constant.

To obtain informative feedback, the learner has to randomize the action
choice, since otherwise the adversary can predict the action and choose
the confounding term κt in a way that y̌t = εt. Below, we propose two
randomized sampling schemes that reduce confounded bandit evaluation
to the utility-based dueling feedback defined in Eq. (8.13). That way, we
can directly apply the dueling IDS algorithm from Section 8.2.3.

two-point reduction The first scheme uses two confounded observa-
tions to construct a single dueling evaluation. Given inputs a1

t , a2
t ∈ A

in round t, we obtain two confounded observations, where the order
of evaluation is uniformly randomized. The two observations are

y̌1
t = f (a1

t ) + κ2t+it + ε2t+it ,

y̌2
t = f (a2

t ) + κ2t+1−it + ε2t+1−it ,

where it ∼ Bernoulli(0.5). We then define

yduel-2
t = y̌1

t − y̌2
t . (8.20)

Assuming that κ2t and κ2t+1 are fixed before either of a1
t , a2

t is chosen
by the learner and using that the observation noise εt is zero-mean,
one easily confirms that E

[
yduel-2] = f (a1

t )− f (a2
t ). We further make

use of the following properties of sub-Gaussian random variables. A
bounded random variable X such that X ∈ [−B, B] is B2-sub-Gaussian.
Two independent random variables X1, X2 that are B2

1- and B2
2-sub-

Gaussian respectively, X1 + X2 is (B2
1 + B2

2)-sub-Gaussian. Hence if
|κ2t − κ2t+1| ≤ Dmax, it follows that the effective observation noise

yduel-2 −E
[
yduel-2

]
= κ2t+it + ε2t+it − (κ2t+1−it + ε2t+1−it)
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is
√

D2
max + 2ρ2-sub-Gaussian.

one-point reduction It is also possible to construct the dueling bandit
feedback from a single randomized evaluation. For given inputs
a1

t , a2
t ∈ X we choose one point uniformly at random and evaluate

the confounded function (8.19) to obtain a the observation

y̌t = f (a(1+it)
t ) + κt + εt ,

where it ∼ Bernoulli(0.5). The dueling bandit feedback is

yduel-1 = (−1)it 2yt . (8.21)

Again, we get an unbiased observation of the reward difference,
E
[
yduel-1] = f (a1

t ) − f (a2
t ). Further, if |κt| ≤ Cmax, then yduel-1 −

E
[
yduel-1] is 2

√
C2

max + ρ2-sub-Gaussian. Compared to the two-point
reduction, here the sub-Gaussian variance ρ depends on the absolute
value |κt| of the confounding term instead of the difference |κt − κt+1|.
On the other hand, the one-point sampling scheme only requires κt
to be fixed before the choice of at, but may depend on all previous
actions and observations.

regret guarantees Using either reduction, we can directly apply the
(kernelized) dueling IDS algorithm (Algorithm 9). Note that we require
knowledge of the bounds Cmax or Dmax to scale the noise constant in the
confidence coefficient appropriately. To make the dependence explicit, note
that for ρ-sub-Gaussian noise, βn(ρ2) = O(ρ2γn). The result is summarized
in the following corollary.

Corollary 8.4. For biased observations according to Eq. (8.13) with ρ2-sub-
Gaussian observation noise and dueling feedback obtained via the one-point reduc-
tion in Eq. (8.21), the regret of Algorithm 9 satisfies

Rn ≤ O
(
(Cmax + ρ)

√
nγn

)
,

assuming that maxt∈[n] κt ≤ Cmax and the adversary is allowed to choose bt

depending on all previous actions and observations, {as, ys}t−1
s=1.

With the two-point reduction in Eq. (8.20), the regret of Algorithm 9 satisfies ,

Rn ≤ O
(
(Dmax + ρ)

√
nγn

)
,

assuming that maxt∈[n] |κ2t − κ2t+1| ≤ Dmax and the adversary is allowed to
choose κt depending on all but the last two actions and observations, {as, ys}t−2

s=1.
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The bounds for the confounded bandit setting match the bounds in the
unconfounded setting up to the larger noise constant, and further match the
minimax lower bound in the linear bandit setting up to logarithmic factors.

a connection to doubly-robust estimation The linear case
f (a) = 〈φa, θ〉 with finite-dimensional parameter θ ∈ Rd and features
φa ∈ Rd was previously investigated by Krishnamurthy, Wu & Syrgkanis
[97]. To estimate the unknown parameter θ directly from confounded
observations {y̌s = 〈φas , θ〉+ κs + εs)}t−1

s=1, they propose a doubly-robust
estimator θ̂dr

t . For centered feature vectors φ̄t =
∫
A φadµt(a) and regularizer

λ > 0, they define

Γt ,
t−1

∑
s=1

(φas − φ̄s)(φas − φ̄s)
> + λ1d ,

θ̂dr
t , Γ−1

t

t−1

∑
s=1

(φas − φ̄s)y̌s. (8.22)

They further derived a self-normalized confidence bound:

‖θ̂dr
t − θ‖2

Γt
≤ O(d log(n) + log(n/δ) + λ) . (8.23)

The scaling of this confidence set is close to optimal for adaptive data
in general, even without confounding [103, Exercise 20.2]. Interestingly,
when µt = Uniform({a1, a2}) is chosen to randomize between two actions
a1, a2 ∈ A, then this estimator coincides with the least-squares estimator
that we obtain for the dueling bandit feedback. This follows immediately
by observing that 2(φat − φ̄t) = φa1 − φa2 for at ∈ {a1, a2}. Up to constants
and logarithmic factors, both confidence sets result in the same regret
bound Rn ≤ Õ(d

√
n). The main difference is that the reduction to duel-

ing feedback avoids the reformulation with the doubly-robust estimator
and benefits from improved constants, while the concentration bound in
Eq. (8.23) is a more general result.

The BOSE algorithm by Krishnamurthy, Wu & Syrgkanis [97] chooses the
sampling distribution µBOSE

t directly over plausible maximizers such that
the variance ‖φt − φ̄t‖2

Γ−1
t

of the doubly-robust estimator is well-behaved.

The approach requires solving a convex-quadratic feasibility problem over
the space of sampling distributions, which is computationally much more
expensive than dueling IDS. Further, the µBOSE

t distribution is supported on
d + 1 points in general, which makes a direct kernelization of the approach
difficult. Lastly, we note that Kim & Paik [84] analyzed Thompson sampling
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Figure 8.2: In the unconfounded setting (left), UCB works best, while SemiTS and
IDS-2P are not much worse. When the adversary subtracts the observation from
the last round as bias (middle), UCB has linear regret, whereas all other methods,
that are designed for this setting, have sublinear regret. IDS-2P works best,
followed by Semi-TS and IDS-1P. In the setting with drift (right), the situation
is similar, but now Semi-TS works best. Note that we compensate the drift in
the observations by subtracting the last observation. Otherwise, the bias term is
unbounded, and all methods expect for IDS-2P suffer linear regret.

with a similar doubly-robust estimator, that coincides with our estimation
scheme in the same way.

numerical experiments We evaluate the proposed method with
the one-point reduction (IDS-1P) and the two-point reduction (IDS-2P) in
two numerical experiments with confounded observations. To allow a fair
comparison with the two-sample scheme, we account for the regret of both
evaluations and scale the number of rounds appropriately.

linear reward In the first experiment, we use a linear reward function
f (x) = 〈x, θ〉. In this setting, the BOSE method by Krishnamurthy, Wu
& Syrgkanis [97] and the semi-parametric variant of Thompson sampling
(Semi-TS) by Kim & Paik [84] apply. We also compare to LinUCB [3, 13],
which does not directly deal with the confounding. For each repetition we
sample k = 20 actions uniformly on the d = 4 dimensional unit sphere. We
consider three different types of confounding: a) no confounding; b) the
adversary repeats the last observation with a minus sign, bt = −yt−1; c) a
continues drift, bt = −0.1t. Since the drift results in an unbounded bias
term, all methods except for IDS-2P suffer linear regret (plot not shown).
An immediate fix is to compensate the drift by adding the last observation,
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Figure 8.3: Results in the kernelized setting. UCB and IDS-2P are competitive
despite the confounding by a simulated re-calibration process (left). With a bias
that adds a linear and a period function of the time step, only IDS-2P achieves
sublinear regret, since IDS-1P requires the bias to be bounded (right).

thereby making the range of the bias term bounded. The results are shown
in Fig. 8.2.

camelback The second experiment is in the kernelized setting. As
benchmark we use the camelback function on the domain [−2, 2]× [−1, 1]:

f (x1, x2) = −min
(

x2
1
(
4− 2.1x2

1 +
x4

1
3.
)
+ x1x2 + x2

2(4x2
2 − 4), 2.5

)
.

We discretize the input space using 30 points per dimension. The only
direct competitor is the method of Bogunovic et al. [24]. This method is
equivalent to GP-UCB [152] with an up-scaled confidence coefficient. This
suggests that the UCB approach is inherently robust up to a certain degree
of corruption, which is also visible in our experiments. We use two types
of confounding that we expect is relevant in applications: a) periodic drift
of the objective, bt = sin(0.2t)− 0.1t; and b) a calibration process, which
monitors a moving average over the last 10 observations and adjusts the
output range to [−0.1, 0.1] whenever the average is no longer in this range.
Results are shown in Figure 8.3.

8.2.5 Example: Gradient-Only Global Optimization

Bayesian optimization [119, 145, 152] is typically phrased as a zero-order
global optimization method with noisy evaluations and is closely related to
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the kernelized bandit setting. Previous work also incorporates gradient and
hessian information where it is available [173, 174]. Since the gradient is a
linear operator, we can directly apply IDS in this setting. Assuming that
the learner observes the function evaluation and the gradient feedback, we
immediately obtain the same bounds as in the bandit setting. While our
worst-case regret bounds do not reflect any improvement from the addi-
tional information, we note that IDS explicitly incorporates the anticipated
gradient feedback in the information gain.

We analyze a different setting, where the learner observes only the gradi-
ent, which can be understood as a type of dueling bandit. Arguably, few
optimization settings exist where gradient information is available while
function evaluations are not. As such, the example serves mainly as an
illustration. We describe a link to adversarial regret minimization at the
end of the section.

In the following, we let A ⊂ Rm be a compact and connected set, and
H a RKHS over A with differentiable kernel k : A×A → R. The action
features are set to the kernel functionals, φa = ka = k(a, ·). We compute
the covariance for the observation operator Ma = ∇x : H → Rm next. For
a, b ∈ A and i, j = 1, . . . , m, we get

[Ma M∗b ]ij = 〈ei, Ma M∗b ej〉 = [∇a〈ka, M∗b ej〉H]i =
∂

∂ai

∂

∂bj
k(a, b) ,

[ka M∗b ]i = 〈ka, M∗b ei〉H = 〈∇bka, ei〉 =
∂

∂bi
k(a, b) .

Through the gradient observations, the kernel regression results in Bayesian
quadrature [51, 123]. In particular, any gap difference can be estimated by
integrating the a path connecting the the inputs, which means the game
is globally observable. Formally, we have to show that for all a, b ∈ A,
ka − kb ∈ span(im(M∗c ) : c ∈ A). To this end, let τ : [0, 1] → A be a
differentiable path with τ(0) = a, τ(1) = b and constant velocity ‖τ̇‖ = C.
We claim that

ka − kb =
∫ 1

0
M∗τ(t)τ̇(t)dt .
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The claim follows by the fundamental theorem of calculus. For any f ∈ H,〈∫ 1

0
M∗τ(t)τ̇(t)dt, f

〉
=
∫ 1

0
〈M∗τ(t)τ̇(t), f 〉dt

=
∫ 1

0
〈τ̇(t), Ma f 〉dt

=
∫ 1

0
〈τ̇(t),∇a f 〉dt

= f (a)− f (b) = 〈ka − kb, f 〉 .

The alignment constant (Eq. (6.4)) can be bounded using Lemma 6.1 by
α(M) ≤ (

∫ 1
0 ‖τ̇(t)‖dt)2 ≤ C2 diam(A)2. Hence, for functions f with

‖ f ‖H ≤ B, Theorem 6.1 guarantees that IDS has worst-case regret at at most
Rn ≤ (n2/3(diam(A)Bγnβn)1/3). For standard kernel function such as the
RBF kernel, the regret bound sublinear, which implies global convergence.
In general, the learner has to evaluate suboptimal actions to estimate the
reward difference between two plausible (local) optima, therefore the game
is not locally observable.

The model can be applied in a semi-adversarial bandit setting, similar
to the model discussed in Section 8.2.4. Concretely, we consider the case
where feedback is subject to a time-dependent drift,

yt = f (at) + κ(t) + εt .

The drift function κ(t) depends only on the evaluation step and at ∈ Rm is a
continuous input parameter. Since the drift is independent of the parameter
at, the gradient of the feedback with respect to the input parameter is not
affected by the drift, but the challenge is to construct a gradient estimator
from a single observation.

One-point gradient estimates are common in the literature on online
bandit convex optimization [58, 75] and previously have been explored
in conjunction with dueling bandits [176]. In the simplest formulation,
the learner requests gradient feedback for a point at ∈ A. The system is
evaluated at at + εut, where ε > 0 is a step-size and ut ∼ Uniform(Sm) is an
independently sample from the unit sphere Sm , {u ∈ Rm : ‖u‖ = 1}, and
the gradient estimate is defined as ĝt , m

ε yt. This estimate is understood as
an unbiased gradient observation of a smoothed reward,

Eut [ĝt] = ∇aEu∼Uniform(Sm)[ f (at + εu)] ,

and the bias can be controlled assuming smoothness [75, Lemma 5 & 7].
However, compared to the dueling bandit reduction from Section 8.2.4,
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Figure 8.4: A demonstration of the stylized laser example with I(a1, a2) =
exp

(
−((a1 − 0.5)2 + (a2 − 0.5)2)

)
. The left plot shows the intensity function of

the laser on the two dimensional plane. The objective is to shift the square
target such that the integrated intensity within the square is maximized. The
learner chooses actions to either observe a noisy measurement of the intensity,
or alternatively, the energy function directly, evaluated on a measurement grid
within the square (invasive feedback). The latter feedback is obtained from a
screen that is put in the line of the laser, which blocks the beam and voids
the reward signal. In the second variant (transductive feedback), the learner
obtains information only through the invasive measurements. To solve the task,
the learner needs to estimate the function with invasive measurements, while
keeping the unobstructed target in a position with maximum integrated intensity
sufficiently often. The plots on the right show the regret of IDS (with directed
and undirected information gain) compared to the UCB algorithm. Note that
UCB never chooses the informative actions and therefore suffers linear regret on
the second variant.

using just a gradient oracle leads to a slower regret rate due to the local
nature of the gradient feedback.

8.2.6 Example: Invasive Measurements and Bayesian Quadrature

We consider a simplistic setup where the experimenter wishes to align a
rectangular plate with a laser in a way that maximizes the brightness on the
probe. The design parameters are (a1, a2) ∈ A = [−1, 1]2 and correspond
to a vertical and horizontal shift of the target relative to the origin. The
intensity of the laser on the two-dimensional plane at the target is given
by an initially unknown function I : R2 → R2. The setup is illustrated in
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Fig. 8.4. The objective is to maximize the total power on the probe of size
1× 1 that is centered at (a1, a2),

f (a1, a2) =
∫ a1+0.5

a1−0.5

∫ a2+0.5

a2−0.5
I(a1, a2)da1da2 ,

In any round, the learner has the choice between a direct measurement of
the objective and the invasive measurement, that is more informative but
yields no reward. For the direct measurement, the experimenter chooses
a design at = (a1

t , a2
t ) and observes the corresponding integrated reward

yt = f (a1
t , a2

t ) + εt. This action has standard bandit feedback. Alternatively,
the experimenter can replace the target plate with a high-resolution screen
centered at (a1, a2), that measures the intensity directly on m×m pixels.
Specifically, the learner obtains m2 measurements {I(b1

i , b2
j )}m

i,j=1, plausibly
at a much lower noise level than the integrated intensity measurement. As
the screen blocks off the beam, there is no reward in such rounds.

Returning to the previously mentioned example of tuning particle ac-
celerators [92, 93], both integrated signals and invasive measurements are
common feedback mechanisms, that are not always easy to integrate in
automated tuning methods. In a transductive variant of the same setting,
the signal is observed only through the invasive measurements, and this
case, the game is no longer locally observable.

We present a numerical simulation of this setup in Figure 8.4. Our set
A is discrete with 9 actions corresponding to a unit shift in any direction
(or no shift). We use 25-dimensional features computed from a radial basis
function kernel. In the setup where the reward signal can be observed
directly, UCB outperforms IDS for the first ∼ 1000 steps; but then IDS gains
an advantage from choosing the more informative measurements from time
to time. UCB has linear regret in the transductive setting because the UCB
action is not informative. On the other hand, IDS trades off the informative
measurements with greedy parameter settings that yield reward.

More generally, our example can be understood in the context of Bayesian
quadrature [51, 123] and the related regret setting, which was previously
studied by Toscano-Palmerin & Frazier [161]. Here, the goal is to optimize
a design i ∈ I with the following objective,

f (i) =
∫
Z

g(i, z)dz .

The function g : I × Z → R known, but the integral is expensive to
evaluate. By extending the action space to A = I × Z , the learner gains
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direct access to evaluations of g(a, b). Assuming that g is a function in a
RKHS over A with kernel evaluation features ki,z ∈ H, the feedback maps
are set to bandit evaluations, Mi,z = ki,z. The reward features are set to
φi =

∫
B ki,z′dz′, independent of z. Several applications with integrated

objective functions are summarized in [161].

8.3 contributions and related work

The contextual and kernelized partial monitoring settings presented in this
chapter is based on the following publication:

• Kirschner, J., Lattimore, T. & Krause, A. Information Directed Sampling
for Linear Partial Monitoring in Proc. International Conference on Learning
Theory (COLT) (July 2020)

The presentation here simplifies previous definitions and analysis, and
provides additional details in the kernelized setting.

In a basic form, the contextual bandit setting goes back to the work by
Woodroofe [172], but the modern formulation is due to Langford & Zhang
[100]. The only work we are ware of that analyses partial monitoring in a
contextual setting is by Bartók & Szepesvári [19]. Their result is for finite
partial monitoring, and requires a local observability condition. In contrast,
our work uses the linear partial monitoring formulation, and the analysis
covers all game categories.

The use of prior information was investigated by [167], but only the locally
observable case was analyzed. To the best of our knowledge, kernelized
methods have not yet been investigated in the partial monitoring setting.

The dueling bandit and robust regret minimization examples are in:

• Kirschner, J. & Krause, A. Bias-Robust Bayesian Optimization via Dueling
Bandits in Proc. International Conference on Artificial Intelligence and
Statistics (AISTATS) (July 2021)

Kernelized dueling bandits have been studied in the literature [67, 154, 156],
as well as extensions with multi-point comparisons [155]. The linear model
has been studied recently by [140]. All previous work explicitly considers
the binary feedback, although in some cases the extension to the more
general sub-Gaussian likelihood is possible. To the best of our knowledge,
none of the previous works provides bounds on the cumulative regret in
the kernelized setting.





9
C O N C L U S I O N

In this thesis, we have developed a frequentist theory of information-
directed sampling. Our results show that the IDS principle yields practical
and effective algorithms for regret minimization in a wide range of settings.
The primal-dual interpretation establishes a link between IDS and the
asymptotic regret lower bound. The connection provides new insights into
the IDS exploration mechanism and can be used to design new algorithms.
Moreover, we analyzed IDS in the linear partial monitoring framework,
thereby making it applicable to many models beyond bandit feedback.

Compared to bandit algorithms, partial monitoring has received much
less attention in the literature, likely due to the complexity that comes with
the additional generality. On the other hand, IDS is straightforward to
implement and does not directly use the finer geometric structure of partial
monitoring, apart from constraints on the parameter set. We illustrated the
setting with many example applications, hoping that the IDS framework can
serve as starting point to address new applications and guide the analysis
where needed. We conclude with a short comparison between the Bayesian
and frequentist IDS frameworks and a list of open questions for the future.

9.1 bayesian and frequentist ids frameworks

The Bayesian and frequentist IDS frameworks are based on the same prin-
ciple of sampling actions from a distribution that minimizes the ratio of
squared expected regret and information gain. The difference is how the
gap is estimated and the information gain is defined. The Bayesian learner
has access to the prior distribution, which is used to define the gaps and the
information gain. The frequentist IDS framework replaces both quantities
with suitable worst-case notions derived from the confidence set. We briefly
compare Bayesian and frequentist framework along the three dimensions
analysis, computation and empirical performance.

analysis The Bayesian analysis uses Bayes’ rule, thereby providing
results for a wide range of prior distributions and observation likelihoods.
The proof is based on standard tools from information theory, and is short

169



170 conclusion

and elegant. The analysis bounds regret in expectation over the prior, and
the worst-case regret bound scales with the prior entropy of the optimal
action. A more robust analysis of the Bayesian IDS algorithm, such as
frequentist regret or prior misspecification, is still an open problem. Also,
so far, only finite action sets have been analyzed and instance-dependent
bounds are not known. Some progress of analyzing Bayesian IDS for partial
monitoring is by Lattimore & Szepesvári [105].

The frequentist analysis of IDS in this thesis is specialized to linear
models and least-squares estimation. The sub-Gaussian tail assumption
on the observation likelihood provides flexibility since it covers many
distributions beyond the normal distribution. The proofs for the worst-
case regret are relatively simple, and readily apply to continuous action
sets and partial monitoring. On the other hand, the asymptotic analysis
is more involved, and a suitable choice of the information gain function
is less obvious. As it is the case for most frequentist bandit algorithms,
adaptations beyond the Gaussian-linear case require to derive specialized
confidence sets. The choice of information gain function is less clear for
non-Gaussian settings.

computation Any Bayesian learner faces the challenge of computing
the posterior distribution, which is easy for conjugate priors, but rather
costly in general. For the Gaussian-linear models that we analyzed, the
posterior distribution of the parameter is not harder to compute than
the least-squares estimate. However, the Bayesian IDS algorithm further
requires computing the posterior distribution of the optimal action and
the mutual information. In many cases, this requires the computation of
high-dimensional integrals. Russo & Van Roy [135] show that sample-
based approximations and surrogates of the information gain function are
effective, partly alleviating the limitations above.

In the frequentist IDS version, the computation of gap estimates and
information gain function only requires basic linear algebra operators. In
most cases, this step is efficient for finite action sets, and not more expensive
than computing upper-confidence bound scores. For continuous action sets,
so far, only heuristic implementations are known. In both formulations, we
need to sample from the IDS distribution, which for finite action sets of size
k can be done in O(k2) steps exactly, or approximately in O(k) steps.

performance The Bayesian IDS algorithm is reported to achieve su-
perior performance on standard benchmarks [135], in many cases outper-
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forming Thompson sampling, which is known for its excellent performance.
The effectiveness of frequentist methods heavily depends on the tightness
of the confidence bounds, which are often conservative in practice. Without
tuning, frequentist IDS is often competitive with UCB and standard meth-
ods in partial monitoring, but not necessarily with Bayesian algorithms,
including Thompson sampling and Bayesian IDS.

On a large horizon, the asymptotic guarantees for IDS are visible in
numerical simulations, where it clearly outperforms UCB and Thompson
sampling on some instances of the linear bandit problem. However, the
regime transition depends inversely on the minimum gap squared, arguably
pushing it out of reach in many practical applications.

9.2 open questions

We close with a list of exciting directions for the future. Naturally, our focus
is on open questions within the IDS framework, but more generally, the
exploration-exploitation trade-off in models with structured feedback is not
yet fully understood.

9.2.1 First-Principles Derivation

We have seen two perspectives that motivate the IDS principle: The first
is the worst-case upper bound that IDS optimizes greedily. The second
is the asymptotic lower bound and the primal-dual interpretation. While
in both cases, the analysis yields optimal or near-optimal regret bounds
for the linear setting, neither leads to the definition of the information
ratio from first-principles considerations. Therefore, it is natural to ask if
the IDS algorithm is a consequence of implicit assumptions on the class
of policies that minimize regret. For example, one can require that the
sampling distribution is a function of sufficient statistics associated with the
linear least-squares estimator. Provided that the policy is also worst-case
and asymptotically optimal, it appears likely that one has to randomize
in a way similar to IDS. Progress in this direction could provide a better
understanding of the scope and limitations of the IDS principle.

9.2.2 Asymptotic and Instance-Dependent Regret

The asymptotic analysis can be generalized in several directions, including
the more generic structured bandit setting, linear partial monitoring, and
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the contextual case. While it seems plausible that similar techniques as
presented here will be helpful along the way, new progress is most valuable
if, at the same time, the proofs can be further simplified. Our asymptotic
analysis follows a relatively clean and modular structure and raises the
hope that there exists a really simple proof. Finding an information gain
that preserves the guarantees and telescopes more easily could be a first
step towards this end. Lastly, optimizing instance-dependent regret in finite
time is largely an open problem.

9.2.3 Partial Monitoring

There are many open questions left in stochastic partial monitoring. First,
the classification of linear partial monitoring with arbitrary constraints
on the parameter set is not yet completed, since we only provided upper
bounds. One can also ask to classify the regret rate on continuous action sets.
There is an indication that such a result depends on finer properties of the
action set, such as curvature [90]. Finding an oracle-efficient approximation
of the IDS principle is another practically relevant question.

9.2.4 Other Information Trade-Offs

We derived the information gain functions for a sub-Gaussian noise like-
lihood, capturing a larger class of light-tailed distributions. We point out
that the asymptotic information gain can be interpreted as a log-likelihood
ratio test with alternatives ν1, . . . , νl ∈ M and weights qt ∈P([l]):

ILR
t (x) =

l

∑
i=1

qt(i)Ey

[
log
L(θ̂t; xt, y)
L(νi; xt, y)

]
.

This could serve as a starting point to derive an information gain that
preserves the guarantees for a larger class of likelihood functions, for
instance, heavy-tailed noise. There are also other information-regret trade-
offs than cumulative regret minimization. For instance, sparsity of the
linear parameter vector is an important assumption in high-dimensional
settings and leads to complex information trade-offs [73]. Simple regret is
another well-studied objective, where the learner strives to minimize the
prediction error of the optimum with a minimal number of steps. Naturally,
the learner can optimize the information gain directly, which indicates that
information gain functions can be studied outside the cumulative regret
minimization framework.
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9.2.5 Reinforcement Learning

Departing from the stateless world of bandit feedback, in reinforcement
learning, the learner’s actions affect the options available in the future.
Consequently, the learner faces a planning problem. Both upper-confidence
bound algorithms and Thompson sampling have been proven useful in
reinforcement learning, but information-theoretic tools are far less devel-
oped, with some progress made by Lu & Van Roy [112], Lu et al. [113], and
Zanette & Sarkar [177], and by the author and collaborators [122]. From
a theoretical perspective, we can view policy optimization in the episodic
setting as a bandit problem. Each policy corresponds to a single action,
and the feedback stems from the episodic role-out. Another possibility is to
define the regret estimate and information gain for several steps into the
future.





A
C O N C E N T R AT I O N I N E Q UA L I T I E S

We first state a consequence of Freedman’s inequality.

Lemma A.1 ([81, Lemma 3]). Let X1, . . . , Xn be a martingale difference sequence
on a filtration Ft such that Xt ≤ B holds for all t = 1, . . . , n. Denote the
corresponding martingale by Mn = ∑n

t=1 Xt and the sum of conditional variances

by Vn = ∑n
t=1 E

[
X2

t |Ft−1
]
. Then, for any β > 1, l =

⌈
log(nλ−2)

log β

⌉
, λ ≥ 0,

P[Mn ≥ λ max{λB,
√

Vn}] ≤ (l + 1) exp

(
− λ2

2β + 2
3

)
.

Moreover, with probability at least 1− δ,

Mn ≤ max

{
4B log

2n + 2
δ

, 2

√
Vn log

2n + 2
δ

}
.

Proof. Our proof is a refined version of [81, Lemma 3]. Define l =
⌈

log nλ−2

log β

⌉
,

and αi = λ2B2βi for i = 0, . . . , l, further set α−1 = 0 for notational conve-
nience. Note that since Vn ≤ nB2, our choice of l implies αl ≥ Vn. Then,

P[Mn ≥ λ max{λB,
√

Vn}]
= P[Mn ≥ λ max{λB,

√
Vn}, αi−1 ≤ Vn ≤ αi for i = 0, . . . , l]

≤
l

∑
i=0

P[Mn ≥ λ max{λB,
√

Vn}, αi−1 ≤ Vn ≤ αi]

≤
l

∑
i=0

P[Mn ≥ λ max{λB,
√

αi−1}, Vn ≤ αi]

(i)
≤

l

∑
i=0

exp

(
− λ2 max{λ2B2, αi−1}

2αi +
2
3 Bλ max{λb,

√
αi−1}

)

= exp

(
− λ2

2 + 2
3

)
+

l

∑
i=1

exp

− λ2

2β + 2
3

√
1

βi−1


(ii)
≤ (l + 1) exp

(
− λ2

2β + 2
3

)
.
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Here, (i) is Freedman’s inequality [61], and (ii) uses that β > 1. This
shows the first part of the lemma. For the second part, note that for
n = 1, the claim is trivially true by X1 ≤ B, hence we assume n ≥ 2.

If also λ ≥ 1, we can upper bound l ≤
⌈

log n
log β

⌉
=: l′. We choose β =

5/3, and set λ =
√

log l′+1
δ (2β + 2

3 ) = 2
√

log l′+1
δ , such that indeed λ ≥

2
√

log
(

log(2)
log(5/3) + 1

)
≥ 1 for n ≥ 2, hence proving the claim.

The next concentration inequality for supermartingales is an anytime
variant of Corollary 2.7 by [55], and might be of independent interest.

Theorem A.1. Let Mn = ∑n
t=1 Xt be a sum of supermartingale differences Xt

on a filtration Ft. Further, let Ut be a non-negative predictable process, such that
Xt ≤ Ut holds for all t ≥ 1. Define

C2
t =


E
[
X2

t |Ft−1
]
, if E

[
X2

t |Ft−1
]
≥ U2

t ,

1
4

(
Ut +

E[X2
t |Ft−1]
Ut

)2
otherwise.

Further denote An = ∑n
t=1 C2

t . Then, for any fixed positive sequence (Lt)n
t=1, with

probability at least 1− δ,

∀ n ≥ 1, Mn ≤
√

2(An + Ln) log
(

1
δ

(An + Ln)1/2

L1/2
n

)
.

The proof combines Corollary 2.7 in [55], with the method of mixtures [127],
see also [3, Theorem 1]. We start with the following lemma.

Lemma A.2. Let Xt, Ct as in Theorem A.1, and define for λ ≥ 0, t ≥ 1,

Mλ
t = exp

(
t

∑
s=1

λXs −
λ2

2
C2

s

)
. (A.1)

Further, let τ be a stopping time with respect to the filtration {Ft}. Then Mλ
t is a

supermartingale, Mλ
τ is almost surely well-defined, and E

[
Mλ

τ

]
≤ 1.

Proof. The proof is along the lines of Lemma 8 in [3], where we replace
the subgaussian condition by the suitable analog to showing that Mλ

t is a
supermartingale. Let

Dλ
s = exp

(
λXs −

λ

2
C2

s

)
.
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By Corollary 2.6 of [55], we have that E
[
eλXs |Fs−1

]
≤ exp

(
λ2

2 C2
s

)
for all

λ > 0, and consequently, E[Ds|Fs−1] ≤ 1. Therefore, E
[
Mλ

t |Ft−1
]
=

E
[
Dλ

t |Ft−1
]
Mλ

t−1 ≤ Mλ
t−1, which shows that Mλ

t is a supermartingale such
that E

[
Mλ

t
]
≤ 1 for all t ≥ 1. The rest of the argument is standard [53, The-

orem 5.7.6]; by the convergence theorem for non-negative supermartingales,
Mλ

τ is well defined for any stopping time τ ≤ ∞, then using Fatou’s lemma
it follows that Mλ

τ ≤ lim inft→∞ Mλ
τ∧t ≤ 1.

To prove Theorem A.1, we use the method of mixtures, similar to Theorem
1 in [3]. The main difference is that the supermartingale Mλ

t from the the
previous lemma is only defined for λ ≥ 0, which requires to choose a
mixing density supported on [0, ∞).

Proof of Theorem A.1. Remember that St = ∑t
s=1 Xs, At = ∑t

s=1 C2
s and

Mλ
t = exp

(
λSt − λ2

2 At

)
. Further, let Λ = (Λt)t≥1 be a sequence of in-

dependent Gaussian random variable truncated to [0, ∞) with densities

fΛt(λ) = c(Lt) exp
(
− 1

2 λ2Lt

)
1{λ ≥ 0} where c(A) =

√
2A
π is a normaliz-

ing constant. Using Λ as a mixing distribution we define

Mt = E
[

MΛt
t |F∞

]
, (A.2)

where F∞ = σ
(
∪∞

t=1Ft
)

is the tail σ-algebra of the filtration Ft. In particular,

using Fubini’s theorem, we still get E[Mτ ] = E
[
E
[

MΛt
τ |Λ

]]
≤ 1. In the

next step, we explicitly calculate Mt for any t ≥ 1,

Mt =
∫

R+
exp

(
λSt − λ2

2 At

)
fΛt(λ) dλ

=
∫

R+
exp

(
−1

2

(
λ− St

At

)2
At +

1
2

S2
t

At

)
fΛt(λ) dλ

= exp
(

1
2

S2
t

At

) ∫
R+

exp

(
−1

2

(
λ− St

At

)2
At

)
fΛt(λ) dλ

= c(Lt) exp
(

1
2

S2
t

At

) ∫
R+

exp
(
−1

2

(
(λ− St/At)

2 At + λ2Lt

))
dλ .

Completing the square yields(
λ− St

At

)2
At + λ2 A =

(
λ− St

Lt + At

)2
(Lt + At) +

S2
t

At
− S2

t
Lt + At

,
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and with the previous equation,

Mt = c(Lt) exp
(

1
2

S2
t

Lt+At

) ∫
R+

exp
(
− 1

2

(
λ− St

Lt+At

)2
(Lt + At)

)
dλ

(i)
≥ 1(St ≥ 0)c(Lt) exp

(
1
2

S2
t

Lt+At

) ∫
R+

exp
(
− 1

2

(
λ− St

Lt+At

)2
(Lt + At)

)
dλ

(ii)
≥ 1(St ≥ 0)c(Lt) exp

(
1
2

S2
t

Lt+At

) ∫
R+

exp
(
− 1

2

(
λ2(Lt + At)

))
dλ

= 1(St ≥ 0) c(Lt)
c(Lt+At)

exp
(

1
2

S2
t

Lt+At

)
.

In (i) we introduced an indicator function and used that all other terms are
positive. To get (ii), we first applied a change of variables λ′ = λ− St/(Lt +
At) and then made use of St ≥ 0 to reduce the integration range (and again
that the integrand is positive).

A final application of Markov’s inequality yields

P

[
Sτ ≥

√
2(Lτ + Aτ) log

(
1
δ

(Lτ + Aτ)1/2

L1/2
τ

)]

= P

[
c(Lτ)

c(Lτ + Aτ)
exp

(
1
2

S2
τ

Lτ + Aτ

)
≥ 1

δ
, Sτ ≥ 0

]
≤ δ ·E

[
1{Sτ ≥ 0} c(Lτ)

c(Lτ + Aτ)
exp

(
1
2

S2
τ

Lτ + Aτ

)]
(i)
≤ δ ·E[Mτ ]

(ii)
≤ δ ,

where (i) uses the inequality for Mt derived above, and (ii) follows from
Lemma A.2.

To get the anytime result as stated in the Theorem, we use the same
argument as in [3] on the stopping time

τ = min

t ≥ 1 | St ≥

√√√√2(Lt + At) log

(
1
δ

(Lt + At)1/2

L1/2
t

) .
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Expressing the quantity of interest in terms of τ, and applying the previous
inequality yields

P

St ≥

√√√√2(Lt + At) log

(
1
δ

(Lt + At)1/2

L1/2
t

)
for any t ≥ 1


= P

[
τ < ∞, Sτ ≥

√
2(Lτ + Aτ) log

(
1
δ

(Lτ + Aτ)1/2

L1/2
τ

)]

≤ P

[
Sτ ≥

√
2(Lτ + Aτ) log

(
1
δ

(Lτ + Aτ)1/2

L1/2
τ

)]
≤ δ .

This completes the proof.

As a consequence of the previous result, we have the following lemma.

Lemma A.3. Let Xt be a non-negative stochastic process adapted to a filtration
Ft. Assume that Xt ≤ Bt for a fixed, non-decreasing sequence (Bt)∞

t=1. Define
Mn = ∑n

t=1 Xt and M̄n = ∑n
t=1 E[Xt|Ft−1], and let (Lt)∞

t=1 be any fixed, positive
sequence. Then, with probability at least 1− δ,

∀ n ≥ 1, M̄n −Mn ≤
√

2(Bn M̄n + Ln) log
(

1
δ

(Bn M̄n + Ln)1/2

L1/2
n

)
.

Further, if Bn ≥ 1, with probability at least 1− δ for any n ≥ 1 it holds that,

M̄n ≤ 2Mn + 2

√
4B2

n log
(

4Bn

δ2

)
log
(

4Bn

δ2 log
(

4Bn

δ2

))
+ e

≤ 2Mn +O
(

B log( B
δ )
)

Proof. Clearly, ξt = X̄t − Xt is a martingale difference sequence such that
ξt ≤ X̄t and X̄t is a predictable process. Hence Theorem A.1 applies with

C2
t ,


E
[
ξ2

t |Ft−1
]
, if E

[
ξ2

t |Ft−1
]
≥ X̄2

t ,

1
4

(
X̄t +

E[ξ2
t |Ft−1]
X̄t

)2
otherwise.

In particular C2
t ≤ BtX̄t. To see this, note that the Bhatia-Davis inequality

(Lemma A.4) implies E
[
ξ2

t |Ft−1
]
= Var(Xt|Ft−1) ≤ X̄t(Bt − X̄t) ≤ X̄tBt.
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Further, if E
[
ξ2

t |Ft−1
]
≤ X̄2

t , 1
4

(
X̄t +

E[ξ2
t |Ft−1]
X̄t

)2
≤ X̄2

t ≤ X̄tBt. Conse-

quently, AT = ∑T
t=1 C2

t ≤ Bn ∑T
t=1 X̄t = Bn M̄n. A direct application of

Theorem A.1 shows the first inequality.
For the second claim, we set Lt = eBt where e = exp(1). With this choice,

M̄n −Mn ≤
√
(Bn(M̄n + e) log

(
M̄n + e

δ2

)
.

We substitute x = M̄n + e. The claim follows by rearranging if we show
that √

Bnx log
( x

δ2

)
≤ x

2
+

√
4B2

n log
(

4Bn

δ2

)
log
(

4Bn

δ2 log
(

4Bn

δ2

))
.

Clearly, the left side of the inequality is a concave function in x, hence it
suffices to show that the derivative is smaller than 1

2 for all x ≥ 4Bn log( 4Bn
δ2 ).

The derivative is

d
dx

√
Bnx log

( x
δ2

)
=

√
Bn
(

log( x
δ2 ) + 1

)
2
√

x log( x
δ2 )

≤
√

Bn log( x
δ2 )

x
.

The inequality uses that x ≥ e. Hence all we need to show is that

4Bn log
( x

δ2

)
≤ x ,

which is true for x ≥ 4Bn log( 4Bn
δ2 ).

The following lemma bounds the variance of a random variable sup-
ported on an interval.

Lemma A.4 (Bhatia & Davis [23]). Let X be a real random variable supported
in [m, M]. Then,

Var(X) ≤ (M−E[X])(E[X]−m) ,

and the bound is tight, if all mass is concentrated on the end-points of the interval.
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Lemma B.1. Let Ls(a) = ‖ν̂s(a)− θ̂s‖2
Vs

defined for a 6= a∗ and assume that
〈ν− θ, a〉 ≤ 1 for all ν ∈ M and a ∈ A. Then

[Ls + ls − Ls+1](x) ≤ 2〈ν̂s(x)− θ̂s, as〉
εs + 〈as, θ − θ̂s〉

1 + ‖as‖2
V−1

s

+ 2‖as‖2
V−1

s
(1 + βs)

Proof. For the proof we adopt the notation ωs(a) = ν̂s(a)− θ̂s.

Ls + ls − Ls+1 = ‖ωs‖2
Vs+1
− ‖ωs+1‖2

Vs+1

= ‖ωs‖2
Vs+1
− ‖ωs + ωs+1 −ωs‖2

Vs+1

= 2〈ωs −ωs+1, Vs+1ωs〉 − ‖ωs+1 −ωs‖2
Vs+1

= 2〈ωs −ωs+1, Vsωs〉︸ ︷︷ ︸
(A)

+ 2〈ωs −ωs+1, as〉〈as, ωs〉 − ‖ωs+1 −ωs‖2
Vs+1︸ ︷︷ ︸

(B)

To avoid clutter, the dependence on a is implicit below. Note that because
ν̂s is a projection of θ̂s Vs-norm onto the convex set Ha∗

a , we have 〈ν̂s −
ν̂s+1, Vs(ν̂s − θ̂s)〉 ≤ 0. Therefore

(A) ≤ 2〈θ̂s+1 − θ̂s, Vs(ν̂s − θ̂s)〉 = 2〈ν̂s − θ̂s, as〉
εs + 〈as, θ − θ̂s〉

1 + ‖as‖2
V−1

s

The equality follows from Lemma B.4. Next, we derive an upper bound to
the term (B).

(B) ≤ 2〈ωs −ωs+1, as〉〈as, ωs〉 − ‖ωs+1 −ωs‖2
Vs+1

≤ 2‖ωs −ωs+1‖Vs‖as‖V−1
s
〈as, ωs〉 − ‖ωs+1 −ωs‖2

Vs+1

≤ 2‖ωs −ωs+1‖Vs+1‖as‖V−1
s
〈as, ωs〉 − ‖ωs+1 −ωs‖2

Vs+1

≤ ‖as‖2
V−1

s
〈as, ωs〉2 ≤ 2‖as‖2

V−1
s
(1 + βs)
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We used Cauchy-Schwarz and ‖ · ‖2
Vs
≤ ‖ · ‖2

Vs+1
in the first and second

inequality. Then we use 2ab− b2 ≤ a2, and in the last step boundedness,
|〈ωs(x), as〉| ≤ 〈ν̂s(x)− θ, as〉|+ β1/2

s ‖as‖V−1
s
≤ 1 + β1/2

s . The claim follows
from combining the bounds.

Lemma B.2. Let Ls(a) = ‖ν̂s(a)− θ̂s‖2
Vs

defined for a 6= a∗ and assume that
〈ν− θ, a〉 ≤ 1 for all ν ∈ M and a ∈ A. Then

|[Ls − Ls+1](a)|
≤ 4|ε|2‖as‖2

V−1
s

+ 2|〈ν̂s − θ̂s, as〉||εs|+ 8βs‖as‖2
V−1

s
+ 〈ν̂s − θ̂s, as〉2

Proof. For one direction, we can reuse Lemma B.1,

[Ls − Ls+1](a) ≤ [Ls + ls − Ls+1](a)

≤ 2|εs||〈ν̂s(a)− θ̂s, as〉|+ 2‖as‖V−1
s

β1/2
s + 2‖as‖2

V−1
s
(1 + βs) .

For the other direction, we have

[Ls+1 − Ls](a) = ‖ν̂s+1 − θ̂s+1‖2
Vs+1
− ‖ν̂s − θ̂s‖2

Vs

≤ ‖ν̂s − θ̂s+1‖2
Vs+1
− ‖ν̂s − θ̂s‖2

Vs

= ‖ν̂s − θ̂s + V−1
s asus‖2

Vs+1
− ‖ν̂s − θ̂s‖2

Vs
,

where for the last step we denote us = εs+〈as ,θ−θ̂s〉
1+‖as‖2

V−1
s

and use Lemma B.4.

Further unwrapping the square gives

‖ν̂s − θ̂s −V−1
s asus‖2

Vs+1
− ‖ν̂s − θ̂s‖2

Vs

= ‖ν̂s − θ̂s −V−1
s asus‖2

Vs
+ 〈ν̂s − θ̂s −V−1

s asus, as〉2 − ‖ν̂s − θ̂s‖2
Vs

= −2〈ν̂s − θ̂s, as〉us + u2
s‖as‖2

V−1
s

+ 〈ν̂s − θ̂s, as〉2 − 2〈ν̂s − θ̂s, as〉‖as‖2
V−1

s
+ ‖as‖4

V−1
s

u2
s

≤ −2〈ν̂s − θ̂s, as〉us(1 + ‖as‖2
V−1

s
) + 2u2

s‖as‖2
V−1

s
+ 〈ν̂s − θ̂s, as〉2

≤ 2|〈ν̂s − θ̂s, as〉|(|εs + β1/2
s ‖as‖V−1

s
)+

4(|ε|2 + βs‖as‖2
V−1

s
)‖as‖2

V−1
s

+ 〈ν̂s − θ̂s, as〉2

≤ 2|〈ν̂s − θ̂s, as〉||εs|+ 2β1/2
s ‖as‖V−1

s

+ 4|ε|2‖as‖2
V−1

s
+ 6βs‖as‖2

V−1
s

+ 〈ν̂s − θ̂s, as〉2

Combining both directions yields the claim.
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Lemma B.3. Let s such that 242ηsβs‖as‖2
V−1

s
≤ 1 and βs‖as‖2

V−1
s
≤ 1. Then

E

[
∞

∑
i=2

|ηs(Ls+1(x)− Ls(x))|i
i!

∣∣∣∣∣Fs

]
≤ O

(
η2

s
(

βs‖as‖2
V−1

s
+ ‖ν̂s(x)− θ̂s‖2

Vs
‖as‖2

V−1
s

))
.

Proof.

|(Ls+1(a)− Ls(a))|i|
≤
(
4|ε|2‖as‖2

V−1
s

+ 2|〈ν̂s − θ̂s, as〉||εs|+ 8βs‖as‖2
V−1

s
+ 〈ν̂s − θ̂s, as〉2

)i

≤
(
12|ε|2‖as‖2

V−1
s

)i
+
(
6|〈ν̂s − θ̂s, as〉||εs|

)i
+
(
24βs‖as‖2

V−1
s

+ 3〈ν̂s − θ̂s, as〉2
)i

For the last step we used (x + y + z)i ≤ (3x)i + (3y)i + (3z)i for x, y, z ≥ 0.
Further, ρ-subgaussian noise εs satisfies E

[
|ε|i
]
≤ (2ρ2)i/2iΓ(i/2) ≤ (2ρ2)ii!

and E
[
|ε|2i

]
≤ (2ρ2)i2i! for all i ∈N [Lemma 1.4, 131]. Hence,

Es

[ |ηs(Ls+1(x)− Ls(x))|i
i!

]

≤ Es

 (12ηs|ε|2‖as‖2
V−1

s
)i

i!

+ Es

[
(6ηs|〈ν̂s − θ̂s, as〉|εs|)i

i!

]

+
(24ηsβs‖as‖2

V−1
s

+ 3ηs〈ν̂s − θ̂s, as〉2)i

i!

We address each term individually, also using that 242ηsβs‖as‖2
V−1

s
≤ 1.

Es

[
(12ηs|ε|2‖as‖2

V−1
s
)i

i!

]
≤ (24ηsρ2‖as‖2

V−1
s
)i

≤ (24ηsρ2‖as‖2
V−1

s
)2 · 2−i+2

Es

[
(6ηs|〈ν̂s − θ̂s, as〉|εs|)i

i!

]
≤ (12ηs|〈ν̂s − θ̂s, as〉|ρ2)i

≤ (12ηs|〈ν̂s − θ̂s, as〉|ρ2)2 · 2−i+2

(24ηsβs‖as‖2
V−1

s
+ 3ηs〈ν̂s − θ̂s, as〉2)i

i!
≤ (24ηsβs‖as‖2

V−1
s

+ 3ηs〈ν̂s − θ̂s, as〉2)i−2 2i−2

i!



184 asymptotic information gain : proofs

Summing over i = 2, . . . , ∞ gives

∞

∑
i=2

Es

[ |ηs(Ls+1(a)− Ls(a))|i
i!

]
≤ O

((
ηs‖as‖2

V−1
s

)2
+
(
ηs|〈ν̂s − θ̂s, as〉|

)2
+
(
ηsβs‖as‖2

V−1
s

+ ηs〈ν̂s − θ̂s, as〉2
)2
)

≤ O
(

η2
s
(

βs‖as‖2
V−1

s
+ ‖ν̂s(x)− θ̂s‖2

Vs
‖as‖2

V−1
s

))
For the last step we summarize the terms using also that for Js = 1, we
have βs‖as‖2

V−1
s
≤ 1.

Lemma B.4. The one-step update to the least-squares estimator with data ys =
〈as, θ〉+ εs is

θ̂s+1 − θ̂s = V−1
s as

 εs + a>s (θ − θ̂s)

1 + ‖as‖2
V−1

s

 .

Proof. The difference can be computed with the Sherman-Morrison formula
(Lemma D.2),

θ̂s+1 − θ̂s = V−1
s+1

s

∑
i=1

aiyi − θ̂s

= V−1
s

s−1

∑
i=1

aiyi + V−1
s asys −

V−1
s asa>s V−1

s

1 + ‖as‖2
V−1

s

s

∑
i=1

aiyi − θ̂s

= V−1
s asys −

V−1
s as‖as‖2

V−1
s

ys

1 + ‖as‖2
V−1

s

− V−1
s asa>s θ̂s

1 + ‖as‖2
V−1

s

= V−1
s as

ys −
‖as‖2

V−1
s

ys

1 + ‖as‖2
V−1

s

− a>s θ̂s

1 + ‖as‖2
V−1

s


= V−1

s as

 ys − a>s θ̂s

1 + ‖as‖2
V−1

s


= V−1

s as

 εs + a>s (θ − θ̂s)

1 + ‖as‖2
V−1

s

 .
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The lower bounds complete the classification theorem. These results are
almost implied by existing theorems from finite partial monitoring. The
only difference is that here the outcome space is infinite, which does not
change the structure of the proofs. We include here the key details and
intuition. As expected, the key tool is Le Cam’s method in combination
with the Bretagnolle–Huber inequality [28] and an elementary calculation
of the relative entropy between measures on interaction sequences induced
by a fixed policy and for different environments. For the remainder of
this section, we fix an arbitrary policy and finite game with actions A
and feedback functions (Ma)a∈A. For simplicity, we assume the noise is
Gaussian and A spans Rd. Given a θ ∈ Rd let Pn

θ be the measure on
action/observation sequences of length n when the learner interacts with
the game for parameter θ. Before the theorems and proofs we need a little
more notation. Let

Vn(θ) = Eθ [Vn] = Eθ

[
n

∑
t=1

Mat M>at

]
.

Then define En(θ) as the binary random variable that the algorithm plays a
suboptimal action at least n/2 times.

En(θ) = 1

(
n

∑
t=1

1(at /∈ P(θ)) ≥ n/2

)
.

Notice that if θ, θ′ are such that P(θ) ∩ P(θ′) = ∅, then En(θ′) ≥ 1− En(θ).
In the following we let Rn(θ) be the expected regret of a learner that
interacts with the environment determined by θ ∈ M, without specifying
the policy.

Lemma C.1. The relative entropy between Pn
θ and Pn

θ′ satisfies

DKL(P
n
θ ‖Pn

θ′) =
1
2

∥∥θ − θ′
∥∥2

Vn(θ)
.

For a proof refer to [103, Theorem 24.1].
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Lemma C.2. (Bretagnolle-Huber inequality) Let P and Q be probability measures
on the same measurable space (F, Ω) and let A ∈ F be an arbitrary event. Then

P(A) + Q(Ac) ≥ 1
2

exp(−DKL(P‖Q)) .

Theorem C.1. Suppose that span(Ma : a ∈ A) 6= Rd, then there exists a
game-dependent constant C > 0 such that for all n ≥ 1 there exists a θ for which
Rn(θ) ≥ Cn.

Proof. Let θ ∈ Rd be a non-zero vector such that Maθ = 0 for all a ∈ A,
which exists by the assumption that span(Ma : a ∈ A) 6= Rd. Next, let
θ′ = −θ and notice that by Lemma C.1,

DKL(P
n
θ ‖Pn

θ′) = 0 .

By our choice, the optimal action for the environment determined by θ
and θ′ are different: P(θ) ∩ P(θ′) = ∅. The Bretagnolle-Huber inequality
(Lemma C.2) implies that

Pn
θ (En(θ)) + Pn

θ′(En(θ
′)) ≥ Pn

θ (En(θ)) + Pn
θ′(1− En(θ))

≥ 1
2

exp(−DKL((‖P)n
θ , Pn

θ′)) ≥
1
2

. (C.1)

Furthermore, there exists an ε > 0 such that Rn(θ) ≥ εnPn
θ (En(θ))/2.

Hence, by Eq. (C.1), the regret is linear for either environment θ or θ′.

The key lemma for proving the lower bound for globally observable
games shows that in games that are not locally observable, there exists a
pair of neighbouring Pareto optimal actions a, b and a parameter θ such
that both actions a, b are optimal, but 〈φa − φb, θ〉 can not be estimated by
playing only actions from the neighborhood Nab.

Lemma C.3. Suppose a game is not locally observable. Then there exists a pair
a, b of neighbouring Pareto optimal actions and θ ∈ relint(Ca ∩ Cb) such that
φa − φb /∈ span{Mc : c ∈ Nab}.

Proof. The lemma follows from the definition of local observability its
equivalent characterization provided in Lemma 6.6.

Theorem C.2. Suppose the game is globally observable, but not locally observable.
Then there exists a game-dependent constant C > 0 and θ ∈ Rd such that the
regret is Rn(θ) ≥ Cn2/3.
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Proof. By Lemma C.3, there exists a pair of neighboring Pareto optimal
actions a, b ∈ ext(conv(A)) and θ ∈ relint(Ca ∩ Cb) such that φa − φb /∈
span({Mc : c ∈ P(θ)}) = L. Let φa − φb = u + v, where u ∈ L and v ∈ L⊥.
Since φa − φb /∈ L it follows that

〈φa − φb, v〉 = 〈u + v, v〉 = ‖v‖2 > 0 .

In particular, for suitably small ε > 0 it holds that θ + εv ∈ Ca and θ − εv ∈
Cb. Define

θn = θ + n−1/3v and θ′n = θ − n−1/3v

and let assume n is sufficiently large that θn ∈ Ca and θ′n ∈ Cb. Next,
decompose Vn(θ) as Vn(θ) = Un(θ) + Wn(θ), where

Un(θ), Eθ

[
n

∑
t=1

1(at ∈ P(θ))Mat M>at

]
and

Wn(θ), Eθ

[
n

∑
t=1

1(at /∈ P(θ))Mat M>at

]
.

Let Tn(Y) = ∑n
t=1 1(at ∈ Y) be the number of times an action in Y ⊂ A is

played. Notice, since v ∈ L⊥, that

1
2

∥∥θn − θ′n
∥∥2

Vn(θn)
= 2n−2/3‖v‖2

Vn(θn)

= 2n−2/3‖v‖2
Wn(θn)

≤ 2n−2/3Eθn [Tn(P(θ)c)]‖v‖2
G ,

where G = ∑a∈A Ma M>a . Now, there exists a game-dependent constant
ε > 0 such that

Rn(θn) ≥ εEθn [Tn(P(θ)c)] .

Hence if Eθn [Tn(P(θ)c)] ≥ n2/3, then Rn(θn) ≥ εn2/3. Assume that
Eθn [Tn(P(θ)c)] ≤ n2/3. By the Bretagnolle-Huber inequality (Lemma C.2),
there exists another game-dependent constant ε′ > 0 such that

Rn(θn) +Rn(θ
′
n) ≥ n2/3ε′ exp

(
−2n−2/3Eθn [Tn(P(θ)c)]‖v‖2

G

)
≥ n2/3ε′ exp(−2‖v‖2

G) .

Combining the last two displays completes the proof.
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Theorem C.3. Suppose the game is locally observable, then there exists a constant
C > 0 such that for all n there is a θ for which Rn(θ) ≥ Cn1/2.

Proof. Let θ ∈ Rd be arbitrary and θn = n−1/2θ and θ′n = −θn. By the
assumption that A spans Rd, it follows that P(θn)∩P(θ′n) = ∅. By Lemma
C.1,

DKL(P
n
θn
‖Pn

θ′n
) =

1
2

∥∥θ′n − θn
∥∥2

Vn(θn)
=

1
2
‖θ‖2

Vn(θn)/n .

Clearly, G = ∑a∈A Ma M>a � Vn(θn)/n. Hence, there exists a constant
C > 0 such that for all n ≥ 1,

DKL(P
n
θn
‖Pn

θ′n
) ≤ C .

Then, using the same argument as in the proof of Theorem C.1, we have

Pn
θn
(En(θn)) + Pn

θ′n
(En(θ

′
n)) ≥ Pn

θn
(En(θn)) + Pn

θ′n
(1− En(θn))

≥ 1
2

exp(−C) .

The result follows because there exists an ε > 0 such that Rn(θ) ≥
Pn

θ (En(θ))ε
√

n/2.



D
L I N E A R A L G E B R A

Standard results from linear algebra are collected here for reference.

Lemma D.1 (Matrix determinant lemma). Let V ∈ Rd×d be an invertible
matrix and a, b ∈ Rd. Then

det(V + ab>) = (1 + aV−1b)det(V) .

More generally, for let A, B ∈ Rd×m,

det(V + AB>) = det(1m + A>V−1B)det(V) .

Lemma D.2 (Sherman-Morrison-Woodbury formula [147, 171]). Let V ∈
Rd×d be an invertible matrix and A ∈ Rd×m,

(V + AA>)−1 = V−1 −V−1 A(1m + A>V−1 A)−1 A>V−1 .
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