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Designing sustainable processes is gaining momentum in the chemical engineering community.
Conventional life cycle assessment approaches often employed to assess the sustainability level of chem-
ical processes can be used to compare alternatives. However, because they lack clear quantitative thresh-
olds above which a process should be deemed unsustainable, the insight provided into whether a
technology is truly sustainable in absolute terms is limited. This work covers this gap by incorporating
absolute sustainability criteria in process design using the planetary boundaries concept, which defines
ecological limits on critical Earth systems. Our method, integrating process simulation, surrogate model-
ing, and a recent characterization method to compute the impact on the planetary boundaries, is applied
to methanol production from hydrogen and CO2. Our results show that the sustainability level of the
fossil-based chemical can be improved substantially by adequately selecting the hydrogen source. The
new approach unfolds new avenues for including absolute sustainability criteria in process design.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The ongoing transition towards a more sustainable chemical
sector calls for advanced decision-support tools to incorporate
environmental criteria in the design of emerging processes and ret-
rofit of existing ones. While designing greener processes is now
receiving increasing interest, it is indeed a topic long considered
in the chemical engineering literature, which covers multiple
approaches based on a wide range of metrics. Notably, in a
pioneering work, Young et al. introduced the WAR algorithm
(Young et al., 2000), which quantifies the potential environmental
impacts of a chemical process. Sikdar (2003) proposed a hierarchi-
cal approach based on 3-dimensional (3-D) indicators covering dif-
ferent sustainability aspects. This framework was further refined
by Martins et al. (2007), who included 3-D and economic indicators
into process design. Aliff Radzuan et al. (2019) developed the SUI
metric, which combines economic, sustainability, and environmen-
tal aspects into a weighted index, and used it to compare design
alternatives for the production of cyclohexane from benzene and
hydrogen. Benoit et al. (2019) developed a tool for assessing the
eco-efficiency of a process using different impact metrics. With a
similar spirit, Pereira et al. (2018) developed the eco-efficiency
comparison index to enable comparisons between alternative
designs.

In recent decades, it has become clear that identifying environ-
mentally superior technologies requires enlarging the scope of the
analysis beyond the chemical plant. Hence, a proper environmental
analysis of chemical technologies requires embracing impacts over
the whole life cycle to avoid shifting burdens across echelons in the
chemical supply chain (Algunaibet and Guillén-Gosálbez, 2019). In
this spirit, life cycle assessment (LCA) (Kleinekorte, 2020) has
become the prevalent method in the environmental assessment
of chemical processes, either as a standalone tool or coupled with
process optimization within the life cycle optimization framework
(LCO) (Azapagic and Clift, 1999). The latter approach has found
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Nomenclature

Abbreviations
LCA Life cycle assessment
LCO Life cycle optimization
PBs Planetary boundaries
PSE Process systems engineering
MINLP Mixed integer nonlinear programming
SOS Safe operating space
GVA Gross value added
LCI Life cycle inventory
BRANN Bayesian regularized artificial neural network
LHS Latin hypercube sampling
HEN Heat exchanger network
CCU Carbon capture and utilization
SMR Steam methane reforming
CCS Carbon capture and storage
DAC Direct air capture
BAU Business as usual

Variables & Parameters
a Share of the total safe operating space allocated to the

studied process
IMPD

b Contribution to the transgression of planetary boundary
b per functional unit

SOSb Total safe operating space for planetary boundary b
TLDb Transgression level of planetary boundary b
TLEDb Transgression level excess of planetary boundary b
MTL Mean transgression level
TAC Total annualized cost
ACCR Annual capital charge ratio
CAPEX Capital expenditures
OPEX Operation expenditures
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multiple applications in Process System Engineering (Pieragostini
et al., 2012; Grossmann and Guillén-Gosálbez, 2010; Guillén-
Gosálbez et al., 2019), including the areas of process design
(Guillén-Gosálbez et al., 2008; Hugo et al., 2004), and supply chain
optimization (Mota et al., 2015; You et al., 2012).

The main limitation of the plant-based methods and the LCA
and LCO approaches employed in green engineering is that they
rely on metrics that are hardly interpretable from a worldwide sus-
tainability perspective. Notably, LCA indicators enable compar-
isons between process alternatives but provide limited insight
into whether technologies are sustainable in absolute terms. LCO
inherits this critical limitation, as optimal solutions minimizing
LCA impacts are not guaranteed to be sustainable from an absolute
sustainability viewpoint, i.e., when evaluated considering the finite
capacity of the Earth.

Absolute sustainability methods are now emerging in the LCA
literature to quantify impacts globally, considering the ecological
capacity of the Earth system. Standard LCA damage assessment
indicators, e.g., Eco-indicators 95 (Goedkoop et al., 1995) and 99
(PRé-Consultants, 2000), ReCiPE (Goedkoop et al., 2008), IMPACT
(Jolliet, 2003); CML 2001 (Guinee, 2002) , and the European foot-
print methodology (European Comission (EC), 2013), among
others, are useful for environmental comparisons (Chandrakumar
and McLaren, 2018; Bjørn et al., 2016; Hauschild, 2015). In con-
trast, absolute methods (Bjorn, et al., 2020) define maximum
allowable environmental limits on environmental metrics that
should not be exceeded for the system to be deemed sustainable
(Ryberg, 2018; Ryberg et al., 2018; Pizzol et al., 2016; Sala et al.,
2020), so they can classify technologies as sustainable or unsus-
tainable depending on whether they transgress such limits.

Among the approaches available, the planetary boundaries (PB)
concept, proposed by Röckstrom (Rockström, 2009; Steffen, et al.,
2015), provides a robust framework to quantify absolute sustain-
ability accurately. In essence, the PBs define a set of ecological
thresholds on nine Earth system processes critical for the resilience
of the planet. PBs on nine Earth system processes were put forward
initially (Rockström, 2009), i.e., climate change, rate of biodiversity
loss (terrestrial and marine), interference with the nitrogen and
phosphorus cycle, stratospheric ozone depletion, ocean acidifica-
tion, global freshwater use, change in land use, atmospheric aero-
sol loading and chemical pollution. These bounds were later
refined in (Steffen, et al., 2015), which further developed the bio-
geochemical flows, biodiversity integrity, and novel entities PBs.
2

Transgressing any of these boundaries could trigger a set of delete-
rious events that could shift the current state of the Earth to a new
unknown, and very likely less friendly for humanity, equilibrium
state. Ongoing research on the PBs aims to define these critical
thresholds more accurately, while their application to the assess-
ment of chemical processes is still in its infancy.

The chemical sector is witnessing a paradigm shift toward more
sustainable technologies (Guillén-Gosálbez et al., 2019; Bakshi,
Jun. 2019), including the transition to renewable carbon, e.g., bio-
genic carbon and captured CO2, less energy- and water-intensive
processes, and technologies closing the materials loop through
the adoption of circular economy principles. In this context, assess-
ing the absolute sustainability level of emerging technologies
becomes essential to guide future experimental work and regula-
tions more sensibly (González-Garay et al., 2019).

Bearing the above in mind, here we incorporate the PBs in the
design of chemical processes to identify process flowsheets that
are entirely consistent –environmentally speaking– with sustain-
able development. Process design is a fundamental problem in
chemical engineering, often addressed by maximizing economic
performance and imposing bounds on environmental impacts,
quantified via simple metrics and/or constraints based on current
regulations (e.g., CO2 emissions, waste, etc.). Some works applied
the LCO framework to minimize the life cycle impact of chemical
processes (Guillén-Gosálbez et al., Feb. 2008; Hugo et al., 2004),
yet even this approach cannot ensure that the design identified is
environmentally sustainable. Similarly, standard pollution preven-
tion methods for process design (El-Halwagi and Prevention, 1997)
can help to reduce the emissions and waste of a chemical plant, yet
they cannot guarantee that the final design is sustainable from a
worldwide sustainability perspective.

In the derivation of our process design method, we capitalize on
the application of the PBs framework to other engineering prob-
lems, namely the design of sustainable power mixes (Algunaibet
et al., 2019), and fuels supply chains (Wheeler et al., 2020;
Ehrenstein et al., 2020), as well as the evaluation of land-use
strategies (Heck et al., 2018), laundry washing (Ryberg, 2018),
ammonia production (Samaroo et al., 2020) and the chemical sec-
tor (Galán-Martín et al., 2021), among others. We note that we
share with other works the overall aim of embracing multiple sus-
tainability criteria in the analysis, as done in the recently devel-
oped SOFTSCAPES framework (Mangili et al., 2019). However,
what makes our work unique is that we employ metrics that can
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be interpreted in absolute terms, as they refer to the Earth’s ecolog-
ical capacity.

Going well beyond standard green process design methods,
here we link the performance of a chemical flowsheet with its
impact on the planet using a recently proposed LCA-PB methodol-
ogy coupled with process design tools. Notably, we formulate the
process design task as an optimization problem that incorporates
explicit LCA-based constraints linking the mass and energy flows
of the process with the control variables of the PBs. The resulting
bi-criteria optimization model minimizes then the total cost and
the transgression of the PBs to identify process flowsheets that
are entirely sustainable in absolute (environmental) terms.

To illustrate the capabilities of our approach, we apply it to
green methanol production based on CO2 hydrogenation
(González-Garay et al., 2019; Hank, 2018). Green methanol has
attracted increasing interest in the process modeling and catalysis
communities, as it could be used as a green precursor for a wide
range of chemicals via methanol-to-olefins and methanol-to-
aromatics processes (Tian et al., 2015; Samimi et al., 2018; Yang
et al., 2019). However, green methanol requires large amounts of
renewable energy to activate the inert CO2 molecule, which raises
concerns about its sustainability level. Here we shall design a CO2

hydrogenation plant considering different hydrogen sources to
optimize the methanol cost and its absolute sustainability level
simultaneously. Our approach identifies the optimal operating
conditions, equipment sizes, and hydrogen feed that minimize
the transgression level of eight PBs and the total annualized cost.

The paper is organized as follows. First, we formally state the
problem of interest, followed by the methodology and then the
numerical results. Finally, we draw the main conclusions of the
work and outline future research directions.

2. Problem statement

Process system engineering (PSE) spans multiple scales, from
the molecular level to the enterprise level (Grossmann and
Westerberg, 2000). Here we shall focus on process design to illus-
trate the capabilities of combining PBs with mathematical pro-
gramming to optimize sustainable industrial systems. We are
given a final product demand to meet, the final product specifica-
tions, and a set of unit operations and raw materials to cover this
demand. The goal is to find the optimal design and operating con-
ditions that minimize the cost and environmental impact while
meeting technical and demand satisfaction constraints.

3. Methodology

3.1. Mathematical formulation

The standard process design task can be formulated as a Mixed-
Integer Non-Linear Programming (MINLP) problem, where continu-
ous variables represent operating conditions,mass and energyflows
andsizesofequipmentunits,andbinaryvariablesdenotetopological
decisions (i.e., the existence of process units and connectivity
between them). This MINLP for process design is here constructed
using surrogate models trained with process simulations to predict
thebehaviorofthechemicalplantprecisely.Theoriginaldesignprob-
lem can bemathematically formulated as follows.

min
x;y

w1 x; yð Þ;w2 x; yð Þf g
s:t: h x; yð Þ ¼ 0
g x; yð Þ � 0
LB � x � UB

x 2 Rn; y 2 f0;1g

ð1Þ
3

where w1 x; yð Þ;w2 x; yð Þ refer to the objective functions (i.e., eco-
nomic and environmental), x and y denote the continuous and bin-
ary variables, hðx; yÞ and gðx; yÞ are the equality and inequality
constraints, and LB;UB refer to the lower and upper bounds on
the continuous variables, respectively.

As already mentioned, we here use surrogate models to build
the MINLP for process design. The continuous variables are
divided into independent (i.e., degrees of freedom, denoted by
xI and yI) and dependent (xO), where the latter are computed by
the surrogate (i.e., process simulation) once the independent vari-
ables have been fixed. The problem can then be reformulated as
in Eq. (2).

min
xI ;yI

w1 xI; xO; yI
� �

;w2 xI; xO; yI
� �� �

s:t xO ¼ f 0ðxI; yIÞ
h xI; yI
� � ¼ 0

g xI; yI
� � � 0

LBI � xI � UBI

xI 2 Rn; y 2 f0;1g

ð2Þ

where f 0 xI; yI
� �

represents the surrogate model, computed from the
input (independent) variables, whose values are constrained within
allowable lower and upper bounds (LBI and UBI , respectively).
External equality and inequality constraints (i.e., h xI; yI

� �
and

g xI; yI
� �

, respectively) may also be imposed on the independent
variables.

We next focus on describing how the objective functions are
quantified, with a strong focus on the environmental impact,
which is the main contribution of this work.
3.2. Environmental performance: Planetary boundaries

The PBs represent a set of ecological limits defined on critical
Earth systems that should never be exceeded to operate our planet
safely (Rockström, 2009). PBs on nine Earth system processes were
put forward, which define three regions for every Earth system, i.e.,
the safe operating space (SOS) (green zone), the uncertain zone
(yellow zone), and the high-risk zone (red zone). The green zone
would allow us to operate the planet safely for many years to
come, while the uncertain and high-risk regions entail an increas-
ing probability of catastrophic events that could shift the current
equilibrium state of the Earth.

The PBs impose limits on a set of control variables defined for
the Earth systems. In some cases, the control variables consider a
natural background level, i.e., an amount of burden that is inde-
pendent of anthropogenic activity. This means that although the
PB would seem to give an ample margin, the anthropogenic
activity must be more limited in order to not surpass the PB.
The SOS then considers the difference between the value of
the PB and the natural background level. For example, the PB
of climate change is given by a CO2 concentration of 350 ppm,
i.e., concentrations below 350 ppm do not surpass the PB and
are therefore within the SOS. However, the natural background
level for this control variable is 278 ppm. Thus, the SOS regard-
ing anthropogenic activities is obtained from this difference, i.e.,
350 ppm – 278 ppm, 72 ppm. Four PBs were already trans-
gressed (i.e., climate change, biosphere integrity, biogeochemical
flows, and land-system change), which reinforces the need to
minimize the impact of industrial systems considering the carry-
ing capacity of the planet.

In this work, we follow two steps to quantify the impact of a
chemical process on the PBs, as described below.
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Step 1: Downscaling the SOS to the process level

First, we downscale the PBs to the process level. The PBs define
global ecological budgets that should be shared among all eco-
nomic sectors jointly. Hence, we first need to allocate part of this
budget, the so-called safe operating space (SOS), to the process
under study. This share of the SOS allows us to determine whether
the process operates below or above its assigned ecological budget
and, therefore, elucidate if it is or not sustainable.

There are multiple downscaling principles that can be applied
to assign shares of the SOS to industrial systems (Ryberg et al.,
2020). So far, the selection of downscaling principles lacks scien-
tific consensus and remains controversial. In this work, we apply
an egalitarian principle based on the Gross Value Added (GVA),
which assigns a share of the SOS based on the GVA of the process
relative to the GVA of the world, as follows:

a ¼ GVAFU

GVAWorld
ð3Þ

where a is the share of the SOS assigned to the system (e.g., metha-

nol production), GVAFU refers to its GVA and GVAWorld is the GVA of
the world.

Step 2: Calculating the impact on the control variables of the
PBs

The next step to quantify the PBs performance of a process is to
link the life cycle feedstock requirements, emissions and waste of
the process to its impact on the control variables of the Earth sys-
tems of the PBs. To this end, we first quantify the Life Cycle Inven-
tory (LCI) of feedstock, emissions and waste following the standard
LCA phase three (i.e., inventory analysis). The LCI is obtained by
combining data of the foreground system (i.e., mass and energy
flows associated with the process flowsheet) with data of the back-
ground system (i.e., activities supplying inputs to the main process,
e.g., raw materials, electricity, steam). Background data can be
retrieved from environmental databases such as Gabi (Volz et al.,
1998) and Ecoinvent 3.5 (Wernet et al., 2019), as well as from tech-
nical reports and scientific literature. In contrast, data of the fore-
ground system is provided by the process simulation model (e.g.,
Aspen-HYSYS, Aspen Plus, gPROMS). In essence, the LCI entries j
(in the set J) can be computed from the raw materials, utilities
and direct emissions of the main process as follows:

LCIj ¼
X
r2R

LCARM
j;r RMr þ

X
k2K

LCAUT
j;k UTk þ LCADIR

j þ LCAWASTE
j 8j 2 J ð4Þ

where LCARM
j;r denotes the LCI entry (i.e., feedstock, emissions, or

waste) per unit of mass of raw material r, LCAUT
j;k denotes the LCI

entry per unit of utility k, and LCADIR
j and LCAWASTE

j are the natural
flows directly exchanged between the process and the biosphere
(i.e., direct emissions and waste). In the same equation, RMr denotes
the consumption of raw material r, and UTk represents the amount
of utility k consumed by the process (i.e., per unit of the chemical
produced, taken as the functional unit for the LCA calculations).

We next link the LCI entries to the impact on the control vari-
ables of the PBs using the characterization factors recently devel-
oped by Ryberg (Ryberg et al., 2018), as shown in Eq. (5).

IMPD
b ¼

X
j2J

LCIjCFb;j 8b 2 PB ð5Þ

where J refers to the set of environmental entries (i.e., feedstock,
emissions and waste) linked to each PB b, and CFb;j is the character-
ization factor associated with planetary boundary b and environ-
4

mental entry j. IMPD
b is the contribution to the transgression of PB

b per functional unit, e.g., the yearly production of methanol.
Finally, we can calculate the transgression level attained by a

design alternative in every PB as follows:

TLDb ¼ IMPD
b

SOSba
8b 2 PB ð6Þ

where values of TLDb above one imply that the process transgresses
its share of PB b, so it is unsustainable from the viewpoint of that PB.
Values below one imply that the process operates within its share of
the SOS, so it can be concluded that it is environmentally sustain-
able in that PB.

To quantify the transgression levels in the objective function,
we define the transgression level excess (TLE) as follows:

TLED
b ¼ max 1; TLDb

n o
� 1 8b 2 PB ð7Þ

where in essence, we only penalize the transgression levels above
one (relative to the downscaled SOS). This is because designs lying
below the PB (green zone) should be deemed sustainable. We refor-
mulate the transgression level function as follows (considering the
share of the SOS previously computed following a specific down-
scaling principle):

TLED
b � IMPDb

SOSba
� 1 8b 2 PB

TLED
b � 0 8b 2 PB

ð8Þ

The environmental objective, defined as the mean transgression
level (MTL), is computed as shown in Eq. (9), where we consider
the total average transgression level across all the PBs.

MTL ¼
X
b2PB

TLED
b

jPBj ð9Þ

In this work, we consider the following PBs: CO2 concentration
and energy imbalance, the biogeochemical flows of nitrogen and
phosphorus, stratospheric ozone depletion, ocean acidification,
land-system change, and freshwater use. The other PBs are omitted
due either to the lack of suitable characterization factors (as in bio-
sphere integrity), or to the lack of both appropriate thresholds and
characterization factors (i.e., aerosol loading and novel entities).
Note that our objective function does not rely on weighting factors
because all the PBs are considered equally important. This is
because transgressing any of them could compromise the resili-
ence of the Earth.

3.3. Economic assessment

The economic performance is quantified via the total annual-
ized cost (TAC), which is computed as follows:

TAC ¼ ACCR� CAPEX þ OPEX ð10Þ
where ACCR stands for the annual capital charge ratio, and
CAPEX;OPEX stand for capital expenditures and operational expen-
ditures, respectively. Details on how to compute these terms can be
found in standard text books (Towler and Sinnott, 2012) and are
provided in the SM, in section S1.

3.4. Solution procedure using a surrogate model

We briefly describe next how the calculations are carried out.
Further details are provided in the case study section.

Without loss of generality, we build the surrogate model of the
original process simulation using a Bayesian Regularized Artificial
Neural Network (BRANN). This choice is motivated by its robust-
ness compared to standard artificial neural networks and its good
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performance in terms of overfitting (Burden and Winkler, 2009).
The BRANN is built using the results of a set of simulation runs
generated by varying the independent variables between their
lower and upper bounds in Aspen-HYSYS. We generate a given
number of data points (1000 in our case) via the Latin Hypercube
Sampling (LHS). At each point, the MINLP model implemented in
SYNHEAT (Yee and Grossmann, 1990) is run in order to optimize
the heat exchanger network (HEN) associated with the process
simulated in Aspen-HYSYS (i.e., to minimize the total cost of the
HEN). As will be later discussed in more detail, the surrogate model
considers eight outputs: the total cost of the inside battery limits
(ISBL), the amount of chemical (methanol) produced, the require-
ments of heating, cooling and electricity, the direct emissions
(CO2 and CO), and the amount of waste (waste water generated).
Therefore, the data to produce the ANN comprises an input matrix
of c � inputs and c � outputs, where c is the number of points from
the original sampling that converge to a solution.

The surrogate model can then be optimized using standard
multi-objective optimization algorithms, such as the e-constraint
method (Mavrotas and Florios, 2013). This algorithm keeps one
objective as the main objective while transferring the others to
auxiliary constraints that impose bounds on them. These epsilon
bounds are then modified as iterations proceed, identifying in each
run a different Pareto point. The computational advantage of min-
imizing the PBs transgression level (as opposed to minimizing sev-
eral LCA metrics simultaneously) is that it leads to bi-criteria
models (i.e., cost vs transgression level) that are easier to handle.
Fig. 1. Flowchart of the proposed computational approach for sustainable process
design within PBs.
3.5. Software implementation

The overall solution approach combines a palette of software
packages, i.e., Python, GAMS, Matlab, and Aspen-HYSYS, to carry
out the calculations. The bulk of the calculations are performed
in Matlab and Aspen-HYSYS, with GAMS solving the HEN design
problem based on the MINLP developed by Yee and Grossmann
(Yee and Grossmann, 1990), implemented in the SYNHEAT code.

The methodology is outlined in Fig. 1. In essence, Python sends
input data to Aspen-HYSYS (i.e., values of the independent values
generated via sampling within allowable limits), and reads the
simulation output (i.e., values of the dependent variables). After-
ward, part of this output, i.e., process streams that can be inte-
grated and their target temperatures, are sent to GAMS where
the HEN is optimized using SYNHEAT. The results of the process
simulation model, together with the SYNHEAT results, are sent
then to Matlab, where the neural network is built. Finally, the neu-
ral network is optimized with an interior point algorithm (Byrd
et al., 1999; Byrd et al., 2000; Waltz et al., 2006) (implemented
in the fmincon function of Matlab) and considering as additional
constraints the bounds on the independent variables used to build
the surrogate model.
4. Case study

Methanol is currently produced from syngas generated from
natural gas, therefore relying on fossil carbon. Some alternatives
are being explored using biogas (Vita, 2018), shale gas (Ehlinger
et al., 2014) or captured CO2 and hydrogen as feedstock. Shale
gas is still based on fossil carbon, so it should be ultimately ruled
out to close the carbon loop in the chemical industry. The CO2

hydrogenation route, which holds good promise in the transition
to renewable carbon-based chemicals, gives rise to a set of alterna-
tive pathways differing in the CO2 and hydrogen sources. CO2 can
be captured mostly from power plants based on fossil fuels (natu-
ral gas and coal) or directly from the air, where the latter route is
the only one entirely consistent with circular economy principles.
5

Likewise, hydrogen can be synthesized from natural gas via SMR
with CCS, from biomass through gasification, and also from the
water via electrolysis. Biomass gasification is constrained by its
availability, strongly linked to geographical limitations and the
competition for land with food and electricity generation. Biogas
presents a high variability depending on the gasified feedstock.
Furthermore, water electrolysis could be powered by solar, wind,
nuclear, and hydropower. Nuclear is affected by social acceptabil-
ity issues, while the plant’s location limits the availability of hydro-
power. Solar and wind are both suitable renewable sources for
water splitting, yet wind shows a lower carbon footprint. A more
in-depth analysis of these scenarios can be found in the works by
Ioannou et al. (2021) and Galán-Martín et al. (2021).

Hence, we apply our method to design a methanol plant that
consumes captured CO2 and hydrogen as feedstock, where the for-
mer is obtained from direct air capture facilities (DAC) powered
with natural gas and electricity from the current mix, and the latter
from either steam methane reforming (SMR) with carbon capture
and storage (CCS) or water splitting powered by wind. This carbon
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capture and utilization (CCU) process creates economic value from
the CO2 instead of storing it in geological sites. The scope of the
process is summarized in Fig. 2.

Fig. 3 shows the process flowsheet based on the works by Van-
Dal and Bouallou (2013) and González-Garay et al. (2019). The
simulation was implemented in Aspen HYSYS v11, using the ther-
modynamic packages Peng-Robinson and NRTL - Ideal. The hydro-
gen and CO2 inlet streams are compressed and then mixed before
being fed to the reactor, where the reaction, highly exothermic,
occurs. The reactor outlet is fed to two flashes and a distillation col-
umn that separate the methanol product from the unreacted reac-
tants, CO, and the water byproduct.

More precisely, we consider a plant with a constant CO2 feed of
2,000 kmol/h available at 25 �C and 1 bar. These conditions assume
the existence of a DAC facility integrated with the methanol pro-
duction plant. This stream is compressed to reach the reaction
pressure, modeled as an independent variable to be optimized.
The use of cooling mid-compression is needed due to the high tem-
peratures reached in the compressor, while a compression train is
required to maintain the compression ratio below three since the
desired final pressure is in the range of 45–55 bar.

Regardless of its provenance, the hydrogen stream is available
at 30 bar and also needs to be compressed to reach the reaction
pressure. However, since the compression ratio lies in the range
of 1.50–1.83, there is no need to implement multiple compression
stages (Luyben, Dec. 2011).

After being compressed, the two gases are mixed with the recy-
cled stream and the resultant stream is heated to reach the desired
reaction temperature. Two main reactions occur in the reactor. The
first one is the CO hydrogenation to produce methanol (R1), which
is accompanied by the water–gas shift reaction (R2), leading to the
global reaction (R3), as shown below.

COþ 2H2 $ CH3OH R1

CO2 þ H2 $ COþ H2O R2

CO2 þ 3H2 $ CH3OH þ H2O R3

These reactions take place in a plug flow reactor (PFR) with a
Cu-ZnO-Al2O3 catalyst. We consider the kinetic model developed
Fig. 2. Scope of the production system
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by Bussche and Froment (1996). We note, however, that other
alternative kinetic models could have been used instead (Huš
et al., 2017; Pavlišič et al., 2020; Slotboom, 2020). The reactor out-
let is cooled to 35 �C and separated in a flash unit. Most of the unre-
acted hydrogen and CO2 are recycled and recompressed to reach
the reaction pressure. Part of the recycle stream, mainly containing
CO2, is purged (e.g., from 0.1% to 5%). The bottom stream of the
flash is depressurized to 2 bar and sent to another flash unit before
entering a distillation column with a partial condenser, operating
at a head pressure of 1 bar. The distillate product is methanol with
a 99% purity and at 64 �C, while the overhead, containing residual
traces of CO2 and methanol, is sent to the purge. The bottom pro-
duct is wastewater at approximately 109 �C, which will be treated
in a wastewater plant. More details of the simulation results are
shown in the supplementary material, section S3.

The HEN design is optimized based on the streams data of the
Aspen-HYSYS model. The utilities considered are high-pressure
steam (40 bar, 250 �C) and cooling water (25 �C to 30 �C). The min-
imum temperature difference is 10 �C. We assume that the com-
pressors operate with electricity from the grid. Another option
would be to use part of the heat available in the reaction outlet
to generate electricity via steam turbines. Considering that the
future mix will get decarbonized, it seems more sensible to use
the heat available in the reactor to eliminate the need for steam
in the plant, e.g., in the column’s reboiler, rather than to generate
electricity to power the compressors.

The purge contains direct emissions, mostly CO2 and CO, which
are appropriately accounted for in the quantification of the impact
on the PBs.

4.1. Mathematical formulation

We defined six independent variables (degrees of freedom) in
the optimization, i.e., volume, temperature and pressure of the
reactor, molar flowrate of the inlet hydrogen, purge ratio, and
reflux ratio in the distillation column. These independent variables
are varied between a lower and an upper bound, as shown in
Table 1. The amount of CO2 is fixed at 2,000 kmol/h.

The provenance of hydrogen does not affect the simulation
model. Therefore, the ANN is built considering six inputs, while
investigated in the case study.



Fig. 3. Diagram of the flowsheet highlighting in colors the input variables in the surrogate model.
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the optimization algorithm optimizes seven variables. Hence, in
the optimization step, we disaggregate the molar flow of hydrogen
into two variables, i.e., SMR with CCS hydrogen and electrolytic
hydrogen. This choice of the hydrogen source provides the opti-
mization algorithm with additional flexibility to minimize the cost
and the transgression level of the PBs.

4.2. Economic cost

The TAC is calculated using the design parameters of each pro-
cess unit and data from Sinnott and Towler (Towler and Sinnott,
2012).

Regarding the variable costs of operation, we consider here the
costs of all the mass and energy inputs, i.e., hydrogen and CO2 feed,
cooling water for the coolers and condensers, steam for the heaters
and reboilers, and electricity for the compressors. We also take into
account the treatment cost of the waste water.

In order to adjust the costs from any year to 2018, we consider a
1.58% inflation rate, except for the process units, where we use the
CEPCI value. We apply the conversion factor from Euros to dollars,
i.e., 1.1597 $/€. For the business as usual (BAU) technology, we con-
sider a TAC equal to the market price, i.e., 410 €2017/t (Hank, 2018).
The operation time of the plant is 8760 h/yr.

The equations and parameters used to calculate the TAC are
shown in the supplementary material, in equations Eq.S1 – S9
and in Tables S1 – S4.

4.3. Planetary boundaries

We account for the following main sources of impact: the
hydrogen and CO2 feeds, the electricity and heating requirements,
Table 1
Input variables to the surrogate model and associated ranges.

Variable Lower bound Upper bound

Temperature of reaction 180 �C 240 �C
Molar flowrate of hydrogen 4,500 kmol/h 6,500 kmol/h
Purge percentage 0.1% 5.0%
Reflux ratio 1.25 1.80
Volume of the reactor 35 m3 55 m3

Pressure of the reactor 4,500 kPa 5,500 kPa
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and the direct emissions. The impact of the cooling water is
approximated by that embodied in the electricity required to
pump it through a closed refrigeration system. The LCI is quantified
by combining the mass and energy flows exchanged between the
plant and the technosphere and ecosphere with data from Ecoin-
vent (Table S5).

The share of the SOS assigned to methanol is computed based
on the data in Table 2. Due to the fact that the GVA of methanol
is not available as such, we assume that it is given by the world
revenues linked to methanol production worldwide, which
amounted to 140 million tons in 2018 (GlobalData, 2019). Our
results, therefore, underestimate the transgression levels of metha-
nol, as the GVA should (arguably) consider the net profit margin,
company-dependent and unavailable in the public domain, rather
than the total revenues.

The values of the SOS are taken from the works by Steffen and
Ryberg (Ryberg, 2018; Steffen, et al., 2015), and are shown in
Table 3.

Further details are provided in the supplementary material, in
section S2 and in Tables S6 – S8.
4.4. Solution procedure

The methanol production process from hydrogen and CO2 has
been widely studied and simulated (Hank, 2018; Samimi et al.,
2018; Pérez-Fortes et al., 2016; Abrol and Hilton, 2012). Here we
shall optimize the methanol flowsheet by combining process sim-
ulation with optimization following a simulation–optimization
approach in which an optimization algorithm interrogates the pro-
cess simulation model. Optimizing process simulation models can
lead to numerical problems due to convergence issues, which can
be overcome to some extent by resorting to surrogate models.
The use of surrogate models to replace complex process units in
process design, or even whole processes, has been widely studied
Table 2
Parameters used in the egalitarian downscaling.

Parameter Value Reference

GVAMeOH 0.068 trillion $/y (Hank, 2018; GlobalData, 2019)

GVAWorld 70.06 trillion $/y (The World Bank)



Table 3
Value of the SOS for each planetary boundary.

Planetary
boundary

SOS Reference

Climate change -
CO2

concentration

72 ppm (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Climate change -
Energy
imbalance

1 Wm�2 (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Stratospheric
ozone depletion

14.5 DU (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Ocean acidification 0.69 OArag (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Biogeochemical
flows - P

9.9 Tg P�y-1 (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Biogeochemical
flows - N

62 Tg N y-1 (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Land-system
change - Global

25% (Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)

Freshwater use -
Global

4000 km3

y-1
(Ryberg, 2018; Steffen, et al., 2015; Lenzen
et al., 2013; Kanemoto et al., 2016;
Kanemoto et al., 2014; Wiedmann et al.,
2015; Lenzen, 2013; Oita et al., 2016)
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in the field of chemical engineering (Gonzalez-Garay and Guillen-
Gosalbez, 2018; Quirante et al., 2018; Bhosekar and Ierapetritou,
2018; McBride and Sundmacher, 2019). Potential surrogate models
include artificial neural networks, kriging interpolation (Krige,
1951), and symbolic regression (Guimerà, et al., 2020). In this
work, we use neural networks to build a surrogate model of an
Aspen-HYSYS simulation of the methanol process, which is opti-
mized using an interior-point algorithm. The optimal Pareto solu-
tions are finally evaluated in the original simulation to assess
their accuracy.

All the calculations were implemented in an Intel� Core i9-9900
CPU @3.10 GHz computer. The sampling points were generated in
Python 3.7.9, using NumPy 1.19.1 and pyDOE 0.3.8. Afterward,
through a COM interface between Python and Aspen-HYSYS v11,
these points were sent to the process simulator. The flowsheet sol-
ver in Aspen-HYSYS was stopped and re-initialized each time a
variable was modified. The data for the HEN design was collected
by Python and sent to GAMS 32.2.0 through a gdx file. The MINLP
results were sent back to Python via another gdx file. Afterward,
the data were processed in Python to determine the values of the
output variables, which were used to build the neural network in
Matlab R2020a.

The MINLP solved in SYNHEAT contains 222 variables and 232
constraints. It took 0.141 CPU s to solve it to a 0% relative optimal-
ity gap using the DICOPT solver on the said computer. The surro-
gate model, i.e., BRANN, predicts eight outputs (dependent
variables) that allow quantifying the TAC and the average PBs
transgression level. These are the total cost of the process units
needed to estimate the inside battery limits (ISBL) expenditures,
the amount of methanol produced, the heating and cooling
requirements, the electricity input, the amounts of CO2 and CO
emitted, and the amount of water to be treated.
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The optimization is performed using a constrained optimization
with the default interior-point algorithm implemented in the
fmincon function in Matlab (Byrd et al., 1999; Byrd et al., 2000;
Waltz et al., 2006). The neural network does not extrapolate well;
therefore, the limits imposed on the input variables during the
training are also enforced as constraints in the optimization. The
multi-objective optimization provides a Pareto frontier, whose
points are evaluated in Aspen-HYSYS to check their feasibility
and provide more accurate estimates.
5. Results and discussion

5.1. Sampling and surrogate model

We generated 1000 points using the LHS sampling method
inside the package pyDOE 0.3.8. From these 1000 points, 984 con-
verged in Aspen-HYSYS. However, for six of these, the heat integra-
tion model failed to converge.

The dataset of 978� 6 inputs and 978� 8 outputs was sent to
Matlab using a .mat file, where we implemented the neural net-
work. The neural net was trained using the Bayesian regularization
algorithm in the Matlab Neural Fitting app. 90% of the 978 training
points were used to train the neural network, while 10% were
employed as testing points. The Bayesian regularization algorithm
implements a specific validation method, so it does not require
defining a separate validation set. The neural net implements 15
hidden neurons in one layer.

Fig. 4 summarizes the global performance of the neural net,
while Fig. 5 provides further details on the quality of the fitting
in each variable. Overall, R values closer to one indicate a better
fit. Fig. 4 displays global performance values by expressing all
the outputs using a common scale. Fig. 5 provides the R2 together
with the mean square error (MSE) and mean absolute error (MAE).

The surrogate model performs well on average, and also in
almost all of the outputs (R2 above 0.90), except for the total cost
of the process units (R2 of 0.71). This poorer approximation does
not substantially affect the optimization, as the total cost is mainly
dominated by the raw materials costs, not by the CAPEX term. The
worse performance of the ISBL could stem from the fact that the
HEN optimization problem is embedded in the sampling. From
the predicted outputs, only the ISBL, heating and cooling needs
are not obtained directly from the flowsheet. The heating and cool-
ing needs, even though they are calculated from the HEN optimiza-
tion, are practically equivalent to the target values
(thermodynamic limits). The ISBL output combines variables from
the simulation flowsheet with the SYNHEAT results, which may
explain its lower accuracy. Even though the R2 is worse than the
others, it is important to notice that the MAE is around 5.47, which
is deemed acceptable considering the scope of the analysis.
5.2. Results of the multi-objective optimization

Fig. 6 shows the results of the multi-objective optimization,
evaluated in the surrogate model and in the Aspen-HYSYS
simulation.

The gray points in the figure correspond to the neural network,
while the light blue points were evaluated in the Aspen-HYSYS
simulation. The dotted line links the two sets of points, i.e., surro-
gated – ‘‘true” value. The difference between both models lies in
the range 2.80–4.56% for the economic performance and 2.81–
23.72% for the environmental one.

As seen, there is a clear trade-off between economic and envi-
ronmental performance. Starting from the minimum cost solution,
reducing the transgression level requires increasing the cost, first
marginally and then sharply after a given point. In essence, this



Fig. 4. Neural network fitting performance results, as well as chosen parameters.
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is accomplished by replacing SMR hydrogen with CCS with elec-
trolytic hydrogen. The BAU solution, computed with the process
‘‘1 kg Methanol {GLO}| market for | APOS, U” in Ecoinvent, is the
cheapest alternative, yet it leads to the largest transgression level.

The sharp increase in the slope of the curve found at an MTL
value of 0.15 is due to the max operator used in the calculation
of the environmental objective. Notably, starting from the mini-
mum cost solution, the model reduces the transgression level by
decreasing the impact on the climate change, ocean acidification
and N flow PBs, as the other PBs are not transgressed. After a given
point, the carbon-related PBs are all met (i.e., CO2 concentration,
energy imbalance and ocean acidification) and the only one that
remains transgressed is the N flow. Hence, further reductions in
the global transgression can only be attained by improving the per-
formance in the N flow, which implies that the transgression level
decreases more slowly (i.e., larger cost increases are required to
attain a given change in transgression level).

Fig. 7 shows the transgression level in each solution, where the
green zone represents the SOS and the numbers on the axis denote
the transgression level. The minimum transgression level solution
substantially improves the environmental performance of the BAU
(i.e., form three PBs transgressed in the BAU to only one in the min-
imum transgression solution). The BAU performs particularly
poorly in the carbon-related PBs, i.e., CO2 concentration, energy
imbalance and ocean acidification, with transgression levels above
25 in the case of the climate change PBs and eight in the case of
ocean acidification. The minimum cost solution reduces these
transgression levels substantially, but not enough to operate
within the SOS of these Earth systems. In contrast, the minimum
transgression manages to reduce the impact below the assigned
share of the SOS. Notably, the latter point attains negative trans-
gression levels (on a cradle to gate basis) in the carbon-related
PBs due to the use of CO2 from DAC and the low carbon footprint
of the electrolytic hydrogen (i.e., 2.27 kg CO2 eq/kg H2, vs. 5.56 in
the SMR with CCS).

No single design, including the BAU, trespasses the strato-
spheric ozone depletion, biogeochemical flow of phosphorus,
land-system change and freshwater use PBs. The BAU does not
transgress the N flow, while the other two solutions do. This PB,
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however, is more strongly connected to the agriculture sector
due to the use of fertilizers (Sterner, 2019). Hence, this sector could
offset this excess of impact in exchange for shares of the carbon-
related PBs, where the minimum transgression solution performs
extremely well.

Focusing on the specific features of each design (Table 4 and
further details in the supplementary material, section S4, Tables
S23 – S28), we find that the extreme solutions display similar
design features and operating conditions. The molar ratio of hydro-
gen - CO2 is very close to the stoichiometric one (i.e., 2.80:1). The
temperature in the reactor is around 215 �C, while the pressure
is maintained at 49 bar. The reflux ratio and the volume of the
reactor lie close to the lower bound. The optimal purge also
approaches the lower bound, as otherwise the direct emissions
and feed requirements would increase. The main difference lies
in the source of the hydrogen feedstock, either from SMR with
CCS or water electrolysis, depending on whether we seek to opti-
mize the cost or the transgression level, respectively.

For a minimum temperature difference of 10 �C, the composite
curve (Fig. 8), which is very similar in the extreme Pareto points,
shows that only cooling utility (i.e., cooling water) is required.
Fig. 9 displays the optimal HEN, which is the same in the extreme
solutions. The heat of reaction, strongly exothermic, suffices to ful-
fill all the heating requirements of the system; consequently, only
cooling water is required to meet the target temperatures.

Fig. 10 shows the main contributions to the environmental
impacts. As seen, the hydrogen and CO2 feeds are responsible for
most of the impact in all of the cases. The contribution of CO2 is
negative in the carbon-related PBs, as this CO2 comes from DAC
and is, therefore, modeled as a negative flow from the environ-
ment. In the other PBs, however, it shows a positive contribution
due to the impacts linked to the DAC facility. Electricity and direct
emissions contribute mostly to the carbon-related PBs (i.e., climate
change and ocean acidification). Heating has no impact since the
designs do not require heat, thanks to heat integration. The impact
of cooling is negligible.

In the two climate change planetary boundaries, CO2 concentra-
tion and energy imbalance, and ocean acidification, the TL of the
environmental optimum, which consumes only electrolytic hydro-



Fig. 5. Comparison between the real (process simulation) and surrogate values (neural network). R2, MSE and MAE are shown for each output.
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gen, is negative. However, in the economic optimum, the TL is pos-
itive and this solution even transgresses the safe operating space,
yet it is still lower than in the BAU process. Both extreme solutions
10
consume almost the same amount of hydrogen (Table 4), and the
differences in impacts are due to the hydrogen source.

In the stratospheric ozone depletion, biogeochemical flows of
phosphorus and nitrogen, and fresh water use PBs, both optimal



Fig. 6. Results of the multi-objective optimization for ten iterations of the e-constraint method.

Fig 7. Results of the TL in the PBs using egalitarian downscaling for the BAU, the
optimal environmental design and the optimal economic design.

Table 4
Results of the process simulation for the extreme Pareto points (minimum
transgression and minimum cost).

Variable Units Opt.
environmental

Opt.
economic

Hydrogen from SMR with
CCCS

kg/kg
MeOH

0.000 1.892 � 10-1

Hydrogen from electrolysis kg/kg
MeOH

1.889 � 10-1 0.000

CO2 from DAC kg/kg
MeOH

1.485 1.479

Heating MWh/t
MeOH

0.000 0.000

Cooling MWh/t
MeOH

1.313 1.318

Electricity MWh/t
MeOH

2.720 � 10-1 2.744 � 10-1

D. Vázquez and G. Guillén-Gosálbez Chemical Engineering Science 246 (2021) 116891
designs performworse than the BAU process. In the case of the bio-
geochemical flow of nitrogen, the designs even operate above the
share of the safe operating space. In the biogeochemical flow of
phosphorus, it can be seen that the impact of the electrolytic
hydrogen is much higher than that of its SMR with CCS counter-
part. In the fresh water use PB, most of the impact comes from
the CO2 from DAC.
11
In the land-system change PB, the environmental optimum out-
performs the BAU, while the economic optimum is worse than the
BAU. This difference between the two optimal designs, as before,
comes from the hydrogen source.

We next further highlight the advantages of using absolute sus-
tainability metrics in process design by assessing the LCA impact of
the environmental and economic optimal solutions using the
ReCiPe 2016 methodology following an Egalitarian approach (re-
sults in Table 5).

As seen, the minimum impact solution performs worse in two
of the endpoints, yet the PBs analysis clearly shows that it leads
to the minimum transgression level. We clarify that the PBs omit
human health impacts; moreover, they consider the impact on
ecosystems via the biodiversity intactness index, yet this metric
was omitted in our work due to methodological gaps. On the other
hand, most of the impacts on the control variables of the PBs are
quantified via midpoint indicators, which are summed up to yield
the endpoint scores. For example, there are midpoints for freshwa-



Fig. 8. Hot and cold composite curves for the optimal environmental solution.
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ter use, ozone depletion, climate change, eutrophication (linked to
the biochemical flows of N and P) and land use (related to land sys-
tem change), and others for toxicity, particulate matter, ionizing
radiation and resources, omitted in the PBs.

Hence, LCA indicators and the PBs metrics should complement
each other because the standalone use of the former could lead
to solutions that are unsustainable in absolute terms. Furthermore,
the ReCiPe endpoints are hard to interpret in absolute terms, so at
Fig. 9. SYNHEAT solution for the optimal HEN. H
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most, they could enable comparisons between technologies but fail
to provide insight into their worldwide sustainability level.
6. Conclusions

This work introduced an approach to design chemical processes
that are entirely sustainable considering the ecological capacity of
the planet. Our method combines process simulation, machine
learning algorithms and an absolute sustainability assessment
model based on the PBs concept. The methodology was applied
to the production of green methanol from hydrogen and carbon
dioxide taking the BAU process as a baseline.

Green methanol from electrolytic hydrogen powered by wind
cannot ensure a safe operation within all the PBs due to the trans-
gression (according to the egalitarian sharing principle applied) of
the biogeochemical flow of nitrogen. However, it can greatly
reduce the global transgression level compared to the BAU and
to the CO2 hydrogenation route that uses hydrogen from SMR with
CCS. Methanol from hydrogen and carbon dioxide is at least 1.62
times more costly than the BAU process (using hydrogen from
SMR with CCS), and much more expensive when using electrolytic
hydrogen. The optimal process conditions and sizes are quite sim-
ilar in the extreme Pareto points, and only differ in the source of
hydrogen, which dictates the economic and environmental
performance.

Overall, our results unfold new avenues for the incorporation of
absolute sustainability criteria in process design, with emphasis on
the evaluation of emerging decarbonisation routes. Designing pro-
cesses that operate within global ecological budgets will become
more critical as we approach the biophysical limits of the Earth.
In this context, our tool provides a starting point to design pro-
cesses that are entirely consistent with the ecological capacity of
the planet. Our method should not be seen as an alternative to
refers to hot streams and C to cold streams.



Fig. 10. Disaggregation of the transgression levels per source of environmental impact for the environmental and economic optimal design, as well as the total value of the
transgression level of these designs and the BAU process.
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Table 5
Results of ReCiPe 2016 Endpoint (E) for the optimal solutions obtained.

ReCiPe 2016 Endpoint (E) Units Opt. environmental Opt. economic BAU

Human health DALY 3.41 � 10-4 6.26 � 10-5 4.31 � 10-5

Ecosystems species.yr 1.94 � 10-7 3.70 � 10-8 3.19 � 10-8

Resources USD2013 9.81 � 10-2 3.03 � 10-1 2.71 � 10-1
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existing methods, including LCO and LCA approaches, but rather as
a complement to them that can provide further insight into the
sustainability level of alternative processes.

Future work should focus on handling the main uncertainties
affecting the calculations and enlarging the scope of the analysis
to embrace other economic sectors linked to the chemical industry.
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