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8092 Zürich, Switzerland

© Orcun Karaca, 2020

All Rights Reserved

ISBN 978-3-907234-53-2

DOI 10.3929/ethz-b-000492146



To my family

Soundtrack recommendation:

The Birth and Death of the Day

by Explosions in the Sky

https://www.youtube.com/watch?v=6Rh_gvrJ190




Acknowledgements

First and foremost, I would like to express my greatest gratitude to my PhD advisor,

Prof. Maryam Kamgarpour, for giving me the opportunity to undertake this exciting

journey and for always believing in me, and for helping me set and pursue my goals.

I would like to thank you for providing the right guidance at the right time, and also

balancing it perfectly with trust and freedom. Thanks to your counseling—whether it

be technical or otherwise—I feel proud to say that in these last four years I have grown

greatly as a researcher. I did my best to keep this short!

It was amazing to work with Prof. Neil Walton at an early stage of my PhD. You

inspired me by your enthusiasm and critical thinking. I would also like to thank you for

serving as my thesis referee, and for carefully evaluating this thesis.

My deepest thanks go also to Prof. Jalal Kazempour for serving as my thesis referee,

for carefully evaluating this thesis, and for meeting with me to discuss the content of the

thesis, regardless of your tight schedule. I especially thank you and your research group

for offering invaluable feedback and widening my perspective with research questions on

a wide range of topics on many separate occasions.

I am honored to have met and interacted with Prof. Sven Seuken during my studies.

Thank you for serving as my thesis referee, and for carefully evaluating this thesis as well.

Especially thank you and also your research group for invaluable feedback. I benefited

greatly from many interactions in your course and in your seminar series.

It was also a pleasure to collaborate with Dr. Stefanos Delikaraoglou, Prof. Tyler

Summers, and Prof. Gabriela Hug. I am grateful for all the time you dedicated to me.

I would also like to thank Prof. Rico Zenklusen, Prof. Dan Molzahn, Prof. Patrick

Panciatici, Prof. Hung-po Chao, Prof. Pierre Pinson, and Prof. Steven Low for well-

timed discussions that shaped my research and my thinking.

Special thanks to Prof. John Lygeros for giving me the opportunity to be a part

of IfA during my master’s degree program. I cannot thank you enough for all the time

you dedicated to me while I was planning my career steps both during the master’s and

during PhD. I am also grateful for the trust you had in me while I was the head TA of

Linear System Theory.

I would also like to thank Prof. Roy Smith, Prof. Florian Dörfler, and Prof. Manfred

Morari for creating an amazing atmosphere for research at IfA, full of openness and

curiosity, and for inspiring me with their approach to research. It was a great privilege

i



to receive your support and advice throughout this journey.

Prof. Angelos Georghiou was the very first person that introduced me to thinking

like a researcher. I don’t think I can run out of different aspects that I need to thank

you for. All our discussions were extremely valuable for my growth.

Similarly, I don’t think I can thank Dr. Paul Beuchat, Dr. Georgios Darivianakis,

and Dr. Xiaojing Zhang enough for their support to me as their master’s student, and

their friendships and advices during my PhD studies.

I would also like to thank Prof. Hamdi Torun, Prof. Ali Emre Pusane, Prof. Kadri

Ozcaldiran, Prof. Selim Hacısalihzade, Prof. Heba Yuksel, Prof. Yagmur Denizhan and

many others from my bachelor’s program for their early career planning advice/guidance

and for introducing me to control theory.

I owe a big thanks to Luca, who was a flat-mate, a office-mate, a conference-mate,

and the list goes on and on! I am also thankful for all the great time I had discussing

research with Pier Giuseppe, Ilnura, and Yimeng especially in our weekly meetings. I

am very fortunate for being part of IfA, and I would like to thank all of my colleagues for

all the memorable moments together. I would like to express my greatest gratitude to

all those people that made this place what it is. I will use my chance to thank all of you

in person! I owe a big thanks to Sabrina and Tanja for being extremely helpful with the

littlest of problems I had. On a final note, I want to thank my master’s students Baiwei,

Anna, Petros, Lukas, and Daniel for all the enthusiasm and dedication you brought to

your research.

On a more personal level, I thank all my close friends in Zurich, and also close friends

from high school and university. I want to thank you for not giving up on me. I think

this sentence would resonate well with you considering especially this last year.

It is also difficult for me to find the right words to thank my family. I wouldn’t get

to this point without the encouragement and the freedom you gave me.

Last but not least, I am very grateful to my fiancée Jana. At the end of your PhD,

you should instead be receiving two doctoral degrees. Thanks for the unconditional love

& support and for bearing with me on my journey to becoming a good researcher.

Orcun Karaca
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Abstract

The liberalization of the energy sector led to the development of electricity markets that

would improve economic efficiency and attract new investments to the grid. Although

the specific structures and rules of these markets are quite diverse around the world,

they were all conceived on the premise of predictable and fully controllable generation

with nonnegligible marginal costs. Recent changes, specifically, the increasing renew-

able energy integration, have progressively challenged such operating assumptions. As

this integration became deeper, transmission grids began to experience congestion in

unforeseen and uncertain patterns. Moreover, these trends have resulted in substantial

out-of-market transactions, questioning now the modeling and the management of elec-

tricity markets. In light of this operational paradigm shift, this thesis intends to devise

new market frameworks and advance our understanding of the future electricity markets.

In the first part of the thesis, we focus on mechanism design when the market model

fully reflects the physics of the grid and the participants. Specifically, we consider an

electricity market setting that involves continuous values of different kinds of goods,

general nonconvex constraints, and second stage costs. We seek to design the payment

rules and conditions under which coalitions of participants cannot influence the mar-

ket outcome in order to obtain higher collective utility. Under the incentive-compatible

Vickrey-Clarke-Groves mechanism, our first contribution is to prove that such coalition-

proof outcomes are achieved if the submitted bids are convex and the constraint sets

are of a polymatroid-type. These conditions, however, do not capture the complexity of

the general class of auctions under consideration. By relaxing the property of incentive-

compatibility, we investigate further payment rules, called the core-selecting mechanisms,

that are coalition-proof without any extra conditions on the submitted bids and the con-

straint sets. We show that core-selecting mechanisms generalize the economic rationale

of the locational marginal pricing (LMP) mechanism. Namely, these mechanisms are the

exact class of mechanisms that ensure the existence of a competitive equilibrium in lin-

ear/nonlinear prices. This implies that the LMP mechanism is also core-selecting, and

hence coalition-proof. In contrast to the LMP mechanism, core-selecting mechanisms

exist for a broad class of electricity markets, such as the ones involving nonconvex costs

and nonconvex constraint sets. In addition, they can approximate truthfulness without

the price-taking assumption of the LMP mechanism. Finally, we show that they are also

budget-balanced.

In the second part of the thesis, we turn our attention to the coordination of regional
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markets in the spatial domain to exploit the geographic diversification of the renew-

able resources. In particular, the establishment of a single European day-ahead market

has accomplished the integration of the regional day-ahead markets. However, reserves

provision and activation remain an exclusive responsibility of regional operators. This

limited spatial coordination and the sequential structure hinder the efficient utilization

of flexible generation and transmission, since their capacities have to be ex-ante allocated

between energy and reserves. To promote reserve exchange, a recent study proposed a

preemptive model that withdraws a portion of the inter-area transmission capacity avail-

able from day-ahead energy for reserves by minimizing the expected system cost. This

decision-support tool, formulated as a stochastic bilevel program, respects the current

architecture but does not suggest area-specific costs that guarantee sufficient benefits

for areas to accept the solution. To this end, our main contribution is to formulate

a preemptive model in a framework that allows application of coalitional game theory

methods to obtain a stable benefit allocation, that is, an outcome immune to coalitional

deviations ensuring willingness of areas to coordinate. We show that benefit allocation

mechanisms can be formulated either at the day-ahead or the real-time stages, in order

to distribute the expected or the scenario-specific benefits, respectively. For both games,

the proposed least-core benefits achieve minimal stability violation, while allowing for

a tractable computation with limited queries to the bilevel program. Our case studies,

based on an illustrative and a more realistic test case, compare our method with well-

studied benefit allocations, namely, the Shapley value and nucleolus. The upshot of our

contribution is to analyze the factors that drive these benefit allocations (e.g., flexibility,

network structure, wind correlations).
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Sommario

La liberalizzazione del settore energetico ha portato allo sviluppo di mercati dell’energia

elettrica che migliorerebbero l’efficienza economica e attirerebbero nuovi investimenti

nella rete. Sebbene le strutture e le regole specifiche di questi mercati siano piuttosto

diverse in tutto il mondo, sono state tutte concepite sulla premessa di una generazione

prevedibile e completamente controllabile con costi marginali non trascurabili. I recenti

cambiamenti, in particolare la crescente integrazione delle energie rinnovabili, hanno

progressivamente messo in discussione tali presupposti operativi. Con l’avanzamento

di questa integrazione, le reti di trasmissione hanno iniziato a congestionarsi in maniera

imprevedibile ed incerta. Inoltre, queste tendenze hanno portato a sostanziali transazioni

fuori mercato, mettendo ora in discussione la modellazione e la gestione dei mercati

dell’energia elettrica. Alla luce di questo cambiamento di paradigma operativo, questa

tesi intende elaborare nuovi quadri di mercato ed avanzare la nostra conoscenza sui futuri

mercati dell’elettricità.

Nella prima parte della tesi, ci concentriamo sulla progettazione di meccanismi nel

caso in cui il modello di mercato riflette pienamente la fisica della rete e dei parteci-

panti. In particolare, consideriamo un quadro di mercato dell’elettricità che comporta

valori continui di diversi tipi di beni, vincoli generali non convessi e costi di seconda fase.

Cerchiamo di progettare le regole di pagamento e le condizioni in cui le coalizioni di

partecipanti non possono influenzare il risultato del mercato per ottenere una maggiore

utilità collettiva. Nell’ambito del meccanismo “incentivo-compatibile” di Vickrey-Clarke-

Groves, il nostro primo contributo consiste nel dimostrare che tali risultati a prova di

coalizione si ottengono se le offerte presentate sono convesse e i vincoli sono di tipo poli-

matroide. Queste condizioni, tuttavia, non catturano la complessità della classe generale

delle aste in esame. Rilassando la proprietà di meccanismo incentivo-compatibile, inves-

tighiamo su ulteriori regole di pagamento, chiamate meccanismi di selezione di core, che

sono a prova di coalizione senza condizioni aggiuntive sulle offerte presentate e sui set di

vincoli. Dimostriamo che i meccanismi di selezione di core generalizzano la logica eco-

nomica del meccanismo di determinazione del prezzo marginale per località (LMP). Vale

a dire, questi meccanismi sono l’esatta classe di meccanismi che assicurano l’esistenza di

un equilibrio competitivo nei prezzi lineari/non lineari. Ciò implica che il meccanismo

di LMP è anche un meccanismo di selezione di core, e quindi a prova di coalizione. A

differenza del meccanismo LMP, meccanismi di selezione di core esistono per un’ampia

classe di mercati dell’elettricità, come quelli che comportano costi non convessi e vincoli
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non convessi. Inoltre, essi possono approssimare la “truthfulness” senza l’assunzione del

“price-taker” del meccanismo LMP. Infine, dimostriamo che sono anche equilibrati dal

punto di vista del bilancio.

Nella seconda parte della tesi, rivolgiamo la nostra attenzione al coordinamento dei

mercati regionali in ambito spaziale per sfruttare la diversificazione geografica delle

risorse rinnovabili. In particolare, la creazione di un mercato unico europeo “day-ahead”

ha realizzato l’integrazione dei mercati regionali “day-ahead”. Tuttavia, la fornitura e

l’attivazione delle riserve rimangono di esclusiva competenza degli operatori regionali.

L’utilizzo efficiente di generazione e trasmissione flessibili è ostacolato da questo coordi-

namento spaziale limitato e dalla struttura sequenziale, poiché le loro capacità devono

essere ripartite ex ante tra energia e riserve.Per promuovere lo scambio di riserve, un

recente studio ha proposto un modello preventivo che ritira una parte della capacità di

trasmissione inter-area disponibile dall’energia “day-ahead” per le riserve, minimizzando

il costo previsto del sistema. Questo strumento di supporto alle decisioni, formulato

come programma bilivello stocastico, rispetta l’architettura attuale ma non suggerisce

costi specifici per area che garantiscano sufficienti benefici alle aree per accettare la

soluzione. A tal fine, il nostro contributo principale è quello di formulare un modello

preventivo in un quadro che consenta l’applicazione dei metodi della teoria dei giochi

coalizionali per ottenere una stabile allocazione dei benefici, cioè un risultato immune da

deviazioni coalizionali che garantisca la disponibilità delle aree a coordinarsi. Mostriamo

che i meccanismi di allocazione dei benefici possono essere formulati sia nella fase iniziale

che in quella in tempo reale, al fine di distribuire i benefici attesi o i benefici specifici dello

scenario, rispettivamente. In entrambi i casi, i benefici least-core proposti raggiungono

una violazione minima della stabilità, consentendo al tempo stesso un calcolo efficiente

con query limitate al programma bilivello. I nostri casi di studio, basati su un caso

di prova illustrativo e più realistico, confrontano il nostro metodo con l’assegnazione di

benefici ben studiati, ovvero il valore di Shapley e il nucleolo. Il risultato del nostro

contributo è l’analisi dei fattori che guidano queste assegnazioni di benefici (ad esempio,

la flessibilità, la struttura della rete, la correlazione col vento).
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are valid only within their corresponding parts. For instance, calligraphic capital letters

denote bid profiles in Part I, whereas they denote sets in Part II. On the other hand,

capital letters denote sets in Part I, whereas they denote market parameters in Part II.

All the necessary clarifications are provided in Chapters 3 and 8.
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CHAPTER 1
Overview

The deregulation of the electricity industry in the ’90s led to the development of elec-

tricity markets, which has been essential to improve economic efficiency and to attract

new investments. Although the specific structures and rules of these markets are quite

diverse around the world, they were all conceived on the premise of predictable and

fully controllable generation with nonnegligible marginal costs. In response to the in-

creasing efforts to reduce CO2 emission, and in order to ensure more sustainable energy

use, there is a rapid transformation in the generation type, namely with the growth

of renewable resources. For instance, California mandates 50% renewable resources by

2025, and 100% by 2045, and Germany embraced a policy of no active nuclear plants

by 2022 [SF19], see also Figure 1.1. These resources pose new challenges both in terms

of control and market design, because they are uncertain, intermittent, mostly uncon-

trollable, and accompanied with zero marginal costs. In light of this paradigm shift,

there is an imperative need to devise new market frameworks to simultaneously incor-

porate traditional thermal plants (large and inflexible with slow ramp rates), renewable

resources, and hydropower plants and other flexible plants such as nuclear power (with

high costs). To this end, there has been a surge of interest from academics, industry as

well as policymakers [Wil02; Neu05; Ahl+15; Cra17; BL19].

One prevailing issue originates from the fact that the existing electricity markets do

not fully reflect the physics of the underlying grid and the technical constraints of the

market participants. For instance, power flow equations in their full generality (modeling

both transmission losses and reactive power) render the optimization problem noncon-

vex, which is a hard problem not only to solve but also to compute meaningful prices

for. Ignoring such complexities results in inefficient market outcomes and unpriced goods

(e.g., reactive power), which in turn necessitates out-of-market transactions. Thanks to

the development of better numerical tools, it is now possible to incorporate more ac-

curate models of both the grid and the participants. One main challenge is that many

existing electricity markets rely on defining payments using the Lagrange multipliers that

are well-defined only under convexity assumptions. To address this challenge, the first

goal of the thesis is to design payment rules with desirable properties for an electricity
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Figure 1.1: Installed capacity [GW] and demand [TWh] scenario according to the de-
velopment plan of ENTSO-E (European Network of Transmission System Operators for
Electricity) [Eli19]

market setting, which can be modeled by an auction involving continuous goods, second

stage costs, and general nonconvex constraints.1 This is especially an exciting time to

consider and study tools from mechanism design and auction theory. At the time of

the submission of this dissertation (October 2020), The 2020 Sveriges Riksbank Prize in

Economic Sciences in Memory of Alfred Nobel2 has just been awarded to Professor Paul

Milgrom and Professor Robert Wilson for their groundbreaking contributions to auction

theory and inventions of new auction formats.

Another issue, specifically pertaining to the European electricity markets, is that

these markets suffer from partial coordination in space. Although the day-ahead energy

markets are jointly cleared, the reserve capacity and real-time balancing markets are still

operated on a regional (country) level. If we can remove the existing barriers for cross-

border trading between regional operators, geographic diversification of the uncertain re-

newable resources would smooth out the forecast errors and reduce the need for real-time

balancing actions. One main challenge is that, because of the sequential market architec-

ture, the joint-clearing of reserve markets will require allocating a portion of the cross-

border transmission capacity from the day-ahead market to the reserve market. To this

end, the second goal of the thesis is to design benefit allocation mechanisms (that is, novel

discount terms for regional costs) such that the resulting region-specific costs make the

overall mechanism immune to coalitional deviations ensuring that all regional operators

are willing to coordinate via the cross-border transmission capacities we plan to propose.

1Auctions, in particular, are effective tools for allocating resources and determining their values
among a set of participants. Prominent auction examples, other than those found in electricity markets,
are those in spectrum auctions [Cra13; BG17], and auctions for fish harvesting rights and other natural
capitals [BFG19; Tey19].

2https://www.nobelprize.org/prizes/economic-sciences/2020/summary/

2
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1.1 Outline and contributions

1.1.1 Part I

In the first part of the thesis, our goal is to study mechanism design to achieve an

efficient outcome in an electricity market setting, which involves continuous goods (e.g.,

electrical power), second stage costs, and general nonlinear constraints (instead of simple

constraints, e.g., availability of a fixed number of items in multi-item auctions).

Outline

Chapter 2 provides an in-depth literature review on different aspects of this problem,

and motivates our goal. Chapter 3 introduces a general class of electricity markets and

discusses desirable properties for mechanisms. Chapter 4 brings in tools from coalitional

game theory, namely the core. Throughout this chapter, we investigate conditions un-

der which the incentive-compatible VCG mechanism is coalition-proof, that is, immune

to coalitional manipulations. Since these conditions do not capture the complexity of

the general class of electricity markets, coalition-proof core-selecting payment rules are

proposed in Chapter 5. Using tools from coalitional game theory and competitive equi-

librium theory, we then prove the equivalence of core and competitive equilibrium. We

investigate incentive-compatibility and budget-balance. Finally, Chapter 6 presents case

studies based on real-world electricity market data.

Overview of contributions

The contributions of Part I are as follows. These contributions are presented in more

detail with their connections to the existing results in the literature in Chapter 2.

1. In Chapter 4, we prove that in the electricity market setting we consider the VCG

mechanism is coalition-proof and the VCG utilities lie in the core, if and only if

the market objective function is supermodular. We then derive novel conditions on

the bids and the constraint sets based on polymatroid theory such that the VCG

mechanism is coalition-proof.

2. In Chapter 5, we show that selecting payments from the core results in a coalition-

proof mechanism without any restrictions on the bids and the constraints. We

prove that for electricity markets any competitive equilibrium is efficient. We then

establish that a mechanism is core-selecting if and only if it ensures the existence

of a competitive equilibrium. This equivalence implies that the LMP mechanism

is also a core-selecting mechanism. In the remainder of this chapter, we derive an

upper bound on the additional profit a bidder can obtain by a unilateral deviation
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from its truthful bid, under any core-selecting mechanism. Using this bound,

we propose a mechanism that maximizes incentive-compatibility among all core-

selecting mechanisms. In addition, we show that any core-selecting mechanism is

budget-balanced when we extend our results to the exchange setting.

3. In Chapter 6, we verify our results with case studies based on real-world electricity

market data, including the Swiss reserve market and different optimal power flow

models.

1.1.2 Part II

In the second part of the thesis, our goal is to propose a coalitional game-theoretic

approach to enable coordinated balancing and reserve exchange in a European level and

to gain technical and economical insights about such a process.

Outline

Chapter 7 provides an in-depth literature review on different aspects of this problem, and

motivates our goal. Chapter 8 describes the organizational structure of the European

electricity markets and introduces a set of necessary assumptions to obtain tractable

models. Chapter 9 discusses the issues related to reserve exchanges and motivates the

formulation of the preemptive transmission allocation model. Chapter 10 introduces

necessary background from coalitional game theory, whereas Chapter 11 focuses on the

games arising from this preemptive transmission allocation model, which provide the

basis for the benefit allocation mechanisms that accomplish the implicit coordination

requirements outlined in the previous sections. The numerical case studies are presented

in Chapter 12.

Overview of contributions

The contributions of Part II are as follows. These contributions are presented in more

detail with their connections to the existing literature in Chapter 7.

1. In Chapter 9, we formulate the coalition-dependent version of the preemptive trans-

mission allocation model such that we can consider coalitional arrangements be-

tween only a subset of operators.

2. In Chapter 11, we first study the coalitional game that treats the benefits as an ex-

ante process with respect to the uncertainty realization and we provide a condition

under which the core is nonempty. Under this condition, it is possible to obtain a

stable benefit outcome, that is, an outcome from the core ensuring the willingness

of all areas to coordinate. In case this condition is not satisfied, we prove that
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the least-core, which is an outcome that attains minimal stability violation, also

ensures the individual rationality property. We then propose the least-core select-

ing mechanism as a benefit allocation that achieves minimal stability violation,

while enabling the approximation of an additional fairness criterion. In order to

implement this mechanism with only a few queries to the preemptive model, we

formulate a constraint generation algorithm. In addition, we formulate a variation

of the coalitional game that allocates the benefits in an ex-post process. For this

game, we provide conditions under which the core is empty. Finally, we propose

an ex-post version of our least-core benefit allocation mechanism.

3. In Chapter 12, we provide techno-economic insights on the factors that drive benefit

allocations first with an illustrative three-area nine-node system and then with a

more realistic case study based on a larger IEEE test system.

1.2 Publications

This thesis contains a selected collection of results derived during the author’s studies

as a Ph.D. candidate. The corresponding articles on which this thesis is based are listed

below.

1.2.1 Part I

The results on the design of coalition-proof payment rules were developed in collabora-

tion with N. Walton, P. G. Sessa, and M. Kamgarpour. The results on the equivalence

of the core and competitive equilibrium were developed in collaboration with M. Kam-

garpour.

[Kar+19c] “Designing coalition-proof reverse auctions over continuous goods”, O. Karaca,

P. G. Sessa, N. Walton, and M. Kamgarpour, In IEEE Transactions on Automatic

Control, 2019.

[KK20] “Core-selecting mechanisms in electricity markets”, O. Karaca, and M. Kamgar-

pour, In IEEE Transactions on Smart Grid, 2020.

1.2.2 Part II

The results on benefit allocation mechanisms for enabling reserve exchanges were devel-

oped in collaboration with S. Delikaraoglou, G. Hug, and M. Kamgarpour.
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[Kar+19a] “Enabling inter-area reserves exchanges through stable benefit allocation mecha-

nisms”, O. Karaca, S. Delikaraoglou, G. Hug, and M. Kamgarpour, Submitted,

2020.

1.2.3 Other publications

The following papers were either submitted or published by the author during his doc-

toral studies before the thesis preparation, but are not included in the thesis.

The main results of [KK17], [KK18], and [Kar+20], that is, the first three references

listed below, are mentioned in Part I, but are not treated in detail.

[KK17] “Game theoretic analysis of electricity market auction mechanisms”, O. Karaca,

and M. Kamgarpour, In Proceedings of the IEEE Conference on Decision and

Control, 2017,

[KK18] “Exploiting weak supermodularity for coalition-proof mechanisms”, O. Karaca,

and M. Kamgarpour, In Proceedings of the IEEE Conference on Decision and

Control, 2018,

[Kar+20] “No-regret learning from partially observed data in repeated auctions”, O. Karaca*,

P. G. Sessa*, A. Leidi, and M. Kamgarpour, In Proceedings of the IFAC World

Congress, 2020,

The results of the following papers are not mentioned. The first three references

concern structural control theory and the approximation guarantees for (co)matroid

optimization problems. The last two references are on the relaxation hierarchies for

polynomial optimization problems.

[Guo+19] “Actuator placement for optimizing network performance under controllability con-

straints”, B. Guo, O. Karaca, T. Summers, and M. Kamgarpour, In Proceedings

of the IEEE Conference on Decision and Control, 2019,

[KGK21] “A comment on performance guarantees of a greedy algorithm for minimizing a su-

permodular set function on comatroid”, O. Karaca, B. Guo, and M. Kamgarpour,

In European Journal of Operational Research, 2020,

[Guo+20] “Actuator placement under structural controllability using forward and reverse

greedy algorithms”, O. Karaca*, B. Guo*, T. Summers, and M. Kamgarpour,

In IEEE Transactions on Automatic Control, 2020,
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[Wac+20] “A convex relaxation approach for the optimized pulse pattern problem”, L. Wachter,

O. Karaca, G. Darivianakis, T. Charalambous, Submitted, 2020,

[Kar+17] “The REPOP toolbox: Tackling polynomial optimization using relative entropy re-

laxations”, O. Karaca, G. Darivianakis, P. N. Beuchat, A. Georghiou, and J.

Lygeros, In Proceedings of the IFAC World Congress, 2017.

* indicates equal contribution.

7



8



Part I

Designing coalition-proof auctions

over continuous goods: The case of

electricity markets
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CHAPTER 2
Introduction

A rapid transformation has been underway since the early ’90s to replace the tight

regulation of the electricity industry with competitive market structures [Wil02]. This

liberalization has been essential to improve economic efficiency and to attract new in-

vestments to the grid [Cra17]. Designing electricity markets, however, is a complex task.

One inherent complexity is the need to achieve real-time balance of supply and demand

because of an inability to store electricity efficiently [Cra03]. This task is made more

difficult by both intertemporal and network dependencies, and more recently, by high

penetration of renewable resources. In contrast to the conventional generators, these

renewable resources are uncertain, intermittent, and accompanied with zero marginal

costs. As a result, there is an essential need to devise new electricity markets to simul-

taneously incorporate traditional thermal plants (large and inflexible with slow ramp

rates), renewable resources, and hydropower plants and other flexible plants such as

nuclear power (with high costs).1 To this end, there has been a great amount of inter-

est from academics, industry, as well as policymakers, amassing a significant amount of

studies in the field [Ahl+15; BL19].

The goal of Part I of this thesis is to study mechanism design for electricity markets

in which generators first submit bids representing their underlying economic costs, and a

central operator then optimizes all the resources to secure a reliable grid operation.2 The

principal element of such electricity markets is the payment made to each generator since

these participants have incentives to strategize around these payments. In particular,

the central operator needs to carefully design the payment rule to ensure an efficient

outcome, that is, an outcome maximizing social welfare. This goal is best achieved if

the central operator solves for the optimal allocation under the condition that all the

1These markets are also required to encourage the integration of smart meters and demand response
programs as a substitute for flexible generation, e.g., by utilizing the charging profiles of electric vehi-
cles [RPR15; Li+19]. For the ease of discussion and presentation, this part will focus mainly on the
complexities originating from the supply/seller side.

2This setting involving multiple sellers but a single buyer (in our case, the central operator) is called
a reverse auction. On the other hand, a forward auction involves a single seller and multiple buyers,
whereas an exchange involves multiple sellers, buyers, and potentially trading participants selling some
goods and buying others simultaneously.
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market participants agreed to reveal their true costs to the central operator.

2.1 Related works

Existing works on the design of payment rules

The locational marginal pricing (LMP) mechanism is a well-studied payment rule used

in many existing electricity markets [Sch+88; Als+90; Wu+96; Hog92]. It is based on

using the Lagrange multipliers of nodal balance equations in optimal power flow (OPF)

problems to form linear prices. This proposal, put forth in [BCS84], is ubiquitous in the

US market. On the other hand, a zonal abstraction is used in Europe by constraining

the inter-zonal power flows with the available transfer capacity or with a flow-based

domain.3

If generators assume that the Lagrange multipliers are independent of their bids,

then the LMP mechanism is incentive-compatible, that is, generators are incentivized

to submit their true costs. This assumption, also called price-taking, arises from com-

petitive equilibrium theory; however, it often does not hold in practice [MWG95]. In

particular, empirical evidence has shown that strategic manipulations have increased the

LMP payments substantially in electricity markets [JK01]. For instance, many studies

attribute the California electricity crisis of 2000-2001 to Enron’s energy traders’ manip-

ulations [McC02]. Moreover, the LMP payments are well-defined only under convexity

assumptions on the bids and the constraints [ONe+05]. Convexity is a simplifying ab-

straction of many realistic grid and market models, see for example the models in [LS12;

War+12].4 Without such restrictions, it is not possible to guarantee the existence of

meaningful Lagrange multipliers [BM97]. To circumvent this difficulty, some real-world

electricity markets compute linear prices by some convexification/approximation method

and then complement these linear prices with side payments. These side payments go

under the name of uplift, following a nomenclature established during the UK electricity

market restructuring [HR03]. Essentially, the uplift is equivalent to either the deficit or

the opportunity cost of the participant when using the linear prices derived from the

approximate models. However, when such approximations are introduced the incentive-

compatibility issue becomes even more concerning, since these uplift payments are known

3The European electricity market idiosyncrasies are discussed in detail later in Chapter 8 of Part II.
4Convex electricity market models do not fully reflect the physics of the underlying grid and the

discrete nature of typical technical constraints of the market participants (e.g., minimum energy output
levels and startup costs). For instance, power flow equations in their full generality (modeling both
transmission losses and reactive power) render the optimization problem nonconvex [LL12]. Because
convex formulations ignore reactive power (as a supply/good in the auction), the operator has to acquire
this service through out-of-market transactions. PJM Interconnection spent $342 million in 2018 for
this purpose alone [WNB19]. Given that high penetration of solar generation requires more and more
reactive power, we need to ensure reactive power capabilities exist.
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to create additional incentives for manipulative behavior [Cha19; LA16].

In contrast to the LMP mechanism, the Vickrey-Clarke-Groves (VCG) mechanism

ensures that truthful bidding is the dominant-strategy Nash equilibrium [Vic61; Cla71;

Gro73]. Consequently, several recent works have proposed the use of this payment rule

in a broad class of electricity market problems [Sam+12; SWK17; XL17]. However, the

VCG mechanism is often deemed undesirable for practical applications since coalitions of

generators can strategically bid to increase their collective utility. As a result, it is sus-

ceptible to different kinds of manipulations such as collusion and shill bidding [Hob+00;

AM06; YSM04].5 These shortcomings are decisive in the practicality of the VCG mecha-

nism since in a larger context the VCG mechanism is not truthful. As a result, practical

applications of the VCG mechanism in real commerce are rare at best [Rot07].

The shortcomings described above occur when the VCG utilities are not in the core,

as it is outlined in combinatorial auction literature [AM06; Mil04; Mil17].6 The core

is a concept from coalitional game theory where the participants have no incentives

to leave the grand coalition, that is, the coalition of all participants [OR94; PS07].

Recently, coalitional game theory has received attention from different communities,

e.g., for aggregating power generators [Bae+11], deriving control policies for multi-agent

systems [Mae+14], and sharing storage devices [Cha+18]. In this part, we use coalitional

game theory to ensure that the VCG mechanism is coalition-proof, in other words,

collusion and shill bidding are not profitable. To this end, we derive conditions on the

submitted bids and the constraint sets of the market that ensure core VCG utilities

by utilizing some recent advances from combinatorial optimization literature. We show

that under separable convex bids (or marginally increasing in the discrete/quantized

case) and polymatroid-type constraints the VCG mechanism is coalition-proof.

The restricted market setting for core VCG utilities, however, does not capture the

complexity of general auctions arising in electricity markets. Specifically, these mar-

kets may involve nonconvex bids (e.g., startup costs), and complex constraint sets that

are not polymatroids (e.g., DC or AC optimal power flow constraints). Hence, it may

not be possible to ensure core VCG utilities. To this end, we focus on payment rules

that are coalition-proof without any extra conditions on the bids and the constraints.

These payment rules are referred to as core-selecting mechanisms, and they were first

proposed for multi-item auctions [DM08]. Computational difficulties in finding a core

outcome was addressed in [DR07]. Further studies have shown that different core out-

comes can be chosen for robustness and fairness criteria [EK10; DC12]. A closed-form

analytical Bayes-Nash equilibrium (BNE) analysis was carried out in a three-bidder two-

item auction in [AB20]. This study was extended with novel algorithmic frameworks for

5Since the same participants are involved in similar market transactions day after day, electricity
markets can particularly be exposed to collusion and shill bidding [AC11].

6In the remainder, we use the terms combinatorial auction and multi-item auction interchangeably
to refer to the case with discrete goods/items.
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computational BNE analyses and the design of large multi-item auctions in the works

of [Bos+17; BLS18; Bos+18; BWS18]. In this part of the thesis, we generalize the

coalition-proofness of core-selecting mechanisms, developed and analyzed for multi-item

auctions, to an electricity market setting, which involves continuous goods (e.g., elec-

trical power), second stage costs, and general nonlinear constraints (instead of simple

constraints, e.g., availability of a fixed number of items in multi-item auctions).

We then show that core-selecting mechanisms are the exact class of mechanisms that

ensure the existence of a competitive equilibrium under linear/nonlinear prices in the

electricity market setting described above. Our result implies that the LMP mechanism is

also core-selecting, and hence coalition-proof whenever strong duality holds (for instance,

in the convex setting). The equivalence of competitive equilibrium and the core was first

shown in [SS71] for item exchanges under unit demand and unit supply, for example,

house allocation problems. The work in [BO02] characterizes competitive equilibria in

multi-item auction problems with a simple supply-demand balancing equality constraint.

However, similar to the past work in [SS71], the proof does not readily apply to the elec-

tricity market setting we consider, since this result utilizes linear-programming duality

in application to appropriate linear-programming reformulations of the multi-item auc-

tion problems with simple constraints (see also the proof in [Par02]). Moreover, previous

works for core-selecting mechanisms in multi-item auctions such as [DR07; DM08; DC12;

EK10] do not explicitly address the connection between the core and the competitive

equilibrium.

Complementing the existing works on the LMP mechanism for electricity markets, we

further highlight that core-selecting mechanisms are applicable to a broad class of elec-

tricity markets, such as the ones featuring nonconvex costs and/or nonconvex constraint

sets, whereas the LMP mechanism has applicability only for the case of convex bids and

constraints. Naturally, core-selecting mechanisms relax the incentive-compatibility prop-

erty of the VCG mechanism. In order to alleviate this issue, we prove that core-selecting

mechanisms can approximate incentive-compatibility without relying on the price-taking

assumption of the LMP mechanism, while achieving the budget-balance property in an

exchange setting.7

Other related works from mechanism design theory

Let us contrast our work with other existing mechanism design research. The authors

in [LS01] design a forward VCG auction for continuous goods by restricting each par-

ticipant to submitting a single price-quantity pair to the operator. They show that

this mechanism, called progressive second price (PSP) mechanism, has a truthful ε-Nash

7Note that the benefits of core-selecting mechanisms are accompanied by nonlinear pricing which
might be regarded as a big shift for some existing electricity markets which have been cleared by linear
nodal prices throughout the last decade [BL19].
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equilibrium, which can be attained by best-response dynamics. The work in [JC10] stud-

ies the PSP mechanism subject to quantized pricing assumptions, and proposes a fast

algorithm converging to a quantized Nash equilibrium with a high probability. More re-

cently, the work in [Zou+17] addresses cross-elasticity in PSP design arising from having

a multi-period problem for charging electric vehicles. This work is generalized to decen-

tralized procedures and double-sided auctions in [ZML17]. In regard to these studies,

the PSP mechanism cannot be implemented in dominant-strategies, and truthfulness is

only in the price dimension for a given quantity. Specifically, in the PSP mechanism,

there is no single true quantity to declare, and the optimal quantity depends on the

bids of other participants [LS01, §3.2]. Moreover, the convergence analysis of the best

response dynamics is limited to strongly concave true valuations and simple market con-

straints, for example, availability of a fixed amount of a single continuous good [LS01,

§3.1]. On the other hand, the work in [XL17] applies the VCG mechanism to the whole-

sale electricity markets and shows that it results in larger payments than the locational

marginal pricing mechanism. There are also recent auction theory applications from

control community in provisioning of a distributed database [SH08], and selecting a host

for a noxious resource (e.g., trash disposal facility) [Wan+17]. Nevertheless, none of the

aforementioned works consider coalitional manipulations. Finally, the works in [MW13;

MR14; LM14] study the design of the participants’ utilities such that the selfish behavior

of the participants results in a social welfare maximizing outcome. By contrast, in our

case, the true valuations of the participants are a priori unknown and they are not part

of the design. Instead, we are guiding the participants to a social welfare maximizing

outcome by designing meaningful incentives through the payment rule.

2.2 Summary of goals and contributions

The contributions of Part I are as follows.

1. We prove that in the electricity market setting we consider the VCG mechanism

is coalition-proof and the VCG utilities lie in the core, if and only if the market

objective function is supermodular. These results are direct extensions of the

results in [AM02; AM06] from the multi-item forward auction setting.

2. Considering again the special setting of continuous goods, second stage costs, and

complex constraints, we derive novel conditions on the bids and the constraint sets

under which the VCG mechanism is coalition-proof.

3. We then show that selecting payments from the core results in a coalition-proof

mechanism without any restrictions on the bids and the constraints, extending

results of [DM08] from the multi-item forward auction setting to the electricity

market setting.
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4. We prove that for electricity markets any competitive equilibrium is efficient. This

result extends the well-known first fundamental theorem of welfare economics stat-

ing that competitive markets tend towards an efficient outcome.

5. We establish that a mechanism is core-selecting if and only if it ensures the existence

of a competitive equilibrium. This result is novel for the electricity market setting

we consider, and it also applies to the exchange setting. This equivalence implies

that the LMP mechanism is also a core-selecting mechanism.

6. We derive an upper bound on the additional profit a bidder can obtain by a uni-

lateral deviation from its truthful bid, under any core-selecting mechanism. Using

this bound, we propose a mechanism that maximizes incentive-compatibility among

all core-selecting mechanisms. This result directly extends the previous proposals

from the multi-item forward auction setting, such as [DR07; DC12].

7. In addition, we show that any core-selecting mechanism is budget-balanced when

we extend our results to the exchange setting. This result is novel since multi-

item exchange literature defines the core without the central operator resulting in

general in an empty core [HM10; Day13; Mil07; BW17].

8. Finally, we verify our results with case studies based on real-world electricity mar-

ket data.

Organization

Chapter 3 introduces a general class of electricity markets and discusses desirable proper-

ties for mechanisms. Chapter 4 brings in tools from coalitional game theory, namely the

core. Throughout this chapter, we investigate conditions under which the VCG mech-

anism is coalition-proof. Since these conditions do not capture the complexity of the

general class of electricity markets, alternative payment rules are proposed in Chapter 5.

Using tools from coalitional game theory and competitive equilibrium theory, we then

prove the equivalence of core and competitive equilibrium. We investigate incentive-

compatibility and budget-balance. Finally, Chapter 6 presents case studies based on

real-world electricity market data.
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CHAPTER 3
Mechanism framework for electricity markets

We start with a generic (one-sided) electricity market reverse auction.1 The set of par-

ticipants consists of the central operator l = 0 and the bidders L = {1, . . . , |L|}. Let

there be t types (or kinds) of power supplies in the auction. These types can include

control reserves, also known as ancillary services [AZ16], or active and reactive power

injections differentiated by their nodes, durations, and scheduled times. Supplies of the

same type from different bidders are fungible (that is, interchangeable) to the central

operator.

We assume that each bidder l has a private true cost function cl : Xl → R+, Xl ⊆
Rt

+. We further assume that 0 ∈ Xl and cl(0) = 0. This assumption holds for many

electricity markets, for instance, control reserve markets and day-ahead markets that

include generators’ start-up costs. Each bidder l then submits a bid function to the

central operator, denoted by bl : X̂l → R+, where 0 ∈ X̂l ⊆ Rt
+ and bl(0) = 0.2,3

Given the bid profile B = {bl}l∈L, a mechanism defines an allocation rule x∗l (B) ∈ X̂l

and a payment rule pl(B) ∈ R for each bidder l. In electricity markets, the allocation rule

is generally determined by the economic dispatch, that is, minimizing the procurement

cost subject to some security constraints

J(B) = min
x∈X̂, y

∑
l∈L

bl(xl) + d(x, y)

s.t. h(x, y) = 0, g(x, y) ≤ 0,

(3.1)

where X̂ =
∏

l∈L X̂l. In the case of a two-stage electricity market model, the operator

can buy the goods from another market at a later stage. The variables y ∈ Rp may

correspond to these second stage variables and the function d : Rt|L| × Rp → R could

represent the second stage cost. In Chapter 6, we provide a real-world electricity mar-

1Our results can be generalized to exchanges, see the discussion provided in Chapter 5.
2There are markets that include shut-down costs (that is, bl(0) > 0) or minimum output levels (that

is, bl(0) is infinitely large or 0 /∈ X̂l). To address these markets, throughout this part we draw attention
to the properties and the results for which the assumptions, cl(0) = 0, bl(0) = 0, are pivotal.

3Assume that both functions lie in a function space defined by the market rules.
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ket example where the function d incorporates expected daily market prices in a weekly

market. The function h : Rt|L| × Rp → Rq1 defines the equality constraints and the

function g : Rt|L| ×Rp → Rq2 defines the inequality constraints.4 These constraints may

correspond to the network balance constraints, and voltage and line limits in OPF prob-

lems. Alternatively, they may also correspond to procurement of the required amounts of

power supplies, for instance, in the Swiss control reserve markets accepted reserves must

have a deficit probability of less than 0.2%. Thus, problem (3.1) defines a general class

of electricity market problems, including energy-reserve co-optimized markets [XL17;

Car+12; Che+99; CDC05; AAS09; KF14; RBA15], stochastic markets [AZ16; CCM10;

BGC05], and AC-OPF problems [LS12; LL12; MH14; MH15; WNB19].5 As a remark, if

the problem (3.1) is infeasible, the objective value is unbounded, J(B) =∞.

Let the optimal solution of (3.1) be denoted by x∗(B) ∈ X̂ and y∗(B) ∈ Rp. We

assume that in case of multiple optima there is a tie-breaking rule. We assume that the

utility of bidder l is linear in the payment received:

ul(B) = pl(B)− cl(x∗l (B)),

(that is, quasilinear utilities [MWG95]). A bidder whose bid is not accepted, x∗l (B) = 0,

is not paid and ul(B) = 0. The utility of the operator u0(B) is defined by the total

payment, namely,

u0(B) = −
∑
l∈L

pl(B)− d(x∗(B), y∗(B)).

This total payment can be an expected value when the function d is an expected second

stage cost. If the problem (3.1) is infeasible, the utility of the operator is given by

u0(B) = −∞.

There are several fundamental properties we desire for the mechanism [Mil04; Kri09].

A mechanism is individually rational (IR) if bidders do not face negative utilities, ul(B) ≥
0 for all l ∈ L. This property is also often referred to as voluntary participation or cost

recovery. A mechanism is efficient if the sum of all the utilities
∑|L|

l=0 ul(B) is maximized.

4Since supplies of the same type from different bidders are fungible to the central operator, the
functions d, g, and h are in fact functions of

∑
l∈L xl and not x. For the sake of simplicity, we keep this

general form and draw attention to the derivations whenever this assumption is utilized.
5Several stochastic electricity market works, such as [PZP10; Zak+18], study single settlement mech-

anisms for two-stage markets. Such mechanisms tie the first stage and the second stage markets together
by asking the bidders to provide bid functions for both stages of the market simultaneously. These works
then set prices for both stages of the market, where the second stage prices are generally uncertainty-
dependent. On the other hand, the mechanisms we study distribute payments (and accept bids) only
for the first stage of the market. We assume that the settlement and the actual solution of the second
stage is separate from that of the first stage primarily motivated by the markets in [AZ16; CCM10].

18



From the definition of the utilities, we have

|L|∑
l=0

ul(B) = −
∑
l∈L

cl(x
∗
l (B))− d(x∗(B), y∗(B)).

Notice that this value is maximized if we are solving for the optimal allocation of the

market in (3.1) under the condition that the bidders submitted their true costs {cl}l∈L.

As a result, we can attain efficiency by eliminating potential strategic manipulations.

Several definitions are in order. Let B−l be the bid profile of all the bidders, except

bidder l. The bid profile B is a Nash equilibrium if for every bidder l, ul(Bl ∪ B−l) ≥
ul(B̃l ∪ B−l), ∀B̃l. The bid profile B is a dominant-strategy Nash equilibrium if for every

bidder l, ul(Bl ∪ B̂−l) ≥ ul(B̃l ∪ B̂−l), ∀B̃l, ∀B̂−l.
Connected with the observation above related to the efficiency property, we say that

a mechanism is dominant-strategy incentive-compatible (DSIC) if the truthful bid profile

C = {cl}l∈L is the dominant-strategy Nash equilibrium. In other words, every bidder

finds it more profitable to bid truthfully, regardless of what others bid. However, as it

will become clear later, unilateral deviations are not the only strategic manipulations we

need to consider in order to ensure that the bidders reveal their true costs.

As the last desirable property, we consider immunity to collusion and shill bidding

and this is the main topic of this part of the thesis. Bidders K ⊆ L are colluders if they

obtain higher collective utility by changing their bids from CK = {cl}l∈K to BK = {bl}l∈K .

In other words, this would imply
∑

l∈K ul(BK ∪ B−K) >
∑

l∈K ul(CK ∪ B−K). A bidder

l is a shill bidder if there exists a set S and bids BS = {bk}k∈S such that the bidder l

finds participating with bids BS more profitable than participating with a single truthful

bid Cl. In other words, this is given by
∑

k∈S uk(BS ∪ B−l) > ul(Cl ∪ B−l).
Finally, by coalition-proof, we mean that a group of bidders whose bids are not

accepted when bidding their true costs, x∗l (CK ∪ B−K) = 0, ∀l ∈ K, cannot profit from

collusion, and no bidder can profit from using shill bids. We remark that it is not possible

to achieve immunity to collusion from all sets of bidders. For instance, no mechanism

can eliminate the situation where all bidders inflate their bid prices simultaneously, see

also the collusion examples in [BO09].

Since the bidders strategize around the payment rule, payment design plays a crucial

role in attaining the aforementioned properties. In light of the discussions above, we

discuss well-studied payment rules that fail to attain some of these properties for the

general class of electricity markets in (3.1).
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3.1 Pay-as-bid mechanism

In the pay-as-bid mechanism, the payment rule is

pl(B) = bl(x
∗
l (B)).

For instance, several European balancing markets are settled under a pay-as-bid mech-

anism, see [MKP18] and further references therein. It follows that each bidder’s utility

is ul(B) = bl(x
∗
l (B)) − cl(x

∗
l (B)). A rational bidder would overbid to ensure positive

utility. Consequently, under the pay-as-bid mechanism, the central operator calculates

the optimal allocation for the inflated bids rather than the true costs. Furthermore, the

bidders need to spend resources to learn how to bid to maximize their utility. There

are many Nash equilibria arising from the pay-as-bid mechanism, none of which are

incentive-compatible [BW86]. This issue was analyzed in our previous work in [KK17],

which is not included in this thesis because the pay-as-bid mechanism will not be treated

in detail.

3.2 Lagrange-multiplier-based payment mechanisms

The LMP mechanism is adopted in markets where polytopic DC-OPF constraints and

nondecreasing convex bids are considered. For simplicity in notation, assume there is

a single bidder at each node of the network. Under this assumption, each bidder is

supplying a one-dimensional power supply of a unique type. Then, the payment rule is

pl(B) = λ∗l (B)x∗l (B),

where λ∗l (B) ∈ R is the Lagrange multiplier of the lth nodal balance equality constraint.6

See [Wu+96] for an exposition on the calculation of the LMP payments from the Karush-

Kuhn-Tucker (KKT) conditions of DC-OPF problems, we also kindly refer to the DC

power flow constraints in (8.2) in Part II.

Assume that each bidder is a price-taker, in other words, each bidder considers the La-

grange multiplier of its node to be independent of its bid. Then, in addition to being IR,

the LMP mechanism is DSIC.7 However, this economic rationale of the LMP mechanism

involves a strong assumption not found in practice [JK01]. Under the LMP mechanism,

a bidder can in fact maximize its utility by both inflating its bids and withholding its

maximum supply [Aus+14; TJ13a; TJ13b]. On the positive side, in Chapter 5, we show

that this mechanism is coalition-proof.

Another aspect to consider is that the economic rationale of the Lagrange multi-

6With a slight notational abuse we ignore the previously defined t-dimensional form of x∗l (B).
7IR requires cl(0) = 0 and bl(0) = 0 for all l ∈ L.
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pliers follows from strong duality [BM97; LS12; War+12].8 For DC-OPF problems,

strong duality is implied by the convexity of the bid profile and the linearity of the

constraints [Ber99]. Strong duality, however, may not hold for the optimization prob-

lem (3.1), and hence the Lagrange multipliers may not be meaningful in an economic

sense. For instance, nonlinear AC-OPF constraints (modeling also the reactive power)

are known to yield a non-zero duality gap for many practical problems [Les+11], and

sufficient conditions for zero duality gap are in general restrictive [Low14].

3.3 The Vickrey-Clarke-Groves mechanism

As an alternative, the VCG mechanism is characterized by

pl(B) = bl(x
∗
l (B)) + (H(B−l)− J(B)),

where B−l = {bk}k∈L\l. The function H(B−l) ∈ R must be chosen carefully to ensure

the IR property. A well-studied choice is the Clarke pivot rule H(B−l) = J(B−l), where

J(B−l) is the optimal value of (3.1) with the constraint xl = 0, removing the bidder

l from both the objective and the constraints.9 This mechanism is well-defined under

the assumption that a feasible solution exists when a bidder is removed. This is a

practical assumption in electricity markets [XL17], for instance, it holds for almost all

IEEE test systems [Chr17]. The VCG mechanism can be shown to satisfy IR, DSIC,

and efficiency (if bidders pick their dominant strategies) for the market in (3.1).10 This

result is relegated to the appendix in Section 3.4.1. It is a generalization of the works

in [Vic61; Cla71; Gro73] which do not consider continuous goods, second stage cost and

general nonlinear constraints.

Despite these theoretical properties, the VCG mechanism can suffer from collusion

and shill bidding which can result in a loss of efficiency. To illustrate these issues, we

study two simple energy market examples. For these examples, we consider the VCG

mechanism with the Clark-pivot rule and with d(x, y) ≡ 0 in the central operator’s

8There are extensions of LMP through uplift payments to address the duality gap specifically arising
from the unit commitment costs. Under convexified power flow equations, the works in [ONe+05;
Cha19; HR03] compute linear prices from an integer restriction, an integer relaxation, and a convex
hull approximation, respectively (for a comparison kindly refer to [GHP07]). These prices are then
complemented with bidder-dependent uplift side payments, which are equivalent to either the deficits or
the opportunity costs of the participants when using approximated linear prices. These bulk payments
are known to create additional incentives for manipulative behavior. Finally, note that in Europe the
uplift idea is completely rejected. Some European day-ahead markets even execute a suboptimal solution
(as opposed to (3.1)). For instance, they disregard an optimal solution when a participant requires an
uplift for its individual rationality when using approximated linear prices [Van11].

9The general form is referred to as the Groves mechanism. The Clarke pivot rule is known to generate
the minimum total payment ensuring the IR property [KP98].

10IR requires cl(0) = 0 and bl(0) = 0 for all l ∈ L.
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objective. Later, we come back to these examples in Chapter 4, in order to discuss

conditions to eliminate collusion and shill-bidding.

The first example is a reverse auction of a single type of power supply. In these

markets, each bidder is allowed to submit mutually exclusive bids that can equivalently

be represented as bid curves, see Section 4.1.

Example 1 (Simple Market). Suppose the central operator has to procure 800 MW of

power supply from bidders 1, 2 and 3 who have the true costs $100 for 400 MW, $400 for

400 MW and $600 for 800 MW, respectively. Under the VCG mechanism, bidders 1 and

2 win and receive pVCG
1 = 100+(600−500) = $200 and pVCG

2 = 400+(600−500) = $500.

Suppose bidders 1 and 2 collude and change their bids to $0 for 400 MW. Then, bidders

1 and 2 receive a payment of $600 each for the same allocation. In fact, bidders 1 and 2

could represent multiple identities of a single losing bidder (that is, a bidder with the true

cost greater than $600 for 800 MW). Entering the market with two shill bids, this bidder

receives a payment of 2× $600 for 800 MW.

The second example is a power market where the operator is procuring a set of

different types of power supplies.

Example 2 (Power Market). We consider a reverse auction with three different types

of supplies, types A, B and C. Here, type A can replace types B and C simultaneously.11

Suppose the central operator has to procure 100 MW of type B and 100 MW of type C

(or equivalently only 100 MW of type A) from bidders 1 to 5. Truthful bid profiles of 5

bidders are provided in Table 3.1.

Table 3.1: Bid profile in the Power Market

Bidders (Types) 1 (A) 2 (B) 3 (B) 4 (C) 5 (C)
MW 100 100 100 100 100
$ 500 350 400 250 400

The constraint set in (3.1) is given by{
x ∈ {0, 100}5 |x1 + x2 + x3 ≥M({A,B}) = 100,

x1 + x4 + x5 ≥M({A,C}) = 100
}
.

(3.2)

Under the VCG mechanism, bidder 1 wins and receives pVCG
1 = 500+(600−500) = $600.

Suppose losing bidders 2 and 4 collude and change their bid prices to $0. Then, bidders

2 and 4 receive $400 each and they obtain a collective VCG profit of $200. The total

11This is an abstraction for power reserve markets where secondary reserves can replace both negative
and positive tertiary reserves, simultaneously [AZ16].
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payment of the operator increases from $600 to $800. This is unfair towards bidder 1

who is willing to offer the same supply for $500.

It is troubling that the VCG mechanism can result in large payments through coali-

tional manipulations. In all these examples, there exists a group of bidders who is willing

to offer the same amount of good by receiving less payment. From the central operator’s

perspective, the operator would instead want to renegotiate the payments with only a

subset of participants.

3.4 Appendix

3.4.1 Properties of the Vickrey-Clarke-Groves mechanism

For the model introduced in (3.1), our first result shows that the VCG mechanism first

derived in [Vic61; Cla71; Gro73] satisfies all three fundamental properties. This result

is a straightforward generalization of the works in [Vic61; Cla71; Gro73], which do not

consider continuous values of goods, second stage costs, and general constraints.

Theorem 1. Given the market model (3.1),

(i) The Groves mechanism is DSIC.

(ii) The Groves mechanism is efficient.

(iii) The Groves mechanism ensures nonnegative payments and IR when the Clarke

pivot rule is utilized, h(B−l) = J(B−l).

Proof. (i) We distinguish between bidder l placing a generic bid Bl = bl and bidding

truthfully Cl = cl. For the set of bids B, the utility of bidder l is given by:

ul(B) = H(B−l) −
(∑
k 6=l

bk(x
∗
k(B)) + cl(x

∗
l (B)) + d(x∗(B), y∗(B))

)
,

where the term in brackets is the market objective of (3.1) under the bids Ĉ = Cl ∪ B−l
but evaluated at (x∗(B), y∗(B)). For Ĉ note that ul(Ĉ) = H(B−l)− J(Ĉ). Then, we have

the following:

J(Ĉ) ≤
∑
k 6=l

bk(x
∗
k(B)) + cl(x

∗
l (B)) + d(x∗(B), y∗(B)).

We can now show that ul(Ĉ) ≥ ul(B) because (x∗(B), y∗(B)) is a feasible suboptimal

allocation for the auction under the bids Ĉ. Therefore, bidding truthfully is a best

response strategy, regardless of other bidders’ strategies B−l.
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(ii) By the definition of the payment rule and incentive-compatibility, we have pl(C) =

ul(C) + cl(x
∗
l (C)) where C = {cl}l∈L. We then have: u0(C) = −

∑
l∈L cl(x

∗
l (C)) −

d(x∗(C), y∗(C)) −
∑

l∈L ul(C). The sum of utilities,
∑|L|

l=0 ul(C) = −
∑

l∈L cl(x
∗
l (C)) −

d(x∗(C), y∗(C)) is maximized since (x∗(C), y∗(C)) is the minimizer to the optimization

problem (3.1) under true costs.

(iii) Nonnegative payments can be verified substituting Clarke pivot rule for H(B−l):

pl(B) = bl(x
∗
l (B)) + (J(B−l)− J(B)) ≥ 0,

for all set of bids B. For individual rationality, we have to assume bidders are not bidding

less than their true costs12, that is, bl(x) ≥ cl(x), ∀x ∈ Xl. We have

ul(B) = bl(x
∗
l (B))− cl(x∗l (B)) + J(B−l)− J(B) ≥ 0,

for all set of bids B.

In summary, all bidders have incentives to reveal their true costs in a VCG mecha-

nism. Dominant-strategy incentive-compatibility makes it easier for entities to enter the

auction, without spending resources in computing optimal bidding strategies. This can

promote participation in the market. As a remark, Theorem 1-(ii) repeats the fact that

solving for the optimal allocation with the true costs yields an efficient mechanism. In

the remainder, we consider the Clarke pivot rule for the VCG mechanism since it ensures

individual rationality.

12Otherwise, the IR property may not hold for the utilities, ul(B), however, it would still hold for the
revealed utilities, which are the utilities with respect to the submitted bids, see the definitions and the
discussions in Chapter 5. Moreover, note that both results rely on the assumption that cl(0) = 0 and
bl(0) = 0 for all l ∈ L.
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CHAPTER 4
Ensuring coalition-proof

Vickrey-Clarke-Groves outcomes

In coalitional game theory, the core defines the set of utility allocations that cannot be

improved upon by forming coalitions [OR94; PS07].1 In this chapter, we start by showing

that if the truthful VCG outcome always lies in the core, then the VCG mechanism

eliminates any incentives for collusion and shill bidding. Keeping this in mind, our main

goal is to derive sufficient conditions on (3.1) to ensure that the VCG outcome lies in

the core, and hence the VCG mechanism is coalition-proof.

For every S ⊆ L, let J(BS) be the objective function under any set of bids BS =

{bl}l∈S from the coalition S. It is defined by the following expression:

J(BS) = min
x∈X̂, y

∑
l∈S

bl(xl) + d(x, y)

s.t. h(x, y) = 0, g(x, y) ≤ 0, x−S = 0,

(4.1)

where the stacked vector x−S ∈ Rt(|L|−|S|)
+ is defined by omitting the subvectors from the

set S. It is straightforward to see that this function is nonincreasing, that is, J(BR) ≥
J(BS) for R ⊆ S.2

Next, we define the core with respect to the truthful bids, CR = {cl}l∈R, and refer to

this definition solely as the core.

Definition 1. For every set of bidders R ⊆ L, the core Core(CR) ∈ R× R|R|+ is defined

as follows

Core(CR) =
{
u ∈ R× R|R|+ |u0 +

∑
l∈R

ul = −J(CR),

u0 +
∑
l∈S

ul ≥ −J(CS), ∀S ⊂ R
}
.

(4.2)

1Throughout this chapter, we use the term utility allocation and the auction outcome interchangeably.
2This holds since bl(0) = 0 for all l ∈ L.
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Note that there are 2|R| linear constraints that define a utility allocation in the core

for the set of bidders R. The core is always nonempty in an auction because the utility

allocation u0 = −J(CR) and ul = 0 for all l ∈ R always lies in the core. This allocation

corresponds to the utility allocation of the pay-as-bid mechanism under the truthful

bidding CR.3

For the properties considered in mechanism design, we highlight the implications of

the constraints in (4.2). Restricting the utility allocation to the nonnegative orthant

yields the IR property for the bidders. The equality constraint implies that the mecha-

nism is efficient, since the term on the right is maximized by the optimal allocation. We

say that a utility allocation is unblocked if there is no set of bidders that could make

a deal with the operator from which every member can benefit, including the operator.

This condition is satisfied by the inequality constraints.

The truthful VCG outcome attains the maximal utility in the core for every bid-

der. Note that under the VCG mechanism each bidder’s utility is given by uVCG
l =

J(C−l) − J(C). Then, for every bidder l, uVCG
l = max {ul |u ∈ Core(C)}, see [AM02,

Theorem 5], [KK17, Theorem 2]. In general, this maximal point may not lie in the core.

The following example gives visual insight about the core in terms of payments and il-

lustrates the dominant-strategy Nash equilibrium of the VCG mechanism corresponding

to Example 1. In this example, shill bidding and collusion are shown to be profitable

under the VCG mechanism.

Example 3. We revisit Example 1. Without loss of generality, assume that in case of

a tie the central operator prefers bidders 1 and 2 over bidder 3. We can visualize the

core outcomes in terms of the payments for the bidders 1 and 2 by removing the losing

bidder 3, pVCG
3 = 0, and the operator. Core outcomes and the VCG payments (pVCG

i ) are

given in Figure 4.1.

Considering that the core will characterize coalition-proof outcomes, we are ready to

investigate the conditions under which the VCG outcome lies in the core. To this end,

we provide three sufficient conditions that ensure core VCG outcomes for the auction

model (3.1).

Notice that there are 2|L| linear core constraints in Core(C), see (4.2). First, we derive

the following equivalent characterization with significantly lower number of constraints.

Lemma 1. Let W ⊆ L be the winners of the reverse auction (3.1) for the set of bidders

L, that is, each bidder l ∈ W is allocated a positive quantity. Let u ∈ R × R|L|+ be the

corresponding utility allocation. Then, u ∈ Core(C) if and only if u0 = −J(C)−
∑

l∈L ul

3If cl(0) 6= 0, the function J may not be nonincreasing, the pay-as-bid utilities under the truthful
bidding may not lie in the core, and the core may be empty. In this case, to guarantee that the core
exists, IR constraints for such bidders, ul ≥ 0, can be completely removed, or can be replaced by
ul ≥ −cl(0) whenever cl(0) is finite. It can easily be verified that this new core is always nonempty.

26



p1

p2

100 200 600

400

500

600

p1 + p2 ≤ $600

p2 ≥ $400

p1 ≥ $100

(pVCG
1 , pVCG

2 )
•

•

CorePay-as-bid
under truthful bidding

Figure 4.1: Core outcomes and the VCG payments under truthful bidding

and ∑
l∈K

ul ≤ J(C−K)− J(C), ∀K ⊆ W. (4.3)

The proof is relegated to the appendix in Section 4.3.1, and it is utilized in the proofs

of the results of this chapter. The following proposition is our first sufficient condition

for core VCG outcomes.

Proposition 1. The truthful VCG outcome is in the core, uVCG ∈ Core(C), if the market

in (3.1) is infeasible whenever any two winners l1, l2 ∈ W are removed from the set of

bidders L.

The proof is relegated to the appendix in Section 4.3.2. The above condition can

only be present in some specialized instances of reverse auctions. It is not possible in

general to guarantee that this condition will hold in a market by enforcing restrictions

on the bidders and the market model.

We will soon show that supermodularity provides an equivalent condition for core

VCG outcomes. To this end, we bring in its definition.

Definition 2. A function f : 2L → R is supermodular if

f(S)− f(S−l) ≤ f(R)− f(R−l),

for all S ⊆ R ⊆ L and for all l ∈ S. Or, equivalently, for all S,R ⊆ L, f(S ∪ R) +

f(S ∩ R) ≥ f(S) + f(R) must hold. A function f : 2L → R is submodular if −f is

supermodular. Furthermore, a function is nondecreasing if f(S ′) ≤ f(S), for all S ′ ⊆ S.
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For the remainder of this chapter, the objective function J in (4.1) is said to be

supermodular if supermodularity condition holds under any bid profile. Our main result

of this section proves that supermodularity of the objective function is necessary and

sufficient for ensuring core VCG outcomes.

Theorem 2. For any bid profile C and for any set of participating auction bidders R ⊆ L,

the truthful VCG outcome is in the core, if and only if the objective function J in (4.1)

is supermodular.

Note that a similar result but for submodularity was proven in [AM06, Theorem 6], for

a forward multi-item auction without any other constraints. Our result is an extension of

this result to our reverse auction setting in (3.1). The proof is relegated to the appendix in

Section 4.3.3. There are extensions of supermodularity for nonsupermodular functions

via the notion of weak supermodularity [Bia+17; DK11]. Using this condition, our

previous work in [KK18] ensures outcomes that are not far away from the core. The

results of [KK18] on weak coalition-proofness will not be treated in detail.

As previously anticipated, we now prove that the outcomes from the core, hence

the supermodularity condition, make collusion and shill bidding unprofitable in a VCG

mechanism.

Theorem 3. For the set of bidders L, consider a VCG auction mechanism modeled

by (3.1). If the objective function J is supermodular, then,

(i) A group of bidders who lose when bidding their true values cannot profit by a joint

deviation.

(ii) Bidding with multiple identities is unprofitable for any bidder.

The proof is relegated to the appendix in Section 4.3.4. Theorem 3 shows that if

the operator has a supermodular objective (or equivalently, if the VCG outcomes are

always in the core), then the VCG mechanism is coalition-proof. Given this result, we

next investigate sufficient conditions on the bids and the constraint sets in order to

ensure supermodularity and thus coalition-proof outcomes. In the following we derive

conditions for two classes of markets.

4.1 Markets for a single type of good

We start by considering simpler reverse auctions where the operator has to procure a

fixed amount M ∈ R+ of a single type of good. Each bidder l has a private true cost

function cl : R+ → R+ that is nondecreasing with cl(0) = 0. These types of auctions are

mainly characterized by single-stage decisions with mutually exclusive bids. This means

that a bidder can offer a set of bids, of which only one can be accepted. We first show
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that such discrete bids fit into our model (3.1). Here, bidder l submits truthful bids for

nl discrete amounts as {(cl,i, xl,i)}nli=1 where cl,i ∈ R+ and the amounts offered by each

bidder xl,i ∈ R+ must be equally spaced by some increment m which is a divisor of M ,

that is,

xl,i = im, for some i ∈ Z+. (4.4)

Note that, there is an equivalent representation of the form cl(x) ∈ R+ for x > 0 as

follows:

cl(x) = min
i=1,...,nl

{cl,i |xl,i ≥ x} , (4.5)

where cl(0) = 0. This form equivalently represents that all the amounts up to the size of

the winning bid are available to the operator. Furthermore, bid prices of this form are

piecewise constant and continuous from the left.

We consider auctions cleared by

J(CS) = min
x∈R|S|+

∑
l∈S

cl(xl)

s.t.
∑
l∈S

xl ≥M,
(4.6)

for S ⊆ L. Note, we can equivalently assume that xl, above, takes values in {xl,i | i ∈
Z+} ⊆ R+ (cf. (4.5) and Figure 4.2) and doing so, we let x∗ = {x∗l }l∈S be the optimal

values in these restricted sets.

The model (4.6) is within the auction model (3.1). We can now derive conditions on

bidders’ true costs to ensure supermodularity of J . Thus, we derive conditions under

which the truthful VCG outcome from (4.6) would lie in the core.

Theorem 4. Given (4.4), if the true costs are marginally increasing, namely, xl,b −
xl,a = xl,d − xl,c implies that cl,b − cl,a < cl,d − cl,c for each bidder l ∈ L and for each

0 ≤ xl,a < xl,c < xl,d, then the objective function J in (4.6) is supermodular.

This setting includes reverse auctions of multiple identical items as a subset. However,

we highlight that our proof does not share similarities with that of [AM06, Theorem 8],

which achieves submodular objective functions in forward auctions of multiple single-

unit items utilizing a substitutes condition on different items. Our proof relies on an

important lemma we prove showing that the allocations, x∗l , of every bidder is nonde-

creasing when a bidder is removed from the auction (4.6). The proof is relegated to the

appendix in Section 4.3.5. As a corollary of this result, marginally increasing costs imply

coalition-proof VCG outcomes for (4.6) and thus eliminate incentives for collusion and

shill bidding. This condition is visualized in Figure 4.2.

We note that the analogue of Theorem 4 holds for continuous bids and for strictly

convex bid curves. This could also be seen as the limiting case, by taking the limit where

the increment m goes to 0.
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Figure 4.2: Marginally increasing piecewise constant bid prices

We illustrate the conditions in Theorem 4 by revisiting Example 1 from Chapter 3.

Example 4 (Simple Market). Revisiting Example 1 and Example 3, we observe that the

bid from bidder 3 does not satisfy the conditions in Theorem 4, because the bid price for

400 MW is not submitted. Assume instead bidder 3 provides the mutually exclusive bids

of $300 for 400 MW and $600 for 800 MW. Suppose bidders 1 and 2 change their bids to

$0 for 400 MW. Then, bidders 1 and 2 are the winners and each receives a payment of

$300. If they were multiple identities of a single bidder, after shill bidding, sum of their

payments would decrease from $700 to $600.

Next, we consider a more general setting with different types of goods where it is

still possible to derive conditions to ensure supermodularity and coalition-proof VCG

outcomes.

4.2 Markets for different types of goods

We now consider reverse auctions where the central operator is procuring a set of different

types of goods. Each bidder has a private true cost function c : Rt
+ → R+ that is

nondecreasing with c(0) = 0. We assume that this cost has an additive from, c(x) =∑t
τ=1 cτ (xτ ). Typically, in these markets, bids are submitted separately for each type

with an upper-bound on the amount to be procured, X̄τ ∈ R+ [AZ16]. The operator

treats these bids as bids from different identities, and then distributes the payments
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accordingly. In this case, the set L is the extended set of bidders such that the bid

profile C is given by the bids of the form cl : R+ → R+, X̄l ∈ R+, for all l ∈ L.4

Let [t] = {1, . . . , t}. Define the set {Aτ}tτ=1 to be a partition of the set L where each

set Aτ ⊆ L is the set of bidders submitting a bid for goods of type τ . Specifically, we

consider auctions cleared by the optimization problem:

J(CS) = min
x∈R|L|+

∑
l∈S

cl(xl)

s.t.
∑
l∈AT

xl ≥M(T ), ∀T ⊆ [t],

xl ≤ X̄l, ∀l ∈ L,
xl = 0, ∀l ∈ L \ S,

(4.7)

where AT =
⋃
τ∈T A

τ . We minimize the sum of declared costs subject to constraints

on the subsets of types [t]. Here, the function M : 2[t] → R+ defines the amount the

operator wants to procure from possible combinations of different types of goods. We

assume that M(∅) = 0 (normalized). We remark that the optimization problem in (4.7)

contains the case in Example 2.

In the following result we see that if cl and M satisfy convexity and supermodularity

conditions respectively, then J is supermodular.

Theorem 5. The objective function J given by (4.7) is supermodular when cl is increas-

ing and convex for all l ∈ L, M is supermodular and nondecreasing.

The proof is relegated to the appendix in Section 4.3.6, and it builds upon recent

advances in polymatroid optimization.5,6 As a corollary of this result, the conditions on

cl, l ∈ L and M in Theorem 5 imply core VCG outcomes for (4.7). The conclusions

of Theorem 3 on shill bidding and collusion are further corollaries of this result.

Next, we illustrate that the VCG outcome may not lie in the core for a general poly-

hedral constraint set by revisiting Example 2, and then we illustrate how the conditions

4This assumption is in fact without loss of generality. Note that any supermodular function f : 2L →
R preserves its supermodularity when we reduce its ground set L by combining some of the elements to
obtain a new ground set L′ with |L′| ≤ |L|, see the discussions in [Bac11, Appendix B].

5Polymatroid is a polytope associated with a submodular function. We highlight that under the
conditions in Theorem 5, the first set of constraints in (4.7) is a contra-polymatroid [Sch03].

6Later on during the doctoral studies, we proved that the central operator exhibits strong-substitute
property as it is defined in [MS07], if it has a contra-polymatroid procurement constraint. [MS07, Theo-
rem 22] states that if all bidders have strong-substitute valuations, a forward auction has a submodular
objective function. Hence, it could in fact be possible to combine our observations with [MS07, Theorem
22] to extend our result. We believe that this extension can potentially relax the separable convexity
requirement of Theorem 5 on the bid functions to supermodularity and component-wise convexity, see
[MS07, Theorem 11] and the comparisons of these functions classes in [Bia19, §3]). However, this re-
quires further investigation. Finally, we highlight that our proof does not share similarities with that of
[MS07, Theorem 22], which relies on an analysis based on the conjugates of the bid functions.
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in Theorem 5 imply core outcomes in this example. In the numerics, we also show that

the polymatroid condition holds for optimal power flow problems with no line limits.

Example 5 (Power Market). Revisiting Example 2, for the constraint set (3.2), we high-

light that M is not supermodular: M({A,B,C}) + M({A}) < M({A,B}) + M({A,C})
where M({A}) = 0 and M({A,B,C}) = 0. Then, the VCG outcome under collusion is

blocked by a deal between the operator and bidder 1. Now instead consider the following

constraint set:

{x ∈ {0, 100}5 |x1 + x2 + x3 ≥ M̃({A,B}) = 100,

x1 + x4 + x5 ≥ M̃({A,C}) = 100,

x1 + x2 + x3 + x4 + x5 ≥ M̃({A,B,C}) = 200},

which is an inner approximation of the constraints found in Example 2. Under this new

constraint set, type A can still replace types B and C, but it cannot replace both types

simultaneously. In other words, types B and C cannot complement each other to replace

type A as well. Note that the function M̃ is supermodular, normalized and nondecreasing,

which satisfies all the requirements of Theorem 5. So, here the VCG outcome lies in the

core. Specifically, under the VCG mechanism, bidders 2 and 4 become winners and receive

p2 = 350 + (650− 600) = $400 and p4 = 250 + (750− 600) = $400. This outcome is not

blocked by any other coalition and collusion is not profitable for bidders. This example

illustrates that marginally increasing cost curves alone are not enough to conclude the

supermodularity of the reverse auction objective function in (3.1).

4.3 Appendix

4.3.1 Proof of Lemma 1

The utility allocation u is unblocked by every S ⊆ L if and only if

−J(CS) ≤
∑
l∈S

ul + u0 =
∑
l∈S

ul −
∑
l∈W

ul − J(C), ∀S ⊆ L,

since the losing bidders are not allocated and they obtain zero payment. Thus, the core

can equivalently be parametrized as∑
l∈W\S

ul ≤ J(CS)− J(C), ∀S ⊆ L,

for the bidders. Moreover, fixing the set K = W \S, the dominant constraints are those

corresponding to minimal J(CS), in particular, when we have S = L \ K (since this is

the maximal set with K not taking part in the coalition S). �
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4.3.2 Proof of Proposition 1

Notice that if the optimization problem (3.1) is infeasible then the objective value is

J(B) =∞. Given this property of the market, inequality constraints (4.3) in Lemma 1

simplify to constraints on the utilities of single bidders, that is, uVCG
l ≤ J(C−l) − J(C),

for all l ∈ W . This inequality follows directly from the definition of the VCG utility,

uVCG
l = J(C−l)− J(C), for all l ∈ W . The equality constraint in Lemma 1 is satisfied by

definition. �

4.3.3 Proof of Theorem 2

We prove that supermodularity is sufficient for the truthful VCG utilities to lie in the

core, Core(CR), for all R ⊆ L. Notice that we have uVCG
l,R = J(CR\l)−J(CR) (that is, the

VCG utility of bidder l when R is participating), we drop the dependence on R for the

sake of simplicity in notation. We recall Lemma 1. Hence, we need to show that∑
l∈K

ul ≤ J(CR\K)− J(CR), ∀K ⊆ W, (4.8)

where W are the winner subset of R. Let K = {l1, . . . , lk}. Notice that, by supermodu-

larity, J(CR\lκ)− J(CR) ≤ J(CR\{lκ,...,lk})− J(CR\{lκ+1,...,lk}). Thus

∑
l∈K

uVCG
l =

k∑
κ=1

J(CR\lκ)− J(CR)

≤
k∑

κ=1

J(CR\{lκ,...,lk})− J(CR\{lκ+1,...,lk})

= J(CR\K)− J(CR).

The last equality holds by a telescoping sum. Thus, we see that (4.8) holds and so,

by Lemma 1, the VCG outcome belongs to the core. The same argument can be repeated

to obtain core VCG outcomes for any set of participating auction bidders R ⊆ L and for

any profile C.
To prove that supermodularity is also necessary for outcomes to lie in the core, we

proceed by contradiction. Suppose that the supermodularity condition does not hold for

a bidder l. Then, there exist sets S ⊆ R where J(CR\l)−J(CR)> J(CS\l)−J(CS). We

may, without loss of generality, choose R = S ∪ {i} for some i. To see this, take S0 = S

and Sκ = Sκ−1 ∪ {lκ} with Sk = R, then,

k∑
κ=1

J(CSκ\l)− J(CSκ−1\l) = J(CR\l)− J(CS\l)
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> J(CR)− J(CS) =
k∑

κ=1

J(CSκ)− J(CSκ−1).

The strict inequality above must hold for one of the summands J(CSκ\l)− J(CSκ−1\l) >

J(CSκ)−J(CSκ−1). Therefore, we may consider sets S ⊆ R that differ by one bidder, say

i. Thus, by this observation, we have J(CR\l)− J(CR) > J(CS\l)− J(CS) = J(CR\{i,l})−
J(CR\i) for i ∈ R \ S. Further, after rearranging the above inequality we obtain

J(CR\i)− J(CR) > J(CR\{i,l})− J(CR\l) ≥ 0. (4.9)

That is, both bidder i and l are winners of the VCG auction with bidders R. Considering

the auction with the set of bidders R and with i, l ∈ W , and K = {i, l}, we have:∑
l′∈K

uVCG
l′ =

∑
l′∈K

J(CR\l′)− J(CR)

=J(CR\{i})− J(CR) + J(CR\l)− J(CR)

>J(CR\{i,l})− J(CR\l) + J(CR\l)− J(CR)

=J(CR\K)− J(CR),

where in the inequality above we apply (4.9). Thus, given Lemma 1, (4.8) does not hold,

consequently, uVCG /∈ Core(CR). Thus the outcome of the VCG mechanism is not in the

core for the subset of bidders R ⊆ L. �

4.3.4 Proof of Theorem 3

(i) Let K be a set of colluders who would lose the auction when bidding their true

values CK = {cl}l∈K , when bidding BK = {bl}l∈K they become winners, that is, they are

all allocated a positive quantity. We define C = CK ∪ C−K and B = BK ∪ C−K where

C−K = {cl}l∈L\K denotes the bidding profile of the remaining bidders. As a remark, the

profile C−K is not necessarily a truthful profile. The VCG utility that each player l in K

receives under B is

uVCG
l (B) ≤ uVCG

l (B−l ∪ Cl)
= J(B−l)− J(B−l ∪ Cl)
≤ J(C−K)− J(C−K ∪ Cl)
= J(C−l)− J(C)
= uVCG

l (C)
= 0,
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where the first inequality follows from the dominant-strategy incentive-compatibility of

the VCG mechanism. The first equality comes from the definition of the VCG mechanism

and the second inequality applies the supermodularity of the function J . The next

equality comes from the fact that the set K originally was a group of losing bidders.

So we see that, for all l ∈ K, the utility uVCG
l (B) is upper bounded by the utility that

bidder l would receive if every colluder was bidding truthfully. However, by the initial

assumption, these bidders were losers while bidding truthfully, and hence uVCG
l (C) = 0,

for all l ∈ K. Thus, there is no benefit for losers from colluding by jointly deviating from

their truthful bids.

(ii) Similar to part (i), define C = C−l∪Cl. The profile C−l is not necessarily a truthful

profile. Shill bids of bidder l are given by BS = {bk}k∈S. We define a merged bid B̃l as

b̃l(xl) = min
xk∈X̂k,∀k

∑
k∈S

bk(xk) s.t.
∑
k∈S

xk = xl.

We then define B̃ = C−l ∪ B̃l. The VCG utility from shill bidding under B = C−l ∪ BS,∑
k∈S u

VCG
k (B), is given by

=
∑
k∈S

[J(B−k)− J(B) + bk(x
∗
k(B))]− cl(

∑
k∈S

x∗k(B))

≤ [J(B−S)− J(B)] +
∑
k∈S

bk(x
∗
k(B))− cl(

∑
k∈S

x∗k(B))

= [J(C−l)− J(B̃)] + b̃l(
∑
k∈S

x∗k(B))− cl(
∑
k∈S

x∗k(B))

= uVCG
l (B̃)

≤ uVCG
l (C).

The first inequality follows from the supermodularity of J . The second equality holds

since we have J(B̃) = J(B). This follows from the definition of the merged bid and

the following implication. Since the goods of the same type are fungible for the central

operator, the functions h, g and d in fact depend on
∑

l∈L xl. The third equality follows

from the definition of VCG utility. The second inequality is the DSIC property of the

VCG mechanism. Therefore, the total VCG utility that l receives from shill bidding

is upper bounded by the utility that l would receive by bidding truthfully as a single

bidder. Making use of shills, hence, is not profitable. �

4.3.5 Proof of Theorem 4

A preliminary version of this proof was first presented in a conference paper in [SWK17].

The following proof simplifies this result specifically in the steps of the main proof and

corrects notational inconsistencies.
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To prove Theorem 4, the following lemma is needed.

Lemma 2. Under the market model (4.6), for an auction with bidders S and R =

S ∪ {j} with corresponding allocations x and x′, marginally increasing costs imply that

∀l ∈ S, x′l ≤ xl.

Proof. The proof follows by contradiction. That is, we will show that when x′ is such

that x′l > xl, for some l ∈ S, then x′ can be modified to provide a lower cost via the

allocation q for bidders S (thus contradicting optimality of x).

First, we notice that since bids are equally spaced by the amount m and with

marginally increasing cost,
∑

l∈S xl =
∑

l∈R x
′
l = M holds. Now, in order to procure

exactly M amount from bidders R, some bidders’ allocations must decrease, that is, the

set K = {l ∈ S |x′l < xl} is nonempty. Consider a feasible allocation q′ for the auction

with bidders R where the amount M is being procured and

q′l =


x′j, for l = j,

xl, for l ∈ S\K,
q′l, for l ∈ K where x′l ≤ q′l ≤ xl.

Hence, q′ is constructed from x′ by transferring the amount m′ =
∑

l∈S\K x
′
l − xl from

bidders in S\K to bidders in K. In doing so, the inequality x′l ≤ q′l ≤ xl can be satisfied:

m′ ≤
∑
l∈K

(xl − x′l).

The above inequality holds because when summing over l ∈ S, xl’s sum to M and x′l’s

sum to M − xj.
Since x′ is optimal for bidders R and q′ is not:

J(CR) =cj(x
′
j) +

∑
l∈S\K

cl(x
′
l) +

∑
l∈K

cl(x
′
l)

≤cj(x′j) +
∑
l∈S\K

cl(xl) +
∑
l∈K

cl(q
′
l) = J̄(q′), (4.10)

where we used J̄(q′) as a short-hand-notation for the cost corresponding to choosing the

allocation q′ under truthful bidding.

Now, we use the marginally increasing true costs to replace the summations over K

in (4.10). In particular, define q = (ql : l ∈ S) so that

ql := xl + (x′l − q′l) =

{
x′l for l ∈ S\K,
xl + x′l − q′l for l ∈ K.
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Note that q is feasible since x′ and q′ have the same sum over S (and thus cancel) and

xl is feasible. Further, since (ql − xl) = (x′l − q′l),∑
l∈K

cl(ql)− cl(x′l) <
∑
l∈K

cl(xl)− cl(q′l). (4.11)

Adding (4.11) to both side of (4.10) (and canceling cj(x
′
j)) gives

J̄(q) =
∑
l∈S\K

cl(x
′
l) +

∑
l∈K

cl(ql)

<
∑
l∈S\K

cl(xl) +
∑
l∈K

cl(xl) = J(CS),

which contradicts the optimality of x. This concludes the proof.

Corollary 1. Given the conditions in Theorem 4 and the optimal allocation to procure

the amount M , for any lower amount M̃ ≤ M(while still being a multiple of m) to be

procured, the allocation for each bidder does not increase.

This corollary follows directly from Lemma 2. Now, we are ready to prove Theorem 4.

Proof. We prove that J is supermodular. We adopt the same notation used in Lemma 2

and we identify with W ⊆ S the set of winners under the set S. For each l /∈ W , we have

by definition xl = 0. Thus J(CS\l)−J(CS) = 0, (since the optimal solution is unchanged

when l is removed from S). By Lemma 2, x′l = 0 and so J(CR\l)− J(CR) = 0 also. Thus,

supermodularity holds for l /∈ W .

For each winning bidder w ∈ W , for the sake of notational compactness, we denote

uVCG
w (CS) = J(CS\w)−J(CS). Note that these values are in fact the truthful VCG utilities

under CS, which justifies the VCG term. Adopting the same notation of Lemma 2, we

can indicate it as:

uVCG
w (CS) := −cw(xw) +

∑
l∈S−w

(cl(%l)− cl(xl)),

where %l are the optimal allocations of each l ∈ S−w, when w leaves the auction.

By Lemma 2, %l ≥ xl. Similarly, after bidder i enters the auction, uVCG
w (CR) = J(CR\w)−

J(CR). That is,

uVCG
w (CR) := −cw(x′w) +

∑
l∈S−w

(cl(%
′
l)− cl(x′l)) + ci(%

′
i)− ci(x′i),

where %′i are the amounts accepted from l ∈ R−w when w leaves the new auction.

By Lemma 2, we again have %′l ≥ x′l.
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Notice that so far we applied Lemma 2 to justify the increase of the accepted amounts,

first, from each l ∈ S−w and now from l ∈ R−w, due to the exit of w from the auctions.

We can also apply Lemma 2 again and affirm that x′l ≤ xl ∀l ∈ S, and in particular

x′w ≤ xw, because of the entrance of i.

We now find suitable lower and upper bounds to ensure inequality uVCG
w (CR) ≤

uVCG
w (CS), which would confirm supermodularity.

First, note that J(CS) =
∑

l∈S−w cl(xl) + cw(xw) ≤
∑

l∈S−w cl(ql) + cw(x′w), where

ql’s are from the cheapest allocation to procure the amount (M − x′w) among S−w.

By Lemma 2 (and Corollary 1) we have %l ≥ ql ≥ xl, ∀l ∈ S−w. Note that xl’s sum to

(M − xw) ≤ (M − x′w) (due to x′w ≤ xw), and %l’s sum to M .

Moreover, since every cl is increasing, ql’s are such that
∑

l∈S−w(%l−ql) = x′w, because

exactly the amount M is purchased. Using the above suboptimal allocation, we have a

lower bound for uVCG
w (CS):

uVCG
w (CS) ≥

∑
l∈S−w

(cl(%l)− cl(ql))− cw(x′w). (4.12)

Defining now δl = (%l − ql),∀l ∈ S−w we must have
∑

l∈S−w δl = x′w. Notice that

J(CR\w) =
∑
l∈S−w

cl(%
′
l) + ci(%

′
i) ≤

∑
l∈S−w

cl(x
′
l + δl) + ci(x

′
i),

since the right hand side is a feasible cost to procure the amount M among the bidders

{S, i} \ w. Indeed,
∑

l∈S x
′
l + x′i = M and

∑
l∈S−w δl = x′w. Hence, we have:

uVCG
w (CR) ≤

∑
l∈S−w

(cl(x
′
l + δl)− cl(x′l)) + (ci(x

′
i)− ci(x′i))− cw(x′w). (4.13)

Observe that the terms in the parentheses cancel each other. Moreover, via marginally

increasing costs (also via strictly convex costs), we have:

(cl(x
′
l + δl)− cl(x′l)) ≤ (cl(%l)− cl(ql)), ∀l ∈ S−w. (4.14)

The above holds because ∀l ∈ S−w, (%l − ql) = (x′l + δl − x′l) = δl and x′l ≤ ql. In par-

ticular, x′l are the amounts accepted to procure the amount (M − x′w) among {S, i} \w,

while ql are those to procure the same amount among S−w. Then, combining equa-

tions (4.13), (4.14) and (4.12), we finally obtain uVCG
w (CR) ≤ uVCG

w (CS). As a result, we

obtain supermodularity and this concludes the proof.
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4.3.6 Proof of Theorem 5

We prove that J is supermodular. To this end, we first need to reparametrize the problem

(4.7) into another class of optimization problem. We define the function f : 2L → R+ as

follows

f(A) = max
∀T⊆{1,...,t},

A⊇AT

M(T ).

We consider the following optimization problem:

J(CS) = min
x∈R|L|+

∑
l∈S

cl(xl)

s.t.
∑
l∈A

xl ≥ f(A), ∀A ⊆ L,

xl ≤ X̄l, ∀l ∈ L,
xl = 0, ∀l ∈ L \ S.

(4.15)

First, notice that f(AT ) = M(T ). Since xl ≥ 0, ∀l, the constraints added by the

definition of the function f are all redundant constraints. Then, these constraints in

(4.15) are feasible, once the constraints in (4.7) are satisfied. Hence, these problems are

equivalent. We also remark that f(∅) = 0 and f is nondecreasing.

Before we proceed, we need to show that supermodularity of the function M implies

supermodularity of the function f . Suppose f(A) = M(TA) and f(B) = M(TB) for

some TA, TB. Then,

f(A) + f(B) =M(TA) +M(TB)

≤M(TA ∪ TB) +M(TA ∩ TB)

≤ f(A ∪B) + f(A ∩B).

First inequality follows from supermodularity of the function M . The last inequality

holds since these sets are feasible suboptima for f(A ∪ B) and f(A ∩ B). We conclude

that the function f is supermodular.

Note that, given supermodularity of the function f , the first set of constraints in

(4.15) defines a contra-polymatroid, see [Sch03, Section 44] for a detailed exposition.

This class of problems are important in combinatorial optimization because they can

often be solved in polynomial time. For the remainder of the proof, we extend the work

of [HZZ12] on replenishment games to reverse auctions over contra-polymatroids and

box constraints as in (4.15).

We first show that the constraint
∑

l∈L xl = f(L) is redundant and can be added to

the original constraint set. We denote Sc = L\S and denote x∗ as the optimal allocation

for (4.15). It can be shown that for every x∗k, k ∈ S , there exists a set k ∈ Ak ⊆ L
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such that
∑

l∈Ak x
∗
l = f(Ak) is tight at the optimal solution. We can prove this via

contradiction. Assume, for x∗k, k ∈ S, there does not exist a set k ∈ Ak ⊆ L such that∑
l∈Ak x

∗
l ≥ f(Ak) is tight. Then, one can simply decrease the value of x∗k and get a

lower objective value. Furthermore, note that any constraint corresponding to A 6⊃ Sc

is redundant to A ∪ Sc because f is nondecreasing and xl = 0, for all l ∈ Sc. Then, this

set Ak has to be a superset of Sc, Ak ⊃ Sc.

Next, we show that if the constraints for A and B are tight, so is the constraint for

A ∪B:

f(A ∪B) + f(A ∩B) ≥ f(A) + f(B) (4.16a)

=
∑
l∈A

x∗l +
∑
l∈B

x∗l (4.16b)

=
∑
l∈A∪B

x∗l +
∑
l∈A∩B

x∗l (4.16c)

≥ f(A ∪B) + f(A ∩B). (4.16d)

Inequality (4.16a) follows from supermodularity of f , f(A∪B)−f(A) ≥ f(B)−f(A∩B).

Equality (4.16b) follows from A and B being tight. We arranged the terms in the

equality (4.16c). Inequality (4.16d) follows from the feasibility of x∗ for the problem

in (4.15). Then, it is easy to see that (4.16d) is in fact an equality and we can conclude

that
∑

l∈A∪B x
∗
l = f(A ∪B).

Recall that the constraint corresponding to the set Al ⊃ Sc ∪ {l} is tight for x∗l .

Hence, we can conclude that the constraint corresponding to the set
⋃
l∈S Al = L is also

tight and
∑

l∈L x
∗
l = f(L) holds for optimal solution.

Next, we reformulate the first set of constraints in (4.15) as follows:

P =
{
x ∈ R+ | − f(A) ≥

∑
l∈Ac

xl −
∑
l∈L

xl, ∀A ⊆ L
}
. (4.17)

Define h(A) = −f(Ac) where h(∅) = −f(L) = −
∑

l∈L xl and reorganize the constraint

set (4.17).

P =
{
x ∈ R+ |h(Ac) +

∑
l∈L

xl ≥
∑
l∈Ac

xl, ∀A ⊆ L
}

=
{
x ∈ R+ |h(A) +

∑
l∈L

xl ≥
∑
l∈A

xl, ,∀A ⊆ L
}

=
{
x ∈ R+ |h(A)− h(∅) ≥

∑
l∈A

xl, ∀A ⊆ L, h(∅) = −
∑
l∈L

xl

}
.

We see that k(A) = h(A) − h(∅) is a nondecreasing submodular function and it is

normalized. In literature, the function k is often called a rank function [Sch03]. Note
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that, k(S) = h(S)−h(∅) = −g(L\S) +g(L). From the feasibility of the problem (4.15),

we have that g(L \ S) = 0 and k(S) =
∑

l∈L xl. We reorganize the constraint set and

obtain the following:

P =
{
x ∈ R+ |

∑
l∈A

xl ≤ k(A), ∀A ⊆ L, k(S) =
∑
l∈L

xl

}
.

Finally, given that k is nondecreasing and xl = 0, ∀l ∈ L \ S, we can show that the

constraints corresponding to A ⊃ S are all redundant upper bounds. Then, we obtain

the following

P =
{
x ∈ R+ |

∑
l∈A

xl ≤ k(A), ∀A ⊆ S, k(S) =
∑
l∈S

xl

}
.

The following result is known, and we refer to [YZ97, Theorem 6.1] and [Fuj80]. The set

P ∩ {x |xl ≤ X̄l, ∀l} is equivalent to the set,

P ′ =
{
x ∈ R+ |

∑
l∈A

xl ≤ f̄(A), ∀A ⊆ S, k(S) =
∑
l∈S

xl

}
,

where f̄(A) = minB⊆A{k(A \ B) +
∑

l∈B X̄l} and this function is also a rank function

[YZ97]. We also assert that f̄(S) = k(S). To verify this equality, notice that:

k(S) =
∑
l∈S

xl =
∑
l∈S\B

xl +
∑
l∈B

xl

≤ k(S \B) +
∑
l∈B

X̄l, ∀B ⊆ S,

hence, f̄(S) = minB⊆S{k(S \B) +
∑

l∈B X̄l} = k(S). Finally, we obtain:

−J(CS) = max
xl∈R+,∀l∈S

∑
l∈S

−cl(xl)

s.t.
∑
l∈A

xl ≤ f̄(A), ∀A ⊆ S,∑
l∈S

xl = f̄(S).

(4.18)

Now, we are ready to bring in the results from the work of [HZZ12]. The first

set of constraints in (4.18) defines a polymatroid, see [Sch03, Section 44]. In [HZZ12,

Theorem 3] (which builds upon the well-known optimality of the greedy algorithm over

a polymatroid [Edm03] and [SU10, Theorem 2.1] by forming a linearization argument

to the concave objective functions), it is proven that maximizing a separable concave

function over a polymatroid results in a submodular objective function. The result is in
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fact proven for optimizing over the base polymatroid where the polymatroid constraint

set is intersected with the equality
∑

l∈S xl = f̄(S). Then, invoking this result, we

conclude that −J is submodular, and J is supermodular. �
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CHAPTER 5
Coalition-proof core-selecting mechanisms

In the previous chapter, we showed that the VCG mechanism can be guaranteed to

achieve coalition-proofness only in restricted market problems. In this chapter, we study

core-selecting mechanisms. We first show that they are coalition-proof, in the sense that

a group of bidders whose bids are not accepted when bidding truthfully cannot profit

from collusion, and a shill bidder cannot profit more than its VCG utility corresponding

to its truthful bidding. We then show that, in addition to being coalition-proof, core-

selecting mechanisms generalize the economic rationale of the LMP mechanism. Namely,

they are also the exact class of mechanisms that ensure the existence of a competitive

equilibrium. This result implies that the LMP mechanism is core-selecting, and hence

coalition-proof. Since the LMP mechanism may not exist, we then define a class of core-

selecting mechanisms, applicable to any market modeled by (3.1), that also approximates

DSIC without the price-taking assumption. Finally, we prove its budget-balance.

5.1 Coalition-proofness via core

To design coalition-proof payments, we first define the revealed utilities, that is, the

utilities with respect to the submitted bids. This is crucial since the true utilities of the

bidders are unknown for the design of the payment rules. We then bring in the definition

for the revealed core.

The revealed utility of bidder l is defined by ūl(B) = pl(B) − bl(x
∗
l (B)), and the

revealed utility of the operator is the same as its utility, ū0(B) = −
∑

l∈L pl(B) −
d(x∗(B), y∗(B)).

Definition 3. For every set of bidders R ⊆ L, the revealed core Core(BR) ∈ R×R|R|+ is

defined as follows

Core(BR) =
{
ū ∈ R× R|R|+ | ū0 +

∑
l∈R

ūl = −J(BR),

ū0 +
∑
l∈S

ūl ≥ −J(BS), ∀S ⊂ R
}
.

(5.1)
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Both the revealed utilities and the revealed core above would correspond to the true

utilities and the true core as in Definition 1 if we assume that the submitted bids are

the true costs. A mechanism is said to be core-selecting if its payments ensure that the

revealed utilities lie in the revealed core. Then, the payment rule is given by

pl(B) = bl(x
∗
l (B)) + ūl(B),

where ū(B) ∈ Core(B). For instance, it can be verified that the pay-as-bid mechanism

is a core-selecting mechanism where ūl(B) = 0 for all l ∈ L, and ū0(B) = −J(B). This

implies that the core is nonempty and these mechanisms exist.1 Furthermore, core-

selecting mechanisms are IR for the revealed utilities, since they are restricted to the

nonnegative orthant for the bidders in (5.1).

Our main result of this section shows that these mechanisms give rise to coalition-

proof outcomes.

Theorem 6. Consider a core-selecting auction mechanism modeled by (3.1).

(i) A group of bidders who lose when bidding their true values cannot profit by a joint

deviation.

(ii) Bidding with multiple identities is unprofitable for all bidders with respect to the

VCG utilities.

The proof is relegated to the appendix in Section 5.4.1, and it extends a similar obser-

vation from [DM08, Theorem 1] in multi-item auctions to the electricity market setting

under consideration. This proof can be used as an alternative approach to prove Theo-

rem 3. We remark that the proof method differs from Theorem 3 since this proof does

not require supermodularity.

We conclude that core-selecting mechanisms are coalition-proof. As a remark, the

revealed core ensures this property since the inequality constraints in (5.1) restrict the

revealed utilities such that they cannot be improved upon by forming coalitions. In fact,

as it is discussed in Chapter 4, the VCG mechanism fails to attain coalition-proofness

since it is in general not a core-selecting mechanism.

5.2 Coalition-proofness via competitive equilibrium

This section shows that the core-selecting mechanisms offer an economic rationale similar

to that of the LMP mechanism. To state this result, we bring in tools from competitive

equilibrium theory [MWG95].

1If bl(0) 6= 0, the function J may not be nonincreasing, the pay-as-bid revealed utilities may not lie
in the revealed core, and the revealed core may be empty. We kindly refer to Footnote 3 of Chapter 4
for a way of addressing this problem.
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Definition 4. An allocation x∗ ∈ Rt|L|
+ and a set of price functions {ψl}l∈L, where

ψl : Rt
+ → R and ψl(0) = 0, constitute a competitive equilibrium if and only if the

following two conditions hold

(i) x∗l ∈ arg max
xl∈Xl

ψl(xl)− cl(xl), ∀l ∈ L, (5.2)

(ii) x∗ ∈ arg min
x∈Rt|L|+

{
min

y:h(x,y)=0
g(x,y)≤0

∑
l∈L

ψl(xl) + d(x, y)

}
. (5.3)

As a remark, price functions {ψl}l∈L map from power supplies to the payment received

by each bidder, whereas the payments {pl}l∈L map from the bid profile to the payments.

Notice that the functions {ψl}l∈L can be nonlinear and bidder-dependent. As a result,

this definition extends beyond the traditional Walrasian competitive equilibrium which

requires a linear price for each type of supply [MWG95; BO02; Par02].

The central assumption of competitive equilibrium conditions is that participants

take the price functions {ψl}l∈L as given and they do not anticipate their effects on

them. Consequently, condition (5.2) implies that bidders are willing to supply their

allocations since these allocations maximize their utilities given the price functions. Fur-

thermore, these allocations also minimize the total payment of the central operator given

the price functions by condition (5.3). We highlight that a competitive equilibrium is not

a game-theoretic solution, under neither the cooperative nor noncooperative approaches.

Instead, it is a set of consistency conditions that models how payments would be formed

from economic interactions. These conditions are considered to be a powerful benchmark

in economic analysis of electricity markets [MWG95; Sch+88; BL19].

Next, we show that for competitive equilibrium analysis we can restrict our attention

to the optimal allocation of (3.1) under the truthful bid profile. To this end, the following

lemma proves that a competitive equilibrium is efficient.

Lemma 3. If an allocation x∗ and price functions {ψl}l∈L constitute a competitive equi-

librium, then x∗ = x∗(C), that is, the allocation is the optimal allocation of (3.1) under

true costs.

The proof is relegated to the appendix in Section 5.4.2. We say that a mechanism

ensures the existence of a competitive equilibrium if under any true cost profile C from

the bidders there exists a set of price functions {ψl}l∈L such that these price functions

constitute a competitive equilibrium with x∗(C), and ψl(x
∗
l (C)) = pl(C) for all l ∈ L.

Under such mechanisms, condition in (5.2) implies the following. Suppose bidders treat

their price functions to be independent of their bids. Then, x∗l (C) maximizes the utility

of each bidder. In this case, bidders would be willing to bid truthfully to ensure they

are allocated the optimal quantity x∗l (C).
As an example, consider the DC-OPF problem with a single bidder at each node.
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Recall that λ∗l (C) ∈ R is the Lagrange multiplier of the lth nodal balance equality. Let

the stacked vector λ∗(C) ∈ Rt be the concatenation of λ∗l (C), ∀l where the number of

supply types t is equal to the number of nodes. If strong duality holds, then the LMP

mechanism results in a competitive equilibrium with the allocation x∗(C), and the set of

price functions ψLMP
l (x) = λ∗(C)x for all l ∈ L [Sch+88; Wu+96]. As a remark, in case

there are several bidders on a single node in a DC-OPF problem, these bidders would be

supplying the same type of supply to the grid. These bidders would then face the same

LMP price λ∗l (C) since the price functions are formed by the Lagrange multipliers of the

nodes. Hence, the LMP price functions are considered to be bidder-independent.

We now prove that core-selecting mechanisms coincide with those ensuring the exis-

tence of a competitive equilibrium.

Theorem 7. A mechanism is core-selecting if and only if it ensures the existence of a

competitive equilibrium, that is, for any true cost profile C there exists a set of price func-

tions {ψl}l∈L such that these functions constitute a competitive equilibrium with x∗(C),

and ψl(x
∗
l (C)) = pl(C) for all l ∈ L.

The proof is relegated to the appendix in Section 5.4.3. As a corollary, the LMP

mechanism is core-selecting, and hence it is also coalition-proof. Coalition-proofness can

be another motivation for using LMP in DC-OPF problems. As a side note, using Theo-

rem 7, we can prove that the LMP payments are upper bounded by the VCG payments,

we kindly refer to the appendix in Section 5.4.4.

Theorem 7 shows that core-selecting mechanisms generalize the economic rationale of

the LMP prices to core prices. The latter prices can be nonlinear and bidder-dependent.

As mentioned earlier, Lagrange multipliers may not constitute a competitive equilibrium

since strong duality may not hold for the general class of markets in (3.1). In this case, the

market may not have a competitive equilibrium in linear price functions. For instance,

deriving a meaningful payment mechanism to accompany nonconvex AC-OPF dispatch

and/or nonconvex unit commitment decisions is an open problem [BL19; Fed19]. As we

discussed in Chapter 3, there are various approximation techniques being investigated

and implemented for the latter [GHP07; ONe+05; Cha19].2 As core-selecting mecha-

nisms exist even under nonconvex bids and nonconvex constraint sets, they are viable

payment mechanisms for any market modeled by (3.1).

Nevertheless, the VCG mechanism is the unique DSIC mechanism computing the

optimal allocation under the submitted bids [GL79; GL77] (and IR in a minimal sense,

see Footnote 9 from Chapter 3). Since the VCG mechanism may not be core-selecting,

2We remark that condition (5.3) of a competitive equilibrium is ignored whenever one derives linear
prices from an approximated problem, and complements it with uplift payments. Hence, the proposals
in [GHP07; ONe+05; Cha19] are not core-selecting mechanisms, and they cannot be guaranteed to
achieve coalition-proofness. Notice that, if we ignore the uplift payments, the linear prices derived
in [GHP07; ONe+05; Cha19] satisfy the condition (5.3) for the approximated problems, however, in
this case, it is easy to see that these linear prices would violate condition (5.2).
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the DSIC property is in general violated under core-selecting mechanisms, and unilateral

deviations can be profitable. Furthermore, competitive equilibrium theory relies on

bidders treating their price functions as independent from their bids. This assumption

does not take into account the full set of strategic behaviors. In the next section, we

address the design of coalition-proof mechanisms to approximate DSIC without the price-

taking assumption. We then address the case where the demand-side also submits bids.

5.3 Designing coalition-proof mechanisms

5.3.1 Approximating incentive-compatibility

In this section, we characterize the class of core-selecting mechanisms that approximates

DSIC by minimizing the sum of potential profits of each bidder from a unilateral de-

viation. Invoking the claim in [PKE02], approximating DSIC provides us also with a

meaningful method to approximate the efficiency property.

First, we quantify the violation of the DSIC property under any core-selecting mech-

anism.

Lemma 4. Let u(B) denote the utilities for any bid profile B under a core-selecting

mechanism. The additional profit of bidder l by a unilateral deviation from its truthful

bid, that is, ul(B̂l ∪ B−l) − ul(Cl ∪ B−l) for a nontruthful bid B̂l, is at most uVCG
l (Cl ∪

B−l)− ul(Cl ∪ B−l), where uVCG
l (Cl ∪ B−l) = J(B−l)− J(Cl ∪ B−l).

The proof is relegated to the appendix in Section 5.4.5, and it extends [DR07, Theo-

rem 3.2] to our electricity market setting. This lemma provides a measure for the loss of

incentive-compatibility under core-selecting mechanisms. The bound on the additional

profit is exactly given by the difference between the VCG payment and the core-selecting

payment in the case in which the bidder is truthful in both mechanisms. Hence, the closer

the payments are to the VCG payments, the better the bound is. Note that calculating

the optimal deviation by the bidder given in the proof of Lemma 4 requires full infor-

mation of the bids. Attempting this optimal deviation involves a risk, since bidding

any amount higher to obtain a larger profit is not possible, and it would result in zero

allocation and zero utility.

Next, we design an approximately DSIC core-selecting mechanism. A mechanism is

said to be maximum payment core-selecting (MPCS) if its revealed utilities are given by,

ūMPCS(B) = arg max
u∈Core(B)

∑
l∈L

ul − ε
∥∥ul − ūVCG

l (B)
∥∥2

2
, (5.4)

where ε is a small positive number. This problem maximizes sum of the revealed utilities

of the bidders over the revealed core constraints. The second term in the objective of (5.4)
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Figure 5.1: Illustration of the revealed utilities under different mechanisms

is used as a tie-breaker. This term ensures that the optimizer is unique by picking the

revealed utilities that are nearest to the VCG revealed utilities. See Figure 5.1 for an

illustration of the revealed utilities for two bidders under different mechanisms.3 Observe

that problem (5.4) is a convex quadratic program since the core is given by a set of linear

equality and inequality constraints in (5.1). In the appendix in Section 5.4.6, we discuss

its computational aspects and provide computationally efficient approaches.

The following theorem shows that the MPCS mechanism approximates the DSIC

property.

Theorem 8. The MPCS mechanism minimizes the sum of maximum additional profits

of each bidder by a unilateral deviation from a truthful bid profile C, that is, the sum of

the maximum values of ul(B̂l ∪C−l)−ul(C) for a nontruthful bid B̂l for all bidders l ∈ L,

among all core-selecting mechanisms.

The proof is relegated to the appendix in Section 5.4.7. Under the MPCS mecha-

nism, the total incentives to deviate from truthful bidding are minimal, and hence it is

approximately DSIC. This mechanism extends the previous proposals from the multi-

item forward auctions computing minimum revenue core in [DR07], and the VCG-nearest

core in [DC12].4 Notice that when the VCG utilities lie in the core, they constitute the

optimizer to the problem (5.4). This follows since ūVCG
l (B) = max{ūl | ū ∈ Core(B)}.

Hence, for such instances, the MPCS mechanism is equivalent to the VCG mechanism.

The LMP mechanism does not have this property.

3By definition, under the MPCS mechanism sum of the revealed utilities of the bidders are higher
than the one under the LMP mechanism. However, we underline that every bidder may not receive an
MPCS utility higher than its LMP utility. In the numerics, we provide one such instance.

4We kindly refer to [EK10; BLS18] for discussions and analyses on different core outcome choices in
multi-item auctions.
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The MPCS mechanism does not rely on the price-taking assumption to approxi-

mate DSIC. In return, it generally yields nonlinear and bidder-dependent payments.

Nonlinearity might be regarded as a big shift for some existing markets [BL19]. More-

over, the bidders could find it hard to accept bidder-dependency, or this property might

even be precluded by law [Cra03]. Nevertheless, the MPCS mechanism can still pro-

vide an elegant economic rationale when meaningful linear prices do not exist. The

coalition-proofness property of the MPCS mechanism discourages bidders from entering

the market with multiple identities to try and exploit the bidder-dependency.

5.3.2 Market design considerations in exchanges

In this section, we extend our model to exchange markets. We assume that each bid-

der l has a private true cost function cl : Xl → R, where 0 ∈ Xl ⊆ Rt and cl(0) = 0.

Furthermore, the bid function is denoted by bl : X̂l → R, where 0 ∈ X̂l ⊆ Rt and

bl(0) = 0. Note that the domains of these functions are now relaxed to Rt. As a remark,

an exchange market is more general than a two-sided market since these bid functions

can also represent a bidder interested in buying and selling different types of supplies,

simultaneously. The remaining definitions for the one-sided auctions naturally extend to

exchanges. Moreover, results on IR, DSIC, coalition-proofness, and competitive equilib-

rium further hold in exchanges when we relax the power supply domains from Rt
+ to Rt.

For instance, the core is again defined by (5.1). Then, the proof of Theorem 6 applies to

exchanges, proving the connection between coalition-proofness and core-selecting.5

In addition to the properties we studied so far, an exchange requires that the operator

obtains a revenue, adequate to cover its total payment to balance its budget. In one-sided

markets, this might be less of an issue since the demand-side is assumed to be inelastic

to the price changes. We say that a mechanism is budget-balanced if the operator has a

nonnegative utility under any bid profile B, u0(B) ≥ 0. We say that it is strongly budget-

balanced if this utility is exactly zero, u0(B) = 0. Under DC-OPF exchange problems,

the LMP mechanism is budget-balanced [Wu+96, Fact 4]. On the other hand, the

VCG mechanism is not always budget-balanced.6 This also follows from the Myerson-

Satterthwaite impossibility theorem, which shows that no exchange can always solve for

the optimal allocation under the submitted bids, and attain DSIC, budget-balance, and

IR simultaneously [MS83] (even in the more general setting of Bayesian implementation,

we kindly refer to the extensive discussions in [PKE02, §3.2]). Fortunately, under the

5In the combinatorial exchange literature, the core is usually defined by intersecting (5.1) with
ū0 = 0 [HM10; Day13; Mil07]. However, this new core is in general empty. Furthermore, such core
definitions implicitly assume that a transaction can occur even without the involvement of the central
operator. This is not true for the electricity market problems since the dispatch has to be secure via
the transmission network.

6In the appendix in Section 5.4.8, we characterize the instances in which the VCG mechanism has
a deficit. In Section 5.4.9, we also prove that the VCG mechanism cannot be guaranteed to achieve
coalition-proofness in exchanges.
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core selecting mechanisms, we can guarantee budget-balance.

Theorem 9. Any core-selecting mechanism is budget-balanced, that is, ū0 ≥ 0.

The proof is relegated to the appendix in Section 5.4.10, and it is a straightforward

manipulation of the revealed core constraints. It follows that the MPCS mechanism

is budget-balanced in addition to the properties discussed in Section 5.3.1. This also

provides an alternative proof to the budget-balance of the LMP mechanism.

Note that the LMP mechanism provides methods to reallocate its budget surplus

through financial transmission and flowgate congestion rights [Wu+96; Hog92]. These

rights are important tools to provide market signals to incentivize investment in trans-

mission capacity. In order to compensate the owners of these rights in the MPCS mecha-

nism, a plausible solution is to include them as an additional constraint to (5.4), that is,∑
l∈W ūl ≤ −J(B)−∆r, where ∆r ≥ 0 is the total rights to be distributed. Defining ways

to incorporate these rights, and providing the correct investment signals for transmission

capacity expansion, is part of the future research directions.

5.4 Appendix

5.4.1 Proof of Theorem 6

First, we need the following lemma.

Lemma 5. Let ū ∈ R×R|L|+ be a revealed utility allocation in Core(B). Then, for every

set of bidders K ⊆ L we have
∑

l∈K ūl(B) ≤ J(B−K)− J(B).

Proof. Since ū0 = −J(B) −
∑

l∈L ūl, we reorganize the inequality constraint as follows

−J(B)−
∑

l∈L\S ūl ≥ −J(BS), ∀S ⊆ L. Setting K = L \ S yields the statement.

Next, we prove that core-selecting mechanisms are coalition-proof.

Proof. (i) Let K be a set of colluders who would lose the auction when bidding their true

values Cl = cl, when bidding Bl = bl they become winners, that is, they are all allocated

a positive quantity. We define Ĉ = CK ∪B−K and B = BK ∪B−K where B−K = {bl}l∈L\K
denotes the bidding profile of the remaining bidders. As a remark, the profile B−K is

not necessarily a truthful or a strategic profile. We denote the utility that each bidder l

receives as ul. The total utility that colluders receive under B is∑
l∈K

ul(B) =
∑
l∈K

ūl(B) + bl(x
∗
l (B))− cl(x∗l (B))

≤ J(B−K)− J(B) +
∑
l∈K

bl(x
∗
l (B))− cl(x∗l (B))
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= J(Ĉ)−
[∑
l∈L

bl(x
∗
l (B)) + d(x∗(B), y∗(B))−

∑
l∈K

bl(x
∗
l (B)) +

∑
l∈K

cl(x
∗
l (B))

]
= J(Ĉ)−

[∑
l∈K

cl(x
∗
l (B)) +

∑
l∈L\K

bl(x
∗
l (B)) + d(x∗(B), y∗(B))

]
≤ 0 =

∑
l∈K

ul(Ĉ).

The first equality follows from the core-selecting payment rule, where ū(B) is the revealed

utility allocation. The first inequality follows from Lemma 5. The second equality comes

from the fact that the set K originally was a group of losers, so J(B−K) = J(Ĉ). After

substituting these terms, we see that the term in brackets is the cost J̄ of Ĉ but evaluated

at a feasible suboptimal allocation (x∗(B), y∗(B)). Then,
∑

l∈K ul(B) is upper bounded

by 0 which is the total utility that the colluders would receive bidding truthfully.

As a result, there is at least one colluder not facing any benefit in collusion. Moreover,

they cannot increase their collective utility by a joint deviation. Hence, collusion is not

profitable for the losing bidders.

(ii) Define C = C−l∪Cl, where C−l denotes the bidding profile of the remaining bidders.

The profile C−l is not necessarily a truthful profile. Shill bids of bidder l are given by

BS = {bk}k∈S. We define a merged bid B̃l as

b̃l(xl) = min
xk∈Rt+, ∀k

∑
k∈S

bk(xk) s.t.
∑
k∈S

xk = xl.

We then define B̃ = C−l ∪ B̃l. The total utility obtained from shill bidding under B =

C−l ∪ BS,
∑

k∈S uk(B), is given by

=
∑
k∈S

[ūk(B) + bk(x
∗
k(B))]− cl(

∑
k∈S

x∗k(B))

≤ [J(B−S)− J(B)] +
∑
k∈S

bk(x
∗
k(B))− cl(

∑
k∈S

x∗k(B))

= [J(C−l)− J(B̃)] + b̃l(
∑
k∈S

x∗k(B))− cl(
∑
k∈S

x∗k(B))

= uVCG
l (B̃)

≤ uVCG
l (C).

The first inequality follows from the core-selecting payment rule and Lemma 5. The

second equality holds since we have J(B̃) = J(B). This follows from the definition of the

merged bid and the following implication. Since the goods of the same type are fungible

for the central operator, the functions g, h and d in fact depend on
∑

l∈L xl. The third

equality follows from the definition of the VCG utility. The second inequality is the

dominant-strategy incentive-compatibility of the VCG mechanism. Therefore, the total
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utility that l receives from shill bidding is upper bounded by the utility that l would

receive by bidding truthfully as a single bidder in a VCG auction. Making use of shills,

hence, is not profitable with respect to the VCG utilities.

5.4.2 Proof of Lemma 3

We show that if an allocation x∗ and price functions {ψl}l∈L constitute a competitive

equilibrium, then x∗ is the optimal solution to the optimization problem defined by J(C)
in (3.1). By the first condition in (5.2), we have∑

l∈L

ψl(x
∗
l )− cl(x∗l ) ≥

∑
l∈L

ψl(xl)− cl(xl), ∀x ∈ X, (5.5)

where X =
∏

l∈LXl. Define (x∗, y∗) as the optimal solution pair to the optimization

problem in (5.3), and (x∗(C), y∗(C)) as the optimal solution pair to the problem defined

by J(C). Then, we obtain the following∑
l∈L

cl(x
∗
l ) + d(x∗, y∗) ≤

∑
l∈L

ψl(x
∗
l )− ψl(x∗l (C)) + cl(x

∗
l (C)) + d(x∗, y∗)

= J(C) +
∑
l∈L

ψl(x
∗
l ) + d(x∗, y∗)

−
(∑
l∈L

ψl(x
∗
l (C)) + d(x∗(C), y∗(C))

)
≤ J(C).

The first inequality follows from (5.5). We then obtain the equality by adding and sub-

tracting the term d(x∗(C), y∗(C)), and substituting J(C) =
∑

l∈L cl(x
∗
l (C))+d(x∗(C), y∗(C)).

The second inequality follows since (x∗(C), y∗(C)) is a suboptimal feasible solution to the

optimization problem in (5.3). Note that (x∗, y∗) is originally feasible for the problem

defined by J(C), otherwise, it would not satisfy the constraints in both (5.2) and (5.3).

Hence, from the last inequality, it follows that (x∗, y∗) is an optimal solution pair to

the optimization problem defined by J(C). Since previously we assumed that the opti-

mal solution is unique according to some tie-breaking rule, we obtain the desired result

x∗ = x∗(C). �

5.4.3 Proof of Theorem 7

We generalize the arguments from [BO02; Par02] that characterize competitive equi-

libria of multi-item auction problems with a simple supply-demand balancing equality

constraint to continuous goods, second stage cost, and general nonlinear constraints.

Our proof (in the “ ⇐= ” direction) is different from these works since it does not rely

on linear-programming duality and weak duality arguments that are available to the

multi-item setting with simple constraints. Invoking Lemma 3, for both directions of the

52



proof we restrict our attention to the optimal allocation under truthful bids.

(⇐= ) For the market (3.1), we first prove that if a mechanism ensures the existence

of a competitive equilibrium, then it is a core-selecting mechanism. To do so, we show

that the revealed utilities lie in the revealed core under any bid profile.

Given the bid profile B = {bl}l∈L, allocation x∗(B) and price functions {ψl}l∈L, we

have;

x∗l (B) ∈ arg max
xl∈X̂l

ψl(xl)− bl(xl),∀l ∈ L, (5.6)

x∗(B) ∈ arg min
x∈Rt|L|+

 min
y:h(x,y)=0
g(x,y)≤0

∑
l∈L

ψl(xl) + d(x, y)

 . (5.7)

These conditions must hold because the mechanism does not know the true costs C,
and it has to ensure the existence of an efficient competitive equilibrium in case the

true costs are given by B = {bl}l∈L. Notice that the price functions depend on the

bid profile, ψl(xl) = ψl(xl;B), and we drop this dependence for the sake of simplicity

in notation. Using ψl(x
∗
l (B)) = pl(B), the revealed utilities are defined by ūl(B) =

ψl(x
∗
l (B)) − bl(x∗l (B)), and ū0(B) = −

∑
l∈L ψl(x

∗
l (B)) − d(x∗(B), y∗(B)), where y∗(B) is

the optimal solution to (5.7).

Next, we show that ū(B) ∈ Core(B), which would conclude that the mechanism

is core-selecting. First, observe that the individual-rationality constraints are satisfied;

ūl(B) ≥ 0 since 0 ∈ X̂l, ψl(0) = 0, and bl(0) = 0. Second, we have the equality constraints

in (5.1):
∑

l∈L ūl(B) + ū0(B) = −
∑

l∈L bl(x
∗
l (B))− d(x∗(B), y∗(B)) = −J(B). Third, we

show that the inequality constraints in (5.1) hold, that is,

− ū0(B) ≤ J(BS) +
∑
l∈S

ūl(B), ∀S ⊂ L. (5.8)

Define the following restricted problem for any subset S ⊂ L,

µ0(S) = − min
x∈X̂, y
x−S=0

∑
l∈S

ψl(xl) + d(x, y)

s.t. h(x, y) = 0, g(x, y) ≤ 0,

(5.9)

where the optimal allocation is denoted by x∗(S). Because x∗(S) is a feasible solution

to (5.7), we obtain −ū0(B) ≤ −µ0(S). We then let x∗(BS) be the optimal solution to

J(BS). This solution is a suboptimal feasible solution to (5.9) and hence −µ0(S) ≤∑
l∈S ψl(x

∗
l (BS)) + d(x∗(BS), y∗(BS)). Then, it suffices to show that∑

l∈S

ψl(x
∗
l (BS)) + d(x∗(BS), y∗(BS)) ≤ J(BS) +

∑
l∈S

ūl(B), ∀S ⊂ L, (5.10)
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since this would imply the inequality in (5.8). Via the condition in (5.6), we have

ψl(x
∗
l (BS))− bl(x∗l (BS)) ≤ ψl(x

∗
l (B))− bl(x∗l (B)) = ūl(B).

Summing the inequality above over all l ∈ S, we obtain∑
l∈S

ψl(x
∗
l (BS))− bl(x∗l (BS)) ≤

∑
l∈S

ūl(B).

By adding d(x∗(BS), y∗(BS)) on both sides and reorganizing, the above inequality yields

(5.10). Consequently, we have −ū0(B) ≤ J(BS) +
∑

l∈S ūl(B), for any S ⊂ L. Hence,

the revealed utilities lie in Core(B).

( =⇒ ) We now prove that any core-selecting mechanism ensures the existence of an

efficient competitive equilibrium. In other words, we show that, for the truthful optimal

allocation x∗(C) ∈ X, there exists a set of price functions ψl : Rt
+ → R, ∀l such that

the conditions in Definition 4 are satisfied, and ψl(x
∗
l (C)) = pl(C). Consider the utility

allocation u ∈ Core(C) of a core-selecting mechanism under truthful bidding. Define the

price functions {ψl}l∈L as follows

ψl(x) =


0 x = 0,

cl(x) + ul x ∈ Xl \ {0},
∞ otherwise.

For these price functions, the first condition in (5.2) holds by construction. To show that,

we study two possible cases. If x∗l (C) is nonzero, then x∗l (C) ∈ arg maxxl∈Xl ψl(xl)− c(xl)
since ul ≥ 0. On the other hand, if x∗l (C) = 0, then ul = 0 and 0 ∈ arg maxxl∈Xl 0.

We prove the second condition in (5.3) by contradiction. Assume there exists x, y

such that h(x, y) = 0, g(x, y) ≤ 0, and∑
l∈L

ψl(x
∗
l (C))+d(x∗(C),y∗(C))>

∑
l∈L

ψl(xl)+d(x,y). (5.11)

Define a subset S ⊆ L such that xl = 0 for all l ∈ L \S. Observe that if xl > 0, ∀l, then

S = L. Then, the core implies

−u0 = J(C) +
∑
l∈L

ul

=
∑
l∈L

ψl(x
∗
l (C)) + d(x∗(C), y∗(C)).

(5.12)

The second equality follows from the definition of the price functions. Using the second
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equality in (5.12), the inequality in (5.11) is equivalent to

J(C) +
∑
l∈L

ul >
∑
l∈S

ψl(xl) + d(x, y).

By the definition of ψl, we obtain

J(C) +
∑
l∈L\S

ul >
∑
l∈S

cl(xl) + d(x, y) ≥ J(CS),

where the last inequality is from the feasible suboptimality of (x, y) for the problem

defined by J(CS). This is because h(x, y) = 0, g(x, y) ≤ 0, and x ∈ X (otherwise, the

price functions are unbounded).

Using the first equality in (5.12), we have u0 +
∑

l∈S ul < −J(CS) for S ⊆ L. This

contradicts u ∈ Core(C), and thus the mechanism cannot be a core-selecting mechanism.

We conclude that x∗(C) is optimal for the central operator given the price functions. As

a result, x∗(C) and {ψl}l∈L constitute a competitive equilibrium. Finally, from pl(C) =

cl(x
∗
l (C)) + ul, we obtain ψl(x

∗
l (C)) = pl(C) for each bidder l ∈ L. This concludes the

proof. �

5.4.4 Comparison of the LMP and the VCG payments

Proposition 2. Given any bid profile B, for every bidder l the payment under the LMP

mechanism is upper bounded by the payment under the VCG mechanism.

Proof. A similar result was proven in [XL17], using convex analysis in the context of

DC-OPF markets. We provide a simple and more general proof applicable to any setting

where the LMP mechanism ensures the existence of a competitive equilibrium. The

proof is an application of [AM02, Theorem 5] that compares the utilities of iterative

ascending auctions with that of the VCG mechanism. Since the LMP utilities lie in the

revealed core, it suffices to show that the VCG revealed utilities are greater than any

other revealed utility in the revealed core.

Observe that the VCG payment of bidder l is given by pVCG
l = bl(x

∗
l (B)) + (J(B−l)−

J(B)), whereas the revealed VCG utility is ūVCG
l = J(B−l)− J(B). Assume there exists

a revealed utility allocation ũ ∈ Core(B) where ũl > ūVCG
l . These utilities are blocked

by the coalition L−l; −J(B−l) > −J(B) − ũl = ũ0 +
∑

k∈L−l ũk, where the equality

follows from the definition of the revealed core. This contradicts that ũ ∈ Core(B). We

conclude that the revealed core utilities are upper bounded by the ones under the VCG

mechanism. Moreover, it is not hard to show that this upper bound is tight for some

core-selecting mechanism since ūVCG
l = max {ūl | ū ∈ Core(B)} [AM02, Theorem 5]. We

obtain the proposition.
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Proof of Proposition 2 simplifies the arguments in [XL17] greatly.

5.4.5 Proof of Lemma 4

Assume there exists a bid b̂l : X̂l → R+ such that[
b̂l(x

∗
l (B̂l ∪ B−l))−cl(x∗l (B̂l ∪ B−l)) + ūl(B̂l ∪ B−l)

]
− ul(Cl ∪ B−l) >

[
J(B−l)− J(Cl ∪ B−l)

]
− ul(Cl ∪ B−l),

where B̂l = {b̂l}, x∗(B̂l ∪ B−l) is the optimal allocation of the market problem corre-

sponding to J(B̂l ∪ B−l), and ū(B) denote the revealed utilities for any bid profile B
under core-selecting mechanism. The inequality above is equivalent to the existence of a

deviation that is more profitable than the given upper bound. Notice that the following

holds,

ūl(B̂l ∪ B−l) ≤ ūVCG
l (B̂l ∪ B−l) = J(B−l)− J(B̂l ∪ B−l),

since ūVCG
l (B̂l ∪ B−l) = max{ūl | ū ∈ Core(B̂l ∪ B−l)} [AM02, Theorem 5]. Combining

the inequalities above, we have

b̂l(x
∗
l (B̂l ∪ B−l))− cl(x∗l (B̂l ∪ B−l)) + J(B−l)− J(B̂l ∪ B−l)

> J(B−l)− J(Cl ∪ B−l).

Observe that the first term is the VCG utility under a non-truthful bid, whereas the

second term is the VCG utility under a truthful bid. The strict inequality above con-

tradicts the DSIC property of the VCG mechanism. We conclude that uVCG
l (Cl ∪B−l)−

ul(Cl ∪ B−l) is an upper bound on the additional profit obtained from a unilateral devi-

ation.

We remark that, for any bidder, there exists a bid achieving the profit in the upper

bound. Define ε to be a small positive number, which is required to avoid ties. It is

straightforward to show that the following bid achieves exactly the truthful VCG utility,

and hence the exact upper bound in uVCG
l (Cl ∪ B−l)− ul(Cl ∪ B−l):

b̂l(x) =


0 x = 0,

cl(x) + uVCG
l (Cl ∪ B−l)− ε x ∈ Xl \ 0,

∞ otherwise.

Since the market solves for the optimal allocation in (3.1), if bidder l is allocated a

positive quantity while bidding truthfully, then this bidder is also allocated a positive

quantity while bidding b̂l. Moreover, under any core-selecting mechanism, we have ε ≥
ūVCG
l (B̂l ∪ B−l) ≥ ūl(B̂l ∪ B−l) ≥ 0 where B̂l = {b̂l}. As a result, by bidding b̂l, the

bidder l obtains its truthful VCG utility, ul(B̂l∪B−l) = uVCG
l (Cl∪B−l)− ε+ ūl(B̂l∪B−l),
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and achieves exactly the upper bound in the lemma as ε→ 0+. �

5.4.6 Computing the MPCS payments

The MPCS payments are computationally difficult for auctions involving many bidders,

because one needs to solve the auction problem (3.1) for 2|L| different subsets to define

the revealed core constraints in (5.1). Furthermore, problem (3.1) can be NP-hard in

some cases. Invoking Lemma 1, we can reduce the number of constraints to 2|W |, which

grows exponentially only in the number of winners. We call this approach with the

reduced number of core constraints the direct approach. Note that we have ū ∈ Core(B),

if and only if ū0 = −J(B)−
∑

l∈L ūl and ū−0 lies in

K(B) =
{
ū−0 ∈ R|L|+ |

∑
l∈K

ūl ≤ J(B−K)− J(B),∀K ⊆ W
}
. (5.13)

Unfortunately, this approach may still not be a computationally feasible one since there

can be many winners to (3.1). Therefore, we study iterative approaches where core

constraints are generated on demand.

As suggested in [DR07; BSL15], the state of the art approach for calculating a revealed

core outcome is to use constraint generation and in practice, this algorithm requires the

generation of only several revealed core constraints. The method was initially used in the

’50s in order to solve linear programs that have too many constraints [DFJ54]. Instead

of directly solving the large problem, one solves a primary problem with only a subset

of its original constraints. From this primary solution, one can formulate a secondary

problem that adds another constraint to the first step. The algorithm iterates between

these two problems and converges to the optimal solution of the large problem. Next,

we formulate the core constraint generation algorithm for the electricity market problem

in (3.1), similar to the way it was previously utilized in forward multi-item auctions

in [DR07].

Bidders’ revealed utilities at the first step of our algorithm are given by ū0
−0 =

ūVCG
−0 (B), where ūVCG

−0 is the revealed utilities of the VCG mechanism. Convergence

of the algorithm does not require this choice. However, this choice is intuitive since

ūVCG
−0 (B) is the solution to (5.4) if the VCG outcome lies in the core.

As an iterative method, at each step k, we find the blocking coalition that has the

largest violation for the revealed utility allocation ūk−0.7 If a blocking coalition exists,

the coalition with the largest violation for the revealed utility allocation ūk−0 is given by

Ck = arg min
C⊆L

J(BC) +
∑
l∈C

ūkl . (5.14)

7We remark that the coalition C is a blocking coalition if J(BC)+
∑

l∈C ūl < −ū0, see the constraints
in (5.1).
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This follows from the constraints in Core(B) in (5.1).

Let W be the set of winners. It is straightforward to see that the existence of

this blocking coalition Ck is equivalent to the violation of the constraint
∑

l∈W\Ck ū
k
l ≤

J(BL\{W\Ck})− J(B) from the set in (5.13). This follows from the equivalent character-

ization of the core in Lemma 1. We call the set W \ Ck the blocked winners, and the

problem (5.14) generates the revealed core constraint on the revealed utilities of this set

of bidders.

Next, we reformulate the problem in (5.14) using inflated bids. Given a revealed

utility allocation ūk−0 ∈ R|L|+ , we define the central operator’s objective at step k as

J̄k(x, y;B) =
∑
l∈L

b
ūkl
l (xl) + d(x, y),

where the inflated bid b
ūkl
l (xl) ∈ R+ is given by

b
ūkl
l (xl) =

{
0 xl = 0,

bl(xl) + ūkl otherwise.

Note that even if the bid bl is a convex bid curve, the inflated bid b
ūkl
l is not convex if

ūkl 6= 0, because of the discontinuity at 0. As a remark, the discontinuity at 0 can be

described by binary variables. Then, the optimization problem (5.14) for finding the

blocking coalition with the largest violation is reformulated as follows

z(ūk−0) = min
x∈X̂,y

J̄k(x, y;B) s.t. h(x, y) = 0, g(x, y) ≤ 0,

x∗(ūk−0) = arg min
x∈X̂

 min
y:h(x,y)=0
g(x,y)≤0

J̄k(x, y;B)

 ,

Ck = {l ∈ L |x∗l (ūk−0) 6= 0},

(5.15)

where Ck is the blocking coalition with the largest violation for the revealed utility

allocation ūk−0. Notice that the problem (5.15) essentially solves the auction where

winners’ bids are inflated by their revealed utilities from the earlier step.

After obtaining the blocking coalition and the corresponding central operator cost

z(ūk−0), we solve the following two problems to obtain another candidate for a MPCS

revealed utility allocation. First, we take the subset of revealed utilities that are maxi-
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mizing the total revealed utility of bidders as follows

νk = max
ū−0∈R|L|+

1>ū−0

s.t.
∑

l∈W\Ct
ūl ≤ J(BL\{W\Ct})− J(B), ∀t ≤ k,

ū−0 ≤ ūVCG
−0 (B),

(5.16)

where J(BL\{W\Ct}) = z(ūt−0)−
∑

l∈W∩Ct ū
t
l . We highlight that this term, J(BL\{W\Ct}),

does not require any further solution to the reverse auction problem. As a result, it

is straightforward to see that the problem (5.16) essentially solves the problem (5.4)

with only a subset of its original constraints and without the tie-breaker and the central

operator’s revealed utility.

We then implement the tie breaker in the objective of (5.4). We have ūk+1
−0 , as the

solution to the following quadratic program:

ūk+1
−0 = arg min

ū−0∈R|L|+

∥∥ū−0 − ūVCG
−0 (B)

∥∥2

2
=
∑
l∈L

(ul − ūVCG
l (B))2

s.t.
∑

l∈W\Ct
ūl ≤ J(BL\{W\Ct})− J(B), ∀t ≤ k,

ū−0 ≤ ūVCG
−0 (B), 1>ū−0 = νk.

(5.17)

The entire process for determining core-selecting payments is summarized in Algo-

rithm 1.

Algorithm 1 Core Constraint Generation (CCG) Algorithm

Initialize: Solve the optimization problem (3.1). Calculate the VCG utilities and set
ū0 = ūVCG(B) and k = 0.

1: Solve the optimization problem (5.15).
2: while z(ūk−0) < J(B) +

∑
l∈W ūkl (or check also W \ Ck 6= ∅) do

3: Obtain ūk+1
−0 by solving (5.16) and then (5.17).

4: Update k = k + 1.
5: Solve the optimization problem (5.15).
6: end while
7: return ūk−0.

Algorithm 1 converges to the solution of (5.4) for the MPCS mechanism. The proof

of convergence is straightforward, since the stopping criterion certifies that no revealed

core constraints are violated by the solution ūk at that iteration, that is,

J(BS) +
∑
l∈S

ūkl ≥ −ūk0 = J(B) +
∑
l∈W

ūkl ,
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for all S ⊂ L, see [DR07, Theorem 4.2]. We note that this algorithm may still require

the generation of all possible revealed core constraints, which is equivalent to solving the

problem (5.15) 2|W | times. In practice, even when there are many winners, the algorithm

requires the generation of only several core constraints.

5.4.7 Proof of Theorem 8

For the proof, we ignore the second term in the objective of the MPCS mechanism since

it is required only for tie-breaking purposes. Theorem considers deviations from the case

in which the bidders are revealing their true costs C = {cl}l∈L. We can reformulate

problem (5.4) as follows,

ūMPCS(C) = arg max
u∈Core(C)

∑
l∈L

ul −
∑
l∈L

uVCG
l (C)

= arg min
u∈Core(C)

∑
l∈L

(uVCG
l (C)− ul) . (5.18)

First equality follows since
∑

l∈L u
VCG
l (C) is a constant. Note that ul(C) = ūl(C) under

truthful bidding. Invoking Lemma 4, the optimization problem in (5.18) implies that the

MPCS mechanism minimizes the sum of additional profits of each bidder by a unilateral

deviation from a truthful bid profile C among all other core-selecting mechanisms. �

5.4.8 Characterizing deficit under the VCG mechanism

Notice that the Myerson-Satterthwaite impossibility theorem does not rule out the pos-

sibility of having realizations of the VCG mechanism that are budget-balanced. Next,

we extend this observation by showing that in a DC-OPF market with no line limits the

VCG mechanism is at most strongly budget-balanced.

Proposition 3. The VCG mechanism never yields a positive utility for the operator in

a DC-OPF market with no line limits.

We need the following lemma for our proof.

Lemma 6. Assume J is modeled by

J(C) = min
xl∈Xl, ∀l

∑
l∈L

cl(xl) s.t.
∑
l∈L

xl = 0, (5.19)

where cl, ∀l are convex increasing and Xl, ∀l are polytopic constraints. Define q C as the

bid profile consisting of C replicated q times. Then, for any q ∈ N+, we have qJ(C) =

J(q C).
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Proof. We prove this by showing that the optimal solution to J(q C) is given by con-

catenating the decision variables in the optimal solution of J(C) q times. Since the

problem defined by J satisfies constraint qualification conditions, the KKT conditions

are both necessary and sufficient for the optimality of a solution [Ber99]. We see that

the KKT conditions of J(q C) are satisfied by a primal solution which is the concate-

nation of the optimal solution of J(C) in (5.19) q times, and a dual solution which is

the Lagrange multiplier of the equality constraint of J(C) in (5.19). This concludes that

qJ(C) = J(q C).

Note that this market model includes the DC-OPF markets where the network graph

is connected and there are no line limits. We are now ready to prove Proposition 3.

Proof. (Proof of Proposition 3) We prove this by contradiction. Under the VCG mech-

anism, assume the operator has a positive utility:

0 < u0(C) = −J(C)−
∑
l∈W

(J(C−l)− J(C)),

where W ⊆ L is the set of bidders whose allocations are not zero. By reorganizing, we

obtain

|W |J(C) > J(CW ) +
∑
l∈W

J(C−l) ≥ J(|W | C),

where |W | C is a bid profile consisting of C replicated |W | times. The last inequality

follows because the allocation of the problems on the left is a suboptimal feasible allo-

cation to the problem on the right. Note further that |W |J(C) = J(|W | C). This follows

from Lemma 6. We obtain a contradiction J(|W | C) < J(|W | C). Hence, the VCG mech-

anism achieves at most strong budget-balance, and it never yields a positive utility for

the operator in this case.

As a remark, the LMP mechanism is strongly budget-balanced for the same market

under any bid profile [Wu+96, Fact 5]. Under the VCG mechanism, it is straightforward

to create a two-bidder example of the market in (5.19) that yields a negative utility for

the operator.

Example 6. Suppose there are two bidders in the market (5.19). The cost function of

bidder 1 is given by c1(x1) = x1, 0 ≤ x1 ≤ 1. The cost function of bidder 2 is given by

c2(x2) = 3x2, −1 ≤ x1 ≤ 0. Under the VCG mechanism, bidder 1 receives the payment

$3 since pVCG
1 = 1 + (0 − (−2)) = $3. Whereas bidder 2 makes the payment $1 since

pVCG
2 = −3 + (0− (−2)) = −$1. Hence, the central operator has a $2 deficit.
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5.4.9 Coalition-proofness of the VCG mechanism in an exchange

market

We remind the reader the definition of supermodularity from Definition 2.

Definition 5. A function J is supermodular if J(BS)− J(BS\l) ≤ J(BR)− J(BR\l) for

all coalitions S ⊆ R ⊆ L and for each bidder l ∈ S under any bid profile.

We show that the VCG mechanism cannot be guaranteed to achieve coalition-proofness

in an exchange market by showing that the market objective function J can never be

supermodular. For the following, we assume that if there is at most one bidder in the

exchange, no exchange occurs, that is, J(Bl) = 0, for all l ∈ L and J(∅) = 0.

Proposition 4. In an exchange market, if the function J in (3.1) is supermodular, then

no exchange occurs, J(BS) = 0, ∀S ⊆ L.

Proof. Assume that the function J is supermodular. Then, for bidders i, j, k ∈ L, we

have

J(B{i,j})− J(Bj) ≤ J(B{i,j,k})− J(B{j,k}).

This concludes that J(B{j,k}) ≤ 0, since J(Bj) = 0 and J(B{i,j}) ≥ J(B{i,j,k}). Super-

modularity further implies that

J(Bk)− J(∅) ≤ J(B{j,k})− J(Bj).

This yields J(B{j,k}) ≥ 0 since J(∅) = 0. Hence, we obtain J(B{j,k}) = 0. Moreover, this

holds for any bidder pair j, k. By using this result, we repeat the steps above to obtain

J(B{i,j,k}) = 0, ∀i, j, k. We conclude that similar steps can be repeated until we obtain

J(BS) = 0, for every subset S ⊆ L. Note that this holds under any bid profile B.

Considering Theorem 3, we conclude that the VCG mechanism is not guaranteed

to achieve coalition-proofness. We highlight that, to the best of our knowledge, this

impossibility result for exchanges is novel. An intuition behind it is that an exchange

allows for different kind of manipulations than the ones in a one-sided auction. For

instance, a bidder can enter the market both as a buyer and as a seller. Then, it can

manipulate the outcome by changing the amount it buys and it sells, knowing that its

final allocation is given by their difference.

5.4.10 Proof of Theorem 9

Consider the revealed utility ū ∈ Core(B) of a core-selecting mechanism. We remind the

reader the proof of Lemma 1. Using ū0 = −J(B)−
∑

l∈L ūl, we can derive an equivalent

characterization of the inequalities in the core as follows
∑

l∈L\S ūl ≤ J(BS)−J(B), ∀S ⊆
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L. Setting K = L \S, these inequalities are equivalent to
∑

l∈K ūl(B) ≤ J(B−K)− J(B),

for every set of bidders K ⊆ L. By keeping the most binding constraints, we obtain∑
l∈K

ūl ≤ J(B−K)− J(B), ∀K ⊆ W, (5.20)

where W ⊆ L is the set of bidders whose allocations are not zero. Next, we as-

sume that the pay-as-bid mechanism is budget-balanced, u0(B) = −J(B) ≥ 0 un-

der any bid profile. This assumption is satisfied in many exchange markets, for in-

stance, combinatorial exchanges [HM10], DC-OPF exchanges [Wu+96] and two-sided

electricity markets [XL17]. Using this assumption, the inequality in (5.20) implies that∑
l∈W ūl ≤ J(B−W ) − J(B) ≤ −J(B), since J(B−W ) ≤ 0. By reorganizing, we have

−J(B)−
∑

l∈L ūl ≥ 0, since bidders who receive zero allocation are not paid. Using the

equality constraint of the core in (5.1), we conclude that ū0 = u0 ≥ 0. Hence, the central

operator ends up with a nonnegative utility, and the mechanism is budget-balanced. �
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CHAPTER 6
Numerical case studies

The goal of this chapter is to compare the effectiveness of the mechanisms we have

discussed, based on electricity market examples. We first consider several different DC-

OPF problems where the demand is inelastic. We then consider an AC-OPF problem

from [Buk+13]. This problem yields a nonzero duality gap, and hence the Lagrange

multipliers cannot be guaranteed to have an economic rationale. As an alternative, we

show that the MPCS mechanism coincides with the VCG mechanism, and hence it is

both coalition-proof and DSIC. We then study the two-stage Swiss reserve procurement

auction from [AZ16] which also fails to attain strong duality. For this example, the VCG

mechanism is not core-selecting, and hence it is not coalition-proof. Instead, the MPCS

mechanism yields coalition-proof outcomes. Finally, we consider a two-sided market with

DC-OPF constraints to compare the budget-balance under different mechanisms. We

show that we can compute the MPCS mechanism in a reasonable time. All problems

are solved on a computer equipped with 32 GB RAM and a 4.0 GHz quad-core Intel i7

processor.

6.1 Four-node three-generator network model

We consider a dispatch problem with polytopic DC power flow constraints in Figure 6.1,

based on the models considered in [Wu+96], we also kindly refer to the constraints in (8.2)

in Part II. Cost curves are quadratic polynomials. All lines have the same susceptance.

In Figure 6.1, line limit from node i to node j is denoted by Ci,j = Cj,i ∈ R+. Under

the VCG mechanism, payments and utilities are given in the first column of Table 6.1.

Suppose via coalition bidders 1 and 2 change their bids to bl(x) = 0 for all x ∈ R+.

Then, bidders 1 and 2 are the only winners of the dispatch problem and their payments

and utilities are given in the second column of Table 6.1. Collusion is profitable and the

total payment of the operator increases from $260 to $280.

Next, we consider the MPCS mechanism. Under the MPCS mechanism, payments

and utilities are given in the first column of Table 6.2. Suppose, via coalition, bidders 1
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C3,2 = 10 MW

C3,1 = 10 MW

C1,2 = 10 MW

C1,4 = 10 MW

C2,4 = 10 MW
2

1

3 4

G2 c2(x) = .1x2 + 12x

G1 c1(x) = .1x2 + 12x

G3c3(x) = .1x2 + 5x D D = 20 MWh

Figure 6.1: Four-node three-generator network

Table 6.1: The VCG outcomes for the network model ($, MWh)

Truthful Bidding Collusion (1, 2)
payment (utility) x payment (utility) x

Bidder 1 0 (0) 0 140 (10) 10
Bidder 2 0 (0) 0 140 (10) 10
Bidder 3 260 (120) 20 0 (0) 0

and 2 change their bids to bl(x) = 0 for all x ∈ Rt
+. Then, bidders 1 and 2 are the only

winners of the dispatch problem and their payments and utilities are given in the second

column of Table 6.2. We observe that the collective utility of bidders 1 and 2 reduces to

−$120. Hence, in this case, collusion is not profitable for bidders 1 and 2. Furthermore,

after the collusion, the total payment of the operator also reduces from $260 to $140.

This example shows that the core-selecting mechanisms can eliminate collusion of the

losing bidders.1 We note that it is in general not possible to provide guarantees on the

collusion of the winning bidders. Specifically, core-selecting mechanisms are known to

not exhibit revenue monotonicity [Lam10].

1In the example above, it can be verified that the constraint set can be reformulated as x1 = x2,
x1 +x2 +x3 = 20, xl ≤ 20 for all l. Hence, this example is in fact an extension of the well-studied Local-
Local-Global (LLG) multi-item auction model from [AB20; KR96] to a DC-OPF problem involving
continuous goods. In the LLG model, three bidders compete for two distinct discrete items. Bidders
1 and 2 are considered local bidders, each wanting only one of the items. Bidder 3 is global in the
sense that it only wants both items at the same time. Consequently, the LLG model can have only two
scenario outcomes, namely, either the local bidders are allocated one item each, or the global bidder
receives both items. On the other hand, our example can be considered as having infinitely many
continuous allocation outcomes that lie in between these two scenarios.
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Table 6.2: The MPCS outcomes for the network model ($, MWh)

Truthful Bidding Collusion (1, 2)
payment (utility) x payment (utility) x

Bidder 1 0 (0) 0 70 (−60) 10
Bidder 2 0 (0) 0 70 (−60) 10
Bidder 3 260 (120) 20 0 (0) 0

6.2 IEEE test systems with DC power flow models

The following simulations are based on the IEEE test systems with polytopic DC power

flow constraints again adopting the models considered in [Wu+96].

6.2.1 14-bus, 30-bus and 118-bus test systems

We consider the IEEE 14-bus [Chr17], 30-bus [AS74; FSR97] and 118-bus test systems

[Chr17]. We assume all bidders are truthful and the true cost curves are convex quadratic

polynomials, provided in the references. In practice, truthfulness may only hold under the

VCG mechanism since it is dominant-strategy incentive-compatible.2 The corresponding

total payments of the mechanisms are shown in Table 6.3. All the mechanisms lead to

the same winner allocation as expected.

Table 6.3: Total payments of the IEEE test systems

Mechanism 14-bus 30-bus 118-bus
Pay-as-bid $7642.6 $565.2 $125947.8
LMP $10105.1 $716.9 $167055.8
MPCS $10513.4 $746.4 $169300.4
VCG $10513.4 $746.4 $169300.4

For all three test systems, we observe that the VCG mechanism has a slightly larger

total payment than the LMP mechanism. Moreover, as we expect, the VCG payment of

every bidder is larger than its LMP payment.

2Our previous work in [Kar+20] developed no-regret learning algorithms that can take advantage of
the partially observed data in electricity markets under several different payment rules including the
pay-as-bid, the core-selecting, and the VCG mechanisms. Such algorithms are known to converge to a
coarse-correlated equilibrium. This equilibrium concept generalizes Nash equilibrium to the case where
all players are endowed with a probability distribution over the state of the game, see [CL06]. This
work is not included in this thesis because bidding algorithms will not be treated. We kindly refer
to [Kar+20].
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Another observation is that the VCG outcomes are in the core for all systems. Next,

we provide an explanation for each system. 14-bus and 118-bus systems do not have any

line limits, hence, they have the form of (4.6). Invoking Theorem 4, we conclude that

supermodularity condition holds. Despite the fact that 30-bus system has line limits,

the VCG outcome is in the core. This result can be explained in two ways. First, none

of the line limit constraints are tight. Second, we observe that removing two bidders

can yield to an infeasible problem, similar to Proposition 1. These test systems are

specialized instances and they do not necessarily conclude that the VCG mechanism is

coalition-proof for the DC power flow models. We examine this shortcoming of the VCG

mechanism in our next simulation.

Computation times are provided only for the 118-bus case, because the other prob-

lems are trivially small. For this electricity market, the direct solution approach is not

computationally feasible, because there are 19 winners out of 54 bidders and the optimal

cost calculation takes 451 milliseconds (with GUROBI 7.5 [Gur16] called through MAT-

LAB via YALMIP [Löf05]). This approach would require 66 hours. Computation times

for the VCG mechanism and the CCG algorithm are 24.8 and 31.4 seconds respectively.

After the VCG mechanism, the CCG algorithm converges only in a single iteration. This

iteration takes 6.6 seconds, because it involves binary variables whereas the optimal cost

calculation for the market model does not.

6.2.2 Effect of line limits

We consider the IEEE 14-bus test system, with a line limit on lines exiting node 1,

connecting node 1 to nodes 2 and 5. We set this line limit to be 10 MW. We again

assume all bidders are truthful. The corresponding total payments of the mechanisms

are shown in Table 6.4.

Table 6.4: Total payments of the IEEE 14-bus test system with line limits

Mechanism 14-bus with line limits
Pay-as-bid $9715.2
LMP $10361.0
MPCS $11220.1
VCG $11432.1

We observe that the VCG outcome does not lie in the core. Line limits are tight and

the problem does not have the form of (4.6). Hence, shill bidding and collusion can be

profitable for bidders. Moreover, we observe that the MPCS mechanism yields a larger

total payment than the LMP mechanism.
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With this result, we also reiterate that convex bid curves are not enough to ensure

that the VCG outcomes are in the core. Similar results can be obtained for 118-bus

test system by fixing 50 MW limits on two lines, one connecting nodes 5 and 6, another

connecting nodes 9 and 10.

For the 14-bus example, computation times for the VCG mechanism and the CCG

algorithm are 3.6 and 8.2 seconds, respectively. After the VCG mechanism, the CCG

algorithm converges in 4 iterations.

6.3 AC-OPF problem with a duality gap

The following simulation is based on a 5-bus network model given in [Buk+13]. Apart

from having additional generators, the network model is the same as the model found

in [Buk+13]. We provide the true generator costs for active power in Table 6.5. Note

that it would be straightforward to include also the costs for reactive power. For this

problem, strong duality does not hold. We verified this by showing that the semidefinite

programming relaxation is not tight for this polynomial optimization problem [MH14].

Consequently, Lagrange multipliers may not be meaningful in an economic sense. We

highlight that we can solve this problem to global optimality via the second level of

moment relaxations (sum-of-squares hierarchy) [MH14].

Payments under the pay-as-bid and the MPCS mechanisms are provided in Table 6.5.

Note that the pay-as-bid would actually not lead to truthful behavior. It is provided for

comparison since the LMP mechanism is not applicable. The comparison of these two

core-selecting mechanisms under truthful bidding can be regarded as a result of compet-

itive equilibrium assumptions. These assumptions imply that bidders would be willing

to bid truthfully since truthful allocations maximize their utilities, see the discussion

provided after Lemma 3.

Table 6.5: Generator data for 5-bus AC-OPF problem

Gen. Node Cost x∗l MW Pay-as-bid MPCS
1 1 .1x2

1 + 4x1 246.0 $7038.0 $12772.3
2 5 .1x2

2 + 1x2 98.2 $1061.5 $2435.6
3 1 .1x2

3 + 30x3 0 0 0
4 5 .1x2

4 + 15x4 0 0 0

For this example, even though the constraints are not polymatroid-type, the MPCS

mechanism happens to coincide with the VCG mechanism, attaining the DSIC property.

Moreover, we can ensure that losing bidders 3 and 4 cannot profit from collusion, and

no bidder can profit from bidding with multiple identities. Here, we briefly illustrate
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one collusion instance for bidders 3 and 4. Suppose their bids are given by b3(x3) =

.1x2
3 + 2x3 and b4(x4) = .1x2

4 + .5x4. Then, their new allocations would be x∗3 = 128.0

MW and x∗4 = 50.3 MW respectively. However, these bidders would now be making

losses under the MPCS mechanism since we can compute their utilities as u∗3 = −$306.7

and u∗4 = −$147.7. Hence, collusion would not be profitable for bidders 3 and 4.

As a remark, a rational bidder would overbid under the pay-as-bid mechanism. Sup-

pose all the bidders increase their cost coefficients by 87.7% under the pay-as-bid mech-

anism. Then, the total payment under the MPCS would be less than the one under the

pay-as-bid since the MPCS mechanism incentivizes truthful bidding via both coalition-

proofness and DSIC.

For the problem under true costs, we can also show that there is no linear price

function that would yield a competitive equilibrium. Since the bids are strictly convex,

the condition in (5.2) requires assigning bidder 1 a linear price equal to its marginal cost

at 246 MW. This price is given by $53.2/MW, yielding the payment $13087.2. Under

this payment mechanism, utility of the bidder 1 cannot be in the core since its utility is

greater than the one under the VCG mechanism. This concludes the nonexistence of a

competitive equilibrium in linear prices for this problem.

This AC-OPF problem was solved in 1.85 seconds using the method in [MH15] with

MOSEK 9 [MOS18] called through MATLAB.

6.4 Swiss reserve procurement auctions

The following simulation is the Swiss reserve procurement auction in the 46th week

of 2014 which is based on a pay-as-bid payment rule [AZ16]. This auction involves 21

plants bidding for secondary reserves, 25 for positive tertiary reserves and 21 for negative

tertiary reserves. The bids are discrete, that is, they are given by sets of reserve size

and price pairs. We remind the reader that the formulation in Chapter 3 can capture

such bids. The objective also includes a second stage cost corresponding to the uncertain

daily auctions. Moreover, the market involves complex constraints arising from nonlinear

cumulative distribution functions. These constraints imply that the deficit of reserves

cannot occur with a probability higher than 0.2%, and they include coupling between

the first and the second stage decision variables.

Since this problem does not attain strong duality, meaningful linear prices cannot be

derived. The total payments of the pay-as-bid, MPCS, and VCG mechanisms are shown

in Table 6.6. Notice that the VCG utilities do not lie in the core since otherwise the

MPCS mechanism would coincide with the VCG mechanism. As a result, the MPCS

mechanism is coalition-proof, but it does not attain the DSIC property. As is discussed

in Lemma 4, we can still quantify the loss of the DSIC property by the difference between

the MPCS and the VCG payments.
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Table 6.6: Total payments of the reserve market (million CHF)

Pay-as-bid MPCS VCG
2.293 2.437 2.529

For this electricity market, the direct MPCS computation approach is not compu-

tationally feasible, because there are 28 winners and the optimal cost calculation takes

8 seconds (with GUROBI 7.5 [Gur16] called through MATLAB via YALMIP [Löf05]).

This approach would require 68 years. Computation times for the VCG mechanism and

the CCG algorithm are 580.6 and 659.2 seconds respectively. After the VCG mechanism,

the CCG algorithm converges in 4 iterations. This shows that the MPCS mechanism

can be computed in a reasonable time even when there are many participants.

6.5 Two-sided markets with DC power flow models

We consider the DC-OPF problem in Figure 6.2. Bidders are truthful, and the true costs

are quadratic polynomials. All lines have the same susceptance. Line limit from node

i to node j is denoted again by Ci,j = Cj,i ∈ R+. The optimal allocation is computed

as x∗ = [0.58, 0.58, 4, −5.16] MW. The pay-as-bid mechanism yields a positive budget

of $48.3. The LMP mechanism also results in a positive budget since the limits C3,1 and

C3,2 are tight at the optimal solution [Wu+96, Fact 5]. This balance is $2.8. For this

problem, the MPCS mechanism achieves strong budget-balance with $0. Finally, the

VCG mechanism has a deficit of −$34.8.

By definition, under the MPCS mechanism sum of the utilities of the bidders are

higher than the one under the LMP mechanism. However, we underline that under

the MPCS mechanism, not every bidder receives a utility higher than its LMP utility.

In this DC-OPF problem, the total utility of the supply-side reduces by $4.1, whereas

the utility of the demand-side increases by $6.9 when we compare the MPCS outcome

with the LMP outcome. Finally, we compute the bound in Lemma 4 for bidder 4. The

pay-as-bid, the LMP, and the MPCS mechanisms yield the maximum additional profits

$48.3, $21.7, and $14.9 respectively. Under the VCG mechanism, there is no room for

unilateral deviation, and hence we obtain $0 as the maximum additional profit. This

DC-OPF problem was solved in 0.32 seconds with GUROBI 7.5 [Gur16] called through

MATLAB via YALMIP [Löf05]. To calculate the MPCS payments, we solved the market

problem under 24 − 1 different coalitions.
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Figure 6.2: Two-sided DC-OPF model
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CHAPTER 7
Introduction

The existing electricity market architectures and the predominant models for power

system balancing were designed in a time when fully controllable generators with non-

negligible marginal costs were prevalent. However, as the increasing shares of variable

and partly predictable renewable resources displace controllable generation the dispatch

flexibility decreases, while the operational uncertainty characteristics become increas-

ingly more complex. In light of this new operational paradigm, there is an imperative

need to re-evaluate the current electricity market design, and there has been a surge of

interest in proposing new market frameworks [Neu05; Ahl+15].

According to the European electricity market design, the bulk volume of energy trad-

ing takes place in the day-ahead market, which is typically cleared 12-36 hours before the

actual delivery, based on single-valued point forecasts of the stochastic power output of

renewable resources. In turn, a balancing market is cleared close to the hour of delivery

in order to compensate any deviations from the day-ahead schedule. Apart from these

energy-only trading floors, a reserve capacity auction is organized, usually prior to the

day-ahead market, in order to ensure that sufficient capacity is set aside for the provision

of real-time balancing services. Following this sequential clearing and single-valued fore-

cast approach, the current market structure attains only limited coordination between

the day-ahead and the balancing stages. Aiming to enhance this temporal coupling, re-

cently proposed dispatch models employ scenario-based stochastic programming in order

to co-optimize the day-ahead and the reserve capacity markets [PZP10; Mor+12]. How-

ever, these approaches cannot be directly applied to any of the existing electricity mar-

kets, since they would require significant restructuring of the current market frameworks.

In terms of geographical considerations, the European electricity market is fully co-

ordinated only at the day-ahead stage, while reserve capacity and balancing markets

are still operated on a country/regional level [DOS19]. If we can remove the existing

barriers for cross-border trading, geographic diversification of the uncertain renewable

resources would smooth out the forecast errors and reduce the need for balancing actions.

In order to improve the security of supply and the efficiency of the balancing system,

the European Commission (EC) regulation has already established a detailed guideline
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[EC17a] that lays out the rules also for the integration of the balancing markets. In

this ongoing process that is expected to be completed by 2023 [ENT18], several ques-

tions remain open regarding the specific structure and final coordination arrangement

among the ENTSO-E (European Network of Transmission System Operators for Elec-

tricity) member countries, since there is no binding legislation that enforces transmission

system operators (TSOs) to enter such collaborations. The recent study in [EC16] to

investigate the benefits of different organizational models for the integration of balancing

markets, shows that the 10-year net present value of coordinated balancing ranges from

1,7 to 3,8 Be, depending on the degree of coordination in the inter-area exchanges, see

also [NSV16].

Nonetheless, any regional coordination arrangement in the procurement and acti-

vation of reserves depends upon the availability of inter-regional transmission capacity.

Given that the energy and reserve capacity markets are cleared separately and sequen-

tially, a portion of this transmission capacity made available has to be withdrawn from

day-ahead energy market to be allocated to reserve exchange. The exact methodology for

the process of allocating inter-area transmission capacity to reserves remains to be dis-

cussed and approved by the ENTSO-E members [ENT17] [EC19, Art. (14)]. Moreover,

an application can be filed by even two or more TSOs. In coalitional game theory, such

arrangements would be called coalitional deviations, since they involve only some of the

members. Motivated by this, in order to gain technical and economical insights about

such a process, the goal of Part II is to propose a coalitional game-theoretic approach

for the design of a transmission allocation mechanism.

7.1 Related works

Existing methodologies for deciding on transmission allocations

The reservation of inter-area interconnections for reserve exchange withdraws transmis-

sion resources from the day-ahead market, where the main volume of electricity is being

traded. Currently, these cross-border capacities for the day-ahead market are decided

by the TSOs and computed while respecting the minimum remaining available margin

(minRAM) rule of 70% following the requirements of the Clean Energy Package [EC19,

Article 16(8a-8b)], see [Eli19, §2] for their computation. A sub-optimal reservation of

transmission capacity for reserve exchange from these day-ahead quantities may lead

to significant efficiency losses at the day-ahead stage. To prevent this situation, the

Agency for the Cooperation of Energy Regulators (ACER) [ACE12] mandates to per-

form detailed analyses demonstrating that such reservation from day-ahead market would

increase overall social welfare. Up to this date, inter-area transmission capacity is typi-

cally not removed from day-ahead energy exchange for reserves. One notable exemption

is the Skagerrak interconnector between Western Denmark and Norway, in which 15%
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of the day-ahead cross-border transmission capacity is permanently set aside for reserve

exchange [Ene10]. Nevertheless, this allocation is static, while the true optimum varies

dynamically depending on generation, load, and system uncertainties. As such, [DP18]

developed a preemptive transmission allocation model that defines the optimal inter-area

transmission capacity allocation to improve both spatial and temporal coordination at

the reserve procurement stage.

The recently proposed preemptive transmission allocation model of [DP18] focuses

on the minimization of the expected system cost, assuming implicitly full coordination

among all the regional operators and their market participants. This assumption is in

line with the current state of the day-ahead market, which is fully integrated across

Europe, or even for the balancing markets in certain regions, e.g., in the Nordic system

all reserve activation offers are pooled into a common merit-order list and are available to

all TSOs [Bon+14]. This assumption allows us to model each of these three trading floors

by one respective optimization problem, which would not be possible in case of partial

coordination. However, the initial version of the preemptive model does not suggest an

area-specific cost allocation which guarantees that all areas have sufficient benefits to

accept the proposed solution.1 This would be concerning for the fairness of the future

integrated balancing markets.

Similar issues regarding fair settlements are already under investigation by Swissgrid

for the simpler setting of imbalance netting [AMZ18]. Moreover, the stakeholder doc-

ument from the International Grid Control Cooperation [IGC16, §6], developed by ten

European operators, describes analytically a fair settlement scheme for the imbalance

netting process. Hence, such incentives will be an actual issue while moving towards

fully integrated European markets. To address this, we integrate the preemptive model

of [DP18] in a mathematical framework that allows the application of tools from coali-

tional game theory in order to obtain a stable benefit allocation, that is, sufficient ben-

efits providing immunity to coalitional deviations ensuring that all areas are willing to

coordinate via the preemptive model.

Related works on coalitional game theory

The concepts from coalitional game theory have recently been widely used in the energy

community. The Shapley value has been employed in problems regarding the distribution

of social welfare among TSOs participating in an imbalance netting cooperation [AMZ18]

1An area (country or region) as a whole includes consumers and generators pertaining to that area
and area operators (and potentially the transmission owners). Notice that the transmission capacity
allocated to the reserve exchange affects the incentive structure of all these market participants. Then,
the benefits are the reductions in the total cost allocated to an area from all three stages of the sequential
market, whereas the cost refers to minus the social welfare, which is given by the sum of the consumers’
and generators’ surplus pertaining to that area and the congestion rents collected by the corresponding
area operator [Kri+18].
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as well as the benefit allocation in transmission network expansion [RC07] and in cross-

border interconnection development [Kri+18]. Other applications of the Shapley value

in the energy field include cooperation problems in the Eurasian gas supply system

[NH14] and the CO2 emissions abatement in mainland China [He+18]. However, the

Shapley value is in general not within the core, that is, the set of stable outcomes.

[Bae+13] shared the expected profits from aggregating wind power generation using the

core benefit allocations, whereas a similar concept was applied for prosumer cooperation

in a combined heat and electricity system in [MKP19], and for cross-border transmission

expansion in Northeast Asia in [Chu+19].

In contrast to the case studies in the aforementioned works and Part I, realistic

instances of our problem in Part II can exhibit an empty core. To this end, we utilize

the least-core as a solution concept, since it achieves minimal stability violation, that

is, minimal benefit improvements from coalitional deviations [MPS79]. To obtain a

unique outcome, we propose the approximation of a fairness criterion, which is at the

discretion of the regulatory authorities to define. We propose two variations of the benefit

allocation mechanism that can be executed either at the day-ahead or the real-time

stage to distribute the expected or the actual benefits (that is, when the uncertainty

is revealed), respectively. We illustrate how these formulations establish a trade-off

between allocating the risk of facing scenario-dependent benefit outcomes to the regulator

of this organization or to the areas. To overcome the exhaustive enumeration of all

coalitional deviations, we show that the least-core selecting allocations in this work can be

computed efficiently via an iterative constraint generation algorithm. Similar algorithms

were utilized to compute an outcome from the core in combinatorial auctions [DR07] and

electricity markets in Chapter 5 in Part I of this thesis. In contrast, this part shows that

this algorithm can also be extended to the least-core in a general nonconvex problem.

7.2 Summary of goals and contributions

The contributions of Part II are as follows.

1. We formulate the coalition-dependent version of the preemptive transmission allo-

cation model such that we can consider coalitional arrangements between only a

subset of operators. This is a novel extension of the model proposed by [DP18].

2. We then study the coalitional game that treats the benefits as an ex-ante process

with respect to the uncertainty realization and we provide a condition under which

the core is nonempty. Under this condition, it is possible to obtain a stable out-

come. In case this condition is not satisfied, we prove that the least-core, which

is an outcome that attains minimal stability violation, also ensures the individual

rationality property. These two results are obtained for coalitional games where

the coalitional value function is given by a stochastic bilevel optimization problem.
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3. We then propose the least-core selecting mechanism as a benefit allocation that

achieves minimal stability violation, while enabling the approximation of an ad-

ditional fairness criterion. In order to implement this mechanism with only a few

queries to the preemptive model, we formulate a constraint generation algorithm.

4. In addition, we formulate a variation of the coalitional game that allocates the

benefits in an ex-post process, which can be applied only after the uncertainty

realization is known. For this game, we provide conditions under which the core is

empty.

5. We propose an ex-post version of our least-core benefit allocation mechanism. The

ex-ante and ex-post versions of this mechanism can achieve the same fundamental

properties for the areas either for every uncertainty realization or in expectation,

respectively. (However, we note that the former requires the regulator to have a

financial reserve to buffer the fluctuations in the budget.)

6. Finally, we provide techno-economic insights on the factors that drive benefit allo-

cations first with an illustrative three-area nine-node system and then with a more

realistic case study based on a larger IEEE test system.

Organization

Chapter 8 describes the organizational structure and introduces a set of necessary as-

sumptions to obtain tractable models. Chapter 9 discusses the issues related to re-

serve exchanges and motivates the formulation of the preemptive transmission alloca-

tion model. Chapter 10 introduces necessary background from coalitional game theory,

whereas Chapter 11 focuses on the games arising from the preemptive model, which

provide the basis for the benefit allocation mechanisms that accomplish the implicit co-

ordination requirements outlined in the previous section. The numerical case studies are

presented in Chapter 12.
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CHAPTER 8
European electricity market framework

In this chapter, we first describe the basic organizational structure of the European elec-

tricity market, which impels essentially the need for the benefit allocation mechanisms

proposed in this part. In turn, we present a set of necessary assumptions that must be

imposed to obtain a tractable formulation of the market-clearing problems and finally we

provide the mathematical formulations that we employ for modelling different trading

floors.

8.1 Sequential electricity market design and model-

ing assumptions

The existing market design based on the sequential and independent clearing of re-

serves, day-ahead, and balancing markets (illustrated in Figure 8.1) suffers from two main

caveats that become increasingly pronounced as we move towards larger shares of renew-

able energy production. On the one hand, the day-ahead schedule is optimized based on

purely deterministic inputs, that is, single-valued forecasts of renewable resources. As

a result, the day-ahead market is not responsive to the uncertainty associated with the

forecast errors and thus it is weakly coordinated with the real-time balancing. On the

other hand, the decoupling of energy and upward/downward reserve capacity trading

into two independent auctions ignores the substitution and complementary properties

of these two services and leads to inefficient reserve procurement and energy schedules.

Eliminating this issue requires that the participants are perfectly capable of accounting

for these properties internally in their trading strategies. However, quantifying such op-

portunity costs is a challenging problem for the participants, see [SW07] and references

therein. As we discussed in the previous chapter, in order to enable the inter-area ex-

change of reserves given this decoupling, the operator has to withdraw a certain share

of the interconnection capacities from the day-ahead energy trading and then use this

headroom for the interconnections in the reserve capacity market.

From a theoretical perspective, these two issues can be contained if reserve capacity
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Reserve Capacity
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Day-ahead
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Balancing
Market

Figure 8.1: On the left: An illustration of the sequential European electricity market
framework. On the right: The current Austrian market structure described in [PD19]:
Intraday market corresponds to real-time balancing; aFRR, FCR, and mFRR are differ-
ent types of reserves depending on how fast they are to react to imbalances.

procurement, day-ahead energy schedules, and real-time re-dispatch actions are jointly

optimized based on a probabilistic description of the uncertainty, see [PZP10; Mor+12].

However, the adoption of a (scenario-based) stochastic dispatch model as a market-

clearing algorithm requires significant restructuring of the current market framework, and

poses several computational challenges when it is applied to real-life scale power systems.

Owing to the restructuring and the computational issues, we restrict ourselves to the

status-quo market architecture and we embody its design attributes in our methodology

aiming to mitigate the resulting inefficiencies.

In the following sections of the chapter, we build the mathematical models of the

different trading floors based on a set of assumptions that allows us to capture the main

attributes of the European market, while maintaining tractability.

In line with the current practice, we consider a zonal network representation during

the reserve procurement. However, the full network topology is taken into account

in the day-ahead and the balancing market-clearing models, using a DC power flow

approximation. Note that our network model can be readily adapted to a zonal day-

ahead market (as it is today in Europe), for instance, where the inter-zonal transmission

energy flows are constrained by the available transfer capacity (ATC) or by a flow-

based domain. The challenge would be additional complexity originating from parameter

choices for modelling the zonal day-ahead market, as well as the unscheduled flows and

congestion to be tackled by counter-trading or re-dispatching in the balancing stage.

Using a full network representation, that is, nodal pricing, both in the day-ahead and the

balancing markets eliminates potential discrepancies that may arise due to idiosyncratic

congestion effects and allows us to concentrate on issues related to reserves exchange and

transmission capacity reservation. Moreover, for the flow-based domain, [Mar+13] show

that the parameter choices (e.g., the selection of a base case for the zonal injections,

the determination of Power Transfer Distribution Factors and Generation Shift Keys)

can lead to very different market exchanges and prices. We also refer to [Sol18] for

numerical results illustrating this paradigm, and to [EI 17; CRE17] for discussions on

this sensitivity. Since this part focuses on transmission allocation issues concerning
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primarily the regional operators, we believe that allowing for a more complete network

representation and judiciously abstracting certain details of the real-world operation

do not undermine our main goal, that is, the development of a decision-support tool

that provides techno-economical insights on reserves exchange and transmission capacity

allocation. Due to these reasons, many studies that focus on renewable integration and

coordination analyses commonly ignore the zonal day-ahead market design. Instead, they

either assume a nodal market similar to our work [LWV08; Leu+09; DOS19], or they

implement a simple transportation network ignoring zonal congestion [SW14; KEM14].

Nonetheless, for the sake of completeness, we will also provide a zonal model when

discussing the day-ahead market. Our conclusions would still generalize to such models,

since our model is replicating the main imperfections of the current design: the reaction

of the market to its parametric decisions originating from the separate trading of energy

and reserves.

On the generation side, we consider that all market participants are perfectly com-

petitive (that is, they bid truthfully). Day-ahead energy offers are submitted in price-

quantity pairs that internalize the marginal production cost as well as the unit com-

mitment and inter-temporal constraints, e.g., ramping limits, in accordance with the

portfolio bidding practice in the European market. Moreover, we assume that the re-

serve capacity offer prices provide adequate incentives to the flexible generators for the

provision of real-time balancing services such that the prices of up and down re-dispatches

are the same as the marginal prices in the day-ahead stage, similar to the previous works

of [ACC13]. In terms of stochastic renewable in-feed, we focus on wind power generation

and we model forecast errors using a finite set of scenarios. Assuming null production

costs, the corresponding offer price and the spillage cost are set equal to zero. On the

consumption side, we consider inelastic demand with a large penalty on lost load and

thus the social welfare maximization becomes equivalent to the cost minimization.

Finally, we assume that the current implementation of the sequential market provides

a budget balanced method to allocate the system cost to all the areas, that is, the costs

of the reserve capacity market, the day-ahead market and the balancing market are

allocated to the areas without any deficit or surplus. In the numerics, for the case of

no inter-area exchange of reserves, we provide and discuss one such allocation method

based on the zonal and nodal prices that assigns producer and consumer surpluses to

their corresponding areas, and divides the congestion rent equally between the adjacent

areas, see [Kri+18] for the reasoning and Section 12.1 for its computation.
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8.2 Mathematical formulation

8.2.1 Reserved symbols for Part II

Main notation for this part is stated below. An illustration is provided in Figure 8.2.

Additional symbols are defined throughout the part when needed.

Sets and indices

A Set of areas indexed by a

E Set of inter-area links indexed by e

L Set of transmission lines indexed by `

ar(e/`) Receiving-end area of link e/line `

as(e/`) Sending-end area of link e/line `

Λe Set of tie-lines across link e

I Set of dispatchable power plants indexed by i

J Set of stochastic power plants indexed by j

N Set of network nodes (buses) indexed by n.

MI
n Set of dispatchable power plants i located at node n

MJ
n Set of stochastic power plants j located at node n

MI
a Set of dispatchable power plants i located in area a

MJ
a Set of stochastic power plants j located in area a

MN
a Set of nodes n located in area a

S Set of stochastic power production scenarios indexed by s

Parameters

W j Expected power production of stochastic power plant j [MW]

Wjs Power production by stochastic power plant j in scenario s [MW]

πs Probability of occurrence of scenario s

A`n Line-to-bus incidence matrix
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B` Absolute value of the susceptance of AC line `

Dn Demand at node n [MW]

Ci Energy offer price of power plant i [e/MWh]

C
+/−
i Up/down reserve capacity offer price of power plant i [e/MW]

Csh Value of involuntarily shed load [e/MWh]

Pi Capacity of dispatchable power plant i [MW]

R
+/−
i Up/down reserve capacity offer quantity of power plant i [e/MW]

RR
+/−
a Up/down reserve capacity requirements of area a [MW]

Te/` Transmission capacity of link e/line ` [MW]

Variables

δn Voltage angle at node n at day-ahead stage [rad]

δns Voltage angle at node n in scenario s [rad]

χe/` Transmission allocation of link e/line `, that is, percentage of inter-area intercon-

nection capacity of link e/line ` allocated to reserves exchange

f` Power flow in line ` at day-ahead stage [MW]

fe Power flow in link e at day-ahead stage [MW]

f`s Power flow in line ` in scenario s [MW]

lshns Load shedding at node n in scenario s [MW]

pi Day-ahead schedule of dispatchable power plant i [MW]

p
+/−
is Up/down regulation provided by dispatchable power plant i in scenario s [MW]

r
+/−
e Up/down reserve capacity (‘exported’) from area as(e) to area ar(e) [MW] (equiv-

alently imported to area ar(e) from area as(e))

wj Day-ahead schedule of stochastic power plant j [MW]

wspill
js Power spilled by stochastic power plant j in scenario s [MW]
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Figure 8.2: An illustration of the main notation used for graph (A, E)

8.2.2 Reserve capacity market

Having as a fixed input the upward/downward reserve requirements RR+
a /RR

−
a in each

area a and a pre-defined share χe of the transmission capacity of each inter-area link e

allocated to reserves, the reserve market clearing is formulated as:

min
ΦR

∑
i∈I

(
C+
i r

+
i + C−i r

−
i

)
(8.1a)

s.t.
∑
i∈MIa

r+
i +

∑
e∈E

H(e, a)r+
e ≥ RR+

a , ∀a ∈ A, (8.1b)

∑
i∈MIa

r−i +
∑
e∈E

H(e, a)r−e ≥ RR−a , ∀a ∈ A, (8.1c)

0 ≤ r+
i ≤ R+

i , ∀i ∈ I, 0 ≤ r−i ≤ R−i , ∀i ∈ I, (8.1d)

− χeTe ≤ r+
e ≤ χeTe, ∀e ∈ E , −χeTe ≤ r−e ≤ χeTe, ∀e ∈ E , (8.1e)

where ΦR = {r+
i , r

−
i ,∀i; r+

e , r
−
e ,∀e} is the set of optimization variables. The objective

function (8.1a) to be minimized is the cost of reserve procurement. Constraints (8.1b)

and (8.1c) ensure, respectively, that the upward and downward reserve requirements of

each area are satisfied either by procuring reserve capacity from intra-area generators

or via inter-area reserves exchange that is modeled using the incidence matrix H(e, a).

As shown in Figure 8.2, for each link e with sending and receiving ends in areas as(e)

and ar(e), respectively, H(e, a) is equal to 1 (-1) if reserve import (export) is considered

from (to) area a = as(e) (a = ar(e)) and zero for any other area. With this defini-

tion, availability of cross-border reserves within the neighboring areas for each area a is

modeled by (8.1b) and (8.1c). We underline that directed links are used as a notational

convention, and both r+
e and r−e are free of sign. Upward and downward capacity offers of
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dispatchable power plants are enforced by constraints (8.1d). In the numerics, these ca-

pacities will be chosen such that both upward/downward reserves can be procured from

the power plants in a feasible manner when needed in real-time. The set of constraints

(8.1e) models the bounds on reserves exchange between two areas across link e.

Following the current practice, we consider a zonal network representation for the

reserve capacity markets and thus the transmission capacity Te of link e is defined as the

aggregated flow limit of all tie-lines ` ∈ Λe across link e calculated as

Te =
∑
`∈Λe

T`,

for all e ∈ E . Setting the transmission capacity allocation χe to any value different than

zero, establishes practically a reserve exchange mechanism between the areas located at

the two ends of the link and consequently it enables the exchange of balancing services

during real-time operation. On the contrary, setting χe = 0 implies that there would

be no reserve exchange at the procurement stage, that is, the cross-border transmission

capacity is fully allocated to day-ahead energy exchanges. In that case, we also prevent

the exchange of balancing services and the imbalance netting between the adjacent areas,

as we will formally describe in the balancing market model formulation below.

8.2.3 Day-ahead market

Given the optimal reserve procurement Φ̂R = {r̂+
i , r̂

−
i ,∀i; r̂+

e , r̂
−
e ,∀e}, the day-ahead

schedule is the solution to the following optimization problem:

min
ΦD

∑
i∈I

Cipi (8.2a)

s.t.
∑
j∈MJn

wj +
∑
i∈MIn

pi −
∑
`∈L

A`nf` = Dn, ∀n ∈ N , (8.2b)

r̂−i ≤ pi ≤ Pi − r̂+
i , ∀i ∈ I, 0 ≤ wj ≤ W j, ∀j ∈ J , (8.2c)

f` = B`

∑
n∈N

A`nδn, ∀` ∈ L, (8.2d)

− (1− χ`) T` ≤ f` ≤ (1− χ`) T`, ∀` ∈ L, (8.2e)

δ1 = 0, δn free, ∀n ∈ N , (8.2f)

where ΦD = {pi,∀i;wj,∀j; δn,∀n; f`, ∀`} is the set of variables. We define χ` = χe for

all tie-lines ` ∈ Λe and χ` = 0 for all intra-area lines. For the remainder of this part, we

strictly follow this notation. The objective is the day-ahead cost of energy production.
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Constraints (8.2b) enforce the day-ahead power balance for each node. The upper and

lower production limits of dispatchable power plants are enforced by (8.2c), taking into

account the reserve schedule from the previous trading floor. Constraints (8.2c) also

limit the stochastic production to a point forecast, typically the expected value of the

stochastic process. Power flows are first computed in (8.2d) and then restricted in (8.2e)

by the capacity limits considering that (1 − χ`) percent of the capacity is available for

day-ahead energy trade. This is because a χ` portion of the cross-border transmission

resource made available is withdrawn from day-ahead energy to instead be allocated to

reserves, following the regulations [ENT17].

As previously discussed, the current practice is in fact a zonal hybrid where the

flows are constrained by the available transmission capacity or a flow-based domain.

In the case of a zonal market, this could be a portion of the cross-border transmission

capacities previously computed for the day-ahead market respecting the minRAM rule

of 70% in [EC19, Article 16(8a-8b)] [Eli19, §2]. (Note that the minRAM rule may also be

applied after the reservation of a transmission share for reserves exchange.) Our method

can also be readily adapted to the zonal scheme. We present in detail the integration of

a zonal market into our method in the appendix in Section 8.3.1. Finally, the voltage

angle at node 1 is fixed to zero in (8.2f) setting this as the reference node, whereas the

remaining voltage angles are declared as free variables.

8.2.4 Balancing market

Being close to real-time operation uncertainty realization s′ and actual wind power pro-

duction Wjs′ , ∀j ∈ J are known. Any energy deviations from the optimal day-ahead

schedule Φ̂D = {p̂i,∀i; ŵj,∀j; δ̂n,∀n; f̂`,∀`} must be contained using proper re-dispatch

actions that respect the reserve procurement schedule Φ̂R. To determine the re-dispatch

actions that minimize the balancing cost, the balancing market is cleared based on the

following optimization problem:

min
Φs
′

B

∑
i∈I

Ci
(
p+
is′ − p

−
is′

)
+
∑
n∈N

Cshlshns′ (8.3a)

s.t.∑
i∈MIn

(
p+
is′ − p

−
is′

)
+ lshns′ +

∑
j∈MJn

(
Wjs′ − ŵj − wspill

js′

)
+
∑
`∈L

A`n

(
f̂` − f`s′

)
= 0, ∀n ∈ N ,

(8.3b)

0 ≤ p+
is′ ≤ r̂+

i , ∀i ∈ I, 0 ≤ p−is′ ≤ r̂−i , ∀i ∈ I, (8.3c)

0 ≤ lshns′ ≤ Dn, ∀n ∈ N , 0 ≤ wspill
js′ ≤ Wjs′ , ∀j ∈ J , (8.3d)

88



f`s′ = B`

∑
n∈N

A`nδns′ , ∀` ∈ L, (8.3e)

− T` ≤ f`s′ ≤ T`, ∀` ∈ L, (8.3f)

f`s′ = f̂`, ∀` ∈ ∪e∈E−(χ)Λe, (8.3g)

δ1s′ = 0, δns′ free, ∀n ∈ N , (8.3h)

where Φs′
B = {p+

is′ , p
−
is′ ,∀i;w

spill
js′ ,∀j; lshns′ , δns′ , ∀n; f`s′ ,∀`} is the set of variables. The ob-

jective is the cost of re-dispatch actions, that is, reserve activation and load shedding.

Up and down re-dispatch actions have the same cost as their day-ahead energy market

counterpart, under the assumption that the reserve market price is enough to compen-

sate for the opportunity cost from withdrawing capacity from the day-ahead stage, see

the assumption in Section 8.1. Equality constraints (8.3b) ensure that all the nodes

remain in balance after the re-dispatch of generation and any necessary wind power cur-

tailment or load shedding. Constraints (8.3c) ensure that upward and downward reserve

deployment respects the corresponding procured quantities. The upper bounds on load

shedding and power spillage are set equal to the nodal demand and the realized wind

power production by constraints (8.3d). Real-time power flows are first modeled in (8.3e)

and then restricted by the transmission capacity limits in (8.3f).

Constraints (8.3g), where E−(χ) = {e ∈ E|χe = 0} denotes the set of inter-area links

with no existing cross-border agreement across them, ensure that if χe = 0, the real-

time flows on the tie lines are fixed to their day-ahead values. In the existing market

framework, the balance responsible parties (in our case, the area operators) are entitled

to maintain their scheduled day-ahead net positions in the real-time market [ENT14],

[EC17b, Article 17]. Since our day-ahead market is modeled by a nodal market and f̂`
are already well-defined, we translate this regulation as preventing any reserve sharing

or imbalance netting during real-time operation across any line within link e if χe = 0.

For this constraint/requirement, see [Eli19, §2.3], [Sol18, §4.A.7]. Node 1 is again the

reference node in (8.3h).

8.3 Appendix

8.3.1 Zonal day-ahead market models

The European electricity market exhibits discrepancies between the day-ahead and real-

time representations of the physical system in the electricity market. Day-ahead markets

schedule consumption and production using a zonal representation of the underlying

nodal electricity network. Such zonal aggregations of the grid allows market participants

to trade freely withing each zone and to export/import energy to/from other zones up

to certain flow limitations. For the ease of notation, the zones of the day-ahead market
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are defined to be the same as the areas defined for the reserve market. In the remainder,

this appendix presents the models for the current day-ahead practice in Europe, which

is a zonal hybrid where the flows are constrained by the available transmission capacity

(ATC) or a flow-based domain. We show how our methods can be readily adapted to

these models.

Zonal day-ahead market model with ATC

In zonal electricity markets with ATC, the flow limitations are imposed on the exchanges

between neighboring areas. In other words, areas correspond to vertices in a transporta-

tion network where every pair of areas connected by a transmission line in the grid are

connected by an edge as in Figure 8.2. The flows through the edges are then limited by

the ATCs [ES05]. The zonal market clearing with ATC is formulated as:

min
ΦATC

D

∑
i∈I

Cipi (8.4a)

s.t.
∑
j∈MJa

wj +
∑
i∈MIa

pi +
∑
e∈E

H(e, a)fe =
∑
n∈MNa

Dn, ∀a ∈ A, (8.4b)

r̂−i ≤ pi ≤ Pi − r̂+
i , ∀i ∈ I, 0 ≤ wj ≤ W j, ∀j ∈ J , (8.4c)

− (1− χe) ATC−e ≤ fe ≤ (1− χe) ATC+
e , ∀e ∈ E , (8.4d)

where ATC−e and ATC+
e are the backward and forward exchange limits defined over

the link e ∈ E . These ATC limits are computed by TSOs respecting the minimum

remaining available margin (minRAM) rule of 70% following the requirements of the

Clean Energy Package [EC19, Article 16(8a-8b)], [Eli19, §2], and they are supposed

to reflect the maximum energy that can be transferred from one zone to the other.

Their computation is outside the scope of this part, we kindly refer to [JKP17]. As

an alternative to (8.4d), the ATC computation respecting the minRAM rule may also

be implemented after the reservation of a transmission share for reserves exchange is

implemented to the actual exchange limits Te of a nodal representation.

Notice that the objective function is identical to that of the nodal electricity market,

whereas the balance constraints are imposed over each area instead of over each node.

Since this problem does not consider the real network, the optimal day-ahead schedule

of the market above Φ̂ATC
D might be infeasible for the real network in (8.2). Re-dispatch

measures modifying Φ̂ATC
D might then be required in order to recover implementable

schedules even when there is no forecast uncertainty. Hence, using this model could

potentially increase the need for load shedding and wind curtailment. Replacing the

day-ahead market with the above model has implications also for the other models. In

the reserve capacity market of (8.1), the bounds on the reserve exchange between two
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areas should be replaced with χeATC
−
e and χeATC

+
e . Moreover, the balancing market

of (8.3) should prevent reserve sharing or imbalance netting across any link e with χe = 0

(instead of all lines within this link e), since the above market model defines only the

total day-ahead link flows but it does not define the individual day-ahead line flows.

Finally, the preemptive transmission allocation model of the following chapter can easily

be updated with these three models, since they are all given by linear programs when

transmission capacity allocations are fixed.

Zonal day-ahead market model with flow-based domain

Zonal electricity market model with a flow-based (FB) domain tries to find a middle

ground between nodal model and the ATC model above [Sol18]. The main idea is to

approximate the flow on each line as

f` ∼ f 0
` +

∑
a∈A

PTDF`,a(NP a −NP 0
a),

where f 0
` is the flow through line ` on a base case, NP a is the net position of area a and

NP 0
a is the net position on the base case, and PTDF`,a are area-to-line power-transfer-

distribution-factors computed by TSOs. The zonal market clearing with FB domain is

formulated as:

min
ΦFB

D

∑
i∈I

Cipi (8.5a)

s.t.∑
j∈MJa

wj +
∑
i∈MIa

pi −
∑
n∈MNa

Dn = NP a, ∀a ∈ A, (8.5b)

r̂−i ≤ pi ≤ Pi − r̂+
i , ∀i ∈ I, 0 ≤ wj ≤ W j, ∀j ∈ J , (8.5c)

− (1− χ`) T` ≤ f 0
` +

∑
a∈A

PTDF `,a(NP a −NP 0
a) ≤ (1− χ`) T`, ∀` ∈ L, (8.5d)∑

a∈A

NP a = 0. (8.5e)

The last two sets of constraints impose export and import limitations directly on the

configuration of net positions of areas, defining what is called the FB domain. As is

the case with the ATCs, the optimal day-ahead schedule of the market above might

be infeasible for the real network in (8.2). Re-dispatch measures modifying Φ̂FB
D might

then be required in order to recover implementable schedules even when there is no

forecast uncertainty. Replacing the day-ahead market with the above model again has

implications also for the other models. Note that the limits T` are computed by TSOs
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respecting the minimum remaining available margin (minRAM) rule of 70% following

the requirements of the Clean Energy Package [EC19, Article 16(8a-8b)], [Eli19, §2],

and they could be different from those used in (8.1). Their computation is outside the

scope of this part, we kindly refer to [Eli19, §2]. In this case, for the market in (8.1),

the bounds on the reserve exchange between two areas should be replaced with the new

values Te =
∑

`∈Λe
T`, for all e ∈ E . Moreover, instead of preventing reserve sharing or

imbalance netting across links, the balancing market of (8.3) can enforce that day-ahead

zonal net positions are maintained in the real-time market for all a ∈ {a′ |χe = 0, ∀e :

H(e, a′) 6= 0}, since the solution to the above market model defines NP a. Finally, the

preemptive transmission allocation model of the following chapter can again be easily

updated with these three models, since they are all given by linear programs when

transmission capacity allocations are fixed.

We now provide a brief discussion on the parameter choices. Significant attention

has been dedicated towards understanding how discretionary parameters determined by

TSOs affect the outcome of the zonal market with FB domain. These parameters include

the selection of a base case, but also the determination of PTDF`,a requires additional

parameters called Generation Shift Keys (GSKs) for disaggregating zonal injections into

nodal injections. Morover, the actual methodology is even more complex than (8.5).

For instance, a link has a limit as in (8.5d) only if it is considered to be critical, e.g, if

PTDF`,a is larger than 5% [Eli19, §2] [Sol18, §3.2.2.1]. [Mar+13] show that the same

system can lead to very different market outcomes depending on all of these choices.

Defining such parameters is outside the scope of this part, we kindly refer to [Sol18].
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CHAPTER 9
Transmission capacity allocations for

cross-border balancing

In this chapter, we discuss the issues closely connected to reserve exchanges and we then

formulate the preemptive transmission allocation model.

9.1 Possible coordination schemes and transmission

allocation arrangements

The transition to an integrated balancing market requires several organizational changes

to the prevailing operational model, in which reserves are procured and deployed on an

intra-area basis. A prerequisite for the establishment of a well-functioning balancing

framework is the standardization of the rules and products as well as the definition of

transparent mechanisms that will facilitate the cooperation among the TSOs [HRB05].

Below, we outline the main coordination schemes and transmission allocation arrange-

ments as defined in the current European regulation [EC17a].

Inter-area reserve procurement can be organized as a reserve exchange scheme and/or

as a reserve sharing agreement. Implementing the former scheme, regional TSOs can

procure balancing capacity resources located in adjacent areas in order to meet their own

area reserve requirements. Since the reserve requirements of each area remain unchanged,

this coordination setup requires limited organizational changes, as it basically reallocates

the reserve quantities towards areas with lower procurement costs. This setup is the

focus of our studies in this part. To improve also the dimensioning efficiency of the

procurement process, a reserve sharing agreement allows a TSO to use available reserve

capacity from adjacent TSOs. An implied prerequisite for this arrangement would be

that the definition of regional reserve requirements is performed jointly by all TSOs that

participate in the sharing agreement.

In terms of coordination during reserves activation, the main organizational setups

are the so-called imbalance netting and exchange of balancing energy. The first setup
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pertains to the out-of-market inter-area exchange of imbalances with opposite sign, thus

preventing the counteracting activation of balancing resources and reducing the total

balancing energy volumes. In turn, the exchange of balancing energy enables the system-

wide least-cost activation of reserves through a common merit-order list to meet the net

imbalance of the joint TSO area. This improves the supply efficiency of balancing energy,

at the expense of more extensive coordination requirements.

The establishment of any cross-border reserve procurement scheme requires the reser-

vation of a certain share of the inter-area transmission capacity from the day-ahead mar-

ket for the reserves and their activation [EC19, Art. (14)]. Such a reservation increases

the cost of the day-ahead market, but in return decreases the costs for the reserve market

and the balancing market.

Before we describe the attributes of any specific transmission allocation mechanism,

let us provide an illustrative example for the resulting total cost from all three stages.

This example highlights the seams issues pertaining to the ex-ante definition of trans-

mission allocation between two neighboring areas. Figure 9.1 shows the expected system

cost, that is, the sum of reserve procurement, day-ahead energy and expected balancing

costs, as a function of the share of transmission capacity χ that is allocated to inter-area

reserves trading. The data for this two-area power system is provided in the appendix

in Section 9.4.1, and the models are those that were discussed in the previous chapter.

We can observe that the efficiency of an integrated market, in terms of expected sys-

tem cost defined above, is highly susceptible to the portion χ of transmission capacity

removed from the day-ahead market. Moreover, its optimal value minimizing the cost

changes significantly under different levels of wind power penetrations. Even from this

simple example, it becomes apparent that there exists an optimal allocation to be made,

which however may dynamically vary depending on generation, load and system uncer-

tainties. This in turn asks for a systematic method to optimally define χ, accounting for

the market dynamics and the uncertainty involved in the operation of the power system.

a1

a2

χ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1
75%
87.5%
100%312 MW

273 MW
234 MW

Figure 9.1: Expected operation cost as a function of transmission capacity allocated to
inter-area reserves trading under different levels of wind power penetration (in MW).
Asterisk symbols correspond to the optimal values of transmission capacity allocations.
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In this part, we focus on the prevailing market-based mechanism for the allocation

of cross-border transmission capacity from day-ahead energy to reserves. According

to this methodology, a share of inter-area transmission capacity is set aside from day-

ahead energy for reserves based on the comparison of the market value of cross-zonal

capacity for the exchange of balancing capacity or sharing of reserves and the market

value of cross-zonal capacity for the exchange of day-ahead energy. This methodology

can attain a reasonable allocation efficiency while having practical applicability within

the current framework, albeit it still incurs the inherent drawbacks of the sequential

market structure regarding the deterministic view of uncertainty and the separation of

energy and reserve services. We refer the interested reader to [EC17a] for discussions on

alternative transmission allocation mechanisms.

9.2 Preemptive transmission allocation model

In this section, we first describe the preemptive transmission allocation model that was

initially proposed in [DP18] as a market-based mechanism. This work, however, de-

fines the preemptive model in a more general framework, which allows us to consider

coalitional deviations and in turn define the necessary benefits that support the solution

proposed by the preemptive model. The motivation for considering coalitional deviations

originates from the Clean Energy Package regulation which states that an application

for a methodology of allocating cross-border capacity to reserves can be filed by even

two neighboring operators [EC19, Art. (14)].

The preemptive transmission allocation model can be perceived as a decision-support

tool, which aims at defining the optimal shares of transmission capacity for inter-area

trading of energy and reserves. Being fully aligned with the existing sequential market

structure, the preemptive model is essentially a market-based allocation process that is

performed prior to the reserve capacity and day-ahead energy markets to find the optimal

transmission allocations {χ̂e,∀e} that minimize the expected system cost, see Figure 9.2

for a schematic representation. It is worth mentioning that the coordinated reserve

exchange would require a transfer of some responsibilities (e.g., transmission capacity

computations) to European bodies, even though some TSOs might be hesitant to assign

some of their autonomy to a central authority.

Preemptive model

Problem (9.1)

Res. cap. market

Problem (8.1) Day-ahead market

Problem (8.2)

Balancing market

Problem (8.3)

for scenario s′

{χ̂e,∀e}
(
r̂+
i ,r̂
−
i ,

r̂+
e ,r̂
−
e

) (
p̂i,ŵj,

δ̂n,f̂`

)
{1− χ̂e,∀e}

(
r̂+
i ,r̂
−
i ,

r̂+
e ,r̂
−
e

)

C ⊆ A

Figure 9.2: Schematic representation of preemptive transmission allocation model
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In this work, the focus is on the establishment of coalitional agreements at the reserve

procurement stage among a set of areas C ⊆ A. In the balancing market, we assume

that all areas that participate in the coalition, exchange balancing energy in a perfectly

coordinated setup. As a result, real-time tie-line flows are treated as free variables, al-

lowing for deviations from the day-ahead schedule. The coalition-dependent preemptive

model is given by:

J(C) = min
ΦPR

∑
i∈I

(
C+
i r

+
i + C−i r

−
i

)
+
∑
i∈I

Cipi

+
∑
s∈S

πs

[∑
i∈I

Ci
(
p+
is − p−is

)
+
∑
n∈N

Cshlshns

]
(9.1a)

s.t. 0 ≤ χ′e ≤ 1, ∀e ∈ EC, (9.1b)

χ′e = χe, ∀e ∈ E \ EC, (9.1c)

Constraints (8.3b)− (8.3f) and δ1s = 0, δns free, ∀n ∈ N , ∀s ∈ S, (9.1d)

f`s = f`, ∀` ∈ ∪e∈E−(χ,C)Λe, ∀s ∈ S, (9.1e)(
r+i ,r

−
i ,

r+e ,r
−
e

)
∈ arg

{
min
ΦR

(8.1a) s.t. constraints (8.1b) - (8.1e)
}
, (9.1f)(pi,wj ,

δn,f`

)
∈ arg

{
min
ΦD

(8.2a) s.t. constraints (8.2b) - (8.2f)
}
, (9.1g)

where ΦPR = {χ′e,∀e∪ΦR∪ΦD∪Φs
B,∀s} is the set of primal optimization variables. For

the sake of brevity, the Lagrange multipliers of the lower-level optimization problems

are omitted here, but the complete set of Karush-Kuhn-Tucker (KKT) conditions of

problems (8.1) and (8.2) are listed in the appendix in Section 9.4.2. Unless stated

otherwise, the preemptive model refers to problem (9.1) associated with J(A) and the

corresponding optimal transmission allocation is denoted by {χ̂e,∀e}.
Model (9.1) is a stochastic optimization problem, since wind power is described by a

finite set of scenarios S, with Wjs being the realization of stochastic generation of farm j

in scenario s and πs the corresponding probability. The objective is the expected system

cost according to the sequential structure described in Section 8.2. Constraint (9.1b)

bounds the share of transmission capacity χ′e ∈ [0, 1]E allocated to reserve exchange for

links e ∈ EC, where EC = {e |H(e, a) = 0, ∀a ∈ A \ C} is the set of links among only the

areas in the coalition C. The transmission capacity of the remaining links e ∈ E \EC, that

is, links that are connected to areas that are not members of coalition C, is fixed according

to existing cross-border agreements χe ∈ [0, 1]E in (9.1c). Constraints (9.1d) ensure

feasibility of re-dispatch actions for each scenario, whereas constraint (9.1e) restricts the

real-time tie-line flows to the respective day-ahead values, for links

e ∈ E−(χ, C) = {e ∈ E|χe = 0, and ∃a ∈ A \ C such that H(e, a) 6= 0},
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which is the set of links that are, at least on one end, connected to an area that is

not in the coalition C and does not have an existing cross-border agreement for reserves

exchange, that is, χe = 0. In other words, constraint (9.1e) prevents any imbalance

netting or exchange of balancing energy between areas that are not members of coali-

tion C. Constraints (9.1e) are removed from problem (9.1) associated with J(A), since

E(χ,A) = ∅ for any χ.

The lower-level problems (9.1f) and (9.1g) are identical to models (8.1) and (8.2)

implementing the shares of transmission capacities in χ′. Having this bilevel model (9.1)

ensures by construction that the reserve capacity, day-ahead and balancing markets are

cleared in consecutive and independent auctions. This structure allows the definition

of {χ̂e,∀e} anticipating the impact of these parameters in all subsequent trading floors.

From a computational perspective, to obtain a solvable instance of the model (9.1), we

can equivalently replace the lower-level problems (9.1f) and (9.1g) by the KKT con-

ditions, given that (9.1f) and (9.1g) are linear programs. The resulting problem is a

single-level mathematical program with equilibrium constraints (MPEC) that involves

the complementary slackness constraints, which can be transformed into a mixed-integer

linear program (MILP) using disjunctive constraints. We refer to the appendix in Sec-

tion 9.4.2. for the KKT conditions of (8.1) and (8.2).

Regarding the structure of the bilevel model (9.1), in contrast to the reserve capacity

and the day-ahead markets, the balancing market is modeled in the upper-level by the

last term of the objective (9.1a) and constraints (9.1d)-(9.1e). The proposed structure

leverages the fact that the variables of the balancing market in (8.3) do not enforce any

restriction on the upper-level variables {χ′e, ∀e} and also they do not impact the lower-

level problems (9.1f) and (9.1g). Following this observation, our formulation reduces the

computational complexity of the final MILP, since it avoids the integer reformulation

of the balancing market complementarity conditions for each scenario. We provided a

mathematical explanation in the appendix in Section 9.4.2, and for similar applications

of bilevel programming, the interested reader is kindly referred to [PM16; Mor+14].

Having defined the main properties of the preemptive model, the following com-

ments are in order. Define the sum of the costs (8.1a), (8.2a) and (8.3a), as Js
′
(∅) and

Js
′
(A), when χe, ∀e are fixed to the existing cross-border arrangements and to the op-

timal {χ̂e,∀e} from the preemptive model, respectively. From an economic intuition, it

follows that the preemptive model reduces the total expected cost since the establish-

ment of broader coalitions enlarges the pool of available reserves and balancing resources,

and enables the more efficient allocation of available generation capacity between these

services. This can be mathematically stated as:

J(A) = Es[Js(A)] ≤ J(∅) = Es[Js(∅)],

where Es[·] is the expectation calculated over the scenario set S. Using a similar rea-
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soning, it follows that J is a nonincreasing function with respect to the number of areas

participating in the coalition, that is, J(C) ≤ J(Ĉ) for all Ĉ ⊆ C. (Note that the preemp-

tive model does not guarantee Js(C) ≤ Js(Ĉ), ∀Ĉ ⊆ C for each scenario independently.)

It becomes apparent that the implementation of the preemptive model results in a dif-

ferent system cost than the one under the current sequential market. Next, we discuss

cost allocation in this new sequential market.

9.3 Cost allocations under the preemptive transmis-

sion allocation model

The preemptive model (9.1) implements a centralized transmission allocation mechanism,

under the implicit assumption that all areas are willing to accept the {χ̂e,∀e} solution

that by construction minimizes the system-wide expected cost. However, this model

does not suggest an area-specific cost allocation that guarantees sufficient benefits for all

areas to remain in the grand coalition A.1 As an alternative methodology, the task of

setting the transmission shares and allocating the resulting costs could be accomplished

through establishing a new market, cleared before the reserve market, in which regional

operators (by also consulting their market participants) would place their bids/offers for

the reservation of inter-area transmission capacities, akin to the decision variable of the

preemptive model, {χ′e,∀e}. This new market would constitute an ideal benchmark of the

market-based allocation process described in [EC17a], implementing a complete market

for transmission allocations in which capacities would be traded based on bids/offers

that reflect the valuations from regional operators.

Since deriving such valuations might be a hard problem for operators, in our studies,

we follow another path to promote the formation of stable coalitions for the exchange

of reserves. Our approach builds an ex-post benefit allocation mechanism on top of the

preemptive model, aiming to realize the necessary conditions that accomplish the coor-

dination requirements of this model, without any new marketplace. In the remainder,

we outline the concepts related to benefit allocations for the preemptive model and we

discuss the desirable properties that we want to achieve.

Let Jsa(∅) denote the cost allocated to area a in scenario s in the existing sequential

market. As previously discussed, the current implementation of the sequential market

provides a cost allocation method that satisfies budget balance under every scenario,

that is, Js(∅) =
∑

a∈A J
s
a(∅). The implementation of the preemptive model requires a

new method to allocate costs to the areas that participate in this arrangement. This task

1As it is introduced earlier in this part and also defined in [Kri+18], benefits are the change in total
operational cost allocated to a particular area after all three market stages are cleared. The operational
cost is equivalent to minus the social welfare (with inelastic demand) and thus it is reasonable to define
positive benefits as the reduction of the total operational cost.
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can equivalently be viewed as allocating benefits based on the change in the total cost

as a discount or a mark-up on the original cost allocation of each area defined by Jsa(∅).
While choosing these benefits, our main goal is to ensure that all areas in A are willing to

use the preemptive model as a decision-support tool, since otherwise some areas may opt

for having their own reserve exchange agreement following [EC19, (14)]. In addition, we

should aim to form coalitions as large as possible in order to achieve the highest reduc-

tion in the expected system cost. To achieve these, we will treat the preemptive model

as a coalitional game, which allows us to approach the benefit allocation problem in two

ways. First, we can allocate the expected cost reduction, J(∅)− J(A) ≥ 0, to all areas

as benefits. Allocating benefits this way achieves budget balance in expectation, which

implies that there is no deficit or surplus if the preemptive model is used repeatedly and

the uncertainty modeling is accurate enough.2 However, this method does not guarantee

that the resulting allocation satisfies budget balance in every scenario, thus requiring a

large financial reserve to buffer the fluctuations in the budget in case of surplus or deficit

for some realizations. The second approach is to allocate the scenario-specific cost varia-

tion, Js(∅)− Js(A). This would guarantee budget balance for every scenario. However,

the participating areas would collect benefits that vary under scenarios, possibly raising

risk considerations.

As a remark, the benefit allocation framework studied in this thesis/part defines these

monetary quantities on an area level. They provide each area with an idealized total

cost allocation, which would be minus the sum of three terms, that is, the consumers’

and generators’ surplus pertaining to that area and the congestion rents collected by the

corresponding area operator. We highlight that the methods proposed in the following

chapters do not readily define the payment rules for the new sequential market such that

these idealized total cost allocations (or the total available surpluses) are distributed on a

market participant level, which should be the second step in this analysis (this direction

will be discussed in our future work). However, it is possible to provide a guarantee on the

cost recovery property of market participants. Later in our work, by picking nonnegative

benefits, we in fact guarantee that the available surplus for each area increases. This

implies that it is possible to define payment rules to achieve cost recovery, moreover, it

is also possible to improve each generator’s and consumer’s surplus compared to their

values in the existing sequential market. If the preemptive model is used and all market

stages are cleared with their new unit prices given by the new Lagrange multipliers, then

we can obtain cost recovery on a market participant level. However, such an approach

cannot provide any guarantees on an area level at all. Defining side payments to ensure

that the cost allocation of each area is close what is suggested by the benefit allocation

methods is part of our future research directions.

2In practice, the scenario set is inevitably an approximation to the real world. There are various
results showing asymptotic guarantees for convex optimization models as long as the scenario set is rich
enough [BL11]
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9.4 Appendix

9.4.1 Data for two-area example

For this example, we removed area 3 from the example we provide in detail in Section 12.1

while all the other parameters are kept unchanged. The different levels of wind power

penetration are modeled by changing the installed capacities of the wind power plants

j3 and j6. 312 MW corresponds to 120 and 192 MW, respectively. 273 MW corresponds

to 105 and 168 MW, whereas 234 MW corresponds to 90 and 144 MW. Normalization

is done by dividing the expected operation cost by the cost under the same wind power

penetration but with χ = ε where ε > 0 is a small positive number.

9.4.2 KKT conditions

We provide the complete set of KKT conditions for the reserve and day-ahead markets

in (9.1f) and (9.1g), that appear in the lower level of the stochastic bilevel optimization

in (9.1). The dual multipliers of inequality constraints are listed to the right of the

complementarity relationships denoted by ⊥. For the equality constraints, the dual

multipliers are listed after a colon.

The KKT conditions for the reserve market in (9.1f) are:

0 ≤ R+
i − r+

i ⊥ µR+

i ≥ 0, ∀i,

0 ≤ R−i − r−i ⊥ µR−

i ≥ 0, ∀i,

0 ≤
∑
i∈MIa

r+
i +

∑
e∈E

H(e, a)r+
e −RR+

a ⊥ µRR+

a ≥ 0, ∀a,

0 ≤
∑
i∈MIa

r−i +
∑
e∈E

H(e, a)r−e −RR−a ⊥ µRR−

a ≥ 0, ∀a,

0 ≤ r+
e + χ′eTe ⊥ ζL+

e ≥ 0, ∀e,

0 ≤ χ′eTe − r+
e ⊥ ζU+

e ≥ 0, ∀e,

0 ≤ r−e + χ′eTe ⊥ ζL−

e ≥ 0, ∀e,

0 ≤ χ′eTe − r−e ⊥ ζU−

e ≥ 0, ∀e,

0 ≤ C+
i + µR+

i −
∑

a:i∈MIa

µRR+

a ⊥ r+
i ≥ 0, ∀i,

0 ≤ C−i + µR−

i −
∑

a:i∈MIa

µRR−

a ⊥ r−i ≥ 0, ∀i,

∑
a

µRR+

a H(e, a) + ζL+

e − ζU+

e = 0, ∀e,
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∑
a

µRR−

a H(e, a) + ζL−

e − ζU−

e = 0, ∀e.

The KKT conditions for the day-ahead market in (9.1g) are:∑
j∈MJn

wj +
∑
i∈MIn

pi −
∑
`∈L

A`nf` = Dn : λn free, ∀n,

0 ≤ pi − r−i ⊥ µPL
i ≥ 0, ∀i,

0 ≤ Pi − r+
i − pi ⊥ µPU

i ≥ 0, ∀i,
0 ≤ W j − wj ⊥ µWU

j ≥ 0, ∀j,

f` = B`

∑
n∈N

A`nδn : λF
` free, ∀`,

0 ≤ f` + (1− χ′`) T` ⊥ ζL
` ≥ 0, ∀`,

0 ≤ (1− χ′`) T` − f` ⊥ ζU
` ≥ 0, ∀`,

δ1 = 0 : λREF free,

Ci +
∑

n:i∈MIn

λn − µPL
i + µPU

i = 0, ∀i,

0 ≤
∑

n:j∈MJn

λn + µWU
j ⊥ wj ≥ 0, ∀j,

∑
n

A`nλn − λF
` − ζL

` + ζU
` = 0, ∀`,∑

`

λF
`B`A`n = 0, ∀n 6= 1,∑

`

λF
`B`A`n − λREF = 0, n = 1.

Note that the conditions above involve the solutions of the reserve market r+
i and r−i , and

the transmission allocations χ′ from the optimization variables of preemptive model (9.1).

Mathematical explanation for the upper-level balancing market formulation

As it is previously discussed, an alternative but an equivalent formulation of model (9.1)

could be obtained by including the balancing market as a lower-level problem. However,

the proposed structure leverages the fact that the variables of the balancing market

in (8.3) do not enforce any restriction on the upper-level variables {χ′e, ∀e} and also

they do not impact the lower-level reserve and day-ahead market problems. Moreover,

the last term of the objective function in (9.1), which relates to the balancing market,

is practically a copy of the objective function of model (8.3) for each s ∈ S. These

observations combined imply that the KKT conditions of model (8.3), other than the

primal feasibility conditions included in (9.1) are redundant. Similar formulations for
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bilevel programming in the electricity markets can also be found in [PM16; Mor+14;

DDM18; JKP17].
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CHAPTER 10
Coalitional game theory framework

In this chapter, we bring in the preliminaries for benefit allocation mechanisms and their

desirable properties. We then review existing mechanisms from the literature and discuss

whether they attain these properties. To facilitate the exposition, this chapter treats a

general coalitional game.

10.1 Preliminaries

A coalitional game is defined by a set of players and the so-called coalitional value

function, that maps from the subsets of players to the values, that is, the total benefits

created by these players [OR94; PS07]. In the preemptive model, the set of players are

given by the set of areas A1, whereas the coalitional value function v : 2A → R can be

defined either as the expected cost reduction achieved, that is,

v̄(C) = J(∅)− J(C),

for all C ⊆ A or based on the resulting change in the cost of the realized scenario s ∈ S,

that is,

vs(C) = Js(∅)− Js(C),

for all C ⊆ A. Clearly, it holds that v̄(C) = Es[vs(C)]. Later, we will see that these

functions yield different structures for the game. In the remainder of this section, we

study a generic v for the preemptive model satisfying v(C) = 0, for all |C| ≤ 1. This

assumption holds since coordination is not possible in the preemptive model without the

participation of at least two adjacent areas.

Given the coalitional value function v, a benefit allocation mechanism defines the

benefit received by each area a ∈ A with βa(v) ∈ R. The cost allocated to area a

1The players involved in this game are required to be areas as a whole (country or region). This
includes consumers and generators pertaining to that area and area operators (and potentially the
transmission owners). This is because the transmission capacity allocated to the reserve exchange
affects the incentive structure of all these market participants.
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under the preemptive transmission allocation model would then be given by Jsa(A) =

Jsa(∅) − βa(v). Depending on its sign, the benefit can be considered as a discount or a

mark-up on the original cost allocation.

When designing benefit allocation mechanisms, there are three fundamental proper-

ties we want to guarantee, namely, efficiency, individual rationality, and stability. A ben-

efit allocation β(v) = {βa(v)}a∈A ∈ RA is efficient if the whole value created by the grand

coalition, that is, C = A, is allocated to the member-areas, that is,
∑

a∈A βa(v) = v(A).2

A benefit allocation ensures individual rationality if all areas obtain nonnegative bene-

fits, that is, βa(v) ≥ 0, for all a ∈ A. If this property does not hold, the coordination

arrangement would yield increased costs for some areas. As a result, these areas may

decide not to participate in the preemptive model. Finally, a benefit allocation attains

stability (in other words, group rationality) if it eliminates the benefit improvements of

the areas from forming sub-coalitions, that is, @C ⊂ A such that v(C) >
∑

a∈C βa(v).

This last property is crucial for the preemptive model, since otherwise some areas may

opt for having their own reserve exchange agreement by excluding the remaining areas.

This coincides with our aforementioned goal of ensuring that all areas participate in the

preemptive model.

In coalitional game theory, these properties are known to be attained if the benefit

allocation lies in the core3 defined as β(v) ∈ KCore(v), where

KCore(v) = {β ∈ RA |
∑
a∈A

βa = v(A),
∑
a∈C

βa ≥ v(C), ∀C ⊂ A}.

In this definition, the equality constraint ensures efficiency, while inequality constraints

guarantee stability, that is, there is no subset of areas C ⊂ A that can yield higher total

benefits for its members compared to the benefit allocation under the grand coalition.

The inequality constraints also include βa(v) ≥ v(a) = 0 for all a ∈ A.4 This restriction

ensures individual rationality.

The core is a closed polytope involving 2|A| linear constraints. This polytope is

nonempty if and only if the coalitional game is balanced [Sha67]. Such settings include

2In coalitional games, efficiency is also often referred to as budget-balance. For clarity, this part of
the thesis uses efficiency for the benefit allocation, and the term budget-balance is reserved for the cost
allocation.

3To avoid any confusion, we point out that this is a slightly different definition to the core when
compared to Definition 1 in Part I. Here in KCore(v), we consider deviations from all subsets of players,
whereas in Definition 1 we assume that all deviations have to include the central operator. A way to
combine these definitions would be to extend the domain of the function −J in (4.1) as v̂ by assigning
0 cost to all deviations that do not include the central operator. In this case, we would obtain v̂({0}) =
−∞, where {0} denotes the deviation set involving only the central operator. Thus, this extension does
not satisfy our requirement in Part II: v̂(C) = 0, for all |C| ≤ 1. Moreover, for this extension, v̂(C) may
not be well-defined also for other subsets: v̂(C) = −∞. Such instances are not present in any of the
coalitional games considered in Part II. Finally, KCore(v) can also be considered as the intersection of
the core in Definition 1 (−J = v) with u0 = 0 (without any monotonicity requirement).

4For the sake of simplicity, singleton sets are denoted by a instead of {a}.
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the cases in which the coalitional value function exhibits supermodularity5 [Sha71] and

the cases in which the coalitional value function can be modeled by a concave exchange

economy [SS69], a linear production game [Owe75] or a risk-sharing game [CHK09]. In

their most general form, the coalitional value functions in these works are given by an

optimization problem minimizing a convex objective subject to linear constraints. In the

problem at hand, coalitional value functions are associated with solutions to the general

non-convex optimization problem (9.1). As a result, previous works on the nonemptiness

of the core are not applicable to our setup.

In case the core is empty, we need to devise a method to approximate a core allocation.

To this end, we bring in the notion of strong ε-core, defined in [SS66] as

KCore(v, ε) = {β ∈ RA |
∑
a∈A

βa = v(A),
∑
a∈C

βa ≥ v(C)− ε, ∀C ⊂ A}.

This definition can be interpreted as follows. If organizing a coalitional deviation entails

an additional cost of ε ∈ R, coalition values would be given by v(C) − ε for all C 6= A.

Then, the resulting core would correspond to the strong ε-core. For ε = 0, we retrieve

the original core definition, that is, KCore(v, 0) = KCore(v). Let ε∗(v) be the critical value

of ε such that the strong ε-core is nonempty, which is mathematically defined as

ε∗(v) = min{ε |KCore(v, ε) 6= ∅}.

The value ε∗(v) is guaranteed to be finite for any function v and the set KCore(v, ε
∗(v))

is called the least-core [MPS79]. Let the excess of a coalition be defined by θ(v, β, C) =

v(C) −
∑

a∈C βa, for any nonempty C ⊂ A. In other words, the set KCore(v, ε
∗(v)) is

the set of all efficient benefit allocations minimizing the maximum excess. If the core

is empty, the maximum excess is the maximum violation of a stability constraint. This

implies that the least-core achieves an approximate stability property. As a remark, the

least-core relaxes also the inequality constraints corresponding to singleton sets βa ≥
v(a) − ε∗(v) = −ε∗(v) for all a ∈ A since ε∗(v) > 0, and hence it yields approximate

individual rationality. Finally, if the core is not empty, we have ε∗(v) ≤ 0 and the

least-core is a subset of the core.

With the discussion above, we conclude that whenever the core is empty, we can use

the least-core to achieve the second best outcome available, that is, a benefit allocation

which is efficient, approximately individually rational and approximately stable. Observe

that there are generally many points to choose from the least-core (or the core if it is

nonempty) achieving the same fundamental properties. In this case, it could be desirable

to require additional intuitively acceptable properties to pick a unique benefit allocation.

5We remind the reader that supermodularity is attained if for any set the participation of an area
results in a larger value increment when compared to the subsets of the set under consideration, that
is, v(C ∪ {a})− v(C) ≥ v(C′ ∪ {a})− v(C′), ∀a /∈ C, C′ ⊂ C ⊆ A, see Definition 2.
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Later, we revisit this idea in our proposed methods.

Apart from the aforementioned fundamental properties that pertain to the economic

side of the problem, computational tractability is also a practical concern, considering

that we may need the complete list of coalition values v(C) for all C ⊆ A to fully describe

the core and the least-core. For the coalitional games arising from the preemptive model,

each coalition value requires another solution to MILP in (9.1), which is NP-hard in

general. Hence, our goal is to find a core or a least-core benefit allocation that can be

computed with limited queries to the coalitional value function.

Next, we briefly review two benefit allocation mechanisms that are widely used in

the literature.

10.2 Shapley value

The benefit assigned by the Shapley value is given by

βShapley
a (v) =

∑
C⊆A

(|C| − 1)!(|A| − |C|)!
|A|!

(v(C)− v(C \ a)).

This benefit is the average of the marginal contribution of the area a under all coalitions,

considering also all possible orderings of areas. The Shapley value results in an efficient

benefit allocation. Individual rationality is also satisfied if the coalitional value function

is nondecreasing, since the marginal contributions would be nonnegative. On the other

hand, the Shapley value is guaranteed to lie in the core only when the coalitional value

function is supermodular. This is a restrictive condition that is not applicable to our

problem. In addition, when the core is empty, the Shapley value does not necessarily

lie in the least-core, making it incompatible with the fundamental properties we de-

sire [MPS79]. In terms of the computational performance, the calculation of the Shapley

value requires the exhaustive enumeration of coalition values v(C) for all C ⊆ A. Finally,

it should be noted that the Shapley value is the unique efficient benefit allocation that

satisfies dummy player, symmetry, and additivity properties simultaneously. Dummy

player property requires βa = 0 for all a for which v(C) − v(C \ a) = 0 for all C ⊆ A.

In other words, an area incapable of contributing to any coalition C ends up with zero

benefits. Next, we show the relation between the previously discussed properties and

the dummy player property.

Proposition 5. For the core and the least-core, we have,

(i) if a′ satisfies v(A)− v(A \ a′) = 0, then KCore(v) ⊂ {β | βa′ = 0},

(ii) if a′ satisfies v(C)−v(C\a′) = 0 for all C ⊆ A, then KCore(v, ε
∗(v)) ⊂ {β | βa′ = 0}.
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This proposition provides a missing link in the comparisons of the Shapley value,

the core, and the least-core in a generic coalitional game. This result shows that the

core attains a more restrictive version of the dummy player property, that is, an area

incapable of contributing to the set A ends up with zero benefits. Finally, the least-core

attains the dummy player property in the same way that it is defined for the Shapley

value. The proof and the discussions on symmetry and additivity are relegated to the

appendix in Section 10.4.1.

10.3 Nucleolus allocation

Among all efficient benefit allocations, the nucleolus allocation is the unique benefit al-

location that minimizes the excesses of all coalitions in a lexicographic manner [Sch69].

Nucleolus allocation lies in the least-core and hence attains the desirable economic prop-

erties.

In terms of practical implementation, the lexicographic minimization is computation-

ally demanding in the general case. Nucleolus allocation can be computed by solving

a sequence of O(|A|) linear programs with constraint sets that are parametrized ver-

sions of the core KCore(v), see [Kop67; Fro97]. However, each linear program requires

the complete list of coalition values. In case the coalition values are given implicitly

by the objective value of a single linear optimization problem with constraints depend-

ing on the participants of the coalition, the work by [HHJ95] proposes using constraint

generation algorithms. In this approach, O(|A|) linear programs are solved by O(|A|)
constraint generation algorithms that iteratively generates coalitional values on demand.

Nevertheless, we may still need to generate all possible coalition values [HHJ95; KÇ12].

When the number of areas is large, this approach involving the execution of the con-

straint generation algorithm O(|A|) times becomes computationally prohibitive for our

application.

For the sake of completeness, the appendix in Section 10.4.2 provides the mathemat-

ical definition for the nucleolus allocation and its comparison with the Shapley value.

10.4 Appendix

10.4.1 Unique properties of the Shapley value

In this appendix, we analyze each of the unique properties of the Shapley value and how

they relate to the fundamental properties associated with the core and the least-core.
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Dummy player

Dummy player property requires βa = 0 for all a such that v(C) − v(C \ a) = 0 for

all C ⊆ A. In other words, an area incapable of contributing to any coalition C ends up

with zero benefits. We now reiterate Proposition 5 and then prove the two claims.

Proposition 6. For the core and the least-core, we have,

(i) If a′ satisfies v(A)− v(A \ a′) = 0, then KCore(v) ⊂ {β | βa′ = 0},

(ii) If a′ satisfies v(C)−v(C\a′) = 0 for all C ⊆ A, then KCore(v, ε
∗(v)) ⊂ {β | βa′ = 0}.

Proof. (i) Assume core is nonempty, since otherwise the proof is trivial. Combining the

equality constraint with the inequality constraint corresponding to A \ a′, we obtain

βa′ ≤ v(A) − v(A \ a′) = 0 for any β ∈ KCore(v). Combining this with KCore(v) ⊂ RA+
gives us βa′ = 0 for any β ∈ KCore(v).

(ii) Assume core is empty, ε∗(v) > 0, since otherwise part (i) concludes that

KCore(v, ε
∗(v)) ⊆ KCore(v) ⊂ {β | βa′ = 0}.

Next, we prove by contradiction that first βa′ > 0 is not possible and then βa′ < 0 is not

possible.

Let β̂ ∈ KCore(v, ε
∗(v)) be a benefit allocation with β̂a′ > 0. We now show that there

exists ε < ε∗(v) such that KCore(v, ε) 6= ∅. This would contradict the definition of the

least-core.

For any C 3 a′, we have
∑

a∈C β̂a >
∑

a∈C\a′ β̂a ≥ v(C\a′)−ε∗(v) = v(C)−ε∗(v). Notice

that we can always find a small positive number δ such that
∑

a∈C β̂a − (|A| − |C|)δ >
v(C)− ε∗(v) + δ holds for any C 3 a′. Next, we show that KCore(v, ε

∗(v)− δ) is nonempty

for this particular choice.

Define β̄ such that β̄a = β̂a + δ for all a 6= a′and β̄a′ = β̂a′ − (|A| − 1)δ. This new

allocation β̄ clearly satisfies the equality constraint in KCore(v, ε
∗(v)− δ). For inequality

constraints C 3 a′, we have
∑

a∈C β̄a =
∑

a∈C β̂a − (|A| − |C|)δ > v(C)− ε∗(v) + δ, where

the strict inequality follows from the definition of δ. For inequality constraints C 63 a′,
we have

∑
a∈C β̄a ≥

∑
a∈C β̂a + δ ≥ v(C) − ε∗(v) + δ. Hence, β̄ ∈ KCore(v, ε

∗(v) − δ), in

other words, KCore(v, ε
∗(v)−δ) 6= ∅. This contradicts KCore(v, ε

∗(v)) being the least-core.

Hence, β̂a′ 6> 0.

Next, let β̂ ∈ KCore(v, ε
∗(v)) be a benefit allocation with β̂a′ < 0. We again show

that there exists ε < ε∗(v) such that KCore(v, ε) 6= ∅.
Since β̂ ∈ KCore(v, ε

∗(v)) and v(a′) = 0, we have 0 > βa′ ≥ v(a′) − ε∗(v) = −ε∗(v).

Notice that, for any C 63 a′, we have
∑

a∈C β̂a ≥ v(C ∪ a′) − ε∗(v) − βa′ by adding and

subtracting βa′ , and by using the fact that ε∗(v) > 0 for the special case corresponding to
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C∪a′ = A. Since we have v(C∪a′) = v(C) and βa′ < 0, we obtain
∑

a∈C β̂a > v(C)−ε∗(v).

Notice that we can always find a small positive number δ such that
∑

a∈C β̂a − |C|δ >
v(C)− ε∗(v) + δ holds for any C 63 a′. Next, we show that KCore(v, ε

∗(v)− δ) is nonempty

for this particular choice.

Define β̄ such that β̄a = β̂a − δ for all a 6= a′and β̄a′ = β̂a′ + (|A| − 1)δ. This new

allocation β̄ clearly satisfies the equality constraint in KCore(v, ε
∗(v)− δ). For inequality

constraints C 63 a′, we have
∑

a∈C β̄a =
∑

a∈C β̂a − |C|δ > v(C) − ε∗(v) + δ, where the

strict inequality follows from the definition of δ. For inequality constraints C 3 a′,

we have
∑

a∈C β̄a ≥
∑

a∈C β̂a + δ ≥ v(C) − ε∗(v) + δ. Hence, β̄ ∈ KCore(v, ε
∗(v) − δ), in

other words, KCore(v, ε
∗(v)−δ) 6= ∅. This contradicts KCore(v, ε

∗(v)) being the least-core.

Hence, β̂a′ 6< 0. This concludes that β̂a′ = 0.

The proposition above provides a missing link in the comparisons of the Shapley

value, the core, and the least-core in a generic coalitional game. It shows that the core

attains a more restrictive version of the dummy player property, that is, βa = 0 for all a

such that v(A)− v(A \ a) = 0. In other words, an area incapable of contributing to the

set of all areas A ends up with zero benefits. Finally, the least-core attains the dummy

player property in the same way that it is defined for the Shapley value.

Symmetry

Symmetry property is achieved if the benefit allocations of two areas are the same when-

ever their marginal contributions to any coalition C are the same. It can be verified

that this property does not hold for every benefit allocation from the core and the least-

core. However, it is always possible to find a benefit allocation satisfying the symmetry

property in any nonempty strong ε-core (and hence both in the core and the least-core)

since the linear inequality constraints imposed by the convex polytope KCore(v, ε) on two

such area benefits are identical. Notice that the symmetry property is computationally

hard to check since it would require evaluating the function v for all coalitions. We can

instead aim for a more restrictive version of the symmetry property by considering only

the marginal contributions to the set of all areas A. This stronger condition would be

computationally tractable to check.

Additivity

Additivity property is given by β(v̂ + v) = β(v̂) + β(v) for all v̂, v : 2A → R. As it

is discussed in [OR94], this property is mathematically convenient but hard to argue

for since the sum of coalitional value functions is in general considered to induce an

unrelated coalitional game. As a remark, additivity further implies that the benefit

allocation of any player responds monotonically to changes in the coalition value v(C)
(a positive change if C contains the area). In the general case, this property cannot be

109



achieved by any benefit allocation chosen from both the core and the least-core, see the

discussions and the counter examples provided in the work of [You85; Meg74].

10.4.2 Definitions and discussions for the nucleolus allocation

In this section, we provide the mathematical definition for the nucleolus allocation, com-

pare it with the Shapley value, and discuss additional aspects of its computation and

lexicographic minimization property.

Denote the excesses as θ(v, β, C) = v(C) −
∑

a∈C βa for any nonempty C ⊂ A. Let

θ(v, β) ∈ R2|A|−2 be the vector whose entries are the excesses but arranged in a nonin-

creasing order. Given two such ordered vectors x, y ∈ Rn0 , with x <L y we mean that x is

lexicographically smaller than y, that is, there exists an index ν0 ≤ n0 such that xν = yν
for all ν < ν0, and xν0 < yν0 . Let X ⊂ RA denote a set of benefit allocations that we are

interested in. Then, the nucleolus of the set X is the benefit allocation that minimizes

the excess of all coalitions in a lexicographic manner among all benefit allocations from

the set X. Specifically, the nucleolus of the set X, βNuc(v,X) ∈ X, is defined by

θ(v, βNuc(v,X)) <L θ(v, β̂), ∀β̂ ∈ X s.t. β̂ 6= βNuc(v,X).

In the literature, the nucleolus is generally defined with respect to two sets. Let XBB =

{β ∈ RA|
∑

a∈A βa = v(A)} be the set of all efficient benefit allocations. The nucleolus of

the set XBB, βNuc(v,XBB), was introduced in [Sob75], and is also called the prenucleolus.

This allocation always exists for any coalitional game, and it is unique. Moreover, it lies

in the least-core since its definition can be regarded as a stronger version of minimizing

the maximum excess among all efficient benefit allocations [MPS79]. Hence, it satisfies

efficiency, approximate stability and approximate individual rationality.

On the other hand, let XBB,IR = {β ∈ RA+|
∑

a∈A βa = v(A)} be the set of all

efficient and individually rational benefit allocations. The nucleolus of the set XBB,IR,

βNuc(v,XBB,IR), was introduced in [Sch69]. This allocation is again unique, but it exists

if and only if v(A) ≥ 0. It is guaranteed to lie in the least-core only when the coalitional

value function v is nondecreasing, since then it was proven that this allocation coincides

with βNuc(v,XBB) in [AM85].

In comparison with the Shapley value, both nucleolus allocations above are consistent

with the symmetry property but they do not satisfy the additivity property in general,

see [MPS79]. For the special class of convex/supermodular graph games, these two

nucleolus allocations coincide with the Shapley value [DP94]. For our work, the nucleolus

will refer to the nucleolus of the set XBB, since this allocation always exists for a general

coalitional game, and it is always a unique allocation from the least-core.

In terms of computational approaches, note that there are also methods to compute

the nucleolus by solving a single linear program involving either 4|A| constraints [Owe74]
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or 2|A|! constraints [Koh72]. To the best of our knowledge, there are no iterative ap-

proaches applicable, and these two methods necessitate the complete evaluation of the

coalitional value function.

Finally, as discussed in [MPT92], the lexicographic minimization property attained

by the nucleolus allocation may not be relevant to the needs of every application, and it

may even be considered hard to grasp in many cases. There could be more intuitively

acceptable properties that yield a unique point. For instance, a prominent example is the

work by [YOH82] suggesting to allocate benefits in a water supply project in proportion

to the population and the total demand of an area.
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CHAPTER 11
Benefit allocation mechanisms for

preemptive transmission allocation model

In this chapter, the first benefit allocation mechanism, which is an ex-ante process with

respect to the uncertainty realization, employs as coalitional value function the expected

cost reduction. The second mechanism is an ex-post process that can be applied only

when the scenario is unveiled, since it uses as coalitional value function the scenario-

specific cost variation.

11.1 Benefit allocations for expected cost reduction

For the ex-ante allocation mechanism, the coalitional value function v̄(C) = J(∅)−J(C) ≥
0 for all C ⊆ A is nondecreasing, since J is nonincreasing. Given the function v̄, an

efficient benefit allocation,
∑

a∈A βa(v̄) = v̄(A), would result in a cost allocation that is

budget-balanced in expectation, since

J(A) = J(∅)− v̄(A) = Es
[∑
a∈A

Jsa(∅)
]
−
∑
a∈A

βa(v̄) = Es
[∑
a∈A

Jsa(A)
]
.

While designing a benefit allocation mechanism, our goal is to achieve the three

fundamental properties, that is, efficiency, individual rationality and stability, associated

with the core KCore(v̄). However, as already mentioned, the previous results on the

nonemptiness of the core are not applicable to our problem.

The following condition is applicable to some specialized instances of v̄ above.

Proposition 7. The core, KCore(v̄), is nonempty if there exists an area a′ ∈ A such that

v̄(A \ a′) = 0.

The proof is relegated to the appendix in Section 11.3.1. Note that this condition

can only be attained in specialized instances of the preemptive model. For instance, in
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the case of a star graph (A, E), the central area would satisfy this condition, since it is

indispensable for enabling any reserve exchange.1 However, in a general graph, the core

could potentially be empty and we focus on this case in the illustrative example provided

in Section 12.1.4.

In case of an empty core, our goal is to achieve a least-core solution, which can be

perceived as the second best outcome in our context. Other than approximating the

stability property, the least-core also approximates the individual rationality property

by relaxing the inequality constraints for the singleton sets, that is, βa ≥ v̄(a)− ε∗(v̄) =

−ε∗(v̄) for all a ∈ A. The following proposition shows that the least-core is individually

rational for the coalitional game given by v̄.

Proposition 8. KCore(v̄, ε
∗(v̄)) lies in RA+.

The proof is relegated to the appendix in Section 11.3.2. It relies on the observation

that whenever the coalitional value function is given by a stochastic bilevel program

any least-core allocation violating the individual rationality would imply the existence

of an ε < ε∗, such that KCore(v̄, ε) is nonempty, contradicting the definition of the least-

core. Thus, we can use the least-core to achieve efficiency, individual rationality and

approximate stability, whenever the core is empty.

For this coalitional game, the Shapley value satisfies efficiency and individual ratio-

nality, but stability (or approximate stability) and computational tractability are not

attained. We provide an example for the stability violation of the Shapley value in Sec-

tion 12.1.1. The nucleolus allocation, on the other hand, lies in the least-core and it

satisfies efficiency, individual rationality and approximate stability.

Based on these discussions, we propose a least-core-selecting mechanism:

min
ε, β

ε s.t. ε ≥ 0, β ∈ KCore(v̄, ε). (11.1)

Let ε̂ denote the optimal value of ε for this problem. If the core is empty, we have

ε̂ = ε∗(v̄) > 0 and problem (11.1) finds a least-core allocation. On the other hand, if

the core is nonempty, we have ε̂ = 0 and problem (11.1) finds instead a core benefit

allocation, which attains properties of efficiency, individual rationality and stability.

The nucleolus allocation always forms an optimal solution pair with ε̂ to prob-

lem (11.1), since it lies in the least-core. In fact, there are in general many optimal

solutions to this problem. To this end, we will propose an additional criterion for tie-

breaking purposes.

Let βc be a desirable and a fair benefit allocation that is easy to compute but not

necessarily in the core or in the least-core. An example could be the marginal contri-

1Notice that this result has connections with the nonemptiness of the core in Definition 1 in Part I,
because the central operator was deemed indispensable for a secure grid operation via the transmission
network.
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bution of each area βm : βm
a = v̄(A) − v̄(A \ a) for all a ∈ A which requires |A| + 2

calls to problem (9.1). Receiving the marginal contribution can be regarded as a fair

outcome.2 This allocation satisfies individual rationality, dummy player and symmetry

properties. However, it is generally not efficient, and not stable. Another example could

be βeq = (v̄(A)/|A|)1> which assigns equal importance to each area. This choice requires

two calls to problem (9.1) and it satisfies efficiency and individual rationality. However,

this allocation also violates stability.

Starting from such a desirable benefit allocation, we can solve the following problem

min
β
||β − βc||22 s.t. β ∈ KCore(v̄, ε̂), (11.2)

to obtain a unique benefit allocation for problem (11.1). The uniqueness follows from

having a strictly convex objective (2-norm). Let β̂(v̄, βc) denote the optimal value of β

in problem (11.2). We define the benefit allocation β̂(v̄, βc) as the least-core-selecting

mechanism. This allocation achieves economic properties of the least-core, and also the

core if the core is nonempty, while approximating an additional criterion defined by βc.

For instance, if the marginal contribution βm is chosen, problem (11.2) would pick the

allocation β̂(v̄, βm) approximating the fairness of the marginal contribution.

Characterizing the constraint sets of problems (11.1) and (11.2) still requires expo-

nentially many solutions to (9.1). Next, we show that (11.1) and (11.2) can be solved

by a single constraint generation algorithm.

Constraint generation algorithm

Here, we describe the steps of the constraint generation algorithm at iteration k ≥ 1.

Let Fk ⊂ 2A denote the family of coalitions for which we have already generated the

coalition values. The algorithm first obtains a candidate solution by solving a relaxed

version of problem (11.1) as follows:

min
ε, β

ε s.t. ε ≥ 0, β ≥ 0,
∑
a∈A

βa = v̄(A),
∑
a∈C

βa ≥ v̄(C)− ε, ∀C ∈ Fk. (11.3)

Let the optimal solution be denoted by εk, clearly, ε̂ ≥ εk. Solve the following as a

tie-breaker:

min
β
||β − βc||22 s.t. β ≥ 0,

∑
a∈A

βa = v̄(A),
∑
a∈C

βa ≥ v̄(C)− εk, ∀C ∈ Fk. (11.4)

2This allocation coincides with the Vickrey-Clarke-Groves mechanism. Part I discussed how this
allocation ensures that truthfully reporting the preferences is a dominant strategy Nash equilibrium in
an auction setting.
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Denote the optimal benefit allocation for problem (11.4) by βk. This allocation would

form an optimal solution pair to problem (11.3) with εk. In principle, F1 can potentially

be chosen as an empty set, by setting ε1 equal to zero and removing the last set of

constraints in (11.4).

Given a candidate allocation βk, we can then generate the coalition with the max-

imum stability violation by solving the following problem, which treats βk as a fixed

parameter:

max
C⊆A

v̄(C)−
∑
a∈C

βka . (11.5)

Denote the optimal solution by Ck, and the optimal value by ηk. Using the fact that the

coalitional value function v̄ is given implicitly by the MILP version of the preemptive

model (9.1), we can show that problem (11.5) has an equivalent MILP reformulation,

which can be solved efficiently by off-the-shelf optimization solvers. Using this approach,

we eliminate the need for evaluating v̄(C) for all C ⊆ A to solve problem (11.5). This

MILP reformulation is relegated to the appendix in Section 11.3.3. Finally, this problem

generates the coalition value v̄(Ck) = ηk +
∑

a∈Ck β
k
a , and we add Ck to Fk for the next

iteration.

In order to define a stopping criterion ensuring that the iterative solution of prob-

lems (11.3), (11.4) and (11.5) converges to the optimal solution of problem (11.2), we

need the following two observations. First, if εk > 0 in problem (11.3), then there exists

a set C ∈ Fk such that v̄(C) −
∑

a∈C β
k
a = εk, which implies that ηk ≥ εk. On the other

hand, if εk = 0, by setting C = A we can show that ηk ≥ v̄(A) −
∑

a∈A β
k
a = 0 = εk.

Based on these remarks, we have ηk ≥ εk for any iteration k.

The iterative solution of problems (11.3), (11.4) and (11.5) terminates when ηk = εk.

In this case, problem (11.5) provides a certificate that the pair (εk, βk) is a feasible

solution to problem (11.1). Note that this pair is also optimal to a relaxed version of

problem (11.1), given by problem (11.3). This concludes that (εk, βk) is optimal for

problem (11.1). Observing that εk = ε̂ and using a similar reasoning, we conclude that

βk is the optimal solution to problem (11.2). Hence, the algorithm converges.

In the intermediate solution points of the iterative process, we have ηk > εk and

consequently Ck /∈ Fk according to the optimality of εk for problem (11.3). We then

extend the family of generated coalitions by Fk+1 = Fk∪Ck until convergence is achieved.

Since there are finitely many coalitions to be generated, the algorithm converges after

a finite number of iterations. As a remark, the algorithm would not generate any set

from F1, the full set, the empty set, and the singleton sets (since we enforce β ≥ 0 in

problem (11.3)). In practice, even when there are many areas, the algorithm requires

the generation of only several coalition values. We show this in the numerical results.

We summarize this iterative algorithm in Algorithm 2.
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Algorithm 2 Constraint Generation Algorithm for the Least-Core-Selecting Mechanism

Initialize: Compute v̄(A), and βc, set k = 0, η0 = 1, ε0 = 0, initialize F1 (e.g., F1 = ∅).
1: while ηk > εk do
2: Update k = k + 1.
3: Obtain εk and βk by solving (11.3) and (11.4)
4: Obtain ηk, Ck, and v̄(Ck) by solving (11.5).
5: Set Fk+1 = Fk ∪ Ck.
6: end while
7: return βk = β̂(v̄, βc).

11.2 Benefit allocations per scenario

Allocating benefits for the expected cost reduction does not guarantee that the resulting

cost allocation satisfies budget-balance in every scenario. Having a surplus or a deficit

might be undesirable, since this may necessitate a large financial reserve to buffer the

fluctuations in the budget. To address this issue, here we focus on the allocation of the

scenario-specific cost variation, Js(∅) − Js(A). The coalitional value function in this

case is given by vs(C) = Js(∅) − Js(C), for all C ⊂ A. Observe that the set function

vs is not necessarily nondecreasing, while it can also map to negative reals, since the

preemptive transmission allocation model does not guarantee that Js(C) ≤ Js(∅) holds.

Given the function vs, an efficient benefit allocation mechanism,
∑

a∈A βa(v
s) = vs(A),

would result in a cost allocation that is budget-balanced in scenario s, since

Js(A) = Js(∅)− vs(A) =
∑
a∈A

Jsa(∅)−
∑
a∈A

βa(v
s) =

∑
a∈A

Jsa(A).

Aiming at establishing a per-scenario benefit allocation, our goal now is to achieve the

properties of the scenario-specific core KCore(v
s). However, neither the previous results

nor Proposition 7 apply to this core to prove that it is nonempty as it can be affirmed

by the following result.

Proposition 9. KCore(v
s) is empty if there exists C ⊂ A such that vs(A) < vs(C).

The proof is relegated to the appendix in Section 11.3.4. In practice, this condition

above would prevent the formation of the grand coalition A, as shown in the example

of Section 12.1.1. The coalition value vs(A) being negative is a special case of Proposi-

tion 9, since we would then have vs(A) < vs(a) = 0 for all a ∈ A.

We see that it may not be realistic to achieve all three fundamental properties, and

we should instead aim for the least-core KCore(v
s, ε∗(vs)). Note that in this case Proposi-

tion 8 is not applicable and the least-core would instead achieve efficiency, approximate

individual rationality, and approximate stability.
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For the coalitional game arising from the function vs, the Shapley value satisfies

efficiency, but individual rationality, stability, and computational tractability are not

attained. On the other hand, the nucleolus allocation provides a least-core allocation.

Note that, in contrast to the expected coalitional value function v̄, the function vs is

not implicitly given by an optimization problem. Instead, it is an ex-post calculation

from the sequential electricity market after the uncertainty realization. As a result, the

value function vs is not amenable to a constraint generation approach. Thus, we look at

an alternative approach that can be computed in a computationally tractable manner.

This approach will extend our results from Section 11.1, showing that any efficient benefit

allocation for the expected cost reduction gives rise to an efficient scenario-specific benefit

allocation that results in budget-balance in every scenario.

Let β(v̄) ∈ RA+ be an efficient individually rational benefit allocation for the ex-

pected cost reduction, computed prior to the uncertainty realization. We then define the

following scenario-specific benefit allocation, β(vs, β(v̄)) ∈ RA,

βa(v
s, β(v̄)) =

βa(v̄)

v̄(A)
vs(A), ∀a ∈ A. (11.6)

The benefit βa(v
s, β(v̄)) for each area a is computed based on an ex-post computation

of vs(A) for the specific uncertainty realization s. Given β(v̄), this definition does not

require any further solutions to the preemptive transmission allocation model or the se-

quential market. The term βa(v̄)/v̄(A) ∈ [0, 1] can be considered as a percentage share

of profits/losses depending on the sign of vs(A). (This also holds for any other weighting

from the |A|-simplex.) Notice that since
∑

a∈A βa(v
s, β(v̄)) = vs(A), the efficiency prop-

erty holds. Moreover, having Es[βa(vs, β(v̄))] = βa(v̄) implies that the scenario-specific

benefit allocation β(vs, β(v̄)) satisfies in expectation the other fundamental properties of

the original benefit allocation β(v̄).

Given the above reasoning, we propose a scenario-specific least-core-selecting mech-

anism, which builds upon the least-core-selecting benefit allocation mechanism from

problems (11.1) and (11.2) to define β(vs, β̂(v̄, βc)) ∈ RA according to the procedure

above. We have previously showed that the allocation β̂(v̄, βc) satisfies individual ratio-

nality and approximate stability, while enabling a tractable computation via a constraint

generation algorithm. In a similar vein, the scenario-specific version β(vs, β̂(v̄, βc)) sat-

isfies individual rationality and approximate stability in expectation, while still enabling

a tractable computation. We illustrate this approach in Chapter 12. As a remark, it is

possible to use the Shapley value and the nucleolus allocation in a similar manner. The

comparisons of these mechanisms in the previous section would remain unchanged.

In contrast to the least-core-selecting mechanism β̂(v̄, βc), the scenario-specific benefit

allocation β(vs, β̂(v̄, βc)) would lie in the least-core only in expectation and thus the

benefits vary under different scenarios. This implies, in turn, that coalition member

areas are now exposed to risk. In case some of these areas are risk-averse endowed with
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a risk measure, we cannot guarantee that each area’s risk adjusted benefits lie in the

least core, which can potentially hamper their willingness to participate. Defining ways

to incorporate risk measures is part of our future research directions.

Note that scenario-specific benefit allocations are implemented only after obtaining

the perfect knowledge of the uncertainty realization, that is, when the actual system

imbalance is known. This information is available for the balancing market clearing,

which is consistent with the existing market models. Notice that if this realization is not

within the scenario set, that is, s∗ /∈ S, we can still compute the benefits defined in equa-

tion (11.6). This is true because we can compute vs
∗
(A) = Js

∗
(∅)−Js∗(A), where Js

∗
(∅)

and Js
∗
(A) are the market costs computed from the reserve, day-ahead, and balancing

markets. These computed benefits would still incentivize the areas to participate in the

preemptive model, if all the areas agree in advance that the scenario set describes how

they perceive the distribution of the uncertainty at the stage of transmission allocation

process, which takes place before the reserve market clearing. The desirable properties

of the least core would hold if the expectation is taken with respect to the scenario set,

however, these properties may not hold with respect to the true distribution.

11.3 Appendix

11.3.1 Proof of Proposition 7

Define β̂ ∈ RA such that β̂a′ = v̄(A), and β̂a = 0 for all a 6= a′. We prove by showing that

this allocation lies in the core KCore(v̄). The equality constraint in KCore(v̄) is satisfied

by definition. Notice that the condition given in the proposition, v̄(A \ a′) = 0, implies

that v̄(C \ a′) = 0 for all C ⊂ A. Using this, inequality constraints are divided into two

sets of constraints as
∑

a∈C β̂a ≥ v̄(C), for all C 3 a′, and
∑

a∈C β̂a ≥ 0, for all C 63 a′.
The first set of inequalities are satisfied, since v̄(A) ≥ v̄(C), for all C 3 a′. The second

set of inequalities are satisfied, since β̂ ∈ RA+. This concludes that β̂ ∈ KCore(v̄), and

hence the core is nonempty. �

According to the proof above, an area that satisfies the condition in Proposition 7 has

a right to veto any coalitional deviation that does not include it. The proof constructs

the benefit allocation that assigns all the expected cost reduction to this area and then

shows that the remaining areas do not have any incentives to form coalitions.

11.3.2 Proof of Proposition 8

This proof is an application of the proof method in [MPS79, Theorem 2.7] by taking into

account that our coalitional value function is defined by v̄(C) = J(∅)− J(C) ≥ 0, for all

C ⊂ A. We prove by contradiction. Let β̂ ∈ KCore(v̄, ε
∗(v̄)) be a benefit allocation with
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β̂a′ < 0. In this case, we show that there exists ε < ε∗(v̄) such that KCore(v̄, ε) 6= ∅. This

would contradict the definition of the least-core.

Since β̂ ∈ KCore(v̄, ε
∗(v̄)) and v̄(a′) = J(∅) − J(a′) = 0, we have 0 > βa′ ≥ v̄(a′) −

ε∗(v̄) = −ε∗(v̄). Notice that, for any C 63 a′, we have
∑

a∈C β̂a ≥ v̄(C ∪ a′) − ε∗(v̄) −
βa′ by adding and subtracting βa′ , and by using the fact that ε∗(v̄) > 0 for the case

corresponding to C ∪a′ = A. Since v̄ is nondecreasing and βa′ < 0, we obtain
∑

a∈C β̂a >

v̄(C)− ε∗(v̄).

Notice that we can always find a small positive number δ such that
∑

a∈C β̂a−|C|δ >
v̄(C)−ε∗(v̄)+δ holds for any C 63 a′. Next, we show thatKCore(v̄, ε

∗(v̄)−δ) is nonempty for

this particular choice. Define β̄ such that β̄a = β̂a− δ for all a 6= a′and β̄a′ = β̂a′ + (|A|−
1)δ. This new allocation β̄ clearly satisfies the equality constraint in KCore(v̄, ε

∗(v̄)− δ).
For inequality constraints C 63 a′, we have

∑
a∈C β̄a =

∑
a∈C β̂a − |C|δ > v̄(C)− ε∗(v̄) + δ,

where the strict inequality follows from the definition of δ. For inequality constraints

C 3 a′, we have
∑

a∈C β̄a ≥
∑

a∈C β̂a+δ ≥ v̄(C)−ε∗(v̄)+δ. Hence, β̄ ∈ KCore(v̄, ε
∗(v̄)−δ),

in other words, KCore(v̄, ε
∗(v̄)− δ) 6= ∅. This contradicts KCore(v̄, ε

∗(v̄)) being the least-

core. �

11.3.3 MILP reformulation of problem (11.5)

Since we have v̄(C) = J(∅)−J(C), optimal solutions to problem (11.5) coincide with the

ones to the following problem:

min
C⊆A

J(C) +
∑
a∈C

βka . (11.7)

The problem above is given by the following MILP:

J̄(βk) = min
ΦkPR

∑
i∈I

(
C+
i r

+
i + C−i r

−
i

)
+
∑
i∈I

Cipi

+
∑
s∈S

πs

[∑
i∈I

Ci
(
p+
is − p−is

)
+
∑
n∈N

Cshlshns

]
+
∑
a∈C

baβ
k
a (11.8a)

s.t.

ba ∈ {0, 1}, ∀a ∈ A, (11.8b)

(1− bar(e))χe ≤ χ′e ≤ (1− bar(e))χe + bar(e) and

(1− bas(e))χe ≤ χ′e ≤ (1− bas(e))χe + bas(e),∀e ∈ E , (11.8c)

Constraints (8.3b)− (8.3f) and δ1s = 0, δns free, ∀n ∈ N , ∀s ∈ S, (11.8d)

− bar(`)M ≤ f`s − f` ≤ bar(`)M and

− bas(`)M ≤ f`s − f` ≤ bas(`)M, ∀` ∈ ∪e∈E(χ)Λe, ∀s ∈ S, (11.8e)
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Constraints (9.1f) and (9.1g). (11.8f)

where M is a large positive number, Φk
PR = {ba,∀a ∪ χ′e, ∀e ∪ ΦR ∪ ΦD ∪ Φs

B,∀s} is the

set of primal optimization variables. For the sake of brevity, the KKT conditions and

the Lagrange multipliers of the lower-level optimization problems are omitted, see Sec-

tion 9.4.2.

In problem (11.8), the parameter βka can be considered as the activation fee of area a

for participating in the preemptive model. Given such activation fees, problem (11.8)

then finds the optimal set of participants for the preemptive model. Notice that this

problem involves |A| more binary variables than problem (9.1). In Section 12.2, the

numerical case studies illustrate that the computation times are still similar for both

problems. Let {b̂a,∀a} denote the optimal binary solution. Finally, we have Ck = {a ∈
A | b̂a = 1} and v̄(Ck) = J(∅)− (J̄(βk)−

∑
a∈Ck β

k
a).

11.3.4 Proof of Proposition 9

Assume β ∈ KCore(v
s). We now prove that this yields a contradiction. Notice that

KCore(v
s) ⊂ RA+ since βa ≥ vs(a) = 0. The scenario-specific core also implies∑

a∈A\C

βa ≤ vs(A)− vs(C) < 0.

The inequality above follows from combining
∑

a∈A βa = vs(A) and
∑

a∈C βa ≥ vs(C).
We obtained a contradiction. �
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CHAPTER 12
Numerical case studies

In this chapter, we first use an illustrative three-area nine-bus system to provide and dis-

cuss benefit allocation mechanisms under different system configurations and stochastic

renewable in-feed. We then apply the models and the benefit allocation mechanisms

in a more realistic case study. In our numerics, all problems are solved with GUROBI

7.5 [Gur16] called through MATLAB on a computer equipped with 32 GB RAM and a

4.0 GHz Intel i7 processor.

12.1 Illustrative three-area examples

We describe a base model, which will be subject to several modifications in the system

configuration and penetration of stochastic renewables to discuss the resulting changes

in the benefit allocations described in Chapter 10 and Chapter 11.

We consider the nine-bus system depicted ine Figure 12.1 which comprises three

areas. The intra-area transmission network consists of AC lines with capacity and reac-

tance equal to 100 MW and 0.13 p.u., respectively. The four tie lines between areas 1

and 2, and between areas 2 and 3 are AC lines with capacity of 20 MW, and reactance

of 0.13 p.u. each.

n3 n6 n9

n1 n4 n7n2 n5 n8

D3 D6 D9i3 i6 i9

i1 i4 i7i2 i5 i8

j3 j6 j9

Area 1 : a1 Area 2 : a2 Area 3 : a3Link e1 Link e2

Figure 12.1: Nine-node three-area interconnected power system
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The day-ahead price offers and the generation capacities of conventional units are

provided in Table 12.1. Units i1, i4, and i7 are inflexible, that is, these units cannot

change their generation level during real-time operation, while all remaining units are

flexible offering half of their capacity for upward and downward reserves provision at a

cost equal to 10% of their day-ahead energy offer C. The cost of load shedding Csh is

equal to 1000e/MWh for the inelastic electricity demands D3 = 220 MW, D6 = 190

MW, and D9 = 220 MW.

Table 12.1: Generator data

Unit i1 i2 i3 i4 i5 i6 i7 i8 i9
C (e/MWh) 20 30 40 30 40 50 25 35 45
P cap (MW) 120 50 50 120 50 50 120 50 50

Flexible No Yes Yes No Yes Yes No Yes Yes

In addition, there are three wind power plants, j3, j6, and j9, with installed capacities

50, 80, and 50 MW, respectively. The stochastic wind power is modeled using two

scenarios, s1 and s2, listed in Table 12.2 with probability of occurrence 0.6 and 0.4,

respectively. The expected wind power production W j for j3 is equal to 42 MW, for

j6 is equal to 70.4 MW, and for j9 is equal to 42 MW. Wind power price offers and

subsequently the wind power spillage costs are considered to be zero.

Table 12.2: Wind scenarios as percentage of the nominal value of the power plant

Wind power plant j3 j6 j9

Scenario s1 1 0.8 1
Scenario s2 0.6 1 0.6

Following the prevailing approach in which regional capacity markets are cleared

separately, we set the percentage of transmission capacity allocated to reserves equal

to χ = 0. Reserve requirements for each area are calculated based on the probabilistic

forecasts, such that the largest negative and positive deviations from the expected wind

power production foreseen in the scenario set are covered by domestic resources. For in-

stance, the upward and downward area reserve requirements for area 1 are calculated as,

RR+
a1

= W j3 − min{Wj3s1 ,Wj3s2} = 12 MW, and RR−a1 = max{Wj3s1 ,Wj3s2} −W j3 =

8 MW. For the other areas, these values are given as RR+
a2

= 6.4 MW, RR−a2 = 9.6 MW,

RR+
a3

= 12 MW, RR−a3 = 8 MW.

The market costs and transmission allocations resulting from the preemptive model

are provided in Table 12.3. The preemptive model reallocated transmission resources

from the day-ahead energy trading to the reserve capacity trading, increasing the costs

in the day-ahead market. This reallocation yields an expected system cost of 13,238.0e,

which translates to 25.9% reduction compared to the cost of 17,871.2e from the existing

sequential market. Under the existing setup with χ = 0, the uncertainty realization s2
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leads to significant load shedding in the balancing stage. In this scenario, even though

we have enough reserve capacity, we are not able to deploy it due to network congestion.

This problem is avoided by enabling reserve exchange when the preemptive model is

implemented. Quantities assigned to each generator at all trading floors are provided

in the appendix in Section 12.3.1.

Table 12.3: Comparison of market costs (in e)

Model Existing Seq. Market Preemptive Model
[χe1 , χe2 ] [0, 0] [0, 0.0592]

Reserve capacity cost 194.0 191.6
Day-ahead cost 13,087.2 13,120.2

Balancing cost in s1 1,150.0 −410.7
Balancing cost in s2 9,750.0 431.5

Total cost in s1 14,431.2 12,901.2
Total cost in s2 23,031.2 13,743.4

We now provide a budget-balanced cost allocation method for the existing sequential

market. For this method, we assume that all three trading floors are cleared by marginal

pricing mechanisms (zonal prices for the reserve capacities, nodal prices for the day-ahead

and balancing energy services), albeit, similar methods can be applied also to other pay-

ment mechanisms. This method assigns producer and consumer surpluses, and conges-

tion rents of the intra-area lines to their corresponding areas, and divides the congestion

rents of the tie lines equally between the adjacent areas, see [Kri+18]. budget-balance

holds since the market cost is given by the opposite of the sum of producer and con-

sumer surpluses, and congestion rent for each trading floor. These values are summarized

in the appendix in Section 12.3.1. We refer to Table 12.4 for the resulting cost allocations.

Area 1 is allocated a large cost in scenario s2 because of the load shedding in node 3.

Table 12.4: Cost allocation for each area in the existing sequential market (in e)

Areas Area 1 Area 2 Area 3
Js1a (∅) 4,348.4 9,853.8 229.0
Js2a (∅) 16,348.4 3,453.8 3,229.0

12.1.1 Comparison of the different benefit allocations

Benefit allocation mechanisms for the expected cost reduction are provided in Fig-

ure 12.2. The core is nonempty since area 2 satisfies the veto condition in Proposition 7.

Marginal contribution benefit allocation βm is not in the core since it is not efficient. We

provide this allocation because it can be regarded as a fair outcome. Observe that the

marginal contributions of areas 1 and 2 are larger than that of area 3. This is because
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area 1 has low cost generators and area 2 is indispensable for any coordination consid-

ering that in the current network configuration, in which areas 1 and 3 are not directly

interconnected, area 2 has to act as an intermediary for any reserves exchange.

Figure 12.2: Benefit allocations for the three-area system (in e)

The Shapley value βShapley is not in the core. Among the core constraints, combining∑
a∈A βa = v(A) with

∑
a∈A\â βa ≥ v(A\ â) implies that βâ ≤ βm

â = v(A)− v(A\ â), or

equivalently, no area can receive more than its marginal contribution in the core. This

condition is violated for the Shapley value assigned to area 3. The coalitional value

function is also not supermodular, since

v̄({1, 2, 3})− v̄({1, 2}) 6≥ v̄({2, 3})− v̄({2}) =⇒ 4,633.1− 4,460.5 6≥ 826.8− 0.

On the other hand, the nucleolus βNuc is in the core, however, the lexicographic minimiza-

tion results in allocating benefits to area 3. We later see that there is a core allocation

that better approximates the marginal contribution in terms of minimizing the Euclidean

distance by allocating no benefits to area 3.

Finally, we employ our approach approximating two different criteria, that is, marginal

contribution and equal shares, with corresponding allocations being denoted as β̂(v̄, βm))

and β̂(v̄, βeq)), respectively. These two outcomes are different from each other, and they

approximate their respective fairness consideration in an effective manner. This crite-

rion should be decided either by the regulator or it should be based on the consensus

of participating areas. In the following, we will approximate the marginal contribution,

since similar discussions can be made for any other criteria.

Next, we study the budget-balance per scenario for the cost allocation in the preemp-

tive model. For all efficient benefit allocations of the expected cost reduction, that is, all

methods except the marginal contribution allocation, the budget
∑

a∈A J
s
a(A) − Js(A)

remains unchanged. In scenario s1, there is a deficit of 3,103.1e, whereas in scenario s2

there is a surplus of 4,654.7e, thus budget-balance is obtained in expectation.
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In the coalitional game arising from the scenario-specific cost variation, despite that

KCore(v̄) is nonempty, the core KCore(v
s1) is empty, since the condition in Proposition 9

is satisfied by

vs1({1, 2}) = Js1(∅)− Js1({1, 2})
= 14,431.2− 12,884.6

> 14,431.2− 12,901.2

= Js1(∅)− Js1({1, 2, 3}) = vs1({1, 2, 3}).

For scenario s2, this condition is not satisfied and KCore(v
s2) is nonempty, since the

coalitional game is supermodular.

To address the budget-balance, we now employ the proposed scenario-specific least-

core-selecting mechanism. The scenario-specific allocations generated by β̂(v̄, βm) for

the expected cost reduction are given by β(vs1 , β̂(v̄, βm)) = [628.5, 901.5, 0]> and β(vs2 ,

β̂(v̄, βm)) = [3,815.2, 5,472.6, 0]>. These allocations result in a budget-balanced cost

allocation under both scenarios, since they sum up to the scenario-specific cost variations

in Table 12.3.

We now illustrate the scenario-specific least-core-selecting mechanism in an out-of-

sample wind scenario s3 as follows. In this scenario, the wind power plant productions

of j3, j6, and j9 are given by 0.7, 0.8, and 1, respectively. All the other parameters

remain unchanged. We computed Js3(∅) = 18,428.7 and Js3({1, 2, 3}) = 13,394.4.

The scenario-specific allocations generated by β̂(v̄, βm) are given by β(vs3 , β̂(v̄, βm)) =

[2,068.0, 2,966.3, 0]>. Clearly, this benefit allocation results in a budget-balanced cost

allocation even if this scenario was not included in the scenario set. However, since

our scenario set is not modeling the uncertainty exactly, we cannot guarantee that the

properties pertaining to the least core are still satisfied in expectation. In the remain-

der, we focus our efforts on the game arising from the expected cost reduction, since we

can always map the benefit allocations to the scenario-specific case using our proposed

approach.

The computational comparison for the three benefit allocation mechanisms for the

expected cost reduction can be summarized as follows. The Shapley value is computed

in 39.6 seconds, whereas the nucleolus is computed in 41.3 seconds. On the other hand,

the least-core allocations for marginal contribution and equal shares are computed in 6.3

and 6.7 seconds, respectively. Following our previous discussions, the computation time

difference between our methods and the others will be even more significant when there

are more areas. Because of this reason, the computational methods will be studied and

discussed in detail for the larger realistic case study.

127



12.1.2 Impact of the network topology on benefit allocations

In this example, our goal is to illustrate how the network topology and the specific

location of each area in the electricity network affects the benefits allocated to this area.

To this end, we modify our base model by removing the wind generator from area 2

and by changing all the units in area 2 to be inflexible. Benefit allocations for the

expected cost reduction are provided in Figure 12.3. We highlight that removing a zero

marginal cost wind generator increased the costs globally. In this setup, area 2 continues

to receive the highest benefits under every allocation mechanism, even though this area

is not capable of directly participating in any reserve exchange. Nevertheless, the role

of area 2 in this network arrangement is instrumental, since it enables the coordination

between areas 1 and 3 because of its location in the area graph.

Figure 12.3: Benefit allocations after removing the flexibility and the uncertainty from
area 2 (in e)

As a remark, the core is nonempty, since the condition in Proposition 7 is satisfied.

The Shapley value is also in the core, since we verified that the coalition value function

is supermodular.

12.1.3 Impact of the uncertainties on benefit allocations

Here, we aim to assess the impact of the spatial correlation of the wind power forecast

errors on the outcome of the different benefit allocation mechanisms that we consider in

this work. In order to eliminate the impact of the network topology (cf. Section 12.1.2),

we connect areas 1 and 3 via two AC lines. The first connects nodes 1 and 8, and the

second connects nodes 3 and 9, each with transmission capacity of 20 MW, and reactance

of 0.13 p.u. The area graph is not a star anymore, and Proposition 7 is not applicable.

However, we verified that the core is still nonempty.

The resulting benefit allocations for the expected cost reduction are provided in Fig-

ure 12.4, which shows that areas 1 and 2 receive most of the benefit under every al-

128



location mechanism. This outcome can be explained considering that these areas have

complementary wind power production scenarios, that is, the corresponding wind power

scenarios exhibit negative correlation. Moreover, area 1 has low cost generation. Finally,

notice that the total benefits are greater than the ones from the example in Section 12.1.1.

This follows since compared to Section 12.1.1 expected system cost is increased by 49%

(26,687.9e) in the existing sequential market due to additional network dependencies,

whereas this cost is decreased by 0.01% (13,161.0e) in the preemptive model.

Figure 12.4: Benefit allocations after connecting areas 1 and 3 (in e)

12.1.4 Benefit allocations in the case of an empty core

A natural question that arises in the context of this work is how the different benefit

allocation mechanisms perform when we have an empty core, which can occur when

the condition in Proposition 7 is not satisfied. To this end, we modify the example

in Section 12.1.3 by changing the wind scenarios.

The stochastic wind power generation is modeled using two scenarios, s1 and s2 with

probability of occurrence 0.8 and 0.2. We have 1 and 0.8 for j3, 0.4 and 1 for j6, 0.4 and

1 for j9 as the percentages of the nominal values of the plants, respectively. Hence, the

corresponding expected wind power productions for j3 is equal to 48 MW, for j6 is equal

to 41.6 MW, and for j9 is equal to 26 MW. The reserve requirements are recomputed

accordingly. Since the uncertainty is significantly increased, we allow the units i1, i4,

and i7 to be flexible in order to ensure feasibility.

The resulting benefit allocations for the expected cost reduction are provided in Fig-

ure 12.5. We observe that the nucleolus and the least-core-selecting benefit allocation

coincide. For both allocations, the maximum violation of a stability constraint is given

by ε∗ = 924.9e, where ε∗(v̄) = min{ε |KCore(v̄, ε) 6= ∅}. On the other hand, the maxi-

mum stability violation for the Shapley value is 2,752.0e. In other words, if the Shapley

value is utilized, there are 3 times the profits to be made by not participating in the pre-
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emptive model compared to the case implementing a least-core allocation. We see that

all benefit allocation mechanisms allocated the most benefits to area 1, since it has low

cost generation and also its wind profile complements the wind profiles of areas 2 and 3.

Figure 12.5: Benefit allocations in case the core is empty (in e)

12.2 Case study based on the IEEE RTS

We now consider a six-area power system that is based on the modernized version of

the IEEE Reliability Test System (RTS) presented in [Pan+14]. The definitions of the

areas correspond to the ones proposed by [DDM18] and [JKP17], and they are provided

in the appendix in Section 12.3.2. The nodal positions, types, generation capacities and

offers from conventional and wind power generators, and transmission line parameters

are provided in the online repository [Kar+19b].

Due to their limited flexibility, nuclear, coal and integrated gasification combined

cycle (IGCC) units do not provide any reserves. On the other hand, open and combined

cycle gas turbines (OCGT and CCGT) offer 50% of their capacity for upward and down-

ward reserves at a cost equal to 20% of their day-ahead energy offer. Wind power pro-

duction is modeled using a set of 10 equiprobable scenarios obtained from [Buk17]. This

scenario set is originally generated according to the methodology explained in [PP08],

and it captures the spatial correlation of forecast errors over the different wind farm lo-

cations, see also Figure 12.6 and system dataset in [Kar+19b]. In our case study, areas 2,

4, and 5 are assumed to be close to each other, and hence the corresponding wind power

production exhibits higher correlation. Evaluation of this aspect for different areas will

be shown to be a useful predictor for the benefit allocation methods. The demand is

inelastic with the large cost of load shedding 1,000e/MWh. In the existing sequential

market, the percentage of transmission capacity allocated to reserves exchange is set

to χ = 0, while the reserve requirements are calculated according to the methodology
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discussed in Section 12.1.
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Figure 12.6: The Pearson correlation coefficients for the wind profiles of all areas

Table 12.5 compares the costs and transmission allocations resulting from the existing

market with χ = 0 and the preemptive model where χ is a decision variable. The pre-

emptive model yields an expected cost of 87,594.8e, which translates to 2.3% reduction

compared to 89,696.4e from the existing market. This can be explained by 2,097.6e
reduction in the expected balancing cost obtained by eliminating load shedding. Using

the approach in Section 12.1, we provide the expected values for a budget-balanced cost

allocation for the existing sequential market in Table 12.6.

Table 12.5: Comparison of market costs (in e)

Model Existing Seq. Market Preemptive Model
χ = [χe1 , . . . , χe7 ] [0, 0, 0, 0, 0, 0, 0] [0, 0.359, 0, 0.038, 0, 0, 0]

Reserve capacity cost 2,392.5 2,389.4
Day-ahead cost 90,734.2 90,733.3

Expected balancing cost −3,430.3 −5,527.9
Expected cost 89,696.4 87,594.8

Table 12.6: Expected cost allocation for each area in the existing sequential market (in
e)

Areas Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
Es[Jsa(∅)] 8,966.1 25,252.6 10,085.2 10,208.2 25,151.1 10,033.2

The results of the different benefit allocation mechanisms for the expected cost re-

duction are provided in Figure 12.7. We verified that the core is nonempty even though

the condition in Proposition 7 is not satisfied. Marginal contribution benefit allocation is
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not in the core since it is not efficient, whereas the Shapley value is not in the core since

areas 3, 5, and 6 receive more than their marginal contributions. The nucleolus and the

least-core-selecting benefit allocation mechanisms result in core allocations. Notice that

our approach provides a different benefit allocation depending on the criteria considered.

The nucleolus allocation is not consistent with the marginal contribution allocation since

it allocates more benefits to area 4 compared to area 1.

All mechanisms allocated the most benefits to area 2, since it has a central role by

being well-connected in the area graph. On the other hand, areas 1 and 4 are also

allocated a significant amount, since they are the two largest areas with wind profiles

complementing each other as it is shown in Figure 12.6.

Figure 12.7: Benefit allocations for the IEEE RTS case study (in e)

We now provide a discussion on the computational comparison for the different benefit

allocation mechanisms. The coalitions J(∅) and J(A) are precomputed to obtain v(A),

in 19.4 and 35.4 seconds, respectively. The calculation of the marginal contribution

allocation, which involves solving the preemptive model (9.1) for coalitions {A\{a}}a∈A,

requires 119.7 seconds. The Shapley value requires solving the preemptive model (9.1)

for all coalitions except the singleton sets, the empty set, and the full set, that is,

26−6−1−1 = 58 coalitions, and the resulting computational time is 1,264.6 seconds. The

least-core-selecting mechanism with the marginal contribution criteria requires only a

single iteration from the constraint generation algorithm, which takes 84.8 seconds. This

constraint generation algorithm converges fast, since in this case the algorithm starts with

an initial family of coalitions (F1) given by the coalitions that were used to compute the

marginal contribution allocation. On the other hand, the least-core-selecting mechanism

with the equal shares criteria requires four iterations from the constraint generation

algorithm, which takes 150.4 seconds. Notice that, in this case, the initial family of

coalitions is an empty set. Finally, using the method proposed in [Kop67; Fro97], the

nucleolus is computed by solving 15 linear programs sequentially to find 21 coalitional

132



equality constraints that fully describe the nucleolus allocation. However, this method

scales exponentially with the number of areas considered in the application, since it needs

the complete list of coalition values. This computation takes 1,266.2 seconds.1

Next, we provide two modifications to the IEEE RTS case study.

12.2.1 Impact of the wind power penetration levels on benefit

allocations

The wind power penetration level of an area is defined as the ratio between the expected

wind power production and the total demand of that area. In this example, we change

the level of wind power penetration for area 1. The default value is given by 30% from the

previous section. The resulting benefits allocations for area 1 are provided in Figure 12.8.

For all efficient benefit allocation mechanisms, observe that the benefits initially increase

and then decrease with the wind power penetration level.

It is generally hard to anticipate such changes in the benefits, since the wind power

generation has two impacts acting in opposite directions. On the one hand, it has null

production cost bringing in low cost energy to the coalition. On the other hand, it

increases the need for the reserve and balancing services. As a remark, in this study, the

core is empty for the levels 15% and 22.5%.

Figure 12.8: Benefit allocations of area 1 for the different levels of wind power penetration
in area 1 (in e)

12.2.2 Impact of the available flexibility on benefit allocations

In order to assess the impact of available flexibility, we double the capacities of all flexible

generators in area 4. The changes in the benefits allocations are provided in Figure 12.9,

1As an alternative, the iterative method in [HHJ95] would require running 15 separate constraint gen-
eration algorithms, increasing significantly the computational time compared to the least-core-selecting
mechanism, since each algorithm run requires at least one iteration of constraint generation.
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denoted by ∆β. The figure shows that the benefits allocated to area 4 are increased

under every allocation mechanism compared to Figure 12.7. All mechanisms account

for the flexibility offered by the generators in area 4 both in the reserve capacity and

the balancing markets. Note that an increase in the capacity of flexible generators

reduces also the day-ahead system cost both with or without the implementation of the

preemptive model.

Finally, predicting the changes in the benefits of the other areas is quite difficult.

We observe that this additional flexibility replaced the flexibility in areas 1 and 2, while

increasing the contributions of areas 3 and 5 in subcoalitions.

Figure 12.9: The changes in benefit allocations after increasing the flexibility in area 4
(in e)

12.3 Appendix

12.3.1 Market outcomes for three-area example

The market outcomes for the existing sequential market model and the preemptive model

are provided in Table 12.7. For the preemptive model, the values of r− and r+ shown

in parenthesis indicate the amount of reserves destined to meet the requirements of the

neighboring areas. Notice that inflexible generators and wind power generators are not

capable of providing any reserves. In the day-ahead stage, the quantities correspond

to pi and wj for conventional units and wind power generators, respectively. Because

of the null production costs, wind power generators are always utilized at their full

capacity given by the expected value of the stochastic process. In the balancing stage,

the quantities correspond to the changes in the production levels with respect to the

ones assigned at the day-ahead stage. Specifically, they are given by (p+
is − p−is) and

(Wjs−wj−wspill
js ) for conventional units and wind power generators, respectively. It can
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be verified that there is 31 MW and 15.6 MW curtailment in the wind power production

in the existing market model for scenarios s1 and s2. This is completely eliminated when

the preemptive model is used.

Observe that the implementation of the preemptive model results in a higher reserve

allocation for the lower cost generator at node 8. Consequently, the day-ahead market

takes these new reserve quantities into account while deciding on the day-ahead energy

quantities. Notice that there is 9 MW load shedding in scenario s2 in the existing market

model. The preemptive model ensures that we do not resort to any costly load shedding

in both scenarios.

Table 12.7: Market outcomes for the existing sequential market and the preemptive
model (in MW)

Models Existing market model Preemptive model
Trad.
floors Reserve Day-ahead Balancing Reserve Day-ahead Balancing

r− r+ s1 s2 r− r+ s1 s2

i1 0 0 120 0 0 0 0 120 0 0
i2 8 12 38 3 3 8 12 38 7.7 7.2
i3 0 0 0 0 0 0 0 0 0 0
i4 0 0 120 0 0 0 0 120 0 0
i5 9.6 6.4 33 6 6 7.2 4 31.1 −7.2 −7.2
i6 0 0 0 0 0 0 0 0 0 0
i7 0 0 120 0 0 0 0 120 0 0
i8 8 12 38 12 12 10.4 (2.4) 14.4 (2.4) 35.6 −10.1 14.4
i9 0 0 6.6 0 0 0 0 10.9 0 0
j3 0 0 42 −3 −12 0 0 42 8 −12
j6 0 0 70.4 −6.4 −6 0 0 70.4 −6.4 9.6
j9 0 0 42 −12 −12 0 0 42 8 −12

In Table 12.8, we provide the consumer and producer surpluses (CS and PS), and

the congestion rents (CR) allocated to each area under both scenarios in the existing

sequential market. Using these allocations for all trading floors, we defined a budget-

balanced cost allocation in the numerical case studies.

12.3.2 IEEE RTS layout

The layout can be found in Figure 12.10. The area graph is illustrated in Figure 12.11.
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Table 12.8: Cost allocations in all trading floors for the existing sequential market (in
e)

Areas Area 1 Area 2 Area 3
CS for (1) −60.0 −64.0 −70.0
PS for (1) 0 0 0
CR for (1) 0 0 0
CS for (2) −8,448.0 −7,239.0 −9,900.0
PS for (2) 4,159.6 3,750.2 4,392.0
CR for (2) 0 99.0 99.0

CS for (3) in s1 0 0 0
PS for (3) in s1 0 −6,400.0 5,250.0
CR for (3) in s1 0 0 0
CS for (3) in s2 0 0 0
PS for (3) in s2 −12,000.0 0 2,250.0
CR for (3) in s2 0 0 0

Js1a (∅) 4,348.4 9,853.8 229.0
Js2a (∅) 16,348.4 3,453.8 3,229.0
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Figure 12.10: IEEE 48-node RTS layout with six areas
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Figure 12.11: The area graph for the IEEE RTS

138



Part III

Conclusion
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CHAPTER 13
Conclusions and outlook

13.1 Part I

In the first part of the thesis, our goal was to study mechanism design to achieve an

efficient outcome in an electricity market setting, which involves continuous goods (e.g.,

electrical power), second stage costs, and general nonlinear constraints (instead of simple

constraints, e.g., availability of a fixed number of items in multi-item auctions).

For the general class of electricity market problems, the dominant-strategy incentive-

compatible VCG mechanism is susceptible to collusion and shill bidding. Motivated by

this problem, we derived three different conditions under which collusion and shill bid-

ding are not profitable, and hence the VCG mechanism is coalition-proof. Since these

conditions are restrictive and they may not capture the constrained optimization prob-

lem under consideration, we investigated core-selecting mechanisms for their coalition-

proofness. We showed that the well-established LMP mechanism is core-selecting, and

hence coalition-proof. This result was an implication of a stronger result we proved,

core-selecting mechanisms are the exact mechanisms that ensure the existence of a com-

petitive equilibrium in linear/nonlinear prices. In contrast to the LMP mechanism, we

showed that core-selecting mechanisms are applicable to a broad class of markets with

nonconvex bids and constraints. We then characterized core-selecting mechanisms that

can approximate dominant-strategy incentive-compatibility without the price-taking as-

sumption. In an exchange market setting, we proved that core-selecting mechanisms are

also budget-balanced. Our results were verified in several case studies based on realistic

electricity market models.

13.1.1 Further research directions

Relaxing the conditions of Theorem 4 and Theorem 5

Invoking theoretical studies on the strong-substitute condition of [MS07], we can po-

tentially relax the separable convexity requirement of Theorem 5 on the bid functions
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to supermodularity and component-wise convexity, see the discussions in Footnote 6 of

Chapter 4. However, this conclusion requires further investigation.

Budget surplus reallocation

When applied to exchanges and two-sided markets, one would need to reallocate budget

surplus of core-selecting mechanisms to provide correct investment signals for transmis-

sion capacity expansion. As it is pointed out at the end of Section 5.3.2, this topic

remains to be investigated.

Derivation of the price functions

The MPCS payments suggested in Chapter 5 for the nonconvex electricity market prob-

lems do not readily define simple and parametrized price functions that support a com-

petitive equilibrium as in Definition 4. Such forms might be crucial to bring these the-

oretical results into real applications in electricity markets. A solution to this problem

might be attained relying on convergent/tight convex relaxation hierarchies for poly-

nomial optimization problems [Par00; Las01; MH14; MH15; CS16; MCW20; DID17].

Note that power flow equations in their full generality also yield a polynomial optimiza-

tion problem. Utilizing such studies would provide us with polynomial (e.g., quadratic)

price functions for such markets. This research direction warrants a detailed theoretical

analysis.

Extensions to single-settlement two-stage stochastic market models

As several recent works show, for example, [BGC05; WF07; MCP09; PZP10; Zak+18;

Exi+19] to name a few, a scenario-based stochastic market can attain perfect tempo-

ral coordination using a probabilistic description of renewables’ forecast errors. This

approach enables co-optimizing the day-ahead and the real-time markets in a single

stochastic optimization, as it is discussed in Footnote 5 of Chapter 3. However, the

stochastic dispatch model comes also with some practical drawbacks. Unlike the ex-

isting market frameworks, it is unable to ensure simultaneously individual rationality

and budget-balance (for every scenario), see [KPH18; PZP10; Zak+18]. In addition, it

requires ensuring the agreement of all the participants on the scenarios and the prob-

abilities associated with them. Participants however might not share a unified view of

the probability distribution governing the uncertainty. A deviation from this assumption

may arise for example in case the participants are risk-averse [GLP18; PFW16; KP16;

RS11; RS15; MSA14]. To address the first problem, it is essential to study what core-

selecting mechanisms can offer by extending on the works of [PZP10; Zak+18]. For the

second problem, it would be beneficial to incorporate risk measures and risk trading into

the stochastic market design frameworks. One concrete idea is to exploit the works on
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risk-sharing in financial market literature and insurance mathematics [Den01; CHW17;

PFW16; RS15; VHK20].

13.2 Part II

In the second part of the thesis, our goal was to propose a coalitional game-theoretic

approach to enable coordinated balancing and reserve exchange in a European level and

to gain technical and economical insights about such a process.

To achieve this goal, we formulated a coalition-dependent preemptive transmission

allocation model that defines the optimal inter-area transmission capacity allocation be-

tween energy and reserves for a given set of participating areas. We then accompanied

this model with benefit allocation mechanisms such that all coalition members have suf-

ficient benefits to accept the transmission allocation solution proposed by our method.

We formulated the coalitional game both as an ex-ante and as an ex-post process with

respect to the uncertainty realization. We showed that the former results in suitable

mechanisms with budget-balance in expectation, whereas the latter results in suitable

mechanisms with budget-balance in every realization. Applying the prevailing benefit

allocations to a larger case study, we showed that these existing methods are unable to

find a benefit allocation with minimal stability violation (that is, attaining the least-core

property) within a reasonable computational time frame. To address this issue for both

coalitional games, we proposed the least-core-selecting benefit allocation mechanism and

we formulated an iterative constraint generation algorithm for its efficient computation.

Considering that this work aimed to contribute to the ongoing discussion towards the

design of the transmission allocation model, our benefit allocation mechanism can be

adapted to different plausible fairness criteria that may be imposed by the regulatory

authorities, moving towards the full integration of the balancing markets. The numerical

results illustrated several crucial factors (e.g., flexibility, network structure, wind corre-

lations) that are essential in driving the benefit allocation in different configurations.

13.2.1 Further research directions

Privacy concerns

Even though fair cost/benefit allocations are proposed with our studies in Part II, all

of these methods require private regional information (such as generator bids, demand

profiles, forecast scenarios) and an agreement on the estimates of a considerable number

of parameters. Currently, the level of transparency remains as a major concern in the

transmission capacity calculations for day-ahead markets [Eur20]. Recent regulations
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and studies strongly advocate that the market should be developing towards more and

more coordinated and transparent operation in terms of all parameters affecting the

market outcome.

On the other hand, the aforementioned alternative market-forming approach would

establish a new trading floor in which each regional operator can submit its own val-

uation to a market organizer (we kindly refer to the discussions in Section 9.3). This

methodology can potentially preserve the privacy of each operator, but it remains to

be investigated. Utilizing tools from graph theory and mechanism design, it would be

interesting to analyze problems over networks of continuous public choices that would

originate from shared transmission resources.

Related to this direction, another interesting research direction is to explore the devel-

opment of decentralized computational schemes for general stochastic bilevel programs

(such as the one given by problem (9.1) of the preemptive model) that can preserve

the privacy of the area operators with minimal exchange of intra-area information. For

the current approach provided in Part II, it would also be beneficial to study the im-

pact of strategic behaviour of the area operators and the generators on the transmission

allocations and the resulting benefit allocation mechanisms.

Modelling-related analyses

In case there are scenarios that are not included in the forecast, our preemptive transmis-

sion allocation in Part II can also potentially be suboptimal, and it is hard to provide

an out-of-sample analysis for the suboptimality of nonconvex stochastic optimization

problems [BL11]. However, it would be interesting to provide a numerical analysis for

the impact of out-of-sample uncertainty realizations on the optimality of the preemptive

model.

It is also expected that the initial/pilot coordinated balancing platforms would also

be zonal as it is the case today in the European day-ahead energy markets [IGC16;

DOS19]. Hence, it would provide an additional guide for the future integrated European

markets, if we can incorporate the potential congestion from zonal balancing platforms

into the preemptive model.

Extensions to market participant-level benefits

As we have discussed in Section 9.3, our studies define the monetary quantities on an

operator level, and do not specify the payment rules for the markets such that these

costs (or discounts) are distributed on a market participant level. An open problem is

extending Part II by specifying payments for the new markets such that the benefits of

implementing cross-border trading is distributed on a market participant level. Similar

to what is suggested also in the studies of [Kri+18], the goal here can potentially be
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achieved by defining the correct set of side payments complementing the locational (nodal

or zonal) prices. However, special consideration is needed since such payments can also

be gamed by the participants. This research direction warrants further exploration.

145



146



Bibliography

[AZ16] F. Abbaspourtorbati and M. Zima. “The Swiss reserve market: Stochastic

programming in practice”. In: IEEE Transactions on Power Systems 31.2

(2016), pp. 1188–1194.

[ACE12] ACER. Framework guidelines on electricity balancing. 2012. url: http:

//www.acer.europa.eu/official_documents/acts_of_the_agency/

framework_guidelines/framework%20guidelines/framework%20guidelines%

20on%20electricity%20balancing.pdf.

[Ahl+15] M. Ahlstrom, E. Ela, J. Riesz, J. O’Sullivan, B. F. Hobbs, M. O’Malley,

M. Milligan, P. Sotkiewicz, and J. Caldwell. “The evolution of the market:

Designing a market for high levels of variable generation”. In: IEEE Power

and Energy Magazine 13.6 (2015), pp. 60–66.

[ACC13] A. Ahmadi-Khatir, A. J. Conejo, and R. Cherkaoui. “Multi-area unit schedul-

ing and reserve allocation under wind power uncertainty”. In: IEEE Trans-

actions on Power Systems 29.4 (2013), pp. 1701–1710.

[Als+90] O. Alsac, J. Bright, M. Prais, and B. Stott. “Further developments in LP-

based optimal power flow”. In: IEEE Transactions on Power Systems 5.3

(1990), pp. 697–711.

[AS74] O. Alsac and B. Stott. “Optimal load flow with steady-state security”. In:

IEEE Transactions on Power Apparatus and Systems 3 (1974), pp. 745–751.

[AAS09] N. Amjady, J. Aghaei, and H. A. Shayanfar. “Stochastic multiobjective

market clearing of joint energy and reserves auctions ensuring power system

security”. In: IEEE Transactions on Power Systems 24.4 (2009), pp. 1841–

1854.

[AC11] E. Anderson and T. D. Cau. “Implicit collusion and individual market power

in electricity markets”. In: European Journal of Operational Research 211.2

(2011), pp. 403–414.

[AM85] R. J. Aumann and M. Maschler. “Game theoretic analysis of a bankruptcy

problem from the Talmud”. In: Journal of Economic Theory 36.2 (1985),

pp. 195–213.

147

http://www.acer.europa.eu/official_documents/acts_of_the_agency/framework_guidelines/framework%20guidelines/framework%20guidelines%20on%20electricity%20balancing.pdf
http://www.acer.europa.eu/official_documents/acts_of_the_agency/framework_guidelines/framework%20guidelines/framework%20guidelines%20on%20electricity%20balancing.pdf
http://www.acer.europa.eu/official_documents/acts_of_the_agency/framework_guidelines/framework%20guidelines/framework%20guidelines%20on%20electricity%20balancing.pdf
http://www.acer.europa.eu/official_documents/acts_of_the_agency/framework_guidelines/framework%20guidelines/framework%20guidelines%20on%20electricity%20balancing.pdf


[AB20] L. M. Ausubel and O. Baranov. “Core-selecting auctions with incomplete in-

formation”. In: International Journal of Game Theory 49.1 (2020), pp. 251–

273.

[Aus+14] L. M. Ausubel, P. Cramton, M. Pycia, M. Rostek, and M. Weretka. “De-

mand reduction and inefficiency in multi-unit auctions”. In: The Review of

Economic Studies 81.4 (2014), pp. 1366–1400.

[AM02] L. M. Ausubel and P. Milgrom. “Ascending auctions with package bidding”.

In: Frontiers of Theoretical Economics 1.1 (2002), pp. 1–42.

[AM06] L. M. Ausubel and P. Milgrom. “The lovely but lonely Vickrey auction”.

In: Combinatorial Auctions. MIT press, 2006. Chap. 1.

[AMZ18] I. Avramiotis-Falireas, S. Margelou, and M. Zima. “Investigations on a fair

TSO-TSO settlement for the imbalance netting process in European power

system”. In: 15th International Conference on the EEM. IEEE. 2018, pp. 1–

6.

[Bac11] F. Bach. “Learning with submodular functions: A convex optimization per-

spective”. In: arXiv preprint arXiv:1111.6453 (2011).

[Bae+13] E. Baeyens, E. Y. Bitar, P. P. Khargonekar, and K. Poolla. “Coalitional

aggregation of wind power”. In: IEEE Transactions on Power Systems 28.4

(2013), pp. 3774–3784.

[Bae+11] E. Baeyens, E. Bitar, P. P. Khargonekar, and K. Poolla. “Wind energy ag-

gregation: A coalitional game approach”. In: Proceedings of the Conference

on Decision and Control and European Control Conference. IEEE. 2011,

pp. 3000–3007.

[BO09] M. Beck and M. Ott. Revenue monotonicity in core-selecting package auc-

tions. Tech. rep. working paper, 2009.

[BW86] B. D. Bernheim and M. D. Whinston. “Menu auctions, resource allocation,

and economic influence”. In: The Quarterly Journal of Economics 101.1

(1986), pp. 1–31.

[Ber99] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[Bia+17] A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek. “Guarantees

for greedy maximization of non-submodular functions with applications”.

In: International Conference on Machine Learning. 2017, pp. 498–507.

[Bia19] Y. A. Bian. “Provable non-convex optimization and algorithm validation

via submodularity”. In: arXiv preprint arXiv:1912.08495 (2019).

[BFG19] M. Bichler, V. Fux, and J. K. Goeree. “Designing combinatorial exchanges

for the reallocation of resource rights”. In: Proceedings of the National

Academy of Sciences 116.3 (2019), pp. 786–791.

148



[BG17] M. Bichler and J. K. Goeree. Handbook of spectrum auction design. Cam-

bridge University Press, 2017.

[BW17] M. Bichler and S. Waldherr. “Core and pricing equilibria in combinatorial

exchanges”. In: Economic Letters 157 (2017), pp. 145–147.

[BM97] S. Bikhchandani and J. W. Mamer. “Competitive equilibrium in an ex-

change economy with indivisibilities”. In: Journal of Economic Theory 74.2

(1997), pp. 385–413.

[BO02] S. Bikhchandani and J. M. Ostroy. “The package assignment model”. In:

Journal of Economic Theory 107.2 (2002), pp. 377–406.

[BL11] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer

Science & B. Med., 2011.

[BCS84] R. E. Bohn, M. C. Caramanis, and F. C. Schweppe. “Optimal pricing in elec-

trical networks over space and time”. In: The Rand Journal of Economics

(1984), pp. 360–376.

[Bon+14] D. E. M. Bondy, G. Tarnowski, K. Heussen, and L. H. Hansen. Operational

scenario: Manual regulating power. Tech. rep. iPower Consortium, 2014.

[BL19] S. Bose and S. H. Low. “Some emerging challenges in electricity markets”.

In: Smart Grid Control. Springer, 2019, pp. 29–45.

[Bos+17] V. Bosshard, B. Bünz, B. Lubin, and S. Seuken. “Computing Bayes-Nash

equilibria in combinatorial auctions with continuous value and action spaces”.

In: IJCAI. 2017, pp. 119–127.

[Bos+18] V. Bosshard, B. Bünz, B. Lubin, and S. Seuken. “Computing Bayes-Nash

equilibria in combinatorial auctions with verification”. In: arXiv preprint

arXiv:1812.01955 (2018).

[BWS18] V. Bosshard, Y. Wang, and S. Seuken. “Non-decreasing payment rules for

combinatorial auctions”. In: IJCAI. 2018, pp. 105–113.

[BGC05] F. Bouffard, F. D. Galiana, and A. J. Conejo. “Market-clearing with stochas-

tic security-part I: Formulation”. In: IEEE Transactions on Power Systems

20.4 (2005), pp. 1818–1826.

[Buk17] W. Bukhsh. Data for stochastic multiperiod optimal power flow problem.

https://sites.google.com/site/datasmopf/home. 2017.

[Buk+13] W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden. “Local

solutions of the optimal power flow problem”. In: IEEE Transactions on

Power Systems 28.4 (2013), pp. 4780–4788.

[BLS18] B. Bünz, B. Lubin, and S. Seuken. “Designing core-selecting payment rules:

A computational search approach”. In: Proceedings of the ACM Conference

on Economics and Computation. ACM. 2018.

149

https://sites.google.com/site/datasmopf/home


[BSL15] B. Bünz, S. Seuken, and B. Lubin. “A faster core constraint generation

algorithm for combinatorial auctions”. In: Twenty-Ninth AAAI Conference

on Artificial Intelligence. 2015.

[Car+12] B. Carlson, Y. Chen, M. Hong, R. Jones, K. Larson, X. Ma, P. Nieuwest-

eeg, H. Song, K. Sperry, and M. Tackett. “MISO unlocks billions in savings

through the application of operations research for energy and ancillary ser-

vices markets”. In: Interfaces 42.1 (2012), pp. 58–73.

[CL06] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge

university press, 2006.

[Cha+18] P. Chakraborty, E. Baeyens, K. Poolla, P. P. Khargonekar, and P. Varaiya.

“Sharing storage in a smart grid: A coalitional game approach”. In: IEEE

Transactions on Smart Grid (2018).

[CS16] V. Chandrasekaran and P. Shah. “Relative entropy relaxations for signomial

optimization”. In: SIAM Journal on Optimization 26.2 (2016), pp. 1147–

1173.

[Cha19] H.-p. Chao. “Incentives for efficient pricing mechanism in markets with non-

convexities”. In: Journal of Regulatory Economics (2019), pp. 1–26.

[CHW17] X. Chen, Z. Hu, and S. Wang. “Stable risk sharing and its monotonicity”.

In: Available at SSRN 2987631 (2017).

[Che+99] K. W. Cheung, P. Shamsollahi, D. Sun, J. Milligan, and M. Potishnak. “En-

ergy and ancillary service dispatch for the interim ISO New England elec-

tricity market”. In: Proceedings of the International Conference on Power

Industry Computer Applications. IEEE. 1999, pp. 47–53.

[CDC05] J. H. Chow, W. De Mello, and K. W. Cheung. “Electricity market design: An

integrated approach to reliability assurance”. In: Proceedings of the IEEE

93.11 (2005), pp. 1956–1969.

[Chr17] R. Christie. “Power systems test case archive”. In: Electrical Eng. dept.,

University of Washington (2017). url: https://www2.ee.washington.

edu/research/pstca/.

[Chu+19] A. Churkin, D. Pozo, J. Bialek, N. Korgin, and E. Sauma. “Can cross-border

transmission expansion lead to fair and stable cooperation? Northeast Asia

case analysis”. In: Energy Economics (2019), p. 104498.

[Cla71] E. H. Clarke. “Multipart pricing of public goods”. In: Public choice 11.1

(1971), pp. 17–33.

[CCM10] A. J. Conejo, M. Carrión, and J. M. Morales. Decision making under un-

certainty in electricity markets. Vol. 1. Springer, 2010.

150

https://www2.ee.washington.edu/research/pstca/
https://www2.ee.washington.edu/research/pstca/


[Cra03] P. Cramton. “Electricity market design: The good, the bad, and the ugly”.

In: Annual Hawaii International Conference on System Science. IEEE. 2003,

pp. 8–15.

[Cra13] P. Cramton. “Spectrum auction design”. In: Review of Industrial Organiza-

tion 42.2 (2013), pp. 161–190.

[Cra17] P. Cramton. “Electricity market design”. In: Oxford Review of Economic

Policy 33.4 (2017), pp. 589–612.

[CRE17] CREG. Functioning and design of the Central West European day-ahead

flow based market coupling for electricity: Impact of TSOs discretionary

actions, December 2017. Tech. rep. 2017.
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Camacho. “A coalitional control scheme with applications to cooperative

game theory”. In: Optimal Control Applications and Methods 35.5 (2014),

pp. 592–608.

[MR14] J. R. Marden and T. Roughgarden. “Generalized efficiency bounds in dis-

tributed resource allocation”. In: IEEE Transactions on Automatic Control

59.3 (2014), pp. 571–584.

[MW13] J. R. Marden and A. Wierman. “Overcoming the limitations of utility design

for multiagent systems”. In: IEEE Transactions on Automatic Control 58.6

(2013), pp. 1402–1415.

157



[Mar+13] A. Marien, P. Luickx, A. Tirez, and D. Woitrin. “Importance of design pa-

rameters on flowbased market coupling implementation”. In: International

Conference on the EEM. 2013, pp. 1–8.

[MSA14] S. Martin, Y. Smeers, and J. A. Aguado. “A stochastic two settlement

equilibrium model for electricity markets with wind generation”. In: IEEE

Transactions on Power Systems 30.1 (2014), pp. 233–245.

[MWG95] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic theory.

Vol. 1. Oxford University press New York, 1995.

[MPS79] M. Maschler, B. Peleg, and L. S. Shapley. “Geometric properties of the

kernel, nucleolus, and related solution concepts”. In: Mathematics of Oper-

ations Research 4.4 (1979), pp. 303–338.

[MPT92] M. Maschler, J. A. Potters, and S. H. Tijs. “The general nucleolus and the

reduced game property”. In: International Journal of Game Theory 21.1

(1992), pp. 85–106.

[MKP18] N. Mazzi, J. Kazempour, and P. Pinson. “Price-taker offering strategy in

electricity pay-as-bid markets”. In: IEEE Transactions on Power Systems

33.2 (2018), pp. 2175–2183.

[McC02] R. McCullough. “Congestion manipulation in ISO California: Testimony be-

fore the select committee to investigate price manipulation of the wholesale

energy market”. In: McCullough Research (2002).

[Meg74] N. Megiddo. “On the nonmonotonicity of the bargaining set, the kernel and

the nucleolus of game”. In: SIAM Journal on Applied Mathematics 27.2

(1974), pp. 355–358.

[Mil04] P. Milgrom. Putting auction theory to work. Cambridge University Press,

2004.

[Mil07] P. Milgrom. “Package auctions and exchanges”. In: Econometrica 75.4 (2007),

pp. 935–965.

[Mil17] P. Milgrom. Discovering prices: auction design in markets with complex

constraints. Columbia University Press, 2017.

[MS07] P. Milgrom and B. Strulovici. Substitute Valuations, Auctions, and Equilib-

rium with Discrete Goods. 2007. url: https://www.economics.ox.ac.

uk/materials/working_papers/paper339.pdf.

[MKP19] L. Mitridati, J. Kazempour, and P. Pinson. “Design and game-theoretic

analysis of community-based market mechanisms in heat and electricity

systems”. In: Omega (2019), p. 102177.

158

https://www.economics.ox.ac.uk/materials/working_papers/paper339.pdf
https://www.economics.ox.ac.uk/materials/working_papers/paper339.pdf


[MH14] D. K. Molzahn and I. A. Hiskens. “Moment-based relaxation of the optimal

power flow problem”. In: Power Systems Computation Conference. IEEE.

2014, pp. 1–7.

[MH15] D. K. Molzahn and I. A. Hiskens. “Sparsity-exploiting moment-based re-

laxations of the optimal power flow problem”. In: IEEE Transactions on

Power Systems 30.6 (2015), pp. 3168–3180.

[Mor+12] J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong. “Pricing electricity in

pools with wind producers”. In: IEEE Transactions on Power Systems 27.3

(2012), pp. 1366–1376.

[MCP09] J. M. Morales, A. J. Conejo, and J. Pérez-Ruiz. “Economic valuation of
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