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Abstract. We develop a data-driven decision model to improve process quality in
manufacturing. A challenge for traditional methods in quality management is to handle
high-dimensional and nonlinear manufacturing data. We address this challenge by adapt-
ing explainable artificial intelligence to the context of quality management. Specifically, we
propose the use of nonlinear modeling with Shapley additive explanations to infer how a
set of production parameters and the process quality of a manufacturing system are relat-
ed. Thereby, we contribute a measure of process importance based on which manufac-
turers can prioritize processes for quality improvement. Grounded in quality management
theory, our decision model selects improvement actions that target the sources of quality
variation. The decisionmodel is validated in a real-world application at a leadingmanufac-
turer of high-power semiconductors. Seeking to improve production yield, we apply our
decision model to select improvement actions for a transistor chip product. We then con-
duct a field experiment to confirm the effectiveness of the improvement actions. Compared
with the average yield in our sample, the experiment returns a reduction in yield loss of
21.7%. Furthermore, we report on results from a postexperimental rollout of the decision
model, which also resulted in significant yield improvements. We demonstrate the opera-
tional value of explainable artificial intelligence by showing that critical drivers of process
quality can go undiscovered by the use of traditional methods.
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NoDerivatives 4.0 International License. You are free to download this work and share with others,
but cannot change in any way or use commercially without permission, and youmust attribute this
work as “Management Science. Copyright © 2021 The Author(s). https://doi.org/10.1287/mnsc.2021.
4190, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by-nc-nd/4.0/.”

Supplemental Material: The code files and online supplement are available at https://doi.org/10.1287/
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1. Introduction
Manufacturing processes do not always generate out-
comes that meet the desired quality specifications.
Poor quality creates unnecessary scrap and rework,
thereby having a substantial negative impact on finan-
cial performance. Moreover, it can lower schedule ad-
herence, increase inventory levels, and make other im-
provement opportunities less apparent (Ittner 1994).
The American Society for Quality estimates that poor
quality generates 10%–15% of the operating expenses
in manufacturing companies.1 Motivated by such fig-
ures, manufacturers continuously seek to improve
their process performance. To that end, quality man-
agement theory suggests to identify and eliminate
sources of quality variation (Taguchi 1986, Schmenner
and Swink 1998, Zantek et al. 2002, Field and Sinha
2005, Hopp and Spearman 2011).

Quality improvement has long been supported by
statistical methods (e.g., Shewhart 1926). Existing ap-
proaches for identifying sources of quality variation
focus on linear associations (e.g., Zantek et al. 2002).
However, modern manufacturing settings are charac-
terized by high-dimensional data (Kusiak 2017),
which frequently involve nonlinear relationships. For
instance, in semiconductor fabrication, manufacturers
can collect several thousand interrelated measure-
ments for each individual product unit. When neglect-
ing nonlinearities under high-dimensional conditions,
manufacturers may not identify important drivers of
process quality. Consequently, there is a need for
methods that better accommodate nonlinearities in
manufacturing data.

This paper addresses the above shortcoming by de-
veloping a data-driven decision model for improving
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process quality in manufacturing. The decision model
follows two steps: first, prioritizing processes for quality
improvement and subsequently, selecting suitable im-
provement actions. For this purpose, we adapt the
Shapley additive explanations (SHAP) value method
(Lundberg and Lee 2017) from the field of explainable
artificial intelligence (AI) to the context of quality man-
agement. By combining SHAP values and nonlinear
modeling, we provide a novel measure of process impor-
tance that is grounded in quality management theory.
Our measure of process importance estimates to what
extent the production parameters from a given process
contribute to variation in overall process quality. This
supports the effective allocation of improvement efforts.

We validate our decision model in a real-world ap-
plication at Hitachi ABB Power Grids (hereafter re-
ferred to as Hitachi ABB), a leading manufacturer of
high-power semiconductors. The semiconductor in-
dustry is particularly suitable for our research because
it is typically subject to high-dimensional data and
costly yield losses for which the underlying reasons
are often hard to identify. Using historical manufactur-
ing data of a transistor chip product, we apply the
decision model to select improvement actions. We con-
firm the effectiveness of the selected improvement ac-
tions in a field experiment. The field experiment shows
that, compared with the average yield in our sample,
the improvement actions reduce yield loss by 21.7%.
After the experimental validation, Hitachi ABB inte-
grated our decision model into their quality manage-
ment. We report on results from a postexperimental
rollout to a different transistor chip product, which led
to a reduction in yield loss of 51.3%.

This paper makes two main contributions. First, we
contribute to the practice and literature of quality man-
agement by proposing a data-driven decision model
that is designed to handle both high-dimensional and
nonlinear manufacturing data. For this, we provide a
measure of process importance based on which manu-
facturers can prioritize processes for quality improve-
ment. Second, we contribute to the research on empiri-
cal operations management (cf. Terwiesch et al. 2019)
by providing experimental evidence that explainable AI
is effective for quality improvement. Overall, our work
adds to the emerging literature on data-driven decision
making in operations management (cf. Mišić and Perakis
2020, Olsen and Tomlin 2020, Bastani et al. 2021).

The remainder of this paper is structured as follows.
In Section 2, we review the literature on quality man-
agement and reveal the scarcity of methods designed
for nonlinear manufacturing data. In Section 3, we de-
velop a decision model for improving process quality
via explainable AI. In Section 4, we apply the decision
model in the transistor chip production of Hitachi
ABB, and in Section 5, we conduct a field experiment.
In Section 6, we implement the decision model into a

different production setting at Hitachi ABB. In Section
7, we perform robustness checks and compare our
decision model with existing approaches in quality
modeling. In Section 8, we discuss implications for
quality management, and in Section 9, we conclude.

2. Related Literature
We draw upon two streams of research: quality model-
ing and explainable AI.

2.1. Quality Modeling
Managing process quality has a long history in
manufacturing. In the 1920s, statistician Walter A. She-
whart at the Bell Laboratories of Western Electric pro-
posed to analyze data collected from manufacturing
processes by means of statistical techniques (Shewhart
1926). Shewhart (1926) showed that controlling the
manufacturing processes was key to ensuring the quali-
ty of the system output. To meet this objective, quality
management theory suggests that manufacturers
should identify and eliminate the sources of variation;
only focusing on the expected outcome of a process or
the adherence to tolerance specifications is insufficient
(Taguchi 1986, Taguchi and Clausing 1990).

Quality modeling aims at capturing the relation-
ships between a set of production parameters and pro-
cess quality through analytical methods. The process
quality of a manufacturing system is often measured
by its output—the products produced. For example, it
can be described through physical product measure-
ments (Zantek et al. 2002), predefined quality levels
(Chien et al. 2007), or yield (Wu and Zhang 2010). In
other cases, process quality can be measured by perfor-
mance metrics, such as service levels, throughput times,
equipment effectiveness, or energy consumption. Pro-
duction parameters can, for instance, refer to process fea-
tures (Tsai 2012), material routings (Chen et al. 2005), or
(intermediate) product properties (Zantek et al. 2002).
Typically, these production parameters belong to differ-
ent processes. Understanding how various production
parameters and process quality relate is crucial for im-
proving the performance of a manufacturing system.

A common approach in quality modeling is to learn a
functional relationship between process quality and the
observed production parameters. The learned represen-
tation can be viewed as a metamodel, in which the un-
derlying physical mechanisms within a manufacturing
system are reproduced (cf. Yu and Popplewell 1994).
Examples in the literature include association rule min-
ing (e.g., Chen et al. 2005) and decision trees (e.g., Chien
et al. 2007). By interpreting the functional relationships,
one can inform the choice of potential improvement ac-
tions, but these do not directly target the sources of
quality variation. Therefore, the most effective improve-
ment actions may not be selected.
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Aligned with quality management theory, there are
approaches that first aim at identifying sources of varia-
tion and subsequently, allocate resources to improve
process quality. An example is provided by Zantek et al.
(2002). The authors model process quality as a linear
combination of production parameters and quality vari-
ables measured at intermediate inspections throughout
a manufacturing system. The sources of variation are
then identified by decomposing the variance of each
quality variable into components. The work by Zantek
et al. (2002) makes two assumptions that limit its appli-
cability in practice. First, it assumes that the underlying
relationships are linear; therefore, potential nonlinear-
ities are neglected. Second, it assumes that quality
variables are measured at intermediate inspections in
between processes. However, because of physical de-
pendencies, process quality can often only be measured
at the final stage of a manufacturing system (e.g., yield).
We address these shortcomings by adapting explain-
able AI to the context of quality management.

2.2. Explainable AI
Nonlinear modeling is often used to capture complex re-
lationships in high-dimensional operational settings (e.g.,
Cui et al. 2018). However, the underlying decision rules
of nonlinear models are not always self-explanatory. As
a remedy, various approaches have been proposed to
understand how inferences from nonlinear models are
formed (Guidotti et al. 2018). Approaches that leverage
post hoc explanations of model predictions can be sub-
sumed under the term “explainable AI.” Two concepts
in explainable AI are relevant to our work: feature im-
portance and feature attribution.

Feature importance measures the extent to which a
feature is responsible for forming a functional logic. A
common approach is to compare the performance of a
predictive model with one without a specific feature
of interest while considering all possible nonlinear re-
lationships (i.e., ablation study). A similar approach is
to measure the difference in prediction performance
when a feature is permuted randomly so that its influ-
ence is omitted (Breiman 2001). There are also feature
importance measures tailored to specific models in-
cluding decision trees (Breiman et al. 1984) and sup-
port vector machines (Guyon et al. 2002).

Feature attribution infers the marginal effect of a
feature on a model prediction. Specifically, it estimates
how the model prediction changes with a feature of
interest. For instance, in linear modeling, the marginal
effect of a feature is quantified by the coefficients. In
nonlinear modeling, feature attribution can be esti-
mated via partial dependence plots (Friedman 2001)
or locally interpretable model-agnostic explanations
(Ribeiro et al. 2016).

A combination of both feature importance and fea-
ture attribution is given by the SHAP value method

(Lundberg and Lee 2017). The SHAP value method in-
fers the underlying decision rules of predictive models
by decomposing a prediction into the contribution
(called the “SHAP value”) of each feature. A summary
of the SHAP value method is provided in Appendix A.
Instead of explaining model predictions, we leverage
SHAP values to infer how various production parame-
ters and the process quality of a manufacturing system
are related.

3. Decision Model
In this section, we develop a data-driven decision model
to improve process quality in manufacturing. We define
a formal manufacturing setting, give our problem de-
scription, and provide the model specification.

3.1. Manufacturing Setting
We consider a manufacturing system with sequential
processes (see Figure 1).2 Each process is specified by
production parameters that potentially influence the
performance of the manufacturing system. The overall
performance outcome is measured by a process quali-
ty variable (e.g., yield), which is observed at the final
stage of the manufacturing system.

The manufacturing system generates data on pro-
duction parameters x and process quality outcomes y.
Overall, there are j � 1, : : : ,N production parameters
and i � 1, : : : ,M observations (e.g., product units). For
notation, we use superscript indices when referring to
observations and subscript indices when referring
to production parameters. Formally, let y(i) ∈ R refer
to the measured process quality of the ith observation.
Further, let x(i) ∈ R

N denote the observed production
parameters of the ith observation with production pa-
rameters j � 1, : : : ,N. Analogously, let xj ∈ R

M denote
the jth production parameter across observations
i � 1, : : : ,M. The single value of a production parame-
ter is given by x(i)j .

The production parameters are captured at different
processes k � 1, : : : ,K. Here, let the process specifica-
tion Pk ⊆ {1, : : : ,N} define which specific production
parameters belong to a certain process k. Each produc-
tion parameter is associated with exactly one process;
that is, Pk′ ∩ Pk′′ � ø for k′ ≠ k′′ and ∪kPk � {1, : : : ,N}.

3.2. Problem Description
Our objective is to allocate improvement actions to the
processes associated with a large influence on the sys-
tem performance (i.e., the overall process quality out-
come). To achieve this, quality management theory
suggests targeting the sources of variation (Taguchi
1986, Schmenner and Swink 1998, Zantek et al. 2002,
Hopp and Spearman 2011). In practice, any manu-
facturing system generates outcomes that are subject to
varying quality (see distribution p in Figure 1). Without
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loss of generality, we assume that high process quali-
ty is preferable. The spread around the process quali-
ty mean is a proxy for the improvement potential of
the manufacturing system. Essentially, when there is
variation in process quality, there exist opportunities
to learn from better outcomes (right tail of the distri-
bution) and avoid worse outcomes (left tail of the dis-
tribution). Thereby, manufacturers can shift future
outcomes from the negative tail to the positive tail of
the distribution. Therefore, by targeting processes re-
sponsible for variation in overall process quality,
manufacturers can implicitly improve the overall pro-
cess quality mean.

Consider Figure 2, which compares the process
quality of a manufacturing system before and after
implementing improvement actions. To improve pro-
cess quality, one first identifies the underlying pro-
cesses that are associated with the largest contribution
to variation around the overall process quality mean.
For these processes, avoiding outcomes that are asso-
ciated with below-average process quality (i.e., left tail
of distribution pbefore) leads to two coupled effects: As
evident from distribution pafter, it reduces the inherent
variation in process quality and improves the mean
process quality simultaneously (i.e., shifts the distri-
bution to the right and makes it narrower). As a result,

the manufacturing system becomes more robust and
generates better quality outcomes.

Supposedly, one could also identify actions that im-
prove the mean process quality “directly.” However, this
approach does not work in quality management because
optimizing against the mean would require modeling
production parameters and possible improvement actions
jointly. For this, one would have to define all possible im-
provement actions for every process in a manufacturing
system—even those that will eventually not be priori-
tized for improvement. This is highly impractical and
expensive because of myriad possible actions that have
to be compiled by domain experts. Therefore, manufac-
turers instead choose to first identify the processes with
the largest improvement potential and then only deter-
mine improvement actions for those processes.

The implementation of improvement actions depends
on the characteristics of the manufacturing processes.
For some production parameters, it may be possible to
manipulate the absolute parameter values directly. For
example, if the temperature in a certain process is associ-
ated with an influence on process quality, an improve-
ment action can be to adjust the temperature levels.
However, in some processes, production parameters
cannot be modified directly. In this particular case,
there can be global improvement actions that affect all

Figure 1. Manufacturing System

Figure 2. Illustrative Example of Quality Improvement

Senoner, Netland, and Feuerriegel: Explainable AI in Quality Management
Management Science, 2022, vol. 68, no. 8, pp. 5704–5723, © 2021 The Author(s) 5707

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
2.

10
9.

46
] 

on
 0

2 
Se

pt
em

be
r 

20
22

, a
t 0

7:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



production parameters from the same process. For in-
stance, if production parameters depend on the produc-
tion equipment used, a common solution is to change
the material routing through processes.

Following the above rationale, decisions about qual-
ity improvement are generally informed by a two-step
approach (cf. Zantek et al. 2002). In the first step, man-
ufacturers aim at prioritizing the processes associated
with the largest contribution to variation in the overall
process quality. In the second step, for the prioritized
processes, manufacturers determine possible im-
provement actions and select the ones that promise
the largest quality improvement. In theory, each pro-
cess that contributes to variation in process quality
should be targeted with improvement actions. How-
ever, in practice, there are limited resources that can
be allocated, thus restricting improvement actions to a
maximum number of pmax processes.

This paper formalizes the described two-step ap-
proach for quality improvement into a data-driven
decision model. Because processes are potentially in-
terdependent, the decision model must account for
nonlinear interdependencies. For example, such nonli-
nearities can appear if a production parameter xj′ from
a process k′ interacts with a production parameter xj′′
from another process k′′. This motivates a nonlinear
modeling approach, as introduced in the following.

3.3. Model Specification
We now specify our two-step decision model for im-
proving process quality in manufacturing (Figure 3).
The initial input for the decision model is given by
historical manufacturing data {(x(i), y(i))}Mi�1. Based on
this input, we learn a nonlinear metamodel f that re-
produces the associations between production param-
eters x(i) and process quality y(i). In step 1, the decision
model utilizes the process specifications Pk and feature
attributions φ(i)

j to return a process prioritization p∗. For
this, we develop a measure of process importance that
estimates the extent to which the production parameters
from a given process are associated with variation in
overall process quality. For each prioritized process, de-
cision makers must compile a set of candidate actions
Ak. In step 2, the decision model uses feature attributions
φ(i)
j to select those improvement actions a∗k ∈Ak with the

largest estimated effect on overall process quality.

3.3.1. Learning a Metamodel. The basis for the decision
model is a metamodel f : RN → R that is estimated
based on past observations of production parameters
and process quality outcomes. This can be an arbitrary
predictive model f that can emulate high-dimensional
and nonlinear relationships (e.g., tree ensembles, deep
neural networks). Model f is estimated with the objec-
tive of minimizing the error between the true and esti-
mated process quality; that is,

min
f

E[ℓ(y, f (x))], (1)

where ℓ is a convex loss function (e.g., mean squared
error). Provided f is well specified, we obtain a meta-
model of the physical processes that allows explaining
how various production parameters and process quali-
ty are related.

We infer the underlying relations in a manufacturing
system via the SHAP value method (Lundberg and Lee
2017, Lundberg et al. 2020). Specifically, we use SHAP
values (for details, see Appendix A) to provide explana-
tions of how the estimated process quality changes
when the effect of a production parameter is omitted.
For this, the SHAP value method explains model f local-
ly at each observation i. The explanation is formally giv-
en by additive feature attributions that sum to the out-
put of the metamodel; that is, f (x(i)) � φ0 +

∑N
j�1φ

(i)
j ,

where φ0 � E[ f (x)] and φ(i)
j ∈ R corresponds to the

SHAP value of the observed production parameter x(i)j .
In our setting, a SHAP value gives the estimated devi-
ation from the expected process quality E[ f (x)] that can
be attributed to an observed production parameter x(i)j .
Here, negative SHAP values indicate a decrease in the
estimated process quality, whereas positive SHAP val-
ues indicate an increase in the estimated process quali-
ty. The larger the absolute SHAP value, the larger the
estimated change in process quality. The computation
of SHAP values is repeated for all observations, thereby
returning feature attributions φ(i)

j for i � 1, : : : ,M and
j � 1, : : : ,N.

Remark 1. The SHAP value method is the only addi-
tive feature attribution method that satisfies missing-
ness, consistency, and local accuracy (theorem 1 in
Lundberg and Lee 2017).

SHAP values guarantee three properties: (1) miss-
ingness, (2) consistency, and (3) local accuracy (see
Remark 1). In our setting, missingness assures that ab-
sent production parameters have no feature attribution.
Consistency is required to make meaningful compari-
sons of feature attributions across production parame-
ters. Local accuracy ensures that feature attributions
sum to the model output (i.e., f (x(i)) � φ0 +

∑N
j�1φ

(i)
j )

and thus, give an estimate of changes in process
quality.

3.3.2. Step 1: Prioritizing Processes. Step 1 of the de-
cision model determines the processes that should be
prioritized for improvement actions. Here, we are in-
terested in identifying the processes associated with a
large estimated contribution to variation in overall
process quality. For this, we make use of the previous-
ly computed feature attributions φ(i)

j , which quantify
the estimated deviation from the expected process
quality attributed to each production parameter at the
observation level (i.e., local understanding). However,
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prioritizing processes for quality improvement re-
quires an importance measure at the process level
(i.e., global understanding). To achieve this, we devel-
op our measure of process importance. We proceed
by aggregating the absolute feature attributions from
the observation level onto the production parameter
level and then, from the production parameter level
onto the process level.

We first aggregate the absolute feature attributions at
the production parameter level as a measure of feature
importance. Here, a large feature importance points to-
ward production parameters with a large estimated
contribution to variation in the overall process quality.
Later, we refer to these production parameters as quali-
ty drivers. Formally, the decision model computes the
mean absolute feature attributions (i.e., feature impor-
tance) across all observations via

Φj � 1
M

∑M
i�1

|φ(i)
j | for all j � 1, : : : ,N: (2)

We then aggregate the mean absolute feature attribu-
tions at the process level. Because contrary effects of
production parameters within a process should not can-
cel out, we aggregate the absolute values. This is given
by our definition of process importance, which quanti-
fies the estimated contribution to variation in overall
process quality that can be attributed to the production
parameters from a given process under the metamodel
f.

Definition 1 (Process Importance). The process impor-
tance of process k is given by

Θk �
∑
j∈Pk

Φj, (3)

where Φj is the mean absolute feature attribution of
the jth production parameter.

Our measure of process importance has two desir-
able characteristics. First, because of the local accuracy
property of SHAP values, it provides a meaningful
estimate of the contribution to variation in overall pro-
cess quality. Therefore, it is aligned with quality man-
agement theory, which suggests targeting sources of
quality variation. Second, it accounts for interaction
effects because feature attributions are computed over
all possible subsets of production parameters. This is
different from ablation studies where the importance
of two highly informative and perfectly correlated fea-
tures would be underestimated.

Using the process importance from Definition 1, we
identify the processes with the largest estimated con-
tribution to variation in overall process quality via

p∗ ∈ argmax
p∈{0,1}K

∑K
k�1

pk Θk s:t:
∑K
k�1

pk ≤ pmax : (4)

Here, p∗ is a K-dimensional binary vector that speci-
fies which processes should be prioritized for im-
provement actions. The additional constraint limits
the number of processes that a manufacturer priori-
tizes for improvement actions to pmax . While this
modeling step has determined which processes should
be prioritized, the next step selects actions for quality
improvement.

3.3.3. Step 2: Selecting Improvement Actions. Step 2
of the decision model selects improvement actions for
the prioritized processes. For every prioritized process
k, decision makers must compile a set of possible can-
didate actions Ak � {a1k , : : : ,aQk

k }, where Qk defines the
number of candidate actions for process k. The avail-
ability of actions depends on the degrees of freedom
modifiable within a prioritized process. Continuous

Figure 3. DecisionModel

Notes. The figure shows our decision model for improving process quality in manufacturing. The decision model (formalized in Sections
3.3.1–3.3.3) is empirically validated at Hitachi ABB (Sections 4–7). Section 4 describes the empirical context (Sections 4.1–4.3), provides the imple-
mentation details of the metamodel (Section 4.4), and reports the numerical results of step 1 (Section 4.5.1) and step 2 (Section 4.5.2). The improve-
ment actions, which are returned by the decision model, are experimentally validated in Section 5. Section 6 provides evidence from a postexper-
imental rollout where we apply the decision model to a different production setting at Hitachi ABB. Section 7 reports robustness checks in which
we implement different metamodels (Section 7.1) and compare the decision model with linear methods (Section 7.2) and a decision tree heuristic
(Section 7.3). Additional numerical examples are included in the online supplement.
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production parameters (e.g., temperature) can be ad-
dressed by discretization. The choice of candidate ac-
tions can be informed by analyzing the relationships
between the observed production parameters and the
feature attributions (i.e., {(x(i), φ(i))}Mi�1) or by leverag-
ing domain expertise. There may also be candidate ac-
tions that affect more than one production parameter
from a process. For example, one can choose to priori-
tize certain machines over other machines from the
same process. In this case, the possible candidate ac-
tions are simply the set of machines that can be used
to carry out that process.

Because of complexities and interdependencies in
manufacturing systems, improvement actions have to
be tailored to specific processes to be most effective.
We, therefore, select improvement actions at the pro-
cess level. For each prioritized process, the objective is
to select the action a∗k ∈Ak for which the estimated ef-
fect on process quality (i.e., E[ f (x) | a∗k]) is maximal.

To quantify the marginal effects of all possible candi-
date actions on the estimated process quality, we draw
upon the local accuracy property of SHAP values. Spe-
cifically, we aggregate the process-level feature attribu-
tions for each action. Note that this requires that actions
have been observed previously. Let I q

k ⊆ {1, : : : ,M} de-
fine which in-sample observations i have received treat-
ment in the form of an action aqk. Then, the mean feature
attribution at the action level is computed via

Ψ
q
k �

1
|I q

k |
∑
i∈I q

k

∑
j∈Pk

φ(i)
j for all

q � 1, : : : ,Qk in prioritized process k:

(5)

This quantifies the average change in the estimated
process quality that can be attributed to an action.
Positive values of Ψq

k are associated with an increase
in the estimated process quality, whereas negative
values are associated with a decrease in the estimated
process quality. Therefore, the action with the largest
mean feature attribution gives the largest estimated
quality improvement under metamodel f. Moreover,
the action accounts for nonlinearities because the fea-
ture attributions have previously been computed over
all possible subsets of production parameters.

The decision model selects an improvement action
via

a∗k ∈ argmax
q

Ψ
q
k: (6)

The procedure can be repeated to select actions a∗k
for all prioritized processes.

4. Empirical Application
We now validate the proposed decision model in the
semiconductor industry. Semiconductor manufacturing
generally involves several hundred processes that are

interrelated and often take months to complete.3 Owing
to the high complexity of the fabrication procedure,
identifying quality drivers is challenging. Therefore,
semiconductor manufacturers frequently face consider-
able yield losses that substantially affect their financial
performance. Manufacturers are usually cautious about
reporting their yield, but estimates range between 85%
and 95%.4 Against this background, improving process
quality promises to have a major economic impact.

4.1. Empirical Setting
Our research is carried out at Hitachi ABB in
Lenzburg, Switzerland. Hitachi ABB is a leading man-
ufacturer of transistors, thyristors, and diodes for
applications in power transmission, transportation,
electrical drives, and renewable energy. The objective
of our research is first to prioritize processes for quali-
ty improvement and subsequently, to select suitable
improvement actions. For this purpose, we receive his-
torical manufacturing data from a transistor chip prod-
uct. Despite high capacity utilization and considerable
fabrication costs, Hitachi ABB agreed to experimentally
validate the two most promising improvement actions
in their transistor chip production.

The transistor chip production at Hitachi ABB con-
sists of 200 processes that are carried out in a low-
vibration and temperature-constant clean room. The
rawmaterial input for the transistor chips is a thin sili-
con slice called a “wafer.” The production is orga-
nized based on the batch principle, where 25 wafers
form an entity (see Figure 4). Wafers in the same pro-
duction batch are processed together and do not move
to the next process until all wafers are finalized. Dur-
ing fabrication, the electrical properties of the wafers
are modified by introducing impurities into the silicon
crystal. After a production batch has been completed,
each wafer is cut into 62 rectangular transistor chips
that form the final product. As part of the quality
testing, which corresponds to the last stage in the fab-
rication procedure, each transistor chip is exposed to
realistic field conditions to measure its quality via
electrical response variables, such as currents and vol-
tages. If a transistor chip does not meet the required
quality specifications, it is scrapped at a cost.

The main process types are impurity doping, oxida-
tion, photolithography, etching, and metallization, as
described in the following. (1) Impurity doping is ap-
plied to alter the conductivity of the wafer and is per-
formed by diffusion and implantation processes. (2)
Oxidation processes are required to grow thin layers
of silicon dioxide on top of the wafer surface. These
films serve as insulators and are essential to specify
the implantation regions during impurity doping. (3)
Photolithography exposes the wafer to ultraviolet
light to transfer the geometrical pattern of the semi-
conductor devices to an underlying layer. (4) Etching
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processes are applied to selectively remove material
from the wafer surface. (5) Metallization is utilized to
deposit conductive layers on both the front and back
of the wafer to interconnect the electronic circuits of
the devices. Each process type is executed several
times with many interdependent production parame-
ters. All production parameters potentially influence
process quality. Additionally, there may be critical
combinations of production parameters that can trig-
ger undesired interaction effects. For example, a ma-
chine from a given process may only induce quality
issues if it is used in combination with another ma-
chine from a different process. Therefore, identifying
quality drivers in this setting requires methods that
can handle nonlinearities.

4.2. Operational Data
Hitachi ABB provided us with historical data on M �
1, 197 production batches (approximately 1.8 million
transistor chips) produced prior to April 2019. The

fabrication conditions of each production batch are
described by N � 3, 614 production parameters from K
� 200 different processes. Hitachi ABB also provided
us with process specifications Pk that define which
production parameters belong to a certain process. In
addition, each production batch i is associated with a
quality variable (from the electrical testing) given by
the yield µ(i) ∈ R. The yield for a given production
batch is defined as the ratio between the number of
transistor chips that met the required quality specifi-
cations and the number of chips inspected. The com-
pany protected confidential information by scaling
the yield variable between 0 and 100; that is, y(i) �
100 × µ(i)−µmin

µmax−µmin
. This normalization maintains the distri-

butional pattern and still allows us to later report the
improvements actually achieved.

4.3. Descriptive Statistics
The distribution of the normalized yield in our sample
is shown in Figure 5. The average normalized yield is
82.1 (standard deviation of 12.3). Approximately 50%
of the production batches have a normalized yield
above 85.5. According to Hitachi ABB, production
batches with a normalized yield below 65 can be con-
sidered “low performers.” In our data set, this corre-
sponds to approximately 10% of the production
batches. The aim of our decision model is to select im-
provement actions that address the long tail of the
distribution.

Table 1 lists exemplary production parameters cap-
tured in the fabrication processes. For confidentiality
reasons, we later only refer to the anonymized pro-
duction parameters (i.e., xj). In general, we distinguish
production parameters at the process and product lev-
els. Process parameters describe machine-related
properties (e.g., the average pressure measured in a
machine), whereas product parameters relate to phys-
ical product characteristics during fabrication (e.g.,

Figure 4. Production Output

Figure 5. Histogram of Normalized Yield Across Production Batches
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the number of particles counted in a production
batch). All production parameters are measured be-
fore quality testing and are thus potential quality
drivers.

We also assess the Pearson correlation coefficients
between the nonconstant production parameters and
the normalized yield (Figure 6). The absolute Pearson
correlation coefficient exceeds the value of 0.25 only
for 1 of the 3,614 production parameters. This corre-
sponds to production parameter x302 from process 25,
for which the correlation coefficient amounts to 0.54.
The low correlation between the production parame-
ters and the normalized yield can have two reasons;
either the production parameters are not quality driv-
ers at all, or there are nonlinear relationships not cap-
tured by the correlation coefficients. The latter may,
for example, occur if different quality drivers are in-
terrelated across production processes. This motivates
a nonlinear modeling approach to identify quality
drivers. As demonstrated later, our decision model lo-
cates quality drivers beyond production parameter
x302 for which we also confirm a critical influence on
the normalized yield.

4.4. Implementation Details of the Metamodel
The metamodel is estimated based on all production
parameters and the normalized yield using gradient
boosting with decision trees (Ke et al. 2017). Gradient

boosting belongs to the category of tree ensemble al-
gorithms, which are known for performing well on
complex data sets and have already been applied in
other operational applications (e.g., Cui et al. 2018,
Sun et al. 2021). We utilize common procedures (cf.
Hastie et al. 2009) and split our data into a training set
(80% of the data) for estimating parameters and a
holdout set (remaining 20%) for evaluating modeling
performance. The training set contains 957 production
batches, and the holdout set contains 240 production
batches. The metamodel is trained and tuned only
based on the training set (grid search with cross-
validation for hyperparameter tuning; see Appendix
C). A comparison with alternative metamodels is pro-
vided in Appendix B.

We compute the feature attributions of all produc-
tion parameters with the tree implementation of the
SHAP value method (see Lundberg et al. 2020 for de-
tails). This implementation utilizes the structure of
tree-based models to compute SHAP values with high
efficiency. On conventional office hardware (Intel
Core i7-8550U processor with 1.8 GHz), the computa-
tion of feature attributions for the entire training set
takes around one second.

4.5. Numerical Results
In the following, we report the results from our empir-
ical application. To identify improvement potentials,

Table 1. Exemplary Production Parameters

Description Production parameters Unit Level

Average pressure x282, x345, x649, x712, x1213 Millitorr Process
Average gas flow x294, x353, x507, x661, x724, x784, x1166, x1194, x1225, x3121 Standard cubic centimeters per minute Process
Average scan speed x308, x367, x515, x675, x738, x792, x1174, x1202, x1239, x3129 Millimeters second−1 Process
… … … …
Layer thickness x45, x46, x47, x3369, x3370, x3371, x3594, x3595, x3596 Angstrom Product
Particle count x170, x171, x172, x252, x253 — Product
Scratch count x197, x198, x199, x272, x273 — Product
… … … …

Figure 6. Histogram of Correlation Coefficients Between Production Parameters and Normalized Yield
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we first locate the processes associated with the larg-
est estimated contribution to variation in the normal-
ized yield (step 1). Recall that, because of high
capacity utilization and fabrication costs, Hitachi ABB
agreed to only validate two improvement actions ex-
perimentally. Therefore, we set pmax � 2 in the deci-
sion model, thereby prioritizing two processes. For
these processes, we compile a set of candidate actions
Ak together with the process engineers at the compa-
ny. Then, the decision model selects the actions that
promise the largest estimated yield improvement
(step 2).

4.5.1. Step 1: Prioritizing Processes. The decision
model now determines the two processes associated
with the largest estimated contribution to variation in
the normalized yield. First, the mean absolute feature
attribution Φj is returned for each production parame-
ter. Around 99% of the production parameters have a
mean absolute feature attribution Φj < 0:1 and are
thus hardly relevant in describing variation in the nor-
malized yield. The top 10 quality drivers in the tran-
sistor chip production are listed in Table 2. Overall, 6
of the top 10 production parameters stem from the
same implantation process (process 25). This includes
production parameter x302, for which we previously
determined a high correlation with the normalized
yield (cf. Section 4.3; note that we here report the cor-
relation in the training set). Therefore, it is not surpris-
ing that our decision model lists production parame-
ter x302 among the top 10 quality drivers. In contrast,
the other quality drivers have a small correlation
with the normalized yield. This suggests the pres-
ence of nonlinear relationships not captured by line-
ar correlation.

The decision model computes the process importance
Θk (i.e., mean absolute feature attribution at the process
level) and then returns the two processes that should
be prioritized for improvement actions. The output

suggests that process 25 and process 166 are associated
with the largest estimated contribution to variation in
the normalized yield. The distribution of process impor-
tance values for all 200 processes is shown in Figure 7.
The decision model indicates that, for 159 processes, the
attributed influence on the normalized yield is negligi-
ble (Θk < 0:1). In contrast, the two prioritized processes
explain a comparably large portion of the variation in
the normalized yield.

Table 3 provides more detailed information about the
two prioritized processes. Process 25 is an implantation
process, comprising 63 measured production parame-
ters with a process importance of 4.18. Process 166 is an
etching process, comprising 173 measured production
parameters with a process importance of 2.30. Both pro-
cesses can be carried out by different machines (i.e., im-
plantation process 25 by machines QI613, QI614, or
QI615 and etching process 166 by machines QP211,
QP212, QP232, or QP233). Next, we will compile a set
of candidate actions and select the actions that promise
the largest estimated yield improvement.

4.5.2. Step 2: Selecting Improvement Actions. Possi-
ble improvement actions depend on whether a pro-
duction parameter can be changed. In our setting, the
production parameters in process 25 and process 166
are measurements that cannot be directly manipulat-
ed. The process engineers at Hitachi ABB suggested
that the measured production parameters can depend
on the production equipment used, and therefore,
possible improvement actions involve a change in the
material routing. This is achieved by altering the cor-
responding prioritization of machines so that one ma-
chine is preferred over others from the same process.
Accordingly, the set of candidate actions Ak contains
the available production equipment for both priori-
tized processes, respectively. Next, the decision model
will assess whether there are performance differences
between the production equipment used.

Table 2. Top 10 Quality Drivers Ranked by Mean Absolute Feature Attribution

Rank
Production
parameter Process Process type

Correlation
coefficient

Mean absolute
feature attribution Φj

1 Parameter x302 Process 25 Implantation 0.52 0.74
2 Parameter x313 Process 25 Implantation 0.02 0.58
3 Parameter x2357 Process 166 Etching 0.09 0.53
4 Parameter x889 Process 83 Photolithography 0.02 0.40
5 Parameter x1854 Process 145 Etching 0.19 0.39
6 Parameter x295 Process 25 Implantation 0.09 0.38
7 Parameter x279 Process 25 Implantation 0.01 0.34
8 Parameter x405 Process 36 Photolithography −0.11 0.33
9 Parameter x280 Process 25 Implantation −0.07 0.30
10 Parameter x340 Process 25 Implantation 0.01 0.29
… … … … … …

Note. The correlation between the production parameters and the normalized yield is reported based on the Pearson correlation coefficient in
the training set.
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The decision model now selects improvement ac-
tions in the form of machine prioritizations. The can-
didate actions in both processes are given by the ma-
chines that can be selected. In process 25, the set of
candidate actions is defined as A25 � {a125, a225, a325} with
machine QI613 (a125), machine QI614 (a225), and ma-
chine QI615 (a325). In process 166, the set of candidate
actions is defined as A166 � {a1166, a2166, a3166,a4166} with
machine QP211 (a1166), machine QP212 (a2166), machine
QP232 (a3166), and machine QP233 (a4166). For each ac-
tion, the decision model returns the mean feature at-
tribution, which quantifies the estimated average in-
fluence on the normalized yield (Table 4). Here,
positive values refer to actions that have a positive as-
sociation with the normalized yield, whereas negative
values refer to a negative association with the normal-
ized yield. The decision model estimates that action
a325 and action a2166 are associated with a positive influ-
ence on the normalized yield and are thus selected as
improvement actions. For both prioritized processes,
a Kruskal–Wallis test confirms that the feature attribu-
tions of the candidate actions differ at a statistically
significant level (p < 0.001). This provides strong evi-
dence of machine-related performance differences.

As improvement actions, the decision model sug-
gests that selecting machine QI615 (a325) in process 25
and machine QP212 (a2166) in process 166 improves the
normalized yield. Figure 8 shows the suggested mate-
rial routing through the two prioritized processes. Hi-
tachi ABB confirmed that the selected improvement

actions do not introduce any new capacity constraints
in their transistor chip production. The remaining ma-
chines can be used to perform other implantation and
etching processes, which according to our decision
model, have no estimated influence on the normalized
yield. In the following, we validate the two improve-
ment actions by conducting a field experiment.

5. Experimental Validation of Selected
Improvement Actions

The effectiveness of the two selected improvement ac-
tions is validated as follows. First, we determine the
projected treatment effect by statistically analyzing
historical production batches in the holdout set. Then,
we conduct a field experiment at Hitachi ABB to dem-
onstrate that the projected treatment effect is achieved
after implementation.

5.1. Projected Treatment Effect
To avoid overfitting, the projected treatment effect for
the two selected improvement actions must be based
on observations that were not included in the estima-
tion of metamodel f. For this, we consider the 240 pro-
duction batches in the holdout set. Figure 9 compares
the normalized yield of the production batches that re-
ceived treatment in the form of action a325 and action
a2166 (i.e., processed by machine QI615 in process 25
and machine QP212 in process 166) with the produc-
tion batches processed differently. The plot suggests

Figure 7. Histogram of Process Importance Values

Table 3. Overview of Prioritized Processes

Process type

Process 25 Process 166

Implantation Etching

Associated production parameters x278, : : : ,x340 x2197, : : : ,x2369
Associated machines QI613, QI614, QI615 QP211, QP212, QP232, QP233
Process importance Θk 4.18 2.30
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that the production batches that were processed with
action a325 and action a2166 are associated with a consider-
ably larger normalized yield. The projected treatment
effect is given by the mean difference in normalized
yield, amounting to 22.7 units. AWelch’s t-test confirms
that this difference is statistically significant (p < 0.001).

Although the results are statistically significant, an
analysis of historical observations is not sufficient to
demonstrate that the selected improvement actions
will also be effective in the future. Moreover, the fabri-
cation conditions in all other processes of the above
analysis were not held equal, and therefore, the pro-
jected treatment effect only gives an approximation.
We addressed this by conducting a field experiment.

5.2. Design of Field Experiment
Our experimental validation followed the best prac-
tice in semiconductor manufacturing. For this, Hitachi
ABB produced a completely new production batch of
transistor chips (i.e., not included in the original data
set), where the routing of materials through the fabri-
cation processes was altered. More specifically, the
field experiment was carried out based on a 2 × 2 fac-
torial design, such that the selected improvement ac-
tions were tested at both prioritized processes 25
and 166. The underlying principle of this design is to
subdivide the experimental population (the produc-
tion batch) into four groups such that two different

improvement actions (machine prioritizations) can
be tested at two different levels (processes). Overall,
one group is subject to both improvement actions,
one group is subject to none, and two groups are
subject to only one.

Hitachi ABB has previously used 2 × 2 factorial ex-
periments to test various hypotheses about quality is-
sues. The production batch used in the experiment
consisted of 24 wafers that were split into four equal
groups with 6 wafers each (i.e., 372 transistor chips
per group). Except for the prioritized processes 25 and
166, in which we tested the selected improvement ac-
tions, all wafers were processed under the exact same
conditions. This ruled out confounders that could
have influenced the results of the experiment. We re-
port the difference in normalized yield between all
four groups to establish the effectiveness of the select-
ed improvement actions. Note that, to ensure compa-
rability, the yield normalization in the field experi-
ment was identical to that used previously.

5.3. Field Experiment
The experiment was performed as follows. Group 1
served as the control group, Group 2 received a treat-
ment in the form of improvement action a325, Group 3
received improvement action a2166, and Group 4 re-
ceived both improvement actions a325 and a2166. Table 5
lists the machine prioritization.

Table 4. Mean Feature Attributions per Action

Candidate action

Process 25 Process 166

a125 a225 a325 a1166 a2166 a3166 a4166

Associated machine QI613 QI614 QI615 QP211 QP212 QP232 QP233
Mean feature attribution Ψ

q
k −13.40 −11.42 2.40 −0.86 1.57 −12.54 −13.48

Action selected No No Yes No Yes No No

H-statistic 374.11*** 694.55***

Note. TheH-statistic is reported based on a Kruskal–Wallis test.
***p < 0.001.

Figure 8. SuggestedMaterial Routing Through Prioritized Processes
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The results of the experiment confirm that the
treated groups outperform the control group in terms
of yield performance (Table 5). The wafers in the con-
trol group (i.e., Group 1 with no improvement action)
have a normalized yield of 38.2. In contrast, the wafers
processed with treatment a325 (Group 2) have a nor-
malized yield of 50.6. For the wafers that received
treatment a2166 (Group 3), we record a normalized
yield of 85.7. The largest effect can be observed for the
wafers that received both treatments a325 and a2166
(Group 4), resulting in a normalized yield of 86.0.
Overall, this improved the normalized yield over the
control group by 47.8 units. This result is consistent
with the projected treatment effect (i.e., both groups
are within 90% of empirical distribution).

5.4. Interpretation of Experimental Results
Comparing the control group (Group 1) and the
group with both treatments (Group 4) returns an im-
provement in the normalized yield by 47.8 units. We
acknowledge that this yield improvement is relatively
large considering the projected treatment effect. The
reason is that the experiment compares the machines
associated with the worst performance with the ma-
chines associated with the best performance (cf. Table 4).
Nevertheless, a selection bias can be ruled out because

Hitachi ABB did not select among production
batches for the experiment. Instead, they dedicat-
ed a random batch of wafers to be treated experi-
mentally. Hitachi ABB further ensured that the ex-
perimental batch was representative by comparing
the average nonnormalized yield of our sample
(i.e., 1

M
∑M

i�1µ(i)) with the yield of Group 4.5 The
company informed us that both improvement ac-
tions resulted in a 21.7% reduction in yield loss.

The experiment confirms that both improvement
actions have a positive effect on the normalized yield.
We note that the process importance of process 25 is
larger than that of process 166. Nonetheless, the ex-
perimental results suggest the yield improvement be-
cause of action a2166 is larger compared with that be-
cause of action a325. This can be explained as follows.
The process importance values (cf. Table 3) are com-
puted across all observations in the training set. Here,
the process associated with the largest estimated con-
tribution to variation in the normalized yield is not
necessarily the process that, for a single production
batch, relates to the largest yield gain. Specifically, we
observed that, in our sample, the worst-performing
machines in process 25 (i.e., QI613 and QI614) have
been used relatively more often than the worst-
performing machines in process 166 (i.e., QP232 and

Table 5. Experimental Results

Control group Treatment groups

Group 1 Group 2 Group 3 Group 4

Treatment No treatment a325 a2166 a325 and a2166
Machine in process 25 QI613 QI615 QI613 QI615
Machine in process 166 QP233 QP233 QP212 QP212
Normalized yield 38.2 50.6 85.7 86.0
Absolute improvement over control group — +12.4 +47.5 +47.8
Notes. The table presents the results from a 2 × 2 factorial experiment at Hitachi ABB. We investigate the yield influence of different process
routings to validate the selected improvement actions. Except for the prioritized processes 25 and 166, all wafers are processed by identical
machines. In process 25 and process 166, we split the production batch into four equal groups such that one group receives both treatments, one
group receives no treatment, and two groups receive one of the treatments. We report the resulting normalized yield for each group to show the
effectiveness of the improvement actions a325 and a2166.

Figure 9. Projected Treatment Effect

Notes. The box plot shows the normalized yield for those observations in the holdout set that have been treated with actions a325 and a2166 (i.e.,
processed by machines QI615 and QP212) against those that have not. The whisker length is given by the 1.5 interquartile range, and the 50%
quantile is highlighted as a bold line. We report the statistical significance based onWelch’s t-test.

***p < 0.001.
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QP233). Therefore, the decision model attributes more
importance to process 25. This is a strength of the de-
cision model because it takes into account not only
marginal contributions but also, how often certain ac-
tions have been used. Further note that, after transis-
tor chips are damaged, they cannot be restored be-
cause the effects for both improvement actions are not
additive.

The research team presented the results to senior
managers and production experts at Hitachi ABB. A
discussion among the domain experts led to sugges-
tions regarding the sources of machine-related perfor-
mance differences. In implantation process 25, the
worst-performing machines, QI613 and QI614, are
prone to particles that induce chip failures during
processing. In contrast, machine QI615 does not en-
gender the same amount of contamination. In etching
process 166, there is a specific machine type whose
loading mechanism scratches the wafer surface, there-
by damaging a subpopulation of chips at four wafer
positions. Machine QP212 is not affected by this me-
chanical problem and has thus a positive association
with the normalized yield. Overall, the improvement
actions are effective, as the worst-performing ma-
chines can be used to perform other processes where
the influence on the normalized yield is not critical.

6. Evidence from Postexperimental
Rollout

Motivated by the results of the field experiment, Hita-
chi ABB decided to integrate our decision model into
their quality management. Their first postexperimen-
tal rollout targeted a transistor chip product that is
different from the one used in our initial field research

(Sections 4 and 5). The company chose this product
because it had been subject to a comparably low yield
for which the underlying mechanisms were not un-
derstood. Together with the process engineers, we im-
plemented our decision model using product and pro-
cess measurements from the new setting. The decision
model identified two etching processes associated
with a large estimated contribution to variation in the
yield. The process engineers used this new insight to
implement two improvement actions targeting the
negative yield associations in both prioritized etching
processes.

We report the quality improvements that were
achieved in the running operations of Hitachi ABB.
Figure 10 compares the yield distributions of the pro-
duction volumes produced before and after the imple-
mentation of the two improvement actions (corre-
sponding to February to June 2020 and July to August
2020). Note that semiconductor manufacturers like Hi-
tachi ABB produce thousands of transistor chips daily.
By comparing the change in the distributions, we find
a reduced yield variation and improved yield mean,
which is in line with the theoretical background of
this work (cf. Figure 2). Overall, the yield loss of the
considered transistor chip product was reduced by
51.3% (p < 0.001). The improvement remained consis-
tent throughout the entire study period.

Evidently, the two selected improvement actions
were associated with significant yield improvements.
Yet, the underlying quality drivers were not identified
previously. On the one hand, Hitachi ABB confirmed
that the two identified processes were not detected
with the company’s standard quality management
tools (based on correlation analysis and expert knowl-
edge). On the other hand, alternative methods could

Figure 10. (Color online) Comparison of Normalized Yield Before and After Improvement Actions
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not provide improvement actions. Specifically, we im-
plemented a lasso with additional quadratic terms
and interaction terms between production parameters
to consider potential nonlinearities. The lasso set all
coefficients to zero and in this case, incorrectly sug-
gested that no production parameter is associated
with the normalized yield. This again highlights the
operational value of using explainable AI for quality
improvement.

7. Robustness Checks
In this section, we perform several robustness checks
related to our empirical application (Section 4). We
confirm that using an alternative metamodel results in
consistent findings and compare our decision model
with linear methods and a decision tree heuristic.

7.1. Selection of Improvement Actions with
Alternative Metamodel

We implement a random forest as a metamodel to
evaluate whether we arrive at the same conclusions as
before. The random forest is chosen because its
modeling performance is on par with gradient boost-
ing (see Appendix B). We first compare the rankings
of process importance values Θk determined based on
the gradient boosting and random forest metamodels.
We find that the rankings are nearly identical (Spear-
man rank-order correlation coefficient of 0.93 with p <
0.001). The decision model based on the random forest
also associates implantation process 25 and etching
process 166 with the largest estimated contribution to
variation in the normalized yield. In addition, it sug-
gests that machine QI615 in process 25 and machine
QP212 in process 166 should be selected as improve-
ment actions. Therefore, both steps 1 and 2 of the deci-
sion model lead to consistent results regardless of the
two implemented metamodels.

7.2. Comparison with Linear Methods
An example of linear methods in quality modeling is
provided by Zantek et al. (2002). Their method models
process quality as a linear combination of production
parameters and quality variables to allocate improve-
ment resources. However, the work by Zantek et al.
(2002) assumes that quality variables are measured at
intermediate inspections throughout a manufacturing
system. This is not applicable in our setting where the
quality variables (i.e., yield) are only measured at the
end of the transistor chip production.

An alternative linear approach is to model process
quality only based on production parameters without
quality variables from intermediate inspections. We
implement this approach with a lasso to evaluate
whether the model coefficients point toward quality
drivers. We find that the only nonzero coefficient is

related to production parameter x302 from implanta-
tion process 25. Recall that this production parameter
has a strong linear correlation with the normalized
yield; therefore, this finding is not surprising. In con-
trast, all coefficients related to etching process 166 are
set to zero, thereby indicating no influence on the nor-
malized yield. This contradicts the outcomes of the
field experiment, which confirmed a large yield influ-
ence for process 166. We also implemented a lasso
with quadratic terms and interaction terms, which did
not provide additional findings.

7.3. Comparison with Decision Tree Heuristic
A nonlinear approach for quality modeling is to inter-
pret the functional relationships of a decision tree. The
underlying idea is to manually analyze actions that
are frequent in tree leaves with large predicted yield
values. As such, this approach does not necessarily
target the sources of variation as would be required
for prioritizing processes. We implement an optimal
decision tree (Bertsimas and Dunn 2017) and compare
it with our decision model. We find implausible re-
sults for process 166 when analyzing the functional re-
lationships. Specifically, the tree splits suggest that
machine QP233 has no negative association with the
normalized yield. This is at odds with the field experi-
ment, which confirmed that machine QP233 is associ-
ated with substantial yield loss.

8. Discussion
In this section, we discuss contributions, limitations,
and practical implications.

8.1. Contributions to the Literature
This paper proposes a data-driven decision model for
improving process quality in manufacturing. The de-
cision model has three properties that address the lim-
itations of existing approaches in quality modeling.
First, it is closely aligned with quality management
theory by first targeting the sources of variation and
subsequently, selecting actions for quality improve-
ment. Second, it is designed to handle manufacturing
data that are both high-dimensional and nonlinear.
Third, it contributes a measure of process importance
based on which manufacturers can prioritize process-
es for quality improvement without requiring access
to quality variables from intermediate inspections.

Our measure of process importance supports the ef-
fective allocation of improvement efforts, even when
manufacturing data are subject to nonlinearities. In
our real-world application at Hitachi ABB, we provide
evidence from two independent interventions where
traditional methods for quality management did not
provide sufficient insights. In contrast, the proposed
decision model revealed critical relationships, which
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eventually led to significant quality improvements. In
addition, we provide a simulation (see the online sup-
plement) that confirms that our measure of process
importance is effective in locating quality drivers un-
der nonlinearities. Overall, our field research demon-
strates the operational value of explainable AI.

8.2. Limitations
A limitation of the proposed decision model is that it
makes inferences based on correlations. Recent work
has established that assuming causation in explainable
AI can lead to misleading interpretations and thus,
poor decisions (Bastani et al. 2018). Moreover, it has
been shown that post hoc explanation methods can be
fooled via adversarial attacks (Slack et al. 2020). Al-
though this evidently has not been the case in our em-
pirical setting, it highlights the importance of involving
domain experts in the development of candidate actions
after processes have been prioritized for quality im-
provement. It is unlikely that manufacturers are willing
to implement improvement actions based on nonex-
plainable model outputs. Although our decision model
by itself cannot guarantee causality, it provides sugges-
tive input to process engineers, who can then identify
potential causal pathways that would be consistent
with the inferences from the model. Finally, determin-
ing whether the selected actions actually lead to quality
improvements requires experimental validation.

Another limitation of the decision model is that it
can only select improvement actions based on past ob-
servations of production processes. Consequently, the
decision model is incapable of identifying quality
drivers that have no variation or have not been ob-
served previously. This is a common assumption, as
well as limitation, of quality modeling methods (e.g.,
Zantek et al. 2002). Consider the example of a baking
process that is operated at a constant out-of-range
temperature and thus, consistently produces quality
defects. In this case, the decision model would not be
able to point toward temperature as a potential root
cause because suitable temperature levels have not
been observed. To overcome this limitation, manufac-
turers commonly use classic quality management
methods, such as Design of Experiments (Fisher 1935),
which introduce controlled variation into a process.

8.3. Practical Implications
Our decision model can be efficiently adopted into
quality management practice. Thereby, manufacturers
can generate new insights from available data, which
are often not analyzed effectively (Kusiak 2017, Cor-
bett 2018). We make no specific assumption about
which metamodel is used. This enables the straight-
forward use of established models in the operations
management literature (e.g., tree ensembles; Cui et al.
2018, Bastani et al. 2021, Sun et al. 2021). As part of the

robustness checks, we showed that using an alterna-
tive metamodel (with similar modeling performance)
results in identical improvement actions. In addition,
the decision model is specified generically so that it
only requires lightweight input in the form of produc-
tion parameters, a measured process quality variable,
and process specifications.

Our field research was carried out in the semiconduc-
tor industry, which has several favorable conditions for
using explainable AI. First, semiconductor manufactur-
ing is highly automated, which eases the capture and
system coverage of data. Second, fabrication steps are
clearly defined, which allows tracking each product to a
distinct process. Third, semiconductor manufacturers
face costly yield losses, which motivates the invest-
ments in quality improvement. Notwithstanding the
benefits of our research setting, our decision model gen-
eralizes to manufacturing settings beyond semiconduc-
tor fabrication. The biggest hurdle is the representation
of data covering all relevant processes and production
parameters. When important production parameters
are omitted, there is a risk that quality drivers may go
unnoticed. Other industries likely to have favorable
conditions include pharmaceuticals, petrochemicals,
and automated production lines for fast-moving con-
sumer goods or printed circuit boards. The decision
model likely performs worse in labor-intensive
manufacturing because manual processes are often
quality drivers but challenging to capture digitally. It
is also problematic if quality issues are caused by
unnoticed supplier performance, such as inferior
material properties. With the ongoing digitization of
manufacturing, we expect that the challenges of data
representability will be reduced in the future.

Our approach to quality improvement is relevant to
other application areas in management. In marketing,
for example, it could be used to understand drivers of
customer churn and target at-risk individuals with
suitable incentives. In supply chain management, it
could be used to assess influential variables of suppli-
er risk. In healthcare management, it could be used to
improve hospital operations responsible for between-
patient variations in readmission risk. We leave these
promising opportunities for future research.

9. Conclusion
In this paper, we proposed a data-driven decision
model to improve process quality in manufacturing.
The decision model first prioritizes processes for qual-
ity improvement and then selects improvement
actions. As a particular benefit, the decision model is
designed to handle nonlinear manufacturing data.
This is achieved by a novel combination of nonlinear
modeling and SHAP values from the field of explain-
able AI. We demonstrated the effectiveness of our
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approach in a field experiment at Hitachi ABB. After
the field experiment, the company adopted the deci-
sion model and achieved significant quality improve-
ments. The generic design of our decision model al-
lows for widespread applicability in manufacturing
settings with high data coverage. Based on our work,
we see promising opportunities for explainable AI in
management science.
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Appendix A. SHAP Value Method
The SHAP value method (Lundberg and Lee 2017, Lund-
berg et al. 2020) infers the underlying decision rules of pre-
dictive models by decomposing a prediction f(x) into the
contribution (called the “SHAP value”) of each feature j. For
this, the SHAP value method combines local model explana-
tions and game theory (Shapley 1953). Intuitively, the SHAP
value method can be viewed as a cooperative game (i.e., re-
producing a prediction) where the payoff (i.e., the predic-
tion) must be allocated fairly among individual players (i.e.,
the features values) based on their contribution.

SHAP values are computed at the observation level;
that is, each value in a feature vector x receives its own
SHAP value. A particular benefit of SHAP values is that
they can be interpreted both locally (at the observation
level) and globally (at the model level). Based on this,
both feature attribution and feature importance can be
quantified. Feature attribution is directly determined via
the SHAP values, whereas feature importance is deter-
mined by averaging the absolute SHAP values across ob-
servations (Lundberg et al. 2020).

The SHAP value method (Lundberg and Lee 2017,
Lundberg et al. 2020) extends the traditional Shapley val-
ue definition from game theory to its use in predictive
models; that is,

φj �
∑

S⊆F\{ j}

|S |! (N − |S | − 1)!
N!

fx(S ∪ { j}) − fx(S)[ ]
, (A.1)

where F defines the set of all features, N defines the total
number of features, and S defines all the possible subsets
F\{ j}. Here, fx(S) � E[ f (x) | xS] denotes the expected value
of the predictive model conditioned on a subset S of input
features (as defined in Lundberg et al. 2020). Consequent-
ly, fx(S ∪ { j}) − fx(S) estimates the marginal contribution of
adding the feature j to the feature set S. The effect of add-
ing the feature depends also on other features in the mod-
el and is thus computed for all possible subsets S. There-
fore, the feature attribution φj quantifies the weighted
average of all marginal contributions of the feature j to
the model prediction f(x) while considering nonlinear rela-
tionships (cf. Lundberg and Lee 2017).

Estimating feature attributions via Equation (A.1) requires
2N estimations and is thus computationally expensive. As a
remedy, Lundberg and Lee (2017) developed model-specific
methods for computing SHAP values in a computationally
efficient manner, such as for deep neural networks (Lund-
berg and Lee 2017), kernel-based models (Lundberg and Lee
2017), and tree-based models (Lundberg et al. 2020).
SHAP values have three desirable properties (Lundberg

and Lee 2017, Lundberg et al. 2020): (1) local accuracy, (2)
missingness, and (3) consistency. Local accuracy states
that the sum of all feature attributions equals the predic-
tion; that is, f (x) � φ0( f ) +

∑N
j�1φj( f ,x), where φ0( f ) is the

expected model output. Missingness states that absent fea-
tures have no attribution; that is, if fx(S⋃{ j}) � fx(S) for all
subsets S in the power set of F, then φj( f ,x) � 0. Consis-
tency states that increasing the impact of a feature on the
model does not decrease the attribution of that feature;
that is, for any models f and f ′, if f ′x(S) − f ′x(S\{ j}) ≥
fx(S) − fx(S\{ j}) for all subsets S in the power set of F, then
φj( f ′,x) ≥ φj( f ,x). SHAP values are the only additive fea-
ture attribution method that satisfies these three proper-
ties (theorem 1 in Lundberg and Lee 2017).

Appendix B. Comparison of Metamodels
We compare the modeling performance of gradient boost-
ing with eight alternative metamodels f. We follow previ-
ous literature (e.g., Cui et al. 2018) and implement both
linear and nonlinear models. We also introduce a naïve
baseline, which is defined as the in-sample mean of the
normalized yield. Each model is subject to hyperpara-
meter tuning (see Appendix C). The modeling perfor-
mance is measured via the deviation between the model
output f (x(i)) and the true normalized yield y(i) in the
holdout set H. Here, we draw upon the root mean

squared error (RMSE) given by
����������������������������
1

MH

∑MH

i�1 (y(i) − f (x(i)))2
√

and

the mean absolute error (MAE) given by 1
MH

∑MH

i�1 |
y(i) − f (x(i))|. The advantage of using the MAE to compare
different model specifications is its interpretability, as it
directly transfers to the normalized yield. Additionally,
both the MAE and the mean absolute feature attribution
are measured as mean absolute deviations.
Table B.1 presents the out-of-sample modeling perfor-

mance. The estimation results confirm that gradient boost-
ing achieves the best performance among all models
(MAE of 6.237). Among the nonlinear models, the random
forest appears on par with gradient boosting. Overall, gra-
dient boosting outperforms all linear models at a statisti-
cally significant level. The improvement over the best line-
ar models (i.e., lasso and elastic net) amounts to 17.1%.
The results suggest that gradient boosting is superior in
modeling the underlying physical processes, thus making
its choice particularly suitable for our setting.

Appendix C. Hyperparameter Tuning
Table C.1 lists the hyperparameters evaluated based on a
grid search with 5-fold cross-validation on the training
set. Note that deep neural networks are usually used
along long rather than wide data. Hence, additional ef-
fort was needed to achieve a favorable performance in
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our high-dimensional setting. We considered different
model architectures, including layers with regulariza-
tion and convolutional layers. The best-performing ar-
chitecture draws upon kernel regularization to prevent
overfitting.

As an additional data representation, the lagged nor-
malized yield was included as a predictor, but modeling

performance still appeared on par. Moreover, the decision
model selected the exact same actions.

Appendix D. Analysis of Feature Attribution
Figure D.1 shows the SHAP summary plot (Lundberg
et al. 2020) for the top 10 quality drivers.

Table B.1. Comparison with Alternative Metamodels

Model MAE RMSE

Statistical comparison (t-statistic)

In-sample mean Lasso Gradient boosting

Naïve baseline
In-sample mean 9.103 12.404 — −2.179* −4.128***

Linear models
Linear regression 9.082 12.414 0.027 −2.145* −4.088***
Ridge regression 8.747 12.111 0.463 −1.692* −3.629***
Lasso 7.528 10.513 2.179* — −2.016*
Elastic net 7.528 10.513 2.179* 0.000 −2.016*

Nonlinear models
Support vector regression 7.480 10.961 2.158* 0.069 −1.845*
Deep neural network 6.740 9.756 3.325*** 1.198 −0.801
Optimal decision tree 6.718 9.599 3.394*** 1.247 −0.779
Random forest 6.250 9.022 4.143*** 2.015* −0.021
Gradient boosting 6.237 9.114 4.128*** 2.016* —

Notes. The table compares the out-of-sample model performance for nine different metamodels and a naïve baseline. The linear regression
makes additional use of recursive feature elimination to prevent overfitting. The optimal decision tree is based on Bertsimas and Dunn (2017).
We perform t-tests on the absolute prediction errors to show that the model performances differ at a statistically significant level. The t-statistics
and significance levels (one sided) are reported based onWelch’s t-test.

*p < 0.05; ***p < 0.001.

Table C.1. Grid Search for Hyperparameter Tuning

Model Tuning parameters Tuning range

Linear regression Number of features (recursive feature elimination) 1; 2; 3; … 3,614
Ridge regression Regularization strength α 0.01; 0.1; 1; 10; 100; 500; 1,000; 2,000; 5,000
Lasso Regularization strength α 0.01; 0.1; 1; 10; 100
Elastic net Regularization strength α 0.01; 0.1; 1; 10; 100

Regularization ratio 0; 0.25; 0.5; 0.75; 1
Deep neural network Number of hidden layers 2; 5

Number of neurons in first hidden layer 100
Number of neurons in other hidden layers 10
Learning rate 0.00001
Epochs 5,000; 10,000
Batch size 64
Kernel regularization strength α 0; 1
Dropout rate in first hidden layer 0; 0.5
Dropout rate in other hidden layers 0

Support vector regression Kernel function Radial
Cost parameter C 0.01; 0.1; 1; 10; 100
γ-Parameter 0.001; 0.01; 0.1; 1

Optimal decision tree Maximum tree depth 1; 2; 3; 4; 5
Random forest Number of trees 50; 100; 400

Maximum tree depth None; 2; 5; 10; 50
Maximum features considered for split Auto; 1; 3; 5; 10

Gradient boosting Number of trees 50; 100; 400; 1,200
Maximum tree depth 3
Learning rate 0.01
Regularization strength α 0; 0.1; 1; 4
Regularization strength λ 0; 0.1; 1; 4
Bagging fraction 0.2; 0.6; 1
Feature fraction 0.2; 0.6; 1

Note. The selected hyperparameters are highlighted in bold.
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Figure D.2 compares the mean absolute feature attribu-
tions and the Pearson correlation coefficients between the
production parameters and the normalized yield. The

figure shows that, except for production parameter x302,
quality drivers tend to have a low correlation with the
normalized yield.

Figure D.1. (Color online) Feature Attribution for Top 10 Quality Drivers

Figure D.2. Comparison of Correlation Coefficients andMean Absolute Feature Attribution
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Endnotes
1 See the American Society for Quality cost of quality information at
https://asq.org/quality-resources/cost-of-quality (last accessed on
August 18, 2021).
2 Our approach can also be extended to manufacturing sys-
tems where subcomponents are processed in parallel. For
this, the subcomponents must be considered as one product
observation.
3 See Hitachi’s information on semiconductor metrology and in-
spection at https://www.hitachi-hightech.com/global/products/
device/semiconductor/metrology-inspection.html (last accessed on
August 18, 2021).
4 See the article on the McKinsey & Company website “Reimagining
fabs: Advanced analytics in semiconductor manufacturing” at
https://www.mckinsey.com/industries/semiconductors/our-insights/
reimagining-fabs-advanced-analytics-in-semiconductor-manufacturing
(last accessed on August 18, 2021).
5 Note that the yield variable has been normalized to preserve the
confidentiality of the absolute figures. The normalization in the ex-
periment is equivalent to the one used previously.
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Mišić VV, Perakis G (2020) Data analytics in operations manage-
ment: A review. Manufacturing Service Oper. Management 22(1):
158–169.

Olsen TL, Tomlin B (2020) Industry 4.0: Opportunities and chal-
lenges for operations management. Manufacturing Service Oper.
Management 22(1):113–122.

Ribeiro MT, Singh S, Guestrin C (2016) Why should I trust you?: Ex-
plaining the predictions of any classifier. Krishnapuram B,
Shah M, Smola A, Aggarwal C, Shen D, Rastogi R, eds. Proc.
22nd ACM SIGKDD Internat. Conf. Knowledge Discovery Data
Mining (KDD 2016, San Francisco, CA) (Association for Comput-
ing Machinery, New York), 1135–1144.

Schmenner RW, Swink ML (1998) On theory in operations manage-
ment. J. Oper. Management 17(1):97–113.

Shapley LS (1953) A value for n-person games. Kuhn HW, Tucker
AW, eds. Contributions to the Theory of Games, Annals of Math-
ematics Studies (Princeton University Press, Princeton, NJ),
307–318.

Shewhart WA (1926) Quality control charts. Bell System Tech. J. 5(1):
593–603.

Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H (2020) Fooling LIME
and SHAP: Adversarial attacks on post hoc explanation meth-
ods. Proc. AAAI/ACM Conf. AI Ethics Soc. (Association for Com-
puting Machinery, New York), 180–186.

Sun J, Zhang D, Hu H, Van Mieghem JA (2021) Predicting human dis-
cretion to adjust algorithmic prescription: A large-scale field exper-
iment in warehouse operations. Management Sci., ePub ahead of
print September 10, https://doi.org/10.1287/mnsc.2021.3990.

Taguchi G (1986) Introduction to Quality Engineering: Designing Quali-
ty into Products and Processes (Asian Productivity Organization,
Tokyo).

Taguchi G, Clausing D (1990) Robust quality. Harvard Bus. Rev.
68(1):65–75.

Terwiesch C, Olivares M, Staats BR, Gaur V (2019) A review of em-
pirical operations management over the last two decades.
Manufacturing Service Oper. Management 22(4):656–668.

Tsai TN (2012) Development of a soldering quality classifier system
using a hybrid data mining approach. Expert Systems Appl.
39(5):5727–5738.

Wu L, Zhang J (2010) Fuzzy neural network based yield prediction
model for semiconductor manufacturing system. Internat. J. Pro-
duction Res. 48(11):3225–3243.

Yu B, Popplewell K (1994) Metamodels in manufacturing: A review.
Internat. J. Production Res. 32(4):787–796.

Zantek PF, Wright GP, Plante RD (2002) Process and product im-
provement in manufacturing systems with correlated stages.
Management Sci. 48(5):591–606.

Senoner, Netland, and Feuerriegel: Explainable AI in Quality Management
Management Science, 2022, vol. 68, no. 8, pp. 5704–5723, © 2021 The Author(s) 5723

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
2.

10
9.

46
] 

on
 0

2 
Se

pt
em

be
r 

20
22

, a
t 0

7:
02

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://asq.org/quality-resources/cost-of-quality
https://www.hitachi-hightech.com/global/products/device/semiconductor/metrology-inspection.html
https://www.hitachi-hightech.com/global/products/device/semiconductor/metrology-inspection.html
https://www.mckinsey.com/industries/semiconductors/our-insights/reimagining-fabs-advanced-analytics-in-semiconductor-manufacturing
https://www.mckinsey.com/industries/semiconductors/our-insights/reimagining-fabs-advanced-analytics-in-semiconductor-manufacturing
https://hamsabastani.github.io/interp.pdf
https://doi.org/10.1287/mnsc.2021.3990

