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Figure 1: Exemplary application of pathpy to detect clusters in time-stamped network data (center). Common network anal-
ysis packages are based on time-aggregated graph representations (top left) that decompose sequences of interactions that
constitute a causal paths into independent dyadic links. The Fiedler vector of such a graph (bottom left) does not allow to
detect temporal-topological clusters (colored nodes) introduced by the temporal ordering of links. In contrast, pathpy uses
statistical learning techniques to infer optimal higher-order graph models that capture non-dyadic dependencies (top right)
generated by the statistics of causal paths. Such models allow, e.g., to detect temporal-topological clusters via a generalization
of spectral clustering to higher-order Laplacians (bottom right).

ABSTRACT
The Open Source software package pathpy, available at https://
www.pathpy.net, implements statistical techniques to learn optimal
graphical models for the causal topology generated by paths in
time-series data. Operationalizing Occam’s razor, these models
balance model complexity with explanatory power for empirically
observed paths in relational time series. Standard network analysis
is justified if the inferred optimal model is a first-order network
model. Optimal models with orders larger than one indicate higher-
order dependencies and can be used to improve the analysis of
dynamical processes, node centralities and clusters.
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1 INTRODUCTION
Network-based data mining techniques such as graph mining, (so-
cial) network analysis, link prediction and graph clustering are a
cornerstone for data science and machine learning in Web data.
They help to detect patterns in large data sets that capture dyadic
relations between pairs of documents, websites, users, or products
and have improved our understanding of complex networks across
disciplines. While the potential of analysing graph or network mod-
els of relational data is undisputed, we increasingly have access
to temporal data that not only tell us who is related to whom but
also when and in which order relations occur. Consider, e.g., data on
user clickstreams in the Web, time-stamped social networks, or se-
quences of word co-occurrences in documents. Such temporal and
sequential data pose a fundamental challenge for state-of-the-art
graph mining and network analysis techniques. Aggregating data
within certain time slices, most state-of-the-art techniques discard
information on the microscopic timing and ordering of links, which
is, however, the foundation of so-called time-respecting or causal
paths [1]. That is, we lose information on who can influence whom
indirectly. For a sequence of two links A → B and B → C , a node
A can only influence C via a (transitive) causal path via B if A → B
occurs before B → C . A causal path fromA toC does not exist if the
order of links is reversed. Recent works show that the timing and
ordering of interactions in real systems can introduce higher-order,
non-dyadic dependencies not captured by state-of-the-art graph
models [2]. We still lack software packages that enable us to analyse
this important dimension of complexity in relational time series.
Addressing this gap, we present pathpy, a python package that
provides data analysis and machine learning methods for temporal
networks. It is suitable for researchers and practitioners who (i)
wish to adopt a graph perspective to reveal higher-order dependen-
cies between elements of complex systems, (ii) extract higher-order
features for machine learning tasks on relational time series, or (iii)
need methods that go beyond the dyadic perspective of existing
graph mining and network analysis tools.

2 KEY PATHPY FEATURES
Pathpy is an actively developed library with a growing number of
contributors and users aswell as scalable data analytics andmachine
learning techniques for temporal networks. It is specifically tailored
to time-stamped and sequential data that capture multiple short
paths observed in a graph. Examples for such data in the context of
the World Wide Web include dynamic social interactions, user click
streams, citation graphs, or traces of information propagation in
social media. Unifying the analysis of such temporal data, pathpy
provides efficient methods to calculate statistics of causal paths. In
the remainder of this section, we highlight selected pathpy features.

Higher-Order Graph Models. The foundation of pathpy are so-
called higher- and muti-order graph models, a framework that
generalises standard graph representations of relational data to
k-dimensional De Bruijn graph models for causal paths in temporal
data [5, 6]. Standard time-aggregated graph models of temporal
networks can be viewed as one-dimensional De Bruijn graphs,
where link weights capture the frequencies of links (which are
causal paths of length k = 1) between nodes (which can be viewed
as paths of length k − 1 = 0). Generalizing this idea, weighted links

in a k-th order graph model capture frequencies of causal paths of
length k between nodes representing paths of length k − 1. Fig. 1
shows an example for a second-order model, where the indicated
link represents a path of length k = 2 consisting of two consecutive
interactions 11 → 15 and 15 → 19. Such higher-order graphmodels
have proven to be a poweful approach to understand the causal
topology of complex systems [2]. They can be used to generalize
network analysis and graph mining to temporal data, and help us
to address limitations of social network analysis techniques.

Optimal Order Detection. A fundamental question in the mod-
elling of data via higher-order graph models is which higher order
k is needed to analyse a given time series. For some data, standard
graph representations (i.e. first-order model with k = 1) are suf-
ficient while others require models with larger order k > 1. To
answer this crucial question in the modelling and analysis of tem-
poral Web data, pathpy implements model selection and statistical
learning techniques that allow to (i) decide when standard graph
representations of time series data are justified, and (ii) determine
the optimal order of higher-order models for data that cannot be
modelled as (first-order) graphs [5].

Optimal Higher-Order Graph Analytics. Apart from techniques
to learn optimal higher-order graph models, pathpy implements
generalizations of key graph analytic methods to those higher-order
models. Examples include algorithms to rank nodes based on differ-
ent notions of centralities such as betweenness, closeness, eigenvec-
tor, or PageRank centrality defined in higher-order models [5, 6],
methods to compute stationary states, visitation probabilities, and
convergence times of higher-order random walk models that are
the foundation for time-aware node embedding or clustering al-
gorithms [4], as well as spectral analysis techniques building on
higher-order generalizations of Laplacian matrices [7].

Interactive Visualisations. Pathpy is fully integrated with jupyter,
providing rich, fully-customizable and interactive visualisations of
static, temporal, and higher-order networks. Building on a recently
developed layout algorithm [3], time-aware static visualizations
of temporal graphs can be generated which highlight patterns in
the underlying temporal data. Visualisations can be exported to
HTML5 files that can easily be shared and published on the Web,
or converted to tex/tikz code that faciliates customizable figures
suitable for scientific publications.

3 CONCLUSION
In summary, pathpy provides easy access to an array of network
analysis and machine learning techniques for temporal data on net-
works. Building on robust, scalable, and easy-to-use data structures
that are coherent with python’s data science stack, pathpy is a
compelling choice for data science tasks in temporal Web data such
as time-stamped social networks or clickstreams. More information
on pathpy is available at https://www.pathpy.net.
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