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Abstract

This thesis is concerned with three aspects of numerical simulations

of electric arcs:

Part I extends a previous numerical scheme in 1D to 3D and

non-constant timestepping for a plasma defined in an Euler-Maxwell

framework. The main feature of the scheme is that it allows for the

scaled Debye length as a modeling parameter to continuously blend

between the full Maxwell system and the eddy current model; this

feature is known as asymptotic preserving. The generalization to

higher dimensions is involved because it requires a dual mesh strat-

egy and interpolation of the electromagnetic field. The submodels

of the newly designed scheme are validated with testcases; however,

setting the scaled Debye length to zero unveiled that assuming a lin-

ear relation in Ohm’s law prevents the new 3D scheme from being

asymptotic preserving.

Part II focuses on radiation modeling. It reviews the relevant mod-

eling assumptions that reduce the radiative transfer equation to a

computationally tractable model as it is found in applied numerical

simulations. However, the main issue lies in the complex structure

of the absorption coefficient. We consider the Elenbaas-Heller equa-
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tion as the simplest model for a wall-stabilized arc and derive the

linearized equation. A sensitivity analysis permits to analyze effects

of uncertainties in the spectral absorption coefficient on the arc volt-

age and temperature profile. We also consider the line limited Planck

mean and show that an appropriately chosen renormalization length

permits to retrieve the correct temperature profile at minimal com-

putational costs.

Part III presents applied numerical simulations of electric arcs in

circuit breakers. It is hard to find simulation suites that permit for

a robust coupling of the numerous modeling aspects as required for

applied thermal plasma simulations, which encompass gas dynamics,

electromagnetism, and radiative heat transfer, rigid body motion,

mesh morphing, and other modeling aspects. Our software choice

enabled us to consider a low voltage circuit breaker and evaluate the

contact arm motion with respect to mechanics, plasma pressure, and

electromagnetic force. A second case analyzes a recent design of a

high voltage direct current circuit breaker and shows results of the

electric field and gas flow field complementing previous measurement.

Combining a caloric estimate with the simulation results of radiative

heat flux to the nozzle wall, we provide an argument for the experi-

mental observation that wall ablation is measured only for sufficiently

large currents.
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Kurzfassung

Die vorliegende Dissertation befasst sich mit drei Aspekten zur nu-

merischen Simulationen elektrischer Lichtbögen:

Teil I erweitert eine bestehende numerische Methode von 1D nach

3D und mit nicht-konstanten Zeitschritten für ein Plasma, welches

durch die Euler-Maxwell-Gleichungen beschrieben ist. Der Kernas-

pekt des Schemas ist, dass es die skalierte Debye-Länge als Modellier-

ungsparameter berücksichtigt um einen stetigen Übergang zwischen

den vollständigen Maxwellgleichungen und dem Wirbelstrommodell

zu ermöglichen. Die Verallgemeinerung in höhere Dimensionen ist

anspruchsvoll, weil sie eine duale Gitterstrategie sowie eine Interpo-

lation der elektromagnetischen Felder benötigt. Die Teilmodelle sind

mit Testfällen validiert; es zeigte sich jedoch bei verschwindender

Debye-Länge, dass die Annahme eines linearen Ohmschen Gesetzes

es nicht erlaubt, dass das neue 3D Schema asymptotisch erhaltend

ist.

Teil II beschäftigt sich mit der Strahlungsmodellierung. Es fasst

die grundlegenden Modellannahmen zusammen, welche es erlauben

die Strahlungstransportgleichung zu einem berechenbaren Modell für

angewandte numerische Simulationen zu reduzieren. Die eigentliche

xi



Hürde liegt in der komplexen Struktur des Absorptionskoeffizienten.

Basierend auf der Elenbaas-Heller Gleichung, welche das einfachste

Modell für einen wand-stabilisierten Lichtbogen ist, wird eine lin-

earisierte Gleichung entwickelt. Eine Sensitivitätsanalyse ermöglicht

das Analysieren von Unsicherheiten im spektralen Absorptionskoef-

fizienten in Bezug auf Lichtbogenspannung und Temperaturprofil.

Im Besonderen wird die Linien-limitierte Planck-Mittelung betra-

chtet und es wird gezeigt, dass eine angemessene Wahl der Renor-

mierungslänge es erlaubt, das korrekte Temperaturprofil mit wenig

Rechenaufwand zu bestimmen.

Teil III zeigt angewandte numerische Simulationen zu elektrischen

Lichtbögen in Leistungsschaltern. Es ist schwierig Simulationsumge-

bungen zu finden, die eine robuste Kopplung der Vielzahl an Model-

lierungsaspekten erlauben, wie sie für anwendungsnahe Plasmasimu-

lationen benötigt werden: diese umfassen kompressible Strömungen,

Elektromagnetismus, Wärmestrahlung, Festkörperbewegung, Gitter-

verformung, und andere. Die hier verwendete Software erlaubt es,

Niederspannungsschutzschalter zu betrachten und die Bewegung der

Kontaktbrücke zu bestimmen unter Berücksichtigung der Mechanik,

des Plasmadrucks sowie der elektromagnetischen Kräfte. Ein zweiter

Fall betrachtet ein neuartiges Design eines Gleichstromschutzschal-

ters, und zeigt Ergebnisse zum elektrischen Feld und der Gasströmung,

welche bisherige Messergebnisse ergänzen. Das Kombinieren einer

kalorischen Abschätzung mit Simulationsergebnissen des Wärmestrahl-

ungstransport zur Düsenwand erlaubt eine Erklärung von experi-

mentellen Beobachtungen der Ablation, die nur für genügend grosse

Stromstärken gemessen wurde.
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1. Introduction

We are surrounded by different types of plasmas in our everyday life.

We are fascinated by the diffuse and colorful northern lights, we turn

the energy-saving light bulb on in the living room or the fluorescent

tube in the kitchen, we observe plasma cutters when walking by the

metalworking business. We also watched movies on flat screen plasma

displays (before they got replaced by LCD displays) [79]. We learned

about the solar corona in school, and it might be that a family mem-

ber got a plasma cancer therapy (see, e.g., [88]). Our parents told

us the consequences of lightning strikes in case of being outside in

a thunderstorm. We are also protected by circuit breakers that are

designed to withstand electric arcs while interrupting the electric cur-

rent flow to our appliances in case of faults. For cost-effective designs

of such technical devices we need numerical simulations as they allow

for better performance predictions and optimization studies.

This brief list of examples shows that plasmas occur in many dif-

ferent types, and they are often grouped into natural and man-made

plasmas. They are customarily classified in terms of electron tem-

perature and electron number density, and the parameter range is

huge: for instance, thermonuclear fusion plasmas exceed 106 K at

1



Introduction

1020 electrons per cubic meter whereas plasmas in the ionosphere

have temperatures of 103 K at 1012 electrons per cubic meter. [34,

sec. 1.1.3]) But what is a plasma?

We start describing plasmas with an analogy to metal bodies. For

instance, let us consider a copper wire. We know that they are good

electrical conductors. Applying an electric potential difference be-

tween the wire endings results in an electric current, which is nothing

but a directed flux of electrons. We can think of these electrons as a

gas that is tied to the interior of the metal body. The electrons are

free to move in this gas as they are not bound to individual atoms.

These conductance electrons are accelerated by the electric field due

to the applied potential, but they also collide frequently with the

metal atoms which results in a finite speed while heating the solid.

The ratio of electron drift velocity to electric field strength is known

as electron mobility µe (see, e.g., [135, sec. 2.1]). This description

is known as the Drude model [49, 50] which has later been supple-

mented by quantum theory [158], see also [9]; in fact, the electrons

constitute a Fermi gas (see, e.g., [9, ch. 2]).

Experimentally, we find that the electric current J is proportional

to the electric field E. This is known as Ohm’s law J = σE with σ

termed as the electrical conductivity. In fact, the electrical conduc-

tivity is proportional to elementary charge q, electron number density

ne, and electron mobility (see, e.g., [135, eq. 2.7]): σ = qneµe. When

examining with other materials we see that good conductors are char-

acterized by large electrical conductivities (e.g., σ = 58× 106 S m−1

for copper) whereas insulators show values close to zero (e.g., σ =

2



Introduction

10−14 S m−1 for rubber; see, e.g., [72, p. 301]). In contrast to the

metal body analogy as outlined above, a plasma consists of negatively

and positively charged particles, i.e., electrons and ions, respectively,

as well as neutral particles; moreover, the gas is not confined inside a

solid body. For a proper definition of plasmas we refer to [38, sec. 1]

and [34, ch. 1].

The analogy above leads us to the categorization of ideal and re-

sistive magnetohydrodynamics (MHD). An ideal plasma is charac-

terized through the limiting case of infinite electrical conductivity

(σ → ∞) which allows for significant modeling simplifications. This

plasma type is of particular interest to fusion reactors (see, e.g., [59,

ch. 2]). Plasmas with a finite electrical conductivity (σ < ∞) are

known as resistive plasmas. They may be described by combining

the concepts of fluid dynamics and electromagnetism, and it is the

electrical conductivity that acts as a coupling parameter between the

two fields of physics. However, the problem occurs when we consider

the limiting case σ → 0. The system of equations (fluid dynamics

and electromagnetism) becomes decoupled and other aspects become

more important requiring appropriate modeling efforts.

We therefore cannot rely on a single computational method that fits

all. Rather, we have to design specific algorithms that allow to treat

the dominant modeling aspects appropriately. In part I, we generalize

a previously published numerical scheme [45] to 3D and for arbitrary

mesh topologies, including collisions among the plasma gas species.

The aim is to show that the scheme is asymptotic preserving, that is,

the numerical scheme works equally well if the coupling parameter

3
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goes to zero and the system of equations becomes degenerate. We

remark that our coupling parameter is not the electrical conductivity

but the scaled Debye length, which allows for a continuous transition

between the full set of Maxwell’s equations (electromagnetic wave

limit) and the quasineutral or eddy current limit.

In part II, we consider the radiative heat flux as it is the main

energy transfer mode from an electric arc (a kind of thermal plas-

mas) to its ambient. Numerical simulations of electric arcs in circuit

breakers require appropriate radiation modeling for accurately pre-

dicting the performance of a specific circuit breaker design. Let us

therefore grasp the main ingredients of radiative heat transfer to start

understanding the complexity.

Radiative heat transfer may be defined as the exchange of energy

through photons (see, e.g., [112, p. 3]). These photons interact with

the atomic structure of the participating media: their energy may be

absorbed by electrons and raise their energy levels – if allowed by the

quantum states – or they may gain enough energy and separate from

the atomic structure leaving behind ions. Modeling and computing of

the detailed effects is a separate field of research. Specialized research

groups provide data for the absorption coefficient, the key parameter

for modeling radiative heat transfer in electric arc simulations.

This absorption coefficient is a strong function of the radiation

frequency, plasma composition, its pressure and temperature. Nev-

ertheless, the data is still too complex for being of practical use and

requires further modeling because of the limited computational power

available. We worked on two aspects. Firstly, we present a sensitiv-

4
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ity analysis of the absorption coefficient based on the Elenbaas-Heller

equation [54, 55, 78], which describes the simplest setup of an electric

arc (see, e.g., [67, eq. 30]) The method allows to predict the changes in

arc voltage that is due to uncertainties in the absorption coefficient.

Secondly, we worked on the averaging methods that are used for sim-

plifying the spectral absorption coefficient. We have found that the

line limited Planck mean allows for reducing the computational costs

without trading accuracy of the results.

Part III is concerned with applied numerical simulations of electric

arcs in circuit breakers. In an industrial context we need results in

reasonable time. We therefore often use commercially licensed soft-

ware because – among other reasons – they provide easy access with

graphical user interactions to their dedicated computer programs.

However, it is quite hard to find software tools that allow for a robust

multiphysics coupling as required in electric arc simulations. This in-

cludes gas dynamics, electromagnetism, and radiative heat transfer as

the basic components for plasma simulations and being discussed in

part I and part II. But we also should permit for moving contact ge-

ometries, coupling to an external circuit model, models for electrode

erosion and material ablation due to the high temperatures, and arc

root models that account for effects not resolved by the actual cell

size.

The simulation framework used here allowed for setting up and

running the simulations in a user-friendly way with marginal efforts

in case-specific additional programming. It enabled us to evaluate

individual contributions to total torque in a virtual model of a low

5



Introduction

voltage circuit breaker, as well as to study a new type of high volt-

age direct current (HVDC) circuit breaker design. For the latter, we

provide an explanation for wall ablation as observed in their experi-

mental work.

While elaborating this thesis, our research group at OST collabo-

rated with international companies throughout the world. It showed

us the importance of the research work and that profound knowl-

edge on electric arc modeling is key in product development. Many

discussions were driven and stimulated by scientific and application

oriented questions likewise. This work is complete only in combina-

tion with the applied simulation results as presented in the last part.

Novel contributions

This thesis provides novel contributions as listed below:

Part I builds on previous work of an asymptotic preserving numer-

ical scheme for the Euler-Maxwell system in 1D. I extend the method

to 3D and for non-constant timestep size, and I have added another

argument for using an implicit scheme based on stiffly accurate meth-

ods. The generalized model allows for non-uniform mesh topologies,

and I provide a mesh refinement strategy that retains cell quality.

The previous work is extended by including collisions among the gas

species which amounts to a friction model on the continuum level

description. I implemented the numerical method in C++ and per-

formed numerical tests. However, a testcase showed that the newly
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designed numerical scheme is not asymptotic preserving due to an

inconsistency with Ohm’s law.

Part II focuses on radiation modeling in the simplest numerical

model setup of an electric arc. I present a linearized model of the

Elenbaas-Heller equation at constant current that allows for a sensi-

tivity analysis in arc voltage and temperature profile due to modeling

uncertainties in the absorption coefficient. The line limited Planck

averaging is reconsidered and compared to the Rosseland and Planck

mean. With this averaging method for the absorption coefficients,

I show that a small number of radiation bands is sufficient to re-

trieve the same radial temperature profile as if the full spectrum of

absorption coefficients is used.

Part III considers applied numerical simulations of electric arcs in

circuit breakers. I have shown that the simulation framework allows

for continuous mesh morphing and automated remeshing criterion,

with a self-consistent rigid body motion in a virtual model of a low

voltage circuit breaker. The same simulation framework is used for

numerical studies of an experimental nozzle design aimed for a high

voltage direct current circuit breaker. I provide detailed results of

the electric field and gas flow in the nozzle that complement recent

measurement results. I also propose a caloric estimate for radiation-

induced wall ablation in this circuit breaker nozzle design, and the

results may explain the experimental findings that the nozzle ablation

is only measureable at sufficiently large current.
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Part I.

Asymptotic Preserving

Plasma Model in 3D
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2. Introduction

The design of numerical methods for plasma simulations is a challeng-

ing task because one has to consider many separate physical aspects

and bring them together for a coupled solution of the full system.

For a plasma, which is defined as a “quasineutral gas of charged

and neutral particles which exhibit collective behavior” [38, p. 3], it

means to combine gas dynamics with electromagnetism and include

interactions of the plasma particles among themselves. This may be

described by the Euler equations, Maxwell’s equations, and a friction

model, respectively.

These models are valid at any parameter scales compatible with

a continuum description of the plasma. However, it is of practical

interest to consider the limiting case known as the eddy current model

which is – in mathematical terms – a singular perturbation limit.

From a numerical point of view, this aspect makes the design task

even more challenging as the scheme should work equally well across

a large parameter range.

The main route has been laid by [45] who presented a numerical

method that allows for a continuous transition from the full Euler-

Maxwell system to the eddy current model. The key feature in their

9



Chapter 2. Introduction

numerical scheme is the property of being asymptotic preserving, i.e.,

the numerical discretization is compatible with the modeling param-

eter limiting case; here, it is given by the scaled Debye length that

tends to zero. This property allows for capturing the limit model

correctly. A robust coupling is a consequence from the physical fact

that electrical current is identical to net mass flux of charged par-

ticles. This coupling is to be treated with an implicit timestepping

method.

This work generalizes the results of [45] from 1D to 3D. We allow

for arbitrary mesh topologies and augment the model by a friction

model for the collision dominated plasma. The method is described

in chapter 3. We start our discussion with Maxwell’s equations for

electromagnetism and the Euler equations for gas dynamics. We

present the friction model for a minimal set of an argon plasma, and

we review the asymptotic preserving property. The main work lies in

the discretization that builds on the integral formulation of Maxwell’s

equations and relies on the Finite Integration Technique (FIT) or

Cell Method (CM). A major step is taken in the reconstruction of

the electric field and the implicit mass flux. The method has been

implemented in a C++ computer program. Results of the numerical

experiments are presented in chapter 4. The subsystems are validated

and the designed numerical scheme works for the fully coupled Euler-

Maxwell system for λ > 0. However, setting λ = 0 revealed an

inconsistency that does not make the scheme asymptotic preserving.

A summary and outlook is given in chapter 5.

10



3. Asymptotic-preserving

multi-species Euler-Maxwell

plasma model

This chapter presents the asymptotic-preserving multi-species Euler-

Maxwell plasma model and its numerical discretization. In section 3.1

we revisit Maxwell’s equations that describe the physical laws of elec-

tromagnetism, and we introduce the appropriate scaling to dimen-

sionless variables. Section 3.2 presents the multi-species plasma fluid

model including effects of frictional forces among the plasma species

that are due to collisions at the molecular level.

The property of asymptotic-preserving is outlined in section 3.3.

This concept ensures that the numerical and continuous models are

consistent in the limits of vanishing temporal and spatial discretiza-

tion lengths and small values of a physical modeling parameter. This

modeling parameter is given herein by the scaled Debye length λ.

The discrete model is presented in section 3.4.

11
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3.1. Maxwell’s equations

Maxwell’s equations describe the dynamics of electric and magnetic

fields in space. At macroscopic scales, i.e., at volume sizes that are

large compared to the volume occupied by a single atom or molecule

[83], they are commonly stated as a set of differential equations

∂t(B) +∇×E = 0, (3.1a)

∂t(D)−∇×H = −J, (3.1b)

∇ ·B = 0, (3.1c)

∇ ·D = ρel, (3.1d)

where B,D,E,H,J are vector fields defined in space R3 and for

time t ≥ 0; the fields are known as the magnetic flux density B

(SI unit: V s m−2), electric displacement field or electric induction

D (A s m−2), electric field E (V m−1), magnetic field intensity H

(A m−1), and electric current density J (A m−2). The volume density

of free charges is denoted as ρel (C m−3). The equations are known

as Faraday’s law (3.1a), Ampere’s law (3.1b), and the Gauss’s laws

for magnetic (3.1c) and electric field (3.1d), respectively. The fields

are related by the constitutive equations or material laws

H =
1

µ0

1

µr
B, (3.1e)

D = ε0εrE, (3.1f)
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Maxwell’s equations

with εr and µr being the dimensionless, possibly spatially varying

(εr = εr(x), µr = µr(x)) relative permittivity and permeability of

isotropic material1, respectively. The permittivity and permeability

of vacuum,

ε0 = 8.854 187 812 8× 10−12 F m−1, (3.2a)

µ0 = 1.256 637 062 12× 10−6 H m−1, (3.2b)

are related to the speed of light c0 by ε0µ0c
2
0 = 1. In the following,

we write the relative permittivity and permeability without subscript.

The inverse of magnetic permeability is known as magnetic reluctivity

(see, e.g., [173]), and we denote it by ν = µ−1.

For a solid material being a good conductor with electrical conduc-

tivity σ = σ(x) (S m−1), we also have Ohm’s law

J = σE (3.3)

that relates electrical current density and electric field. Electrical

current density is defined as the flow rate of charged particles across

a unit surface area. In the context of plasma modeling, as we will see

in section 3.3, it is crucial to perceive electrical current density as the

net flux of charged particles, and therefore to identify with the net

1We consider macroscopic Maxwell’s equations: the electromagnetic fields are
understood as averaged fields over a volume large compared to the volume
occupied by a single atom or molecule. [83, p. 13]
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mass flux. Hence, we may write

J =
∑
∗

J∗, J∗ := q∗n∗u∗, (3.4)

where n∗ (m−3) denotes the number density of species ∗, u∗ (m s−1) is

their velocity and q∗ (C) denotes their electrical charge. The electrical

charge is given as multiples of the elementary charge

q = 1.602 176 634× 10−19 C. (3.5)

The volume or space charge density is the net number of charged

particles in an infinitesimal volume, i.e.,

ρel =
∑
∗
q∗n∗. (3.6)

The general framework of Maxwell’s equations allows to describe

electromagnetic phenomena at various spatial and temporal scales. In

fact, the framework describes electromagnetic waves at any frequency

encompassing radio- and microwaves, visible light, and gamma rays.

The equations may be simplified if the fields may be assumed to vary

slowly in time and the domain is small enough, i.e., if the wavelength

is much longer than the diameter of the domain. In such cases, the

model equations may be reduced to the eddy current approximation

or magneto-quasistatic model (∂t(D) → 0), the electro-quasistatic

model (∂t(B) → 0), or the stationary field approximation in which

both temporal derivatives are neglected. (see, e.g., [165, sec. 1.3], [5,

14



Maxwell’s equations

sec. 1.2] These approximations are used, for instance, in the analysis

of transformers [e.g., 156, 155, 36], or microelectrodes or neurophys-

ical models [e.g., 166].

Dimensional analysis allows to decide on significant terms in a spe-

cific context. Here, we consider a quasineutral plasma, i.e., a plasma

in which net space charge is small for sufficiently large volumes (that

is, a sphere with radius equal to Debye length λD, see below). [see,

e.g. 34, ch. 4.5] We identify characteristic units of the underlying

physical system and write B̄, Ē, J̄ , ρ̄el, n̄, x̄, t̄, ū for the scales of

magnetic flux, electric field, current density, charge density, number

density, space, time, and velocity. It is then natural to specify the

hypotheses [45]:

(i) the space, time and velocity scales are related by x̄ = ūt̄;

(ii) the charge density scale is given by ρ̄el = qn̄, where q designates

the value of an elementary positive charge;

(iii) the current density scale is given by J̄ = qn̄ū;

(iv) the electrical energy scale is given by a thermal energy scale

(which is specified later by the fluid), qĒx̄ = kBT̄ , with

kB = 1.380 649× 10−23 J K−1 (3.7)

being Boltzmann’s constant.

15



Chapter 3. Asymptotic-preserving multi-species Euler-Maxwell
plasma model

This leads to three free, dimensionless scaling parameters:

α =
ū

c0
, (3.8a)

β =

(
ūB̄

Ē

)1/2

, (3.8b)

λ =

(
ε0kBT̄

q2n̄x̄2

)1/2

=
λD
x̄
. (3.8c)

These parameters stand for the ratio of plasma velocity to the speed

of light, the ratio of induction electric field to the reference electric

field, and the ratio of Debye length λD to the reference space scale.

The Debye length λD, defined as

λD =

(
ε0kBTe
q2ne

)1/2

, (3.9)

where Te and ne denote electron temperature and number density,

respectively, is a characteristic length scale over which an excess or

perturbation of electrical charge distribution is screened due to ther-

mal random motion [see, e.g. 34, ch. 4.5]. With the same notation

for dimensionless variables as for the physical variables, the scaled
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Maxwell system then reads

β2∂t(B) +∇×E = 0, (3.10a)

λ2(α2∂t(D)− β2∇×H) = −α2J, (3.10b)

∇ ·B = 0, (3.10c)

λ2∇ ·D = ρel, (3.10d)

H = µ−1B, (3.10e)

D = εE. (3.10f)

Let us remark on one of the limit case for small scale-free parameter

values: if we chose α and β approximately equal and let them go to

zero, it would lead to the electro-quasistatic model. A more general

discussion of the scaling parameters and choosing them is given in

[46, ch. 2.2]. However, we will focus on the λ→ 0 as outlined next.

Let us estimate the Debye length for a typical plasma at atmo-

spheric pressure. For instance, let us consider electric arcs which are

classified as partially ionized, quasineutral thermal plasma, i.e., the

plasma is not dominated by Coulomb collisions, and the electron tem-

perature is comparable to that of heavy species (atoms and ions). For

the electron temperature, we find typical values Te = 50 kK, estimate

the number density of electrons by the ideal gas law (p = nkBT ),

and assume an ionization degree of 1× 10−3. This results in a De-

bye length comparable to a few micrometers (µm). Since the typical

length scale for electric arc simulations is on the order of millimeters

and larger, we easily see that our interest lies in small parameter
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values for λ ≈ 1× 10−5 to 1× 10−3.

We also note that the plasma velocity is on the order of ū =

1× 104 m s−1, which results in α ≈ 3× 10−5. We therefore choose

λ and α approximately equal. As the electrical conductivity of a

plasma is rather high and ideal Ohm’s law is valid, we find β ≈ 1,

see [45]. This set of equations tends to the magneto-static limit case

(eddy-current model), see also [46, ch. 2.2]. Therefore, we opt for the

choice

α = λ, (3.11a)

β = 1, (3.11b)

i.e.,

∂t(B) +∇×E = 0, (3.12a)

λ2∂t(D)−∇×H = −J, (3.12b)

∇ ·B = 0, (3.12c)

λ2∇ ·D = ρel, (3.12d)

H = µ−1B, (3.12e)

D = εE. (3.12f)

We see that λ → 0 leads to a quasineutral plasma (ρel → 0)

and the temporal derivative in Faraday’s equation vanishes. That

is, Maxwell’s equations change their nature from a hyperbolic to a

parabolic system of equations. As we will see in section 3.3, the
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main issue is to find a numerical scheme that is compatible with this

limiting case.

3.2. Plasma fluid modeling

3.2.1. From Boltzmann to Euler equations

Boltzmann’s kinetic equation is fundamental to plasma fluid mod-

els (see, e.g., [181, ch. 1] [18, 163]). The state of a plasma can be

described by the single-particle distribution functions f∗(v, r, t) for

species ∗, which is defined such that f∗(v, r, t) dv dr is the average

number of particles of species ∗ at time t in the vicinity of point r

of the volume element dr, and with velocity near v in the interval

dv. The conserved macroscopic quantities (mass, momentum, and

energy) are found as moments of the distribution function over the

velocity space. Likewise, the macroscopic conservation equations for

mass, momentum, and energy are found as moments of Boltzmann’s

kinetic equation

∂t(f∗) + v · ∇f∗ +
1

m∗
F∗ · ∇vf∗ = J∗, (3.13)

where ∇ and ∇v denote the divergence operators in Cartesian co-

ordinates in space and velocity variables, respectively, and F∗ is the

external force acting on a particle of species ∗. Here, the external

force is given by the electromagnetic fields B and E,

F∗ = q∗(E + v∗ ×B), (3.14)
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i.e., Lorentz force, where q∗ is the electric charge of a particle of

species ∗; non-electromagnetic forces are neglected.

One refers to the right hand side J∗ of (3.13) as the collision inte-

gral; if it is zero, Boltzmann’s equation is also known as Vlasov equa-

tion. The collision integral J∗ accounts for binary collisions among

the particles. It leads to source terms in the macroscopic conservation

equations that may take the form, for instance, of a friction model.

The following sections will use those macroscopic equations – known

as Euler equations in case of vanishing viscosity – in the design of

a multi-species fluid model with frictional source terms that stems

from elastic and inelastic collisions.

3.2.2. Local thermodynamic equilibrium and

two-temperature plasma

Thermal plasma models build largely on the assumption of local ther-

modynamic equilibrium (LTE), i.e., all energy modes are equilibrated

and therefore described by a single equilibrium temperature. This

allows to treat the gas mixture as a single fluid and to derive the

required thermodynamic and transport coefficients for the mixture

as a whole. Strictly speaking, gas temperature is a measure for the

average kinetic energy and defined only if the species particle veloc-

ity distribution function follows a Maxwellian probability distribution

(see, e.g., [113, sec. 1.4.2]).

Thermal LTE plasma models are valid for many engineering ap-

plications as an approximation for the bulk plasma. However, LTE
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is violated in the outer regions in which the plasma mixes with cold

gas and – in particular – in regions where the plasma interacts with

solid bodies (e.g., arc roots). [19, 20] Because of their small iner-

tia, electrons are more quickly accelerated by the electric field and

gain energy on their mean free path between collisions more easily

than heavy species (i.e., ions, atoms, and molecules) [164]. Moreover,

collisions of electrons and heavy species is an inefficient process in

equilibrating their kinetic energies because of their large mass ratio;

this implies a relatively long time scale. As particles of the same

species equilibrate quickly among themselves, separate temperatures

are assigned for heavy species Th and electrons Te. However, mo-

mentum exchange is a much faster process than thermal relaxation

(see, e.g., [111, eq. (II.7.6)]). The total momentum of the plasma is

dominated by the heavy particles. It is therefore sufficient to describe

the plasma with a single velocity field.

Plasma models that account for Th and Te separately are known

as two-temperature or 2T models (see, e.g., [67, 68]). Significant

deviation from LTE is observed, for instance, in numerical simulations

of circuit breakers at and after current zero (see, e.g., [150]). Two-

temperature models are often used to account more accurately for

processes in the outer regions of a plasma. For instance, [16] uses a

2T model for a supersonic argon plasma jet. A 2T ionization layer

model is presented in [21, 4]; cathode layer models are found in [3, 22],

and the anode boundary plasma layer is reviewed in [110]. Detailed

effects in the near-electrode plasma layers are accounted in [13, 14] by

an advanced 2T model. Reference [160] presents a 2T model for an
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inductively coupled thermal plasma. One may escalate the separation

of energy modes: for instance, polyatomic species show vibrational

and rotational energy modes (see, e.g., [94, 93, 92]). See also [163] for

a 3T plasma model that discriminates between electron temperature,

molecular vibrational temperature, and heavy-species translational-

rotational temperature.

A common example for a 2T plasma is given by the fluorescent

lamp (see, e.g., [56]): the low-pressure plasma inside the tube leads

to visible light without the carrier gas getting very hot. It is only

the electrons gas being at high temperature. The large mass ratio

between electrons and heavy species leads also to other classes of

plasmas. Streamers are plasma channels created due to electrical

breakdown in a non-conducting medium that is suddenly exposed to

a high electric field (see, e.g., [106, 53, 104]). Dielectric barrier dis-

charges (DBD) are typically created by electrical field oscillations at

high frequencies (kHz to MHz). They are used, e.g., as actuators in

flow control applications [41, 131], catalysis [101], and abatement of

volatile organic compounds [105]. Both plasma types are classified as

non-thermal plasmas and may be described by drift-diffusion models

(or density models [106]) that may be viewed as the asymptotic limit

of zero-electron-mass or zero-relaxation-time of the Euler-Poisson sys-

tem [86]. The species motion is dictated by the electric field and dif-

fusion of concentration gradients. Chemical reactions and models for

photo-ionization result in species creation source terms. [182, 96] A

comparison of the drift-diffusion limit model and the full gas dynamic

equations may be found in [131, 53].
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3.2.3. Multi-species Euler equations

We consider a multi-species plasma model in the following sections.

That is, each species is considered as a separate gas and described

by conservation equations for mass, momentum, and energy. We

retain individual velocity fields for each gas species (in contrast to 2T

models), and we retain momentum inertia for all species (in contrast

to drift-diffusion models) despite of the large mass ratio of electrons

and heavy species.

A multi-species plasma may be considered as a gaseous collection

of neutral species and charged species, i.e., electrons, ions, and neu-

tral atoms or molecules. Each gas species is identified by an index

∗ = s1, s2, . . . , sN , and we specifically refer to electrons (∗ = e), neu-

tral species (∗ = n), and positive ions (∗ = p); neutral species and

ions are also often referred to as heavy species (∗ = h). Each gas

species is considered as an ideal2 gas; thermal conductivity and vis-

cosity are neglected to reduce model complexity. They stem from

third-order moments of the particle velocity distribution function. If

included, turbulence modeling raises additional questions and uncer-

tainties to be addressed; the transport coefficients may be evaluated

from collision integrals or taken from tabulated data (see, e.g., [39]

for viscosity data in thermal argon plasma).

The governing equations are therefore given by the conservation

laws for mass, momentum, and energy, commonly known as Euler

2More precisely: a perfect gas. The two terms are often mixed up. (see, e.g.,
[175, p. 21], [34, sec. 6.2.3])
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equations (see, e.g., [99, ch. 14]) and stated as

∂t

 ρ∗

ρ∗u∗

ρ∗etot,∗

+∇ ·

 ρ∗u∗

ρ∗u∗ ⊗ u∗ + p∗1

ρ∗htot,∗u∗

 =

m∗Γ∗m∗R∗

m∗Q∗

 , (3.15)

where ρ∗ = m∗n∗ is the mass density, u∗ denotes the gas species

velocity, p∗ stands for gas species pressure, 1 is the unit tensor,

etot,∗ = 1
2 |u∗|

2 + e∗ is the total specific energy, e∗ is the internal spe-

cific energy, and htot,∗ = etot,∗ + p∗/ρ∗ is the total specific enthalpy.

The right hand side denotes source terms for mass, momentum, and

energy. The specific sources Γ∗, R∗, and Q∗, denote the specific effec-

tive species production rate, the specific rate of change in momentum,

and the specific rate of change in energy, respectively.

Our next step is to write the Euler equations in dimensionless quan-

tities. We remark that the particle mass of electrons is much smaller

than those of heavy species. We denote by m̄ a reference mass scale,

and p̄ is pressure scale. We augment the list of scaling hypotheses

(see section 3.1) by [45]:

(v) the reference particle mass m̄ is given by that of neutral species

(m̄ = mn);

(vi) the thermal energy scale is given by the drift energy scale:

kBT̄ = qĒx̄ = m̄ū2 = p̄n̄−1. (3.16)

The specified energy scales (3.16) ensure that the pressure force, in-
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ertia force and electric force have the same order of magnitude. [45]

Moreover, we define the mass ratio

ε2
∗ := m∗/m̄ (3.17)

for each species; the mass ratio is approximately unity for heavy

species (ε2
h ≈ 1) but for electrons we have ε2

e ≈ 5× 10−4 or smaller.

The dimensionless Euler equations for species ∗ are then stated as

∂t

 n∗

n∗u∗

n∗etot,∗

+∇ ·

 n∗u∗

n∗u∗ ⊗ u∗ + ε−2
∗ p∗1

n∗htot,∗u∗

 =

Γ∗

R∗

Q∗

 . (3.18a)

We remark that the momentum and energy balance equations have

been multiplied by the mass ratio. The system of conservation laws

is concisely written in vector form as

∂t(U∗) +∇ · F∗(U∗) = S∗, (3.18b)

where U∗ is the vector of conserved states, F∗ is the vector of flux

functions, and S∗ is the vector of source terms. The scaled total

specific enthalpy is given by htot,∗ = etot,∗ + ε−2
∗ p∗/n∗. The scaled

equation of state for ideal gases is

p∗ = n∗T∗ = (γ − 1)ε2
∗n∗e∗, (3.19)

where γ denotes the heat capacity ratio. We note that γ = 5
3 for
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monatomic gases such as argon. The acoustic wave speed is given as

s∗ =

(
γ
p∗
ε2
∗n∗

)1/2

= (γ(γ − 1)e∗)
1/2 . (3.20)

The source terms are given by the cumulative effects of electromag-

netism and particle collisions (see section 3.2.4 ff.),

S∗ =

 0

Rem
∗

Qem
∗

+

Γcoll
∗

Rcoll
∗

Qcoll
∗

 . (3.21)

The electromagnetic force (3.14) acts on charged gas species and re-

sults in source terms known as Lorentz force and Ohmic heating given

by,

Rem
∗ = ε−2

∗ q∗n∗(E + u∗ ×B), (3.22a)

Qem
∗ = ε−2

∗ J∗ ·E; (3.22b)

Let us add two remarks: Firstly, we note that these terms are

specified as volumetric source terms. If we considered an ideal plasma

in eddy current approximation, they could be written in divergence

form and being added to the flux term (see, e.g., [121]). Secondly,

the terminology of Ohmic heat source may be misleading: the energy

source term (Ohmic heating) is consistent with the momentum source

term (Lorentz force) as it adds kinetic energy to the gas species. The

thermal or inner energy is not affected. Conversion of kinetic energy
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to inner energy occurs only by particle collision (on the microscopic

level) or frictional forces (on the macroscopic level), respectively. This

is also seen from a physical perspective: the electric field accelerates

charged particles on their mean free path, and without collisions,

this results in a directed motion. It is only due to collisions that the

particles motion is randomized, i.e., kinetic energy is converted to

inner energy or temperature. The collision model is presented in the

next section.

A complete plasma model would also include an energy sink due to

radiation (see also part II). This could be achieved by simple models

such as the Stefan-Boltzmann power law or by net emission coef-

ficients with tabulated data, e.g., from [43]. Such an energy sink

term would be assigned to the electron fluid (see, e.g., [67]). Other,

more sophisticated models would add significant computational costs.

However, the present plasma model focuses on the design of a numer-

ical scheme that is compatible with the limit λ → 0 (see section 3.1

and 3.3). The radiative sink is not a model priority and therefore

neglected.

3.2.4. Collision modeling

Let us consider two particles that are initially separated by a large

distance and approaching one another. If the particles interact in

some way resulting in principle to a measurable change, we say that

a collision has occurred. Those collisions are classified into two groups

(see, e.g., [111, sec. II.2], [34, sec. 3.1]): elastic and inelastic collisions.
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Elastic collisions are characterized by unchanged internal energies of

the collided particles. For instance, the particles may change their

directions of motion but the kinetic energy of the particles is con-

served. All other collisions are called inelastic. Examples of inelastic

collisions are excitation, ionization, recombination, charge transfer,

attachment, creation of metastable states, and dissociation processes.

We remark that total mass as well as total momentum is conserved

irrespective of the collision type.

The present model is made of a minimal set of species that applies

to an argon plasma, i.e., electrons (e– ), neutral argon atoms (Ar),

and singly charged argon ions (Ar+). The heavy species are both

in their ground states. This set of plasma species may be assumed

for an argon plasma in equilibrium up to temperatures of 15 kK at

ambient pressure (see, e.g., [34, fig. 1.16]). More species (i.e., mul-

tiply charged argon ions) should be included for an accurate plasma

model at higher temperatures. It is straight-forward to add more

species to the multi-species plasma model; however, that would lead

to increased computational costs to account for their conserved state

variables as well as their binary collisions. We therefore limit our-

selves to elastic collisions among the three gas species and inelastic

collisions due to ionization and recombination, see table 3.1. Other

processes (e.g. atom-atom collisions Ar + Ar) are neglected.

The following sections 3.2.5 and 3.2.6 present the elastic and in-

elastic collision models, respectively. They stem from the collision

operator J∗ (see eq. (3.13)) and its integration over velocity space in

the first approximation of the Chapman-Enskog method (see, e.g.,
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Reaction Collision type

(1) e– + Ar −−→ e– + Ar elastic
(2) e– + Ar+ −−→ e– + Ar+ elastic
(3) Ar + Ar+ −−→ Ar + Ar+ elastic
(4) e– + Ar −−→ 2 e– + Ar+ ionization
(5) 2 e– + Ar+ −−→ e– + Ar recombination

Table 3.1.: Minimal set of elastic and inelastic collisions in argon
plasma.

[111, sec. VIII.1], [181, p. 41]). Data of average momentum trans-

fer cross sections are specified for collisions in an argon plasma and

supplied to the source terms for the Euler equations.

3.2.5. Elastic collisions

We denote the colliding particle species by indices α and β. The

fundamental data to describe collision interactions is given by the

momentum transfer cross section Q
(1)
αβ(ε) (SI units: m2) tabulated

with respect to the relative energy ε of the colliding particles. Cross

section data for collisions in argon is given below. Then the average

momentum transfer cross section Q̄
(1,1)
αβ is defined as

Q̄
(1,1)
αβ =

∫ ∞
0

ζ5 exp(−ζ2)Q
(1)
αβ(ε) dζ, ε = kBTαβζ

2, (3.23a)

or, equivalently,

Q̄
(1,1)
αβ =

1

2

1

(kBTαβ)3

∫ ∞
0

ε2 exp

(
− ε

kBTαβ

)
Q

(1)
αβ(ε) dε. (3.23b)
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The reduced temperature Tαβ is defined as

Tαβ =
mαTβ +mβTα
mα +mβ

, (3.24a)

and we also introduce the reduced mass mαβ and thermal velocity

v̄αβ defined as

mαβ =
mαmβ

mα +mβ
, (3.24b)

v̄αβ =

(
8kBTαβ
πmαβ

)1/2

. (3.24c)

This allows to write the rates of change in momentum and energy

for species α as (see, e.g., [111, eq. 6.29 ff.], [181, eq. 3.1.10 ff. and

eq. 5.1.9])

Rcoll
α = −

∑
β 6=α

4

3
nαnβmαβ v̄

th
αβQ̄

(1,1)
αβ (uα − uβ), (3.25a)

Qcoll
α = −

∑
β 6=α

4

3
nαnβ

mαβ

mα +mβ
v̄th
αβQ̄

(1,1)
αβ(

3kB(Tα − Tβ) + (uα − uβ) · (mαuα +mβuβ)
)
, (3.25b)

where the summation is over all particle species.

The rate of change in energy (3.25b) accounts for differences in

thermal energy and kinetic energy in the colliding species. The

double-indexed quantities are symmetric in their indices, and so we
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easily see that the source terms are conservative for the gas mixture

as a whole.

For writing equations (3.25) in scaled quantities, we note that the

scaled reduced temperature, scaled reduced mass ratio, and scaled

thermal velocity, are given as

Tαβ =
ε2
αTβ + ε2

βTα

ε2
α + ε2

β

, (3.26a)

ε2
αβ =

ε2
αε

2
β

ε2
α + ε2

β

, (3.26b)

v̄αβ =

(
8Tαβ
πε2

αβ

)2

. (3.26c)

The appropriate scaling for cross sections is given by (n̄x̄)−1. Hence,

we find

Rcoll
α = −

∑
β 6=α

4

3
nαnβε

2
αβ v̄αβQ̄

(1,1)
αβ (uα − uβ), (3.27a)

Qcoll
α = −

∑
β 6=α

4

3
nαnβ

ε2
αβ

ε2
α + ε2

β

v̄αβQ̄
(1,1)
αβ(

3(Tα − Tβ) + (uα − uβ) · (ε2
αuα + ε2

βuβ)
)

(3.27b)

Let us comment on the relaxation time scales for momentum and

energy. One can show that the average exchange of kinetic energy in
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an elastic collision is given by (see, e.g., [111, eq. 7.4])

∆Ekin = 2
mαβ

mα +mβ
= 2

mαmβ

(mα +mβ)2
. (3.28)

This relation shows that particles with similar masses quickly equili-

brate their kinetic energy or temperature, whereas energy exchange

between electrons and heavy particles is inefficient. Separate temper-

atures are therefore assigned to the fluid species as outlined above.

One can estimate the relative temperature difference for a plasma in

an electric field of strength E to be proportional to (see, e.g., [34,

eq. 1.12], [135, sec. 10.11])

Te − Th
Te

∼
(
E

p

)2

(3.29)

where the ratio E/p (or E/n) is known as the reduced field, a well-

known parameter in gas discharge studies (e.g., Paschen’s law that

describes the electrical breakdown voltage [122]). In contrast to ki-

netic energy, the average exchange of momentum scales with mαβ

and equilibrates much faster in collisions of large mass ratio. The

relaxation time scales of energy (τEαβ) and momentum ταβ (as defined

just next) are related by

τEαβ =
(mα +mβ)2

2mαmβ
ταβ, (3.30)

and τEeh = mh
me
τeh in particular for collisions of electrons and heavy

particles. [181, eq. 3.1.23]
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The rates of change in momentum and energy (see eq. (3.25)) are

often also written in terms of the averaged momentum transfer colli-

sion frequency (see, e.g., [181, eq. 3.1.12]),

τ−1
αβ =

4

3
nβ v̄αβQ̄

(1,1)
αβ . (3.31)

Note that this quantity is not symmetric despite the notation might

suggest so. It is often also expressed via the binary diffusion coeffi-

cient (see, e.g., [181, eq. 3.1.16], [3])

Dαβ =
3π

32

(
8kBTαβ
πmαβ

)1/2 1

nQ̄
(1,1)
αβ

, (3.32)

with n =
∑
∗ n∗ being the total number density. Hence, one finds

mαβτ
−1
αβ =

nβkBTαβ
nDαβ

. (3.33)

We remark that binary diffusion coefficients are valid for tempera-

tures below those for which ionization occurs (see, e.g., [115, 116,

117, 139]); the diffusion coefficients should be determined from a 2T

model at temperatures larger than 5 kK. [139]

Elastic collisions are modeled with the following data:

� Elastic collisions of electron-atom (e– + Ar) and heavy

particle (Ar+Ar+) interactions are modeled with cross sec-

tion data retrieved in the LXCat database [107, 129]; the orig-

inal data sources are found in [77] (e– + Ar) and [127] (Ar +
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Ar+), respectively, and plotted in figure 3.1. A review of col-

lision cross section data of argon is available in [136]. More

recent measurements [15] show that the fitted formula in [127],

Q
(1)

ArAr+
= 1.15× 10−18ε−0.1(1 + 0.015/ε)0.6, (3.34)

provides a good approximation with ε in units of eV and Q
(1)

ArAr+

in m2. From these data, average momentum transfer cross sec-

tions are calculated by (3.23) and shown in figure 3.2 (center

and bottom).

� Elastic collisions of electron-ion (e– +Ar+) interactions are

governed by Coulomb interaction. For single-charged particles

one finds (see, e.g., [181, eq. 3.1.17])

Q̄
(1,1)
ei =

(qeqi)
2

32πε2
0(kBTei)2

ln Λei, (3.35)

where ln Λei is known as the Coulomb logarithm defined as

Λei =
12πε0

|qeqi|
kBTeiλD, λD =

(∑
∗

n∗q
2
∗

ε0kBT∗

)−1/2

, (3.36)

and λD denotes the Debye length. Approximate expressions for

electron-ion interactions are found as (see, e.g., [3, eq. 47], [111,

eq. 8.10])

Q̄
(1,1)
ei ≈ q4

32πε2
0(kBTe)2

ln Λe, (3.37)
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Figure 3.1.: Momentum transfer cross sections Q
(1)
αβ for elastic colli-

sions of Ar + Ar+ as given by eq. (3.34) [127] (dashed
line), and e– + Ar [77] (solid line).
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with Λe = 1.24× 107T
3/2
e n

−1/2
e in SI units. The average mo-

mentum transfer cross sections Q̄
(1,1)
ei is shown in figure 3.2.

Note that (3.37) depends on the electron number density ne;

substitution by the ideal gas law makes it dependent on the

partial gas pressure of electrons. Negative values at low tem-

perature are clipped to zero.

3.2.6. Inelastic collisions

We consider ionization and recombination as representative processes

for inelastic collisions. Ionization refers to the process of two suffi-

ciently energetic particles colliding such that the internal electronic

structure is disrupted and results in the production of a free electron

and ion. Its reverse process is known as recombination. Although

both processes may be studied with any particle combinations, we

focus on electron induced collisions in an argon plasma. That is,

we are interested in ionization and recombination as given by the

reversible reaction

e−(ve,0) + Ar(vn,0) −−→←−− e−(ve,1) + e−(ve,2) + Ar+(vi,2), (3.38)

in which we denoted the particle velocities explicitly; the letter indices

refer to electron (e), neutral atom (n), and ion (i), and number indices

are used to distinguish individual particles. The reaction (3.38) may

be viewed as a two-step process: the electron impact on the neutral

atom leads to a virtual excited state Ar∗(vAr∗,1) that is immediately

followed by spontaneous ionization (see, e.g., [98]), and analogously
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Figure 3.2.: Average momentum transfer cross sections Q̄
(1,1)
αβ in

argon. Top: elastic Coulomb collisions as given by
eq. (3.37). Center and bottom: elastic collisions of ar-
gon atoms with ions and electrons, respectively, using
eq. (3.23).
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for recombination.

These particle collisions are primarily due to microscopic descrip-

tions. We summarize the model of [98] and present its structure

in scale free quantities below. Its key feature is to account for the

so-called multifluid effect on reaction kinetics due to relative drift

velocities. The model assumes that collisions within the same fluid

occur sufficiently fast to maintain a Maxwellian velocity distribu-

tion function. Similar to elastic collisions, the collision integral (see

eq. (3.13)) is given in terms of collision cross sections and integrated

over velocity space. This derivation is valid for a general three-body

collision process but yields macroscopic model that is computation-

ally too expensive. It is therefore key to restrict to electron-induced

ionization and recombination, to employ the large mass ratio, and to

assume isotropic scattering, so that one arrives at a computationally

accessible collision model.

We introduce some notation for writing the collision model in con-

cise terms. We find the center of mass velocity for ionization and

recombination by momentum conservation as

U0 =
me

M
ue +

mn

M
un, (3.39a)

U1 = 2
me

M
ue +

mi

M
ui, (3.39b)

respectively, where M = me +mn = 2me +mi is the sum of particle
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masses in the collision. In scale free terms, they are given as

U0 = (1 + ε−2
e )−1ue + (1 + ε2

e)
−1un, (3.40a)

U1 = 2(1 + ε−2
e )−1ue + ε2

i (1 + ε2
e)
−1ui. (3.40b)

The relative collision velocities are found as

w0 = ue − un, (3.41a)

w1 = (1− ε2
e)ue − ε2

iui = ε2
i (ue − ui). (3.41b)

The total energies of center of mass are denoted for ionization and

recombination as

E ion =
1

2
(1 + ε2

e)|U0|2 +
3

2
Tn, (3.42a)

Erec =
1

2
(1 + ε2

e)|U1|2 +
3

2
Ti, (3.42b)

respectively. The scaled thermal electron velocity is defined as (cf.

eq. (3.26c))

v̄e =

(
8Te
πε2

e

)1/2

. (3.43)

The ionization energy for argon is ε∗ = 15.76 eV (see, e.g., [178]) and

scaled by the energy scale kBT̄ . Additionally, we define the ratio

of ionization energy to electron temperature (both in dimensionless

units)

x∗ =
ε∗

Te
. (3.44)
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We also introduce the thermal de Broglie wavelength of the electron

gas (see, e.g., [34, sec. 6.2.2])

λth =

(
h2

2πmekBTe

)1/2

, (3.45a)

with h = 6.626 070 15× 10−34 J s denoting the Planck constant. In

scaled units it reduces to

λth = (ε2
eTe)

−1/2. (3.45b)

The scaling factor is given as

λ̄th =

(
h2

2πm̄kBT̄

)1/2

, (3.45c)

and we will use it in the model coefficients related to recombination

below. If the thermal de Broglie is much smaller than the interpar-

ticle distance (λth � n
−1/3
e ), the gas particles will obey Maxwell-

Boltzmann statistics. This allows to write the Saha ionization equa-

tion (see, e.g., [34, sec. 1.3.1]) in scaled units as

neni
nn

=
2

λ3
th

g1

g0
exp(−ε∗), (3.46)

which describes the ionization degree of a plasma in thermal equi-

librium. Therein, g0 and g1 denote the degeneracy weight of atomic

states. For argon, their ratio is given as g1/g0 = 6 (see, e.g., [21]).

These factors will also appear in the definition of model coefficients
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related to recombination.

The particular feature of the model [98] is to account for the relative

drift velocities in the collisions; therefore we also introduce the ratios

of kinetic to thermal energy and denote them as

λion =
ε2
e|w0|2

2Te
, (3.47a)

λrec =
ε2
e|w1|2

2Te
. (3.47b)

Then the model equations is stated with coefficients that can be

stored as tables with respect to electron temperature Te and the en-

ergy ratios λion or λrec, respectively, as follows. One may write the

rate of change in number densities with the net species production

rate Γe

Γi

Γn

 =

 Γion − Γrec

Γion − Γrec

−(Γion − Γrec)

 =

 Γnet

Γnet

−Γnet

 . (3.48)

The rates of change in momentum are given as

Rcoll
e = −ε2

e(Rionw0 +Rrecw1), (3.49a)

Rcoll
i = (1 + ε2

e)(Γ
ionU0 − ΓrecU1)

+ ε2
e

(
Tn − Te
Te

Kionw0 −
Ti − Te
Te

Krecw1 +Rrecw1

)
, (3.49b)
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Rcoll
n = −(1 + ε2

e)(Γ
ionU0 − ΓrecU1)

+ ε2
e

(
−Tn − Te

Te
Kionw0 +

Ti − Te
Te

Krecw1 +Rionw0

)
, (3.49c)

and the rates of change in total energy are found to be

Qcoll
e = (Γrec − Γion)ε∗

+ 2(1 + ε−2
e )−1

(
(Tn − Te)J ion + (Ti − Te)J rec

)
− ε2

e

(
Rionw0 ·U0 +Rrecw1 ·U1

)
, (3.50a)

Qcoll
i = +ΓionE ion − ΓrecErec

+ (1 + ε−2
e )−1

(
(Tn − Te)2

Te
W ion − (Ti − Te)2

Te
Wrec

− 2(Ti − Te)J rec

)

+ ε2
e

(
− Tn − Te

Te
Kionw0 ·U0 −

Ti − Te
Te

Krecw1 ·U1

+Rrecw1 ·U1

)
, (3.50b)
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Qcoll
n = −(ΓionE ion − ΓrecErec)

+ (1 + ε−2
e )−1

(
− (Tn − Te)2

Te
W ion +

(Ti − Te)2

Te
Wrec

− 2(Tn − Te)J ion

)

+ ε2
e

(
Tn − Te
Te

Kionw0 ·U0 +
Ti − Te
Te

Krecw1 ·U1

+Rionw0 ·U0

)
. (3.50c)

The coefficients are then given by

Rion = Rion
0 , (3.51a)

Kion = Γion −Rion
0 , (3.51b)

W ion = J ion
00 − 2λionRion

0 + λionΓion, (3.51c)

J ion = J ion
00 − λionRion

0 , (3.51d)

Rrec = Rrec
1 +Rrec

2 , (3.51e)

Krec = 2Γrec −Rrec
1 −Rrec

2 , (3.51f)

Wrec = J rec
11 + J rec

22 + 2J rec
12

+ 4λrecΓrec − 4λrecRrec
1 − 4λrecRrec

2 ,
(3.51g)

J rec = J rec
11 + J rec

22 + 2J rec
12 − 2λrecRrec

1 − 2λrecRrec
2 . (3.51h)
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With definitions for auxiliary functions

ζ(0)(ξ) =
1

2ξ
sinh(2ξ), (3.52a)

ζ(1)(ξ) =
3

4ξ2

(
cosh(2ξ)− 1

2ξ
sinh(2ξ)

)
, (3.52b)

and auxiliary variables

x1 = x0 − υ, (3.52c)

x2 = υ − x∗, (3.52d)

the transfer integrals may be written as

Γion = nennv̄e exp(−λion)∫ ∞
x∗

x0 exp(−x0)ζ(0)(
√
λionx0)σ̄ion dx0, (3.53a)

Rion
0 =

2

3
nennv̄e exp(−λion)∫ ∞

x∗
x2

0 exp(−x0)ζ(1)(
√
λionx0)σ̄ion dx0, (3.53b)

J ion
00 = nennv̄e exp(−λion)∫ ∞

x∗
x2

0 exp(−x0)ζ(0)(
√
λionx0)σ̄ion dx0, (3.53c)

44



Plasma fluid modeling

Γrec = n̄(λ̄th)3 g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
ζ(0)(

√
λrecx1)ζ(0)(

√
λrecx2)

dσion

dυ
dυ dx0,

(3.53d)

Rrec
1 = n̄(λ̄th)3 2

3

g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
x1ζ

(1)(
√
λrecx1)ζ(0)(

√
λrecx2)

dσion

dυ
dυ dx0,

(3.53e)

Rrec
2 = n̄(λ̄th)3 2

3

g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
x2ζ

(0)(
√
λrecx1)ζ(1)(

√
λrecx2)

dσion

dυ
dυ dx0,

(3.53f)

J rec
11 = n̄(λ̄th)3 g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
x1ζ

(0)(
√
λrecx1)ζ(0)(

√
λrecx2)

dσion

dυ
dυ dx0,

(3.53g)
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J rec
22 = n̄(λ̄th)3 g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
x2ζ

(0)(
√
λrecx1)ζ(0)(

√
λrecx2)

dσion

dυ
dυ dx0,

(3.53h)

J rec
12 =

4

9
n̄(λ̄th)3 g0

2g1
(ε2
eTe)

−3/2nin
2
e v̄e exp(−2λrec) exp(x∗)∫ ∞

x∗
x0 exp(−x0)∫ x0

x∗
λrecx1x2ζ

(1)(
√
λrecx1)ζ(1)(

√
λrecx2)

dσion

dυ
dυ dx0.

(3.53i)

The transfer integrals can be pre-computed and stored as tables with

respect to Te and λion (or λrec, respectively). The fundamental data

entering the transfer integrals is given by the ionization cross section

σ̄ion and its derivative with respect to the relative impact energy,
dσion

dυ ; both are functions of the collision energy ε = x0Te. The data

for ionization cross section of argon is taken from [138] and plotted

in figure 3.3. As noted in the review [178], this data source is most

commonly used in discharge modeling.

Figure 3.4 shows the reaction rates for ionization and recombina-

tion, defined through Γion = nennkion and Γrec = n2
enikrec, in the

limit λion, λrec → 0. In this limit, the ratio kion/krec is consistent

with the Saha ionization equation. For validation, we also plot the
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direct ionization rate kdir as given by the approximate expression [21,

eq. 58]

kdir = ci

(
8kBTe
πme

)1/2

(ε∗ + 2kBTe) exp

(
−ε∗

kBTe

)
,

ci = 18× 10−22 m2 eV−1. (3.54)

We see that the ionization reaction rates kion and kdir agree rather

well, and the model coincides with that of [21]. The data also com-

pares well to [8] who provides interpolation parameters for reaction

rates in the form of Arrhenius laws.

A similar model for inelastic collisions of excitation and deexcita-

tion has been proposed in [97], but these processes are not considered

in this work.

47



Chapter 3. Asymptotic-preserving multi-species Euler-Maxwell
plasma model

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3
10

-20

ion
 / m

2

Figure 3.3.: Argon ionization cross section [138].
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Figure 3.4.: Reaction rates for ionization kion and recombination krec

in the limit λion, λrec → 0, respectively, and reaction rate
for direct ionization kdir, see eq. (3.54) [21, eq. (58)], as
a reference.
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3.3. Asymptotic preserving multi-species plasma

model

3.3.1. Motivation and definition

Asymptotic preserving (AP) numerical schemes were originally intro-

duced by Jin [84]. They are applied, for instance, to kinetic or hyper-

bolic equations including small scales that lead to prohibitively large

computational costs when treated with classical numerical schemes. [85]

We exemplify the concept of asymptotic preserving schemes in the

context of electric arcs. The bulk plasma in the arc column may

adequately be considered in local thermal equilibrium (LTE) and

quasineutral, and described with macroscopic length scales; however,

the plasma in the fringes and arc roots (i.e., the regions of the arc

column adjacent to the electrodes) are characterized by processes on

microscopic length scales comparable to the mean free path of the

gas particles. (see, e.g., [85, 45]) Therefore, the underlying problem

involves a scaling parameter3 λ that allows for a continuous transi-

tion between the two limiting cases of a microscopic (λ ≈ 1) and a

macroscopic (λ → 0) model description.4 In this work, the scaling

parameter is found in Maxwell’s equations (3.12), and given as the

ratio of Debye length λD and the spatial scale x̄: for λ = 1 we recover

3The scaling parameter is often also denoted by ε in the literature. See, e.g.,
[84].

4We remain in the continuum limit and use the terms microscopic and macro-
scopic to distinguish between the two model limiting cases; they should not
be viewed as micro-/macroscopic in context of Maxwell’s equations (see, e.g.,
[83, p. 13]).
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the full Maxwell system describing electromagnetic waves, while let-

ting λ→ 0 tends to the quasineutral or eddy current approximation

model (see also [45]).

Let us turn to the definition of asymptotic preserving numerical

schemes, as illustrated by the commutative diagram in figure 3.5.

We denote the microscopic problem as P λ with solutions that con-

verge to those of the macroscopic problem P 0 as λ → 0. We then

consider a stable numerical scheme P λδ,h for the microscopic problem

P λ with spatial discretization h and time step size δ. If the scheme

is applied to the macroscopic problem P 0 without further precau-

tions, the discretization (δ, h) must become small to resolve the fastest

and smallest scales and induces exorbitant computational costs. It is

therefore desirable that the numerical scheme works equally well in

underresolved discretized domains and converges to the macroscopic

solution independently of the scaling parameter λ and the discretiza-

tion lengths (δ, h). This ensures that the same set of equations are

solved in the resolved and underresolved cases.

Therefore, a numerical scheme is called asymptotic preserving if it

is stable independently of the value of λ (asymptotically stable) and

if the scheme P 0
δ,h obtained by letting λ→ 0 in P λδ,h with fixed (δ, h)

is consistent with P 0 (asymptotically consistent). [84, 85, 45]

The design of AP schemes requires special care for both time and

spatial discretization, with time discretization often being more cru-

cial. [85] Typically, it involves some kind of implicit formulation but

the equations may still be arranged such that they can be solved

explicitly. [85, 84] This is precisely the path we will follow in this
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P λδ,h P λ

P 0
δ,h P 0

(δ,h)→0

λ→0 λ→0

(δ,h)→0

Figure 3.5.: Asymptotic numerical schemes commute in the limit pro-
cesses of small parameter (λ → 0) and discretizaton
lengths ((δ, h)→ 0). [85, 45].

work.

3.3.2. Asymptotic preserving Euler-Maxwell system

Degond et al. [45] have derived and analyzed an AP scheme for the

Euler-Maxwell system; in contrast to this work, they considered a

collisionless plasma in one dimension. The key concept is to consider

the second-order differential equation in E (i.e., wave equation for

E-field)

λ2∂2
t (εE) +∇× µ−1∇×E = −∂t(J), (3.55)

as obtained by substituting Faraday’s law (3.1a) into Ampere’s law

(3.1b). Then, one notes that the electric current J is identical to

the sum of mass fluxes (see eq. (3.4)), and its temporal derivative is
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substituted by the Euler momentum equation:

−∂t(J) = −
∑
∗
q∗∂t(n∗u∗)

= ∇ ·

(∑
∗
q∗(n∗u∗ ⊗ u∗ + ε−2

∗ p∗1)

)
−
∑
∗
q2
∗ε
−2
∗ (n∗E− n∗u∗ ×B)− q∗Rcoll

∗ .

(3.56)

Consequently, one finds the microscopic Euler-Maxwell system (de-

noted as P λ above) [cf. 45, eq. (5.29)],

λ2∂2
t (εE) +∇× µ−1∇×E +

(∑
∗
q2
∗ε
−2
∗ n∗

)
E

= ∇ ·

(∑
∗
q∗
(
n∗u∗ ⊗ u∗ + ε−2

∗ p∗1
))

−
∑
∗
q2
∗ε
−2
∗ (n∗u∗ ×B) + q∗R

coll
∗ . (3.57a)

The quasineutral Euler-Maxwell system (denoted as P 0 above) is then
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found by the limit case λ→ 0,

∇× µ−1∇×E +

(∑
∗
q2
∗ε
−2
∗ n∗

)
E

= ∇ ·

(∑
∗
q∗(n∗u∗ ⊗ u∗ + ε−2

∗ p∗1)

)
−
∑
∗
q2
∗ε
−2
∗ (n∗u∗ ×B) + q∗R

coll
∗ . (3.57b)

For presenting the AP Euler-Maxwell system completely, we repeat

Faraday’s equation (3.1a) and Euler equations (3.18a) in scaled units:

∂t(B) +∇×E = 0, (3.57c)

∂t

 n∗

n∗u∗

n∗etot,∗

+∇ ·

 n∗u∗

n∗u∗ ⊗ u∗ + ε−2
∗ p∗1

n∗htot,∗u∗

 =

Γ∗

R∗

Q∗

 . (3.57d)

As remarked in [45], equations (3.57a) and (3.57b) for the consis-

tent Euler-Maxwell model are not the usual Poisson equation for

the electric field E. The AP Euler-Maxwell equations (3.57) are

solved implicitly for E while all other equations are updated explicitly.

Moreover, the equation changes its nature from hyperbolic (3.57a) to

elliptic (3.57b) [45] as λ → 0, which is a signature of singularly per-

turbed problems (see, e.g., [167]). In fact, Faraday’s and Ampere’s

law become a differential algebraic equation (DAE) of index 1, and

special attention must be taken in the design of numerical schemes
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because DAE are numerically stiff (see, e.g., [76, section VI.1]). We

mention in passing that appropriate single-step schemes to DAE are

known as stiffly accurate methods [134].

We note that setting λ = 0 is a good testcase (see section 4.5.3)

for checking if the model is truly asymptotic preserving. This test-

case made us realize that the designed 3D model is not AP; see sec-

tion 4.5.3.

3.4. Discretization

This section discusses the numerical scheme in detail. We start with

the geometrical setting and construct its discretization into two in-

terlocked grids. We then present the discretized Maxwell’s equations

in integral formulation (Maxwell Grid Equations), and the methods

for interpolating the electromagnetic fields in order to compute the

Lorentz force. We also give another argument for implicit time dis-

cretization required for the AP scheme. The Euler equations are

discretized with implicit mass flux which provides the consistent cou-

pling with Maxwell’s equations. Finally, we state the boundary con-

ditions used in the two subsystems.

3.4.1. Computational domain and grid generation

We consider a cylindrical computational domain (see figure 3.6) con-

sisting of two electrodes, a plasma domain, and an enclosing solid

dielectric domain. The geometric setup is symmetric in angular and
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x

y

Solid

Plasma

Cathode Anodez

y

Figure 3.6.: Sketch of computational domain. The electrodes are in-
cluded for reference and to define the voltage boundary
conditions; the volume bodies are not modeled.

axial direction. The plasma radius and outer radius of the solid may

be chosen freely. The electrodes are shown for reference but their vol-

ume bodies are not resolved in the model. One electrode is electrically

grounded while the other is set to an electric potential ϕ(t). We as-

sume that the solids are thermal insulators, which implies that heat

transfer is negligible across the plasma-solid interface. The lateral

surface of the solid is an artificial cut-off boundary and considered as

a perfect magnetic conductor. This geometric setup justifies to solve

Maxwell’s equations in the full domain whereas the Euler equations

apply only to the plasma domain.

The spatial discretization of the computational domain and the

grid generation process are described next. Although the numerical

method being developed in the following sections is applicable to

arbitrary grids, we focus for simplicity on a triangular mesh in cross
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section that is axially extruded; i.e., a three dimensional grid given by

the Cartesian product of a 2D triangular mesh in a circular domain,

and a uniformly spaced discretization along the z-axis.

As we will see below, the discretization is given by two meshes that

are dual and orthogonal to each other: edges of one mesh become face

normals of the other, and cell centers become vertices; and vice versa.

In fact, the dual mesh is found as the Voronoi decomposition of the

primal mesh. We could have used a general purpose mesh generator

(e.g., Distmesh [125]); but one major issue was to control and en-

sure sufficiently high quality in both meshes. We therefore propose a

recursive mesh refinement strategy that still allows for arbitrary fine

resolutions without deteriorating mesh quality, as described next.

Let us focus on the primal mesh in circular cross section (see also

figures 3.7 and 3.8). The initial mesh (level 0) is made of six equilat-

eral triangles (see dashed lines in figure 3.7). The triangles are refined

by inserting vertices at edge midpoints, splitting each triangle into

four smaller ones (level 1).

We could have continued this strategy for further refinements if

the underlying geometry was given by the initial hexagon. The cir-

cular shape is resolved by projecting the new boundary vertices to

the cylinder radius, but this leads us to another problem: the tri-

angles adjacent to initial boundary vertices (indicated by bullets in

figure 3.7) become more right-angled at increasing refinement levels,

and mesh quality gets worse – in particular for the dual mesh.

Therefore, the refinement strategy for level 2 mesh is slightly adapted

as shown in figure 3.8. Triangles without boundary edges are split
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Figure 3.7.: Initial mesh (dashed lines) and first mesh refinement
(solid lines). Bullets indicate vertices of the initial mesh.

Figure 3.8.: Partial view of level 2 mesh refinement, with distin-
guished refinement of boundary triangles in red. Dashed
lines indicate the mesh at level 1. Bullets indicate ver-
tices of the initial mesh.
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Figure 3.9.: Primal (blue) and dual (red) mesh at refinement level 1
with 1 prism layer.
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Figure 3.10.: Primal (blue) and dual (red) mesh at refinement level 2
with 2 prism layers.
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Figure 3.11.: Primal (blue) and dual (red) mesh at refinement level 3
with 4 prism layers.
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Figure 3.12.: Primal (blue) and dual (red) mesh at refinement level 4
with 8 prism layers.
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into nine smaller triangles (black lines) by splitting edges into thirds.

Boundary triangles are split into seven triangles (red lines) distin-

guished by the feature that two newly generated triangles meet at

the initial boundary vertex (indicated by bullets) splitting the prob-

lematic angle. New boundary vertices are projected to the cylin-

der radius as explained above. In total, this modified strategy for

level 2 refinement ensures that the triangles are sufficiently acute-

angled which resolves the issue of degenerated dual cells. Further

mesh refinements (levels 3 and higher) continue using the strategy of

level 1. The mesh refinements are also seen in figures 3.9 to 3.12.

This primal mesh is used for the plasma domain. The solid domain

is constructed by adding quadrilaterals in radial direction, which are

often also termed as prism layers. This way, the plasma-solid interface

is resolved in its circular shape. The last step in creating the primal

mesh is to extrude this circular mesh along the cylinder axis in z-

direction.

We may think of the primal mesh being a Delaunay decomposition

of the computational domain. The primal cell centers are given by the

circumcenters of the triangular faces. The dual mesh is then given by

its Voronoi decomposition, that is, dual vertices are identified with

primal cell centers, and dual edges are defined by the primal face

normals. The dual mesh is closed by adding auxiliary edges and

faces at the lateral surface of the solid domain. We remark that

the plasma domains, as discretized by the primal and dual mesh

are slightly different: the dual domain radius is larger by a half cell

height than the primal domain. This difference becomes smaller for
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finer spatial resolutions and is therefore neglected.

Figures 3.9 to 3.12 show the primal and dual mesh and their refine-

ments in cross section. The plasma domain is given in the inner part,

and resolved by the triangular primal cells, and the corresponding

dual cells are hexahedrons. The outer solid domain is resolved with

quadrilateral (in 3D: frustum) prism layers. The number of prism

layers increases with finer meshes.

In summary, we created a pair of dual, orthogonal, regular and

interlocked meshes of sufficient quality. The associated dual entities

refer to the same point in space. The resulting grid topology is par-

ticularly useful for discretization of Maxwell’s equations as outlined

in the next section.

3.4.2. Maxwell Grid Equations

This section introduces the concept of Maxwell Grid Equations (MGE)

and the Finite Integration Technique (FIT) by Weiland [174] from

an applied perspective. The MGE build on the integral formulation

of Maxwell’s equations, which is an alternative and equivalent per-

spective to their formulation as partial differential equations (see,

e.g., [165]). We remember that the electromagnetic fields may be dis-

continuous, in particular, at interfaces of different materials. How-

ever, the fluxes remain continuous, and this is a peculiar advantage

of MGE and FIT. On the other hand, a rigorous convergence theory

is still missing.

The method is also referred to as Cell Method (CM) [162, 6],
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and can be traced back to Yee’s scheme (Finite Difference in Time

Domain, FDTD) [179] who realized that the electromagnetic fields

should be evaluated on a staggered grid. A more abstract, mathe-

matical framework is provided by Discrete Exterior Calculus (DEC)

(see also [31, 80, 81, 73]) that provides a unified view [31] on FIT

and the Finite Element Method (FEM) with Whitney forms [95] and

edge elements [32]. See also [33] for a comprehensive presentation of

the theory.

Let us consider a computational domain Ω ⊂ R3 covered by a

primal grid G. For example, we may think of a tetrahedral grid,

or, for simplicity, a Cartesian grid. For the sake of exposition, let

us consider a polygonal face Ai with edges Lj and vertices Pl, see

figure 3.13. The polygon is oriented by its unit normal vector ni. An

edge is identified by its two connected vertices Lj = (Pj0 , Pj1), and

its orientation is defined by the edge vector Lj = xj1 − xj0 with xl

denoting the spatial position of vertex Pl. Then, Faraday’s law (see

eq. (3.12a)) integrated over face Ai may be written as

∂t

(∫
Ai

B · dA︸ ︷︷ ︸
=:bi

)
+

Ne∑
j=1

cij

∫
Lj

E · dL︸ ︷︷ ︸
=:ej

= 0, (3.58)

using Stokes’ theorem. The oriented incidence coefficients cij ∈
{−1, 0, 1} are defined by the right hand rule of the edge vectors Lj

with respect to the surface normal vector ni (see also section 3.4.3).

The integrated quantities bi and ej are known as magnetic flux and
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Ai

ni Pj0

Pj1

Lj

cij = 1

Pj0
Pj1

Lj

cij = −1

Figure 3.13.: Oriented polygon with edges, vertices, and incidence
coefficients.

electric voltage, respectively. This concept is extended to a broader

context as follows.

Let us consider a primal grid G composed of elementary volumes or

cells Vk (k = 1, . . . , Nc), polygonal faces Ai (i = 1, . . . , Nf ), straight

lines Lj (Nj = 1, . . . , Ne), and vertices Pl (l = 1, . . . , Nv). We write

the magnetic fluxes and electric voltages collectively as data vectors,

b := (bi)
Nf
i=1, bi :=

∫
Ai

B · dA, (3.59a)

e := (ej)
Ne
j=1, ej :=

∫
Lj

E · dL. (3.59b)
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As outlined above, Faraday’s law in integral form is then stated as

∂t(b) + Ce = 0, (3.60)

with C = (cij) ∈ {−1, 0, 1}Nf×Ne being the edge-to-face incidence

matrix. Matrix C is also known as the discrete curl operator. Sim-

ilarly, the magnetic Gauss equation in integral form is obtained by

integration over volumes and using the divergence theorem; one finds

Sb = 0, (3.61)

with S = (ski) ∈ {−1, 0, 1}Nc×Nf being the face-to-cell incidence

matrix that is also referred to as discrete divergence operator.

The electrical potential ϕ is associated with vertices Pl. The data

vector ϕ denotes the value of the electric potential at each primal

grid vertex, i.e.,

ϕ := (ϕl)
Nv
l=1, ϕl := ϕ(xl), (3.62)

and we find

e = −Gϕ (3.63)

as the discrete analogue of E = −∇ϕ, where

G = (gij) ∈ {−1, 0, 1}Ne×Nv (3.64)

is the vertex-to-edge incidence matrix or discrete gradient operator,

defined by the incidence of vertices Pj to edge Li.

Ampere’s law (3.12b) and the electric Gauss law (3.12d) show the
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same structure: data vectors for magnetic voltages h, electric flux d,

and electric currents j are defined in analogy to above. Additionally,

we also define a data vector q for the space charge in cell volumes.

These quantities are defined on the dual grid G̃. That is, the data

vectors are given by

h := (hj)
Nẽ
j=1, hj :=

∫
L̃j

H · dL, (3.65a)

d := (di)
Nf̃
i=1, di :=

∫
Ãi

D · dA, (3.65b)

j := (ji)
Nf̃
i=1, ji :=

∫
Ãi

J · dA, (3.65c)

q = (qk)
Nc̃
k=1, qk :=

∫
Ṽk

ρel dV, (3.65d)

and the two equations are stated as

λ2∂t(d)− C̃h = −j, (3.66a)

λ2S̃d = q, (3.66b)

with C̃ and S̃ being the discrete curl operator and discrete divergence

operator, respectively, on the dual grid. The discrete operators pre-

serve identities from vector calculus because of the grid duality. In

particular, we use the property (see also, e.g., [165, p. 64 f.])

C̃ = CT . (3.67)
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3.4.3. Material laws and grid entity indexing

After introducing the pair of dual grids (section 3.4.1) and the Maxwell

Grid Equations (MGE, section 3.4.2) we now turn to the discrete

formulations of the material laws (see eq. (3.12e) and (3.12f)). We

assume for simplicity that the grids are orthogonal; non-orthogonal

grids are discussed in [24], for instance. In context of discrete exterior

calculus (DEC), the material laws are represented by the Hodge star

operator.

Let us start by the Tonti diagram (see figure 3.14). It shows

Maxwell’s equations, the material laws, and the electromagnetic fields.

The fields associated with the primal mesh are shown on the left, and

those with the dual mesh on the right. The fields are arranged ver-

tically by the dimension of the topological entity in increasing and

decreasing order for the primal and dual mesh, respectively. The

material laws relate edge values of one mesh with face values of the

other mesh. A more complete diagram of the “Maxwell house” [33,

sec. 12.3] and discussion may be found, e.g., in [162].

In finite formulation, we find from the flux definitions that the

material laws may be stated (for uniform material properties) as

h = Mνb, (Mν)ij = µ−1 |L̃i|
|Aj |

, (3.68a)

d = Mεe, (Mε)ij = ε
|Ãi|
|Lj |

, (3.68b)

for dual pairs of edges and faces; spatially varying material properties
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are discussed, e.g., in [31].

Let us add a few remarks on the indexing of mesh entities. Al-

though indexing is arbitrary in general, a particular ordering may

become useful when implementing the scheme in a computer pro-

gram. Firstly, the sparse matrices Mν and Mε are diagonal if corre-

sponding edges and faces have the same positional index in their data

vectors. Secondly, it is particularly advantageous for our geometri-

cal setup (see also sections 3.4.1 and 3.4.7) if primal vertices, edges,

and faces are grouped according to their geometrical position in the

domain interior Ω◦ or its boundary ∂Ω. For such an arrangement,

the data vectors of electric potentials, electric voltages, and magnetic

face fluxes may be written as

ϕ =

[
ϕ◦

ϕ∂

]
, e =

[
e◦

e∂

]
, b =

[
b◦

b∂

]
, (3.69)

where the superscripts relate to their position in the domain.

We already touched the orientation of grid entities in the definitions

of the incidence matrices (see section 3.4.2). We remark that each

entity comes with an inner and outer orientation, and inner orienta-

tions of one grid induce outer orientations of the other. Orientations

of edges and faces correspond to the familiar right hand rule, which

is extended to vertices and volumes in a natural way; see, e.g., [6]

for details. Figure 3.15 illustrates the situation for a primal edge Li

and coinciding dual face Ãi. Inner orientation of Li (edge direction)

induces an outer orientation on the dual face Ãi (positive direction
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ϕ

E

B

ρel

D, J

H

E = −∇ϕ

∂tB +∇×E = 0

∇ ·D = ρel

∂tD−∇×H = −J
H = µ−1B

D = εE

J = σE

primal vertices

primal edges

primal faces

dual volumes

dual faces

dual edges

Figure 3.14.: Tonti diagram showing the differential structure of elec-
tromagnetism. See also [33, fig. 12.2], [6, figs. 1.6 and
5.5].

by the surface normal vector), and outer orientation of Li (the right

hand rule around the edge vector) induces an inner orientation on

Ãi (positive orientation for its boundary edges). We also mention

that primal edge midpoints are identified with dual face centers, and

primal vertices are associated with dual cell centers. This provides

the reason why we require acute-angled triangles in the definition of

the primal grid (see section 3.4.1).

3.4.4. Interpolation of electromagnetic fields

The Euler and Maxwell’s equations are coupled through Lorentz

force. As we have just seen, the discretized electric field E and mag-

netic flux density B are defined on edge centers and face centers of

the primal grid. In contrast, the plasma is defined on dual cell vol-

umes; as we will see in section 3.4.6, the finite volume method (FVM)
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Li

Ãi

Figure 3.15.: Primal edge Li and dual face Ãi with coherent orienta-
tions.

is applied and the cell-averaged values are taken to be representative

values at the dual cell center.

Since Lorentz force is modeled as a volumetric source term (see sec-

tion 3.2.3), the electromagnetic fields must be interpolated to dual

cell centers (or primal vertices, equivalently) in first order accuracy.

The interpolation should also yield a consistent method for Ohm’s

law. Interpolation of the B-field is rather classical, whereas inter-

polation of the E-field is more involved. The methods are discussed

separately.

Magnetic flux density

The magnetic flux density B is interpolated on the primal grid with

Raviart-Thomas elements of zeroth order [140]. These elements are
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divergence-conforming, and they represent basis functions in the So-

bolev space

H(div,Ω) := {v ∈ L2(Ω,R3) : div v ∈ L2(Ω)}, (3.70)

where L2 denotes the space of square Lebesque integrable functions.

For a reference triangular prism V̂ , the basis functions are given as
x̂ŷ

0

 ,
x̂− 1

ŷ

0

 ,
 x̂

ŷ − 1

0

 ,
 0

0

ẑ − 1

 ,
0

0

ẑ


 , (3.71)

associated with the prism faces. The reference prism is mapped to

an actual prism Vk ∈ G by the affine map

Fk : R3 → R3, x̂ 7→ x := Bkx̂ + bk, (3.72)

and the reference basis functions f̂ of the reference prism are mapped

to Vk by the Piola transformation (see, e.g., [26, ch. 2])

pk : L2(V̂ )→ L2(Vk), f̂(x̂) 7→ f(x) :=
1

|detBk|
Bkf̂(x̂). (3.73)

We remark that the B-field is required only in the plasma domain,

and that domain coincides with the triangular prisms almost exactly

(see also section 3.4.1). It is only the primal vertices on the plasma-

solid interface that also belong to non-triangular prism cells in the

primal mesh. We neglect those contributions from the quadrilateral
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cells for simplicity. This introduces a local error in the outermost

dual cells of the plasma domain, which could be removed by extend-

ing the Raviart-Thomas interpolation to hexahedrons (see, e.g., [26,

section 2.4]).

Electric field

Interpolation of the electric field from primal edges to dual cell cen-

ters is more involved. The problem is termed more generally as re-

construction of vector fields on unstructured, staggered grids, and

it has been a recent research topic in global atmospheric modeling

and ocean modeling in particular (see, e.g., [123, 172], and references

therein). The problem at hand is visualized in figure 3.16: given the

face centered normal components of a vector field, find an approxi-

mation of the vector field at cell center (or, more generally, at any

arbitrary point inside the cell).

Perot [124] proposed a particularly general method for polyhedrons

with arbitrary number of faces. The method is at least first-order

accurate, and second-order for aligned polygons [123], i.e., if two op-

posite faces are pairwise parallel opposite. An extension with second-

order corrections has been pushed forward in [170]. Other reconstruc-

tion methods are based, e.g., on Raviart-Thomas elements (designed

for linear, non-divergent vector fields), Whitney elements (designed

for linear, curl-conforming vector fields), least squares method [168],

or radial basis functions; see [172] and [123] for a comparison. It was

found that Perot’s method is particularly fast and simple with com-
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Ei · n̂i

xk

Ek?

Figure 3.16.: The problem of reconstructing a vector field E at cell
center xk from values given only at face centers Ei. Thin
lines show triangular faces of the primal mesh. The
thick lines indicate dual cell faces.

parable rms-errors, but relatively large errors in the maximum norm.

Hybrid schemes combining Perot’s and the least squares method were

proposed in [123] and [170].

We choose Perot’s method for reconstruction of the electric field

because of its simplicity and speed. Let us consider a dual cell Ṽk and

denote the cell center (which coincides with its primal vertex) by xk,

and the set of cell faces by Fk. Then, the reconstruction Ek = E(xk)

is given by

Ek =
1

|Ṽk|

∑
i∈Fk

ri(Ei · n̂i)|Ãi|, (3.74)

with ri denoting the local position vector from xk to the center of

face Ãi, n̂i is the outward unit normal vector, and Ei is the vector
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field at the center of face Ãi.

We adapt the notation in (3.74) for our purposes in writing the

equation in context of MGE (see section 3.4.2). Because of mesh

construction and its orthogonality we have ri = 1
2 s̃ki|Li|ni, where ni

is the oriented dual face normal, |Li| is the length of the corresponding

primal edge Li, and s̃ki is the face-to-cell incidence on the dual grid.

We also remember that the electric voltage at edge Li is given as

ei = (Ei · ni)ski|Li| (see eq. (3.59b)), and the outward unit normal

vector may be substituted by n̂i = niski. In total, we find

Ek =
1

2

1

|Ṽk|

∑
i∈Fk

ni|Ãi|ei. (3.75)

We outline contemporaneous research results on the interpolation

process as shown in [128]. Interpolation may be understood as the

composition of projection and a corresponding reconstruction. It is

found in [128] that the optimal point (with respect to least squares er-

ror) for reconstruction is given by the barycentric dual cell center. In

fact, interpolation at this position would be exact and P0-consistent.

This result should be considered in further work. In comparison, the

method given in eq. (3.75) is a compromise of implementation time

and accuracy.

3.4.5. Time discretization of Maxwell Grid Equations

Degond et al. [45] proved with linear stability theory that Maxwell’s

equations must be solved implicitly for the scheme being asymptotic
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preserving and consistent in the quasineutral limit. We provide an-

other argument that is based on differential algebraic equations (see

also section 3.3.2).

We mentioned that Faraday’s and Ampere’s law become a differen-

tial algebraic equation of index 1 as λ→ 0, and it is the class of stiffly

accurate methods that work equally well irrespective of the actual

value of the perturbation parameter λ. For Runge-Kutta methods,

this class is characterized by a Butcher tableau with two properties:

firstly, the last row of the coefficient matrix has identical values as in

the weights vector, and secondly, the coefficient matrix is invertible.

These properties ensure that the numerical scheme remains valid in

the quasineutral limit, and this procedure is known as ε-embedding5

in numerical analysis. We also note that stiffly-accurate methods

are L-stable, i.e., their stability function satisfies limz→∞R(z) = 0

(see, e.g., [76, Proposition 3.8]). Higher order methods being stiffly

accurate are known as Gauss-Radau methods.

We remember that the forward and backward Euler method may

be considered as special cases of the θ-method, i.e.,

um+1 = um + δm
(
(1− θ)Fm + θFm+1

)
, (3.76)

with m being the time step iteration index, δm = tm+1− tm timestep

size, so that θ = 0 is the forward Euler method, θ = 1 the backward

Euler method, and θ = 1/2 the Crank-Nicolson method. Its stability

5Note that the perturbation parameter, here denoted by λ, is usually denoted
by ε.

77



Chapter 3. Asymptotic-preserving multi-species Euler-Maxwell
plasma model

function

R(z) =
1 + z(1− θ)

1− zθ
, z ∈ C, (3.77)

vanishes for z → ∞ if and only if θ = 1, and we conclude that the

backward Euler method is the only stiffly-accurate. This argument

can be extended to higher order methods in time discretization.

Therefore, the evolution equations written in MGE and discretized

with the implicit Euler method are given by

δ−1
m (bm+1 − bm) + Cem+1 = 0, (3.78a)

λ2δ−1
m Mε(e

m+1 − em)− C̃Mνb
m+1 = −jm+1. (3.78b)

We remark that the timestep size δm is defined by the fluid model

(see next section). Substituting Faraday’s law into Ampere’s law,

and using Ampere’s law at the previous time step with δm−1 yields

the evolution equation

(λ2Mε + δ2
mC

TMνC)em+1

= λ2Mε

((
1 +

δm
δm−1

)
em − δm

δm−1
em−1

)
− δm(jm+1 − jm), (3.79)

which is consistent with eq. (3.55).
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3.4.6. Euler equations

As the discretization of Euler equations is rather involved, we give a

short summary and an outline of this section before presenting the

details.

We remember that the peculiar feature of the AP scheme is to treat

the Euler mass flux implicitly (see section 3.3.2). For keeping the

discrete Euler-Maxwell system consistent with the continuous model

(see eq. (3.57a)) at any value of the AP parameter λ, the electric

field in the Lorentz force must also be implicit. The momentum

sources due to collisions (see sections 3.2.5 and 3.2.6) are explicit in

the coupling to Maxwell’s equations; however, we treat that term

implicit in the Euler equations because of its stiff nature. This is

the one and only inconsistency in the present model, but it allows to

keep the electromagnetic and fluid parts separately. If the collisional

sources were also implicit in Maxwell’s equations, we would have to

solve a large and tightly coupled system of equations.

This section has the following structure. Firstly, we review the

finite volume method and the Rusanov scheme for the Euler equa-

tions. Secondly, we focus on the implicit mass flux which provides

the coupling with Maxwell’s equations and leads to an AP scheme.

Thirdly, we present the explicit discretization of the collision sources

used in Maxwell’s equations. Lastly, we show the details for implicit

discretization of the collision sources in solving the Euler equations.
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Finite volume method

The Euler equations are defined on the dual grid G̃. They are dis-

cretized classically with the finite volume method (FVM, see, e.g.,

[99]), and fluxes at grid faces are defined by the Rusanov [145] (or

local Lax-Wendroff) scheme. The time semi-discrete Euler equations

are given in vector format (see eq. (3.18))

δ−1
m (Um+1

∗ −Um
∗ ) +∇ · Fm∗ = Sm∗ , (3.80)

with Um
∗ denoting the fluid species state vector at timestep m, Fm∗ is

the flux vector, and Sm∗ is the vector of source terms. We remark that

mass flux and electric field will be treated implicitly; with explicit

collision sources, the terms are written in full details as

Um
∗ =

 nm∗

(n∗u∗)
m

(n∗etot,∗)
m

 , (3.81a)

Fm∗ =

f
m+1
n,∗

fmm,∗

fme,∗

 =

 (n∗u∗)
m+1

(n∗u∗ ⊗ u∗ + ε−2
∗ p∗1)m

(n∗htot,∗u∗)
m

 , (3.81b)

Sm∗ =

 (Γcoll
∗ )m

ε−2
∗ q∗(n

m
∗ E

m+1 + (n∗u∗)
m ×Bm) + (Rcoll

∗ )m

ε−2
∗ q∗(n∗u∗)

m ·Em+1 + (Qcoll
∗ )m

 . (3.81c)
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As we will see below, the implicit mass flux can be expanded and

written in terms of explicit state variables (see also [45, eq. (4.32)]).

Also Em+1 is computable before the fluid states are updated. This

justifies to write the flux vector F∗ with superscript m. The discrete

equations for cell state Um
∗,k in the dual cell Ṽk are then found as

Um+1
∗,k = Um

∗,k − δm
1

|Ṽk|

∑
i∈Fk

Fm∗,i|Ãi|+ δmS
m
∗,k, (3.82)

where Fm∗,i = Fm∗ ·ni denotes the Rusanov flux at face i, and the sum

is over the set of cell faces Fk.

The discrete fluxes at face Ãi are defined as follows. Let us consider

the adjacent cells Ṽk and Ṽk+1 on the left and right side as indicated

by the face orientation (see figure 3.17). We also write Ãk+1/2 for that

face, and we continue our discussion with one-dimensional quantities

projected in direction of the face normal nk+1/2. The Rusanov flux

is defined by the adjacent fluid states,

Fm∗,i = Fm∗,k+1/2 (3.83a)

= F∗(U
m
∗,k,U

m
∗,k+1) (3.83b)

=
1

2
(Um
∗,k + Um

∗,k+1)− 1

2
sm∗,k+1/2(F∗(U

m
∗,k+1)− F∗(U

m
∗,k)),

(3.83c)

81



Chapter 3. Asymptotic-preserving multi-species Euler-Maxwell
plasma model

Ṽk+1

Ṽk

Ãi

n̂i

n̂j

Figure 3.17.: Adjacent dual cells Ṽk, Ṽk+1 with shared face Ãi and
face normal vectors n̂i, n̂j .

that is, in full details,

fm+1
n,∗,k+1/2 =

1

2
((nu)m+1

∗,k + (nu)m+1
∗,k+1)

− 1

2
sm∗,k+1/2(nm∗,k+1 − nm∗,k), (3.84a)

fmm,∗,k+1/2 =
1

2
((nu2 + ε−2p)m∗,k + (nu2 + ε−2p)m∗,k+1)

− 1

2
sm∗,k+1/2((nu)m∗,k+1 − (nu)m∗,k), (3.84b)
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fme,∗,k+1/2 =
1

2
((nhtotu)m∗,k + (nhtotu)m∗,k+1)

− 1

2
sm∗,k+1/2((netot)

m
∗,k+1 − (netot)

m
∗,k), (3.84c)

with sm∗,k+1/2 denoting the local maximum wave speed for species ∗,

sm∗,k+1/2 := max
(
sm∗,k, s

m
∗,k+1

)
, (3.85a)

sm∗,k := max
(
|um∗,k|, |um∗,k + cm∗,k|, |um∗,k − cm∗,k|

)
, (3.85b)

and the acoustic wave speed

cm∗,k =

(
γ
pm∗,k
ε2
∗n

m
∗,k

)1/2

, (3.85c)

defined by the ideal gas law. The timestep size δm is given by the

CFL condition (see, e.g., [99, sec. 4.4]), i.e., the maximum time span

allowed such that acoustic waves do not cross cell boundaries in any

dual grid cell for any fluid species.

Implicit mass flux

The numerical mass flux (see eq. (3.84a)) is implicit only in the cen-

tral discretization part of the flux, while the numerical viscosity part

is kept explicit; see also [45, eq. (4.32)]. Using the momentum con-

servation equation allows to substitute the implicit terms by explicit

species states. For cell k and species ∗, the discrete momentum con-

servation equation projected in direction of face i ∈ Fk with normal
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vector ni reads

(nu)m+1
∗,k = (nu)m∗,k − δm

1

|Ṽk|

∑
j∈Fk

fmm,∗,j |Ãj |(nj · ni)

+ δmε
−2
∗ q∗n

m
∗,kE

m+1
k · ni

+ δmε
−2
∗ q∗((nu)m∗,k ×Bm

k ) · ni + δm(Rcoll
∗,k )m · ni. (3.86)

Therefore, substituting eq. (3.86) into eq. (3.84a) yields

fm+1
n,∗,k+1/2 =

1

2
((nu)m∗,k + (nu)m∗,k+1)− 1

2
sm∗,k+1/2(nm∗,k+1 − nm∗,k)

− 1

2
δm

∑
k∈adj(i)

1

|Ṽk|

∑
j∈Fk

fmm,∗,j |Ãj |(nj · ni)

+
1

2
δmε

−2
∗ q∗

∑
k∈adj(i)

nm∗,kE
m+1
k · ni

+
1

2
δmε

−2
∗ q∗

∑
k∈adj(i)

((nu)m∗,k ×Bm
k ) · ni

+
1

2
δm

∑
k∈adj(i)

(Rcoll
∗,k )m · ni, (3.87)

where adj(i) denotes the index set of adjacent cells at face i (i.e.,

adj(i) = {k, k + 1}) introduced for shorter notation. We note that

the explicit Rusanov flux is recovered in the first two terms, while

the other extra terms are due to the implicit formulation. The fourth

term represents the electrostatic Lorentz force with the electric field

interpolated to the dual cell center. Substituting Perot’s interpolation
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method (see eq. (3.75)) yields

fm+1
n,∗,k+1/2 =

1

2
((nu)m∗,k + (nu)m∗,k+1)− 1

2
sm∗,k+1/2(nm∗,k+1 − nm∗,k)

− 1

2
δm

∑
k∈adj(i)

1

|Ṽk|

∑
j∈Fk

fmm,∗,j |Ãj |(nj · ni)

+
1

4
δmε

−2
∗ q∗

∑
k∈adj(i)

nm∗,k

|Ṽk|

∑
j∈Fk

|Ãj |(nj · ni)em+1
j

+
1

2
δmε

−2
∗ q∗

∑
k∈adj(i)

((nu)m∗,k ×Bm
k ) · ni

+
1

2
δm

∑
k∈adj(i)

(Rcoll
∗,k )m · ni. (3.88)

In comparison to [45, eq. (4.33)], eq. (3.88) is the equivalent expres-

sion but generalized to arbitrary grids in 3D, and for a collisional

plasma. Degond et al. [45] remark that this expression is too dif-

fusive and reduce the sum in the electrostatic Lorentz force to that

of face i. However, we defer this aspect to further work and stay

with (3.88).

Maxwell’s and Euler equations are linked by a consistent formula-

tion of the electrical current density and mass fluxes (see eq. (3.4)).

We therefore substitute jm+1 by eq. (3.65c) and (3.88). This allows

to write analogously to Ohm’s law

jm+1 =

(∑
∗
q∗f

m+1
n,∗,i |Ãi|

)Nf̃
i=1

= Mm
σ em+1 + jmaux; (3.89)
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the “conductivity operator” Mm
σ is proportional to the species num-

ber densities nm∗,k, and jmaux summarizes all other terms not propor-

tional to em+1
j that contribute to species mass flux. We stress that

jmaux contains the collisional momentum source term Rcoll
∗ , which is

discussed just below in more details. In summary, we may state

eq. (3.79) as

(λ2Mε + δ2
mC

TMνC + δmM
m
σ )em+1

= λ2Mε

((
1 +

δm
δm−1

)
em − δm

δm−1
em−1

)
− δm(jmaux − jm). (3.90)

We realized with numerical experiments that setting λ = 0 is prob-

lematic (see section 4.5.3). We should also define a small but finite

conductivity (e.g., σ = 10−6) in the outer solid domain for a well

defined system of equations; the solver for the Maxwell system does

not converge for λ = 0 if one sets σ = 0 in the dielectric domain.

Explicit collision sources in Maxwell’s equations

The collision models (see sections 3.2.5 and 3.2.6) lead to source terms

Rcoll
∗ in the Euler momentum equation, and they enter into equa-

tion (3.90) via jmaux. We discuss their discretization in this section.

The collisions lead to stiff source terms in the Euler equations and

impose strong limits on the timestep size δm. They should be dis-

cretized implicitly as shown in the following section for the Euler

equations. However, if the momentum sources Rcoll
∗ are discretized
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implicitly in the Maxwell system (see eq. (3.90)), it would lead to a

big and tightly coupled system of equations. We therefore discretize

Rcoll
∗ explicitly in equation (3.90) for simplicity; exploring other dis-

cretization strategies is left to future work.

The elastic collisions as well as the inelastic collisions for ionization

and recombination may be written proportionally to species number

densities (see eq. (3.27a) and (3.53)), i.e.,

nαnβψαβ, (3.91a)

nennψ
ion, (3.91b)

n2
eniψ

rec. (3.91c)

The coefficients ψαβ, ψion, and ψrec (below collectively referred to by

ψ) mask the transfer integrals: they may be precomputed and tab-

ulated with respect to electron temperature Te and the dimension-

less parameters λion and λrec (see eq. (3.47)) for inelastic collisions

(cf. [98]). From an implementation perspective, it is advantageous to

store them as 1D or 2D table in the format log(ψ(T−1
e , λ)) and per-

form vectorized table lookup using (bi-)cubic spline interpolations.

Implicit collision sources in Euler equations

The collision sources (3.91) should be discretized implicitly in the

Euler equations to overcome the timestep limits due to their stiff

nature. We firstly outline the strategy before giving the implicit

discretization details for the inelastic collision model; the implicit
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elastic collision source terms are discretized in analogy.

The coefficients ψ are taken explicitly (i.e., at timestep m) because

they are given as data tables. The species number densities are given

in the format f(x, y) = xy and f(x, y) = x2y, respectively, and their

Taylor expansions result in

xm+1ym+1 ≈ xm+1ym + xmym+1 − xmym, (3.92a)

(xm+1)2ym+1 ≈ 2xm+1xmym + (xm)2ym+1 − 2(xm)2ym. (3.92b)

These approximations are used for (Γion)m+1 and (Γrec)m+1. For the

other terms, we will use the approximations

xm+1ym+1 ≈ xm+1ym or xmym+1, (3.93a)

(xm+1)2ym+1 ≈ (xm)2ym+1 or xm+1xmym, (3.93b)

respectively, because they lead to simpler expressions and allow to

approximate the Jacobians such that the species state variables are

kept in the numerators. We also substitute

(nT )m+1
∗ = (γ − 1)ε2

∗

(
(netot)

m+1
∗ − 1

2nm∗
(nu)m∗ · (nu)m+1

∗

)
(3.94)

in the following. So we can state the implicit discretization of eq. (3.53)

in details and succinctly:

(Γion)m+1 = ψmΓion(nm+1
e nmn + nme n

m+1
n − nme nmn ) (3.95a)

(Γrec)m+1 = ψmΓrec(2nm+1
e nme n

m
i + (nme )2nm+1

i − 2(nme )2nmi ) (3.95b)
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(Rionw0)m+1 = ψmRion(nmn (nu)m+1
e − nme (nu)m+1

n ) (3.95c)

(Rrecw1)m+1 = ψmRrecε2
i (n

m
e n

m
i (nu)m+1

e − (nme )2(nu)m+1
i ) (3.95d)

(ΓionU0)m+1 = ψmΓion

(
nmn

1 + ε−2
e

(nu)m+1
e +

nme
1 + ε2

e

(nu)m+1
n

)
(3.95e)

(ΓrecU1)m+1

= ψmΓrec

(
2nme n

m
i

1 + ε−2
e

(nu)m+1
e +

ε2
i (n

m
e )2

1 + ε2
e

(nu)m+1
i

)
(3.95f)

((
Tn
Te
− 1

)
Kionw0

)m+1

= ψmKion

(
Tmn
Tme
− 1

)(
nmn (nu)m+1

e − nme (nu)m+1
n

)
(3.95g)

((
Ti
Te
− 1

)
Krecw1

)m+1

= ψmKrecε2
i

(
Tmi
Tme
− 1

)(
nme n

m
i (nu)m+1

e − (nme )2(nu)m+1
i

)
(3.95h)

(
(Tn − Te)J ion

)m+1
= ψmJ ion

(
nme (nT )m+1

n − nmn (nT )m+1
e

)
(3.95i)

((Ti − Te)J rec)m+1

= ψmJ rec

(
(nme )2(nT )m+1

i − nme nmi (nT )m+1
e

)
(3.95j)
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(
Rionw0 ·U0

)m+1

= ψmRion

(
nmn (nu)m+1

e − nme (nu)m+1
n

)
·
(

1

1 + ε−2
e

(nu)me
nme

+
1

1 + ε2
e

(nu)mn
nmn

)
(3.95k)

(Rrecw1 ·U1)m+1

= ψmRrecε2
i

(
nme n

m
i (nu)m+1

e − (nme )2(nu)m+1
i

)
·
(

2

1 + ε−2
e

(nu)me
nme

+
ε2
i

1 + ε2
e

(nu)mi
nmi

)
(3.95l)

((
Tn
Te
− 1

)
Kionw0 ·U0

)m+1

=

(
Tmn
Tme
− 1

)
ψmKion

(
nmn (nu)m+1

e − nme (nu)m+1
n

)
·
(

1

1 + ε−2
e

(nu)me
nme

+
1

1 + ε2
e

(nu)mn
nmn

)
(3.95m)

((
Ti
Te
− 1

)
Krecw1 ·U1

)m+1

=

(
Tmi
Tme
− 1

)
ψmKrecε2

i

(
nme n

m
i (nu)m+1

e − (nme )2(nu)m+1
i

)
·
(

2

1 + ε−2
e

(nu)me
nme

+
ε2
i

1 + ε2
e

(nu)mi
nmi

)
(3.95n)
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(
ΓionE ion

)m+1

= ψmΓion

(
3

2
nme (nT )m+1

n

+

(
1 + ε2

e

1 + ε−2
e

nmn
2

(nu)m+1
e +

nme
2

(nu)m+1
n

)
·
(

(nu)me
(1 + ε−2

e )nme
+

(nu)mn
(1 + ε2

e)n
m
n

))
(3.95o)

(ΓrecErec)m+1 = ψmΓrec

(
3

2
(nme )2(nT )m+1

i

+

(
1 + ε2

e

1 + ε−2
e
nme n

m
i (nu)m+1

e +
ε2
i (n

m
e )2

2
(nu)m+1

i

)
·
(

2(nue)
m

(1 + ε−2
e )nme

+
ε2
i (nu)mi

(1 + ε2
e)n

m
i

))
(3.95p)

(
(Tn − Te)2

Te
W ion

)m+1

= ψmW ion

(
Tmn
Tme
− 1

)(
nme (nT )m+1

n − nmn (nT )m+1
e

)
(3.95q)

(
(Ti − Te)2

Te
Wrec

)m+1

= ψmWrec

(
Tmi
Tme
− 1

)(
(nme )2(nT )m+1

i − nme nmi (nT )m+1
e

)
(3.95r)
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3.4.7. Boundary conditions

The naming of boundary faces are visualized in figure 3.18.

Let us define firstly the boundary conditions for the Maxwell sys-

tem. The anode boundary Γa is electrically grounded and at zero

potential. At cathode outer boundary Γc, we define the electric po-

tential as a time-varying function ϕc(t). The lateral cylinder surface

Γ0 takes zero flux conditions for the electric field and magnetic flux

density. The plasma-solid interface Γps does not require particular

modeling because we consider materials with identical electric per-

mittivity and magnetic permeability.

These electromagnetic boundary conditions are included into the

numerical model as follows. The electric voltage at primal edges lying

on the domain boundary Γ0 are given by the gradient of the electric

potential field. As a consequence, the degrees of freedom (DoF) of

the Maxwell system are given by the electric voltage on primal inner

edges e◦ and the primal boundary vertices ϕ∂ (see eq. (3.69)). The

array of DoF is denoted as

x :=

[
e◦

ϕ∂

]
. (3.96)

We then define the “inner-identity-boundary-gradient” operator Q

[82],

Q =
[
Xe◦ −GXϕ∂

]
, (3.97)

with Xe◦ being the embedding operator for inner edges and Xϕ∂ the
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Γ0
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Γps

Figure 3.18.: Naming of boundary conditions in the computational
model.

embedding for boundary vertices. This allows us to substitute

e = Qx. (3.98)

Moreover, the zero-flux boundary condition implies that the dis-

crete curl operator C should be restricted to primal edges and faces

that lie in the domain interior; the discrete inner curl operator is

denoted by C◦. We also restrict the magnetic material law to in-

ner faces, and denote the operator for inner primal faces as M◦ν .

These substitutions are applied to the evolution equation (3.90) and

we multiply from left with QT to symmetrize. We remark that the

symmetrisation corresponds to using – in context of finite element
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methods – identical test functions and basis functions. In summary,

we find

(λ2QTMεQ+ δ2
mQ

TC◦TM◦νC
◦Q+ δmQ

TMm
σ Q)xm+1

=

(
1 +

δm
δm−1

)
λ2QTMεQxm

− δm
δm−1

λ2QTMεQxm−1

− δmQT (jmaux − jm), (3.99)

as the final system of equations for the Maxwell system to be solved

numerically.

We now specify the boundary conditions for Euler equations that

are solved in the plasma domain. The plasma-solid interface Γps is a

wall for all plasma species (u∗ ·n = 0) with wall boundary conditions.

The anode and cathode boundaries (Γa and Γc) are wall boundaries,

in principle, and they would require more delicate modeling if detailed

plasma physics is considered. This would include arc root effects

(anode and cathode sheath potentials, see, e.g., [3, 22, 13]) as well as

ablation and material deposition (see, e.g., [108] for a carbon plasma)

but is left for future work. However, we restrict us for simplicity to

open-wall boundary conditions, i.e., zero Neumann conditions: the

gas species can leave and enter with zero-gradients.
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3.5. Implementation notes

The numerical code has been written in C++. Eigen (v. 3.3.7) [74] is

used for data storage and linear algebra, Alglib (v. 3.16) [25] is used

for (bi-)cubic spline interpolation. Output data is written to HDF5

files (v. 1.10.4) [161], described by the XDMF (v. 3) [177] format, and

visualized in Paraview (v. 5.6.0) [12]. The source code is compiled

with Intel C++ Compiler (v. 2019.5.281) [1].

Equation (3.99) is solved with Eigen’s BiCGStab solver for sparse

systems of equations.
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4. Numerical Experiments

We present numerical experiments as found by the model and method

described in chapter 3. The computational domain is a cylinder (see

figure 3.6) with axial length 5, plasma radius 1 and outer radius 1.5.

We compare the results on three meshes. Their refinements follows

the strategy of section 3.6. The refinement (see table 4.1) in axial and

radial directions are consistent to keep cell aspect ratios comparable

on all meshes.

We firstly perform numerical experiments to validate the submod-

els before solving the fully coupled Euler-Maxwell model.

Mesh name radial refinement axial refinement

coarse level 2 50
medium level 3 100

fine level 4 200

Table 4.1.: Mesh resolutions used in the numerical experiments.
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Sod’s shock tube

4.1. Sod’s shock tube

We begin with test cases on the Euler system. Sod’s shock tube [157]

is a Riemann problem with zero velocity at initial time, and it is

an often used test case for validating compressible flow solvers. Its

main aspect lies in correct prediction of shock waves and jumps across

them. The problem setup is one-dimensional and oriented with the

cylinder axis in our case. The experimental setup (see also, e.g., [99,

ch. 14]) is thought to consist of a diaphragm at z = 0 separating the

domain into a high pressure (left) and low pressure (right) section.

At t = 0, the diaphragm is ruptured. This leads to a series of three

pressure waves. The leading shock wave propagates into the low

pressure region, followed by the contact discontinuity identified by a

jump in number density but pressure and velocity being unaffected.

A rarefaction wave moves into the high pressure region. These waves

lead to five regions with fluid states that may be described exactly by

the initial states, the wave speeds, and the Rankine-Hugoniot jump

conditions (see, e.g., [99, ch. 11.8]) across the waves.

The numerical experiment considers a gas species with heat capac-

ity ratio γ = 5/3 and unit mass ratio (i.e., ε2
∗ = 1), referring to heavy

species of an argon plasma. The initial states on the left and right

section are defined asnLpL
uL

 =

1

1

0

 ,
nRpR
uR

 =

0.125

0.1

0

 , (4.1)
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respectively. The electric and magnetic fields are set to zero, and

collisional sources are neglected.

We report the fluid states at time t = 1. Figure 4.1 shows the fluid

states for number density, pressure, and velocity for the three meshes

computed by the implicit mass flux scheme (see (3.88)). We see that

the numerical solutions tend towards the exact solution as the mesh is

refined. The exact solution is reproduced by the numerical solutions

in first order accuracy.

One distinctive feature of the numerical scheme is that mass flux

is computed implicitly. Let us compare (see figure 4.2) the difference

to the classical, explicit Rusanov scheme. The numerical results of

the two schemes differ only slightly. The implicit scheme resolves the

shock wave more accurately, whereas the resolution of the rarefaction

wave is more diffusive. The results are shown only for the coarse grid

for illustration; the differences in the two schemes reduce with mesh

resolution and are visually almost not distinguishable.

4.2. Uniform steady electric field

This test case focuses on validating the electric field as a source term

to the Euler equations. We define a uniform and steady electric field

parallel to the cylinder axis and with unit field strength (E = ẑ),

and the magnetic field is set to zero. We specify a three-species

fluid of positive ions, negative ions, and neutral atoms. The ions

are singly charged, and all species have unit mass ratios (ε2
∗ = 1).

Reactions and collisions among the species are neglected. Hence, the
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Figure 4.1.: Comparison of grid refinement for Sod’s shock tube prob-
lem; data at t = 1 with implicit mass flux scheme.
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Figure 4.2.: Comparison of implicit mass flux scheme and explicit
scheme for Sod’s shock tube problem; data at t = 1 on
coarse grid.
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Collisional sources

T̄ 10 kK
x̄ 10 mm
p̄ 1 bar
m̄ 39.948 u

Q̄ 1.36× 10−21 m2

n̄ 7.34× 1022 m−3

t̄ 13.1 µs

Table 4.2.: Scaling units. Left: reference values for a thermal argon
plasma. Right: derived scaling units using ideal gas law.

momentum source is given by the electrostatic force and proportional

to species charge. Initial conditions are n∗ = 1, p∗ = 1, and u∗ = 0

for all species identically. Boundary conditions in axial direction are

defined as Neumann conditions, i.e., the species flow freely across the

plasma-electrode boundary.

Figure 4.3 shows that species velocities increase linearly in time,

and proportional to species charge, i.e., in opposite directions for neg-

atively charged ions, as expected. Neutral atoms are not accelerated.

We have checked that number densities are identical to their initial

values in space and time. A grid study shows that species velocities

are not affected by mesh resolution. However, it shows that charged

species temperature is slightly decreasing in time with first-order ac-

curacy in mesh resolution, see figure 4.4. Nevertheless, neutral species

temperature is constant in time.

4.3. Collisional sources

After checking the classical components of the Euler solver we now

turn to the source terms due to collisions see sections 3.2.5 and 3.2.6.
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Figure 4.3.: Species velocities in axial direction due to constant and
uniform electric field E = ẑ.
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Figure 4.4.: Grid dependency of temperature for charged species.
The data converges to T → 1 as grids are refined.
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The collision model requires to specify dimensional parameters: we

define reference scales for temperature, length, pressure, and species

mass that correspond to thermal argon plasmas, see table 4.2. The

time scale is then found by the ideal gas law and the definition of

scaled Debye length (λ = 2.55× 10−6, see eq. (3.8c)). That is, we

find

t̄ =
x̄

λc0
=

q

ε
1/2
0 c0kB

x̄2 p̄
1/2

T̄
= 13.1 µs. (4.2)

For easing computational burden we use ε2
e = 1× 10−3 for the elec-

tron mass ratio instead of the correct value ε2
e ≈ 1

40·1836 = 1.36× 10−5.

Moreover, we consider a partially ionized quasineutral plasma, i.e.,

we set the neutral species number density to nAr = 1 and for charged

species nAr+ = ne = 5× 10−3.

Our testcases are defined with uniform species data. Because the

collision model is defined locally, it follows that mesh resolution af-

fects the model dynamics only through the timestep size. We perform

our testcases only on the coarse grid and mimic mesh resolutions by

varying the CFL number. As the stiff collisional source terms are

modeled with an implicit scheme, we expect that a small CFL num-

ber reveals the true system dynamics whereas a relatively large CFL

number of unity allows for much larger timesteps at the cost of some

possible inaccuracies in the state variables.

In a first case, we set the initial electron temperature to Te = 1.6

and velocity ue = 1 in axial direction, while the heavy species are both

set to TAr = TAr+ = 1.5 and at rest u = 0. Figure 4.5 shows that

the electron species temperature relaxes to that of heavy species on
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Figure 4.5.: Thermal relaxation of electron species to heavy species
on coarse mesh at CFL = 1.

a timescale of order 10−1. The heavy species temperature increases

slightly but not noticeable in the graph. We have reduced the CFL

number by orders of magnitudes to mimic finer mesh resolutions and

resolving the true system dynamics, see figure 4.6. We see that the

thermal dynamics are recovered at large CFL numbers and smaller

timesteps would only lead to marginally different temperatures. This

effect is also observed in the electron velocity as shown in figure 4.7:

we see that electrons quickly exchange their momentum with heavy

species. The momentum relaxation timescale is on the order of 10−4,

in agreement with eq. (3.30). A smaller CFL number (< 10−1) would

resolve the detailed dynamics, however the implicit scheme allows us

to use larger CFL numbers and reduce computational costs with just

105



Chapter 4. Numerical Experiments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
-3

1.596

1.597

1.598

1.599

1.6

1.601

t

T
e

-

CFL = 1

CFL = 10
-1

CFL = 10
-2

CFL = 10
-3

Figure 4.6.: Electron temperature at smaller CFL numbers. Smaller
CFL numbers affect the thermal dynamics only on a very
short timescale but is recovered by a large CFL number
(CFL = 1).
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Figure 4.7.: Electron velocity at short times. The dynamics are re-
solved at small CFL number (< 10−1).

minor deviations in accuracy.

The second case considers relaxation of heavy species: we set neu-

tral species temperature to TAr = 1.6 and velocity uAr = 1 whereas

charged species are at T = 1.5 and at rest. Figure 4.8 shows the

thermal relaxation of electrons and ions. Thermal relaxation of elec-

trons is on order of 10−1 and similar to the first case (see figure 4.5),

however, ions relax much faster to neutral species. This behavior is

predicted in eq. (3.28), i.e., collisions of particles with similar masses

relax their kinetic energy faster than particles with disparate masses.

Figure 4.9 shows a detailed view on the thermal relaxation of ions:

similarly to above, we see that the detailed dynamics are not resolved

at CFL = 1 but it allows to reduce computational costs without trad-
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Figure 4.8.: Thermal relaxation of ions (Ar+) and electrons (e– ,
blue) to neutral species (Ar, yellow). Ions relax quickly
whereas electron thermal relaxation timescale is on order
of 10−1. For small CFL numbers we see that ion temper-
ature overshoots significantly (red and purple). See also
figure 4.9 for detailed view.

ing accuracy in the long run. Figure 4.10 shows the momentum re-

laxation of electrons and ions. We see that both species relax their

momentum quickly, with electron momentum relaxation being faster.

4.4. Maxwell solver

Two cases are considered for testing the numerical method for the

Maxwell subsystem. Firstly, we consider the whole domain as a di-

electric and we neglect the current J. Hence, we solve the wave
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at short timescale. The detailed dynamics are not re-
solved for CFL = 1 (blue line). The lines are almost
identical for CFL ≤ 10−2 (yellow and purple). Tempera-
tures for Ar (dash-dotted line) and e– (dashed line) are
given as a reference.
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equation

λ2∂2
t (εE) +∇×∇×E = 0 (4.3)

as given by the implicit numerical scheme in eq. (3.99). The boundary

conditions are given by a step-like voltage profile

ϕ(t) =
1

2

(
1 + tanh

(
t− t0
τ

))
(4.4)

with t0 = 1 and τ = 0.1. We use a constant timestep size δm = 0.1.

We expect that the voltage profile leads to an electromagnetic wave in

the domain with an amplitude that eventually vanishes. Ultimately,

it should lead to a constant and uniform electric field E = 0.2z be-

tween the contacts. We perform a parameter study on the AP pa-

rameter λ: for λ = 1 we expect that the voltage jump leads to a large

wave amplitude whereas λ → 0 dampens the wave amplitude and

leads to an electric field that follows the voltage boundary condition

closely.

We evaluate the z-component of the electric field Ez at the origin

x = (0, 0, 0) and the y-component of the magnetic flux By at position

x = (1, 0, 0). The results are shown in figure 4.11 for the electric field

and in figure 4.12 for the magnetic flux. We see that the AP pa-

rameter leads to wave dampening, indeed, and matches the predicted

behavior. The amplitude is fully damped for λ2 = 10−4, and the

electric field follows exactly the voltage boundary conditions whereas

the magnetic flux vanishes. We also show data of the grid study for

λ = 1: we see that finer meshes lead to marginally larger amplitudes
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and phase shift in comparison to the coarse mesh. The differences are

most pronounced for the magnetic flux. For clarity, we do not show

data of the grid study for smaller values in λ because no differences

are recognizable in the plots.

The second testcase includes the electric current J. We consider the

whole domain as a solid material with constant and uniform electrical

conductivity σ = 1. That is, we solve the equation

λ2∂2
t (εE) +∇×∇×E + σ∂t(E) = 0 (4.5)

with the same method as discussed above, and we apply identical

conditions as in the first testcase. Figures 4.13 and 4.14 show the

results for axial electric field and azimuthal magnetic flux as above.

We see that including Ohm’s law leads to further wave dampening.

We also observe that the current leads to a magnetic field |B| = 0.1,

approximately, as given by Ohm’s law. The magnetic field is smaller

than expected because the dual plasma domain has a radius that is a

half cell height larger than the primal domain, see also section 3.4.1.

We also include the results for medium mesh and λ2 ≥ 0.1, and

we notice the same effect as in the first testcase. The difference in

the magnetic flux density is clearly attributed to the radial mesh

resolution of the plasma domain.
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Figure 4.11.: Axial component of electric field for the wave equation
evaluated at the origin. Coarse domain Data from mesh
study is shown only for λ = 1; differences are not visible
for smaller values in λ and therefore not shown.
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Figure 4.12.: Azimuthal component of magnetic flux density for the
wave equation evaluated at x = (1, 0, 0). Data from
mesh study is shown only for λ = 1; differences are not
visible for smaller values in λ and therefore not shown.
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Figure 4.13.: Axial component of electric field for the wave equation
including electric current by Ohm’s law, evaluated at
the origin. Thick lines are computed on the coarse
mesh, dashed lines are on the medium mesh. The volt-
age boundary condition is plotted for reference (thin
black line).
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lines are computed on the coarse mesh, dashed lines are
on the medium mesh.
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4.5. Fully coupled Euler-Maxwell system

We consider the fully coupled Euler-Maxwell system. We specify the

voltage boundary condition (4.4) with t0 = 0.1 and τ = 0.01, and we

use the scaling parameters given in table 4.2. We stress that the num-

ber density scale is found from the ideal gas law; the corresponding

value for the scaled Debye length (the AP parameter, see eq. (3.8c))

is λ2 = 6.5× 10−12. The multi-species plasma is initialized uniformly

with T∗ = 1.5 and u∗ = 0 for all species, and number densities are set

to nAr = 1 and nAr+ = ne− = 5× 10−3. The geometric symmetries

in the model setup results in data that depend only on the radial co-

ordinate; nevertheless, the system is solved in 3D. In contrast to the

previous section, the plasma domain has finite electrical conductivity

whereas the outer solid is dielectric.

Firstly, we check the coupling of the numerical model. For this

purpose, we replace the scaled Debye length with λ2 = 1 in case 1

and λ2 = 10−4 in case 2. It is clear that these are not the physically

correct values but it allows to study the modeling effect due to this

AP parameter.

We have checked the results visually and confirm that the results

are only functions of the radial position.

4.5.1. Case 1: λ2 = 1

Figure 4.15 shows the total current J across the xy-plane, which

is carried by the electrons Je because of their small inertia. One

would expect that the electrons are accelerated by the electric field
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and reach a terminal speed and constant current. But this is not

the case and explained as follows. Because of λ2 = 1, the voltage

boundary conditions lead to an electromagnetic wave (compare also

figure 4.12) that propagates radially into the plasma at finite speed.

This gives rise to a phase shift of the electric field with respect to

radial coordinate and results in a complex structure of the measured

value at a single point, as shown in figure 4.16. When integrating

over the cylinder cross section, we see that the electric current – or

electron mass flux, equivalently – overshoots and induces an opposing

electric field. In total, this effect results in a periodic interaction with

the voltage boundary condition and explains the complex structure of

the measured current in figure 4.15 and the electric field in figure 4.16.

We observe a period T = 4.

Figures 4.17 to 4.19 show data of the gas species at the origin.

Figure 4.17 shows the velocity of electrons and heavy species. The

electron velocity is much larger than that of the heavy species because

of its inertia. We also see that the charged species react on the elec-

tric field as given by the electrostatic Lorentz force and the species

charge. We also see a net drift velocity in negative direction which

is due to the relatively fast electrons and their collisions with heavy

species. Figure 4.18 shows the species temperature. Although we add

electrical energy to the system and not having specified a radiative en-

ergy sink, we observe a general trend to slightly lower temperatures.

This is not yet fully understood and should be checked by additional

testcases. The larger amplitudes in electron temperature is due to

their acceleration as given by the electric field. Figure 4.19 shows
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Figure 4.15.: Total current across xy-plane.
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Figure 4.16.: Axial component of electric field at origin.

119



Chapter 4. Numerical Experiments

0 5 10 15 20 25

-0.2

-0.1

0

0.1

t

u

u
e

-

0 5 10 15 20 25

-10

-5

0

5

10
-4

t

u

u
Ar

+

u
Ar

Figure 4.17.: Velocity of electrons, argon ions and neutral atoms at
origin.
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at origin.

121



Chapter 4. Numerical Experiments

0 5 10 15 20 25

5

6

7

8
10

-3

t

n

n
e

-

n
Ar

+

0 5 10 15 20 25

0.998

0.9985

0.999

0.9995

1

t

n
Ar

n
Ar
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atoms at origin.
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the number densities. The temperature level is above the ionization

equilibrium temperature (see Saha equation (3.46)). We therefore ob-

serve ionization, i.e., number densities increasing for charged species

and decreasing for neutral species; this is due to the inelastic collision

model.

4.5.2. Case 2: λ2 = 10−4

Let us consider the same settings as in the first case but with λ2 =

10−4. Informed by the results of the testcases in section 4.4 we expect

that the oscillations in the electric field are more damped.

Figures 4.20 and 4.21 show the total current across xy-plane and

the electric field at the origin. We see that the oscillations are

more damped, indeed, and they are at higher frequency with pe-

riod T = 0.4. This is an expected value as compared to above since

the AP parameter λ is proportional to the wave frequency. We also

notice that the mean value of the total current is increasing. That

is, on average the electrons are accelerated in the electric field. This

corresponds to our observation in figure 4.21 that the electric field

mean value (Ez = 0.2) is given by the voltage boundary conditions.

Figures 4.22 to 4.24 show gas species data. In comparison to above

(figures 4.17 to 4.19), we see that the data is much smoother with

identical trends. Additionally, it becomes clear that the mean elec-

tron velocity tends to ue = 0.06 whereas the ions tend to uAr+ =

1.4× 10−4, see figure 4.22.

However, we also recognize in all figures that the situation starts
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Figure 4.20.: Total current across xy-plane.

to change at time t = 15 to 20, approximately. Visualizing the data

we observed that the solver begins to drive away from the uniform

setup, in particular near the Neumann boundaries at the imaginary

electrode surfaces. This effect is even more pronounced for smaller

values λ → 0. We realized that the numerical design is not yet

complete, as described next.

4.5.3. Case 3: λ2 = 0

We aimed for checking if the designed model is truly asymptotic

preserving and set λ2 = 0. We then understood that a small elec-

trical conductivity (σ = 1× 10−6) should be defined in the dielec-

tric domain, otherwise the Maxwell system solver does not converge.
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Figure 4.21.: Axial component of electric field at origin.

Restarting the solver proved that it converged initially, but the elec-

tric field becomes wrong when the voltage boundary condition drives

the system away from its initial configuration.

We became aware that the present model is not asymptotic pre-

serving in 3D because quasineutrality is not respected. To see this,

we remember that the limiting case (λ2 = 0) in Maxwell’s equations

is given by

∂t(µH) +∇×E = 0, (4.6a)

∇×H = J. (4.6b)

There is a consistency problem with Ohm’s law: a linear relation
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origin.
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(J = σE, and eq. (3.89) for its discrete analogy) is not compatible

with the requirement that ∇ · J = 0 in the limit λ = 0. This issue

requires further work and is currently investigated.
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5. Summary & Outlook

5.1. Summary

We generalized a numerical scheme for plasma simulations to 3D

building on the Finite Integration Technique or Cell Method. This

permits for more general mesh topologies. The new method allows

for non-constant timestepping based on an argument from stiffly ac-

curate methods. Moreover, the presented model includes a friction

model that accounts for the species interactions in the collision dom-

inated plasma, using a minimal set of an argon plasma. Lowest-order

Raviart-Thomas elements are used to interpolate the magnetic flux

density, and we apply a reconstruction method to approximate the

electric field in the dual cell center. We also make use of the implicit

current or mass flux for coupling the gas dynamic and electromag-

netic subsystems. The numerical experiments validated the subsys-

tems, and the new method works for the fully coupled system for

finite values in the scaling parameter λ. However, the experiments

showed that the new method is not asymptotic preserving if one sets

λ = 0 because of an inconsistency in this limiting case.
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5.2. Outlook

Further work is required to make the generalized numerical scheme

asymptotic preserving. Future research should also focus on points

highlighted in this thesis. The most thrilling aspect is to review and

improve the reconstruction of the E-field to cell centers based on the

recent findings in [128]. This could be key for applying higher order

methods in time and space, which are also separate topics on their

own. Interpolation of B-field with Raviart-Thomas elements in hex-

ahedrons should be straightforward and reduce errors at the plasma

domain boundary. The present method should also be extended to

non-uniform materials, in particular with respect to magnetic per-

meability. This would allow for studies including iron bodies, for

instance. One should also consider other plasma species and their

chemistry, and extend the collision modeling for other types of colli-

sions and processes. In addition, the numerical modeling of implicit

momentum sources may be reviewed and improved.

We also mention two aspects that should be considered in future

work but have not been in focus of this thesis.

The first aspect is similar to the AP property (see section 3.3) and

physical modeling. We discussed in section 3.2.2 that the plasma

exhibits separate temperatures for each species which is due to the

species mass ratio and the collision frequency. As ions and neutral

species collide frequently, they equilibrate quickly and one will sub-

sume them in a single, heavy species gas. Let us now assume that the

large mass ratio between electrons and heavy species leads to negli-
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gible electron momentum flux. This implies that the plasma forces

are dominated by friction and one finds in the limit case

ue = uh +
1

γe
(E + ue ×B) +

1

neγe
∇pe, (5.1)

that is, the electron velocity is expressed by a friction coefficient γe,

the heavy species velocity and the Lorentz force. It would be worth

to check in detail the relation of this approach and drift-diffusion

models. See also [46, 47].

The second aspect is of numerical nature. The Euler equations

with gravitation describe a huge class of phenomena including atmo-

spheric weather predictions as well as supernovae explosions. [87] An

interesting task is to consider non-trivial steady states, which imply

that the pressure gradient balances the gravitational force. This sit-

uation should be modeled with well-balanced schemes (see, e.g., [7]),

i.e., a finite volume scheme that satisfies a discrete version of the

flux-source balance and preserves a discrete steady state of interest,

up to machine precision. They are especially known in the context of

shallow water equations with non-uniform topography (see, e.g., [66],

[37, sec. 6.5]). High order well-balanced schemes have been designed

for ideal MHD with gravity [60], and other work focused on implicit-

explicit schemes for flow equations with stiff source terms. [159, 100]

It would be of interest to combine these aspects for resistive MHD as

considered in this thesis.
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Part II.

On modeling radiative heat

transfer in electric arc

simulations
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6. Introduction

This parts is concerned with radiative heat transfer modeling, because

radiation is the main energy transfer mode in electric arcs and other

thermal plasmas.

The main difficulty lies in trading accuracy with computational

costs. The ultimate interest in thermal radiation modeling is to solve

for the net emission; this is the quantity that enters the energy bal-

ance equation as a source term in a plasma model. In principle, net

emission is defined through the radiative transfer equation (RTE).

The equation itself is computationally demanding, but it is also the

absorption coefficient κ – the main material parameter in thermal ra-

diation modeling – of the plasma that increases computational costs

and prevents from an exact numerical solution.

The situation becomes even more involved: even if the carrier gas

is initially a pure substance, the plasma is always affected by other

gas components since nearby surfaces are heated by radiation and

evaporate. This includes not only the metallic electrodes that are in

direct contact with the electric arc, but also the enclosure of molded

case circuit breakers (see also part III). In consequence, the radiative

properties should be available not only for the (pure) plasma but
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also for its mixtures with other substances like metal vapors (copper,

iron, silver, and other metal and alloys) and polymer vapors (e.g.,

polytetrafluoroethylene or PTFE) and plastics (e.g., acrylic glass).

However, we will focus on the modeling techniques in this part and

stay with a “pure” plasma for dry air (i.e., an artificial mixture of

nitrogen, oxygen, argon, and carbon dioxide).

A comprehensive discussion of radiative heat transfer may be found,

e.g., in [112]. An introduction to thermal plasma modeling and its

material properties is given, e.g., in [67] and [42]. The effects of metal

vapor on radiative transfer – in particular air-copper plasmas – are

discussed in, e.g., [89] and [69]. An example of an ablation-dominated

arc is given, for instance, in [52].

We firstly summarize fundamental concepts (see chapter 7) and

methods aimed towards mean absorption coefficients as they are used

in applied numerical simulations (see part III). Chapters 8 to 10

present research results in radiation modeling. Those are based on

a simple model of an electric arc – the Elenbaas-Heller equation –

solved at constant current, and a spectral analysis of the net emis-

sion. Chapter 11 summarizes the results and gives an outlook to

further work.
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7. Fundamentals

7.1. Basic quantities

The term radiative heat transfer, or thermal radiation, refers to the

process of heat transfer by electromagnetic waves, i.e., those waves

that are emitted by a medium due solely to its temperature. [112,

p. 1 and 4] These waves are specified by wavelengths λ from 0.1 µm to

100 µm, which stretches over the electromagnetic spectrum categories

of ultraviolet, visible, and mid-infrared waves. Their frequency ν is

given by the relation

ν =
c0

λ
, (7.1)

where c0 is the speed of light in vacuum; we remark that the refractive

index is approximately unity for ordinary gases and plasmas (see,

e.g., [112, 133, 149]) and therefore neglected in this text. The waves

may also be regarded interchangeably as massless energy parcels, each

of them carrying an amount of energy E = hν, where h is the Planck

constant

h = 6.626 070 15× 10−34 J s. (7.2)

Every material at a finite absolute temperature T emits thermal
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radiation. The radiative heat flux emitted from a surface is called

the emissive power (in units of W m−2),

E(T ) =

∫ ∞
0

Eν(T, ν) dν, (7.3)

where Eν denotes the spectral emissive power at a given frequency ν.

An idealized but key concept is the notion of a black surface or black

body, which refers to an opaque surface that does not reflect any ra-

diation but absorbs it completely. It was shown by Max Planck [130]

that the spectral emissive power of a black surface bounded by a

transparent medium is given as

Ebν(T, ν) =
2πh

c2
0

ν3

exp(ξ)− 1
, ξ =

hν

kBT
, (7.4)

where kB is Boltzmann’s constant, see eq. 3.7; this relation is also

known as Planck’s law. The dimensionless number ξ is frequently

used. For instance, one finds that the maximum spectral emissive

power is found at ξ = 2.8214, i.e.,

νpeak =
ξkB
h
T = (5.8789× 1010 Hz K−1) · T. (7.5)

The total blackbody emissive power is therefore found by the Stefan-
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Boltzmann law

Eb(T ) =
2πh

c2
0

(
kBT

h

)4 ∫ ∞
0

ξ3

exp(ξ)− 1
dξ (7.6a)

= σT 4, (7.6b)

where σ is the Stefan-Boltzmann constant

σ =
2π5k4

15c2
0h

3
= 5.670 374 419× 10−8 W m−2 K−4. (7.7)

Radiative energy flux varies at any point r inside a medium with

direction. The unit direction vector ŝ is often given in spherical co-

ordinates, i.e., in terms of polar angle θ ∈ [0, π] and azimuthal angle

ψ ∈ [0, 2π], relative to a coordinate system. On a surface, the polar

axis is customarily identified with its unit normal vector n̂. The solid

angle dΩ of an infinitesimal surface element dA seen from a point is

defined as the projection of dA in direction of ŝ onto the unit sphere,

i.e., it is identified with a surface element

dΩ = sin θ dθ dψ (7.8)

on the unit sphere (in units of sr). The unit sphere has a total surface

area equal to 4π.

While emissive power is associated with a surface describing the

radiative heat flux leaving it, another quantity is required for de-

scribing the radiative energy flow in space and its direction: this

is the radiative intensity I(r, ŝ) defined as the radiative energy flow
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per unit solid angle and unit area normal to the rays in direction of

ŝ. The spectral radiative intensity Iν(r, ŝ) is defined analogously as

the radiative intensity at frequency ν, and it is measured in units of

W m−2 sr−1 Hz−1. It can be shown that the radiative intensity leaving

a black surface is independent of direction and it holds Ebν = πIbν ,

i.e., the spectral blackbody intensity or Planck function varies with

temperature only,

Bν(T ) =
2h

c2
0

ν3

exp(ξ)− 1
, ξ =

hν

kBT
. (7.9)

The Planck function is also denoted by Ibν(T ) in the literature. We

write for its derivative with respect to temperature

B′ν(T ) :=
dBν
dT

=
2h

c2

ν3 exp(ξ)

(exp(ξ)− 1)2

(−ξ)
T

(7.10a)

= (−1)
ξ

T

exp(ξ)

exp(ξ)− 1
Bν(T ). (7.10b)

The amount of incident radiation, or irradiation, is given by the

integral over all solid angles, i.e., the spectral irradiation is

Gν =

∫
4π
Iν dΩ, (7.11)

and the total irradiation

G =

∫ ∞
0

Gν dν. (7.12)
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Likewise, the spectral and total radiative heat flux are defined as

qν =

∫
4π
Iν(ŝ)ŝ dΩ, (7.13)

and

q =

∫ ∞
0

qν dν. (7.14)

7.2. Radiative material properties

Let us consider thermal radiation impinging onto a medium of finite

thickness (see, e.g., [112, sec. 1.11]). Some part of the irradiation is

reflected away at its surface, another part is absorbed inside the layer,

and the rest is transmitted through it. This motivates the definition

of three radiative properties, namely reflectance (ρ), absorptance (α),

and transmittance (τ), being the ratios of the reflected, absorbed, and

transmitted part of incoming radiation relative to the total incoming

radiation. Consequently, they sum up to 1. A fourth property, the

emittance (ε), is given by the ratio of emitted thermal radiation to

the maximum possible (i.e., by a black surface at same temperature).

In particular for gases, all properties depend on frequency, tem-

perature, and direction (both, incoming and outgoing). Therefore,

they are defined as spectral properties, total properties (i.e., an av-

erage over the spectrum), directional properties, and hemispherical

properties (i.e., an average over all directions).

A medium is said to be opaque if radiative energy is completely

attenuated inside and therefore nothing transmitted (τ = 0). The
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medium is transparent if it passes without being attenuated (τ =

1). A black surface does not reflect any radiation and absorbs all

incoming radiation, i.e., α = 1 and ρ = τ = 0; moreover, we have

ε = 1 for a black surface.

Let us consider a gas layer with thickness s. Because radiative

energy is not reflected, it is concluded that absorptance is given as

αν = 1 − τν . The radiative energy becomes gradually attenuated

when passing through the gas layer. According to Beer’s law, the

spectral transmittance may be written as

τν = exp (−d) , d =

∫ s

0
κν ds, (7.15)

where κν is known as the spectral absorption coefficient measured

in units of m−1. The optical depth d of the medium is used to dis-

criminate between optically thin (d� 1) and optically thick (d� 1)

media. For a homogeneous and isothermal gas layer, the expression

above simplifies to

τν = exp(−κνs). (7.16)

The absorption coefficient is equal to the inverse of the mean free

path for a photon until it undergoes absorption. [112, p. 281] It is

the basic quantity for radiation modeling in particular for electric

arc simulations, and it will be in focus of the following work.

The spectral structure of the absorption coefficient is shown in fig-

ure 7.1. The complex structure is due to elementary interactions of

photons and gas particles at an atomic level (see, e.g., [34, 23, 112]).
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Absorption or emission of a photon goes with a change in the total

energy of the particle, i.e., its kinetic, translational (for molecules),

and internal energy levels (electronic, rotational, vibrational). Quan-

tum mechanics dictates that the internal energy levels are discrete,

so that only photons with distinct energies E = hν may interact.

If the gas is relatively cold when compared to its ionization energy,

these interactions result in bound-bound transitions (bb), i.e., the

molecule is not ionized before and after the transition and electrons

remain bounded to the atom or molecule. This results in sharp peaks

(known as spectral lines) observable in the spectral structure that

are characteristic for the gas. Those lines, however, show a narrow

but finite thickness due to line broadening effects and simultaneous

changes in the internal energy structure of the particle. If the energy

of an absorbed photon exceeds the ionization energy, the transition

is termed bound-free (bf) because the electron is released from the

atomic structure and it can take an arbitrary amount of kinetic en-

ergy; conversely, a free-bound transition results in an emitted pho-

ton. Free electrons may interact with photons of arbitrary energies,

i.e., free-free transitions (ff). All transitions involving free electrons

contribute to the continuous spectrum (see, e.g., [112, sec. 1.12]).

Therefore we write (see also, e.g., [11])

κν = κbbν + κbfν + κffν

= κcontν + κlineν . (7.17)

The spectral absorption coefficient varies with increasing tempera-
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Figure 7.1.: Spectral absorption coefficient of air-copper plasma. [91]
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ture: it decreases in the ultraviolet range, remains almost constant

for frequencies in the near-visible range, and increases in the infrared

range. [34] The addition of copper vapor significantly affects the spec-

tral structure and results in increased net emission of the plasma. [89]

For completeness, we also mention the process of scattering which

is typically observed when light passes through a particle cloud (see

also, e.g., [112, sec. 1.14]). This process summarizes the effects of

diffraction, reflection, and refraction that redirect radiative energy

into other directions than the incoming beam. The scattering coeffi-

cient σs describes the fraction of radiative energy losses along a line

of sight, and the scattering phase function Φs(ŝi, ŝ) stands for the

probability that an incoming ray from ŝi is scattered towards ŝ. In

arc simulations, scattering is most often neglected because is not con-

sidered as a dominant process; its absence also simplifies the radiative

transfer equation substantially.

7.3. Radiative transfer equation

The radiative transfer equation (RTE) is a spectral energy balance

on the radiative energy at a point r in direction of ŝ and within

an infinitesimal solid angle dΩ at frequency ν. For a participating

medium, i.e., a medium that emits, absorbs, and scatters radiative

energy, it is given as [112, p. 284]

1

c

∂Iν
∂t

+ŝ·∇Iν = jν−κνIν−σsνIν+
σsν
4π

∫
4π
Iν(ŝi)Φν(ŝi, ŝ) dΩi, (7.18)

144



Radiative transfer equation

with the terms on the right side being the emitted, absorbed, out-

scattered, and in-scattered radiative energy flux. The inherent as-

sumptions to this equation are that the medium is homogeneous and

at rest as compared to the speed of light, nonpolarizing and its polar-

ization state neglected, and a constant index of refraction. Neverthe-

less, this equation is valid at local thermodynamic equilibrium (LTE)

as well as nonequilibrium.

The RTE (7.18) is an integro-differential equation for radiative in-

tensity Iν in seven variables (time, position, direction, and radiation

frequency), its solution is a rather complex task and computation-

ally extremely demanding. From an engineering point of view, we

note that thermal radiation represents ultimately an additional en-

ergy transfer mode. In fact, it is the total net emission (or divergence

of radiative heat flux) that enters the thermal energy balance of the

plasma and its bounding surfaces, while a detailed solution for the

spectral radiative intensity field is not an appropriate strategy.

The following assumptions are aimed at simplifying the RTE to-

wards a tractable model. Firstly, at local thermodynamic equilib-

rium, the emittance must be equal to absorbance and the radiative

intensity is equal to the blackbody intensity [112, eq. 11.22]; therefore

the first term is replaced by jν = κνBν . Secondly, computational

complexity is greatly simplified if scattering is neglected (σs = 0).

This simplification is also due to practical reasons, most importantly

because detailed data of scattering coefficients are hardly available

for the extreme range of pressure and temperature as required for arc

simulations, and validating or verifying its effect seems to be impossi-
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ble. Finally, the RTE is considered in equilibrium, quasi-steady state

because the speed of light is much larger than the relevant length and

time scales. As a result, the RTE (7.18) simplifies to

ŝ · ∇Iν = κν(Bν − Iν), (7.19)

that is, the radiative intensity along a line of sight is augmented by

emission and attenuated by absorption of the gas.

The final step towards an expression for the total radiative heat

flux is to account for all directions of solid angles, and all frequencies.

This immediately yields the quasi-steady RTE for a non-scattering

medium [112, p. 294],

∇ · q =

∫ ∞
0
∇ · qν dν =

∫ ∞
0

κν(4πBν −Gν) dν, (7.20)

which is a balance equation of radiative energy stating that the net

loss of radiative energy in a control volume is equal to the difference

of emitted energy and absorbed irradiation. [112, p. 287 and 292]

This is also why the divergence of radiative heat flux (∇ · q) is also

known as net emission. Moreover, it is this term that appears in the

thermal energy balance.

7.4. Exact solution of RTE

Exact analytical solutions of the RTE exist only for the simplest

situations [112, p. 299], such as for gray media in a one-dimensional
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domain. For instance, it can be shown that the net emission at a

point r0, may be written as

∇ · qν = −κν
∫

4π

∫ ∞
0

dBν
dl

exp

(
−
∫ l

0
κν(l′) dl′

)
dl dΩ, (7.21)

neglecting contributions from the wall (see, e.g., [119]). Here, l is a

parametrization of for the position r(l) = r0 − lŝ on a straight path

in direction of incident radiation. Equation (7.21) shows clearly that

the net emission is not a local quantity but rather depends on the

temperature distribution within a domain size 1/κν ; this length scale

defines the spatial discretization required for an accurate solution of

the RTE. [119]

An exact integration may be performed numerically for a wall-

stabilized arc defined in an infinitely long cylinder (see [119, Appendix

A]). The temperature profile T (r) is given with respect to radius r.

Let the directional vector be given in spherical coordinates, i.e.,

ŝ =

cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

 . (7.22)

The simple setup allows for using symmetries so that spherical inte-

gration is reduced to (ϕ, θ) ∈ [0, π]× [0, π2 ]. The observation point is

taken on the x-axis. Any point P in the cross section plane may be
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P

x

r
ξ

ϕ

Figure 7.2.: Sketch of geometric definitions for exact solution of net
emission in an infinitely long cylinder in its cross section.
See also [119] for the method.

described as (see also figure 7.2)

P =

[
x

0

]
+ ξ

[
cos(ϕ)

sin(ϕ)

]
, (7.23)

where ξ is the distance from observation point (x, 0) to P . The radial

distance of P from the cylinder axis is found as

r(ξ, ϕ) =
√
x2 + 2xξ cos(ϕ) + ξ2, (7.24)
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from which it immediately follows an expression for the distance ξ to

the observation point,

ξ = −x cos(ϕ)±
√
r2 − (x sin(ϕ))2. (7.25)

Finally, one notes that ξ is the distance of the emissive source point

in 3D projected to the cross section plane, and one finds ξ = l sin(θ)

with l as the axial cylinder length. Rearranging the integrals one

finds the net emission at observation point x as

(∇ · q)(x)

= −
∫ π

0

∫ ∞
0

κν(x)

∫ ∞
0

dBν
dξ

Gθ

(∫ ξ

0
κν(ξ′) dξ′

)
dξ dν dϕ (7.26)

with

Gθ(ζ) = 4

∫ π/2

0
sin(θ) exp(−ζ/ sin(θ)) dθ. (7.27)

The factor 4 is due to the symmetries. The function Gθ is computed

in advance and stored as a table. The integrals over ϕ, ν, and ξ are

computed with adaptive integration routines. [119]

7.5. RTE complexity reduction

Solving for the radiative heat flux or the net emission requires, in

principle and naively, to find the irradiation which in turn is given by

the radiative intensity, which is only obtained by solving the RTE.

However, the large parameter space does not allow to find an ex-
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plicit or exact solution in all but the simplest situations. Despite

that such idealized cases may serve as a useful reference, applied en-

gineering tasks require approximate models that are applicable in a

more general context and that allow for trading computational costs

with accuracy.

The problem complexity is discussed along three categories [112,

p. 299], followed by a list of solution methods.

� Most objects of interest are of three-dimensional shape and have

geometric details that are relevant for their functionality. Al-

though symmetry conditions may be defined to help reducing

computational efforts, it is often only for fundamental studies

that allow for a two- or one-dimensional model.

Directionally-averaging methods (see section 7.6) eliminate the

directional variable; geometric information is retained.

� The absorption coefficient κ and other radiative properties strongly

depend on radiative frequency, temperature, gas composition,

and other parameters. Therefore, the RTE should be solved in

principle for each frequency value at which the spectral data is

available; however, limitations on computer power often allow

only for a few – typically less than a dozen – evaluations in the

frequency domain even for directionally-approximating models.

This situation is resolved by sampling the spectral domain and

define intervals or frequency bands with band-averaged quan-

tities, see section 7.7. Band-averaged mean absorption coeffi-

cients are discussed in section 7.8. The limiting case of a single
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spectral interval, i.e., a gray medium with globally averaged

radiative properties, leads seldom to acceptable results because

it is not capable to reflect the effects of the detailed processes

in radiative heat transfer.

� The third category is a modeling aspect: the net emission

and/or radiative heat flux is often studied with artificial fixed

temperature profiles (see, e.g., [89, 137, 71, 109]). Despite its

simplicity and being useful for fundamental studies, this situ-

ation does not correspond to a system in thermal equilibrium

and makes it hard to compare with experimental results.

We therefore suggest to augment such studies with a numer-

ical solution that is found at the system’s thermal equilib-

rium. For instance, the experimental setup of wall-stabilized

arcs corresponds to solving the Elenbaas-Heller equation (see

eq. (8.1)) iteratively including the radiative thermal losses (see,

e.g., [103, 10, 67]). Drawbacks are that additional parame-

ters must be included (e.g., thermal conductivity) and increased

computational costs.

7.6. Directionally-approximating methods

We mention the P1 and DOM methods as they are widely available

in software packages and used in electric arcs simulations. We stress

that these models simplify on the directional coordinate ŝ and they

lead to additional transport equations to be solved for. They are

151



Chapter 7. Fundamentals

formulated on a spectral level; however, they should only be applied

after averaging in the spectral domain and substituting the spectral

absorption coefficient κν with band-averaged mean absorption coef-

ficients (see section 7.8).

7.6.1. Spherical Harmonics Method (P-N model)

The spherical harmonics method or PN model is a popular method

that is widely available in numerical simulation packages. The model

stems from reducing the problem complexity of the RTE (7.19) in

the directional variable ŝ (see, e.g., [112, ch. 16]): the radiative in-

tensity Iν(r, ŝ) is expanded into a Fourier series using spherical har-

monics, i.e., functions defined on the unit sphere that are orthogonal

and satisfy Laplace’s equation in spherical coordinates. The series is

truncated retaining terms up to N -th order, which yields the name

of the method. In first order approximation one finds

Iν(r, ŝ) ≈ 1

4π
Gν(r) +

3

4π
ŝ · qν(r); (7.28)

substituting this expression into the RTE and taking moments of ŝ

shows that the radiative heat flux may be written as

qν =
−1

3κν
∇Gν , (7.29)

which yields the defining P1 model equation:

∇ ·
(
−1

3κν
∇Gν

)
+ κνGν = 4πκνBν . (7.30)
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Hence, the RTE is transformed into a substantially simpler elliptic

partial differential equation of Helmholtz type for the irradiance Gν .

It requires a boundary condition specified everywhere on the enclo-

sure boundary. The Marshak boundary condition defines that the

normal component of radiative heat flux is a continuous function at

the interface and satisfied in an integral sense. The condition is given

by

n̂ · ∇Gν +
1

2

εw
2− εw

3κν(4πBν −Gν) = 0, (7.31)

where εw is the boundary surface emittance, and n̂ is the wall sur-

face unit normal vector pointing into the radiatively participating

medium. This equation is valid for an opaque surface that emits and

reflects radiation diffusely. For a blackbody one has εw = 1.

The P1 approximation is widely used in radiation modeling because

it allows for non-black surfaces and non-constant radiative properties.

Another advantage lies in the fact that energy conservation is inher-

ently ensured. However, it falls short in optically thin media with

strongly directionally dependent (i.e., anisotropic) intensity distribu-

tions, and/or when surface emission dominates over medium emis-

sion. Higher orders of the PN model are available but seldom used

in the arc simulation community. [112]

7.6.2. Discrete Ordinate Method

The discrete ordinate method (DO, or DOM), or SN approximation,

is together with the P1 approximation the most popular method for

calculating radiative heat transfer. [112, ch. 17] Similarly to the P1
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model, the discrete ordinate method is based on a discrete repre-

sentation of the directional variable ŝ of radiative intensity Iν(r, ŝ);

here, the solid angle is discretized with a finite number of directions

to approximate its integral,∫
4π
Iν(r, ŝ) dΩ ≈

n∑
i=1

wiIν(r, ŝi), (7.32)

where wi are the quadrature weights. The discretization is usually

based on finite differences but also finite volumes have been used (see,

e.g., [112]). The selection of directions ŝi is arbitrary, in principle, but

there is a desire to preserve symmetry, i.e., the directions should be

invariant after any rotation of 90°, and that the directions and weights

should satisfy the zeroth, first, and second moments. The number N

refers to the number of different direction cosines for each principal

direction, resulting in n = N(N + 2) discretization directions. [112]

Increasing the number of direction cosines yields a finer resolution,

at the cost of computing power and memory requirements; typically

N = 4 is used in 3D simulations. [119]

A comparison of the discrete ordinate method, implemented with

the finite volume method, and P1 model shows that the DOM pro-

vides better results. [109] Shortcomings of the discrete ordinate method

are that it is prone to ray effects and false scattering, which are due

to angular and spatial discretization errors, respectively, and that it

tends to converge slowly for optically thick media. [112]

154



Spectrally-approximating methods

7.7. Spectrally-approximating methods

The complex nature of the spectral absorption coefficient asks for

approximations that drastically reduce computational costs while re-

taining the physical effects. We start with the limit cases of opti-

cally thin and thick media; they lay the grounds for the Planck and

Rosseland mean absorption coefficients (see section 7.8). Both ap-

proximations may be applied on the full spectrum – leading to a gray

medium – as well as separate spectral intervals, or group of intervals

(see, e.g., [119]). We also mention the approximation of net emission

coefficient. We also list a few other methods that were used in elec-

tric arc simulations, or that may enter into the research community

in the near future.

7.7.1. Optically thin approximation

Radiative intensity is attenuated only slightly in an optically thin

medium (τ � 1), so that these media may be judged as non-parti-

cipating. This category includes vacuum, monatomic and most di-

atomic gases including air, at low temperature levels well before ion-

ization and dissociation occurs. [112, p. 129] In this situation, radia-

tive heat transfer is computed based on view factors, which is often

known as surface-to-surface model in software packages. This model

category is not appropriate to thermal plasma simulations.
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7.7.2. Optically thick approximation

The other limiting case is found for optically thick media (τ � 1),

i.e., radiative intensity is absorbed and redistributed on a short length

suggesting that radiative heat transfer is a diffusive processes. In fact,

one can show that the spectral radiative heat flux is given by (see,

e.g., [112, p. 483])

qν = − 4π

3κν
∇Bν . (7.33)

Since blackbody radiative intensity depends on spatial position only

through temperature, we find for the total radiative heat flux

q = −4π

3
∇T

∫ ∞
0

1

κν

∂Bν
∂T

dν. (7.34)

With the definition of Rosseland mean absorption coefficient (see also

section 7.8)

1

κ̄R
:=

∫ ∞
0

1

κν

∂Bν
∂T

dν∫ ∞
0

∂Bν
∂T

dν

, (7.35)

and noting that the denominator is equal to∫ ∞
0

∂Bν
∂T

dν =
4σ

π
T 3, (7.36)

equation (7.34) may be written in the form of Fourier’s law,

q = −λR∇T, λR =
16

3

σ

κ̄R
T 3. (7.37)
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The factor λR is known as radiative (thermal) conductivity, and equa-

tions (7.34) and (7.37) are known as Rosseland or diffusion approxi-

mation. [141] [112, p. 483]

This method is easily implemented into software tools since the

radiative conductivity may be regarded as a transport property of

the material. For instance, it has also been used with a blending

factor to the thermal conductivity of a plasma. (see, e.g., [118, 146])

The diffusion approximation greatly reduces computational costs,

however, it is not valid at boundaries and should only be considered

in optically extremely thick situations. [112]

7.7.3. Net emission coefficients

The spectral net emission εN,ν (see eq. (7.20)) of a gas can be repre-

sented by

∇ · qν = 4πεN,ν = 4πκν(Bν − Jν), Jν =
1

4π
Gν , (7.38)

where Jν is the average radiation intensity per unit solid angle that

is absorbed. Considering an isothermal sphere of radius R, one finds

that Jν at the center of the sphere is given by [103]

Jν = Bν(1− exp(−κνR)). (7.39)

The net emission coefficient εN is then found to be

εN =

∫ ∞
0

κνBν exp(−κνR) dν, (7.40)
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and represents the amount of radiative power per unit volume and

unit solid angle that escapes from the point of interest after penetrat-

ing through a sphere of radius R. That is, specifying R = 0 neglects

self-absorption and maximizes net emission.

If the radius of the sphere R is appropriately chosen, this method

allows for a good approximation of the radiative losses in an arc

plasma. The main advantage lies in the fact that it accounts for the

spectral nature of the absorption coefficient. Another positive aspect

is that the net emission coefficient can be computed and tabulated

in advance, so that its computational costs are remarkably low for

engineering applications. It is therefore widely used in electric arc

simulations [67], but it also serves useful in comparing modeling as-

pects of radiative properties (see, e.g. [11, 23]). A drawback of using

net emission coefficients is that it fails in regions of steep temperature

gradients, which are typically found in the arc fringes. Moreover, it is

a local model that does not account for radiative heat flux originat-

ing from other parts of the computational domain and therefore not

conservative. Finally, it does not provide an expression for radiative

heat flux which is required, e.g., for modeling radiatively induced wall

ablation; radiative heat flux is evaluated in chapter 15, for instance.

7.7.4. Other models

We mention a few other models for radiative heat transfer that have

been used in electric arc simulations. For instance, the method of par-

tial characteristics is described in [10, 151]. A semi-empirical model
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based on net emission is found in [180]. A comparison [48] to a five-

band P1 model [51] showed that the P1 was the most accurate with

respect to measurements.

In [40], the RTE is discussed from a viewpoint that focuses on

moment expansions. They present a closure based on entropy pro-

duction rates and that is also valid if radiative heat transfer is in a

general nonequilibrium state. The Monte Carlo method has also been

used to radiative heat transfer for decades (see [112] and references

therein).

A novel perspective on radiative heat transfer is given by [58];

they consider radiation as a dynamical system and apply model order

reduction techniques.

7.8. Mean absorption coefficients

The P1 model and discrete ordinate model (DOM), see section 7.6, are

widely used in arc simulations because they are generally applicable,

provide sufficiently good approximations of radiative heat transfer

at reasonable computational costs, and the fundamental principle of

energy conservation is respected. [112]

One key problem in modeling radiative heat transfer stems from

the fact that the net emission (7.20) should be evaluated – in principle

– for each frequency separately because of the large variations in the

spectral absorption coefficient κν , and the net emission is obtained by

averaging over the spectral net emissions. This approach, however,

becomes a computationally prohibitively expensive task since solving

159



Chapter 7. Fundamentals

those approximate models amount in additional partial differential

equations for each single frequency.

This situation is resolved by pulling the averaging step onto the

material data: the spectral absorption coefficient becomes a band-

averaged or mean absorption coefficient with respect to a frequency

interval. This leaves us with choosing an appropriate averaging method

that retains the physical effects.

Let us first consider the definition of frequency bands. In mathe-

matical terms, we are looking for a partition of the frequency domain

that results in Nb bands or intervals Di := [νi, νi+1],

νlo = ν0 < ν1 < ν2 < . . . < νNb−1 < νNb = νhi, (7.41)

where the lower and upper limits are given by the spectral dataset.

A sufficiently fine or problem-specific partition will yield accurate re-

sults. Unfortunately, there is no general method of defining the inner

band boundaries νi, but physical insights into the fundamental pro-

cesses provide useful hints. For instance, [137] define seven bands

for a SF6 plasma based on the shape of the absorption coefficient at

typical temperature values. [142] defines six bands for an air plasma

with the upper there band boundaries corresponding to ionization

energy levels of atomic nitrogen (see also [34, p. 365]). In the follow-

ing, band-integrated quantities are identified by their band index, for

instance,

Bi =

∫ νi+1

νi

Bν dν. (7.42)
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We turn now to the averaging methods. If the absorption spectrum

had a constant value, all the definitions of averaging methods yielded

identical mean values; the problem stems from the sharp peaks which

are due to line emission (see section 7.2). Their effects on radiative

heat transfer should be adequately represented in the averaging pro-

cess.

Two physical limits have led to often used methods. Although

both are valid in their limiting cases, neither of them is correct in

general (see, e.g., [132]). Writing the band-integrated equation for

net emission,∫ νi+1

νi

∇ · qν dν = 4π

∫ νi+1

νi

κνBν dν +

∫ νi+1

νi

κνGν dν, (7.43)

and comparing it with band-integrated quantities for band number i,

∇ · qi = 4πκ̄iBi + κ̄iḠi, (7.44)

we see that the Planck mean,

κ̄Pi :=

∫ νi+1

νi

κνBν dν∫ νi+1

νi

Bν dν

, (7.45)

yields the correct expression for thermal emission. It can be shown

(see, e.g., [132]) that the Planck mean is appropriate for optically

thin, emission dominated media. The second method is related to
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the limiting case of radiative heat flux in optically thick media (see

section 7.7.2). The band-integrated radiative heat flux is∫ νi+1

νi

qν dν = −4π

3
∇T

∫ νi+1

νi

1

κν

∂Bν
∂T

dν; (7.46)

and we see that the Rosseland mean, defined as

1

κ̄Ri
:=

∫ νi+1

νi

1

κν

∂Bν
∂T

dν∫ νi+1

νi

∂Bν
∂T

dν

, (7.47)

provides the correct expression for the energy flux. It is clear from

their definitions that the Planck mean is dominated by large values

of the absorption coefficient and overestimates emission, while the

Rosseland mean follows the small values and underestimates emission.

Based on these insights, another averaging method was suggested

in [119] which was later referred to as line limited Planck mean [90,

160]. The method is motivated by the fact (see also eq. (7.21)) that

the spectral emission of the peaks saturates if 1/κν > ra, with ra

being the arc radius. Therefore, [119] introduced a line limiting factor

that limits the maximum peak height to 1/h by the definition of a

renormalized absorption coefficient

κrenormν :=
1

h
(1− exp(−κlineν h)), (7.48)

and used this quantity to replace the line contributions (see eq. (7.17)).
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The main shortcoming of the line limited Planck mean is that the

maximum peak height h must be chosen prior to the simulation setup;

the original paper suggests a value h = 2ra, while [90] found that

h = 3ra is optimal. Using this ansatz, optimal band boundary values

were determined for air plasma [90], SF6-Cu plasma [70], and C4F7N-

CO2 plasma [71], all based on the criterion that the error between the

approximate and exact value of net emission should be minimized.
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8. Sensitivity analysis of the

temperature profile of electric

arcs due to band-averaged

absorption coefficients

The text of this chapter was submitted to and presented at the 21st

International Conference on Gas Discharges and their Applications

(GD 2016) in Nagoya, Japan. [65]

8.1. Abstract

A sensitivity analysis of electric arcs in thermal equilibrium is pre-

sented, that relates variations in the absorption coefficient to changes

in the temperature profile. Even if the absorption data is given in

full accuracy, further modelling steps are required to obtain a com-

putationally tractable model; therefore uncertainties are inherently

introduced to any radiation model. Our modelling approach allows

to compute the temperature profile of wall-stabilized arcs based on

the energy balance equation and a given number of frequency bands.
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We analyse the net emission with respect to the frequency bands and

radial coordinate. The results obtained are of importance in the de-

sign of procedures that determine the required number of frequency

bands and their boundaries for optimal accuracy.

8.2. Introduction

Radiation represents the most important energy transfer mode in

electric arcs. [67] Although the basic relations of radiative heat trans-

fer can be stated in rather simple terms, its computational complexity

does not allow for a naive implementation in computer codes in all

but the simplest test cases.

Radiative emission and absorption are related to the absorption

coefficient κν which is the most basic material parameter. It is a

strong function of the frequency (see figure 8.1) and temperature,

and also depends on the gas pressure and its chemical composition.

An exact calculation of the radiative intensity would require to solve

a spatial 3D problem for each given value in the frequency domain,

which is very time consuming.

In order to simplify the computations, many radiation models and

methodologies were proposed over the years. Those include assump-

tions with respect to at least two questions: how detailed is the ab-

sorption coefficient to be included in the calculations, and which ra-

diation processes are to be modelled?

The simplest radiation model is the net emission coefficient (NEC),

which is determined as the net radiation in the center of an isother-
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Figure 8.1.: Absorption coefficient of air at p = 10 bar (courtesy of
P Kloc [91]). The Rosseland average computed with a
frequency interval length of dν = 5× 1013 Hz follows on
the lower limit, as it almost discards sharp peaks.
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mal sphere. [67] The NEC is tabulated as a function of temperature

and a predefined plasma radius using the full absorption spectrum.

Then, the tabulated values are used to determine the energy sink

terms based on the local temperature. The NEC method, however,

does not conserve energy. A more complex model, often being chosen

by application oriented engineers, is the P1-model since it allows to

account for absorption at the plasma edges and energy deposited on

walls. [67] The radiative heat fluxes are computed via a diffusion-type

equation using the temperature field of the computational domain. In

principle the equation must be solved for each frequency separately,

yielding to prohibitive computational costs for any practical appli-

cation. This situation is remedied by an additional modelling step:

the gas is considered as a grey body for a small number of frequency

intervals (or bands), i.e. an averaged value of absorption coefficient

is computed for each band.

Nordborg and Iordanidis [119] compared the net emission (i.e. the

divergence of the radiative heat flux) obtained by exact integration

and the P1-model with frequency bands defined via the frequency

dependency of the absorption coefficient as well as its value. They

reported that the main source of errors lie in errors of the raw data of

the absorption coefficient as well as the averaging method applied to

each frequency band. Randrianandraina, Cressault and Gleizes [137]

reported in a similar study, comparing exact integration and the NEC

method, that the averaging method should be chosen based on the

temperature range. They also noted that radiative transfer calcula-

tions can be improved by better knowledge of the underlying physics
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that yield to the absorption data. However, both of these studies

used a fixed temperature profile as input data. It is more wisely to

compute the temperature profile from the energy balance equation,

since the radiative sink term in the energy equation is proportional

to T 4 and therefore a small change in the temperature profile T is

sufficient to equilibrate energy imbalances.

The aim of this paper is to provide a method that quantifies the

influence of uncertainties (or modelling errors) in the absorption co-

efficient onto the temperature profile of electric arcs, which in turn is

obtained as a solution to the energy conservation equation at a given

total current. Therefore, the stationary wall-stabilized arc is consid-

ered since it is the simplest model of an electric arc. [67] The authors

are not aware of any publicly available contribution addressing this

research topic.

8.3. Numerical Model

A wall-stabilized arc is characterized as a cylindrical plasma column

of small aspect ratio encircled by cooling plates to control the temper-

ature at the periphery of the arc. [35] As described in [67], we further

assume that the plasma is in local thermodynamic equilibrium (LTE)

so that the gas pressure p and electric field E is uniform and that

convection is weak enough to neglect its effect on the temperature dis-

tribution. In such a situation the temperature T depends only on the

radial position r, and the energy conservation equation reduces to a

stationary one-dimensional equation in radial coordinate with terms
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that stand for the heat conduction, Joule heating and radiative heat

losses,

div(−λ grad(T )) = P − div(F ); (8.1)

here, λ represents the thermal conductivity, P = σE2 is the Joule

heating and div(F ) is the energy sink due to radiation, and all ma-

terial data are functions of temperature.

In general, the net emission is given as

div(F ) =

∫ ∞
0

div(Fν) dν =

∫ ∞
0

κν(4πBν −Gν) dν, (8.2)

and could be calculated in principle to arbitrary accuracy if the spec-

tral absorption coefficient κν = κ(ν, T ) is resolved fine enough. The

Planck intensity is given as

Bν(T ) =
2h

c2

ν3

exp(hν/kBT )− 1
(8.3)

using standard notation, and Gν denotes the spectral incident radia-

tion. However, such an approach would incur excessive computational

costs since the absorption coefficient is a strong function of frequency

(see figure 8.1). On the other hand, the computing time can be lim-

ited by splitting the frequency domain into a small number of bands

and using a constant value κi for the absorption coefficient in each

band i = 1, . . . , N computed in advance, which is calculated by any
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suitable averaging method:

div(F ) =

N∑
i=1

div(Fi), (8.4a)

div(Fi) = κi

∫ νi+1

νi

(4πBν −Gν) dν. (8.4b)

Often the Planck, Rosseland, or Natural average is applied (see [137]

for a discussion), but also a renormalization technique [119] may be

used. Anyways, the averaging induces errors and uncertainties if

the absorption coefficient is not constant in the frequency band. A

sensitivity analysis allows to quantify the effects on the temperature

profile of the arc.

8.3.1. Sensitivity Analysis

A linear expansion of the energy conservation equation (8.1) in tem-

perature and absorption coefficient allows to study the first-order

effects of variations in the given data. This section presents the sen-

sitivity analysis for the P1-model.

The linear increments in the heat conduction term lead to

div(−λ(T ) grad(δT )− λ′(T )(δT ) grad(T )) (8.5)

and is denoted as Cth(δT ). Since the total current I =
∫
A jdA is kept
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constant, we obtain for the Joule heating term:

P = σE2 = σ

(
I

S

)2

, (8.6)

where S =
∫
A σdA denotes the conductance. Therefore, the incre-

mental Joule heating is given as

δP = (δT )

(
σ′(T )− 2σ(T )

S′(T )

S

)
1

S2
(8.7)

and denoted by δP = MJ(δT ).

In the following we drop the subscript of the spectral variable for

simplicity. For each frequency band, the linear increment in the net

emission is obtained as

δF = (δκ)(4πB −G) + κ(4πB′(T )(δT )− δG). (8.8)

The P1-model assumes that the radiative flux is given by F = −1
3κ grad(G),

so that net emission is obtained after solving the following linear

equation for the radiative immission G:

div

(
−1

3κ
grad(G)

)
+ κG = κ4πB. (8.9)

Let L denote the linear operator on the left-hand side of the equation

above. Then the incremental immission δG is related to those in κ

and T via

L(δG) = Mκ(δκ) +Mth(δT ) (8.10)
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with

Mκ(δκ) = div

(
−1

3κ2
(δκ) grad(G)

)
+ (δκ)(4πB −G) (8.11)

and

Mth(δT ) = κ4πB′(δT ). (8.12)

In total, the N -banded P1-model relates the linear increment in the

temperature profile to the variations of the absorption coefficient in

the i-th frequency band by

Z(δT ) =
N∑
i=1

Yi(δκi) (8.13)

with the linear operators

Z := Cth −MJ +

N∑
i=1

κi4πB
′
i − κiL−1

i Mi,th (8.14)

and

Yi := κiL−1
i Mκi − (4πBi −Gi) (8.15)

where the subscript i denotes the quantities with respect to the i-th

frequency band.

8.3.2. Simulation conditions

We solve the energy equation for the temperature profile using the

finite volume method on a uniform grid of M = 100 cells. The outside
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wall temperature is fixed at 300 K at rwall = 0.1 m; the domain was

chosen arbitrary although it may be argued being atypically large.

The equation is iterated by a simple relaxation method until the

update in T is small.

The material data and absorption spectrum of dry air at 10 bar was

provided by Kloc [91] in the interval [1013, 1016]Hz and a resolution

of dν = 2× 1010 Hz. The results are computed using 201 bands and

an interval length of 5× 1013 Hz. The Rosseland average,

κi(T ) =

∫ νi+1

νi
B′ν dν∫ νi+1

νi
κ−1
ν B′ν dν,

(8.16)

is applied to each frequency band for simplicity, although any other

averaging method could be used; the present choice will be assessed

in subsequent work.

8.4. Results

Figure 8.2 shows the temperature profiles for various total currents.

We observe that the temperature profile thickens with increasing cur-

rent. The S-like shape is a consequence of the energy balance and

especially due to radiation. The arc center temperature corresponds

to a local minimum of the thermal conductivity, and is almost con-

stant with respect to the applied total current.

Figure 8.3 shows the average electric field as a function of the

total current applied to the arc. We notice that the arc has negative

differential resistivity, and the electric field decreases about 5% as the
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Figure 8.2.: Temperature profiles obtained by the energy conserva-
tion equation for total currents I = 130, 170, 210, 250A.
The widest profile corresponds to the highest current.
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Figure 8.3.: Electrical field as a function of total current.

current is doubled.

Figure 8.4 shows the net emission as a function of the radial coor-

dinate and the radiation frequency. On an overall view we observe

that the inner, hot region (r < 0.01 m) emits radiative energy and is

absorbed in the outer parts of the domain as indicated by the bold

line. We identify two regions of interest with respect to the radia-

tion frequency: the full domain emits radiative energy at frequencies

below 1× 1015 Hz and in a more narrow interval close to 2× 1015 Hz
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less intensively. We also note that the radiative emission is maximum

in the inner region at frequencies below 1× 1015 Hz and in an interval

around 2.6× 1015 Hz.

Figure 8.5 shows an example of a transfer matrix as obtained by

the sensitivity analysis. It represents the influence of variations in

the absorption coefficient of the i-th frequency band [νi, νi+1] in grid

cell j towards the temperature in grid cell k. We generally observe

a diagonal structure of small bandwidth, i.e. the temperature profile

is influenced almost only by local changes in κi(rj). In the outer

region, however, the bandwidth increases and becomes asymmetric:

the temperature profile is affected by changes of κ in a wider region.

It is stressed that this matrix shows information on changes in the

absolute value of κ (i.e. κ+δκ) and not relative values (i.e. κ(1+δκ)).

8.5. Conclusions and Outlook

The temperature profile is calculated based on the energy conserva-

tion equation, detailed material parameters and absorption coefficient

data. This allows to analyse the effective processes and relations of

electric arcs in thermal equilibrium rather than starting from an arti-

ficial temperature profile. We have shown that an increasing current

widens the arc while the central temperature remains almost con-

stant. This is attributed to the equilibration process in the sense

that a thicker arc leads to a larger surface area or volume which in

turn allows for more radiative energy being transported to its ambient

at lower temperature.
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Figure 8.4.: Contour plot of the net emission in log10-scale at a total
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radiation frequency. The bold line separates the regions
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Figure 8.5.: Example of a transfer matrix Wi = Z−1Yi; here band
number i = 10. The increment in temperature due to
changes in the absorption coefficient is given as δT =
Wi(δκi), with (δκi)j = (δκi)(rj).
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We identified radiation frequencies that are important to the heat

transfer process in air at elevated pressure. It is pointed out that

radiation at lower frequencies are only weakly absorbed in the outer

region whereas higher frequencies (here 3× 1015 Hz) are strongly ab-

sorbed. Furthermore we also studied in detail the sensitivity of the

temperature profile due to variations (or uncertainties) in the band-

averaged absorption coefficient data. Despite the minimal modelling

approach and neglecting other processes like chemical reactions, for

instance, this model yields valuable insights for modelling radiation

and choosing appropriate band models in more complex situations.

It may also be a valuable source of information for choosing the fre-

quency band boundaries more wisely.

Further work will include a comparison to exact radiation calcula-

tions in order to quantify the errors introduced in the band-averaging

steps. This will allow to give advice on the appropriate averaging

method as well as the choice of band boundaries. We also believe

that the sensitivity analysis will be of importance in the design of

automated procedures that optimize the computing time of arc sim-

ulations by trading the required number of frequency bands with

modelling errors.
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9. Quantifying uncertainties in

mean absorption coefficients

for a wall-stabilized electric arc

The text of this chapter was submitted to and presented at the the

22nd Symposium on Physics of Switching Arcs (FSO 2017) in Nove

Mesto na Morave, Czech Republic. [63]

9.1. Abstract

The quality of arc simulations depends significantly on radiation mod-

eling. Uncertainties due to physical parameters and modeling errors

should be systematically quantified. We solve the energy balance

equation for a wall-stabilized arc using the P1 model, i.e. without

a prescribed temperature profile. We derive the linearized equation

and assess the arc voltage sensitivity. This method allows us to op-

timize the definition of mean absorption coefficients consistently and

at low computational costs.
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9.2. Introduction

Electric arcs and their numerical modeling in industrial devices lead

to a diverse set of questions raising many separate research top-

ics. One of them is radiation, since electric arcs dissipate enormous

amounts of thermal energy leading to elevated temperature levels.

Therefore, radiation is almost always an important energy transfer

mode in electric arcs.

The basic relations of radiation are given by the radiative transfer

equation (RTE)

ŝ · ∇Iν = κν(Bν − Iν), (9.1)

which is stated here for the simplest case of a non-scattering medium

in local thermal equilibrium (LTE). [112] It describes the change of

radiative intensity Iν along direction ŝ that is due to emission, de-

scribed by the Planck function Bν and given in equation (9.5) below,

and absorption of the medium. Solving the RTE is computationally

demanding since the radiative intensity is a function of location, di-

rection, and frequency. The absorption coefficient κν and its impact

on the computational complexity of the RTE are discussed subse-

quently.

To meet the limited computer resources available to application

engineers, the complexity of the RTE must be reduced to simpler

models that account appropriately for the radiative thermal energy

transport. The method of net emission coefficients (NEC) [103] is

often used and has been developed to acceptable accuracy [137]. Its

main advantage lies in the marginal computational costs incurred at
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run time of a plasma simulation, since the radiative thermal source

term is tabulated in advance.

However, evaluating the radiative heat flux on a nearby surface

requires more sophisticated methods. One option is the P1 model,

which is a first-order approximation of the RTE in spherical harmon-

ics and frequently used in industrial arc simulations. This model leads

to additional differential equations that are of the same structure as

the conservation equations for mass, momentum, and energy.

We also have to consider the material data. The most important

quantity in radiation modeling is the spectral absorption coefficient

κν , which depends on the radiation frequency ν, gas pressure, temper-

ature, and gas composition. The complex structure of the absorption

spectrum (see figure 9.1) is due to the atomic structure of the gas

(see, e.g., [112]). It does not allow for a naive usage of this data,

since an appropriate resolution of the frequency domain would lead

to excessive computational costs. Despite the large variations in the

value of the absorption coefficient, the frequency domain is split into

a small number of intervals or bands and mean absorption coefficients

(MAC) are computed for each of them. Since each frequency band

acts as a gray body, this approach is termed as the multi-banded gray

P1 model.

The main problem of the averaging step is how the absorption lines

shall be treated that span over multiple orders of magnitudes. Clas-

sically, the Planck and Rosseland average are considered which are

weighted averages of κν and κ−1
ν , respectively. The former is domi-

nated by the peak values of the absorption lines while the latter al-
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Figure 9.1.: Absorption spectrum of air at T = 10 kK. [89]

183



Chapter 9. Quantifying uncertainties in mean absorption
coefficients for a wall-stabilized electric arc

most ignores them. It is clear that the MAC depend on the definition

of the frequency band boundaries that are often chosen heuristically.

The raw data itself comes with uncertainties that affect the MAC

values and propagate to the final results. Their sensitivities can be

quantified by running simulations repeatedly with slightly edited in-

put data, but comes with major computational costs. For small

changes in the MAC, however, we will show that the same information

can be obtained much quicker by deriving the linearized equations and

solving for the first-order effects on the temperature profile and the

quantities depending on it. Such modeling errors are often studied

using a fixed temperature profile. From a physical point of view it

makes more sense to solve the energy conservation equation, since

any change in the radiation model results in an updated temperature

field and, consequently, other quantities such as arc voltage.

In this paper, we quantify modeling errors in the mean absorption

coefficient that are due to the averaging procedure or inherent to

the raw data itself. We iteratively solve the energy balance equation

for a wall-stabilized arc to ensure energy conservation. Ultimately,

we present the linearized equations as a validated and computation-

ally efficient methodology to determine first-order effects on the arc

voltage.
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9.3. Model

9.3.1. Energy conservation equation

We consider a wall-stabilized arc, i.e. a cylindrical plasma column of

radius R, large aspect ratio, and a fixed wall temperature. Moreover,

we assume that the plasma is in local thermal equilibrium (LTE) so

that the pressure p and electric field E are constant across the plasma

column. Further, convective heat transfer is considered weak enough

to be negligible. This results in a temperature profile T (r) that only

depends on the arc radius r. In this case, the energy conservation

equation consists of heat conduction, Ohmic heating, and a radiative

heat sink U ,

div(−λ grad(T )) = σE2 + U ; (9.2)

here, λ(T ) and σ(T ) denote the thermal and electrical conductivities.

The electric field is given as the ratio of electric current I to the

plasma conductivity S[T ], which is a functional of the temperature

profile:

E =
I

S[T ]
, S[T ] =

∫ R

0
σ(T (r))r dr. (9.3)

In this model, we consider the current as a constant.

The radiative heat sink U is given by the divergence of the total

radiative heat flux. We use the multi-banded gray P1 model to ac-

count for radiative heat transfer. Hence, we split the spectral domain
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into a finite number of intervals Di = [νi−1, νi]. The mean absorption

coefficients κi = 〈κ〉i are obtained using the Planck and Rosseland

average

〈κ〉Pli =

∫
Di
Bνκνdν∫

Di
Bνdν

, 〈κ〉Roi =

∫
Di
B′νdν∫

Di
B′νκ

−1
ν dν

, (9.4)

respectively. Therein, Bν(T ) denotes the Planck function

Bν(T ) =
2h

c2

ν3

exp( hν
kBT

)− 1
, (9.5)

B′ν is its derivative with respect to temperature, c denotes the speed of

light in vacuum, and h, kB are the Planck and Boltzmann constants,

respectively. The P1 model approximation results in an expression

relating the radiative heat flux ~Fν and the irradiation function Gν

by:

~Fν =
−1

3κν
grad(Gν). (9.6)

This also holds for band-averaged quantities, so that Gi is obtained

as the solution of the linear problem

Li(Gi) := div

(
−1

3κi
grad(Gi)

)
+ κi(Gi) = κi4πBi(T ) (9.7)

with Bi(T ) denoting the band-integrated Planck function. The ra-

diative heat sink is then given by
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U = (−1)
∑
i

κi(4πBi(T )−Gi), (9.8)

which follows from the RTE (9.1) by integration over the solid angle.

9.3.2. Linearized equation

Equations (9.2) and (9.8) show that any change in the absorption

coefficient results in changes to the temperature profile. For small

variations, we can derive the linearized energy conservation equation

with respect to increments in the MAC (δκi) and temperature (δT ).

This first-order expansion provides a relation which we write as

Cth(δT )−MI(δT ) = δU, (9.9)

with δU = δU(δκi, δT ) summarizing the linear effects in the radiation

model. The details are derived in the remainder of this section.

The linearized heat conduction is given by

Cth(δT ) = div (−λ(T ) grad(δT ))− div
(
λ′(T ) grad(T )δT

)
, (9.10)

with λ′(T ) = d
dT λ(T ). The linearized Ohmic heating at constant

current results in

MI(δT ) =

(
σ′(T )− 2

σ(T )

S[T ]

δS[T ]

δT (r)

)
I2

S[T ]2
δT (9.11)
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where δS[T ]
δT (r) represents the functional derivative of the conductivity,

σ′(T ) = d
dT σ(T ), and the radiative heat sink increment is expanded

to

δU = (−1)
∑
i

(4πBi(T )−Gi)δκi + κi(4πB
′
i(T )δT − δGi). (9.12)

The linear increment in the irradiation function δGi is obtained as

the solution of

δGi = L−1
i (Mκ,iδκi +Mth,iδT ) (9.13)

with

Mκ,i(δκi) = div

(
−1

3κ2
i

grad(Gi)δκi

)
+ (4πBi(T )−Gi)δκi, (9.14a)

Mth,i(δT ) = κi4πB
′
i(T )δT. (9.14b)

In summary, the terms can be rearranged so that the increment in

the temperature profile is given as a linear function of those in the

MACs,

δT = Z−1
∑
i

Yiδκi, (9.15)
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with Z and Y being linear operators given by

Z := Cth −MI +
∑
i

κi4πB
′
i(T )− κiL−1

i Mth,i, (9.16a)

Yi := κiL−1
i Mth,i − (4πBi(T )−Gi). (9.16b)

Finally, we find an expression for the linear increment in the electric

field with respect to a temperature increment:

δE = (−1)
I

S2[T ]

δS[T ]

δT (r)
δT. (9.17)

9.3.3. Simulation conditions

We use a domain radius of R = 5 mm discretized with 200 cells and

cell-centered quantities. The wall temperature is fixed at 300 K. The

energy conservation equation (9.2) is iteratively solved using a relax-

ation update with a constant current of I = 50 A until the maximal

temperature update is smaller than 1 K.

The radiation frequency bands are defined as N uniformly spaced

intervals Di = [νi−1, νi], i = 1, . . . , N , with ν0 = 1× 1010 Hz and

νN = 6× 1015 Hz. An additional frequency band is defined DN+1 =

[νN , 1× 1016 Hz]. Material data and spectral absorption coefficients

are taken for air at p = 10 bar. [89]
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Figure 9.2.: Temperature profiles at 50 A total current.
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9.4. Results and Discussion

Figure 9.2 shows temperature profiles of the wall-stabilized arc ob-

tained with Planck and Rosseland average using 8 bands. We also

plot the reference solution with N = 65536 bands, which shows an

arc center temperature of 10 970 K and a noticeable core region with a

higher temperature gradient than in the outer parts. Near the wall,

the temperature drops quickly to the prescribed wall temperature.

In comparison to this, the Rosseland average leads to a more pro-

nounced core region with a higher arc center temperature but quali-

tatively similar temperature profile. In contrast, the Planck average

shows a diffusive temperature profile with an arc center temperature

much lower than the reference solution, and a sightly increased tem-

perature in the outer parts. These differences disappear gradually

with finer spectral resolutions and the temperature profiles converge

to the reference solution.

This data is explained by the properties of the averaging meth-

ods. Since the Planck average is dominated by the peak values of

the absorption lines, it resembles an optically thick plasma, and the

radiative heat transfer has the same effect as an increased thermal

conductivity. On the other hand, the Rosseland average yields an op-

tically thin material and radiative energy is transported to the walls.

Figure 9.3 shows the electric field in variation of the spectral res-

olution and for several arc currents. We see that, at low spectral

resolutions, the Planck average yields a higher electric field than the

Rosseland average. This is due to the lower temperature levels and
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Figure 9.3.: Electric field at 50 A total current as a function of spec-
tral resolution. The reference value is taken for the finest
spectral resolution. Gray lines: 100, 150, and 200 A.
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lower electrical conductivity. We also note that the curves converge to

the reference solution, with the Planck average being rather constant

for spectral resolutions N > 210. This figure shows that accurate

results are only obtained with a finely resolved absorption spectrum.

We now turn to the question, which parts of the spectrum are

most significant. Figures 9.4 and 9.5 show the relative sensitivity

of the electric field obtained by the linearized equation for the two

averaging methods. We used an uncertainty of 1% in the MAC for

each band individually. The same data is also obtained with direct

computations for N ≤ 256, i.e. editing the MAC values and running

the simulation until convergence, but at much higher computational

costs. The results coincide almost exactly and validate the linearized

method. Only minor differences are noted for the solution using N =

8 bands and Rosseland average: however, they are at higher radiation

frequencies where the sensitivities are orders of magnitudes lower and

therefore negligible. This method has also been applied to finely

resolved spectral data with drastically reduced computational effort.

The sensitivity of the electric field is limited by 1� for the 8-

banded solution. The sensitivity curves scale with the interval length;

in fact, considering the relative sensitivity of the electric field per

interval length, i.e. ∆E/(Eref∆ν), results in a characteristic curve.

We also see that a higher number of spectral bands allows to resolve

the sensitivities of the absorption lines. The sensitivity curve of a finer

resolved solution is bounded almost everywhere by the coarser ones.

The Planck average yields notable lower sensitivities at frequencies

above 2.5× 1015 Hz and band resolutions N ≤ 256.
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Figure 9.4.: Relative sensitivity of the electric field at 50 A using
Rosseland average and uncertainty of 1%.
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Figure 9.5.: Relative sensitivity of the electric field at 50 A using
Planck average and uncertainty of 1%.
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9.5. Conclusions

We presented a simple model to study effects of band-averaged MACs

on the temperature profile and the electric field of a wall-stabilized

arc. The linearized method provides a systematic methodology to as-

sess the sensitivity of the frequency bands at low computational costs,

and helps to define MAC inside each band. Hence, frequency bands

of low sensitivity can be identified and may be merged or grouped

into coarser ones. For future work, the method is easily extended

to non-uniform intervals. Preliminary tests with a renormalization

length [119] are promising and are currently being investigated.
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10. Systematic investigation on

radiation modeling errors of a

wall-stabilized arc simulations

The text of this chapter was submitted to and presented at the 22nd

International Conference on Gas Discharges and their Applications

(GD 2018) in Novi Sad, Republic of Serbia. [63]

10.1. Abstract

Radiation modeling is key for accurate numerical simulations of elec-

tric arcs. The spectral domain must be reduced to a few band- aver-

aged quantities because of the limited computing power. We consider

a wall-stabilized arc and we systematically refine the spectral domain

to find an independent solution of the averaging schemes. It is shown

that Planck and Rosseland averages require rather fine spectral res-

olutions, but accurate temperature profiles can be obtained much

faster when the renormalized average is used.
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10.2. Introduction

Radiation is the main energy transfer mode of electric arcs to their

ambient due to the high temperatures in the arc column. In numer-

ical simulations, radiation enters the energy balance equation as a

source term, but solving for the radiative heat transfer in full details

is computationally expensive, because the radiative transfer equation

(RTE) is a partial differential equation in six dimensions (i.e., the ge-

ometric position, directions, and radiation frequency) and therefore

only viable for the simplest geometries. For any other geometries

we must rely on models that reduce the complexity of radiative heat

transfer.

Approximate solutions of the RTE respecting global energy conser-

vation may be obtained with the commonly used P1 approximation or

the Discrete Ordinate Method (DOM), reducing the geometric com-

plexity. Simplifying the spectral dimension is more involved since

the absorption coefficient is the main material parameter and varies

with radiation frequency in narrow peaks and over many orders of

magnitude due to line emission; other parameters are temperature,

pressure, and plasma composition. Although the RTE can be solved

for each frequency separately, the computational resources only allow

for a few representative values in the spectral domain in typical en-

gineering tasks. Therefore, the spectral domain is split into a small

set of intervals or frequency bands. Applying an averaging scheme to

each of them results in band-averaged or mean absorption coefficients

(MAC).
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The specific choice of band boundaries and averaging schemes is

an active research topic, since their specific selection influences the

total radiative heat flux entering the energy balance equation. It is

known that Planck average overestimates the contributions of peaks

in the absorption spectrum whereas Rosseland average underesti-

mates them. For instance, electric arcs in air were considered in [142]

using six frequency bands that correspond to the ionization frequen-

cies of nitrogen atoms and the Planck average was applied. Eleven

bands and Rosseland average were used by [126]. Electric arcs in SF6

with 7 bands were investigated in [137], and it was recommended to

use Planck average for high temperatures but Natural average for low

temperatures. Optimal band boundaries for a SF6-Cu plasma were

found in [70] for up to seven bands.

Another option was introduced by [119] based on physical argu-

ments: the peaks of line emission in the spectral absorption coeffi-

cient can be limited by a characteristic absorption length that is on

the scale of the plasma radius followed by Planck averaging. This

method is called renormalized average in the following. It has been

applied in [90] to find optimal values for the characteristic absorp-

tion length with three bands in air plasma, as well as optimal band

boundaries. A linearized P1 model has been presented [65] that al-

lows to quantify uncertainties in MAC and their propagation on the

temperature profile and arc voltage.

The aim of this paper is to address systematically modeling errors

due to spectral resolution and band-averaging schemes. For that, we
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solve the self-consistent energy balance equation of a wall-stabilized

arc with radiative heat transfer using the P1 model. The classical

Planck and Rosseland averages as well as the renormalized average

are considered. The temperature profile and arc voltage is obtained

as the spectral resolution is refined, and the net emission of the P1

model is also compared to exact integration. Results are also shown

for a common band frequency definition used in industrial contexts.

10.3. Method

10.3.1. Numerical model

We consider a wall-stabilized arc, i.e., a cylindrical plasma column

of long aspect ratio encircled by walls fixing the temperature at its

periphery, and a given electrical current I. The plasma column is

considered in local thermal equilibrium (LTE), so that a uniform

pressure and electric field E may be assumed and convection is weak

enough to be negligible. [67] Then, the plasma state only depends

on its radial position and the self-consistent energy balance equation

reads

div(−λ grad(T )) = σE2 − div(F ), (10.1)

where λ and σ denote the thermal and electrical conductivity, respec-

tively, T = T (r) is the temperature at radial position r, and div(F )

is the total net emission or divergence of total radiative heat flux.

The electric field is obtained by Ohm’s law. Generally, the spectral
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net emission can be written as

div(Fν) =

∫ ∞
0

κν(4πBν −Gν) dν, (10.2)

where κν = κ(ν, T ) denotes the spectral absorption coefficient, Bν(T )

is the Planck blackbody intensity and Gν is the spectral irradiation.

The spectral absorption coefficient consists of continuum and line con-

tributions. As proposed in [119], a characteristic absorption length h

is applied to the line contributions,

κν,line =
1

h
(1− exp(−κν,lineh)), (10.3)

so that their peaks are limited on the order of h−1.

The spectral domain is split into N intervals, Di = [νi−1, νi], i =

1, . . . , N . Mean absorption coefficients κ̄i are obtained by applying

the Planck or Rosseland mean on the spectral absorption coefficient

in each band:

κ̄Pi =

∫
Di
κνBν dν∫

Di
Bν dν

, κ̄Ri =

∫
Di

dBν
dT dν∫

Di
κ−1
ν

dBν
dT dν

. (10.4)

In the following, the index i indicates band-integrated quantities. The

net emission is computed by the P1 model, which assumes that the

radiative heat flux can be written as Fi = −1
3κ̄i

grad(Gi); then, the

irradiation is obtained from a linear equation,

div

(
−1

3κi
grad(Gi)

)
+ κiGi = κi4πBi. (10.5)
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The simple geometric layout allows for a comparison of the net

emission obtained by the P1 model and an exact solution of the RTE.

The exact net emission at radial position r is given by

div(F )(r) = (−1)

∫ π

0
dϕ

∫ ∞
0

dν κν(r)

×
∫ ξmax

0
dξ

dBν
dξ

Gθ

(∫ ξ

0
dξ′κν(ξ′)

)
(10.6)

where ξ parametrizes the line from position r across the arc cross-

section to the domain boundary at angle ϕ, and Gθ is a geometric

factor given by

Gθ(x) = 4

∫ π
2

0
sin(θ) exp(−x/ sin(θ)) dθ. (10.7)

In (10.6), the frequency integral is taken as a discrete sum over each

spectral data point, and all other integrals are calculated adaptively.

The developed code is written in parallel allowing for fast results

obtained for a given list of radial coordinates.

10.3.2. Simulation parameters

We solve equation (10.1) for the temperature profile on a uniform,

cell-centered grid with 400 points and a total current I = 100 A.

The wall temperature is defined as Twall = 300 K at rwall = 5 mm.

The material data is taken at p = 10 bar absolute pressure, and the

absorption coefficient is given in the range of 1× 1013 to 1× 1016 Hz
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spaced at 2× 1010 Hz. [89]

Results are computed for the classical Rosseland and Planck aver-

age as well as the renormalized average. The spectral resolution is

taken in powers of 2 (N = 2M with M = 5, . . . , 17). Additionally, we

also show results using band frequencies that correspond to ioniza-

tion energies of nitrogen atoms. The inner boundaries are given at

0.066, 0.35, 1.54, 2.65, 2.94, 3.52× 1× 1015Hz. [142]

10.4. Results

Figure 10.1 shows the temperature profiles for the band definition in

[142]. The reference solution is given by the finest band discretiza-

tion and is visually independent of the averaging scheme. We note

that the classical averages yield temperature profiles deviating sig-

nificantly from the reference solution: the arc center temperature is

underestimated by the Planck average while the Rosseland average

yields overestimated values. In contrast, the renormalized average

with h = 2.3 mm results in a temperature profile that is very close to

the reference.

This behavior becomes more obvious in figure 10.2, which shows

the arc center temperature with respect to the spectral discretization.

It is seen that the Planck and Rosseland average converge with finer

spectral discretization, however, they only get close for more than

1× 103 bands. The renormalized average leads to arc center temper-

atures rather independent of the spectral discretization. We see that

the characteristic absorption length h acts as a blending factor for
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Figure 10.1.: Temperature profiles for low number of spectral bands.
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the solutions obtained by the classical averages. Choosing the char-

acteristic length appropriately (h = 2.3 mm) matches the reference

solution rather well for any spectral resolution.

Figure 10.3 shows the electric field E with respect to spectral dis-

cretization. Similarly to figure 10.2, we see that the renormalized av-

erage is much less sensitive to spectral discretization than the Planck

and Rosseland averages. For the Planck average we note a steeply in-

creasing electric field for lower spectral resolution. This is explained

by the electric conductivity: although resulting in radially wider tem-

perature profile and higher temperatures in the outer parts, it cannot

counterbalance the smaller electrical conductivity in the central re-

gion.

Figure 10.4 shows the net emissions of exact integration and the

P1 model of the temperature profile obtained with the renormalized

average with h = 2.3 mm and the band boundaries in [142]. The

graphs are qualitatively comparable with large net emission in the

arc center, a flatter intermediate section, and an outer section with

negative values. Quantitatively, the P1 model results in lower values

for any radial position than the exact solution. This is similar to

results reported in [119], arguing that limited contributions from the

absorption peaks lead to underestimated net emission.

10.5. Conclusions

A self-consistent model for wall-stabilized arcs was presented that al-

lows to study modeling errors due to band-averaging of the spectral
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absorption coefficient. It was shown that the Rosseland and Planck

average require rather fine band discretization to converge, while the

renormalized average is much less sensitive. Moreover, if the char-

acteristic absorption length is chosen appropriately, seven frequency

bands are sufficient to obtain very good results for the temperature

profile and the arc voltage. The P1 model with renormalized average

leads to underestimated net emission in comparison to exact integra-

tion. Future work will analyse this data in more detail for separate

bands. This model will also serve as a testcase for material data and

band boundary definitions.

We acknowledge P Kloc for providing the absorption coefficient and

material data. [89]
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11. Summary & Outlook

11.1. Summary

We reviewed fundamentals of radiative heat transfer modeling from a

perspective of modeling electric arcs. We studied the radiative trans-

fer equation and its modeling assumptions that yield to the quasi-

steady RTE for non-scattering media (eq. 7.19). We discussed that

an exact solution is computationally feasible only in the simplest sit-

uations and how the computational complexity is further reduced.

For applied numerical simulations, we require a reasonable definition

of frequency bands that yield to mean absorption coefficients.

We then considered the Elenbaas-Heller equation, the simplest

model that allows to solve for a self-consistent temperature profile

of a wall-stabilized arc. We performed a linear sensitivity analysis

that allows to relate uncertainties in the absorption coefficient with

their effects on the arc voltage; these results are more of theoretical

interest. The more applied results are found in comparison to mean

absorption coefficients as computed by the Planck average, the Rosse-

land average, and the line limited Planck average. We showed that

choosing the line limiting length h adequately permits to retrieve the
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correct temperature profile with minimal computational efforts.

11.2. Outlook

Further work may continue with analyzing the absorption coefficient

data of plasmas that are contaminated with metal vapors. One should

also discuss how the linear sensitivity analysis may support further

work in absorption coefficient modeling, for instance with the research

community that provides the absorption coefficient data. From an ap-

plied point of view, it would be interesting to see if the line limited

Planck mean leads to generally useful results in arc simulations de-

spite the fact that the line limiting length must be chosen in advance.
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Part III.

Applied numerical

simulations of electric arcs

in circuit breakers
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12. Introduction

Circuit breakers are safety elements in electrical power grids. They

are designed to interrupt fault currents (e.g., due to an accident

or malfunction of other network elements) and therefore protecting

the power system and its environment. Their design is determined

by voltage level at which they are installed in the power grid; see,

e.g., [120]. The operation principle is summarized as follows: Ini-

tially, the contacts are closed and current is flowing. When the open-

ing mechanism is triggered, the contacts separate and form inevitably

an electric arc; see, e.g., [169, ch. 2] for details on low voltage circuit

breakers, and [150] on high voltage circuit breakers, respectively. This

arc has to be controlled and extinguished quickly, i.e., in a few mil-

liseconds “in order to not cause damage to the power system, or to

destroy the breaker from the large power that is produced during arc-

ing.” [120] Performing experimental investigations are tremendously

limited by the extreme conditions during the arcing process (see also,

e.g., [147]). In consequence, numerical simulations are the only source

for spatially resolved insights towards further product development

(see, e.g., [120] but also [118, 142, 146, 114]).

Applied numerical simulations in context of industrial product de-
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velopment always have to trade off model complexity against short

time to delivery. This issue is even more pronounced in electric arc

simulations since dedicated solvers for gas flow and electromagnetism

must be coupled with other modeling aspects such as radiation, wall

ablation, electrode erosion, external circuit model, and mechanics;

see, e.g., [142, 143]. However, it is hard to find software suites that

allow for a robust multiphysics coupling in this field of research. We

used a simulation framework [154] that allows for coupling of all sub-

models within a single graphical user interface. User-specific pro-

gramming was limited to control remeshing events and data exchange

among the solvers.

The following chapters present numerical simulations of electric

arcs in circuit breakers. Chapter 13 focuses on the contact arm mo-

tion in a low voltage circuit breaker due to the mechanics, fluid pres-

sure, and electromagnetic force. Chapters 14 and 15 consider an

axially blown electric arc. The former focuses on an energy balance

and gives insights that are difficult or impossible to measure; the lat-

ter considers radiative heat flux from the arc to the nozzle wall in

details. These two contributions started from informal discussions

of experimental work [28] by Dr Lorenz Bort and Prof Dr Chris-

tian Franck at the High Voltage Laboratory research group of ETH

Zurich. The contents of the three chapters were presented at confer-

ences. [61, 64, 62]

The numerical simulations would not have been possible without

the data provided by Dr Petr Kloc (Brno Technical University) for

absorption coefficients and Dr Anthony Murphy (CSIRO) for the
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thermodynamic and transport properties of the plasma. This work

was partly financially supported by a collaboration with Siemens

PLM software and many fruitful disussions with Dr Angelo Limone,

Dr Boris Klauderic, and Dr Paul Hilscher.
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13. Self-consistent modeling of

electrode motion in a model

circuit breaker

The text of this chapter has been submitted to and presented at the

23rd Symposium on Physics of Switching Arcs (FSO 2019) in Nove

Mesto na Morave, Czech Republic. [61]

13.1. Abstract

Numerical simulations of low-voltage circuit breakers require a cou-

pled solution of gas flow, electromagnetism, electrical circuit, and

other aspects. Including electrode motion is challenging because the

computational grid is deformed and data is to be exchanged among

dedicated solvers. A central issue is to keep them synchronized. This

is addressed with a single framework that allows for a continuously

morphing grid and accounting for the cumulative effects of mechan-

ics, Lorentz force, and gas pressure. It is shown that gas pressure has

negligible effect.

216



Introduction

13.2. Introduction

Low-voltage circuit breakers are designed to carry electrical current

in normal operation as well as safely interrupt short-circuit currents

in case of failures. In case of a fault, the contacts are opened by

means of mechanical actuators and/or electromagnetic forces avail-

able due to fault current. This contact opening inevitably leads to an

electric arc. Depending on geometrical and other factors, the arc is

ultimately driven into a deion chamber with splitter plates, in which

it is elongated and cooled until extinction.

Contact opening can be a major design aspect in the current inter-

ruption process and numerical simulations should allow for including

this effect appropriately and efficiently. In [176], the computational

domain was deformed and remeshed to accommodate for the motion

of the opening contact; however, the motion as well as current were

not computed but followed input values obtained from experiment.

Later, it was shown in [144, 143] that numerical simulations should

include contact motion appropriately, especially if large contact gaps

and contact motion are studied right in front of splitter plates. The

adopted workflow consisted of creating a sequence of meshes that

correspond to various contact positions. Contact position was calcu-

lated by a separate ordinary differential equation. While the meshes

remained constant without any deformation, they are swapped fre-

quently to follow contact position. However, the numerical framework

involved three codes that must be kept synchronized and being a chal-

lenging task. [143] The same approach has been recently adopted in
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[152].

This contribution presents a self-consistent and seamless imple-

mentation of contact motion for a three dimensional model geometry

of a low-voltage circuit breaker. The moving contact is assumed to

be subject to a mechanical actuator represented as a torsional spring

for simplicity, the Lorentz force that becomes important at larger

current values, and we account for plasma pressure that acts on the

moving contact surface. Additionally, we include an electrical circuit

that defines electrical boundary conditions for the circuit breaker. In

contrast to [176, 144, 143, 152], our software framework allows for a

continuous deformation and event-based remeshing. Data interpola-

tion and exchange among dedicated solvers is inherently supported

in a single user interface, that results in a uniform setup process. An

earlier version of the same software framework was used in [57, 148]

with an advanced plasma model; however, details on specifications of

rigid body motion and electrical boundary conditions are not given.

13.3. Numerical Simulation Model

A model circuit breaker (see figure 15.1) is considered that consists

of a fixed electrode, a rotationally opening bridge, and five U-shaped

splitter plates enclosed in an insulating box with venting openings.

The virtual geometry is designed to be of comparable size to a real

device; for reference, the enclosure size is 47 mm × 36 mm × 24 mm.

The ambient gas is dry air at atmospheric pressure and gas flow is

considered in a box of size 69 mm × 49 mm × 36 mm with pressure
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outlets in all directions and solid bodies located centrally. The mov-

ing electrode is 2.5 mm thick and the fixed electrode cross-section

is 2 mm × 5 mm. Splitter plates are 1.5 mm thick and separated in

y-direction by the same distance. A symmetry plane is applied at

z = 0. The model circuit breaker is thought to be installed seri-

ally in an electrical circuit (see figure 13.2) that consists of a voltage

source (Vrms = 230 V, 50 Hz), a resistor R = 2 mΩ, and an inductor

L = 25 µH.

We solve the magnetohydrodynamic equations for a thermal plasma

in local thermodynamic equilibrium (LTE), i.e., we consider the Navier-

Stokes equations

∂t(ρ) +∇ · (ρu) = 0, (13.1a)

∂t(ρu) +∇ · (ρu⊗ u) = −∇p+ fL, (13.1b)

∂t(ρetot) +∇ · ((ρetot + p)u) = Sohm +∇ · (λ∇T )−∇ · qrad, (13.1c)

together with Maxwell’s equations in low-frequency limit in A-ϕ for-

mulation, i.e.,

∇× µ−1∇×A = J, (13.1d)

∇ · J = 0. (13.1e)

In these equations, ρ stands for gas density, u gas velocity, p gas

pressure, etot total energy, T gas temperature, qrad radiative heat

flux, J electric current density, B magnetic flux density, µ magnetic

permeability, σ electrical conductivity, and A magnetic vector poten-

tial. Moreover, we have by definition B = ∇ × A and E = −∇ϕ,
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Figure 13.1.: Model geometry of a low-voltage circuit breaker, cut at
symmetry plane z = 0.
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R L

Rarc

Figure 13.2.: Electrical circuit.

and Ohm’s law J = σE, where E denotes electric field and ϕ is the

electric potential. The gas flow is considered as laminar. The sys-

tem of equations is coupled via the source terms for Lorentz force

density fL = J×B and Ohmic heating source density Sohm = J · E.

Radiative heat flux qrad is calculated using the Discrete Ordinate

method (see, e.g., [112]) with six frequency bands defined by the

ionization energies of nitrogen [142]. Band-averaged absorption coef-

ficients were computed by Planck averaging from spectral data pro-

vided by [89]. Thermodynamic and transport properties of dry air

plasma are taken from [75]. Material data for electrodes and split-

ter plates are those of copper and iron, respectively, with relative

permeability µFe,rel = 1× 104.

We account for voltage drop in arc roots on the anode and cathode
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following [142],

Ua/c(J) =
aJ̃ + bJ̃d

c+ J̃d
, J̃ = eJ, (13.2)

with a = 5× 108, c = 9× 1014, d = 2, e = 5, and b = 5 on the anode

and b = 10 on the cathode. Comparing to [142], we use modified

values for coefficients a, c, and e, so that maximum voltage drop on

anode and cathode are reduced to 11.2 V and 14.7 V, respectively.

Hence, the arc is able to run faster into the deion chamber since new

arc spots are formed more easily on the splitter plates. The corre-

sponding heat source is included at the plasma-solid interface. This

difference in voltage drop modeling is assumed to be of minor impor-

tance towards the aim of this study, since we also neglect evaporation

and erosion of any solid bodies.

The bridge is assumed to move as a rigid body with rotation axis

parallel to z-axis. Total torque is computed by the contributions of

a torsional spring, gas pressure of the plasma acting on the electrode

surface, and Lorentz force density inside the electrode body:

τtot = τS + τP + τL, (13.3a)

τS = −k(α− αr)ẑ, (13.3b)

τP =

∫
A
r× (−pn) dA, (13.3c)

τL =

∫
V
r× fL dV. (13.3d)
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The torsional spring constant k = 0.2 N m rad−1 and relaxation angle

αr = 30 deg are defined such that the bridge would open to αmax =

45 deg in 2.5 ms, at which it would be gradually slowed down before

hitting the enclosure wall. The natural angular frequency of the

torsional spring is ωn =
√
k/I where I = 2.75× 10−7 kg m2 denotes

moment of inertia of the moving electrode. If torsional spring was

the only acting force, the rotation angle of the moving electrode with

respect to z-axis is given by

αS(t) = αr(1− cos(ωnt)). (13.4)

Initial position of the electrode bridge is defined with a gap of

2 mm to the fixed electrode. Arc ignition is modeled by a cylinder

of radius 1 mm located centrally between the contacts with electri-

cal conductivity set to σ = 1× 104 S m−1 for 20 µs. For simplicity,

voltage source is assumed to be at peak voltage.

The outlined model is implemented in the numerical framework

of Simcenter STAR-CCM+ (v2019.1). The equations for gas flow,

electric potential, and radiative heat transfer are solved with finite

volume method, and the magnetic vector potential is formulated in

finite elements because of the discontinuous magnetic permeability.

Therefore, the computational domain is discretized with two meshes,

a polyhedral grid for the FV solvers and a tetrahedral grid for the

FE solver, with maximum cell sizes 0.5 mm and 2 mm, respectively.

The meshes are refined at solid-fluid interfaces including prism layers.

Timestep size is 1 µs. After each timestep, electric current density
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J is mapped to the tetrahedral grid, the magnetic vector potential

is solved for, and magnetic flux density B is mapped back to the

polyhedral grid. The domain can be remeshed whenever a specific

criterion is met. Here, it is triggered if the upper electrode has moved

0.5 deg since the last remeshing event, or if the simulation had to be

restarted. The rigid body dynamics and electrical circuit are also

implemented in the user interface.

13.4. Results

Results are presented for time until t = 400 µs. Figure 13.3 shows arc

voltage and current, as well as current through the lowest two split-

ter plates. We see that arc current rises almost linearly as defined by

the electrical circuit. After ignition, arc voltage is at 26 V comparing

well to the sum of voltage drop on anode and cathode, and increases

gradually until t = 200 µs. This is explained by plasma cloud expand-

ing from the ignition region into a volume bounded by the moving

electrode tip, the fixed electrode and the lower two splitter plates.

We note that a fraction of the current flows through the first split-

ter plate, and after t = 200 µs, we see that electrical current starts

to flow through the second splitter plate. At the same time value,

we also note that arc voltage increases more substantially. This is

related to the plasma gas expanding upwards and arc root formation

at second splitter plate. Since the focus of this work is on electrode

motion modeling, we limit the discussion of plasma flow to this level

as it becomes more complex.
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Figure 13.4 shows total torque on the moving electrode and its

contributing terms due to torsional spring, Lorentz force, and plasma

pressure. We see that torsional spring and Lorentz force are domi-

nant, while plasma pressure yields a small contribution at arc ignition

and quickly becomes negligible. Torsional spring yields an almost

constant torque because of mass inertia and therefore relatively slow

angular motion in the time interval considered. As current increases,

Lorentz force becomes gradually more important and its torque ex-

ceeds that of torsional spring after t = 300 µs.

To support the understanding of the data discussed above, the

spatial distribution of plasma pressure and Lorentz force density at

t = 100 µs are shown in figures 13.5 and 13.6, respectively. We see

that the pressure wave due to arc ignition has already expanded from

electrode tip towards splitter plates. Hence, torque due to plasma

pressure is small. However, Lorentz force density increases gradually

as total current increases and the self-induced magnetic field due to

electric flux. Hence, their contribution to total torque becomes more

important.

Figure 13.7 shows rotation angles due to total torque as obtained

by the simulation and that of the analytical model in equation (13.4).

We clearly see that torque due to Lorentz force results in faster elec-

trode motion. This effect becomes more pronounced with increasing

time values.
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Figure 13.3.: Arc voltage and current in circuit breaker. The lines I1

and I2 show electrical current through the lowest split-
ter plates.
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Figure 13.4.: Total torque on the moving electrode, with contribu-
tions from Lorentz force density, torsional spring, and
plasma pressure.
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Figure 13.5.: Plasma pressure at t = 100 µs.
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Figure 13.6.: Lorentz force density at t = 100 µs.

Figure 13.7.: Rotation angle due to total torque and compared to
that due to torsional spring only.
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13.5. Discussion and Conclusions

This contribution presents a self-consistent model for electrode mo-

tion in a virtual low-voltage circuit breaker. The results show that

torque is mainly due to torsional spring and Lorentz force. Plasma

pressure has negligible influence on rigid body dynamics because of

its small torque value and its short interaction time. This does not

mean that accurate plasma modeling is of minor importance; it is

of uttermost importance because plasma gas flow and electromag-

netic fields are directly affected. The mechanical actuator should be

modeled appropriately because it affects rigid body dynamics and its

interactions with arc plasma. Therefore, a self-consistent arc model

should be used that allows to compute electrical current and volt-

age defined by the circuit elements, as well as to compute rigid body

motion including the effects of mechanics and Lorentz force.

In contrast to previous work, the presented model is implemented

with a continuously deforming mesh that is remeshed whenever needed.

The user interface allows to define rigid body motions directly inside

the framework without particular programming. It also inherently

allows for data exchange among the solvers. As a consequence, the

workflow for preparing simulations with complex body motions and

interactions of the plasma with electrical circuit may be eased.

Future work will extend this study to longer simulation time, ad-

ditional plasma physics including copper vapor due to electrode ero-

sion and wall ablation, non-linearity of B-H curve of iron and further

modeling techniques to ease user interaction with the software. Ex-
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periments would serve ideally to complement this study.
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14. Energy Budget of electric arcs

in a gas-blast circuit breaker

The text of this chapter has been submitted to and presented at

Nafems World Congress (NWC 2019) in Quebec, Canada. [64]

14.1. Abstract

Mechanical circuit breakers for high voltage direct current networks

have been an important and challenging research topic for experimen-

tal studies. The main element of such breakers is an axially-blown

electric arc in a convergent-divergent nozzle. Previous work focused

on experimental setup and data analysis involving quantities that are

difficult or impossible to measure.

This paper provides numerical results that were not accessible in

experimental studies. The numerical simulations have been con-

ducted on the original experimental setup using a magnetohydro-

dynamic framework. We present an analysis of the energy transfer

modes of the axially-blown arc under consideration, discriminating

between radiative heat transfer and convection. We see that the
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largest amount of electrical energy is dissipated to the gas flow and

removed from the nozzle geometry convectively, and a notable en-

ergy fraction is due to radiative heat flux onto the nozzle wall. With

respect to the electric arc, we see that radiative energy transfer is

dominant.

Moreover, we show that the electric field along the nozzle axis is

larger in the convergent section than in the divergent section because

convective cooling leads to a constricted arc shape, and the electric

field is locally enhanced at the throat. Comparing electric field val-

ues predicted by experiments using a differential method and our

numerical simulation results, we show discrepancies between the two

methods and provide data for further evaluation of the experimental

method.

Although neglecting effects of wall ablation and electrode erosion,

the presented results allow for a more complete view on the previ-

ous experimental research work, especially on the gas flow field and

shock fronts. They also pave the way for further numerical analysis

and comparison to experimental data of the geometric layout, and

contribute to future developments aimed to more powerful circuit

breaker designs.

14.2. Introduction

Circuit breakers are a key element in electrical circuits and designed

to protect electrical infrastructure by safely interrupting electrical

current flow. Recent research focused on mechanical circuit break-
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ers for high voltage direct current network topologies, which consist,

among other parts, of an axially-blown gas circuit breaker made of

two electrodes in a cylindrical nozzle. [171, 29, 27, 30] In the inter-

ruption process, the contacts are triggered to open in axial direction.

This inevitably leads to an electric arc between the electrodes. Si-

multaneously, a gas flow is initiated through the nozzle so that the

arc is cooled and ultimately extinguished.

The detailed energy balance of the arc is difficult to establish from

experiments. Hence, various authors have pointed to the need for nu-

merical simulations. For instance, [171] characterized parameters of

electric arcs in a cylindrical nozzle and pointed out that plasma sim-

ulations could help understanding energy transfer and cooling mech-

anisms. In [29], a convergent-divergent nozzle was considered with

electrodes located in varied positions; they concluded that the electric

field is largest in the nozzle throat and mentioned CFD simulations

to be useful. [27] used a slightly adapted nozzle geometry and noticed

that wall ablation is much larger in the upstream section than down-

stream; they also speculated on energy distribution in axial direction

and dissipation modes. Recently, [30] estimated the electric field of

arc segments using a differential method under the assumption that

those segments are independent. They concluded that this hypothesis

holds for many arc segments indeed; however, some segments showed

a dependence and the authors guessed that it is a consequence of flow

discontinuities near the nozzle exit and at the downstream electrode

tip.

The present study shall provide results using numerical simulations

234



Introduction

that have been sought for by the publications mentioned above, in

order to provide a more complete view of axially-blown arcs. In

this work, we separately measure the contributions from convection

and radiation as heat transfer modes. Additionally, the results will

allow us to take a glimpse on which arc sections contribute most to

arc voltage. In combination with insights on the gas flow field, the

findings shall support further design steps towards circuit breakers

with higher and faster interruption capabilities.

The geometric setup is identical to that in [27, 30]. The study is

conducted with a numerical magnetohydrodynamic framework con-

sidering a thermal air plasma in local thermal equilibrium. In a first

step and considering a single current value for comparison with the

experimental data, we neglect electrode erosion and nozzle wall abla-

tion processes. The results are compared to arc voltage and estimated

electric field values as obtained from the previous experimental works,

and they are brought in context to the mentioned hypotheses.

This publication is organized as follows. In Section 14.3, we outline

the numerical model and its boundary conditions for gas flow and

electrical current. Sections 14.4 to 14.6 show our numerical results on

the arc voltage and electric field, gas flow, and the energy budget, that

are discussed in Section 14.7. A summary with outlook on further

work is given in Section 14.8.
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14.3. Numerical model

The following section describes the computational domain, the math-

ematical framework, the material model and input data, solver set-

tings, boundary conditions and mesh discretization.

We consider a convergent-divergent nozzle with two cylindrical

electrodes, one each located in the upstream and downstream section

(see also figure 14.1). The nozzle geometry is identical to [27, 30],

i.e., the throat is located at x = 70 mm with a minimum diameter of

20 mm and a total nozzle length of 140 mm. The half angles are 15°

and 10° in the convergent and divergent section. A radius of 20 mm is

used at the throat for a smooth transition. The electrodes are 5 mm

in diameter and their tips located at xA = 40 mm and xB = 120 mm.

The upstream section is cylindrical with a diameter 50 mm and the

gas inlet is located at x = −80 mm. At the downstream nozzle end,

the gas flow exits to ambient conditions into a computational domain

large enough to neglect influence of the pressure outflow conditions.

As a minor change to the original setup, we use rounded electrode

tips for a more streamlined geometry.

The experiments were conducted in quasi-steady conditions, i.e.,

the flow conditions vary much slower than the system relaxation

timescale. Therefore, we can look for a stationary solution given

in the gas domain by the compressible Navier-Stokes equations,
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Figure 14.1.: Geometry sketch with nozzle, axially centered elec-
trodes, inlet and outlet.

∇ ·

 ρu

ρu⊗ u

ρHu

 =

 0

−∇p+∇ · (τ + τt)

∇ · (λ∇T ) +∇ · (τ · u) + j ·E + Se

 , (14.1)

where ρ is the gas density, u gas velocity, p gas pressure, T gas tem-

perature, H total enthalpy, λ thermal conductivity, and τ viscous

stress tensor. Turbulence is accounted for with the k−ω model lead-

ing to the Reynolds stress tensor τt. Usually, Lorentz force were also

included but are neglected, because numerical tests showed marginal

effects in the situation at hand. The energy conservation equation in-

cludes Ohmic heating j·E, and the Se stands for the volumetric energy

source term due to radiation as introduced below (see eq. (14.3)).

The electrodynamic potential ϕ is solved for all domains and in the
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low-frequency limit obeying the generalized Ohm’s law,

∇ · (−σ∇ϕ) = ∇ · jex, (14.2)

with σ denoting electrical conductivity, and jex stands for external

source of electric current density.

Radiation modeling is a separate, challenging research topic be-

cause it affects the main energy transfer mode in electric arc simula-

tions. Numerical solutions require data reduction of the spectral ab-

sorption coefficient κν , which varies in narrow peaks over many orders

of magnitude in radiation frequency, and depends also on tempera-

ture, pressure, and plasma composition. A computationally tractable

model is obtained with splitting the frequency domain into a low num-

ber of intervals and applying an averaging method to each of them.

In this study, we define six frequency intervals with boundaries ac-

cording to ionization energies of nitrogen (see [142]) and we apply

Planck averaging on spectral data provided by [91]. However, recent

work showed that accurate solutions can be obtained with even less

frequency intervals in combination with a renormalization length that

limits the contributions from peaks in the spectral absorption coef-

ficient data. [119, 90, 63] The radiative transfer equation is spatially

discretized by the discrete ordinate method with S4 quadrature.

It is the divergence of radiative heat flux that represents a source

term in the plasma energy balance equation,

Se = −∇ · qr = −
∫ ∞

0
κν

(
4πIbν

∫
4π
IνdΩ

)
dν (14.3)
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where Ibν denotes the spectral black body intensity at frequency ν, Iν

is the spectral radiative intensity, and κν is the absorption coefficient

of the plasma. The radiation intensity field is computed only in the

plasma domain. Therefore, the plasma-solid boundary is defined as

adiabatic, and incident radiation is converted to heat in the plasma

domain.

The simulations are performed with the numerical framework STAR-

CCM+ v13.06 [153] using numerical solvers based on the finite vol-

ume method. The plasma material and transport data are functions

of temperature and pressure which are based on curve fits [75] (“equi-

librium air model”). Electrical conductivity is taken from [44], with

a minimum value σmin = 1× 10−3 S m−1 for numerical stability. The

nozzle is considered as an electrically insulating body, with a finite

electrical conductivity equal to σmin. Electrodes are made of copper

with electrical conductivity given as σ = 5.96× 107 S m−1. In order

to improve solver convergence to a stationary solution, we activate

the “Continuity Convergence Accelerator”, and we select “W cycle”

for the algebraic multigrid (AMG) solver for the electric potential

solver. All other settings are at their default values.

For simplicity, we do not include wall ablation in this first study al-

though experimental work clearly shows that wall ablation is relevant

at large currents, see [27]. Moreover, we also neglect electrode ero-

sion. If those effects were included, the plasma material data would

also be functions of gas concentrations (here: copper vapor, PMMA

vapor). It may be expected that the major effect of those vapors

would be on electrical conductivity and absorption coefficient, and
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to a smaller degree on the thermodynamic plasma parameters. One

would also have to specify ablation and erosion rates, being further

parameters that introduced further modeling uncertainties. The in-

let pressure is set to pabs = 8.2 bar absolute. The outlet boundary

condition is specified to ambient conditions, i.e., a relative pressure

prel = 0 Pa. The upstream electrode contact is stressed with a total

current I = 1 kA, and the downstream electrode is at zero potential.

The computational domain is axially symmetric and is discretized

using polyhedral cells with 1 mm base size (see figure 14.2). The

nozzle section is refined by 50% using a double-cone, and the arc

region by 25% in a cylinder with 6 mm radius. Prism layers are

added on both sides of solid-fluid interfaces with a first layer height

of 0.1 mm, total height of 0.4 mm, and four layers. This results in

57.5k cells, and a mesh study confirms that the results are almost

independent of grid refinement, with largest variations in boundary

radiative heat flux of a few percent.

14.4. Arc voltage and electric field

Figure 14.3 shows the arc voltage as a function of arc current. The

arc voltage is the only directly available quantity for comparison to

experiments (see figure 4 in [27]). We see that the voltage decreases

with increasing current, i.e., a negative differential resistance, that is

more pronounced for lower current values. We notice good agreement

especially for intermediate current values (between I = 0.3 kA and

0.8 kA). For larger currents, the experimental data show a positive
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Figure 14.2.: Polyhedral mesh with refinement in nozzle section and
arc region.

differential resistance, a trend that the numerical results are not ca-

pable to follow. Similarly, the slope of the experimental curve is also

steeper at lower current values than those of this study.

Figure 14.3 shows the electric field in the arc along the symmetry

axis. We see that the electric field is largest at the upstream electrode

tip with a steep slope in axial direction. The electric field is larger

at the nozzle throat with a local maximum slightly before the throat.

In the downstream section, the electric field decreases to lower values

with a minimum just before the downstream electrode tip. The same

figure also shows estimated electric field values for arc segments of

20 mm length using an indirect, differential method. [30] The data

was obtained from their publication showing the arc voltage for each

segment and dividing those values by the segment length. Comparing

with the numerical data of this study, we see that their estimated

values agree well for the first and third arc segment, but the electric
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Figure 14.3.: Arc voltage as a function of arc current.
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Figure 14.4.: Electric field on symmetry axis between electrode tips.

field is overestimated in the throat and for the last segment.

14.5. Flow Field

Figures 14.5 to 14.7 show the velocity, temperature, and Mach num-

ber of the gas flow, and figure 14.8 shows the electrical current density

in the plasma.

We see that the gas flow is continuously accelerated as expected
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in a convergent-divergent nozzle at supersonic conditions. The gas

velocity is largest in the divergent section where the electric arc is

located. The downstream electrode tip gives rise to a bow shock.

At the nozzle wall, we see at a lateral position of the electrode tip

that the flow detaches from the conically shaped wall and forms an

oblique shock front. The interaction of these shock fronts is clearly

visible in the Mach number. The temperature field shows that the

hottest region of the arc is located at the upstream electrode tip, and

temperature reduces in downstream direction. We also note a hot gas

layer close to solid body surfaces: this is due to incident radiation on

the domain boundary and, as a numerical artifact, the finite electrical

conductivity.

The shape of the arc can be understood as follows. As shown

by the electrical current density and the temperature field, the arc

radius at the upstream tip is smaller than the electrode radius and

widens to an almost constant cross-section up to the nozzle throat.

The convergent section leads to a gas flow directed towards symmetry

axis. Therefore, the gas flow is directed towards the arc surface with

a cooling effect and mixing. Consequently, the electrically conductive

arc section is constricted, and the arc core temperature and electrical

field are increased. In the divergent section, we notice a conically

widening of the arc cross-section. In that region, the gas flow is

parallel to the arc surface and enthalpy flux is not a major energy

transfer mode.
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Figure 14.5.: Gas velocity contour plot.

Figure 14.6.: Plasma temperature contour plot.
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Figure 14.7.: Mach number contour plot.

Figure 14.8.: Electrical current density contour plot, with contour
line at 10 A mm−2 that defines arc core region.
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14.6. Energy Budget

In contrast to experimental work, the numerical data allows us to

evaluate the energy budget of the axially-blown electric arc. We

recapitulate the relevant terms in the energy conservation equation.

The electrical energy is released as Ohmic heat j ·E into the plasma,

which can be removed from the arc core in two ways: either the

energy can be removed convectively by the gas flow as enthalpy flux

ρHu, or by radiative heat transfer. The emitted radiative energy

can be reabsorbed in the surrounding gas (Se = −∇ · qrad), or the

remainder of radiative heat flux qrad is absorbed at the nozzle wall.

We calculate this energy budget for two control volumes (see also

table 14.1), with quantities for a circular sector of 1 rad in circum-

ferential direction. We consider, firstly, the gas domain in the nozzle

section between x = 0 mm and x = 140 mm, and secondly, the gas

domain in the arc core region defined by the electrical current density

contour at j = 10 A mm−2. The quantities are numerically evaluated

as surface or volume integrals. We do not consider radiative heat

flux on the electrode surface, because their surface content is rela-

tively small, and their values are negligible indeed.

The electrically released power is given by the product of total

current and arc voltage and is equal to 99.1 kW rad−1. Hence, we

see that both control volumes contain almost all Ohmic heat, with

only a small fraction outside of the arc core. The Ohmic heat with

respect to the control volume is taken as a reference for the other

energy transfer modes in either evaluation domain.
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Energy transfer mode Nozzle Section Arc Core
(kW rad−1) (kW rad−1)

Ohmic Heat 97.9 100% 94.5 100%
Net Enthalpy Flux 78.2 80% 30.8 33%
Boundary Radiation Heat Flux 14.2 15%
Radiative Heat Source -32.2 (?) -33% -58.2 -62%

Table 14.1.: Energy balance of axially blown electric arc.

For the nozzle section, we see that 80% of the Ohmic heat is re-

moved by convection, and 15% is radiated to the nozzle wall. Evalu-

ating the net enthalpy flux across the arc surface, we find that 33%

of the energy is convectively removed from the arc core. These quan-

tities are readily available in the simulation framework of STAR-

CCM+.

It is more difficult to assess the volumetric radiative heat source.

The radiative heat source Se is evaluated as volume integral. The

numbers suggest that 33% of the Ohmic energy leave the nozzle by

radiation. However, this does not agree with the boundary radiative

heat flux, evaluated as surface integral of radiative heat flux qrad,

which should be identical by Gauss theorem up to the neglected con-

tributions from electrode walls.

A possible explanation for the discrepancy in the energy balance

lies in the spatial profile of radiative heat source, which shows a

steep gradient from negative to positive values across the arc sur-

face. Hence, we suppose that a locally finer mesh resolution would

be required for a sound evaluation. Nevertheless, we evaluated with

248



Discussion & Conclusions

respect to the arc core control volume that 62% of the Ohmic energy

is radiated away. Here, the energy balance seems to be acceptable.

This seems to be trustable since the arc core control volume resides

inside of the gradient in radiative heat source.

14.7. Discussion & Conclusions

Our numerical simulations reveal interesting features that comple-

ment experimental studies.

Figure 14.3 shows the arc voltage as evaluated in this numerical

model and experimentally. [27] noted that the positive differential

resistance coincides with the onset of wall ablation. This effect is not

included in the numerical model and is a plausible explanation for

the opposite trends between experiment and simulation, however, this

does not explain the differences at lower current values. It remains an

open question if this discrepancy is due to erosion (i.e., copper vapor)

being neglected, or the slight geometric variation of rounded electrode

tips. Nevertheless, the comparison suggests that the numerical model

is acceptable and can serve as a basis for further investigations.

In Figure 14.4, we show the electric field at the symmetry axis.

The curve shape is explained by the structure of the nozzle and the

resulting gas flow (see also Figures 14.5 to 14.8). In the upstream,

convergent section, cold gas is blown towards the arc center leading

to constriction and effective cooling at its surface. This results in

larger electric field value than downstream, as given by Ohm’s law,

and is especially pronounced near the upstream electrode tip. In the
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downstream, divergent section, the plasma cross-section increases,

and gas mixing is not effective.

In [30], the arc voltage was evaluated per segments of 20 mm length

with several combinations of electrode tip positions. This measure-

ment method resulted in variations of the segment voltage and was

explained by normal shocks at the nozzle exit and a bow shock at the

downstream electrode tip. Our numerical results (see Figures 14.5

to 14.7) show that a bow shock exists indeed, but there is an oblique

shock near the nozzle exit.

With respect to the electric field, our study reveals differences to

the experimentally estimated values. At the nozzle throat, the ex-

perimental method yielded values that are almost independent of the

downstream electrode position suggesting small measurement errors;

however, our results show that their electric field is overestimated

at the throat and the variations in other arc segments are relatively

large. The differential method could be assessed in more details with

electrode positions varied more finely in experiment, and an equal set

of additional simulations.

It was guessed in [29] that the electric field is largest at the throat,

and smaller in the convergent and divergent nozzle section. In [30],

they concluded that the electric field is larger in the converging sec-

tion. The numerical results prove this hypothesis and allow for a

more detailed description: we found that the electric field is locally

increased at the nozzle throat. Moreover, the electric field shows a

generally negative slope for with respect to the full nozzle length.

This is due to gas mixing at the arc surface that is more effective in
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the convergent section and the divergent nozzle shape in the down-

stream part. Unfortunately, the upstream electrode tip is located

rather close to the throat so that a proper characterization of the

convergent section is not possible. This drawback in the study setup

should be eliminated in further simulations with differently selected

electrode positions, e.g., the cathode tip located more upstream.

In Table 14.1 we present an energy balance of the axially-blown

electric arc. Our results show that 15% of the electric power is radi-

ated to the nozzle wall. We also see a cold gas layer that separates

the electric arc from the nozzle wall. Hence, we can conclude that,

in experiments, the heat consumed for wall ablation is not due to

heat flux of thermal conduction, but by radiative heat flux. There-

fore, our data provides one of the results sought by [171], and it can

serve as a basis for further analysis for extending his work. However,

our numerical model should be examined in more detail to under-

stand the hot gas layer at the solid surfaces, which we think is due to

radiative heat flux and a numerical artifact of finite electrical conduc-

tivity. Doing so, we would be able to include radiative wall ablation

as an additional physical effect that can be compared to experimental

measurements.

Finally, we want to mention that such plasma simulations are ide-

ally suited to study complex tasks such as optimization of nozzle ge-

ometries and electrode positions. The present model can be extended

to include other interactions that are important during current in-

terruption. For example, the considered type of high voltage direct

current circuit breakers consists of an LC-oscillator that is interacting
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with the axially-blown arc; hence, such an external electrical circuit

can be added in further studies.

14.8. Summary & Outlook

This study presents numerical simulations of an axially-blown arc in

a convergent-divergent nozzle in a magnetohydrodynamic framework,

that has recently been studied in experiments. Being the first simula-

tions of the specific geometry at hand, the results complement exper-

imental findings with long-sought insights to quantities that cannot

be measured directly.

A comparison of arc voltages showed acceptable agreement of the

numerical model to the real device, especially at intermediate cur-

rent values. At larger and lower current values, the results indicate

that more physical effects such as wall ablation and erosion should

be included in further studies. A comparison of electric field to indi-

rectly estimated values showed that further work is needed to assess

the differential method used in experiments. Evaluating the energy

budget of the electric arc, our results show that 80% of the electrical

power leaves the nozzle geometry convectively, and 15% is radiated

to the nozzle wall; with respect to the arc core region, 33% of the

energy is transported away by the gas flow and 62% leaves the inner

zone by radiative heat flux.

Further work should include wall ablation and electrode erosion,

along with more advanced plasma data that includes copper vapor,

because those affect the energy budget via radiation and thermody-
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namics. The model can also be extended to include thermal con-

duction into the solid domains, and it can also be coupled with an

external electrical circuit to account for effects of other parts in a

HVDC circuit breaker. Parameter studies on the electrode position,

blow pressure, current levels, and geometric optimization can con-

tribute and complement recent experimental studies.
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15. Axially blown arc with PMMA

wall ablation and electrode

erosion

The text of this chapter has been submitted to the 30th Interna-

tional Conference on Electrical Contacts (ICEC 2021) in Rorschach,

Switzerland. The paper is accepted but the conference has been post-

poned by one year due to the Sars-CoV-2 pandemic. [62]

15.1. Abstract

An axially-blown arc in a PMMA nozzle is analyzed with numerical

simulations. Previous experiments showed that wall ablation is ob-

served for current values larger than a threshold and absent otherwise,

and it has recently been found that PMMA is optically thick in the

ultraviolet (UV) frequency range. An appropriate definition of radia-

tion bands for the UV range has recently been published that allows

for evaluating irradiance on the nozzle surface. In this contribution,

it is shown that copper vapor affects the spatial temperature profile
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of the arc column and increases wall irradiance towards the upstream

nozzle section. A caloric estimate for radiation-induced wall ablation

is presented, which sheds some light on the experimental findings.

15.2. Introduction

An axially-blown electric arc is considered in a convergent-divergent

nozzle made of PMMA (polymethyl methacrylate). The experimental

setup was developed as the main functional element for a cost-efficient

design of a high voltage direct current (HVDC) circuit breaker. [171]

Subsequent work analyzed the electric field in the nozzle. [29, 30]

In [27] it was found that the amount of ablated wall material was

related to the differential resistance, and mass loss of the PMMA

nozzle was measured only for currents larger than 350 A. However,

the effect could not be explained by the measurements due to many

unknown factors.

The experimental setup was investigated by numerical simulations

in a magneto-hydrodynamic (MHD) framework focusing on the gas

flow conditions and the energy budget. [64] The numerical results

agreed reasonably with previous measurements although the solid

bodies were modeled as adiabatic, and wall ablation as well as elec-

trode erosion were neglected. It was found that the arc column is

surrounded by a cold gas layer, so that the experimentally observed

wall ablation must be due to radiative heat transfer from the plasma

to the nozzle surface.

Recent work focused on radiative properties of polymers that are
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required for arc simulations. [17] It was found that PMMA is trans-

parent in the visible range but opaque in the ultraviolet (UV) range,

that is, for wavelengths shorter than 420 nm. Moreover, band-averaged

absorption coefficients have been reported that are a key input for

numerical simulations of electric arcs.

This study is aimed at refining the numerical model [64] towards

the experimentally measured results [27]. For that, copper vapor

due to electrode erosion shall be included and tested for its effect on

observable quantities by a parametric study. Moreover, the process

of wall irradiation and its ablation shall be investigated, based on the

recent findings of radiative properties of PMMA.

The paper is structured as follows. Section 15.3 describes the model

and the effects included in this numerical analysis. It also presents an

estimate for a minimum irradiance required such that wall ablation is

observable. The results are presented in section 15.4, by comparing

arc voltage to measured values and the effects of copper erosion on

the temperature distribution along the arc axis. We also show the

irradiation on the nozzle wall for the UV range. Conclusions are

summarized in section 15.5.

15.3. Numerical Model

15.3.1. Geometry

The geometric setup is taken from [27] and described in the following

using the nozzle throat and its axis as a reference (see figure 15.1).
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Figure 15.1.: Axisymmetric view of the PMMA nozzle and electrodes.

The inlet section has a radius of Rin = 25 mm. The nozzle has con-

ical sections of 70 mm length with half-angles 15° upstream and 10°

downstream, respectively. The throat radius is Rth = 10 mm and con-

nects the two sections with a rounded edge of radius 10 mm. Copper

rods are used as electrodes with 5 mm diameter and inserted into the

nozzle axially at positions xA = −30 mm and xB = 50 mm. The in-

let is located at x = −230 mm and the outlet at x = 300 mm. The

geometry allows to perform this study with axial symmetry.

The computational domain has a radius of 100 mm and it is dis-

cretized with polyhedral cells. The grid is refined between the elec-

trode tips to a size of 0.25 mm. The downstream section is refined

well beyond the nozzle exit with cell diameters of 0.5 mm to resolve

the shock fronts appropriately. Prism layers are specified on all body

interfaces to ensure a perpendicular mesh, since this helps to ensure

convergence of the electric potential solver; their height is specified

to be 0.1 mm.
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15.3.2. Model equations and framework

The aim of this study is to evaluate thermal irradiation on the nozzle

surface that is exposed to the electric arc. Therefore, we are looking

for a numerical and coupled solution in steady state of the Navier-

Stokes equations for gas flow, Maxwell’s equations for electromag-

netism, and the radiative transfer equation accounting for radiative

heat transfer. The model is implemented in the numerical framework

of Simcenter STAR-CCM+ (version 2019.3.1) [154].

Because the arc is located at the symmetry axis, the magnetic

field has a negligible effect and is discarded; as a consequence, the

electromagnetic equations reduce to the Gauss law for electric field.

The upstream electrode (cathode) is stressed with a current value

I, while the downstream electrode (anode) is fixed to zero potential.

The electrical conductivity of the plasma is characterized by tem-

perature, pressure, and copper mass fraction, and provided to the

software in tabulated format.

The inlet pressure p = 8.4 bar is specified in absolute scale and the

outlet pressure is set to ambient conditions. This results in supersonic

flow conditions downstream of the nozzle throat, and shock fronts will

form at the anode tip and nozzle exit. Turbulent flow conditions are

accounted for by the standard k-ε model. Ohmic heating is included

as energy source term. The thermodynamic and transport properties

of air-copper plasma were provided by Murphy. [116, 117]

The radiative transfer equation is solved numerically by the Dis-

crete Ordinate Method. The frequency domain is discretized into
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Band λl/µm λu/µm Radiation category

1 30000.0 4542.3
IR2 4542.3 856.5

3 856.5 700.0

4 700.0 420.0 Visible

5 420.0 290.0

UV

6 290.0 194.7
7 194.7 113.1
8 113.1 102.0
9 102.0 85.2

10 85.2 30.0

Table 15.1.: Definition of radiation band boundaries.

bands (see table 15.1) according to the ionization energy levels of

atomic nitrogen (see [142]) and the UV frequency band definitions

in [17]. Mean absorption coefficients are computed from spectral

data provided by Kloc [91] with Planck-averaging in each band, and

supplied to the software in tabulated format and as functions of tem-

perature, pressure, and copper mass fractions (see figure 15.2).

A detailed model would account for heat conduction from the

plasma to the solid bodies, their erosion, and also include an arc

root model for the detailed physics at the plasma-electrode interface

(see, e.g., [142]). However, as we are looking for a steady state solu-

tion, the thermal inertia is discarded which would lead ultimately to

solid bodies at evaporation temperature. This situation is resolved

and simplified: the electrodes are excluded from the energy balance

and adiabatic boundary conditions applied. Nevertheless, we account
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Figure 15.2.: Mean absorption coefficients at 8 bar and for copper
mass fraction 0% (above) and 10% (below).
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for electrode erosion with a mass species source term Φ = gj that is

proportional to current density j and a constant erosion rate g (units:

µg C−1). As in [142], the erosion rate discriminates between anode

and cathode by a factor of two: ga = 0.5gc. A drawback of this ap-

proach is that the electrode surface temperature will be significantly

higher than copper evaporation temperature.

Similar modeling issues are observed for the nozzle domain. The

solid domain must be included in the energy balance because we aim

to evaluate the irradiation on the nozzle surface. With this aim, we

set the absorption coefficient as well as the nozzle surface emissivity

to zero so that the body is optically transparent and therefore heating

effects are suppressed; as a consequence, we do not model any evap-

oration of PMMA. This aspect is justified by the recent results that

those polymer vapors have negligible effects on the total radiative

energy balance when exposed to high current arcs. [17] Moreover,

if ablation was included, the ablated vapors would be transported

along the nozzle surface and likely not be mixed into the arc column.

Therefore, it would only affect the gas flow conditions which could

be mimicked by a source term for air species.

The simulations run for 1500 iterations. It takes about 1000 to

1200 iterations until the initial conditions disappeared and the quan-

tities of interest converged. Despite of the nonlinear coupling among

the gas flow, electromagnetism and thermal radiation, the residuals

systematically reduced by three orders of magnitudes.

261



Chapter 15. Axially blown arc with PMMA wall ablation and
electrode erosion

15.3.3. Estimate on radiation-induced wall ablation

This section presents a caloric relation on the irradiance Ew required

to heat the nozzle wall and trigger its ablation in a time interval [0, t].

Let us consider a cylindrical tube with inner wall radius rw and ax-

ial length l irradiated uniformly. We also assume that the absorption

coefficient κ and mass density ρ of the tube material are given.

Let us consider the radiative intensity I(s) into the tube wall along

a straight line perpendicular to its surface, with s = 0 at the inner

tube wall. Moreover, let us assume that the tube wall is cold such

that its emission is negligible. From the radiative transfer equation,

we find that the radiative intensity decays exponentially on the scale

of its optical depth τ ,

I(s) = I(0)e−τ , τ =

∫ s

0
κ(x) dx. (15.1)

We may assume that the absorption coefficient is constant along

this path, which yields τ = κs. We choose s such that the radia-

tive intensity has decayed by two orders of magnitude, i.e., τ =

− ln(10−2) = 4.6. Using this value for optical depth, we define the

heated tube volume as

V = πl((rw + s)2 − r2
w) = 2πl

(
rw +

1

2
s

)
s ≈ Aws, (15.2)

assuming that the material layer thickness s is small compared to the

wall radius, and denoting the irradiated wall area by Aw = 2πlrw.

This volume has mass m = ρAws, and the absorbed energy until time
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t is equal to

Q = EwAwt. (15.3)

On the other hand, the required heat to increase the temperature of

a mass m from ambient temperature T0 to vaporization temperature

Tv and its latent heat of evaporation Lv is equal to

Q = m (∆h+ Lv) , (15.4)

where ∆h = h(Tv)−h(T0) denotes the difference in specific enthalpy

of the solid material. Therefore, the minimum value for wall irradia-

tion Ew required to induce wall ablation in time t is given by:

Ew =
Q

Awt
=
ρs

t
(h(Tv)− h(T0) + Lv) . (15.5)

To be specific and relate to the measurements in [27], in which

the nozzle was exposed for t = 10 ms to high current arc, we note

that the mass density of PMMA is ρ = 1.18 g cm−3 and its melt-

ing temperature Tv = 160 ◦C. We find data for the enthalpy differ-

ence ∆h = 211 kJ kg−1 [2] and the latent heat of evaporation Lv =

330 kJ kg−1 [102], and use an absorption coefficient κ = 1× 104 m−1

from the UV range [17]. With this data, we calculate that the ir-

radiation affects a material layer of thickness s = 0.46 mm, and a

minimum irradiance for radiatively induced ablation

Ew = 3× 107 W m−2. (15.6)
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15.4. Results & Conclusions

Figure 15.3 provides an overview of the gas flow field. It shows

the temperature field for current I = 1400 A and erosion rate gc =

40 µg C−1. We see that the arc temperature in the convergent section

is larger than downstream of the throat. We observe flow expansion

in the divergent section, and the shock fronts at the anode tip and

after the nozzle exit. The increased temperature at the cathode and

upstream of the nozzle is due to radiative heat transfer from the arc-

ing zone and that we solved for the steady state. A more detailed

analysis of the temperature in the arc column follows in figure 15.5.

Figure 15.4 shows the arc voltage as a function of current and

erosion rate. We see that the arc voltage reduces with arc current

and agrees rather well with the results reported in [27] for low to

intermediate currents. This is an improvement to previous numerical

results [64] which used rounded electrode tips and the k−ω turbulence

model, in particular for the lowest current values. We also note that

including electrode erosion leads to slightly larger arc voltage, and its

effect being more pronounced as current increases.

Figure 15.5 shows the arc center temperature profile in axial direc-

tion. At low currents (I ≤ 300 A), we see that copper vapor reduces

the arc center temperature only in a region close to the upstream

electrode tip, whereas for larger currents the temperature profile is

reduced for longer distances downstream.

The temperature profiles reveal further details that are indepen-

dent of arc current and characteristic to the gas flow field in the noz-
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Figure 15.3.: Temperature field for I = 1400 A and gc = 40 µg C−1.
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Figure 15.4.: Arc voltage as a function of current and erosion rate.
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Figure 15.5.: Arc center temperature at axial positions.
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zle. A few millimeters after the cathode tip (x = −25 mm), we note

a temperature maximum; this is due to the gas flow being directed

towards the nozzle axis enhancing effectively convective heat transfer

from the arc column and leading to a constricted arc column. At

x = 15 mm, we note a dip in the temperature profile which is a result

of the expanding flow downstream of the throat. At the anode tip,

we see a sharp increase in temperature because of a bow shock that

is formed by the supersonic flow. Finally, we see that the tempera-

ture profiles are rather uniform in the convergent upstream section,

whereas a negative slope is observed in the downstream divergent

section.

This last observation may be of interest for further developments

in the design of the geometric setup. It is interesting to note that

these findings on the temperature profile correspond to results on the

electric field, both numerically [64] and experimentally [30].

Figure 15.6 shows the boundary irradiance, i.e., the radiant flux

received per unit area on the nozzle wall, summed for all radiation

bands with wavelengths in the UV range (i.e., for band numbers 5

to 10). We note that irradiance increases with electrode erosion rate.

For low currents, we see that irradiance is larger in the upstream

section than it is downstream. For larger currents (I ≥ 500 A) we

discriminate on the erosion rate: if electrode erosion is neglected

(gc = 0), we see that irradiance is larger downstream compared to

the same distance upstream of the nozzle. On the other hand, if

electrode erosion is included (gc > 0) irradiance remains larger in the

upstream section for positions |x| ≤ 25 mm.
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Figure 15.6.: Sum of band-integrated boundary irradiance in UV
ranges. The vertical sequence of curves are the same
as in the legend.
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From these findings on arc voltage, arc center temperature, and

boundary irradiation, we conclude that copper vapor enhances radia-

tive heat transfer from the plasma column to its ambient and, as a

consequence, reduces the plasma temperature in the upstream sec-

tion (see also figure 15.5). Although copper-contaminated plasma is

more conductive than pure air at otherwise identical temperatures

and pressures, the total effect of reduced arc temperature dominates

and leads to larger arc voltage (see figure 15.4).

In section 15.3.3 we developed an expression for radiation-induced

wall ablation (see eq. (15.6)). A closer look at figure 15.6 reveals that

the criterion Ew ≤ 3× 107 W m−2 is fulfilled for current I ≤ 300 A

independently of the erosion rate, and coincides with the observations

in [27]. It is therefore concluded that those observations are due

to fact that PMMA is opaque in the UV range (as found in [17]).

However, the hypothesis on the criterion for radiation-induced wall

ablation should be tested with further experiments.

Figure 15.7 shows the wall irradiance for all bands in the two cases

of I = 100 A and I = 1400 A. The thick line shows the sum of irradi-

ance of all bands in the UV range, and it is the same as in figure 15.6.

We highlighted the bands that contribute most for the two cases. For

low current it is band 7 and 2 that contribute most along the full arc

column. This picture changes for larger current: we observe that

band 7 has the largest contribution only in the downstream section,

whereas band 6 has the largest contribution upstream. We also read

from the figure that the UV bands cover about 2/3 of the total wall

irradiance in both cases. It is concluded that the band definition in
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table 15.1 will be useful for further studies on PMMA ablation, and

it would be useful if measurements of optical properties of PMMA

are extended to shorter wavelengths.

Figure 15.8 shows the radiant flux, i.e., the surface integrated value

of boundary irradiance, onto the nozzle wall for frequencies in the UV

regime. We clearly see that the radiant flux increases with current.

Moreover, we see that the total irradiance is enhanced by the erosion
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rate for currents larger than 300 A. This may be another indication

for the observations in [27] that ablation occurs only for currents

above a certain threshold.

15.5. Summary

Numerical results have been presented on an axially-blown arc in a

PMMA nozzle. The computational model was refined by including

copper erosion and defining the radiation bands to allow for analy-

sis of wall irradiation in the UV range, because PMMA is optically

thick for those wavelengths. An estimate for radiation-induced wall

ablation has been developed and tested with previous results of mea-

surements and the actual data obtained from these simulations. Ad-

ditionally, a detailed analysis of the temperature profile in the arc

column and the band-averaged wall irradiance has been provided. It

has been found that copper erosion leads to higher arc voltage and

lower arc center temperature particularly in the upstream section be-

cause it enhances radiative transfer to its ambient. It has also been

found that copper erosion affects the spatial distribution of irradiance

as evaluated on the nozzle wall, in particular that the upstream sec-

tion is more intensely irradiated if copper vapor is present. Finally,

it has been found that irradiance in the UV range covers about 2/3

of the total wall irradiance.

Further work may refine the computational model in various as-

pects. For instance, heat conduction to the solid bodies and their

evaporation would lead to a more complete and consistent model and
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might help for more accurate arc voltage at large currents.

The estimate for radiation-induced wall ablation shall be tested

with other testcases. For instance, the experiments by [27] should

be repeated with a shorter or longer time for high arc current, since

this will affect the wall irradiance Ew required to observe ablation as

shown by eq. (15.5). The numerical simulations may also be repeated

for other inlet pressures and compared to further results in [27].
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16. Summary & Outlook

16.1. Summary

This part showed results on applied numerical simulations of electric

arcs in circuit breakers. The first contribution demonstrated that the

software framework allows for computing the rigid body motion in a

self-consistent manner and continuous mesh morphing. It examined

the contributions to total torque of the contact arm. It was found

that the torsional spring being leads to the largest contribution before

electromagnetic force starts to dominate.

The second and third contribution investigated an axially-blown

electric arc in a PMMA nozzle. The numerical simulation results

complement experimental findings by an analysis of the energy bud-

get from the arc to the nozzle wall. Moreover, the simulations allowed

to evaluate the electric field in the arc as well as the flow field. These

results were supplemented with the latter study including electrode

erosion and evaluating radiative heat transfer to the PMMA nozzle

wall. A caloric estimate is provided for the minimum irradiance re-

quired for initiating ablation. The numerical results of radiant heat

flux to the nozzle wall may explain the experimental observations
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that wall ablation is found only for sufficiently large current.

16.2. Outlook

The simulation framework will be applied to other types and ge-

ometries of circuit breakers. We will continue with further modeling

aspects such as non-linear material data in the magnetic problem and

ablation of the wall material.

The numerical model of the PMMA nozzle will be improved for bet-

ter fitting to results from experiments. This includes further studies

on the erosion rate, their melting, and irradiation of the nozzle walls.

The numerical results will also continue with other flow conditions,

electric current values, and electrode positions for comparison with

measurements. The simulations may also be useful in the optimiza-

tion process of the nozzle design.
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17. Summary

In part I we generalized an existing numerical scheme for plasma

simulations to 3D and non-constant timestep size. We included a

collision model to account for frictional effects among the plasma

species. A key issue was to interpolate data consistently between

the primal and dual mesh discretization. Numerical experiments val-

idated the subsystems, and the fully coupled Euler-Maxwell system

was also tested. The main feature of the numerical scheme is to be

asymptotic preserving, with the scaled Debye length λ as a parameter

that allows for continuous blending between the full Maxwell model

and the eddy current model. However, the testcase for λ = 0 showed

that the extended model is not asymptotic preserving because it is

not compatible with Ohm’s law.

Part II concerned aspects of modeling radiative heat transfer in

electric arc simulations. We revisited the fundamentals and mod-

eling decisions that yield to computationally accessible models for

applied simulations. We provided a sensitivity analysis on absorp-

tion coefficients and their influence on arc voltage and temperature

in the simplest setting of a wall-stabilized arc model. We also con-

sidered the averaging methods for mean absorption coefficients and
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found, that the line limited Planck mean permits to find the correct

temperature profile at minimal computational costs. Its deficiency for

applied simulations lies in the requirement that the renormalization

length must be chosen a priori. However, this disadvantage should be

viewed with the fact that the Planck and Rosseland mean are limiting

cases themselves and a truly exact solution is not feasible.

Part III showed results of applied numerical simulations of electric

arcs. The first case considered a low voltage circuit breaker. We

showed that the simulation framework permits to compute the con-

tact arm motion in a self-consistent manner and to evaluate the con-

tributions of mechanics, plasma pressure, and electromagnetic force

to total torque. The framework also allows for a continuous mesh

morphing. The latter cases focused on a high voltage direct current

circuit breaker nozzle. The same numerical framework has enabled

us to evaluate the electric field and gas flow complementing measure-

ment results. We also modeled radiative heat flux onto the nozzle

wall and provided an argument for the observation that wall ablation

is only measureable for sufficiently large currents.

In total, this thesis showed that performing numerical simulations

of electric arcs is an involved task. It streches from the general mod-

eling and coupling of an electrically conductive gas to specific sub-

models for radiation, contact motion, and many other aspects. They

cannot be viewed separately but must be combined to a truly multi-

physical framework.
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[114] Mario Mürmann, Alexander Chusov, and Roman Fuchs.

Simulation-based Development of a Line Lightning Protection

Device. In 30th International Conference on Electrical Con-

tacts, 2021.

[115] A. B. Murphy. Diffusion in equilibrium mixtures of ionized

gases. Physical review. E, Statistical physics, plasmas, fluids,

and related interdisciplinary topics, 48(5):3594–3603, 1993. doi:

10.1103/PhysRevE.48.3594.

[116] A. B. Murphy. Transport coefficients of air, argon-air, nitrogen-

air, and oxygen-air plasmas. Plasma Chemistry and Plasma

Processing, 15(2):279–307, 1995. doi: 10.1007/BF01459700.

[117] A. B. Murphy. A comparison of treatments of diffusion in ther-

mal plasmas. Journal of Physics D: Applied Physics, 29(7):

1922–1932, 1996. doi: 10.1088/0022-3727/29/7/029.

[118] Alexandra Miriam Mutzke. Lichtbogen-Simulation unter beson-
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Dissertation, TU Braunschweig, Braunschweig, 2014.
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technique. Optics and Lasers in Engineering, 51(4):382–387,

2013. doi: 10.1016/j.optlaseng.2012.11.018.

[150] Martin Seeger. Perspectives on Research on High Voltage Gas

Circuit Breakers. Plasma Chemistry and Plasma Processing,

35(3):527–541, 2015. doi: 10.1007/s11090-014-9595-4.

[151] V. G. Sevast’yanenko. Radiation transfer in a real spectrum.

Integration over frequency. Journal of Engineering Physics, 36

(2):138–148, 1979. doi: 10.1007/BF00865111.

[152] Dongkyu Shin, John W. McBride, and Igor O. Golosnoy. Arc

Modeling to Predict Arc Extinction in Low-Voltage Switching

Devices. In 2018 IEEE Holm Conference on Electrical Con-

tacts, pages 222–228. IEEE, 14.10.2018 - 18.10.2018. ISBN

978-1-5386-6315-8. doi: 10.1109/HOLM.2018.8611712.

[153] Siemens PLM software. STAR-CCM+, 2018.

[154] Siemens PLM software. STAR-CCM+, 2019.

303



Bibliography

[155] J. Smajic, T. Franz, M. K. Bucher, A. Limone, A. Shoory,

S. Skibin, and J. Tepper. Computational and Experimental In-

vestigation of Distribution Transformers Under Differential and

Common Mode Transient Conditions. IEEE Transactions on

Magnetics, 53(6):1–4, 2017. doi: 10.1109/TMAG.2017.2673763.

[156] Jasmin Smajic, Jillian Hughes, Thorsten Steinmetz, David

Pusch, Wolfgang Monig, and Martin Carlen. Numerical Com-

putation of Ohmic and Eddy-Current Winding Losses of Con-

verter Transformers Including Higher Harmonics of Load Cur-

rent. IEEE Transactions on Magnetics, 48(2):827–830, 2012.

doi: 10.1109/TMAG.2011.2171926.

[157] Gary A. Sod. A survey of several finite difference methods

for systems of nonlinear hyperbolic conservation laws. Jour-

nal of Computational Physics, 27(1):1–31, 1978. doi: 10.1016/

0021-9991(78)90023-2.

[158] A. Sommerfeld. Zur Elektronentheorie der Metalle auf Grund

der Fermischen Statistik. Z. Physik (Zeitschrift für Physik), 47

(1-2):1–32, 1928. doi: 10.1007/BF01391052.
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