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Summary 

Climate change poses increasing risks to what is valuable to humans around the 

globe. Changing, often intensifying, weather and climate extremes can increasingly 

be attributed to anthropogenic climate change, and change is projected to accelerate 

throughout the 21st century. Against this backdrop, risk awareness is growing across 

sectors and so is the demand for research and tools supporting efforts to mitigate 

climate change and adapt to its adverse consequences. Over the past decades, more 

and more global-scale climate impact data and models have become available, 

including archives of reported disaster impacts, storm track datasets, and global 

gridded crop models simulating yield responses to climate variables. The risk 

modeling platform CLIMate ADAptation (CLIMADA), implemented in the 

programming language Python, provides a modular open-source and -access 

platform for the probabilistic, event-based assessment of climate-related impact and 

risk. The underlying conceptual framework describes risk as a function of hazard, 

exposure, and vulnerability. Hazard is represented by the intensity and frequency of 

weather and climate events. Exposures constitute the presence of people, ecosystems, 

or assets that can be affected by a hazard. Vulnerability, implemented in CLIMADA 

in the form of ‘impact functions’, relates hazard intensity to the degrees of damage 

experienced by the respective type of exposure. CLIMADA is a growing modeling 

platform, and the three studies in this thesis aim to bring it to global consistency. The 

studies constituting this thesis were conducted within a joint research and 

development project with an implementing partner in the financial sector applying 

the results directly for forward-looking asset valuation. The main objective of this 

collaboration was to develop, evaluate, and implement climate risk modeling 

configurations with a global scope for the assessment of physical climate impacts and 

related economic risk. The implementing partner has not only integrated the model 

components as developed in the present thesis, engagement with academia also 

helped him to design and implement a more consistent risk assessment framework 

well beyond the scope if this collaboration. In Chapter One of this thesis, both the 

applied and scientific context of the project are introduced, providing insight in the 

conceptual framework and its application.  

Chapter Two enables the spatially explicit modeling of direct impacts to economic 

assets by providing a globally consistent asset value exposure layer. The method 

proposed and implemented makes use of the spatial correlation of economic activity 

and asset values in a country with both nightlight intensity and population density. 

The so-called LitPop (‘[night] Li[gh]t Population’) method combines satellite-based 

nightlight data and population data to disaggregate country-level asset value 

estimates to a sub-national high-resolution grid. The disaggregation skill is evaluated 

both quantitatively and qualitatively, comparing varying weights for nightlight 
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intensity and population count. A global gridded data set of disaggregated asset 

values in US dollars for the year 2014 is provided alongside the paper at a resolution 

of 30 arcsec (approx. 1 km globally). 

In Chapter Three, LitPop exposure data is combined with a hazard set based on track 

data of hundreds of historical tropical cyclones (TCs) that made landfall in 53 

countries between 1980 and 2017. The objective of the study is the calibration of the 

vulnerability component for TC risk modeling. For this purpose, wind speed 

footprints are modeled for each TC event. This allows the fitting of regional impact 

functions by comparing simulated with reported damage values for 473 reported 

events matched to individual TC tracks. Chapter Three is concluded with an 

explorative case study of TC damage in the Philippines, where the calibration comes 

with a large spread in fitted impact function parameters. 

With Chapter Four, attention is shifted from TC impacts to a sectoral risk 

perspective, for a global, country-level assessment of historical and twenty-first 

century risk to crop production. This study is based on global gridded crop yield 

simulations for maize, rice, soybean, and wheat. It uses an unprecedented ensemble 

of transient yield simulation output from eight global gridded crop models driven by 

bias-corrected output from five global climate models, as facilitated by the Inter-

Sectoral Impact Model Intercomparison Project (ISIMIP). Applying two 

complementary risk metrics, crop yield simulations are used to calculate the annual 

probability of projected crop production falling short of a given threshold, by 

country. Country-specific 21st century crop production risk is assessed by comparing 

these probabilities for historical and future levels of global warming, considering 

model agreement as a measure of robustness. 

The three main chapters are followed by a summary of key findings: quantitative 

estimates of exposure value distribution, TC vulnerability, and crop production risk 

per country. This is followed by discussions of the cascading uncertainties intrinsic 

to complex risk modeling chains, and practical implications of the thesis within the 

context of the joint research and development project as well as beyond. To make the 

resulting data and tools available for research and application – also beyond the scope 

of this project – the work in this thesis pays special attention to using scientific data 

and tools licensed for both academic and commercial use. At the same time, methods 

developed here are published open-source and -access, both as part of the CLIMADA 

repository and as peer-reviewed research papers. As for an outlook, future research 

is proposed with the potential to mitigate some of the entailed uncertainties, expand 

TC risk modeling from historical to future risk, and build on the findings presented 

here, further integrating output from climate and impact models in the probabilistic 

risk modeling framework of CLIMADA for globally consistent multi-hazard climate 

risk modeling. 
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Zusammenfassung 

Der Klimawandel stellt eine zunehmende weltweite Bedrohung für Umwelt und 

Mensch dar. Veränderungen der Intensität und Häufigkeit von Wetter- und 

Klimaextreme können bereits heute vermehrt auf den anthropogenen Klimawandel 

zurückgeführt werden und es wird prognostiziert, dass sich der Wandel im Laufe des 

21. Jahrhunderts weiter beschleunigen wird. Vor diesem Hintergrund wächst auch 

das Bewusstsein für die Risiken des Klimawandels in Wissenschaft, Politik und

Wirtschaft. Mit der zunehmenden Dringlichkeit und dem Ruf nach effektivem

Klimaschutz sowie Anpassung an die negativen Folgen des Klimawandels steigt auch 

der Bedarf nach angewandter Forschung und Entwicklung in dem Gebiet. In den

letzten Jahrzehnten sind mehr und mehr Daten und computergestützte Modelle zur

Quantifizierung von Klimafolgen auf globaler Ebene verfügbar geworden, darunter 

etwa Archive mit gemeldeten Schäden durch Naturkatastrophen, Daten zu Verlauf 

und Intensität tropischer Stürme, und global gerasterte landwirtschaftliche 

Ertragsmodelle, welche die Auswirkungen von Klimavariablen auf den Anbau von

Getreide und Sojabohnen simulieren. Die Risikomodellierungsplattform CLIMADA 

(CLIMate ADAptation), implementiert in der Programmiersprache Python, bietet

eine modulare open-source und -access Plattform für die probabilistische, 

ereignisbasierte Bewertung von wetter- und klimabedingten Auswirkungen und

Risiken. Der zugrundeliegende konzeptionelle Rahmen beschreibt Risiko als eine

Funktion von Gefährdung (hazard), Exposition (exposure) und Verwundbarkeit

(vulnerability). Die Gefährdung wird dabei durch die Intensität und Häufigkeit von

Wetter- und Klimaereignissen repräsentiert. Die Exposition stellt das Vorhandensein 

von Bevölkerung, Ökosystemen oder Vermögenswerten dar, die von einer Gefahr 

betroffen sein können. Die Vulnerabilität, die in CLIMADA in Form von

Schadensfunktionen (impact functions) implementiert ist, setzt die Intensität der

Gefährdung mit dem Grad des Schadens in Beziehung, welchen die jeweilige Art der 

Exposition erfährt, wenn sie von einer Naturkatastrophe betroffen ist. Die drei hier 

vorgestellten wissenschaftlichen Studien leisten einen Beitrag dazu, relevante

klimabezogene Naturgefahren in CLIMADA globale konsistent abzubilden und

Risiken zu quantifizieren. Die Studien wurden im Rahmen eines Innovationsprojekts

gemeinsam mit einem Implementierungspartner aus dem Finanzsektor 

durchgeführt, der die Ergebnisse direkt in seiner Finanzmodellierung anwendet. Das 

Hauptziel dieser Zusammenarbeit ist die Entwicklung, Evaluierung und

Implementierung von Klimarisikomodellen für die Bewertung weltweiter physischer 

Klimaauswirkungen und dem damit verbundenen wirtschaftlichen Risiko. Im ersten

Kapitel dieser Arbeit stelle ich sowohl den angewandten als auch den

wissenschaftlichen Kontext der Doktorarbeit vor und gebe einen Einblick in den 
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konzeptionellen Rahmen, die verwendeten Daten und Modelle, sowie deren 

Anwendung.  

Im zweiten Kapitel wird die räumlich explizite Berechnung eines global konsistenten, 

hochaufgelösten Expositionsdatensatzes beschrieben. Die sogenannte LitPop-

Methode nutzt die räumliche Korrelation von wirtschaftlichen Aktivitäten und 

Vermögenswerten in einem Land mit der von Satelliten aufgezeichneten Helligkeit 

nächtlicher Beleuchtung und der Bevölkerungsdichte. Die Methode kombiniert 

satellitengestützte Nachtlicht- und Bevölkerungsdaten, um 

Vermögenswertschätzungen auf Länderebene auf ein subnationales hochauflösendes 

Raster zu disaggregieren. Die Qualität der Disaggregation wird sowohl quantitativ als 

auch qualitativ evaluiert, indem unterschiedliche Gewichtungen für die 

Nachtlichtintensität und die Bevölkerungsdichte verglichen werden. Neben der 

Methode wird ein globaler gerasterter Datensatz mit disaggregierten 

Vermögenswerten in US-Dollar für das Jahr 2014 mit einer Auflösung von 30 

Bogensekunden (ca. 1 km global) öffentlich zur Verfügung gestellt. 

In Kapitel Drei werden die LitPop-Expositionsdaten mit einem 

Gefährdungsdatensatz kombiniert, der auf Sturmdaten von Hunderten tropischen 

Wirbelstürme (TCs) basiert, die zwischen 1980 und 2017 in 53 Ländern auf Land 

getroffen sind und Schaden angerichtet haben. Das Ziel der Studie ist die 

Kalibrierung der Vulnerabilitätskomponente für die ereignisbasierte TC-

Risikomodellierung mit CLIMADA. Zu diesem Zweck wurden Fussabdrücke der 

maximalen Windgeschwindigkeit für jeden Sturm modelliert. Dies ermöglicht das 

Anpassen regionaler Schadensfunktionen im Vergleich simulierter zu gemeldeten 

Schadenswerten für 473 Ereignisse, die einzelnen Stürmen zugeordnet sind. Das 

Kapitel wird mit einer explorativen Fallstudie zu Taifun-Schäden auf den Philippinen 

abgerundet, anhand derer die grosse Streuung der kalibrierten Schadensfunktionen 

diskutiert wird.  

Im vierten Kapitel verlagert sich der Fokus weg von den Folgen tropischer Stürme 

hin zu einer sektoralen Risikoperspektive. Ziel der Studie ist eine globale Bewertung 

der Risiken für die landwirtschaftliche Produktion auf Länderebene im 21. 

Jahrhundert. Diese Studie basiert auf globalen gittergestützten Ertragssimulationen 

für Mais, Reis, Soja und Weizen. Sie verwendet ein neues Ensemble von acht globalen 

gitterbasierten Erntemodellen, die mit Klimadaten von fünf globalen Klimamodellen 

angetrieben werden. Dieses Ensemble entstand im Rahmen des Inter-Sectoral Impact 

Model Intercomparison Projects, Runde 3b (ISIMIP3b). Das länderspezifische 

Ernterisiko im 21. Jahrhunderts wird durch den Vergleich der Wahrscheinlichkeit 

von Ernteausfällen für historische und zukünftige Niveaus der globalen 

Durchschnittstemperatur evaluiert, wobei die Übereinstimmung zwischen den 
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einzelnen landwirtschaftlichen Modellen als Mass für die Robustheit der Ergebnisse 

herangezogen wird. 

Auf die drei Hauptkapitel folgt eine Zusammenfassung der wichtigsten Ergebnisse, 

gefolgt von Diskussion von Unsicherheiten und Limitierungen, sowie praktischer 

Implikationen der Doktorarbeit im Rahmen des angewandten Forschungs- und 

Entwicklungsprojekts – und darüber hinaus. Um die resultierenden Daten und auch 

über den Rahmen dieses Projekts hinaus verfügbar zu machen, liegt ein besonderer 

Fokus dieser Arbeit darauf, dass vorrangig wissenschaftliche Daten und Methoden 

verwendet werden, die sowohl für die akademische als auch für die kommerzielle 

Nutzung lizenziert sind. Ausserdem werden die hier entwickelten Methoden open-

source und -access veröffentlicht, sowohl in wissenschaftlichen Publikationen als 

auch online als Teil des CLIMADA-Repository. 
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1. Introduction

some of the anthropoi 
computerised their ancestors’ theories 

to a degree – or more – 
making everyone look ahead 

with uncertainty 

anthropo-obscenity (2021) 

1.1 Preamble 

In 2018, the same year I began with the work for this thesis, the school strike for 

climate started an international protest movement, popularizing the term “climate 

crisis” across public and scientific discourse. The term was previously coined by Al 

Gore and other environmental activists in the first decade of the 21st century (Paglia, 

2018). According to Paglia (2018), referring to climate change as a global crisis 

implies that climate change puts core values and assets of the human civilization at 

risk and there is an urgency to act upon it. In other words, the perception of 

anthropogenic climate change as a crisis is all about its consequences for humans and 

what is valuable to them. Discussing in full depth the diagnosis and attribution of 

anthropogenic climate change, as well as the urgency to mitigate greenhouse gas 

emissions, would go beyond the scope of this introduction. They are nonetheless the 

starting point for any research on climate risks and should therefore not go 

unmentioned. When reading recent publications in climate science, I personally 

enjoy comparing how the authors summarize these key questions in their 

introductions. My current favorite summary was crafted by Rosenzweig et al. (2017): 

“These key questions are now answered: climate change is happening and is being 

driven primarily by humans”. The authors underpin this statement by referring to 

the “unequivocal” scientific findings assembled by the Intergovernmental Panel on 

Climate Change (IPCC) since the early 1990s (e.g., IPCC, 2013). Further scientific 

efforts have added evidence and nuance to these findings, for instance by attributing 

recent climatic extreme events and their impacts to climate change and its 

anthropogenic sources (e.g., Cramer et al., 2014; Herring et al., 2020; James et al., 

2019; Otto, 2017; Hansen et al., 2016; Rosenzweig and Neofotis, 2013) and projecting 

that a further increase in global mean temperature will lead to more severe and wide 

spread impacts (e.g., Lange et al., 2020; Masson-Delmotte et al., 2018; Oppenheimer 

et al., 2014) as has to be expected in any complex system once excited beyond critical 

thresholds. This being said, the other side of climate crisis is the threat climate change 
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poses to core values of human civilization. A threat that manifests when changing 

weather and climate patterns impact the lives, well-being, and livelihoods of humans, 

but also the socio-economic and ecological systems they value and depend upon. 

With this thesis, my hope is to make a small contribution to the understanding and 

quantification of these impacts, and contribute to the development and application 

of tools for the assessment of climate-related risks and how they might evolve over 

the 21st century. The work presented here was conducted as part of a collaboration 

with a company assessing climate risk in the financial sector, thriving to enable the 

implementing partner to render the impacts of climate change to this key sector more 

transparent (see Sections 1.3 and 1.5). As a joint research and development project, 

the project’s aim was always two-fold, both to contribute to private and public efforts 

addressing the climate crisis. The results and methods of this study are or will be 

published open-access to help advance climate impact science and to make the results 

available both to public and private actors beyond the specific scope of this project. 

In the following, first an overview of the context, aim, and focus of this thesis is given 

with regard to the broader context (Section 1.2) and in cooperation with the project’s 

implementing partner (1.3). Subsequently, the scientific background, including 

definitions, methods, and model types of climate risk modeling in general and 

specific for this thesis will be introduced (1.4). After that, I will provide an overview 

of the implementation of the outcomes from the three main studies, as well as 

additional data and methods used in the applied context of this project (1.5). The 

three papers constituting the main body of the thesis are found in Chapters Two to 

Four, followed by discussion and outlook. 

1.2 Climate change in the financial sector 

“In the past year, people have seen the mounting physical toll of climate change in 

fires, droughts, flooding and hurricanes. They have begun to see the direct financial 

impact as energy companies take billions in climate-related write-downs on stranded 

assets and regulators focus on climate risk in the global financial system. They are 

also increasingly focused on the significant economic opportunity that the transition 

will create, as well as how to execute it in a just and fair manner. No issue ranks 

higher than climate change on our clients’ lists of priorities. They ask us about it 

nearly every day.” 

(Fink, 2021) 

In reaction to climate change and the risks it poses, there is an increasing focus on 

measures to address climate change across disciplines in research, public discourse, 

but also the private sector, as illustrated by above quote from the 2021 letter to CEOs 

from Larry Fink, head of the multinational investment management corporation 
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BlackRock. Actions taken to avert or limit the climate crisis are often categorized 

either as mitigation or adaptation measures. The term mitigation of climate change 

(or climate protection) refers to all actions aiming to “reduce the sources or enhance 

the sinks of greenhouse gases” (IPCC, 2014b), with the goal to essentially limit 

climate change. The term adaptation describes the “process of adjustment to actual 

or expected climate and its effects”, according to the IPCC’s 5th assessment report’s 

glossary. More specifically, adaptation aims at avoiding or moderating any kind of 

harm or adverse effects inflicted by climate change, but can also include exploiting 

associated “beneficial opportunities” (IPCC, 2014b). 

The financial sector is widely recognized to play a critical role both for mitigation of 

and adaptation to climate change (e.g., Bloomberg et al., 2017; Kidney et al., 2017), at 

the latest since the Paris Agreement of 2015. I will illustrate this by example of 

institutional climate initiatives related to finance. While there are uncountable 

initiatives and civic movements from local to global scale that made substantial 

contributions to raise awareness of climate change in the financial sector and beyond, 

it is the work of the United Nations Framework Convention on Climate Change 

(UNFCCC) and, more sector specific, the Task Force on Climate-related Financial 

Disclosures (TCFD) with its focus on climate-related risks that has been most 

relevant in setting the scene for this thesis. Therefore, the main attention in the 

following is on these initiatives, and especially the terms and recommendations 

coined by the TCFD (Fig. 1) – and how this motivates the research and development 

presented in this thesis. 

 

Figure 1: Core elements of climate-related financial disclosures, from Annex: Implementing the 
Recommendations of the Task Force on Climate-related Financial Disclosures (TCFD, 2017, p.11). 
One of the TCFD’s goals is to “enable stakeholders to understand better the concentrations of 
carbon-related assets in the financial sector and the financial system’s exposures to climate-related 
risks” (TCFD, online). The TCFD’s recommendations rest on four pillars: governance, strategy, risk 
management, and metrics and targets. The scientific work presented here contributes to a science-
based assessment of climate-related physical risks, to inform metrics, targets, and climate change 
mitigation and adaptation efforts in the financial sector and beyond. 
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Policy makers as well as non-governmental and private institutional actors across 

sectors have widely referred to the Paris Agreement to motivate novel climate 

initiatives. The Paris Agreement is an international agreement negotiated in 2015 at 

the 21st Conference of the Parties of the UNFCCC, signed by 194 countries and the 

European Union (status October 2020). According to Falkner (2016), the Paris 

Agreement introduced a new logic of international climate agreements: The focus on 

voluntary national greenhouse gas emission reduction targets embedded in a 

framework of international comparison implies a logic of ‘naming and shaming’, 

putting a large emphasize on domestic responsibility: “For the Paris Agreement to 

make a difference, the new logic of ‘pledge and review’ will need to mobilize 

international and domestic pressure and generate political momentum behind more 

substantial climate policies worldwide” (Falkner, 2016). Finance is widely recognized 

as a crucial sector both for global climate change mitigation and adaptation efforts. 

This is due to both the huge greenhouse gas footprint of investments and the need to 

mobilize private capital for ‘climate friendly’ investments, including an efficient 

allocation of capital both for climate mitigation and adaptation (Maltais and Nykvist, 

2020). As a consequence, a multitude of initiatives have emerged with the goal to 

transform the finance sector, to ensure it contributes to achieving a sustainable 

economy, more specifically, an economy operating with greenhouse gas emissions 

that are within the boundaries required to keep global mean temperatures below a 

critical threshold, i.e., the thresholds agreed upon in the Paris Agreement of global 

mean temperatures 1.5 and 2°C above pre-industrial levels. In the following, I will 

briefly introduce several institutional climate initiatives in the financial sector most 

relevant for a better understanding of the context of this thesis. 

The United Nations Environment – Finance Initiative (UNEPFI) was founded in 1992 

in the context of Rio Climate Summit by members of the finance sector recognizing 

“that economic development needs to be compatible with human welfare and a 

healthy environment” and committing to sustainable development, management, 

and fostering public awareness and communication with regard to environmental 

and social aspects (UNEPFI, 1992). The UNEPFI hosted United Nations-convened 

Net-Zero Asset Owner Alliance (UNEPFI, 2019) was launched in 2019 and comprises 

29 institutional investors representing nearly $ 5.0 trillion assets under management 

(state August 2020). Member organizations commit to transition their portfolios to 

net-zero greenhouse gas emissions by 2050 and align them with a 1.5° target 

formulated in the Paris Agreement (UNEPFI, 2019). 

Focused on accounting as one specific aspect of financial reporting and 

accountability, the Partnership for Carbon Accounting Financials (PCAF, 2015) is 

another network of finance sector actors founded at the 2015 Paris Climate Summit 

with a focus on harmonizing approaches for carbon accounting. On the level of 
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central banks, the Network for Greening the Financial System (NGFS) brings together 

eight central banks committed to support financing the transformation to a green, 

low-carbon economy and contributing to reaching the 2°C target of the Paris 

Agreement (NGFS, 2017). Other relevant sectoral initiatives and non-profit 

organizations aiming to “establish and improve industry specific disclosure 

standards” (SASB, online) with focus on climate change are the Sustainability 

Accounting Standards Board (SASB, online), CDP (CDP, online), and the Science 

Based Targets initiative (SBTi, 2019). 

But what is it that is actually required to realize this multitude of commitments? 

Eventually, it is the real economy in which the financial sector is invested that emits 

greenhouse gases and needs to be transformed to mitigate global warming. For actors 

in an abstract system like the finance sector to enable necessary transformations 

without changing the rules of the system altogether, the sector depends on steering 

investments to where they actually make a difference. Climate-aware financial 

products, such as ‘green bonds’, are a relatively new asset class with a strong growth 

on the financial markets over the last decade (Kidney et al., 2017; Maltais and 

Nykvist, 2020). ‘Green bonds’ follow voluntary guidelines pinned down in the Green 

Bond Principles (ICMA Group, 2018) and are supposed to give investors the 

possibility to invest their money more sustainable, e.g., avoid investment in 

greenhouse gas emission intensive companies, among others. This asset class is 

claimed to be intended to contribute to sustainable transition by increasing 

transparency of information regarding ecological impacts of investments, which also 

indirectly supports the implementation of climate policies and lowering the cost of 

capital for low-carbon projects (Shishlov et al., 2016). To ensure that ‘green’ financial 

products actually invest where they make a difference, the financial sector depends 

on inter-comparable information on the risks and opportunities of the real economy 

with regard to climate change relevant transformations. Hosted by the Linux 

Foundation Climate Finance Foundation (LFCF), the project OS-CLIMATE puts 

emphasis on the access to technical solutions and transparent tools for this purpose. 

OS-CLIMATE has the goal to develop an open-source platform and tools to assess 

and manage both climate-related risk and solutions for the finance sector across 

multiple sectors globally, in cooperation with leading technology companies (OS-

CLIMATE, 2020; The Linux Foundation, 2020). This is just one example for science-

based, transparent tools, and impact-oriented metrics becoming more and more 

relevant for the financial sector in order to build trust in emerging ‘green’ financial 

products and monitor their impact with regard to climate change mitigation and 

adaptation. One of the most prominent sectoral publications with regards to the 

disclosure of climate relevant information are the recommendations of the Task 

Force on Climate-related Financial Disclosures (TCFD), building on the conviction 

that “increasing transparency makes markets more efficient and economies more 
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stable and resilient” (Bloomberg et al., 2017). The recommendations are based on 

acknowledging the risk anthropogenic climate change poses across economic sectors 

and thereby for investors. The TCFD diagnoses an apparent lack of transparent and 

consistent corporate climate risk reporting, making it “difficult for investors to know 

which companies are most at risk from climate change, which are best prepared, and 

which are taking action” (Bloomberg et al., 2017). To counteract this, the report 

“establishes recommendations for disclosing clear, comparable and consistent 

information about the risks and opportunities presented by climate change.” 

According to the TCFD, climate-related risk can be classified as either ‘physical’ or 

‘transition risk’. Transition risk entails ‘policy and legal risk’, ‘technology risk’, 

‘market risk’, and ‘reputation risk’, with all of them mostly related to the mitigation 

of climate change and climate litigation. In contrast, physical risk refers to risk related 

to the changed climate system itself, such as intensified weather and climate 

extremes. The TCFD’s concept of physical risk is discussed in more detail in Section 

1.4.1. To also consider possible positive impacts of climate change for organizations, 

the TCFD recommends managing risks and opportunities in a combined framework, 

as they interplay in determining the financial consequences of climate change, e.g., 

impacts on revenue, expenditures, assets and liabilities, and capital and financing. 

With regard to risk disclosure, the TCFD recommends to report in pertinent risk 

metrics on governance structures, strategies, and risk management plans (Bloomberg 

et al., 2017; TCFD, 2017). 

The focus on both transition and physical risk sets the stage for risk assessments in 

the financial sector that are not only considering investments (e.g., in greenhouse gas 

intensive industries) as drivers of environmental changes but also assets at risk from 

these changes. However, the assessment of climate-related risks, both with regard to 

transition and physical risk, is non-trivial and the forward-looking quantification of 

these risks requires an adequate level of science-based impact modeling – an 

endeavor beyond the know-how and resources of most organizations, except a few 

leading insurance and risk modeling companies. Making data and science-based 

tools for the assessment and disclosure of climate-related risk available for the public 

is not only supposed to help investors increase the climate-resilience of their 

portfolios and increase transparency of and trust in derived (financial) products, but 

can also support the mitigation and adaptation efforts of public sector organizations, 

non-profit organizations, as well as small or medium-sized corporates lacking 

resources for research and development themselves. While this can be said both for 

transition and physical risks, the focus of this thesis lies on the latter and the no less 

relevant topic of transition risk will not be discussed here further. 

For physical risk, impact modeling based on the climate sciences needs to bridge the 

gap from a predominantly natural science discipline to the assessment of climate-
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related risks of public and private assets, including companies and investment 

portfolios. The output from climate research entails empirical weather and climate 

data, global and regional climate model output, but also derived insights about 

physical processes, trends, statistical relationships between variables, among others. 

An interdisciplinary and cascading approach is required to build on the massive 

corpus provided by the climate sciences, to condense methods and information 

relevant for applied risk assessments. Therefore, the priority for the work 

documented in this thesis has always been to bridge the gap between science and 

application in a pragmatic, yet scientifically rigorous way. For this, the work 

documented here has been in close cooperation with fellow researchers and an 

implementing partner, applying the outcomes directly for global assessments of 

physical climate risk. 

1.3 A joint research and development project 

This thesis is part of a joint research and development project of the Weather and 

Climate Risks (WCR) group at ETH Zurich with Carbon Delta AG, a Zurich based 

environmental fintech and data analysis firm. In 2019, during the joint project, 

Carbon Delta became part of the financial services provider MSCI Inc. (Carbon Delta, 

2019). Throughout this thesis, I will refer to the firm as “Carbon Delta” or 

“implementing partner”, both for the period before and after October 2019. 

The joint project has been funded by Innosuisse (formerly Commission for 

Technology and Innovation, CTI), with two 18-month innovation project phases, 

titled “Integrating tropical cyclone risk in investment management strategies 

globally” (project no. 26792.1 PFES-ES, 2018/2019) and “Integrating climate change 

related water scarcity risks in investment management strategies” (project no. 

37861.1 IP-SBM, 2020/2021). The topics of the joint research project are the direct 

economic impact of tropical cyclones across sectors (phase 1) and the impact of 

climatic conditions on the agricultural and power producing sector (phase 2), with a 

focus on crop yields and low extremes of surface water discharge (river low flow, see 

Section 1.5.2). The choice of hazards and sectors was based both on economic 

relevance and available resources in the scientific domain: Tropical cyclones are 

particularly distinct and destructive extreme events with a long tradition in the 

impact modeling community (e.g., Cardona et al., 2014; Emanuel, 2011a; Gettelman 

et al., 2017) – yet challenging to assess consistently on a global level (Ward et al., 

2020). The second phase was co-designed with specific input regarding needs from 

the sector side, focusing on the two economic sectors most affected by changes in 

extreme temperatures and water availability: agriculture and power production 

(Bokern, 2019). Both phases of the project therefore address economically relevant 

hazard types and economic sectors, yet they comprise very different methodological 
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requirements and scientific challenges, as will be seen in the three main chapters of 

this thesis. The cooperation with a globally oriented financial analyst proved to be 

well suited for the research side of the project, too, not least because the global scope 

of the assessment fits well with the global focus of recent climate impact research (e.g., 

Rosenzweig et al., 2017; Ward et al., 2020). 

The aim of the joint project is research and the co-development of globally consistent 

hazard and vulnerability components within the climate risk modeling framework 

CLIMADA, for application both by the implementing partner and in research. 

Thereby, the focus lies on hazards with potentially high exposure of companies listed 

on global stock markets. To reach this aim, both phases of the project contribute to 

the development of science-based methods for the globally consistent modeling of 

current and future weather and climate risks measured in monetary terms. On the 

side of the implementing partner, the risk estimates modeled both on the level of 

single companies as well as aggregated over investment portfolios provide the basis 

for the calculation of their product Climate Value-at-Risk (CVaR). “Value at risk 

quantifies the size of loss on a portfolio of assets over a given time horizon, at given 

probability. Thus, […] VaR from climate change can be seen as a measure of the 

potential for asset-price corrections due to climate change” (Dietz et al., 2016). 

Accordingly, Carbon Delta’s CVaR product “provides forward looking and return-

based valuation assessments to measure the potential impact of climate change on 

company valuations” (Carbon Delta, online). The CVaR methodology is based on 

dividend discounting (Dietz et al., 2016), a stock pricing approach originating from 

discounted dividend model of Gordon (1959, 1962). Dividend discounting 

essentially provides a solution to the question “what is the right price for a stock?” 

based on discounted dividends expected from the stock in the future (Kamstra, 2003). 

Therefore, dividend discounting requires estimates of risks and opportunities to a 

company over the coming decades. It should always be kept in mind that results of 

dividend discounting are highly dependent on the assumed discounting rate which 

is a strategic, political, and ethical choice rather than a scientific one (e.g, Nordhaus, 

2019; Rendall, 2019). As a basis for the calculation of CVaR, the focus lies on future 

changes in stock values caused by a company’s exposure to climate change, both in 

terms of transition and physical risk (see Section 1.4.1). For an isolated assessment of 

climate-related risk, other factors such as market dynamics and company specific 

adaptation levels are assumed to stay fixed at a current level (ceteris paribus 

assumption). This focus on climate-related impacts has been guiding choices and 

assumptions across all studies contributing to physical risk assessments undertaken 

as part of this thesis. While addressing substantially different types of risk, both 

phases of the collaboration aim at the quantification of the difference in risk due to 

climate change between the present and future decades, i.e. the “Delta” in Carbon 

Delta. This set-up assumes that the current risk posed by weather and climate 
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extremes to companies is either explicitly or implicitly ‘priced in’ with regard to the 

companies’ current valuation. It should be noted that this assumption of the current 

risk level builds on an idealized understanding of the knowledge of financial markets 

(e.g., Knorr Cetina and Preda, 2006), and can also be misinformed, because climate 

risk is often unknown or uncertain even for the current level of global warming. What 

is more, historical records often do not offer the sample size to map out the 

probability space of extreme events and related impacts. With the quantification of 

both current and future (projected) risk, the studies presented here contribute both 

to a re-evaluation of current risk levels as well as to a forward-looking valuation at 

higher projected levels of global warming. 

1.4 Scientific background 

1.4.1 Climate risk: concept and terminology 

The work presented here is all about the quantification of climate-related economic 

risks. It is important to clarify what concept of risk is applied and how it is calculated, 

or modeled, in the studies presented here and also in risk assessments typically 

making use of the results. The definition of climate risk used throughout this work is 

shown in Box 1, together with related definitions and concepts. These definitions are 

based on the risk framework for IPCC reports defined in the IPCC Special Report on 

Extremes (IPCC, 2012) and the Fifth Assessment Report of the IPCC (Oppenheimer 

et al., 2014), as summarized and augmented by Zscheischler et al. (2018). 

Risk: “The ‘effect of uncertainty on objectives’ (ISO, 2009, 2018; Lark, 2015). 

According to the IPCC (Oppenheimer et al., 2014), risk is the potential for 

consequences when something of value is at stake and the outcome is uncertain, 

recognizing the diversity of values. Risks arise from the interaction between 

hazard, vulnerability and exposure and can be described by the formula: 

𝑅𝑖𝑠𝑘 = (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑒𝑣𝑒𝑛𝑡𝑠	𝑜𝑟	𝑡𝑟𝑒𝑛𝑑𝑠) × 	𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠																(1.1)	

where consequences are a function of the intensity of hazard (event or trend), 

exposures, and vulnerability. Here, we use the term risk to refer to environmental 

and societal impacts from weather and/or climate events.” (Zscheischler et al., 

2018) 

Exposure: “The presence of people, livelihoods, species or ecosystems, 

environmental functions, services, and resources, infrastructure, or economic, 

social, or cultural assets in places and settings that could be adversely affected” 

(IPCC, 2012; Oppenheimer et al., 2014; Zscheischler et al., 2018) 
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Vulnerability: “The propensity or predisposition to be adversely affected” (IPCC, 

2012; Oppenheimer et al., 2014). “Vulnerability encompasses a variety of concepts 

and elements including sensitivity or susceptibility to harm and lack of capacity to 

cope and adapt.” (Zscheischler et al., 2018) 

Hazard: “The potential occurrence of a natural or human induced physical event 

or trend or physical impact that may cause loss of life, injury, or other health 

impacts, as well as damage and loss to property, infrastructure, livelihoods, service 

provision, ecosystems and environmental resources” (Oppenheimer et al., 2014). 

In this thesis, “the term hazard usually refers to climate-related physical events or 

their physical impacts.” (Zscheischler et al., 2018) 

Weather and climate events: “Events at spatial and temporal scales varying from 

local weather to large-scale climate modes.” (Zscheischler et al., 2018) 

Impacts: “The effects of physical events on natural and human systems” 

(Zscheischler et al., 2018). 

 
Box 1: Definitions of climate risk and related terms; adapted from Zscheischler et al. (2018). 

When calculating a measure of physical climate risk following Equation (1.1), 

“consequences” are represented by quantifiable impacts of a weather and climate 

event. In the studies presented here, for example, these impacts are damage inflicted 

on physical assets by tropical cyclones and reported in monetary terms (Chapters 

Two and Three), or the deviation of crop production from a baseline value, as 

expressed in tons, kcal, or monetary value per year (Chapter Four). The “probability 

of events” in Equation (1.1) can be derived from a statistically modeled distribution, 

or estimated as a frequentist probability from the occurrence frequency of simulated 

or observed events. Depending on the underlying research agenda, various risk 

figures can be calculated within this framework, e.g., the annual average impact 

(AAI, Chapter Three) or the estimated impact occurring with a given return period 

(T, Chapter Four). The exceedance frequency is the inverse of the return period, that 

is, the frequency at which event impacts exceed a certain value (see Aznar-Siguan and 

Bresch, 2019). 

The definition of risk applied here is also compatible with the perspective on climate-

related risk adapted in the recommendations of the TCFD (c.f. Chapter 1.3). The 

TCFD classifies climate-related risk as either ‘physical’ or ‘transition risk’. ‘Climate 

risk’ as defined in Box 1 corresponds to the ‘physical risk’ in the TCFD’s framework, 

as can be seen from the TCFD’s definitions:  

Transition risk: “Transitioning to a lower-carbon economy may entail extensive 

policy, legal, technology, and market changes to address mitigation and adaptation 

requirements related to climate change. Depending on the nature, speed, and focus 



 11 

of these changes, transition risks may pose varying levels of financial and reputational 

risk to organizations.” (Bloomberg et al., 2017). 

In contrast, physical risk refers to risk posed by the (changed) climate system itself, 

like extreme weather and climate events, requiring adaptation efforts to be managed 

effectively. “Physical risks may have financial implications for organizations, such as 

direct damage to assets and indirect impacts from supply chain disruption” 

(Bloomberg et al., 2017). The TCFD further subdivides physical risk into ‘acute’ and 

‘chronic’ risk: “Physical risks resulting from climate change can be event driven 

(acute) or longer-term shifts (chronic) in climate patterns” (Bloomberg et al., 2017). 

While the TCFD’s focus is on the additional risk from climate change, it is apparent 

that physical risk due to climate change can hardly be quantified without an 

understanding of the climate-related physical risk that exists independently of 

climate change. The requirement to understand current risk is a constant companion 

of any effort to assess future climate risks. This can also be seen in the studies 

presented here. Chapters Two and Three focus on physical risk under current climate 

as a prerequisite of future risk assessments. The risk posed by tropical cyclones 

(Chapter Three) is clearly event driven and thus a form of acute risk in the TCFD’s 

definition of the term. Only in Chapter Four, we actually assess consequences of 

climate change in future climate projections. For the assessment of the impacts of 

climate change on crop production, the signal seen in mean trends can be considered 

as drivers of chronic risk. However, sometimes the line between acute and chronic 

risk is blurred, for instance when analyzing years of extreme crop losses triggered by 

acute climatic extreme events. Therefore, special attention to risk terminology is 

required when assessing historical and future risks of crop failure. The TCFD also 

differentiates direct and indirect (or higher order) impacts with regard to physical 

risk. In this thesis, direct impact denotes the direct physical effects of an event, while 

higher-order impacts “include those that spill over from the area of impact to areas 

that suffered no physical harm” (Lyubchich et al., 2020), including contingent 

business interruption. This differentiation might seem straight forward on first 

glance. In practice however, the differentiation of direct and indirect impacts is not 

always unequivocal. For example, there can be inaccuracies with regard to whether 

numbers in damage reports are representing only ‘pure’ direct impacts or also 

include certain indirect effects. This can contribute to uncertainties in model 

calibration, as we will see for the case of tropical cyclone impact functions in Chapter 

Three. 

The breakdown of risk to the components ‘hazard’, ‘exposure’, and ‘vulnerability’ 

(Box 1) offers a methodological path to disentangle the complexity of quantifying 

risk. Based on this and adding the authority of the IPCC, it comes to no surprise that 

the climate risk framework introduced by the IPCC and followed here has been 
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widely adapted for climate risk assessments (Ward et al., 2020). The studies presented 

here also follow this framework in approaching risk: In Chapter Two, the focus is on 

the exposure component of acute physical risk, introducing a method to estimate the 

global distribution of asset exposure data based on publicly available input data sets. 

In Chapter Three, vulnerability is explored in its most basic mathematical form, an 

impact function mapping hazard intensity to a damage degree. In the study on crop 

production risk in Chapter Four, exposure and vulnerability are kept constant and 

the hazard is varied based on future climate projections. Here, the modeling of hazard 

intensity and vulnerability are rather complex and quickly exceed the scope of a single 

research project. Therefore, the impacts are derived from existing simulations of crop 

yield under changing climate, provided by a crop model intercomparison project. 

Hence, Chapter Four focuses on the computation and interpretation of meaningful 

statistics of model-based climate impacts on country-level crop production. More 

detail on models and data sources involved in this thesis can be found in Sections 

1.4.2 and 1.5 and in the specific studies presented in Chapters Two to Four. 

The quantification of weather and climate risk requires a quantification of impacts 

and probabilities of weather and climate events. Here, we differentiate ‘modeled’ or 

‘simulated’ impact from ‘reported’ impact: Impact numbers can be either taken from 

surveys and reports, such as reported storm damage values as used as a basis for 

impact model calibration in Chapter Three, or simulated within an impact modeling 

framework. Based on the definition of “impacts” above, we here refer to impact 

models as mathematical models, usually implemented on a computer, to 

approximate the impact of weather and climate events based on the input of hazard 

intensity, exposure, and vulnerability. In the following section, weather and climate 

impact models are introduced in more detail. 

1.4.2 Global scale climate impact and risk models 

The first prominent endeavors to model aggregated economic impacts of global 

warming on a global scale have been so-called integrated assessment models (IAMs) 

developed by Nordhaus and colleagues since 1977, when they started constraining an 

energy supply and demand model with limits to atmospheric carbon dioxide 

concentrations ([CO2]) (Newbold, 2010). According to Nordhaus and Boyer, IAMs 

“integrate in an end-to-end fashion the economics, carbon cycle, climate science, and 

impacts in a highly aggregated model that allow[s] a weighing of the costs and 

benefits of taking steps to slow greenhouse warming” (Newbold, 2010; Nordhaus and 

Boyer, 2000 p. 5). As for the modeling of climate impacts in IAMs, ‘highly aggregated’ 

means that the impacts, that is, the economic costs of global warming, are usually 

modeled directly as a function of global mean temperatures: “In aggregate models, 

damage is often represented as a quadratic function of global mean temperature” 
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(Nordhaus, 2017). While IAMs are considered pioneering work with regard to the 

integration of climate change in economic modeling and decision making, they have 

been widely criticized for modeling cost and benefits from global warming based on 

assumptions and aggregated damage functions with limited empirical evidence, – a 

simplification that does not live up to the complexity of the climate system and the 

risk posed by diverse natural hazard types in a non-linear system (e.g., Ackerman et 

al., 2009; Frisch, 2013), as most IAMs are “poor at handling discontinuous change” 

(Rosenzweig et al., 2017). 

More recent versions of IAMs, but also alternative approaches in modeling 

(economic) climate impacts are attempting to better represent the complexity of the 

climate system, i.e., the relationship of global mean temperatures and weather and 

climate extremes, as well as the diversity of economic sectors and how they are 

affected by climate change (e.g., Carleton and Hsiang, 2016). This is attempted 

mainly by stepping down one or two steps from the high aggregation level of early 

IAMs with regard to the representation of hazard, exposure, and vulnerability; to 

acknowledge and better represent these complexities in climate impact models. This 

entails an explicit representation of different hazard types (and how they change in a 

warming climate), as well as the exposure and impact functions associated to 

different sectors and asset types. Here, sectors are not necessarily limited to economic 

sectors, but can include social, cultural, and ecological spheres, depending on the 

purpose of the model, i.e., the risk indicator to be estimated. Spatially explicit climate 

impact models with a global scope “have been used to identify regions that are 

affected disproportionately by climate change” (Oppenheimer et al., 2014), and 

recent developments move towards rendering impact assessment tools more readily 

available for public use, as well as towards a better representation of multi-hazard and 

compound risks (Oppenheimer et al., 2014), the latter requiring further 

interdisciplinary efforts for an adequate representation (Zscheischler et al., 2018). 

According to a review article on global scale natural hazard risk assessments by Ward 

et al. (2020), “efforts to assess and map natural hazard risk at the global scale have 

been ongoing since the mid-2000s, starting with the natural disaster hotspots analysis 

of Dilley et al. (2005). This was followed [in 2009] by the global risk assessments for 

an increasing number of natural hazards in the biennial Global Assessment Reports 

(GARs) of the United Nations Office for Disaster Risk Reduction (UNDRR)”. Ward 

et al. (2020) provide an overview over scientific literature on global-scale natural 

hazard risk assessments per hazard type with particular attention to the spatial 

resolution of the risk components (hazard, exposure, vulnerability), risk indicators, 

type of risk assessment, implemented measures of disaster risk reduction, and the 

time horizon of future risk assessments. Common risk indicators used in recent 

climate risk assessments are affected people and fatalities, direct and indirect 
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economic damage, affected GDP, and area affected (Ward et al., 2020). The following 

climatic hazard types were typically assessed in the papers reviewed by Ward et al.: 

River floods, coastal floods, tropical cyclones, droughts and wildfires. Embracing the 

diversity of hazard types and sectors affected makes it increasingly difficult and 

beyond the scope of single research and model development efforts to model global 

climate impacts in an end-to-end fashion. Therefore, the increased complexity of 

climate impact models bears the risk of ending up with a fragmented landscape of 

climate impact models, each highly specialized on one or two hazard types and 

sectors. The present study is both indebted to and contributing to efforts in 

defragmenting the landscape of global-scale climate impact modeling, especially 

within the CLIMate ADAptation (CLIMADA) project and the Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP), both introduced further below. 

One differentiates roughly two types of spatially explicit computerized models with a 

global scale that are referred to as climate ‘impact’ or ‘risk models’: event-based 

probabilistic risk models and gridded sectoral impact models. The first impact model 

type discussed here is an event-based impact modeling platform, simulating the 

impact (e.g., damage, but also potential benefits) of weather and climate extreme 

events such as storms, bush fires, floods, etcetera, to exposed populations or assets 

(e.g., Aznar-Siguan and Bresch, 2019; Cardona et al., 2012a). Evolving from so called 

‘natural catastrophe models’ developed in the insurance industry, among others, 

event-based impact models are typically designed based on the risk concept 

introduced in Section 1.4.1: They are built in a modular fashion, organizing the risk 

modeling chain along the risk components hazard, exposure, and vulnerability 

(Aznar-Siguan and Bresch, 2019). The hazard component is thereby structured as 

event sets, with each event represented by a spatial distribution of hazard intensity 

(e.g., footprint of maximum wind speed of a storm event), and a time information 

such as occurrence date, frequency, or probability. The exposure component 

represents the spatial distribution of population, assets, or ecosystems potentially 

affected by an extreme event (c.f. Chapter Two of this dissertation). The vulnerability 

component is represented with so called impact functions 𝑓<=>, parameterizing “to 

what extent a [particular type of] exposure will be affected by a specific hazard” 

(Aznar-Siguan and Bresch, 2019), see Equation 1.3 below. Impact functions are 

sometimes also referred to as damage functions or vulnerability curves1. Chapter 

Three of this thesis is all about a globally consistent parameterization of an impact 

function for tropical cyclone wind damages to exposed assets. When a frequency, or 

                                                                    

1 The term ‘damage function’ is also used in the IAM community, however with a different scope as 
summarized in the beginning of this subsection. The term ‘vulnerability curve’ is most widely used in 
the (re)insurance industry. To avoid confusions, the term ‘impact function’ will be used throughout 
this thesis. 



 15 

frequentist probability, is provided for each event, the risk formula provided in 

Equation (1.1) can be reformulated as follows, adopting the terminology from Aznar-

Siguan and Bresch (2019): 

𝑅𝑖𝑠𝑘 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 	𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦,		 	 	 	 	 								(1.2)	

with 

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 	𝐹(ℎ𝑎𝑧𝑎𝑟𝑑	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)	

																		= 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∙ 𝑓<=>(ℎ𝑎𝑧𝑎𝑟𝑑	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)		 	 	 								(1.3)	

The separation of probability and severity in Equation (1.2) allows for straight-

forward probabilistic risk computations exploiting any given estimates of the 

probability of events. Linking impact severity with probability estimates, event-based 

impact modeling platforms are frequently referred to as ‘probabilistic’. Event-based 

multi-hazard impact modeling platforms include CAPRA (Cardona et al., 2012a), 

CLIMADA (Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan, 2021), 

HAZUS (Schneider and Schauer, 2006), and RISKSCAPE (King and Bell, 2006). 

Among these probabilistic multi-hazard impact modeling platforms, CLIMADA, 

implemented in the interpreted, high-level and general-purpose programming 

language Python is, to the author’s knowledge, the only platform with a global scope 

that is open-source, licensed for both academic and commercial use, and available 

from a public code repository (Aznar-Siguan and Bresch, 2019; CLIMADA-Project, 

2019). Therefore, CLIMADA is used as a framework for modeling throughout this 

thesis. Furthermore, all three publications forming the main part of this thesis also 

contribute directly to the development and calibration of the hazard, exposure, and 

vulnerability components of the CLIMADA versions 1.2 to 2.0 (Bresch et al., 2020; 

e.g., CLIMADA-Project, 2019). The core functionality of CLIMADA is computing 

“the impact of a hazard on its corresponding exposures and impact functions […] 

and storing all the resulting risk assessment metrics” (Aznar-Siguan and Bresch, 

2019) in a spatially explicit fashion. Resulting risk metrics of probabilistic risk 

assessments include estimates of annual expected impact (AAI), and return periods 

(or frequencies) of impacts to exceed a certain value at a certain location or spatially 

aggregated, typically visualized as impact exceedance frequency curves (Aznar-

Siguan and Bresch, 2019). Additional tools to utilize these risk metrics for assessing 

the potential benefit of adaptation measures in the context option appraisal studies 

are implemented in CLIMADA v.1.4.1+ (Bresch and Aznar-Siguan, 2021). 

The second type of climate impact models introduced here is a more broadly defined 

group of models simulating quantifiable and socio-economically or ecologically 

relevant impact from weather and climate variables. These models are sometimes 

referred to as ‘sectoral’ climate impact models, as they typically focus on one sector 

or area of interest, such as water, fishery, or agriculture. In contrast to event-based 
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probabilistic impact models, sectoral impact models are typically process-based, that 

is, representing physical, chemical, and biological processes with numerical 

algorithms. For example, sectoral impact models include hydrological models 

simulating the response of hydrological variables such as surface water discharge or 

soil moisture to atmospheric (and socio-economic) drivers. Typically, the input and 

output data from process-based sectoral impact models are spatially gridded at 

equidistant timesteps, e.g., yearly crop yields for agriculture or daily and gridded daily 

surface water discharge for the hydrological sector. The input data are often output 

from global (GCMs) or regional (RCMs) climate models, or from observation-based 

reanalysis data sets. Typical resolutions are 50 km globally, 10 km regionally and 

often at 6h time-intervals. 

The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) strives to 

harmonize, evaluate, benchmark, and publish climate impact simulations from 

sectoral climate impact models (ISIMIP, online; Rosenzweig et al., 2017; Warszawski 

et al., 2014). As summarized by Warszawski et al. (2014), ISIMIP is the first project 

to offer “a framework to compare climate impact projections in different sectors and 

at different scales”: “The [ISIMIP] project builds on earlier climate change risk 

assessments at the global scale, such as the UK Fast Track project (Parry et al., 1999), 

the Climate Impact Response Functions (Füssel et al., 2003) initiative, and the more 

recent investigation by Arnell et al. (2013) covering climate impacts in six sectors 

(water availability, river flooding, coastal flooding, agriculture, ecosystems, and 

energy demands) using a coherent set of climatic and socioeconomic scenarios. 

However, all existing cross-sectoral impact studies use only one impact model per 

sector, and are thus unable to formally assess uncertainties beyond those stemming 

from climatic and socio-economic input data. In contrast, there are sector-specific 

multi-impact-model studies, such as Cramer et al. (2001) and Sitch et al. (2008) in 

the biomes sector, WaterMIP (Haddeland et al., 2011) in the water sector, and the 

Agricultural Model Intercomparison and Improvement Project AgMIP (Rosenzweig 

et al., 2013) in the agriculture sector. In this context, ISIMIP is intended to address 

the lack of a cross-sectoral multi-model assessment of impacts of climate change. The 

project serves the dual purpose of facilitating process understanding and model 

development in the scientific community, as well as providing quantitative results 

that are readily available to stakeholders and society in general.” (Warszawski et al., 

2014). According to Rosenzweig et al. (2017), “the overarching goal [of ISIMIP] is to 

use the knowledge gained to support adaptation and mitigation decisions that require 

regional or global perspectives within the context of facilitating transformations to 

enable sustainable development, despite inevitable climate shifts and disruptions. 

[…] The results are consistent multi-model assessments of sectoral risks and 

opportunities that enable studies that integrate across sectors, providing support for 

implementation of the Paris Agreement”. The sectors assessed in the second round 
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of ISIMIP are diverse: water (hydrological modeling), lakes, biomes, regional forests, 

permafrost, agriculture (crop modeling), temperature-related mortality (health), 

coastal systems, marine ecosystems and fisheries, and terrestrial biodiversity (Frieler 

et al., 2017a; ISIMIP, online, www.isimip.org). The large diversity in sectors makes it 

clear that from the perspective of the risk framework introduced above, there are 

sectors defined from an exposure perspective (e.g., forests or coastal systems), and 

others more defined from a hazard perspective (e.g., water sector). This also 

determines how output from sectoral impact models is used for downstream climate 

risk modeling: For example, gridded flood height data derived from hydrological 

model output as provided by ISIMIP have been integrated in the CLIMADA 

framework as a hazard intensity and combined with impact functions and exposure 

in the form of a spatial distribution of asset values to assess flood risk (Sauer et al., in 

press). 

1.4.3 Empirical impact data for model calibration and evaluation 

As weather and climate impact modeling becomes a broadly applied tool in research 

and climate risk assessments, there is a growing requirement for robust yet 

practicable model calibration and evaluation. In the context of the ISIMIP project, 

the evaluation of model performance and uncertainty are an integral aspect of the 

project design. Simulations driven by historical climate data allow testing the skill of 

impact models to reproduce historical impacts. This requires publicly available 

archives of systematically collected impact data. For example, Müller et al. (2017) 

used country level crop production statistics provided by the Food and Agriculture 

Organization’s statistical database FAO-Stat (FAO, 2019) combined with scientific 

datasets containing gridded yield estimates for the evaluation of process-based crop 

models. In the insurance sector, companies usually calibrate impact functions of their 

natural catastrophe models with the data on (insured) damages they collect on their 

insurance portfolios. This kind of damage data is usually considered as a trade secret 

and not available to the public. There are however larger re-insurers as well as 

research groups collecting impact data and making global data sets available to 

research and the wider public on an aggregated level: NatCatSERVICE (Munich Re, 

2018), SIGMA (Swiss Re Institute, 2020), and EM-DAT (Guha-Sapir, 2018). The 

demand for globally harmonized impact data sets has been increasing over recent 

years, including for information with regard to the attribution of impacts to 

anthropogenic climate change (Otto et al., 2020). Yet, the collection and quality 

control of globally harmonized impact data remains a challenge, not the least because 

of its political dimension: “Reported damage data are expected to come with 

considerable uncertainties, partly due the heterogeneity of data sources, the blending 

of direct and indirect economic damages, as well as  political and structural reporting 

biases (Guha-Sapir and Below, 2002; Guha-Sapir and Checchi, 2018). Further 
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uncertainty is introduced by the lack of international standards for reported damage 

datasets, leading to inconsistencies between data providers (Bakkensen et al., 

2018b).” (Eberenz et al., 2021b) In the context of this thesis, we are using estimates 

of gross domestic (GDP) and regional (GRP) product from various official sources 

for the evaluation of asset value downscaling in Chapter Two. For the calibration of 

tropical cyclone impact functions in Chapter Three, we are using direct economic 

damage from tropical cyclones reported per event by EM-DAT in Chapter Three. In 

Chapter Four, the focus is less on developing a new model component as in Chapters 

Two and Three, but rather on showcasing the use of climate crop model ensemble 

output for a global crop production risk assessment. We therefore refrain from 

getting into crop model evaluation ourselves, referring gratefully to the model 

evaluations and uncertainty assessments provided by broader the crop modeling 

community (i.e., Müller et al., 2017, 2021). However, we use crop production 

statistics from FAO-Stat (FAO, 2019) to bias-adjust baseline crop production values 

per country. 

1.5 Implementation: How the outcomes of this 
thesis are applied in practice 

The results from Chapters Two and Three contribute to the first applied subproject 

with Carbon Delta (Section 1.5.1), Chapter Four to the second subproject (Section 

1.5.2). For both projects, there have been joint research and development efforts 

beyond the work of Chapters Two to Four, to which the author of this thesis 

contributed as well. While these will not be elaborated in depth, they will be 

summarized to contextualize the studies with the applied side of this thesis. As part 

of the collaboration, an interface was co-designed and implemented to integrate 

CLIMADA in the risk modeling pipeline of the implementing partner. 

1.5.1 Integrating tropical cyclone risk in investment management 
strategies globally 

As part of this project, CLIMADA as a free and open-source probabilistic risk 

assessment platform, was integrated into the implementing partner’s physical 

climate risk modeling chain. By doing so, tropical cyclone (TC) risk is modeled 

globally on a company level, both under recent and projected future climate 

conditions. For the TC risk simulation, the following risk components are combined: 

Hazard: Just as for the calibration study presented in Chapter Three, the TC hazard 

set is derived from global historical TC storm tracks as provided by International Best 

Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010) and gridded 

maximum wind speed is calculated per track as a proxy for hazard intensity: “TC 
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hazard intensity is represented by wind fields, i.e. the geographical distribution of the 

1-min sustained wind speed per TC event, referred to as “wind speed” or “hazard 

intensity” in the following. Wind speed was simulated at a horizontal resolution of 

10 x 10 km from historical TC tracks as a function of time, location, radius of 

maximum winds, and central and environmental pressure, based on the revised 

hurricane pressure-wind model by Holland (2008). Please also refer to Geiger et al. 

(2018) for a detailed description and illustration of the wind field model and its 

limitations” (Eberenz et al., 2021b). To increase the sample size for a probabilistic TC 

risk assessment and to close potential geographic gaps in the exact location of TC 

landfalls, the historical hazard event set was expanded by synthetic tracks. Per 

historical storm track, nine synthetical tracks were derived using a random walk 

algorithm as implemented in CLIMADA v.1.4 (Bresch et al., 2020) and described by 

Aznar-Siguan and Bresch (2019): “Synthetic tracks are obtained from historical ones 

by a direct random-walk process, starting at slightly perturbed initial locations of the 

tracks (Kleppek et al., 2008). Moreover, in order to take the decay of wind intensities 

after landfall into account, we statistically build an exponential decay coefficient of 

the wind speed (and corresponding increasing pressure) and apply it to the synthetic 

tracks after landfall.” With nine synthetic tracks derived from each historical track, 

the hazard event set size is thus increased by a factor of ten. 

Exposure: During research and development of the TC risk model, the globally 

consistent dataset of gridded asset exposure data LitPop, described in greater detail 

in Chapter Two, was used as exposure component. This applies both to the 

calibration of TC impact functions (Chapter Three) and the assessment of risk on an 

aggregated global level. For the modeling of TC impacts as input for the computation 

of CVaR, the implementing partner uses their own database of exposed locations per 

company, including geographical data, estimates of asset type and value, and revenue 

share per location. 

Vulnerability: Impact functions calibrated for nine world regions are used to map 

wind speed to damage rates. They are the results of the calibration study presented in 

Chapter Three: “To better account for regional differences, a TC impact model was 

calibrated by fitting regional impact functions. The impact functions were calibrated 

within the CLIMADA risk modeling framework, using reported direct economic 

damage estimates from the EM-DAT dataset as reference data. For calibration, two 

complementary optimization approaches were applied, one aiming at minimizing 

the deviation of single event damages from the reported data and one aiming at 

minimizing the deviation for total damage aggregated over 38 years of data” (Eberenz 

et al., 2021b). The calibration process required a globally consistent asset exposure 

data set, which was developed as a prerequisite for the calibration study in Chapter 

Two. For the implementation at company level, the rather conservative impact 
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functions based on an optimization of the total damage ratio (TDR) are applied as a 

best estimate of aggregate vulnerability. The risk assessment can be further 

complemented with the more sensitive impact functions based on an optimization of 

the root-mean-squared fraction (RMSF) to explore the range of resulting risk 

estimates under assuming above-average vulnerability. 

Future climate. For projecting the risk increase due to changing TC characteristics in 

a future climate, we again perturbate the hazard set containing both historical and 

synthetical TC events. As mentioned already in the research plan submitted for this 

PhD project, this approach is rather straight forward but comes with considerable 

uncertainties: “Only few of the available climate risk assessments consider future 

hazard scenarios, even though this is crucial to prevent maladaptation (Gallina et al., 

2016). It is also an essential ingredient to Carbon Delta’s approach of estimating 

additional risk from climate change. The focus on additional risk assumes that 

current risk to the market value of companies is already implicitly priced-in on the 

financial markets. It is widely acknowledged that climate change causes a change in 

relevant properties of meteorological extreme events like TCs. However, there are 

still large uncertainties and inconsistencies between different studies concerning the 

response of TCs to climate change (IPCC, 2012; Knutson et al., 2010; Walsh et al., 

2016). Nevertheless, the IPCC found agreements between studies on expected trends 

in TC intensity and frequency for certain ocean basins (IPCC, 2012). In a more recent 

downscaling experiment, Knutson et al. (2015) estimated trends per basin that are 

well inside the range of likely trends reported by the IPCC. It seems reasonable to use 

all statistically significant trends from Knutson et al. (2015) to create a future hazard 

set based on probabilistic TC tracks with adjusted event intensities and frequencies. 

We emphasize that the result is not a prediction but a plausible scenario of future TC 

risk with large epistemic uncertainties attached” (Eberenz, 2019). 

1.5.2 Integrating climate change related water scarcity risks in 
investment management strategies 

Two economic sectors most vulnerable to water scarcity are agriculture and the 

energy sector (Bokern, 2019). Since these two sectors and their dependency on water 

are very different, it was decided early in the project to treat them separately. The 

author of this thesis has contributed to research and development with regard to both 

sectors, however his main scientific contribution is the assessment of current and 

future global crop production risks as presented in Chapter Four. 

Agriculture: 

For the agriculture sector, the definitions of hazard, exposure, and vulnerability, 

respectively, are not as obvious as in the case of TCs. In the case of agriculture, crop 

models are used to simulate the impact from various climate-related drivers on crop 
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yields. Risk to crop production can be defined rather narrowly as the “potential for 

reduced food production” (Challinor et al., 2018). Baseline mean gridded crop 

production can be considered here as the exposure component, and climate and 

weather variables as representations of the hazard. From this perspective, the crop 

models have the function of modeling (either process-based or statistically) the 

complex responses of crop yield to variations in climate and weather variables. From 

the perspective of event-based impact models using impact functions, the crop 

models than fulfill the same functionality as the impact functions in event-based 

models – a comparison best illustrated by emulators derived from process-based crop 

models, essentially linking crop yield responses to changes of temperature, water 

availability, nitrogen supply, and atmospheric CO2 concentrations in a functional 

form (e.g., Franke et al., 2020a). When adapting a broader definition of agricultural 

risk however, the crop yield responses simulated by crop models can also be seen as 

the hazard component of a risk assessment that needs to be combined with more 

socio-economic representations of exposure and vulnerability to essentially assess 

the socio-economic risk induced by climate-related variations in crop production 

(e.g., Meza et al., 2019). In the global crop production risk assessment presented in 

Chapter Four of this thesis, we follow the narrower definition of climate-related crop 

production risk, exploiting the output from eight process-based crop models from 

the Global Gridded Crop Model Intercomparison – Coupled Model Intercomparison 

Project round 6 (GC6), experiment facilitated by ISIMIP round 3b (ISIMIP3b, 

ISIMIP, 2020a, 2020b). For GC6, crop models were run to simulate yearly crop yield 

for historical periods and the 21st century, based on harmonized forcing data and 

experimental parameters as specified in the ISIMIP3b protocol (ISIMIP, 2020b). For 

the assessment of crop production risk, future and historical gridded crop yields from 

global crop model ensemble simulations were combined with land-use data to derive 

time series of yearly crop production per country (c.f. Chapter Four). For this 

purpose, simulated yearly crop production values per country are pooled according 

to the level of global warming before calculating quantitative risk estimates. The main 

output from the analysis are two complementary risk metrics, both describing the 

change in probability of years experiencing extreme crop production losses with 

climate change – and a quantification of extreme events per country. As elaborated 

in the outlook section of Chapter Four, the results of this study can be further used as 

input data for assessments of downstream risk, such as food security or market risks, 

by combining the crop production risk estimates with socio-economic vulnerability 

indicators or impact functions. On the applied end of this thesis, our implementing 

partner will be using timeseries of fractional crop yield and/or the crop production 

risk metrics introduced in Chapter Four for estimating downstream crop production 

risk of companies in the food production value chain. In the following, the 

implementation is outlined following the categories hazard, exposure, vulnerability. 
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Hazard: As explained above, simulated crop yield variations can be used as input for 

the hazard component of a risk assessment. In the context of the implementation at 

Carbon Delta, this makes sense, since the focus is on downstream risk due to climate-

related crop production losses. The specific hazard data applied here are yearly crop 

production estimates per country in metric tons. Country production is aggregated 

by integrating simulated gridded crop yield in tons per hectare and year over area. In 

the applied context, the individual model runs are pooled to obtain a large set of ‘year 

events’ for a probabilistic risk assessment. In the first implementation, we are using 

the output from three crop models as provided in ISIMIP2b (Frieler et al., 2017a) 

instead of the eight crop models of ISIMIP3b assessed in Chapter Four. Reason being 

that the ISIMIP3b output for the agricultural sector has not yet been made available 

for public use in early 2021. However, the data analysis framework as implemented 

within the CLIMADA risk modeling platform v.1.5.1 and available on GitHub 

(CLIMADA-Project, 2019), was designed in a flexible fashion for a seamless 

transition to input data from ISIMIP3b as soon as the data becomes available for 

public use. The crop risk module in CLIMADA was developed by the author of this 

thesis together with Carmen Steinmann. 

Exposure and vulnerability: In the joint research and development project, the 

modeling of risk downstream of historical and future crop production time series is 

taken forward by the implementing partner. The goal is to map country level 

production risk to food-processing economic sectors and individual companies 

depending on purchasing staple crops for their revenue – an endeavor not further 

elaborated in this thesis. In the risk framework, the exposure component can be 

represented by information on international trade flows of agricultural commodities. 

For each individual company, crop bought by the company as input to their activity 

can then be attributed to crop producing countries. Like this, the hazard component 

in the form of crop production statistics on country-level can be mapped to 

individual companies. The vulnerability of each company is determined by the 

dependency of business activity on each modeled crop type. For example, a company 

producing popcorn in Switzerland from maize grown in Italy and Mexico is exposed 

with a high vulnerability to maize production failure in Italy and Mexico. If available, 

commodity markets and trade simulations or parameters can be further added to 

refine the exposure profile and account for more flexible market dynamics. 

Future climate: The availability of both historical and future (21st century) climate 

crop simulations is inherent in ISIMIP’s experimental setup (Frieler et al., 2017a; 

ISIMIP, 2020b), where sectoral impact models are driven by the bias-corrected and 

harmonized output from selected GCMs. For ISIMIP2b, climate forcing is provided 

in the form of GCM simulations from the Coupled Model Intercomparison Project 

round 5 (CMIP5, Taylor et al., 2012), both for the low-greenhouse-gas-emission 
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Representative Concentration Pathway (RCP) RCP2.6 and no-mitigation RCP6.0 

(Frieler et al., 2017a). In the first version of the crop hazard set, ISIMIP2b climate-

crop simulations from both RCPs and three crop models are implemented. For 

ISIMIP3b, the climate forcing comes from a more recent generation of climate 

models provided by CMIP6 (ISIMIP, 2020b; Jägermeyr et al., under review), entailing 

simulations following two emission scenarios: the Shared Socioeconomic Pathway 

SSP1 combined with RCP2.6 (here SSP126), and SSP5 with RCP8.5 (here SSP585). 

As summarized in Chapter Four, these trajectories “represent two plausible and 

contrasting trajectories for the 21st century (O’Neill et al., 2016). SSP126 represents a 

sustainable development (Riahi et al., 2017) with stringent mitigation, reducing 

greenhouse gas emissions to essentially zero by the end of the century (Pachauri et 

al., 2015). SSP585 represents a fossil-fueled development (Riahi et al., 2017) with 

rising emissions throughout the century (Pachauri et al., 2015)” (Section 4.2.1). 

Energy sector: 

In the subproject focusing on the energy sector, CLIMADA is used to simulate the 

impact of historical and future low river flow events on river cooled thermoelectric 

power plants, i.e., coal, oil, and gas-fired power plants and nuclear power plants, as 

well as hydroelectrical power plants. The approach is briefly outlined here for 

completeness, but forms no further part of this thesis. The CLIMADA hazard module 

‘LowFlow’ is publicly available within v.1.5.1 of the CLIMADA repository on GitHub 

(CLIMADA-Project, 2019). The author of this thesis contributed in the development 

of the conceptual model together with David Bokern, as well as the implementation, 

and calibration of the river low flow impact model together with Zélie Stalhandske 

and Patric Kellermann. 

Hazard: For the hazard component, low river flow events were identified that are 

connected in space and time, based on daily surface water discharge data simulated 

by an ensemble of four hydrological models driven by four different climate models 

for ISIMIP2b. The climate forcing is the same as for agriculture with ISIMIP2b 

described above. An algorithm was developed to identify distinct low flow events, 

based on the concept of low river flow used by Marx et al. (2018), among others. For 

event definition, grid cells were counted as experiencing low flow when the discharge 

falls below the 2.5th percentile of discharge during a historical reference period. To 

contribute to a low flow event, daily discharge needs to fall below this historical 

threshold during a minimum required amount of days per month. Distinct events 

were defined in space and time by clustering neighboring grid cells and consecutive 

months experiencing low flow. Like this, low flow hazard intensity per grid cell is 

defined as the number of days below the historical threshold during a given event. 

Vulnerability: Impact functions for thermo- and hydroelectric power plants were 

fitted based on selected historical events with reported impact data available. 
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Historical low flow hazard events for calibration were derived from discharge 

simulations from ISIMIP2a. The aim of the calibration is for the model to best 

represent historical impacts on electrical power production. In ISIMIP2a, 

hydrological models were driven by historical climate data from re-analysis datasets. 

The resulting impact functions relate hazard intensity (days below threshold in 

consecutive months) to impact (percentage reduction in annual power production).  

Exposure: For model development and calibration, the publicly available Global 

Power Plant Database was used (WRI, 2018), providing coordinates, utility type, and 

production capacities of power plants worldwide. Of the thermoelectric power 

plants, only those count as exposed to low river flow that use river water for cooling. 

River cooling is used in approximately two thirds of global thermoelectric power 

plants (van Vliet et al., 2016). Installations were filtered by distance to rivers, to 

exclude plants using alternative cooling mechanisms and water sources. For the 

modeling of low river flow impacts as input for the computation of CVaR, the 

implementing partner uses their own database of potentially exposed utility 

locations, including geographical coordinates, estimates of asset type and value, and 

revenue share per location. 

Future climate: As in the case of agriculture, the hydrological models contributing to 

ISIMIP2b were driven by bias-corrected climate model output from CMIP5 (Taylor 

et al., 2012), both for RCP2.6 and no-mitigation RCP6.0 (Frieler et al., 2017a). Like 

this, low river flow hazard sets for the 20th (historical radiative forcing) and 21st 

century (RCP2.6 and RCP6.0) are available from three hydrological models driven 

by four GCMs. 
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ABSTRACT. One of the challenges in globally consistent assessments of physical 

climate risks is the fact that asset exposure data are either unavailable or restricted to 

single countries or regions. We introduce a global high-resolution asset exposure 

dataset responding to this challenge. The data are produced using “lit population” 

(LitPop), a globally consistent methodology to disaggregate asset value data 

proportionally to a combination of nightlight intensity and geographical population 

data. By combining nightlight and population data, unwanted artefacts such as 

blooming, saturation, and lack of detail are mitigated. Thus, the combination of both 

data types improves the spatial distribution of macroeconomic indicators. Due to the 

lack of reported subnational asset data, the disaggregation methodology cannot be 

validated for asset values. Therefore, we compare disaggregated gross domestic 

product (GDP) per subnational administrative region to reported gross regional 

product (GRP) values for evaluation. The comparison for 14 industrialized and newly 

industrialized countries shows that the disaggregation skill for GDP using nightlights 

or population data alone is not as high as using a combination of both data types. The 

advantages of LitPop are global consistency, scalability, openness, replicability, and 

low entry threshold. The open-source LitPop methodology and the publicly available 

asset exposure data offer value for manifold use cases, including globally consistent 

economic disaster risk assessments and climate change adaptation studies, especially 

for larger regions, yet at considerably high resolution. The code is published on 

GitHub as part of the open-source software CLIMADA (CLIMate ADAptation) and 

archived in the ETH Data Archive with the link http://doi.org/10.5905/ethz-1007-

226 (Bresch et al., 2019). The resulting asset exposure dataset for 224 countries is 

archived in the ETH Research Repository with link: https://doi.org/10.3929/ethz-b-

000331316 (Eberenz et al., 2019). 
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2.1 Introduction 

The modeling of climate risks on a global scale requires globally consistent data 

representing hazard, vulnerability, and exposure, as defined by the 

Intergovernmental Panel on Climate Change (IPCC, 2012, 2014a) among others. 

While natural hazard data can be derived from general circulation models, there is a 

lack of consistent exposure data on a global scale. Exposure is frequently defined as 

an inventory of elements at risk from natural hazards (Cardona et al., 2012b; 

UNISDR, 2009). For the modeling of physical risk as the direct economic impacts of 

disasters, exposure should specifically represent the spatial distribution of physical 

asset stock, i.e. buildings and machinery. While aggregate estimates of asset values 

are available at country level, open data on the spatial distribution of asset values are 

scarce. Proprietary asset exposure data (e.g. owned by insurance companies) are 

usually not publicly available. 

Due to the lack of comprehensive asset stock inventories, large-scale asset exposure 

maps are often estimated top-down, using downscaling techniques (De Bono and 

Mora, 2014; Gunasekera et al., 2015; Murakami and Yamagata, 2019). On a country 

aggregate level, estimates of total asset values can be derived from socioeconomic 

flow measures, such as gross domestic product (GDP), since the two indicators 

exhibit strong correlations (Kuhn and Ríos-Rull, 2016). Annual values of 

socioeconomic flow variables, particularly GDP, are often more readily available than 

asset values. Assuming that human presence and activity are proxies of economic 

output, downscaling of GDP has been based on geographical population data 

(Kummu et al., 2018) and on population combined with land use, road networks, and 

locations of airports (Murakami and Yamagata, 2019). High-resolution yearly GDP 

maps based on these approaches are publicly available (Geiger et al., 2017; Kummu 

et al., 2018). Global asset exposure data were produced for the Global Assessment 

Report 2013 of the United Nations Office for Disaster Risk Reduction (UNISDR), 

following a downscaling approach (De Bono and Mora, 2014). However, the data’s 

use beyond the scope of the Global Assessment Report is limited, because the data 

represent urban areas only and the methodology is not easily reproducible and thus 

not adaptable. For future quantitative risk assessments, more recent exposure data 

would be desirable. An alternative methodology to model global asset exposure based 

on the combination of diverse datasets was presented by Gunasekera et al. (2015). 

The authors combined data on built-up areas, building typologies, and construction 

cost with sector-specific asset data and GDP disaggregated proportionally to 

population density. Unfortunately, the source code and resulting exposure data have 

not been made publicly available. Reproducing these previously mentioned exposure 

modeling efforts is beyond the scope of most economic disaster risk assessments and 

climate change adaptation studies. 
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In recent years, the use of nightlight intensity from satellite imagery has seen a 

marked increase in science in general and especially for the disaggregation of 

socioeconomic indicators (Elvidge et al., 2012; Gettelman et al., 2017; Ghosh et al., 

2013; Mellander et al., 2015; Pinkovskiy, 2014; Sutton et al., 2007; Sutton and 

Costanza, 2002). Being publicly available and updated regularly, global nightlight 

images have been proven to be a useful source of information and are commonly used 

in scientific contexts for the estimation of unavailable GDP or growth data 

(Henderson et al., 2012). However, there are some technical limits to the usage of 

nightlight satellite imagery (Han et al., 2018), especially saturation and blooming. As 

luminosity can only be distinguished up to a certain brightness, saturation may lead 

to very bright spots being underrepresented. In state-of-the-art nightlight products 

from the Suomi National Polar-orbiting Partnership’s Visible Infrared Imaging 

Radiometer Suite (VIIRS), there are 256 shades of brightness, from the minimum 

zero (no light emission) to the maximum 255 (NASA Earth Observatory, 2017; 

Román et al., 2018). Any pixel brighter than what would entail a value of 255 will also 

appear at this value (Elvidge et al., 2007). Brightness can exude from bright pixels to 

neighboring pixels, causing the brightness in the latter to be overestimated, leading 

to blooming. This issue occurs in particular in large urban areas and on specific 

surfaces, such as sand and water (Elvidge et al., 2004; Small et al., 2005). As a 

consequence of saturation, socioeconomic indicators scale rather exponentially than 

linearly with nightlight intensity (Sutton and Costanza, 2002; Zhao et al., 2015, 2017). 

To counteract the saturation effect, Gettelman et al. (2017) and Aznar-Siguan and 

Bresch (2019) used exponentially scaled nightlight intensity as a basis for GDP 

disaggregation for tropical cyclone risk assessments. Saturation and blooming can 

also be mitigated by combining nightlights with other data types: Sutton et al. (2007) 

combined the areal extent of lit area with population data to estimate GDP at a 

subnational level. Zhao et al. (2017) enhanced nightlight intensity values with 

population data to get a more accurate estimation of spatial economic activity in 

China. This is based on the observation that there is also an exponential relationship 

between nightlight intensity and population density. The authors showed that the 

product of nightlight intensity and gridded population count (called “lit population” 

by the authors), is a better proxy for economic activity in China than nightlight 

intensity alone. 

Here, we are using and expanding the lit population approach presented by Zhao et 

al. (2017) to define and implement a globally consistent methodology for asset 

exposure disaggregation, named LitPop hereafter. This paper presents global gridded 

asset exposure data and documents and evaluates the underlying LitPop 

methodology. The resulting asset exposure dataset for 224 countries is made available 

online at the ETH Research Repository (Eberenz et al., 2019). It is suitable to provide 

the globally consistent asset exposure base for modeling physical risks. The 
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methodology is published on GitHub as part of the open-source event-based 

probabilistic impact model CLIMADA (CLIMate ADAptation) (Aznar-Siguan and 

Bresch, 2019; CLIMADA-Project, 2019) and archived in the ETH Data Archive 

(Bresch et al., 2019). 

Information on input data, methodology, and the evaluation approach is provided in 

Section 2.2. Subsequently, the resulting global asset exposure data are presented and 

evaluation results are shown in Section 2.3. The advantages and limitations of the 

methodology are discussed in Sections 2.4. Please refer to Section 2.5 for data and 

code availability. 

2.2 Data and methods 

2.2.1 Overview 

The core functionality of the LitPop methodology is the spatial disaggregation of 

national total asset values to obtain a gridded asset exposure product. Gridded 

nightlight intensity (Section 2.2.2) and gridded population data (Section 2.2.3) are 

combined to compute a digital number at grid cell level. Physical asset stock values 

(i.e. produced capital, Section 2.2.4.1) are then disaggregated proportionally to the 

digital number per grid cell (Section 2.2.5). This results in the gridded asset exposure 

dataset presented here. Instead of the physical asset stock, GDP (Section 2.2.4.2) or 

gross regional product (GRP, Section 2.2.4.3) can be distributed to obtain GDP per 

grid cell. Because of a lack of subnational produced capital data, GDP and GRP are 

used to evaluate the methodology by assessing the subnational disaggregation skill 

for varied combinations of the input data, as described in Section 2.2.6. A detailed 

overview of the input data is provided in Table 1; the disaggregation approach is 

illustrated in Fig. 2. 

 

Figure 2: Work flow of the LitPop downscaling: gridded nightlights (Lit) and population (Pop) data 
are combined to compute gridded digital number LitmPopn (Eq. 2.1). Then, total asset value per 
country (i.e. produced capital or nonfinancial wealth) is disaggregated proportionally to LitmPopn to 
obtain gridded asset exposure data (Eq. 2.2). GDP is disaggregated in the same way and compared 
against reported GRP for the evaluation of the downscaling approach. 



 29 

Table 1: Overview of input dataset, including information on usage, resolution, reference year, data 
source, and references. The reference year indicates the year for which the data used were provided. 
*) For GDP, the value of 2014 in current US dollars was used for 203 countries. For 21 countries 
without GDP data available for 2014, the closest available data points from the years 2000 to 2017 
were used instead. 

 

2.2.2 Satellite nightlight data 

The nightlight intensity products used here are nighttime lights of the Black Marble 

2016 annual composite of the VIIRS day-night band (DNB) at 15 arcsec resolution 

(Román et al., 2018), downloaded from the NASA Earth Observatory (2017). The 

processed datasets of luminosity by human activity based on VIIRS mark a distinct 

improvement over previous technologies, allowing for a greater range of light to be 

recorded (Carlowicz, 2012). The sun-synchronous satellite passes each place on 

Earth twice a day, at approximately 01:30 and 13:30 local time. Nightlight intensity 

on a scale from 0 to 255 is a variable derived from raw measurements. To isolate 

luminosity from sustained human activity, the Black Marble nightlight product 

includes corrections for Lunar artifacts, cloud, terrain, atmosphere, snow, airglow, 

stray light, and seasonal effects (Carlowicz, 2017; Lee et al., 2014; Román et al., 2018). 

The data are provided for 2012 and 2016 at a resolution of 15 arcsec, which 

corresponds to around 500 m at the Equator. The open-source code developed here 

can be adapted easily to use other versions and sources of nightlight data. This could 

be of interest for near-time applications in the future, as daily nightlight images could 

be available in the future (Carlowicz, 2017). 

2.2.3 Gridded population data 

The Gridded Population of the World (GPW) dataset is a spatially explicit 

representation of the world's population. It is based on two sets of inputs: nonspatial 

population data and cartography data. Using census data or population figures by the 

official national statistics offices, it uniformly distributes the numbers at the smallest 

available administrative unit to the corresponding cartographic shape, without 
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taking into account any ancillary sources (Doxsey-Whitfield et al., 2015). The data 

quality for each country strongly depends on the underlying level of availability of 

population data. For example, for Canada, population data are available down to the 

fifth subnational administrative unit, of which 493 185 exist. The information for 

Canada is hence a lot more fine-grained than for instance for Jamaica or Uzbekistan, 

where population numbers are only recorded at the first subnational administrative 

unit (Socioeconomic Data and Applications Center (SEDAC), 2017). The level of 

detail and number of subnational administrative units resolved per country are listed 

in Table S1. While modeling is kept at a minimum in the GPW dataset, values are 

inflated or deflated from the latest year with data available to 2000, 2005, 2010, 2015, 

and 2020 (Center For International Earth Science Information Network (CIESIN), 

Columbia University, 2017).  

GPW was selected for the LitPop methodology because, unlike other spatial 

population datasets, it does not incorporate nightlight satellite data or other auxiliary 

data sources (Leyk et al., 2019). This allows us to enhance nightlight data with a 

completely independent dataset. Moreover, it is released under the Creative 

Commons license. From GPW, the Population Count v4.10 data at the highest 

available resolution, 30 arcsec, are used, because they are the closest to NASA's 

nightlight dataset, in terms of both spatial resolution and available time steps. 

2.2.4 Socioeconomic indicators 

2.2.4.1 Total asset value per country 

The World Bank’s produced capital stock (World Bank, 2018) is one of the most 

comprehensive global estimates of the value of manufactured or built assets per 

country. It has been used as an indicator of exposure to natural disaster in the 

UNISDR’s Global Assessment Report 2013 (De Bono and Mora, 2014). Produced 

capital accounts for machinery, equipment, and physical structures (World Bank, 

2018). It also includes a fixed scale-up of 24% to account for the value of built-up 

land. 

Produced capital values are currently available for 140 countries and five time steps: 

1995, 2000, 2005, 2010, and 2014 from the World Bank wealth accounting (World 

Bank, 2019). Per default, the scale-up for built-up land is subtracted, assuming that 

there is no direct damage to the value of the land itself in the case of disaster. While 

not universally true, this assumption is based on the focus of the asset exposure data 

for the purpose of assessing direct impact to tangible structures. For applications 

considering the impact on the value of land, the linear scale-up can be reapplied 

before utilization of the asset exposure data. 
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Out of a total of 250 countries we considered for the production of this dataset, 

produced capital numbers for 2014 are available for 140 countries. For these 140 

countries, produced capital for 2014 was used here as total asset value for 

disaggregation. For additional 87 countries, total asset values were set to non-

financial wealth. Non-financial wealth was computed from the country's GDP and 

the GDP-to-wealth ratio estimates derived from the Credit Suisse Research Institute's 

Global Wealth Report (Credit Suisse Research Institute, 2017). This approach has 

previously been followed by Geiger (2018). We compared produced capital and non-

financial wealth for 140 countries (Table S1) and found that non-financial wealth can 

be used as a conservative approximation of produced capital. For 59 of the 87 

countries with neither produced capital nor non-financial wealth data available, an 

average GDP-to-wealth ratio of 1.247 was applied. In summary, the whole dataset 

contains gridded asset exposure data for a total of 224 countries, ignoring 26 

countries and areas due to lack of data. Missing countries and areas (with currently 

assigned ISO 3166-1 alpha-3 codes) are Aland Islands, Antarctica, Bonaire, British 

Indian Ocean Territory, Sint Eustatius and Saba, Bouvet Island, Cocos (Keeling) 

Islands, Christmas Island, Guadeloupe, French Guiana, French Southern Territories, 

Heard Island and McDonald Islands, Holy See, Kosovo, Libya, Martinique, Mayotte, 

Pitcairn, Palestine, Reunion, South Georgia and the South Sandwich Islands, South 

Sudan, Svalbard and Jan Mayen, Syrian Arab Republic, Tokelau, United States Minor 

Outlying Islands, and Western Sahara. An overview over the utilized data per 

country, including, produced capital (were available), GDP-to-wealth ratios, and 

GDP for 2014 is provided in Table S1. 

2.2.4.2 GDP 

GDP is a well-established indicator of macroeconomic output. For most countries in 

the world, annual values are available dating back several decades. National GDP data 

in current US dollars in 2014 or the nearest available year are retrieved from the 

World Bank Open Data portal (World Bank, online).  

While GDP is not a direct measure of physical asset values, it is used here both for 

scaling asset values in time to fill data gaps and for the evaluation of the LitPop 

methodology. The underlying assumption is that within a country, GDP and wealth 

are correlated, i.e. a higher GDP value is equivalent to higher asset values. This 

correlation has been established in empirical studies (Kuhn and Ríos-Rull, 2016). 

2.2.4.3 GRP 

The subnational equivalent to GDP is often referred to as GRP. GRP can be used to 

improve the downscaling of GDP, especially for countries with considerable regional 

differences. As described in Section 2.2.6 below, we use GRP data from 14 countries 

to evaluate the LitPop methodology by assessing its skill to disaggregate national 
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GDP to a subnational level. As there is no unified data source for GRP, it was gathered 

manually from government sources and OECD.Stat (Organisation for Economic Co-

operation and Development, 2019). The countries used for evaluation are Australia, 

Brazil, Canada, Switzerland, China, Germany, France, Indonesia, India, Japan, 

Mexico, Turkey, the USA, and South Africa. The aim of the selection was to include 

countries from as wide a range as possible of income groups and world regions. Since 

the selection of countries was limited by the availability of GRP data, the selection has 

a bias towards industrialized and newly industrialized OECD member states. 

According to World Bank income groups, these countries include eight countries 

from the high-income group (World Bank income group 4), four countries from 

the upper-middle-income group (3), two countries from the lower-middle-income 

group (2), and no countries from the low-income group (1). Income groups and data 

sources per country are listed in Table A1 in the Appendix. 

2.2.5 Disaggregation of asset exposure 

To produce a high-resolution asset exposure map, the total asset value per country is 

disaggregated proportionally to a function of nightlight luminosity and population 

count. This approach is closely adapted from the work of Zhao et al. (2017). In their 

paper, historic GDP is disaggregated proportionally to a digital number computed 

from a multiplicative function of nightlights and population with the aim to make 

spatial GDP predictions for China. The underlying idea is to enhance brightness 

values with spatial population data to get a more accurate estimation of spatial 

economic activity. The work flow of the asset exposure disaggregation is described 

here in detail and illustrated in Fig. 2.  

In a first step, the two gridded input datasets are interpolated linearly to the same 

resolution of 30 arcsec. Then, the combination of the two aforementioned datasets is 

conducted for each grid cell:  

𝐿𝑖𝑡=𝑃𝑜𝑝I><J = K𝑁𝐿><J + 𝛿O
=
∙ 𝑃𝑜𝑝><JI	 ,	 	 																									(2.1)	

where the digital number value LitmPopn
pix per grid cell (pix) is computed from the 

grid cell’s nightlight intensity 𝑁𝐿><J ∈ [0, 255], population count 𝑃𝑜𝑝><J ∈ ℝV, and 

the exponents 𝑚,𝑛 ∈ ℕ. For all n > 0, the added d is equal to 1 to ensure that non-

illuminated but populated grid cells do not get assigned zero values. In the case that 

nightlight data are used on their own without population data (n = 0), d is set to zero. 

In a second step, gridded LitmPopn is taken as a relative representation of economic 

stocks at each grid cell. It is used to linearly disaggregate total asset values of a country 

to a geographical grid. More precisely, the value of LitmPopn
pix relative to the sum of 

LitmPopn over all pixels within the boundaries of the country determines how much 

of a total value is assigned to each grid cell: 
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∑ d\<Z]^[>_`ab_af
g
`ab_a

	 	 				 	 	 								(2.2)	

where Ipix denotes the asset value per grid cell. The given value of a country’s total 

asset value Itot is distributed to each grid cell pix proportionally to the LitmPopn share 

of the grid cell. N denotes the total number of grid cells (iterator pix_i) inside the 

boundaries of the country. 

Changing the exponents m and n determines with which power the two input 

variables contribute to the disaggregation function. The exponents m and n do not 

only weight relatively between Lit and Pop but they also determine the contrast in the 

distribution between all grid cells within a country. The larger the exponent, the more 

value is concentrated on grid cells with large values of Lit or Pop. The aim of the 

evaluation described in Section 2.2.6 is to compare disaggregation skill of varied 

combinations of m and n and select the most adequate combinations for subnational 

disaggregation. 

Itot can represent either asset value or GDP, depending on the context. For the 

creation of gridded asset exposure data, Itot represents asset value, i.e. produced 

capital or nonfinancial wealth. For the evaluation presented in Section 2.2.6, Itot 

represents the flow variable GDP instead, as in the study of Zhao et al. (2017). 

2.2.6 Evaluation 

Gridded population and nightlight intensity can both be used as proxies for the 

spatial distribution of asset exposure. Both proxies have limitations: an asset 

distribution proportional to population density assumes that physical wealth is 

distributed equally among the population and that assets are located exactly where 

people live. As already mentioned in Section 2.2.3, for many developing countries, 

gridded population data have a coarse resolution. Nightlight-based models, on the 

other hand, are mainly limited by saturation and blooming as described in the 

Introduction. By combining nightlight intensity and population count, we expect to 

combine their skills while reducing the limitations mentioned above. 

The LitPop approach’s skill in disaggregating asset exposure cannot be assessed 

directly due to the lack of reference asset value data on a subnational level. Therefore, 

GDP and GRP are used instead for an indirect evaluation of the methodology. GDP 

and GRP are used to assess the subnational disaggregation skill, comparing varying 

combinations of the exponents m and n in LitmPopn. 

The disaggregation skill is assessed as follows: (i) national GDP is disaggregated to 

the grid level. (ii) The resulting gridded GDP is then re-aggregated for each 

subnational region (i.e. district, state, or canton) to obtain modeled GRP. (iii) Based 

on the comparison of normalized modeled and reported reference values of GRP, 
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skill metrics are computed per country. In total, we use reported GRP data for 507 

regions in 14 countries to evaluate the model’s ability to distribute national GDP to 

subnational regions. 

To ensure comparability of skill metrics between different countries, GRP is 

normalized: 

𝑛𝐺𝑅𝑃< = 	
ij^a
ik^

,	 	 						 	 	 											 	 								(2.3)	

where nGRPi denotes the normalized GRP of subnational region i. Given that GDP =
∑ (GRPp)q
p , it follows from Equation 2.3 that ∑ (nGRPp) = 1q

p . Here, N is the set of all 

subnational units in the country. 

To assess the disaggregation skill per country, three skill metrics are computed from 

nGRP: The Pearson correlation coefficient r (Equation 2.4) is computed to measure 

the linear correlation between the modeled nGRPmod and the reference value nGRPref. 

r is computed from the covariance (cov) and the standard deviations σtuv =
σ(nGRPtuv) and σwxy = σ(nGRPwxy): 

𝜌 = 𝑐𝑜𝑣(𝑛𝐺𝑅𝑃<,=[{, 𝑛𝐺𝑅𝑃<,|}~)/(𝜎=[{ ∙ 𝜎|}~)	 	 	 								(2.4)	

The correlation coefficient r is a widely used metric and straightforward to interpret 

and communicate: a value of 1 indicates a perfect positive linear correlation between 

the two variables while a value of 0 indicates that there is no linear correlation. 

However, r is no direct measure of the deviations of nGRPmod from nGRPref and yields 

no information regarding the slope b of the linear relationship. Therefore, it only 

represents a potential skill and needs to be evaluated in combination with a measure 

of the slope. The slope of the linear regression conveys the information, whether there 

is a systematic over- or underestimation of regions with relatively large GRP in the 

disaggregated data. 

𝛽 = 	𝜌 ∙ 𝜎=[{ 𝜎|}~⁄ 	is calculated to complement the analysis: b larger (lower) than 

1 implies an overestimation (underestimation) of the GRP of regions with relatively 

large GRP and an underestimation (overestimation) of regions with relatively low 

GRP by the downscaling within one country. Together, r and b allow for an 

evaluation of the linear fit between modeled and reference data. 

Complementarily, the root-mean-squared fraction (RMSF) is a relative error metric, 

weighting the relative deviation for each region equally, independently of the 

absolute values. Therefore, RMSF (Equation 2.5) puts equal weight on all subnational 

administrative units in a country, even if their GRP and thus their absolute difference 

between modeled and reference values are small. A RMSF of 1 indicates perfect fit. A 

RMSF value of 2 means that on average the modeled GRP deviates by a multiplicative 

factor of 2 from the reference value. 
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For evaluation, the three skill metrics are calculated for varying combinations of 

nightlight and population data for the disaggregation of GDP. The resulting skill 

metrics are compared for each combination and country. 

2.3 Results 

2.3.1 Global gridded asset exposure 

We applied the LitPop methodology with the exponents m = n = 1 to compute 

gridded asset exposure data for 224 countries and areas worldwide (Fig. 3). Total 

physical asset values of 2014 were disaggregated proportionally to Lit1Pop1 to a grid 

with the spatial resolution of 30 arcsec (approximately 1 km). Total asset values in 

the dataset sum up to 2.51*1014 (251 trillion) current US dollars in 2014. The 140 

countries with produced capital data used as total asset value (see Section 2.2.4.1) 

contribute USD 245 trillion (97.6 %) to the total asset exposure. The remaining 84 

countries where asset values were estimated from GDP and a GDP-to-wealth ratio 

instead contribute the remaining USD 6 trillion. In total, the 224 countries contribute 

around 99.9% to recorded global GDP. All numbers are based on the national values 

assembled in Table S1. Data sources are summarized in Table 1.  

 

Figure 3: World map showing gridded asset exposure values scaled to a resolution of 600 arcsec. 
The actual resolution of the underlying gridded data is 30 arcsec (~1 km). To obtain this dataset, 
national total asset values were disaggregated proportionally to the distribution of Lit1Pop1 for 224 
countries and areas. A total of 26 countries and areas without data are left blank, including Libya, 
South Sudan, and Syria. The color map is logarithmic and limited to USD 100 (lower bound) and 
USD 1 000 000 000 (upper bound). Borders and coast lines are based on Cartopy (Met Office, 
2010). 
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In the following subsections, the LitPop methodology is evaluated both quantitatively 

and qualitatively: The results of the quantitative assessment of disaggregation skill 

introduced in Section 2.2.6 are presented in Section 2.3.2, providing justification for 

the selected combination of the exponents m and n for the global dataset. Differences 

between asset exposure distribution based on Lit1, Pop1, and Lit1Pop1 are shown by 

example of detail maps of two metropolitan areas (Section 2.3.3). Finally, limitations 

of the LitPop methodology are discussed by the example of GDP disaggregation in 

Mexico (Section 2.3.4). 

2.3.2 Evaluation 

To evaluate the performance of the LitPop methodology, we compute and compare 

the disaggregation skill with regards to GDP for varying exponents m and n in 

LitmPopn (Eq. 2.1 and 2.2). Here, we show the comparison based on 14 countries with 

a total of 507 regional GRP data points available. The 14 countries make up 67% 

(USD 168 trillion) of the total dataset’s exposure and 64.5% (USD 52 trillion) of 

global GDP in 2014. Ten combinations of m and n are assessed: Lit1Pop1, Lit1, Lit2, 

Lit3, Lit4 , Lit5, Pop1, Pop2, Lit2Pop1, and Lit3Pop1. These exponent combinations were 

selected based on examples in the literature and then explored iteratively, stopping at 

combinations with decreased skill compared to lower-order combinations. For each 

country and exponent combination, the median and the spread of three skill metrics 

are compared: r, b, and RMSF (Fig. 4 and Tables A2 and A3). 

For r (Fig. 4a), Lit1Pop1 shows the best overall median of r (0.94) with the lowest 

interquartile range (IQR) of 0.09. The IQR is used here as a measure of variability of 

the skill metrics, as it signifies the difference between the 25th and the 75th percentiles 

of the resulting skill metric. The same holds for b of Lit1Pop1 (median=1.03, 

IQR=0.12, Fig. 4b). In contrast, b is on average well below 1 for combinations 

exclusively based on Lit (i.e., Litm). A value of b below 1 indicates an underestimation 

of the GRP of regions with relatively large GRP and an overestimation of smaller 

regions. This can possibly be attributed to the saturation problem of nightlight 

intensity data, given that large regions with relatively large GRP usually 

accommodate more metropolitan areas where saturation occurs the most. This 

interpretation is supported by the relatively low asset values attributed to London and 

Mumbai metropolitan areas by Lit1 shown in Section 2.3.3. 
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For purely population-based disaggregation, we found a median of b below 1 for 

Pop1and well above 1 for Pop2 (Fig. 4b). This suggests that disaggregation 

proportional to Pop1 underestimates the asset values in urban agglomerations, while 

it is overestimated by Pop2. For the metric RMSF, Pop1 (median=1.37, IQR=0.37) and 

Lit4 (median=1.64, IQR=0.36) perform best, while Lit1Pop1 has a median RMSF of 

1.67 and an IQR of 1.29 (Fig. 4c). 

 

Figure 4: Box plots showing the skill metrics ρ (a), β (b), and RMSF (c) for variations in LitmPopn. The 
metric value of 1, indicating perfect skill, is demarcated by the solid grey line. The plots are based on 
data from 14 countries and show the median (green), the first and third quartiles (IQR, blue box), 
data points outside the IQR but not more than 1.5⋅IQR distance from either the first or the third 
quartile (black whiskers), and outliers (black circles). RMSF is plotted on a logarithmic scale. 
Underlying metric values per country are listed in Table	A2. Median and IQR per skill metric and 
combination of exponents are shown in Table	A3 
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Within the set of combinations exclusively based on Lit (n=0), the skill metrics b and 

RMSF perform best for Lit4 (Fig. 4b,c), with median r improving for larger values of 

m, however changing little from Lit4 to Lit5 (Fig. 4a). 

Based on the comparison of the disaggregation skill with varying exponents m and n, 

there are two candidates for the most adequate functionality: Lit1Pop1 (best r and b) 

and Lit4 (best RMSF and best performance for n=0). The skill metrics of linear 

regression, r and b, give a better representation of the disaggregation skill for the 

absolute values than RMSF which is based on the relative deviation per data point. 

Prioritizing a better distribution of total values over relative performance, we 

conclude that Lit1Pop1 can be considered the most adequate combination of Lit and 

Pop for the subnational downscaling of GDP. For countries with a lack of highly 

resolved population data, alternative datasets could be produced based on Lit4 alone. 

2.3.3 Detailed maps for metropolitan areas 

 

Figure 5: Maps of disaggregated asset exposure value. Values are spatially distributed proportionally 
to nightlight intensity of 2016 (Lit1, a), population count as of 2015 (Pop1, b), and the product of 
both (Lit1Pop1, c) for metropolitan areas in the United Kingdom (GBR) and India (IND). The maps 
are restricted to the wider metropolitan areas of London (51–52∘ N, 0.6∘ W–0.4∘ E) and Mumbai 
(18.8–19.4∘ N, 72–73.35∘ E). The color bar shows asset exposure values in current USD in 2014 
per pixel of approximately 1 km2. 

Saturation and blooming in nightlight intensity data cause disaggregation based on 

nightlights alone to misrepresent actual value distribution, especially in urban areas. 

This can be seen in Fig. 5, showing maps of the distribution of national produced 

capital disaggregated proportionally to Lit1 (a), Pop1 (b) and Lit1Pop1 (c) for two wider 

metropolitan areas. London (top row) and Mumbai (bottom) were chosen as 
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examples. Comparable maps for Mexico City and New York are shown in Fig. A1 in 

the Appendix. 

The general exposure value level in the metropolitan areas shown in Fig. 5 are largest 

for Lit1Pop1 (Fig. 5c), highlighting a larger concentration of values in urban areas with 

this approach. The value distribution based on Lit1 (Fig. 5a) does not show many 

details within the urban area. This effect is partially caused by saturation: the light 

radiation in the depicted areas is of such high intensity, that the nightlight data do 

not offer any way to distinguish different levels of human activity. We can also 

observe the blooming effect, with the luminosity of bright parts crowding out to 

neighboring pixels, causing them to appear brighter than their underlying light 

sources would warrant. This latter effect can be particularly illustrated over the 

Thames River and Bow Creek in the northeastern part of London: The unpopulated 

river area is resolved by Pop1 (Fig. 5b top) but not by Lit1 (Fig. 5a top). By taking 

population density into account, the Lit1Pop1 dataset enhances contrast and detail in 

urban areas (Fig. 5b, c). In addition, bright objects can be overrepresented by Lit1: in 

Fig. 5a (top), the M25 London Orbital Motorway around London clearly stands out, 

with some pixels even at the same value as in central London. 

As seen in the case of Mumbai, the Lit1Pop1 based asset exposure map of the 

metropolitan area in Fig. 5c (bottom) shows much higher total values than those 

based on nightlights or population alone. This means that for Lit1Pop1, a larger 

proportion of the national produced capital of India is attributed to the metropolitan 

area of Mumbai compared to Lit1 and Pop1 alone. 

2.3.4 Example Mexico 

The skill metrics for the subnational disaggregation of GDP in the country Mexico 

show low values of r compared to most other countries for all tested values of m and 

n (r=0.76 for Lit1Pop1, see Table A2a). The example of Mexico is presented here to 

illustrate limitations and uncertainties of the disaggregation approach. Figure 6 

shows the data behind the evaluation for Mexico, i.e. modeled and reference nGRP 

for all 32 districts of Mexico. The corresponding plot data can be found in Table S2 

in the Supplement. While the LitPop methodology performs well for most of the 

districts with relatively low GRP, it fails to reproduce reference nGRP for the main 

(capital) metropolitan region consisting of the districts México and Mexico City 

(Distrito Federal).  
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Figure 6: Normalized gross regional product (nGRP) for the 32 districts of Mexico. Reference values 
are shown on the horizontal axis and modeled values on the vertical axis. 

The two districts with the largest GRP of the highly centralized country are Distrito 

Federal (the Mexico City district) with a reference nGRP of 17.4% and the México 

district (8.7%), surrounding Distrito Federal. Asset exposure maps of the 

metropolitan region are shown in Fig. A1 in the Appendix. The disaggregation of 

GDP underestimates nGRP for the Mexico City district while overestimating the 

value for México for all evaluated combinations of m and n (nGRP values for Lit1Pop1, 

Lit3, and Pop1 are shown in Fig. 6). The overestimation of the México district’s nGRP 

indicates that the district has an over-proportional nightlight intensity and 

population count compared to a relatively low reference nGRP. Both districts 

combined sum up to modeled nGRP values of 11.2% (m=1) to 17.6% (m=5) for Litm, 

20.8% for Pop1, and 26.5% for Lit1Pop1 (Table S2), the last agreeing well with a 

combined reference nGRP of 26.1%. 

2.4 Discussion 

The LitPop methodology allows for the creation of globally consistent and spatially 

highly resolved estimates of gridded asset exposure value. According to Pittore et al. 

(2017), efforts towards improving exposure data should aim at global consistency, 

continuous integration of new data and methods, and a careful validation of models 

and data. Here, we will discuss the advantages and limitations of the LitPop 

methodology with regard to the following key criteria: global consistency, 

disaggregation skill, scalability and flexibility, openness, replicability and 

reproducibility, and low entry threshold. 

Global consistency. Based on globally available input data, the LitPop methodology 

was applied across countries from different continents and income groups. While the 

presented asset exposure dataset is not complete, it provides data for 224 countries 

contributing 99.9 % of global GDP. Therefore, LitPop-based asset exposure data can 
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be used as a basis for globally comparable economic risk assessments. However, the 

evaluation of the methodology's disaggregation skill presented here is limited to an 

assessment of disaggregation skill for 14 OECD countries. It should be noted that due 

to lack of data we were not able to evaluate the method's performance for low-income 

countries (World Bank income group 1). Therefore, the application of the asset 

exposure data for local assessments in countries within low-income groups should be 

treated with caution. Another caveat to global consistency is the fact that the quality 

and resolution of the underlying population dataset vary between countries, as 

discussed in greater detail in the next paragraph. As a consequence of these 

limitations, asset exposure data should be validated against local data before 

application for local risk assessments, especially in low-income countries. 

Assessment of disaggregation skill. For the gridded exposure dataset presented here, 

the LitPop methodology is used to disaggregate total asset values. Due to a lack of 

subnational reference asset values, the LitPop methodology’s performance for the 

downscaling of asset stock values could not be evaluated directly. The assessment of 

disaggregation skill was instead based on the flow variables GDP and GRP. Given a 

correlation between stocks and flows within each country, this approach represents 

an indirect evaluation of the methodology for asset exposure downscaling. Evaluating 

14 countries, we found that the LitPop methodology generally performs well in 

disaggregating GDP to the subnational level. The skill metrics r and b showed that 

Lit1Pop1 distributes GDP better to the subnational level than the other combinations 

of nightlight and population data assessed. For RMSF, Pop1 and Lit4 perform best on 

average. We selected Lit1Pop1 as a basis for the disaggregated asset exposure dataset 

presented here. This decision is based on two considerations: (1) giving r and b 

priority over RMSF because they are measures of absolute deviation between 

variables (compared to RMSF that is a measure of relative deviation per data point) 

and (2) the fact that Lit1Pop1 combines the advantages of both input data types and 

mitigates their disadvantages, i.e., with regard to saturation, blooming, and detail. For 

countries without a high detail level in the population data available, asset exposure 

based on LitmPopn is more or less equivalent to that based on Litm alone. For regional 

application in these countries, evaluation results suggest that disaggregation 

proportional to Lit4 could distribute asset values best in the absence of detailed 

population data. 

Scalability and flexibility. Subject to data availability, the LitPop methodology can be 

used to estimate the distribution of physical asset values for any target year at a wide 

range of resolutions. The data sources used here cater to resolutions up to 30 arcsec. 

While the GPW dataset provides population data for the previous 2 decades, the 

NASA nightlight images are currently only available for 2012 and 2016. The 

methodology includes a scaling of exposure data proportionally to current GDP for 
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years without any data available. The methodology can potentially be adapted to a 

variety of applications by an appropriate choice of the socioeconomic indicator that 

is disaggregated. The World Bank’s produced capital data are used here as the default 

total asset value per country. Alternatively, GDP can be used as an estimator of 

economic output. GDP multiplied by a factor derived from the country-specific 

income group can also be used to estimate asset values (Aznar-Siguan and Bresch, 

2019; Geiger et al., 2017). This was done for countries without produced capital 

numbers available. Since the CLIMADA repository is open-source, the LitPop 

methodology can be amended to include alternative data sources and versions of 

gridded nightlight, population and total asset values, or other socioeconomic 

indicators to expand and update the asset exposure data. The LitPop methodology 

was developed to provide globally consistent asset exposure data for global-scale 

physical risk modeling. While it could be used for other applications as well, the 

limitations of its scope should be noted. The LitPop methodology does not account 

for differences in infrastructure types and vulnerability. In addition, gridded data 

may cause poor scoping of areas most vulnerable, or those with more exposed 

population. The example of Mexico (Section 2.3.4) illustrates the limitations of the 

LitPop methodology when it comes to the disaggregation of GDP within a 

metropolitan area: While the disaggregation of GDP proportional to Lit1Pop1 nicely 

reproduces the summed nGRP of the metropolitan area, the methodology fails to 

reproduce the distribution of nGRP between the two districts that make up the 

metropolitan area. Therefore, the use of the asset exposure data for local applications 

should be treated with care. The use for local or sector-specific applications is limited 

without the addition of sector-specific datasets. For risk assessments with a local 

focus as well as in countries of low income, we would advise using more local 

approaches and bottom-up methods for identifying and analyzing the vulnerability 

component. Additionally, the asset exposure data could be further refined by 

including auxiliary data, such as road networks and land cover (Geiger et al., 2017; 

Murakami and Yamagata, 2019), or mobile phone cell antenna density (Brönnimann 

and Wintzer, 2018). In order to include sector-specific assets not represented by the 

LitPop methodology, i.e. power plants or mines in unpopulated areas, additional 

sector-specific asset inventories should be included (Gunasekera et al., 2015). For a 

globally consistent approach, sectoral data should however be included with caution, 

as such datasets are prone to regional or national biases.  

Openness, replicability, and low entry threshold. The LitPop methodology was 

developed in the programming language Python 3 and published on the code hosting 

service GitHub as well as in a permanent repository (see Section 2.5). The CLIMADA 

repository is developed open-source and makes use of open-access data to enable 

unrestricted use for applications beyond academia. In addition to the dataset 

provided, the LitPop-module can be used both to apply the computed asset exposure 
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data for direct application in event-based risk assessments with CLIMADA and to 

export gridded asset exposure data to standard formats for use in other applications. 

While Lit1Pop1 is the default, LitmPopn with custom exponents can be chosen as a basis 

for disaggregation. The documentation of CLIMADA is hosted on Read the Docs 

(https://climada-python.readthedocs.io/en/stable/, last access: 4 April 2020). It 

includes an interactive tutorial of CLIMADA and the LitPop module (climada-

python.readthedocs.io/en/stable/tutorial/climada_entity_LitPop.html, last access: 

4 March 2021), with guidance on how to compute and export LitPop-based asset 

exposure data. 

2.5 Data and code availability 

Asset exposure data at a resolution of 30 arcsec for 224 countries, as well as 

normalized Lit1 and Pop1 for the 14 countries used for evaluation are archived in the 

ETH Research Repository with link https://doi.org/10.3929/ethz-b-000331316 

(Eberenz et al., 2019). The LitPop methodology is openly available as a module of 

CLIMADA (CLIMADA-Project, 2019) at GitHub under the GNU GPL license (Free 

Software Foundation, Inc., 2007). CLIMADA v1.2.0 was used for this publication, 

which is permanently available at the ETH Data Archive with link 

http://doi.org/10.5905/ethz-1007-226 (Bresch et al., 2019). The scripts reproducing 

the published dataset, as well as all figures in the present publication and the main 

results are published in the CLIMADA-papers repository on GitHub with link 

https://github.com/CLIMADA-project (Aznar-Siguan et al., 2020).  

2.6 Conclusion 

The open-source LitPop methodology was developed to provide a geographical 

distribution of physical asset exposure values that can be used to model first-order 

economic impacts of weather and climate events and other natural disasters. It uses 

publicly available data sources to calculate gridded asset exposure estimates. The 

global consistency, flexibility and openness, and the integration in the CLIMADA 

repository offer value for manifold use cases for economic disaster risk modeling and 

climate change adaptation studies. However, the methodology could not be evaluated 

directly against subnational asset data, and the evaluation based on GDP was limited 

to 14 OECD countries. Therefore, the asset exposure data are not suitable for 

applications with a local or sector-specific focus without further validation. Future 

research and development could focus on the integration of more highly resolved 

population data and other ancillary data sources as they become available globally. 

Validation against subnational asset value and empirical asset stock inventories yields 

the potential to evaluate and further improve the accuracy of asset exposure 
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downscaling, for both global and regional applications. Regional validation could 

further inform the choice of the most appropriate downscaling functionality for 

different income groups and world regions. 
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ABSTRACT. Assessing the adverse impacts caused by tropical cyclones has become 

increasingly important as both climate change and human coastal development 

increase the damage potential. In order to assess tropical cyclone risk, direct 

economic damage is frequently modeled based on hazard intensity, asset exposure, 

and vulnerability, the latter represented by impact functions. In this study, we show 

that assessing tropical cyclone risk on a global level with one single impact function 

calibrated for the USA – which is a typical approach in many recent studies – is 

problematic, biasing the simulated damage by as much as a factor of 36 in the north 

West Pacific. Thus, tropical cyclone risk assessments should always consider regional 

differences in vulnerability, too. This study proposes a calibrated model to adequately 

assess tropical cyclone risk in different regions by fitting regional impact functions 

based on reported damage data. Applying regional calibrated impact functions 

within the risk modeling framework CLIMADA (CLIMate ADAptation) at a 

resolution of 10 km worldwide, we find global annual average direct damage caused 

by tropical cyclones to range from USD 51 up to USD 121 billion (value in 2014, 

1980–2017) with the largest uncertainties in the West Pacific basin where the 

calibration results are the least robust. To better understand the challenges in the 

West Pacific and to complement the global perspective of this study, we explore 

uncertainties and limitations entailed in the modeling setup for the case of the 

Philippines. While using wind as a proxy for tropical cyclone hazard proves to be a 

valid approach in general, the case of the Philippines reveals limitations of the model 

and calibration due to the lack of an explicit representation of sub-perils such as 

storm surge, torrential rainfall, and landslides. The globally consistent methodology 

and calibrated regional impact functions are available online as a Python package 

ready for application in practical contexts like physical risk disclosure and providing 

more credible information for climate adaptation studies. 

                                                                    
1 Institute for Environmental Decisions, ETH Zurich, Switzerland 

2 Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland 
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3.1 Introduction 

Tropical cyclones (TCs) are highly destructive natural hazards affecting millions of 

people each year (Geiger et al., 2018; Guha-Sapir, 2018) and causing annual average 

direct damage in the order of USD 29 to 89 USD billions (Cardona et al., 2014; 

Gettelman et al., 2017; Guha-Sapir, 2018). Climate change and coastal development 

could significantly increase the impact of TCs in the future (Gettelman et al., 2017; 

Mendelsohn et al., 2012). Increasing risks from TCs and other extreme weather 

events pose a challenge to exposed populations and assets but also to governments 

and investors as actors in globally connected economies. Governments, companies, 

and investors increasingly express the need to understand their physical risk under 

current and future climatic conditions (Bloomberg et al., 2017). Thus, quantitative 

risk assessments require a globally consistent representation of the economic impact 

of TCs and other natural hazards. 

Probabilistic risk models can provide the quantitative basis for risk assessments and 

adaptation studies. Since the mid-2000s, there have been increasing scientific efforts 

in developing and improving global-scale natural hazard risk assessments (Cardona 

et al., 2014; Gettelman et al., 2017; Ward et al., 2020). Risk from natural hazards is 

frequently modeled as a function of severity and occurrence frequency, which can be 

computed by combining information on hazard, exposure, and vulnerability (IPCC, 

2014a). Global- and regional-scale TC risk models often represent hazard as the 

spatial distribution of the maximum sustained surface wind speed per TC event 

(Aznar-Siguan and Bresch, 2019; Ward et al., 2020). In past studies, wind fields 

modeled from historical TC tracks were used to assess economic risk in the Global 

Assessment Report (GAR) 2013 (Cardona et al., 2014; UNDRR, 2013) and to quantify 

affected population (Geiger et al., 2018), among others. For the assessment of future 

risk, historical TC records can be complemented with events simulated in 

downscaling experiments based on the output of global climate models (Gettelman 

et al., 2017; Korty et al., 2017), or synthetic resampling algorithms (Bloemendaal et 

al., 2020). The exposure component can be represented by the spatial distribution of 

people, assets or economic values potentially affected by TCs (Geiger et al., 2018; 

Ward et al., 2020). For the modeling of direct economic damage, exposure is usually 

derived from building inventories for local risk assessments (Sealy and Strobl, 2017), 

or estimated by spatially disaggregating national asset value estimates (De Bono and 

Mora, 2014; Eberenz et al., 2020; Gettelman et al., 2017). 

The vulnerability of an exposed value to a given hazard can be represented by impact 

functions, also called damage functions or vulnerability curves, relating hazard 

intensity to impact. Impact functions for the assessment of direct economic damage 

caused by TCs usually relate wind speed to relative damage (Emanuel, 2011b). For 

the USA, TC impact functions are available specific to different building types 
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(Federal Emergency Management Authority [FEMA], 2010; Yamin et al., 2014), as 

well as on an aggregate level (Emanuel, 2011b). Emanuel et al. (2012) found a lack of 

sensitivity of simulated TC damage to the exact shape of the impact function for the 

USA. However, due to global heterogeneities in the tropical cyclone climatology 

(Schreck et al., 2014), building codes, and other socioeconomic vulnerability factors 

(Yamin et al., 2014), it is inadequate to use a single universal impact function for 

global TC risk assessments. Bakkensen et al. (2018b) used reported damage data to 

calibrate TC impact functions for China, highlighting both the potential of this 

approach and the considerable uncertainties related to the quality of reported damage 

data. Still, there is a lack of globally consistent and regionally calibrated impact 

functions. Due to this lack, impact functions calibrated for the USA have been used 

in a variety of local and regional studies outside the USA, i.e. the Caribbean (Aznar-

Siguan and Bresch, 2019; Bertinelli et al., 2016; Ishizawa et al., 2019; Sealy and Strobl, 

2017), China (Elliott et al., 2015b), and the Philippines (Strobl, 2019). A similar 

impact function has also been applied for modeling TC damages on a global level 

(Gettelman et al., 2017).  

For GAR 2013, building-type specific impact functions from FEMA were assigned to 

exposure points based on global data based on development level, complexity of 

urban areas, and regional hazard level at each location (De Bono and Mora, 2014; 

Yamin et al., 2014). However, the impact functions were not calibrated regionally 

against reported damage data. Furthermore, the required complexity in exposure 

data exceeds the scope of many risk assessments. 

Can globally consistent TC impact modeling be improved by calibrating the 

vulnerability component on a regional level? 

This article addresses this question by calibrating regional TC impact functions in a 

globally consistent TC impact modeling framework, as implemented within the 

open-source weather and climate risk assessment platform CLIMADA (CLIMate 

ADAptation, Aznar-Siguan and Bresch, 2019). This study contributes to reaching the 

goal of consistent global TC risk modeling and a better connection of global and 

regional impact studies. The objectives of this study are to (1) calibrate a global TC 

impact model by regionalizing the impact function; (2) assess the annual average 

damage (AAD) per region and compare the results to past studies, and (3) evaluate 

the robustness of the calibration and discuss the limitations and uncertainties of both 

the model setup and the calibration. To inform the discussion of uncertainties, we 

complement aggregated calibration results (Section 3.3) with an event-level case 

study for the Philippines (Section 3.4). While the attribution of vulnerability to 

regional drivers is outside the scope of this study, the results can serve as a starting 

point for further research disentangling the socio-economic and physical drivers 

determining vulnerability to TC impacts locally and across the globe. 
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3.2 Data and methods 

To regionally calibrate TC impact functions, simulated damage is compared to 

reported damage, as illustrated in Figure 7.  In a first step, direct economic damage 

caused by TCs is simulated in the impact modeling framework CLIMADA (Fig. 7a-

d;  Section 3.2.1 to 3.2.2.2) with one single default impact function applied globally 

to start from (Section 3.2.2.3). Then, damage data points per country and TC event 

are assigned to entries of reported damage (Fig. 7e-f; Section 3.2.3.1). For the 

matched events, the ratio between simulated and reported damage is calculated (Fig. 

7g; Section 3.2.3.2). For calibration, countries are clustered into regions, and two 

complementary cost functions are optimized based on the damage ratios, by 

regionally fitting the slope of the impact function (Fig. 7h; Section 3.2.3.3). 

Figure 7: Schematic overview of the data and methods applied to calibrate regional tropical cyclone 
(TC) impact functions in a globally consistent manner. From left to right: TC event damages are first 
simulated within the CLIMADA framework based on TC hazard (a), asset exposure (b), and a default 
impact function (c), c.f. Section 3.2.1 to 3.2.2.3. Resulting simulated damages (d) are compared to 
reported damage data from EM-DAT (e) for 473 matched TC events (f) by means of the damage 
ratio (g), c.f. Section 3.2.2.4 to 2.3.2. During calibration (h), steps (c) to (g) are repeated several times 
with varied impact functions for each region, optimizing the cost functions TDR and RMSF (c.f. 
Section 3.2.3.3) . The result is a set of best fitting impact functions for nine world regions (Section 
3.3.2). Finally, the calibrated impact functions are plugged into CLIMADA once more (dashed 
arrow)to compute annual average damage (AAD) per region (Section 3.3.3). 

3.2.1 CLIMADA – spatially explicit TC risk modeling 

The CLIMADA (CLIMate ADAptation) impact modeling framework has been 

developed at ETH Zurich as a free, open-source software package (Aznar-Siguan and 

Bresch, 2019). It is written in Python 3.7 and made available online on both GitHub 

(CLIMADA-Project, 2019) and the ETH Data Archive (Bresch et al., 2019). Here, 

CLIMADA was used for the preprocessing of hazard and exposure data, and for the 

spatially explicit computation of direct damage on a global grid at 10 km resolution. 

The setup works equally well at a higher chosen resolution, but the given 
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uncertainties especially in calibration data and computational constraints justify the 

chosen resolution. In the CLIMADA framework, damage is defined as the product 

of  exposed assets and a damage ratio. The damage ratio is an impact function 

multiplied by hazard intensity. 

In our case, damage per TC event and country is simulated as follows: for each grid 

cell and event, damage is calculated as the product of total exposed asset values and 

the mean damage ratio. The mean damage ratio (0 to 100%) results from plugging 

the hazard intensity (maximum sustained wind speed) into the impact function. 

Finally, damage per event is aggregated over all grid cells within the country. Please 

refer to Section 3.2.1 and 3.2.2.3 in Aznar-Siguan and Bresch (2019) for a more 

detailed description of impact calculation. 

3.2.2 Data 

3.2.2.1 TC Hazard 

TCs typically inflict damage due to strong sustained surface winds, storm surge 

inundation, and torrential rain (Bakkensen et al., 2018a; Baradaranshoraka et al., 

2017; Park et al., 2013). Next to maximum wind speed, storm size is an important 

factor controlling TC impacts (Czajkowski and Done, 2013). Since the severity of 

surge and rain is to a certain extent correlated to wind speed and storm size 

(Czajkowski and Done, 2013), the latter is often taken as a proxy hazard intensity 

(Emanuel, 2011b; Gettelman et al., 2017). Here, TC hazard intensity is represented 

by wind fields, i.e., the geographical distribution of the 1 min sustained wind speed at 

10 m above ground per TC event, referred to as “wind speed” or “hazard intensity” 

in the following. Wind speed was simulated at a horizontal resolution of 10 km x 10 

km from historical TC tracks as a function of time, location, radius of maximum 

winds, and central and environmental pressure, based on the revised hurricane 

pressure–wind model by Holland (2008). Please also refer to Geiger et al. (2018) for 

a detailed description and illustration of the wind field model and its limitations. 

Historical TC tracks were obtained from the International Best Track Archive for 

Climate Stewardship (IBTrACS) (Knapp et al., 2010). As data quality and global 

coverage improved after approximately 1980 (Geiger et al., 2018), 4098 historical TC 

tracks from 1980 to 2017 were selected based on data completeness criteria with 

regards to data fields provided within IBTrACS following the approach described by 

Geiger et al. (2018) and Aznar-Siguan and Bresch (2019). Out of the 4098 TCs, a total 

number of 1’538 landfall events with the potential of causing damage were identified. 

Potential damage is given if at least one grid cell of a TC’s wind field with an intensity 

of 25.7 m s-1 (~50 kn) or more coincides with an asset exposure value larger than zero. 

A world map showing the maximum intensity per grid cell for all tracks is shown in 

the Supplement (Fig. S1). 
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3.2.2.2 Asset exposure 

Asset exposure for the assessment of direct economic risk is represented by the 

spatially explicit monetary value potentially impacted by a hazard. Here, we use 

gridded asset exposure value at a resolution of 10 km x 10 km. The dataset is based 

on the disaggregation of national estimates of total asset value (TAV, Table B3) 

proportional to the product of nightlight intensity and population count (Eberenz et 

al., 2020). Following the approach in GAR 2013 (De Bono and Mora, 2014), the TAV 

per country is represented by the produced capital stock of 2014 from the World 

Bank Wealth Accounting (World Bank, 2019). Out of the 62 countries used for 

calibration, 32 come with produced capital estimates. For the remaining 30, an 

estimate of non-financial wealth is used as a fallback (Eberenz et al., 2020), based on 

the gross domestic product (GDP) of 2014 from the World Bank Open Data portal 

(World Bank, online) combined with an GDP-to-wealth factor from the Global 

Wealth Report (Credit Suisse Research Institute, 2017). The asset exposure dataset 

utilized here and a detailed overview over limitations and data availability per 

country are documented in Eberenz et al. (2020).  

3.2.2.3 Impact function 

In CLIMADA, vulnerability is represented by impact functions. They are used to 

compute damage for each TC event at each exposed location by relating hazard 

intensity to relative impact. Since no directly wind-induced damage is expected for 

low wind speeds, TC impact functions for the spatially explicit modeling of direct 

damages can be constrained by a minimum threshold Vthresh for the occurrence of 

impacts and an upper bound of 100% direct damage (Emanuel, 2011b). Empirical 

studies suggest a high power-law function for the slope, i.e., the increase in damage 

with wind speed (Pielke, 2007). An idealized sigmoidal impact function satisfying 

these constraints was proposed by Emanuel (2011b): 

𝑓 =
𝑣I�

1 + 𝑣I�
	 ,	with	 𝑣I =

𝑀𝐴𝑋[(𝑉 − 𝑉Z£|}¤£), 0]
𝑉£¥¦~ − 𝑉Z£|}¤£

	
	(3.1)	

Equation (3.1) defines the impact function 𝑓 as a function of wind speed 𝑉. The 

function takes two shape parameters as inputs: Vthresh and Vhalf. A lower threshold 

Vthresh	of 25.7 m s-1 (50 kn) was proposed for the USA by Emanuel (2011b) and 

empirically supported for China (Elliott et al., 2015b). The slope parameter Vhalf 

signifies the wind speed at which the function’s slope is the steepest and a damage 

ratio of 50% is reached (Fig. 8). It should be noted that the effects of varying Vthresh 

and Vhalf on resulting impacts are not linearly independent. 
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Figure 8: Idealized TC impact function based on Emanuel (2011b). Vhalf is the hazard intensity (i.e. 
maximum sustained wind speed) at which the relative impact reaches 50% of the exposed asset 
value. No impact occurs for an intensity below Vthresh. 

Based on the reference data provided by FEMA (2010), Vhalf for damage to buildings 

can range from 52 to 89 m s-1 depending on building type and surface roughness 

(Elliott et al., 2015b). Applying FEMA impact functions that were verified with 

reported damage data for US hurricanes Andrew [1992], Eric [1995], and Fran 

[1996], Sealy and Strobl (2017) estimated Vhalf to range from 71.7 to 77.8 m s-1, 

depending on building type, with a mean value of 74.7 m s-1. 

In a comparison of calibration results based on a sigmoidal impact function with a 

more complex 12-step staircase function, Lüthi (2019) found no improvement of 

calibration skill with the more complex function. Therefore, a sigmoidal function is 

applied in this study. The default impact function with Vthresh = 25.7 m s-1 and Vhalf = 

74.7 m s-1 is used for a first, uncalibrated, simulation of global TC damages, and as a 

starting point for calibration. While Vhalf is fitted during the calibration process, the 

lower threshold Vthresh is kept constant throughout the study. This is based on the 

finding by Lüthi (2019) that the variation in more than one of the linearly dependent 

parameters most likely results in an overfitting during calibration with physically 

implausible values for Vthresh in some world regions. 

On the chosen 10 km x 10 km grid, single buildings are not resolved. Therefore, 

damage is aggregated over several buildings in a grid cell and not all buildings are 

expected to be damaged to the same degree.  However, the wind-speed-dependent 

impact function is also implicitly accounting for the damage caused by storm surge 

and torrential rain, when calibrated against reported damage data. For these two 

reasons, we allow for values of Vhalf lower and larger than the literature range for pure 

wind-induced building damage in the calibration.  To find the functional slope best 

fit to simulate the direct economic damage of TCs in a region, Vhalf is varied step-wise 

with Vhalf > Vthresh (c.f. Section 3.2.3.3, Calibration of regional impact functions). 
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3.2.2.4 Reported damage data 

Reported damage data for historical TC events are required on a global level to 

calibrate TC impact functions.  

Reported damage estimates for disasters worldwide are available from the 

International Disaster Database EM-DAT (Guha-Sapir, 2018). EM-DAT provides 

data per event and country, including disaster type and subtype, date of the event, 

and impact estimates. The main data sources of EM-DAT are UN agencies, 

governmental and non-governmental agencies, reinsurance companies, research 

institutes, and the press. 

EM-DAT provides one entry per country and event. Therefore, one meteorological 

TC can be listed in EM-DAT several times, with one entry for each country affected. 

In the following, each of these entries per storm and country will be referred to as 

single ‘TC events’. For instance, Hurricane Irma comes with 17 events in EM-DAT 

(disaster no. 2017-0381) as it impacted 16 Caribbean countries and the USA. From 

1980 to 2017, there are 1650 TC events reported in EM-DAT of which 991 come with 

a reported monetary damage value. 

The EM-DAT database provides total damage per event and country in current US 

dollars. In contrast, the asset exposure data used for the modeling of damage are kept 

fixed at the USD value of 2014 (Section 3.2.3). To allow for a comparison of reported 

and simulated damages that is independent of economic development, reported 

damage values need to be normalized to a reference year.  For instance, Weinkle et 

al. (2018) applied two normalization methodologies for hurricane damage in the 

continental USA for 1900-2017, adjusting reported impact for inflation, per-capita 

wealth, and the population of affected counties (Collins and Lowe, 2001; Pielke et al., 

2008). Due to a lack of global time series of wealth data, reported damage is 

normalized by means of GDP scaling. This is based on a less prerequisite approach 

applied in Munich Re’s NatCat, in which recorded damages are normalized 

proportionally to regionalized GDP (Munich Re, 2018). This normalization 

approach assumes that time series in current GDP serve as a first order 

approximation of economic development, implicitly accounting for inflation, 

changes in wealth per capita and population. To obtain estimates of normalized 

reported damage (NRD) per event E, reported damage (RD) is scaled proportionally 

to the affected country’s change in GDP between the year of occurrence y and the 

year 2014: 

𝑁𝑅𝐷¨ = 𝑅𝐷	¨ ∗
ik ª̂«¬
ik ®̂

		 	 	 	 	 	 								(3.2)	

We found that GDP scaling removes the significant positive trend from the yearly 

impacts in the USA (p-values of 0.04 before and 0.14 after normalization). This is in 
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agreement with the findings of existing normalization studies for past TC impacts in 

the USA (Pielke et al., 2008; Weinkle et al., 2018). 

3.2.3 Methods 

3.2.3.1 Event matching: assigning reported damage data to simulated TC 
events 

For the comparison of simulated and reported TC damage, reported events from EM-

DAT per TC and country need to be assigned to TC tracks from IBTrACS. Tracks 

were matched based on the country affected and timestamps (Lüthi, 2019). (1) In a 

first step, the impacted countries per TC track are determined, i.e., in which countries 

a storm does make landfall. (2) Subsequently, the best-fitting tracks are assigned to 

the reported events based on an iterative comparison of start dates provided in the 

datasets. Given that countries are hit by several TCs in a relatively short time, the 

assignment certainty varies. Finally, (3) tracks with a low assignment certainty are 

double-checked manually for removal or reassigning.  

In total, we matched 848 EM-DAT events to their respective tracks. These events 

account for 913 billion USD in reported economic damage out of the total 959 billion 

USD from the 991 EM-DAT events (95 %). For 534 of the 848 assigned events, there 

is economic damage larger than zero simulated in CLIMADA with the respective TC 

track. Generally, the difference between simulated and reported damage per matched 

event spans several orders of magnitude. Extreme outliers are likely to be associated 

with either a mismatch or flawed values of reported damage. Therefore, we exclude 

61 extreme outliers from calibration, i.e. all events that come with a deviation of more 

than a factor of 1000 between normalized reported damage and simulated damage 

with the default impact function. 

Eventually, a total of 473 assigned events remain for analysis and referred to as 

‘matched events’ in the following. These matched events, representing damage per 

TC and country, are based on 376 TC tracks making landfall in 53 countries (one TC 

can make landfall in several countries). The total reported damage from these 473 

matched events accounts to 91 % of the sum of all TC-related reported damage from 

1980 to 2017 in EM-DAT (76 % after normalization). Damage simulated for the 376 

TCs with the default impact function amount to 58 % of the total global simulated 

damage from all 4098 TC tracks. 

3.2.3.2 Damage ratios: event damage ratio and total damage ratio 

For the analysis of regional differences in TC vulnerability, event damage is simulated 

with CLIMADA for all matched events with the default impact function 

(Section 3.2.4). The event damage ratio (EDR) is computed per matched event E as 

the ratio of simulated event damage (SED) over normalized reported damage (NRD):  
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𝐸𝐷𝑅¨ =
°¨k±
�jk±

		 	 	 	 	 	 									 								(3.3)	

An EDR of 1.0 indicates a perfect fit between SED and NRD. An EDR greater 

(smaller) than 1.0 indicates an overestimation (underestimation) of the simulations 

as compared to reports. As there are considerable deviations between the distribution 

of EDRs between countries, the median of EDRs per country is used to define 

calibration regions in Section 3.2.3.3. 

To compare the aggregated damage on a global or regional level, we use total damage 

ratio (TDR) defined as the sum of simulated damages divided by the sum of 

normalized reported damages:  

𝑇𝐷𝑅j =
∑ °¨k±g
±³¬

∑ �jk±g
±³¬

	,	 	 	 	 	 	 								(3.4)	

where N is the number of matched events E in a region R. 

The distribution of EDRs and TDRs before calibration, as well as TDRs after 

calibration, is shown per region in Figs. 12 and S4 and per country in Fig. S2. 

3.2.3.3 Calibration of regional impact functions 

As a first step towards the regional calibration of the TC impact model, distinct 

calibration regions were defined based on three criteria regarding (1) geography, 

(2) data availability, and (3) patterns in damage ratios before calibration. (1) We 

clustered countries by hemispheric ocean basins. This results in five high-level 

regions: North Atlantic and East Pacific oceans (NA), North Indian Ocean (NI), 

Oceania (OC), South Indian Ocean (SI), and north West Pacific (WP). This first 

geographical separation is applied to account for differences in TC characteristics and 

data sources between the ocean basins (Schreck et al., 2014). The five basins are then 

subdivided based on (2) a minimum desired number of 30 data points (matched TC 

events) per region and (3) the median EDRs per country. Applying criterion 2, three 

countries come with a sufficient amount of data points to be calibrated for 

themselves: China (N= 69), the Philippines (N= 83), and the USA (N= 43, including 

three events in Canada). Applying criterion 3, the remaining countries in WP are 

further subdivided into two regions: South East Asia with median EDR < 1.2 and the 

rest of the north West Pacific with EDR > 5 (see Fig. S2d). In summary, the nine 

calibration regions are the Caribbean with Central America and Mexico (NA1), the 

USA and Canada (NA2), North Indian Ocean (NI), Oceania with Australia (OC), 

South Indian Ocean without Australia (SI), South East Asia (WP1), the Philippines 

(WP2), mainland China (WP3), and the north West Pacific (WP4) (see Fig. 9 and 

Table B1). 



 55 

 
Figure 9: World map highlighting the 53 countries used for calibration, color coded per calibration 
region. The tracks of 376 TCs used for calibration are plotted as red lines. The number of resulting 
matched events N is displayed per region. Regions by color: red: the Caribbean with Central America 
and Mexico (NA1); blue: the USA and Canada (NA2); green: North Indian Ocean (NI); purple: 
Oceania with Australia (OC); orange: South Indian Ocean (SI); yellow: South East Asia (WP1), brown: 
the Philippines (WP2), rose: China Mainland (WP3); black: rest of North West Pacific Ocean (WP4). 
The countries per region are listed in Table B1. 

Regional impact functions are calibrated following two complementary approaches 

based on (1) minimizing the spread of EDRs and (2) the optimization of TDRs. For 

the first calibration approach, the root-mean-squared fraction (RMSF) is introduced 

as a cost function:  

𝑅𝑀𝑆𝐹 = 𝑒𝑥𝑝 ´µ�
�
∑ [ln	(𝐸𝐷𝑅¨)]��
¨¶� ·	 	 	 	 								(3.5)	

Input variables are the number of events N and the natural logarithm of EDR (cf. 

Eq. 3.3). The RMSF is a measure of the spread in EDRs, i.e., the relative deviation 

between modeled and reported damage for all matched events in a region. In the 

computation of RMSF, each event E has the same weight, independent of the absolute 

damage values. The natural logarithm ensures that an overestimation is penalized the 

same as an underestimation. RMSF is optimized by identifying the impact function 

associated with the lowest value of RMSF. A value of 1 would indicate perfect fit of 

all events. For the second calibration approach, TDR is optimized. A TDR larger than 

1 implies that the summed simulated damage exceeds the reported values and vice 

versa. Therefore, TDR is optimized by identifying the impact function associated 

with a TDR as close to 1 as possible. As TDR is a ratio of damage aggregated over 

several events, the TDR approach is biased towards better representing events with 

large absolute damage values. In both calibration approaches, the slope of the generic 

impact function (Fig. 8) is calibrated by fitting the parameter Vhalf in Eq. (3.1). An 

increase in Vhalf corresponds to a flattening of the function and thus lower resulting 

simulated damage (cf. Fig. 8). For the fitting of Vhalf, damage is simulated for all 

matched events and an array of Vhalf ranging from 25.8 to 325.7 m s−1 in increments 

of 0.1 m s−1. For each increment, EDR is computed for all matched events. 

Consequently, the values of the cost functions RMSF and TDR are computed for each 

region and increment of Vhalf. Subsequently, the value of Vhalf associated with optimal 
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results for each cost function is identified. Vhalf optimized per region is used to 

calculate fitted impact functions per region. The calibrated impact functions are used 

to compute the annual average damage (AAD) per region, allowing for the 

comparison of results with other studies in Section 3.3.3. 

3.3 Results 

3.3.1 Damage ratio with default impact function 

The comparison of TC damage simulated globally with a default impact function 

(Eq. 3.1 with Vhalf= 74.7 m s−1) reveals (1) interregional differences and 

(2) considerable uncertainties in CLIMADA's ability to reproduce the reported 

damage values per event. The distribution of uncalibrated EDRs per region is shown 

in Fig. 10. EDRs per matched event are shown in Fig. B1, and the distribution of EDRs 

per country is shown in Fig. S2. 

 

Figure 10: Spread of event damage ratio (EDR, boxplot) and total damage ratio (TDR) per region 
before calibration (Vhalf=74.7 m s-1) per region. The plots are based on data from 473 TC events 
affecting 53 countries. The EDR boxplots show the median (green line), the first and third quartiles 
(IQR, blue box), data points outside the IQR but not more than 1.5·IQR distance from either the first 
or the third quartile (black whiskers), and outliers (black circles). The additional markers show TDR 
before calibrated (green diamond). The regions are the Caribbean with Central America and Mexico 
(NA1); the USA and Canada (NA2); North Indian Ocean (NI); Oceania with Australia (OC); South 
Indian Ocean (SI); South East Asia (WP1), the Philippines (WP2), China Mainland (WP3); rest of 
North West Pacific Ocean (WP4). 

3.3.1.1 Inter-regional differences 

Both the ratios EDR and the cost functions RMSF and TDR show interregional 

differences with regard to the deviation of the damages simulated with the default 

impact function from reported damage (Figs. 10 and 12). For most regions, total 

simulated and normalized reported damage deviates less than 1 order of magnitude 

(Table B2). The outliers are the regions WP4 (TDR = 35.6; Hong Kong, Japan, Macao, 

South Korea, Taiwan) and WP2 (TDR = 25.9; the Philippines). For those two regions, 
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the large value of TDRs reveals a mean overestimation of simulated damage as 

compared to reported damage. In regions with TDR < 1, the uncalibrated model 

potentially underestimates the damages caused by TCs. These regions are the Indian 

Ocean (SI and NI), South East Asia (WP1), Oceania with Australia (OC), and the 

Caribbean (NA1). The region SI (Madagascar and Mozambique) shows the overall 

lowest TDR of 0.2, indicating an underestimation of damage by a factor of 5. 

3.3.1.2 Intra-regional uncertainties 

The EDR values within each region show a large spread over several orders of 

magnitudes (Fig. 10). There is no significant correlation between EDR and NRD 

(Fig. B3), suggesting that the over- and underestimation of simulated event damage 

is not related to TC severity. The largest spread, as expressed by the RMSF, can again 

be found in the regions WP4 and WP2 (Fig. 12c). The lowest RMSF was found in the 

regions NI, NA2, and NA1, i.e., the North Indian and North Atlantic basins. While 

the large interregional differences show the need for a regional calibration of impact 

functions, the spread of EDRs within some regions point towards uncertainties and 

limitations of the modeling setup that will not be removed by calibrating the impact 

function alone. 

3.3.2 Regional impact functions 

We calibrated regional impact functions to address interregional differences in 

TDRs. The resulting impact functions calibrated with two complementary 

approaches are shown in Fig. 11. The resulting impact functions vary between the 

regions both in slope and level of uncertainty, with Vhalf ranging from 46.8 to 

190.5 m s−1 (Fig. 12a and Table B2). In addition to the regional impact functions, 

global impact functions were fitted based on all 473 data points combined, resulting 

in Vhalf ranging from 73.4 (RMSF optimization, i.e., RMSF = min.) to 110.1 m s−1 (TDR 

optimization, i.e., TDR = 1). Applying the regional impact functions, TDR calculated 

for all regions combined is 4.7 for the default impact function and 2.2 for the RMSF 

optimized impact functions (Fig. 12b). With the calibration based on TDR 

optimization, the bias in aggregated simulated damages can be removed, i.e., an 

impact function is fitted that leads to TDR = 1. This does not mean that the simulated 

damage of each single event is equal to the reported damage. In fact, there is a large 

spread in the values of Vhalf that would fit best for individual events. This uncertainty 

is visualized by the interquartile range (IQR) of the array of impact functions fitted 

to the individual events per region (shading in Fig. 11). For the individual fitting per 

event, the value of Vhalf is determined by what would be required to obtain an EDR 

equal to 1. The sensitivity of TDR and RMSF per region to changes in Vhalf is 

visualized in the Supplement. Regions with a large uncertainty, i.e., a large spread of 

EDRs, generally show a relatively low robustness of the cost functions (Fig. S3). On a 
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globally aggregated level, calibration reduces the spread of EDRs to a certain degree, 

placing more than half of events in the EDR range from 10−1 to 10. 

Figure 11: Regional impact functions for nine calibration regions, based on complementary 
calibration approaches: RMSF optimized (blue), TDR optimized (red), and the median Vhalf obtained 
from fitting impact functions for each individual event to obtain an EDR of 1 (dashed). The shading 
demarcates the range containing 50% of the individually fitted impact functions per region, i.e. the 
interquartile range (IQR). 

The comparison of complementary calibration approaches gives an indication of the 

robustness of the calibration per region. In all regions, the calibrated impact functions 

based on both approaches lie within the interquartile range of the individually fitted 

curves (Fig. 11). However, the difference between Vhalf for the two approaches ranges 

from 3 m s−1 (region NA2) to 104 m s−1 (WP2). The largest uncertainties were found 

in the fitting of Vhalf for regions WP2–4 in the north West Pacific. In these regions, 

the TDR optimization fits values of Vhalf that are much larger than for the RMSF 

optimization (Fig. 12a). This corresponds to rather flat impact functions as shown in 

the bottom row of Fig. 11. Since TDR gives larger weight to events with large damage 

values, these results indicate that these events are systematically overestimated by the 

model in the regions WP2–4. The flat calibrated impact functions partly compensate 

for this overestimation. As a further indication of large uncertainties, TDR 

optimization in these three regions returns RMSF values that are larger than with the 
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uncalibrated impact function (Fig. 12c). Possible reasons for the uncertainties in the 

model are explored in a case study for the Philippines in Section 3.4 and further 

discussed in Section 3.5. 

 
Figure 12: Calibration results and cost functions for nine calibration regions and all regions 
combined, each shown before (grey) and after calibration (blue and red): (a) Vhalf: fitted impact 
function parameter; (b) TDR: ratio of total simulated and normalized reported damage; (c) RMSF: 
root-mean-squared fraction; and (d) AAD: normalized reported (green) and simulated annual average 
damage (AAD). AAD is computed from all events available in EM-DAT (N=1650, green) and 
IBTrACS (N=4098), not just the 473 matched events used for calibration (a-c). Please refer to 
Tables 2 and B2 for numerical values. The regions are the Caribbean with Central America and 
Mexico (NA1); the USA and Canada (NA2); North Indian Ocean (NI); Oceania with Australia (OC); 
South Indian Ocean (SI); South East Asia (WP1), the Philippines (WP2), China Mainland (WP3); rest 
of North West Pacific Ocean (WP4). 
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3.3.3 Annual average damage AAD  

Despite considerable interannual variability of TC occurrence and impacts, AAD is 

often used as a reference value for the mean risk per country or region. Here, we 

compare AAD computed with the regionalized TC impact model to values from EM-

DAT and the literature (Table 2). AAD from EM-DAT represents values normalized 

to 2014 based on all 991 damaging events reported in the database from 1980 to 2017. 

Based on the calibrated impact functions, direct damage is simulated based on the 

full set of TC tracks (N= 4096) and all countries. AAD values per country are provided 

in the Supplement. The computation of global AAD considers all countries, not only 

those used for calibration. Thereby, the regionally calibrated impact functions are 

used for other countries in the same region (cf. Table B1). AAD in countries not 

attributed to any region is calculated with impact functions calibrated globally. The 

resulting AAD for the calibration regions and the global aggregate are shown in 

Fig. 12d and Table 2. The standard deviation of AAD is generally of the same order 

of magnitude as AAD (Table 2). 

Table 2: Annual average damage (AAD) from calibrated CLIMADA, as well as AAD from EM-DAT 
(normalized to 2014), GAR 2013, and Gettelman et al. (2017). Total AAD and the standard deviation 
of annual damage (in brackets) per region is given in billions of current US dollars ($B). AAD relative 
to total asset value (TAV; cf. Table B3) is provided in per mill (‰, italics). TAV values per region and 
study are reported in Table B3. Please note that both GAR 2013 and Gettelman et al. (2017) 
included synthetic TC tracks in their analysis which are based on historical tracks. The last row (world, 
bold) considers all countries. AAD values by country are provided in the Supplement. * USA and 
Bermuda without Canada. 

For the years 1980 to 2017, we find aggregated global AAD to range from USD 51 up 

to USD 121 billion (value in 2014). In comparison, global AAD from EM-DAT is 

USD 46 billion. Values from GAR 2013 and Gettelman et al. (2017) range from 

USD 67.0 to USD 88.9 billion. It should be noted, however, that the two studies 

consider different time periods than our study (1950 to 2010 and 1979 to 2012, 

respectively), as well as deviant TAVs per country. Global TAV for 224 countries 

aggregates to USD 251 trillion compared to USD 156 trillion in Gettelman et 

al. (2017) and only USD 96 trillion in GAR 2013 (Table 2). Therefore, the comparison 

of AAD relative to TAV is a better measure to compare the results of the three studies. 

Relative to TAV, simulated global AAD amounts to 0.2 ‰–0.5 ‰ in our calibrated 
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model as compared to 0.4 ‰–0.5 ‰ in Gettelman et al. (2017) and 0.9 ‰ in GAR 

2013 (Table 2). 

The aggregated region with the largest simulated AAD is East Asia (WP; USD 17–71 

billion), followed by the USA with USD 19–22 billion and the North Indian Ocean 

with USD 4–9 billion. The regions WP2 and WP4 show the largest discrepancy in 

AAD simulated with the two alternative calibrated impact functions. This is 

consistent with the large uncertainties found in these regions during calibration 

(Section 3.3.1 and 3.3.2). In the most southern regions NI, SI, OC, and WP1, 

simulated relative AAD is consistently larger than in GAR 2013. This indicates that 

the calibration corrects for a systematic underestimation of TC vulnerability in these 

regions. For the Philippines (WP2), the largest AAD relative to TAV was simulated 

(22.3 ‰ with the RMSF optimized impact function). While the damage estimates 

simulated for WP2 come with large uncertainties, the range of relative AAD (1.3 ‰–

22.3 ‰) encompasses the 11.0 ‰ for the Philippines in GAR 2013. The case of the 

Philippines will be further analyzed and discussed in Section 3.4. 

3.4 Explorative case study: the Philippines 

For a better understanding of the uncertainties involved in the TC impact function 

calibration, we exploratively examine simulated and reported damages of matched 

events in the Philippines (region WP2). The Philippines is the region with the least 

robust calibration results, with a large spread in EDRs and the largest discrepancy 

between the two calibration approaches. The difference in Vhalf between the two 

calibration approaches exceeds 100 m s−1 (Fig. 12a). Consequently, there is a large 

spread in simulated AAD ranging from USD 0.8 to USD 14 billion (Table 2). This 

corresponds to an underestimation of annual risk of USD 0.3 billion up to an 

overestimation of USD 21.2 billion as compared to normalized values from EM-DAT 

with an AAD of USD 1.1 billion. 

The goal of this explorative case study is to better understand what drives these 

uncertainties in the TC impact model within the region, discuss the limitations of the 

calibrated model, and identify points for improvement for the future development of 

global TC impact models. Thereby, we assess the following hypotheses. (1) Potential 

differences between urban and rural exposures and vulnerabilities as considered in 

GAR 2013 (De Bono and Mora, 2014) are not fully resolved in the model. (2) The 

simplified representation of the TC hazard intensity with wind speed alone is not 

capable of adequately modeling the impact of TCs with over-proportional damage 

caused by sub-perils like storm surge and torrential rainfall (Baradaranshoraka et al., 

2017; Park et al., 2013). In the following, we explore these hypotheses with the 

example of 83 matched TC events in the Philippines while keeping in mind that the 
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model setup is not designed to represent single events perfectly due to the large 

inherent stochastic uncertainty. To explore these hypotheses, we review reports and 

the literature on TC impacts in the Philippines and examine the relationship between 

EDRs per event with the spatial distribution of the wind field and subsequent 

simulated damages associated with each single event. 

3.4.1 Tropical cyclones in the Philippines 

The Republic of the Philippines is one of the most TC-prone countries in the world 

(Blanc and Strobl, 2016). From 1951 to 2014, an annual average of 19.4 TCs entered 

the Philippine Area of Responsibility (Cinco et al., 2016) with six to nine TCs making 

landfall in the Philippines each year (Blanc and Strobl, 2016; Cinco et al., 2016). This 

is a relatively high frequency compared to five to eight landfalls in China (Zhang et 

al., 2009), and an average of three landfalls per year in the North Indian Ocean region 

(Wahiduzzaman et al., 2017) as well as in the USA (Lyons, 2004). The north and east 

of the Philippines are the regions most exposed to TC landfalls, with most TCs 

crossing the Philippines from east to west (Cinco et al., 2016; Espada, 2018). Rainfalls 

associated with TCs contribute around 35% of annual precipitation in the 

Philippines, with regional values ranging from 4 % to 50 % (Cinco et al., 2016). 

In total, 83 matched TCs making landfall in the Philippines were used for calibration. 

For 11 of the 21 most damaging TC events, reports and scientific literature on 

associated sub-perils and impacts were reviewed (Table B4). In summary, TCs 

making landfall in the Philippines cause damage due to great wind speed, storm 

surge, and rain-induced floods and landslides. Meteorologically, the storm systems 

interact with the monsoon season affecting both the dynamics and the severity of 

torrential rain (Bagtasa, 2017; Cayanan et al., 2011; Yumul et al., 2012). TCs in the 

Philippines inflict damage on several sectors; it is most costly for housing and 

agriculture but also for schools, hospitals, power and water supply, roads, and bridges 

(Table B4). Single events were also reported to cause damage and business disruption 

to airports and ports (Typhoon Haiyan) and dikes (Nesat and Xangsane). This 

complexity of how and where TCs cause damage in the Philippines is in stark contrast 

to the relatively simple representation of hazard and exposure in our modeling setup. 

It is therefore not surprising that our calibrated TC impact model is over- and 

underestimating the damage of individual events, as illustrated for the Philippines by 

the wide spread of EDRs. In the following, we will take a closer look at events with 

over- and underestimated simulated damage to explore the two hypotheses above. 

3.4.2 Urban vs. rural exposure 

Most of the asset exposure value of the Philippines is concentrated around the 

metropolitan area of Manila (Metro Manila). Located around 14.5∘ N, 121.0∘ E 
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(Fig. 13a), Metro Manila is Philippine's political and socio-economic center (Porio, 

2011). The typhoons Angela (1995), Xangsane (2006), and Rammasun (2014) are 

prominent TCs hitting the Metro Manila directly. In our analysis, these TCs come 

with particularly large EDRs, i.e., an overestimation of simulated vs. reported 

damages, even with calibrated impact functions (Table B4). All three typhoons show 

maximum sustained wind speeds in Manila greater than 50 m s−1 (Fig. 14b, e, f), 

corresponding to relative damage ranging from 6 % up to 37 % of asset exposure value 

with the calibrated impact function. These large relative damage values in 

combination with the concentration of asset exposure value in the Manila region are 

likely to explain the large EDRs of these events. The analysis of all 83 TC events used 

for calibration support this hypothesis, underpinning the crucial role the large asset 

exposure values in the Metro Manila plays for the wind-based simulated damage. An 

overestimation of simulated damages (e.g., EDR > 10) consistently coincides with 

large wind speeds over Metro Manila. Out of 19 TCs affecting Manila directly, we 

find 16 (84 %) with an EDR > 10 and zero occurrences of EDR < 0.1 (Fig. 14). In 

contrast, only 9 of 64 TCs not affecting Manila directly come with an EDR > 10. In 

summary, we found that simulated damage of an event would more usually 

substantially exceed normalized reported damage if the event hit Manila directly. 

This confirms hypothesis (1) in that a special treatment of the impact functions for 

urban areas could improve the TC impact model. 
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Figure 13: Maps of the Philippines showing (a) the spatial distribution of asset exposure value in the 
Philippines (US dollar value in 2014) based on Eberenz et al. (2020) and (b–f) mapped TC impacts 
for Typhoon Rammasun (b), Typhoon Haiyan (c), Tropical Storm Ketsana (d), Typhoon Xangsane (e), 
and Typhoon Angela (f). For each event, the map shows the TC track from IBTrACS (bold solid line), 
the spatial distribution of simulated maximum 1 min sustained wind speed at 10 m above ground in 
meters per second (m s−1) (dashed lines at 25, 50, and 70 m s−1), and simulated direct damage at a 
10 km resolution (color shading). Coast lines and the location of major cities are marked on the map 
based on Cartopy (Met Office, 2010). 

 

 
Figure 14: Distribution of the event damage ratios (EDRs) for 83 TCs making landfall in the 
Philippines from 1980 to 2017. The number of events for three ranges of EDRs are compared, 
differentiating whether Manila was directly affected by the TC's wind field (orange) or not (purple). 
Manila is considered to be affected if the hazard intensity exceeds 25 m s−1 at 14.5∘ N, 121.0∘ E. 
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3.4.3 Impact of storm surge and torrential rain 

While urban vulnerability to strong winds in Metro Manila appears to be 

overestimated by the calibrated impact function, Metro Manila is known to be highly 

exposed and vulnerable to regular, large-scale flooding (Porio, 2011). The main 

drivers of flood vulnerability are its geographical setup, largely unregulated urban 

growth and sprawl, and substandard sewerage systems, especially in low-income 

areas (Porio, 2011). Tropical Storm Ketsana, locally known as Ondoy (2009) is an 

example with very low simulated damages coinciding with large reported damages 

associated with flooding in Metro Manila; Ketsana's EDR is 0.002, i.e., simulated 

damage is more than 2 orders of magnitude smaller than reported. The large reported 

damage (NRD = USD 401 million) was mainly due to floods and landslides. 

Torrential rainfall caused severe river flooding in Metro Manila and landslides 

around Baguio City resulting in severe damage (Abon et al., 2011; Cruz and Narisma, 

2016; Nakasu et al., 2011; NDCC, 2009a). The flood damage was not resolved by the 

wind-based impact model with intensities well below 50 m s−1 and affected neither 

Manila nor the northern Baguio City directly (Fig. 13d). Notably, even for TCs with 

large overestimations of simulated damage due to high wind speeds in Metro Manila, 

namely Fengshen and Xangsane, a substantial part of the reported damage was 

actually caused by pluvial flooding and landslides and not by wind alone (Yumul et 

al., 2008, 2011, 2012). 

For the most severe TC in the recent history of the Philippines, Typhoon 

Haiyan (2013), normalized reported damage and simulated damage are on the same 

order of magnitude resulting in an EDR of 0.17. Haiyan, with sustained 1 min surface 

wind speeds up to 87.5 m s−1, caused thousands of casualties and around 

USD 10 billions of economic damage in the Philippines (Guha-Sapir, 2018; Mas et al., 

2015). Devastating wind and storm surge associated with Haiyan caused damage to 

multiple sectors, including ports and an airport. It should be noted that sector-

specific impacts are not resolved in the impact model and that Haiyan did not affect 

Manila directly. Relatively large damage was simulated around Tacloban City, Leyte, 

which was actually devastated by Haiyan's storm surge. Large wind impacts were also 

simulated further west around the cities of Iloilo and Cebu (Fig. 13c) that were not as 

exposed to surge as Leyte province. The relatively good performance of the model in 

the case of Haiyan is thus not explained by a perfect location and representation of 

the impact in the model. It is rather based on overestimated urban wind damages 

partly balancing the lack of damages caused by storm surge. 
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3.4.4 Conclusions from the case study 

The case of the Philippines reveals limitations of the model and calibration due to the 

lack of an explicit representation of sub-perils such as storm surge, torrential rainfall, 

and landslides (Section 3.4.3). The flood damage caused by Ketsana is a showcase 

example for severe damage associated with a TC with relatively low wind speeds, 

which is to say an event that cannot be adequately reproduced with a wind-based 

impact function. Adding to the stochastic uncertainty, the magnitude of rainfall 

during TC events in the Philippines is not only determined by the intensity of the TC 

event but also by the coinciding monsoon season, as in the case of typhoons Fengshen 

and Haiyan (Espada, 2018; IFRC, 2009; Yumul et al., 2012).  

Next to a lack of representation of all components of hazard intensity, differences in 

exposure and vulnerability between urban and rural areas exposed to TCs are likely 

to contribute to the large spread in EDRs and subsequently uncertainty in the impact 

function calibration. This has been illustrated in Section 3.4.2; the large 

overestimation of simulated event damage of TCs affecting the Manila metropolitan 

area points towards relevant sources of epistemic uncertainty. On the one hand, a 

large share of exposed asset values in the model are concentrated in urban areas, while 

exposed agricultural assets in rural areas are neglected. On the other hand, one single 

impact function might not be sufficient to represent both urban and rural building 

vulnerability. Another factor contributing to the high simulated damages in Manila 

could be the wind field model. Manila is located in a bay on the west coast of the main 

island Luzon. Most TCs approach Luzon from the east. The wind field model adapted 

from Holland (2008) does not, however, take into account variations in topography 

and surface roughness. This could lead to an overestimation of simulated wind speeds 

downstream of elevated land, as in the case of Manila. A better representation of wind 

speed over land could mitigate this problem (Done et al., 2020). 

3.5 Discussion 

3.5.1 Relevance for TC risk assessments 

In this study, we showed how the regionalization of impact functions improves the 

assessment of TC risk in numerous world regions, correcting an overestimation of 

aggregated TC damages by a factor of potentially up to 36 in the north West Pacific 

and an underestimation by a factor of 5 in the South Indian Ocean. To complement 

the global perspective, we explored the limitations of the TC impact modeling setup 

through the case study of TC events in the Philippines. 

The calibration resulted in large regional differences in the slope of impact functions 

with considerable consequences for the magnitude of simulated damages. In 
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Section 3.3.2, we compared average simulated damage with regionalized impact 

functions to results from the literature. While the comparison is limited by 

differences in the model setups, we found that regional damage estimations relative 

to the exposed asset values generally agree well with the results of previous studies. 

However, the results for the north West Pacific region (WP4), consisting of Japan, 

South Korea, Macao, Hong Kong, and Taiwan, deviate substantially from GAR 2013. 

Simulated relative AAD in the region ranges from 0.2 ‰–0.8 ‰ as compared to 

3.1 ‰ in GAR 2013. This difference implies that, besides the use of building-type-

specific impact functions, the TC impact model of GAR 2013 substantially 

overestimates TC damages in WP4 compared to reported data. Consistent with this 

finding, the uncalibrated simulation showed the largest overestimation of aggregated 

damage in this region. Assuming that the order of magnitude of reported direct 

damage from EM-DAT is reasonable, the regionalization of impact functions 

presented here is an improvement for TC risk assessments in the region. 

For calibration, two complementary approaches were employed: the optimization of 

aggregated simulated compared to reported damage (TDR) and the minimization of 

the spread of damage ratios of single events (RMSF). 

Annual average simulated damage based on the TDR-optimized set of impact 

functions is generally closer to the values found in EM-DAT than the values based on 

RMSF optimization. This is not surprising since TDR is designed to represent 

aggregated damage per region. For the assessment of TC risk on an aggregated level, 

it is therefore most appropriate to employ the more conservative TDR-optimized 

model, even though single events can be massively underestimated with the flatter 

impact functions. Complementary, impact functions based on RMSF optimization 

and the spread of individual event fitting can be included in risk assessments for 

sensitivity analysis. 

3.5.2 Uncertainties and limitations 

The deviation between the results of the two calibration approaches indicates how 

robust the calibration is with regards to the model's ability to represent the correct 

order of magnitude of single event damage. Whereas the model setup returns 

reasonable risk estimates and consistent calibration results for Central and North 

America, we found an extensive spread in EDR and calibration results for other 

regions, especially in East Asia. While the correlation between simulated and 

reported event damage is improved by the calibration, the simulated damage of single 

TC events can deviate several orders of magnitude from reported damage (Figs. 10, 

B1, and B2). In the regions of the north West Pacific (WP2–4), the fitted impact 

functions are ambiguous with large discrepancies between the two calibration 

approaches. The low robustness found in these regions stems from multiple causes, 
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including the stochastic uncertainty in TCs as natural phenomena, as well as 

epistemic uncertainties located in the hazard, exposure, and vulnerability 

components of the impact model. An additional source of uncertainties is located in 

the reported damage data used for reference. Future improvements in the TC impact 

model and a sound judgment of the limitations of the calibrated impact functions 

require better understanding of the epistemic uncertainties. In the following, we will 

discuss these uncertainties for the different components of the model. 

The case of the Philippines provides insights into the uncertainties located in the 

model setup, both in the representation of hazard intensity and in differences 

between the structure and vulnerability of exposed assets in urban and rural areas 

(Section 3.4). The hazard is represented by wind fields modeled from TC track data, 

and the same impact functions are applied for urban and rural areas. These are 

considerable simplifications of the actual interaction of cyclones with the natural and 

built environment. To reduce these uncertainties, the hazard component could be 

improved by considering topography (Done et al., 2020) and complementing wind 

speed with sub-perils like storm surge, torrential rain, and landslides. For a better 

representation of urban assets, building-type-specific impact functions, and a 

differentiation of urban and rural exposure as applied for GAR 2013 (De Bono and 

Mora, 2014) could be beneficial. Furthermore, geospatial agricultural yield data could 

be added to the exposure data, although reported damage for calibration is mostly 

not available at such sectoral granularity. Next to the model setup, the reported 

damage data obtained from EM-DAT are another relevant source of uncertainty. 

Reported damage data are expected to come with considerable uncertainties partly 

due the heterogeneity of data sources, the blending of direct and indirect economic 

damages, and political and structural reporting biases (Guha-Sapir and Below, 2002; 

Guha-Sapir and Checchi, 2018). Further uncertainty is introduced by the lack of 

international standards for reported damage datasets, leading to inconsistencies 

between data providers (Bakkensen et al., 2018b). These uncertainties limit our 

understanding of the robustness of the calibration. For future calibration studies 

relying on reported damage data, calibration robustness could be increased by 

combining datasets from different sources in an ensemble of datasets (see Zumwald 

et al., 2020). 

In this study, we did not explicitly quantify the uncertainties related to the model 

setup, the input data for hazard and exposure, and the reported data used as reference 

data for calibration. Rather, the robustness of the calibrated impact functions was 

judged based on the deviation between the two calibration approaches and the spread 

of impact functions fitted to the individual TC events. Based on the limitations 

discussed above, we conclude that the resulting array of regionalized impact 

functions should be applied with caution, being aware that the model setup is not 
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suitable to represent single TC events adequately. However, the calibrated impact 

functions mark an improvement for the modeling of aggregated risk estimates, such 

as the annual average damage (AAD). Impact functions sampled from the range of 

calibration results can be applied for a more probabilistic modeling of TC impacts. It 

should also be noted that the impact functions calibrated for the years 1980–2017 

cannot be expected to be stable in the future. Applying these impact functions for the 

assessment of future TC risk requires, ceteris paribus, an assumption with regard to 

vulnerability. 

While the results of this study are not specific to the CLIMADA modeling framework, 

the precise shape and scaling of the calibrated impact functions are, however, to a 

certain degree specific to the choices and input data of the modeling setup: (1) the 

choice of free parameters in the impact function (c.f. Section 3.2.2.3 and Lüthi, 2019), 

(2) the TAVs (cf. Table B3; impact functions would scale differently with a different 

assumed inventory of exposed assets), (3) spatial resolution, and (4) the 

representation of hazard intensity. The regionalized impact functions presented here 

were calibrated for wind-based damage modeling on a spatially aggregated level. 

Model setups with an explicit representation of related sub-perils like storm surge or 

torrential rain require different (i.e., flatter) impact functions for the wind-induced 

share of TC damage, as well as additional impact functions for each sub-peril. 

Likewise, impact models with an explicit representation of building types and 

agricultural assets require a more differentiated set of impact functions. Considering 

the irreducible stochastic uncertainties in the system, it remains to be shown to which 

degree the large interregional differences in calibrated impact functions found in this 

study can be explained by regional differences in building types and standards, 

physical TC characteristics, or other factors. 

3.6 Conclusion and outlook 

In this article, the global assessment of TC risk was improved by regionalizing the 

vulnerability component of the TC impact assessment. To better account for regional 

differences, a TC impact model was calibrated by fitting regional impact functions. 

The impact functions were calibrated within the CLIMADA risk modeling 

framework using reported estimates of direct economic damage from the EM-DAT 

dataset as reference data. For calibration, two complementary optimization 

approaches were applied, one aiming at minimizing the deviation of single event 

damage from the reported data and one aiming at minimizing the deviation for total 

damage aggregated over 38 years of data. By fitting impact functions, we were able to 

reduce regional biases as compared to reported damage data, especially for countries 

in the north West Pacific and South Indian Ocean regions. The substantial 

overestimation of TC damages in the north West Pacific with the default impact 
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function opens the question for the drivers of the apparently lower vulnerability in 

this region. Considering the inability of the model setup to directly represent the 

impacts from TC surge and pluvial flooding, one would rather expect aggregated 

calibrated impact functions to be steeper than the default wind impact function. 

Therefore, we suggest investigating interregional differences in other possible 

drivers, including building standards but also damage-reporting practices. A study 

combining the empirical evidence provided by reported damage data on the one 

hand with socio-economic indicators on the other hand would be desirable but rather 

challenging as this would add even more layers of complexity and cascading 

uncertainties to the calibration, especially on a global level. 

The calibrated model comes with considerable uncertainties related both to the 

impact model setup and the reported damage data. The largest uncertainties were 

found for the north West Pacific regions, while the calibration produced consistent 

results for the North Atlantic regions. The spread of fitted impact functions within 

each region can be exploited to better account for these uncertainties in probabilistic 

risk assessments. Based on our findings, we recommend to always consider 

interregional differences in vulnerability for the application in global TC impact 

models. For model setups comparable to the one described here, we recommend the 

use of TDR-optimized functions for risk assessments on an aggregated level. The 

resulting simulated damage can complement reported damage data. Assuming that 

reported damages are more likely to underestimate actual impacts, it could be 

advisable to sample impact functions from the range between the complementary 

calibration results. For probabilistic impact modeling, a random sampling from the 

array of impact functions fitted to individual events could be considered. This 

becomes especially relevant for regions with large uncertainties attached to the 

calibration results, such as the north West Pacific and Oceania. Limitations of our 

research motivate future work. For TC impact models, we echo the call for a more 

refined representation of TC hazards as a combination of wind-, surge-, and rain-

induced flood and landslide events. When modeling multiple TC sub-perils, 

aggregated reported damage data are not sufficient to constrain impact function 

calibration. This might be resolved by consulting socio-economic- and engineering-

type data and knowledge. Furthermore, our case study for the Philippines suggests 

that model accuracy could be further improved by differentiating between urban and 

rural asset exposure, considering topography in wind speed estimations, and 

including exposed agricultural assets. 
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4. Complementary metrics pivotal in 
assessing 21st century crop production 
risk 
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Wim Thiery6, David N. Bresch1,2 

Manuscript in preparation. 

ABSTRACT. Agriculture is one of the economic sectors most vulnerable to climate 

change. Global gridded crop models (GGCMs) are used to simulate historical and 

future crop yield responses to a changing climate. Intercomparison efforts such as the 

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) allow for the analysis 

of agreement and divergence between models and parameters, as well as the 

projection of future crop production under a range of emission and land use 

scenarios. Recent studies project both regionally decreasing mean crop yields and 

increasing inter-annual variability with climate change for the 21st century, likely 

posing a serious threat to food security. To inform the development of science-based 

adaptation plans, it is crucial to assess the probability and severity of future climate-

induced production losses. Based on the unprecedented climate-crop ensemble 

facilitated by ISIMIP3b, we assess country-level crop production risk with the risk 

modeling platform CLIMate ADAptation (CLIMADA). The modularized 

implementation with CLIMADA allows for the use of crop model outputs as hazard 

component for flexible assessments of crop production risk, with user-determined 

production layers as exposure. As risk metrics, we calculate probabilities of years with 

extreme crop production losses for maize, rice, soybean, and wheat. Two 

complementary thresholds allow for the assessment of losses both relative to 

historical and future mean production levels. We find that variability-driven risk 

increases most in countries with relatively low current risk levels. Maize is the only 

crop type analyzed with a worldwide substantially elevated risk in a 2°C world, driven 

by a decline in mean yields. For rice, soybean, and wheat, results are more 

differentiated with reduced risk projected for most countries at 2°C. At 4°C, globally 

aggregated crop production risk increases, due to both reduced production levels and 

more severe extreme events. The results come with considerable uncertainties and 
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opposing trends in some regions. Of the three major crop producing countries, China 

shows a future increase in risk for maize and wheat, and declining risk for rice and 

soybean. The USA shows elevated future crop production risk for all crop types, and 

India shows reduced risk levels, compared to historical climate. Overall, our results 

highlight substantially increased risk to crop production under warming projected 

for the mid to end 21st century and the need to assess crop yield projections more 

differentiated in future climate risk assessments, both geographically and with regard 

to the choice of risk metrics. 

4.1 Introduction 

Agriculture is among the economic sectors most vulnerable to meteorological and 

hydrological extremes (e.g., Bokern, 2019; Frieler et al., 2017b; Mbow et al., 2019). It 

is thus not surprising that the impacts on agriculture were among the first impacts of 

climate change to be studied (e.g. Adams, 1989; Kulshreshtha and Klein, 1989; 

National Research Council (U.S.). Carbon Dioxide Assessment Committee, 1983). 

Climate change is affecting crop yields in many ways, including changes in the mean 

and extremes of temperature and precipitation regimes, and rising atmospheric CO2 

concentration ([CO2]) (e.g., Franke et al., 2020b, 2020a; Mbow et al., 2019). In state-

of-the-art crop yield simulations, observed weather variations account for more than 

50% of yield variations in many major crop producing countries (Frieler et al., 

2017b). On a global level, climate variability accounts for roughly a third of observed 

crop yield variability (Ray et al., 2015). Climate change has likely already affected 

global aggregate food production (Gaupp et al., 2020; Ray et al., 2019). In a warming 

climate, the risk of multi-breadbasket failures, that is, the probability of simultaneous 

crop failure in multiple relevant production areas across the globe, are projected to 

increase (Gaupp et al., 2019; Tigchelaar et al., 2018). Climate change thus poses a 

threat to food security as source of income and livelihood, from local to global scales 

(e.g., Hurlbert et al., 2019; Mbow et al., 2019; Stevanović et al., 2016; Wiebe et al., 

2015). Food supply instability risk is projected to reach high levels, i.e., significant 

and wide spread impacts, at 2°C of global warming, and very high levels at 4°C 

(Hurlbert et al., 2019). 

For assessing the impact of future climate on crop production, with weather 

conditions outside the historical record, one depends on crop models. Crop models 

help to reduce complexity of different climate variables affecting crop yield. Both 

empirical and process-based modeling approaches are applied for the projection of 

crop yields under climate change (Blanc and Reilly, 2017). Process-based models 

consider non-linear effects of climate variables on crop yields (Blanc and Reilly, 

2017), including variations in the phenological response of crops and the interaction 

between different weather variables as well as delayed effects such as water storage 
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(Frieler et al., 2017b). This makes process-based crop models best suited to simulate 

crop yield projections for climate scenarios outside the range of historical climate. 

On a global scale, process-based global gridded crop models (GGCMs) are widely 

used to study future crop yields under climate change conditions (e.g., Elliott et al., 

2015a; Franke et al., 2020b; Jägermeyr et al., under review; Rosenzweig et al., 2014). 

The most relevant drivers of crop yield changes in GGCM projections are 

temperature, water availability, [CO2], radiation components and nitrogen 

availability (Elliott et al., 2014; Franke et al., 2020a; Müller et al., 2017; Rosenzweig et 

al., 2014; Schleussner et al., 2018). Both GGCMs and the driving climate projections 

from global climate models (GCMs) contribute substantially to the uncertainty in 

climate-crop model ensembles (Müller et al., 2021). For the first half of the 21st 

century, uncertainties in climate-crop model ensembles are dominated by the 

differences of the GGCMs (Müller et al., 2021). While there have been considerable 

improvements in the parameterization of CO2 effects in GGCMs (Jones et al., 2017), 

not all CO2 effects are adequately represented (Blanc and Reilly, 2017; Vanuytrecht 

and Thorburn, 2017). The impact of elevated [CO2] on mean crop yield trends is 

considered one of the most relevant sources of uncertainty in current GGCMs 

(Rosenzweig et al., 2014). Toward the end of the century, the uncertainty of the 

driving GCMs becomes dominant, contributing more than half of variance in 

climate-crop simulation ensembles, mainly due to the spread in the projected severity 

of climate change between the individual GCMs (Müller et al., 2021). Risk 

assessments based on GGCM ensembles should take into account that there are 

significant differences between models (Challinor et al., 2018; Jones et al., 2017; 

Rosenzweig et al., 2014) and simply increasing the ensemble size does not necessarily 

imply a better sampling of realistic possible outcomes (Challinor et al., 2018). 

However, the confidence in a climate-crop ensemble can be increased by a careful 

experiment design, model evaluation, and potentially subsequent emergent 

constraints (e.g., Eyring et al., 2019) and model weighing (Brunner et al., 2020). This 

includes a selection of ensemble members based on skill and spread (benchmarking), 

as well as a harmonization of the experimental setup (Challinor et al., 2018; 

Jägermeyr et al., under review; Müller et al., 2017). 

For the 21st century, negative mean trends in crop yield are generally projected at low 

latitudes in response to moderate levels of global warming (Jägermeyr et al., under 

review; Rosenzweig et al., 2014; Schauberger et al., 2017). Lange et al. (2020) found 

that future warming increases the area fraction experiencing reduced crop 

production in many world regions, especially in low- and middle-income countries, 

while the land fraction affected by crop failure is projected to decrease in parts of 

Europe and Central Asia. Under a high-emission scenario, changes in mean yields of 

maize, rice, soybean, and wheat are projected to emerge from historical variability as 

early as in the 2030s in many main crop producing regions, changing the risk profile 
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of these regions within the next decades (Jägermeyr et al., under review). These 

results stem from an analysis the time of emergence of the mean trend from historical 

variability based on the up-to-date largest harmonized and benchmarked multi-

model ensemble simulations from process-based GGCMs. These harmonized crop 

yield simulations were facilitated by the Inter-Sectoral Impact Model 

Intercomparison Project ISIMIP (ISIMIP, 2020b; Rosenzweig et al., 2017) round 3b 

(ISIMIP3b) and the Agricultural Model Intercomparison and Improvement Project 

(AgMIP), within the Global Gridded Crop Model Intercomparison (GGCMI) 

project. 

In a warming climate, not only mean yields are projected to change, but also the inter-

annual variability. Generally, variability is projected to increase for the major staple 

crops in most world regions (e.g., Ostberg et al., 2018; Tigchelaar et al., 2018). Müller 

at al. (2021) found an increase in overall variance of crop yield projections with the 

radiative forcing. Among maize, rice, soybean, and wheat, Müller at al. (2021) found 

largest total variance for winter and spring wheat, and lowest variability for maize. 

Increases in variability can lead to more frequent or more severe production shocks, 

impacting food security, markets, and livelihoods. Yet, changes in variability are 

often not considered in climate impact assessments (Franke et al., 2020a). Both 

trends in mean crop yields and in interannual variability determine the probability of 

years with extreme reduced crop production values. Therefore, trends in both the 

mean and the variability of crop production can be analyzed to assess the risk climate 

variability and change pose for national and global crop production. In a study based 

on three GGCMs from ISIMIP phase 2b, Lange et al. (2020) assess the probability of 

crop yields in any given year to fall below the 2.5th percentile of a historical reference 

period, an approach that has also been applied for the assessment of meteorological 

extremes like heavy precipitation and heat (e.g., Fischer and Knutti, 2015). Using 

empirical crop models to assess global maize production risks under future warming, 

Tigchelaar et al. (2018) assessed the probability of relative crop yield losses of more 

than 10 % and 20 % below the present-day mean (Tigchelaar et al., 2018). The authors 

found an increase in the probability that the maize production in the top four 

producing countries falls more than 10% below present day mean from virtually 0% 

under present-day climate up to 7% in a 2°C warming above pre-industrial and 86% 

under 4°C warming (Tigchelaar et al., 2018). 

The above studies all measure crop production risk as the probability of years below 

a threshold fixed from historical or detrended reference values. A change in these 

probabilities can be caused both by a mean trend shifting the whole distribution and 

by a change in variability. Year to year anomalies in GGCM simulated country level 

crop yield were assessed and compared to reported crop production statistics by 

Jägermeyr and Frieler (2018). For the analysis, the authors detrended the timeseries 
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and calculated the relative deviation of crop yields as compared to two years before 

and two years after a year with a reported drought or heat wave. Like this, the study 

by Jägermeyr and Frieler (2018) put a focus on the aspect crop production risk 

induced by climate variability. A mean positive trend may mask increased occurrence 

of extremely low yields, a topic which is generally understudied in global crop 

projection studies. Risk metrics that are independent of the mean trend can help to 

fill this gap. Here, we use an extensive ensemble of crop yield simulations first 

described by Jägermeyr et al. (under review) for a global assessment of crop 

production risk for major staple crops, assessing probabilities of crop failure extremes 

both compared to historical levels as well as independent of the mean trend. We focus 

on quantifying the probability of reduced crop production due to projected climate 

change, as a narrowly defined form of food system risk (Challinor et al., 2018). The 

potential for reduced future crop yields will be referred to as ‘crop production risk’ 

throughout the study and can be measured with a probability (or a return period) 

associated with crop production to fall below a certain threshold within a specific 

time window. This approach allows both for a differentiated analysis of changes in 

the risk of crop production losses between countries, and for a quantification of 

impacts and associated probabilities in absolute terms. 

4.2 Data and methods 

For the assessment of crop production risk, country-level risk metrics are calculated 

based on gridded crop yield simulations from the GGCM intercomparison 

experiment GC6 (see Section 4.2.1), focusing on historical (0.5°C) and future (2°C 

and 4°C) levels of global warming. Putting forward two complementary metrics of 

crop production risk (Section 4.2.4), we assess future crop production risk with two 

complementary metrics. The first metric focusses on the probability of rare events of 

crop production loss under historical climate, using a percentile-based fixed 

historical threshold. The second metric focusses on the risk of production falling 

short of a threshold relative to the mean. The approach is described in detail in the 

following subsections. For postprocessing and calculation of risk metrics, crop yield 

data is loaded into the global climate risk assessment platform CLIMADA (CLIMate 

ADAptation, Aznar-Siguan and Bresch, 2019), where risk is represented as a function 

of hazard, exposure, and vulnerability. This allows for a flexible re-combination of 

various crop yield simulation and exposure layers for the calculation of risk metrics. 

Here, we represent hazard by normalized crop yield, that is, the relative deviation of 

simulated crop yield per grid cell from a historical mean value (Section 4.2.1). 

Exposure is represented by the baseline crop production, that is, gridded historical 

mean crop production per crop type. Historical baseline production is calculated by 

spatially integrating simulated historical mean yields over harvest area and bias 
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corrected against crop production statistics on a country-level (Section 4.2.2). In this 

study, we are interested in the direct risk to crop production, therefore the 

vulnerability component is represented by an identity function, i.e., crop production 

per simulated year is calculated directly as the product of normalized crop yield 

(hazard) with the baseline production (exposure). Prior to the analysis, yearly crop 

production values are bias-adjusted, detrended, and clustered by crop model and 

level of global warming (Section 4.2.3). Two complementary metrics of crop 

production risk are introduced in Section 4.2.4. 

4.2.1 Hazard: gridded normalized crop yields 

The ensemble of climate-crop simulations used here comprises eight GGCMs driven 

by simulated climate from bias-adjusted climate projections (Cucchi et al., 2020; 

Lange, 2019) from the Climate Model Intercomparison project round 6 (CMIP6, 

Eyring et al., 2016). The experiment, referred to as GC6 (GGCMI-CMIP6) hereafter, 

has first been described by Jägermeyr et al. (under review). In the experimental setup 

of GC6 the focus is on the response of GGCMs to changes in climate and [CO2], while 

neither technological nor genetical developments, nor adaptation through farm-level 

crop and water management are considered. The ensemble is used here to assess 

projected climate-change impacts for varying levels of global warmings. 

The outputs from eight process-based GGCMs are considered here, each simulating 

one or more of the crop types maize (Zea mays L.), rice (Oryza sativa L.), soybean 

(Glycine max L. Merr.), as well as wheat (Triticum sp. L.), modeled separately as 

spring and winter wheat. These crop types make up for 90% of the current total 

nutritional cereal and soybean production worldwide (FAO, 2019; Jägermeyr et al., 

under review). The crop models are: AquaCrop-ACEA, CROVER, CYGMA1p74, 

EPIC-IIASA, LPJmL, PEPIC, PROMET, and SIMPLACE-LINTUL5+ (Table C2). 

The GGCMs were run in an harmonized experimental set-up and forced with 

harmonized and bias-adjusted output from a benchmarked set of 5 CMIP6 GCMs 

selected for ISIMIP3b (ISIMIP, 2020b, online; Jägermeyr et al., under review): GFDL-

ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL (see Table 

C3 for further details). Selection criteria include structural independence, 

performance for historical periods, process representation, and a representative 

mean and spread of equilibrium climate sensitivity compared to the full CMIP5 

ensemble of GCMs (Jägermeyr et al., under review). Each simulation of a GGCM 

driven by a specific GCM is referred to climate-crop simulation in the following. 

For each of the 37 climate-crop model combinations, transient crop simulations for 

historical (1850-2014) and future (2015-2100) time periods are used. For future time 

periods, two potential development trajectories are analyzed here, the Shared 

Socioeconomic Pathway SSP1 (Riahi et al., 2017) in combination with  the 
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Representative Concentration Pathway RCP2.6 (here SSP126), and SSP5 with 

RCP8.5 (here SSP585). These combinations of SSPs and RCPs represent two plausible 

and contrasting trajectories for the 21st century (O’Neill et al., 2016). SSP126 

represents a sustainable development scenario (Riahi et al., 2017) with stringent 

mitigation, reducing greenhouse gas emissions to essentially zero by the end of the 

century (Pachauri et al., 2015). SSP585 represents a fossil-fueled development (Riahi 

et al., 2017) with rising emissions throughout the century (Pachauri et al., 2015). For 

the crop yield simulations, [CO2] levels are transient, representing historical 

concentrations for the past and rising in accordance with respective RCP for the 

future. For the crop yield simulations used here, socio-economic drivers and 

parameters such as harvested area and potential adaptation efforts were kept constant 

at a 2015 level to isolate the climate change signal (Jägermeyr et al., under review). 

For some GGCMs, only a subset of driving GCMs and crop types was available for 

this study (Table C4): While simulations from all eight GGCMs were analyzed for 

maize, output from six GGCMs are available for rice, excluding AquaCrop-ACEA 

and SIMPLACE-LINTUL5+. seven for soybean, excluding AquaCrop-ACEA, seven 

for rice, excluding SIMPLACE-LINTUL5+. For the combined assessment, results 

from these two GGCMs were excluded. Therefore, the multi-crop assessment for all 

crop types combined is based on six GGCMs. 

For the hazard component of the risk assessment, absolute values of gridded crop 

yield provided in tons per hectare and year are normalized by dividing simulated crop 

yield both for future and historical runs with the mean yield simulated for a historical 

reference period (1983-2013). 

4.2.2 Exposure: baseline gridded crop production 

To estimate current levels of crop production in tons per hectare, multi-model-mean 

yields simulated for the historical period 1983 to 2013 were multiplied with harvested 

area for rainfed and irrigated systems respectively for each crop type and grid cell. 

Here, we use gridded land-use data based on the HYDE 3.2 data set (Klein Goldewijk 

et al., 2017) and harmonized by Hurtt et al. (2020). Gridded irrigation ratios per crop 

type are based on the ‘Farming the planet’ datasets for the year 2000 (Monfreda et al., 

2008; Ramankutty et al., 2008), as shown in Figure C2. These land-use data sets were 

used as provided as input data for ISIMIP3b (ISIMIP, 2020b; Jägermeyr et al., under 

review). Subsequently, the resulting gridded simulated production values were bias-

adjusted per country to obtain the gridded baseline crop production used here as 

exposure layer. This was done in two steps. First, gridded production was normalized 

per country by dividing simulated gridded values by the country’s total production. 

Then, normalized gridded values were multiplied with country-level reported yearly 

production quantity as provided by the United Nation’s Food and Agricultural 
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Organization (FAO, 2019), averaged over the years 2008 to 2018. The aim of this bias 

adjustment with FAO data is to best represent current levels of crop production per 

country as a baseline for future risk assessment. 

For the calculation of yearly production values, normalized crop yields per simulated 

year (see Section 4.2.1) are multiplied with the baseline crop production exposure to 

obtain gridded crop production in tons per year for each crop type and climate-crop 

simulation (Fig. 15a). For crop aggregation, production values in kcal per simulated 

year were summed for each country and risk metric. The countries with the highest 

yearly combined crop production in kcal per capita are Argentina, Paraguay, and the 

USA. 

 

Figure 15: Multi-model median crop production statistics per country at 0.5°C global warming 
(historical reference bin, DGMT = 0.5°C � 0.5°C, see Section 4.2.3). Mean yearly crop production is 
shown in purple in mio. tons per year for maize, rice, soybean, and wheat combined (a).  Subplot (b) 
shows the probability Pr of crop production to fall more than 10% short of the mean in any given 
simulated year in the historical reference bin. 

4.2.3 Global mean temperature bins and detrending 

Due to differences in the climate sensitivity between individual GCMs, they simulate 

deviating rates of global mean temperature (GMT) increase for the same trajectories 

of [CO2]. At the same time, Ostberg et al. (2018) found that simulated crop yields can 

be described in terms of GMT above pre-industrial levels (DGMT) to a large extend, 

with little path dependence. Therefore, GCM induced uncertainty can be reduced by 
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assessing the change in crop production over the 21st century as a function of DGMT 

instead of time. For this purpose, we re-organize crop production data in bins of 

global warming, referred to as DGMT bins in the following. The detrending of crop 

yield timeseries allows for an analysis of the variability driven aspect of crop 

production risk by minimizing the effect of slowly changing factors such as 

agricultural management or CO2 effects (e.g., Leng and Hall, 2019; Lu et al., 2017). 

Before binning, yearly crop production values are detrended to avoid a trend-induced 

spread in data points causing a distortion of variability within a DGMT bin. To this 

end, a second-order polynomial detrending is applied per country, for each time 

series of simulated yearly crop production per crop type, GGCM, and GCM. DGMT 

bins are formed per crop type and GGCM following the approach by Ostberg et al. 

(2018) and Lange et al. (2020), among others. First, DGMT is calculated for each 

model year as the deviation of GMT from pre-industrial GMT, that is, the mean over 

the full ISIMIP3b pre-industrial climate control period, for each GCM. Then, each 

DGMT bin is set to contain all simulated years with a range of ±0.5°C. Like this, yearly 

crop production values simulated are pooled across GCMs and scenarios (e.g., 

historical, SSP126, SSP585). Thus, risk metrics are calculated per GGCM, crop type, 

and DGMT bin, from these pooled data points, irrespective of the underlying GCM 

and scenario. With the pooling of the yearly crop production data across GCMs and 

scenarios, we increase the number of data points per DGMT bin for the purpose of 

the risk assessment. We do not pool across GGCMs because the spread of inter-

annual yield variability within a climate-crop model ensemble was found to be 

dominated by the spread across GGCMs (Ostberg et al., 2018). Keeping the GGCMs 

differentiated thus avoids an artificial spread variability and allows for the use of crop 

model agreement to measure robustness. The total number of simulated years across 

the five climate models and three scenarios is 1685. The +0.5°C bin contains 601 

years, the +2°C bin 357 years, and the +4°C bin 73 years. 

As a basis for an un-biased calculation of the risk metrics, yearly crop production 

values are bias-adjusted after detrending and pooling. To this end, the mean before 

detrending is added to the detrended values for each combination of crop type, 

DGMT bin, GGCM, and GCM. The correction resets the mean to the value before 

detrending. By adjusting values to a common mean per bin and crop model, further 

offsets of the mean between the driving GCMs are removed. As a result of this 

correction, crop production values for each bin and GGCM have the same mean level 

as before detrending, while artefacts in the spread due to time dependent trends are 

removed (see Fig. C7-C16). These bias-adjusted detrended binned sets of yearly data 

points are further used for the calculation of risk metrics. 
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4.2.4 Risk metrics 

To assess crop production risk, we make use of the global risk assessment platform 

CLIMADA (Aznar-Siguan and Bresch, 2019). The probabilities of yearly crop 

production falling below a given threshold are used as risk metrics. The pre-

processed simulated yearly crop production data points within each bin are used for 

the computation of risk metrics, for each crop type and DGMT bin. While the risk 

metrics are calculated across a range of DGMT bins, the main focus is on the 

comparison of a historical reference DGMT bin to future DGMT bins, namely 

2°±0.5°C and 4°±0.5°C bins, to a historical reference DGMT bin. Here, we focus on 

two complementary risk metrics, both representing the probability of simulated 

yearly production within a GMT bin to fall short of a defined threshold. The annual 

probability P can be both expressed as percentage or inversely, in the form of a return 

period (T) in years (see Aznar-Siguan and Bresch, 2019):  

𝑃 = �
¸
			 	 	 	 	 	 	 	 								(4.1)	

For any given combination of crop model and crop type, only DGMT bins with a 

minimum sample size of 30 simulated years available are considered for probability 

calculations with the relative threshold. Furthermore, crop production deviations are 

only calculated for T values that are smaller than the sample size of a given DGMT 

bin. 

A frequently used approach to estimate the climate change influence on climate 

extremes and impacts is to calculate the ratio of probability of extreme events under 

a new situation (e.g. a climate affected by anthropogenic forcing) and the probability 

in a reference period (e.g., Fischer and Knutti, 2015; Stott et al., 2004, 2016; Thiery et 

al., 2020; Vogel et al., 2019). Here, the resulting probability ratio (PR) is a measure 

for the relative deviation of probability P of extreme crop losses in a given DGMT bin 

from the probability P0.5°C in the historical reference bin. PR is calculated as the ratio 

of assessed and reference probability:  

𝑃𝑅 = ^
^«.¹°»

	 	 	 	 	 	 	 								(4.2)	

It should be noted that PR is infinite where the historical reference probability is equal 

to zero. If not declared otherwise, PR values provided in the results section are 

computed as the multi-model median of PR values computed for each individual 

crop model. This is relevant to keep in mind, because the multi-model median of PR 

is not exactly equal to PR calculated from multi-model median probabilities. Reason 

being that the result of calculating the ratio and the multi-model median is not 

indifferent of the order of the mathematical operations. The probability of severe 

crop losses increases for PR<1 and decreases for PR>1. In the results, we speak of 

high crop model agreement if more than 70% of crop models agree in the direction 
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of probability change as compared to the reference period. The minimum required 

agreement of 70% ensures that a variety in crop model types need to agree, as the 

largest group of models, site-based GGCMs, constitute 5 out of 8 (62.5%) of models 

in the ensemble (see Table C2). For the calculation of probabilities, the number of 

years in a DGMT bin falling below a given threshold are counted. The two thresholds 

applied here are the fixed (historical) threshold and the relative threshold (Fig. 16), 

described in the following subsections. 

Figure 16: Illustration of the historical (a) and relative (b) threshold used for the calculation of the 
probability of years with low crop production extremes. Ph is the probability of any given year to fall 
below the 2.5th percentile of the historical 0.5°C global warming bin (historical threshold, dotted line). 
Pr is the probability of any given year to fall more than 10% short of the mean production at any 
given level of global warming (relative threshold, dashed lines). In the given example,  
Ph, future < Ph, 0.5°C, while Pr, future > Ph, hist. Actual data points with thresholds are shown in Fig. C7-C16. 

4.2.4.1 Fixed historical threshold and Ph 

The first risk metric is the probability Ph of simulated yearly production within a 

DGMT bin to fall short of a fixed threshold defined from historical distribution of 

crop production (Fig. 16a). Ph can be interpreted as a measure of risk to absolute crop 

production, a compared to historical values. This fixed historical threshold is 

calculated as the nth percentile of yearly production in the historical reference DGMT 

bin. The nth percentile corresponds to the value that crop production falls short of 

with a return period (T) of 100/n years. The probability of crop production to fall 

short of the nth percentile in the historical DGMT bin is n % by definition, i.e. 2.5% 

for the 2.5th percentile. While Ph was calculated across a range of historical 

percentiles (1.667th to 50th), most results are shown here for the historical 2.5th 

percentile used as a threshold (corresponding to T=40 years), following Lange et al. 

(2020). The historical threshold is also referred to as ‘fixed’ because once defined 

from the historical reference DGMT bin, it is fixed for all other DGMT bins. However, 

it should be noted that while the absolute values of the historical threshold are fixed 

across DGMT bins, they are not the same everywhere. The absolute production value 

of the historical threshold differs between locations (e.g., grid cells, countries) and 

crop models, depending on the distribution of crop production in the reference bin 

at each location and for each crop model (see dotted lines in Figures C7-C16). Here, 

the probability of crop production to fall short of the historical threshold, that is, the 
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2.5th percentile of the 0.5°C bin of global warming, is referred to as Ph in the results. 

PRh is the ratio of Ph to Ph,0.5°C. 

4.2.4.2 Relative threshold and Pr  

An assessment based on a relative threshold can reveal the risk of reduced production 

due to increased variabilities otherwise masked by a dominant mean trend. The 

associated risk metric is the probability Pr of crop production losses greater than 10% 

(Fig. 16b). Pr is calculated as the fraction of years within a DGMT bin with simulated 

production falling more than 10% short of the mean production in the same DGMT 

bin. This means that the absolute value of the relative threshold changes across 

DGMT bins (dashed lines in Fig. 16b). This threshold is called ‘relative’ (or flexible) 

because it is defined relative to the mean within each DGMT bin – and independent 

of production levels in the historical reference DGMT bin. As a consequence, the crop 

production risk measured with Pr is expected to increase with an increase in 

variability, independently of the mean trend. This holds of course only, if there is no 

relevant counteracting change in skewness. Like this, the relative threshold 

complements the historical threshold, adding a more variability-based risk 

perspective to the assessment. For all four crop types and most crop models, the value 

of the relative threshold (mean-10%) globally aggregated for DGMT=0.5°C is very 

close to the 2.5th percentile used as a historical threshold, as seen in Figures C10 

(maize), C12 (rice), C14 (soybean), and C16 (wheat). This is one reason for the choice 

of 10%. The other reasons are that mean-10% is straightforward to communicate and 

has been applied as a historical threshold by Tigchelaar et al. (2018). The probability 

that in any given modeled year, the production in a country or globally falls below 

the relative threshold, that is, a decline of 10% or more below the mean production 

at the same level of global warming, is referred to as Pr in the results. PRr is the ratio 

of Pr to Pr,0.5°C. Pr for the DGMT=0.5°C is mapped per country in Fig. 15b. 

4.3 Results 

We analyzed simulated crop production per country to project probabilities of 

extreme crop losses for future levels of global warming. The total mean simulated 

historical production of all crops combined is 2.66 mio. tons/y, corresponding to 8.73 

´ 1015 kcal/y. The historical 2.5th percentile (i.e., extreme event occurring every 40 

years) of global production is 8.34 ´ 1015 kcal/year (-4.5%), with higher globally 

synchronized losses possible for individual crop types (see Fig. 17, blue lines) and 

countries. For increased global mean temperatures, the probabilities Ph and Pr 

return partially consistent and partially diverging results per country and crop type. 

The key finding for Ph measured against an historical threshold is that globally 

aggregated projections for 2°C are mostly more optimistic than historically, with 
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increased production levels resulting in reduced crop failure probability Ph. All crop 

types except maize contribute to this signal (see Fig. 17). At 4°C, an increase in Ph is 

projected, with reduced production levels for all crop types compared to 2°C. On a 

globally aggregated level, relative production deviations from the mean are not 

changing substantially, except for an increase in relative rice and wheat production 

losses for very rare events with return periods T > 30 years (Fig. 18). The probability 

of crop losses relative to the mean, Pr, provides differentiated insights for single 

countries and crop types. For maize production, PRh and PRr agree in most 

countries, for example projecting an increase in risk in the USA and a decrease in 

South Africa (see Section 4.3.2). For rice and soybean, decreasing Ph are generally 

contrasted with increasing Pr (see Section 4.3.3 & 4.3.4). For wheat, the outlook is 

very uncertain, however with increased relative loss potential projected for rare 

events with high return periods in a 4°C world (see Section 4.3.5).  

 

Figure 17: Globally aggregated deviation of crop production from the historical mean for a global 
warming of 0.5° (historical reference bin, blue), 2°C (purple) and 4°C (orange) for (a) maize, (b) rice, 
(c) soybean, (d) wheat, and (e) all four crops combined. Solid lines demarcate the multi-crop-model 
median, thin lines the individual crop models, and shading the inter-quartile range of the individual 
models. All projections assume that land-use and management remain unchanged. A return period 
of 40 years corresponds to the 2.5th percentile of crop production. Similar plots for major producing 
countries are shown in Fig. C17-C24. 
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Figure 18: Globally aggregated deviation of crop production relative to the mean within each global 
warming bin for 0.5° (blue), 2°C (purple) and 4°C (orange) of global warming for (a) maize, (b) rice, 
(c) soybean, (d) wheat, and (e) all four crops combined. Solid lines demarcate the multi-crop-model 
median, thin lines the individual crop models, and shading the inter-quartile range of the individual 
models. All projections assume that land-use, management, and irrigation patterns remain 
unchanged. The relative threshold is defined as 10% below the mean production for each level of 
global warming (DGMT bins of width 1°C). Thus, the probability of falling below the relative threshold 
can be derived from these plots: The probability is the equal to the inverse of the return period where 
D crop production falls below -10%. A return period of 2 years corresponds to the median crop 
production. Similar plots for major producing countries are shown in Fig. C17-C24. 

4.3.1 Multi-crop production risk 

Historical threshold: Absolute global crop production levels for all four crop types 

combined are projected to increase at 2°C global warming by roughly 4 % to 6 % 

compared to historical levels across return periods (difference between purple and 

blue line in Fig. 17e). At 4°C global warming, the multi-model-median projects 

absolute global crop production to fall ~3 % short of historical levels, with increased 

losses for rare events (T > 40 years). Most crop models agree on an increase in Ph at 

4°C, with a multi-model-median 16-fold probability increase (PRh = 15.9) to Ph = 

39.7% (Table 3a), however with a wide spread between individual models. The world 

map of PRh changes fundamentally from 2 to 4°C of global warming (Fig. 19a-b). At 
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2°C, most countries show a decreased Ph compared to 0.5°C (Fig. 19a). However, 

there are also 50 countries already experiencing increased RPh > 1 at 2°C, mostly 

situated in North and Central America, the Caribbean, equatorial Africa, and south-

west Europe (Fig. 19a). At 4°C, Ph increases with PRh >1 for 106 countries (orange 

and red color in Fig. 19b), including most major crop producing countries except 

Argentina and India (Table 3a). The USA is the second largest producer of maize, 

rice, soybean, and wheat combined – and among the countries displaying the largest 

values of  PRh (Fig 5a,b). For the USA, most models agree on an increase in crop loss 

probability Ph against the historical threshold at 4°C (PRh=13.4 and Ph =33.6%, 

Table 3a). Largest Ph at 4°C global warming is projected in Central America and 

western Africa, led by Sao Tome and Principe, Guatemala (both Ph = 100 %), El 

Salvador (99 %), Venezuela (98 %) Honduras (95 %) and Gabon (93 %). In contrast, 

a decrease of Ph to 0 % (i.e., a strong reduction in risk) at 4°C is projected for 28 

countries. The most important crop producing countries with Ph = 0 % projected at 

4°C are Argentina, Australia, Kazakhstan, South Africa, Ethiopia, and Japan. 

 
Figure 19: Multi-model median probability ratio (PR) per country for maize, rice, soybean, and wheat 
combined at a global warming level of 2°C (a, c) and 4°C (b, d) above pre-industrial levels, as 
compared to historical climate (0.5°C). PR is defined as the ratio of the probability of crop production 
to fall below a given threshold divided by the historical reference probability (0.5°C global warming). 
PRh (a, b) is the factor of change in probability Ph that crop production in a given year falls below 
the 2.5th percentile of the 0.5°C bin (historical threshold).  PRr (c, d) is the factor of change in 
probability Pr that crop production in a given year falls more than 10% short of the mean of the given 
warming level (relative threshold). Blue colors (PR<1) indicate a decrease in probability. For PR>1 
probability is increased compared to 0.5°C. Stippling indicates a crop model agreement above 70% 
on the sign of probability change. 

Relative threshold: For all four crop types combined, the probability Pr of years with 

globally aggregated production to fall more than 10% short of the mean is almost zero 

across levels of global warming (Fig. 18e & Table 3b). For individual countries, the 

prospects with regard to Pr are more differentiated, with increases in some and 

decreases in other countries (Fig. 19c,d). Of the major crop producing countries, the 

strongest signal with high model agreement is again found for the USA, with an 

increase of Pr from 12.7 % at 0.5°C to 15.4 % (2°C) and 17.1 % (4°C) of global 
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warming (Table 3b). The major crop producing countries where models agree on a 

decrease in Pr at 4°C are Argentina and France (Table 3b). The map of historical Pr 

shows considerable differences between regions (Fig. 15b). Above average crop loss 

probabilities are simulated for Argentina, Australia, southern and northern Africa, 

Europe, the Middle East, the Arabic peninsula, and central Asia. Low historical values 

of Pr are simulated for northern South America, Equatorial Africa, as well as East and 

South East Asia. It is interesting to note that several countries with decreasing Pr start 

off from relatively high historical levels of Pr already (Table 3b), including Argentina, 

South Africa, and Australia, where no increase in risk is projected across crop types 

and warming levels. 

Table 3: Combined crop production risk changes. Baseline mean crop production and probability of 
crop production to fall short of the historical (a, Ph) and the relative (b, Pr) threshold for maize, rice, 
soybean, and wheat combined under historical (5°C) and future (2°C and 4°C) levels of global 
warming. Values are provided on a globally aggregated level and for twelve major crop producing 
countries. Multi-model median probabilities are shown with the inter-quartile range (IQR) of single 
crop model results provided in brackets. Blue shading marks a decrease in probability as compared 
to 0.5°C levels. Orange shading marks an increase in probability as compared to 0.5°C levels. The 
asterisk (*) implies more than 70% crop model agreement on the sign of probability change 
compared to 0.5°C of global warming. The countries are China (CHN), USA, India (IND), Brazil (BRA), 
Argentina (ARG), Indonesia (IDN), Russia (RUS), France (FRA), Ukraine (UKR), Canada (CAN), 
Bangladesh (BGD), and Vietnam (VTN). Similar results per crop type are shown in Table C1. 

Country 
(ISO3) 

Mean production Probability 
(IQR in brackets) 

    

 
0.5°C [%]            

      (a) Ph (historical threshold 2.5th pctl) 
  

(b) Pr (relative threshold mean-10%) 
  

  1012  
kcal/y 

mio. 
t/y 

0.5°C 2.0°C 4.0°C 0.5°C 2.0°C 4.0°C 

global 8728 2665 2.5 0.8* (1.5) 39.7* (91.4) 0.3 (0.2) 0.7 (0.7) 0.7 (2.4) 

CHN 1821 560 2.5 0.3* (1.6) 8.2 (77.4) 1.4 (3.5) 1.1 (0.8) 2.7 (2.1) 

USA 1778 508 2.5 5.0 (8.4) 33.6* (71.9) 12.7 (6.4) 15.4* (8.9) 17.1* (7.9) 

IND 854 279 2.5 0.1* (0.5) 2.1 (3.4) 4.1 (3.2) 3.6 (2.7) 4.8 (2.4) 

BRA 575 169 2.5 1.3 (2.5) 11.0 (72.6) 1.9 (1.5) 2.5* (13.5) 7.5 (10.3) 

ARG 300 88 2.5 0.1* (0.3) 0.0* (0.0) 16.1 (8.1) 19.7 (7.8) 15.1* (7.9) 

IDN 269 91 2.5 0.1* (1.1) 15.8 (73.3) 0.2 (1.4) 0.0 (0.4) 0.0 (2.1) 

RUS 240 71 2.5 0.8* (1.3) 2.7 (5.1) 10.2 (3.0) 9.7 (4.6) 8.9 (5.5) 

FRA 172 51 2.5 2.7 (7.6) 2.7 (15.4) 17.9 (12.1) 19.0 (21.3) 16.4 (21.2) 

UKR 162 47 2.5 1.5 (5.8) 8.9 (21.9) 14.2 (16.9) 17.6* (13.2) 26.0 (15.1) 

CAN 155 46 2.5 0.0* (0.8) 6.2 (6.5) 12.0 (4.2) 13.6 (7.2) 13.0 (6.5) 

BGD 150 53 2.5 0.7* (1.1) 6.8 (49.0) 12.0 (4.0) 9.4 (4.0) 13.0 (4.5) 

VTN 135 47 2.5 1.1 (3.1) 15.1 (21.2) 3.0 (1.5) 4.8 (2.7) 4.1 (6.8) 

 

Risk metric consistency: For all four crop types combined and considering crop model 

agreement, there are only 9 out of 167 countries analyzed with a consistently reduced 

value of both Ph and Pr projected for 2°C warming (Argentina, Australia, South 

Africa, Nigeria, Japan, South Korea, Libya, Lesotho, Niger; contributing 6.1 % of 

global production), and one country with a consistently increased risk at 2°C 



 87 

(Burundi). For the remaining 157 countries (93.9 % of global production), risk 

projections for DGMT=2°C are either not consistent between Ph and Pr, or lacking 

crop model agreement. At DGMT=4°C, there are 11 countries with consistently 

optimistic prospects, that is, reduced probabilities (Argentina, Australia. South 

Africa, Ethiopia, Uruguay, Ecuador, New Zealand, Lesotho, Niger, Namibia, and 

Eritrea, 5.6 % of global production) opposed to three countries were models agree on 

an increase both in Ph and Pr, i.e., increased risk. These countries, accounting for 

20.4% of the aggregated global production, are the USA, Georgia, and Slovenia. For 

71 additional countries (74 % of global production), both Ph and Pr are projected to 

increase albeit with limited model agreement (Fig. 19b,d), most prominently for 

China and Brazil (Table 3). 

4.3.2 Maize 

Maize is the only crop type analyzed with a geographically widespread increase in 

risk projected for a global warming of 2°C above pre-industrial levels. This is also 

reflected by the increase in probability Ph for global maize production to falls below 

the historical 2.5th percentile to 5 %  (PRh =2) at 2°C and 82 % (PRh =31) at 4°C 

global warming, with high model agreement on the increase in Ph (Table C1a). At 

4°C global warming, global maize production is more than 10% below the reference 

levels across all return periods (Fig. 18a). 

Just as for the global aggregate, the three largest maize producing countries, USA, 

China and Brazil, show a strong increase in Ph with high model agreement (Table 

C1a, Figure C5a). In addition, USA shows increased Pr with high model agreement, 

both at 2°and 4°C global warming (Table C1b). As will be further elaborated in the 

discussion, PRr appears less relevant against the backdrop of considerable decreases 

in absolute maize production risk as indicated by PRh in Figure C5a. Argentina and 

South Africa, both situated around mid-latitudes in the Southern Hemisphere, are 

the only two out of twelve major maize producing countries showing a decrease in 

Ph: More than 70% of crop models agree on a diminished Ph at 4°C global warming 

in these two countries (Table C1a). It should be noted however, that both countries 

show relatively large historical levels of Pr of 20-30%, suggesting large simulated 

inter-annual variability of maize production already under current climatic 

conditions.  

4.3.3 Rice 

Among the major rice producing countries, production outlooks in a warming 

climate are consistently most optimistic for China and Japan, and most pessimistic 

for Thailand and Pakistan (Table C1b). In the global aggregate, the absolute global 
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rice production increases across return periods for 2°C of global warming as 

compared to 0.5°C (Fig. 17b). At 4°C, rice production is close to historical levels, 

projected to potentially fall below for large return periods (T > 50 years). These global 

projections are also reflected by the results for most single countries: For most of the 

twelve largest rice producing countries, except Thailand and Pakistan, a decrease in 

Ph is projected at 2°C of global warming (Table C1b). At 4°C, an increase in Ph is 

projected for half of the major producers, most prominently in Thailand and 

Pakistan, the two countries experiencing increased risk at 2°C already. However, 

there is generally no strong agreement among individual crop models regarding the 

sign of change in Ph at 4°C as compared to the historical reference bin (Table C1b). 

High model agreement on reduced Ph is projected for several countries in the 

southern hemisphere, including Argentina, South Africa, and Australia, as well as 

Japan and Russia in the north (Figure C5b). 

Globally aggregated, the results show a small increase of rice production risk due to 

inter-annual variability for return periods larger 30 years (Fig. 18b) at 4°C. Global Pr 

remains close to 0% across all analyzed levels of global warming. For the largest rice 

producing country, China, there is a high model agreement on a decrease in Pr from 

1.7 % at 0.5°C to 0 % at 4°C (Table C1b). A decrease in Pr is also projected for Japan. 

For all other major rice producing countries, however, an increase in crop production 

risk as measured by Pr is projected both for 2°C and 4°C global warming, with high 

model agreement in USA, Thailand, and Pakistan.  

4.3.4 Soybean 

Just as for rice, absolute global soybean production increases across return periods 

for 2°C of global warming as compared to 0.5°C (Fig. 17c), resulting in decreased Ph 

globally and in all major producing countries (Table C1c). At 4°C, global soybean 

production falls short of 2°C level but stays above historical values across return 

periods (Fig. 17c). Accordingly, the twelve major soybean producing countries show 

a decrease in Ph at 2°C (Table C1c), and most of these countries also show decreased 

risk still at 4°C. However, for the USA and Brazil, contributing approximately two 

thirds of global soybean bean production, Pr is projected to increase at 4°C, with a 

multi-model median Ph of 2.7% and 19.2% in the USA and Brazil, respectively (Table 

C1c), albeit with limited model agreement. At 4°C, increased Ph is also projected for 

Bolivia, Mexico, and further countries in Central America, Africa, and South East 

Asia (Figure C5c).  

Outlooks for soybean production risk measured against the flexible mean are less 

optimistic (Fig. 18c). The increase in global Pr from 2 % at 0.5°C to 7 % at 4°C (Table. 

C1c) corresponds to a development from an expected return period of 50 years to 15 

years of production values more than 10 % below the mean (orange line compared to 
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blue line Fig. 18c). At 2°C, half of the major soy producing countries display increased 

Pr, including the three largest producers, USA, Brazil, and Argentina, with high 

model agreement (Table C1c). In contrast, India is the only major soybean producer 

where crop models agree on reduced Pr at 2°C. The results for 4°C show considerable 

increases in soybean production risk due to inter-annual variability for most 

countries. The largest increases in Pr are projected for most of the Americas, as well 

as Benin, Ivory Coast, Madagascar, and Thailand (Fig. C6c). Of the 12 largest soybean 

producing countries, only India, Uruguay, and Indonesia show model agreement on 

a decrease of Pr at 4°C (Table C1c). 

4.3.5 Wheat 

Just as for rice and soybean, absolute global wheat production is projected to increase 

across return periods for 2°C of global warming as compared to 0.5°C (Fig. 17c). At 

4°C however, global wheat production drops substantially across individual crop 

models, around return periods of ca. 30 to 50 years (Fig. 17c). These return periods 

are reflected in the threshold-based assessment, as the 2.5th percentile corresponds to 

a return period of 40 years. The same signal is seen in wheat production risk due to 

inter-annual variability, with relative global production levels falling well below 

historical levels (Fig. 18c). This results in an increase in globally aggregated Pr from 

1 % at 0.5°C to 2.7 % at 4°C global warming, however with limited model agreement 

(Table C1d and Fig. 18c). It cannot be ruled out however that the sharp drop in crop 

production for rare events (T > 30 years) at 4°C is a sampling artefact. All twelve 

largest wheat producing countries show a decrease in Ph at 2°C of global warming 

(Table C1d). Projections are diverging at 4°C: For the largest producer, China, 

models project an increase both in Ph and Pr. In contrast, decreasing wheat 

production risk is projected for the second largest producer, India, with high model 

agreement (Table C1d). 

3.4 Discussion 

3.4.1 Key findings 

We applied two risk metrics that reflect two complementary risk perspectives 

regarding food security. Ph is a commonly applied risk metric (e.g., Fischer and 

Knutti, 2015; Lange et al., 2020; Vogel et al., 2019), using historical extremes as the 

baseline for the assessment of future risk. Therefore, Ph is partially determined by the 

mean trend in crop production, inheriting uncertainties in the mean trend due to the 

CO2 fertilization effect. What is more, an increase in variability might be masked by 

a positive mean trend when Ph alone is considered in a risk assessment. To add a 

metric more independent of the mean trend, we therefore complemented the 
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assessment of the historical threshold with a relative threshold. ‘Relative’ means that 

the threshold value is relative to the mean production, recalculated for each level of 

global warming. With Ph, we assess future crop failure risk under the assumption 

that current risk reduction methods and adaptation levels prevail into the future. 

With the perspective represented by Pr, we assume that with trends in mean 

production, there will be an adaptation to these trends, but not to changes in extremes 

relative to the mean (or at least not to the same degree). While an explicit assessment 

of these assumptions is outside the scope of this study, both approaches add value for 

the assessment of future crop production risk, as they can be used to answer different 

questions. 

The historical threshold (2.5th percentile of the 0.5°C world) highlights regions and 

crop types with reduced or elevated absolute levels of crop production in a warming 

climate compared to historically extreme years, with potential implications for the 

mean supply in food stocks, both globally and regionally. On a global level, Ph is 

generally projected to decrease at 2°C and increase at 4°C. Ph is often dominated by 

the mean trend, as illustrated by a comparison of results with Jägermeyr et al.’s study 

of mean trends that is based on the same climate-crop simulation ensemble (under 

review). Generally, a positive trend in mean crop yields is associated with decreasing 

Ph and vice versa, as can be seen by comparing crop-specific world maps of the mean 

trend with the country-level PRh. For example, the global patterns of largely 

increasing Ph for maize match well with the decline in mean maize yields identified 

by Jägermeyr et al. (under review): Global mean production of rice, soybean, and 

wheat is projected to increase in absolute numbers for moderate levels of global 

warming. This agrees with decreased Ph projected for these crop types at 2°C global 

warming. In contrast, the probability Ph of years with higher production losses 

relative to the mean is elevated at 4°C of global warming for soybean and wheat. This 

signal is reflected on the global aggregate with increased relative losses at return 

periods larger than 30 years. While there is limited agreement between the individual 

crop models with regard to these aggregated changes, the results suggest that regional 

crop production is at a higher risk in a 4°C world than today, both with regard to Ph 

and Pr. Under the assumptions that crop production systems and markets are more 

easily adapting to long term mean trends than to changes in variability, the relative 

threshold adds a complementing perspective on crop production risks. A changing 

return period of years with a large loss of crop production relative to the mean 

essentially indicates a change in frequency of climate-related production shocks with 

potential impact on food security and markets. Thus, adapting to increased 

variability is a fundamentally different challenge than adapting to long-term trends 

in mean production and accompanying potential shifts in production areas. 
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The deviating results for Ph and Pr, especially at a moderate global warming level of 

2°C, show that the choice of the risk metric matters and should be chosen carefully 

in the context of risk assessments. A considerable increase in risk measured relative 

to the historical threshold, as seen for maize in most countries, implies reduced 

absolute production levels due to climate change. Where these reductions are 

substantial, risk changes associated the changes in variability as measured by Pr can 

be considered less relevant against the backdrop of diminishing absolute production 

levels. But in many cases, the signal in Ph is not as unequivocal. Soybean production 

in the USA and wheat production in China are two examples where the two 

approaches produce contrasting results. According to Jägermeyr et al. (under 

review), the mean soybean production in USA is projected to remain largely 

unchanged over the 21st century. For wheat production in China there are even gains 

in mean production projected. In both cases, we found the probability Ph to decrease 

from 0.5°C to 2°C, and to be virtually equal to historical levels (2.7 % instead of 2.5 

%) at 4°C of global warming (Table C1c,d). In contrast, the probability Pr of crop 

production to fall more than 10 % short of the mean is increased both at 2°C and 4°C 

in both cases, with high agreement between individual crop models (Table C1c,d). 

This additional information added by Pr complements the risk profile of the affected 

countries: For soybean production in the USA and wheat production in China, the 

models project an increase in production shock frequency with climate change. 

Masked by a positive mean trend, this signal was not detected by Ph. 

The general increase in maize production risk projected for DGMT=2°C and 4°C is 

also consistent with the results by Tigchelaar et al. (2018, Table 1), but there are 

differences with regard to the change in probability for individual countries. While 

the two studies agree on considerable increases in the probability of production to 

fall short of an historical threshold (Ph) in the USA, China, Brazil, and other major 

maize producing countries, Tigchelaar et al. deviate from our results for Argentina 

and South Africa. Their assessment projects an increase in risk also for these two 

countries, in contrast to decreasing Ph projected here. Relative thresholds were not 

assessed by Tigchelaar et al. (2018). There are basic methodological differences that 

should be considered when comparing the two studies, as the maize yield projections 

by Tigchelaar et al. (2018) are based on empirical instead of process-based crop 

models. 

It is also interesting to compare our resulting risk metrics to the assessment of 

historical drought risk to agricultural systems by Meza et al. (2019). In their study, 

the hazard component was based on climate indicators for the period 1980-2016 

which lies within the range of DGMT=0.5°C ± 0.5°C chosen as historical reference 

here. The comparison of the world maps of both drought hazard and risk (Fig. 2 in 

Meza et al., 2019) with the world map of baseline Pr, 0.5°C (Fig. 1b) shows 
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considerable spatial agreement: Regions with above-average historical risk are North 

America, Argentina, southern Africa, the greater Mediterranean region, central Asia, 

and Australia. Noteworthily, most crop models in our study do not project a further 

increase in Pr for most of these countries with historically high risk. In both 

assessments, regions with low historical agricultural risk entail most of northern 

South America, equatorial Africa, as well as East and South East Asia. This agreement 

is noteworthy, considering the many methodological differences between the two 

studies, as their study is not based on GGCMs. 

4.4.2 Uncertainties and limitations 

The drops in rice and wheat production at 4°C for rare events (T > 30 years) shown 

in Fig3b,d could be sampling artefacts, due to a reduced the sample size at 4°C and 

the fact that not all driving climate models provide the same amount of data points 

for global mean temperatures > 3.5°C for the 21st century (Table C3). On a more 

general note, any risk assessment can only be as good as the input data. Besides all 

measures taken to either mitigate or communicate uncertainties, there are many 

remaining uncertainties that cannot be addressed sufficiently within the scope of this 

study. First, it is important to be aware that crop production projections are not to be 

confused with anything close to predictions of actual production amounts in the 

future. This is particularly so due to the experimental design that does not consider 

developments in technologies, genetics, land-use patterns, and farm-land 

management. While the large climate-crop model ensemble size allows for a more 

robust risk assessment than studies based on single GGCMs, many uncertainties in 

the modeling chain cannot be reduced nor fully accounted for by simply applying a 

large ensemble (Challinor et al., 2018; Müller et al., 2021). This is partly due to 

imbalances in the ensemble, with individual crop models often simulating opposite 

trends for globally aggregated yields (Fig. C7-C16). Other reasons include biases and 

processes that are imperfectly or incompletely represented by both climate and crop 

models. The question, whether the climate-crop model experiments used here are 

adequate for the purpose a crop production risk assessment cannot be finally 

answered. Parts of the uncertainties can be discussed based on evaluative studies 

from model intercomparison studies. This includes the fundamental question 

whether the relevant extremes are represented adequately both in the GGCMs and 

the forcing climate variables from GCM output. Ridder et al. (2021) found skill in 

CMIP6 climate models to simulate compound events of extreme heat and drought 

events, however not for all regions and ensemble members equally. The spread 

between climate models can partly be explained by the spread in climate sensitivity 

between individual GCMs, as well as amplified regional deviations (Eyring et al., 

2016). Here, uncertainties in the driving climate models are partially accounted for 

by binning data points by level of global warming instead of time, attempting to 
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mitigate differences in climate sensitivity. However, this approach is prone to a 

distortion of variability due to long-term trends that are not driven by global mean 

temperature, such as CO2 effects. This was counter-acted with a detrending 

performed before binning and bias-adjusting the mean value per bin afterwards. The 

remaining spread between climate models was put up with for the risk assessment 

presented here, requiring the assumption that the five selected climate models 

represent a balanced sample of plausible climates within each bin of global mean 

temperature. According to Leng and Hall (2019), “large discrepancy exists among 

crop models in simulating yield loss risk under droughts not only in the magnitude 

but also in terms of its sensitivity to increasing drought severity. This could be due to 

the differences in model structure, representation of environmental stress, 

agricultural management, and CO2 fertilization effect.” For certain countries and 

crop types, however, we found a better agreement between individual models than 

for the global aggregate. 

The uncertainty introduced by the crop model ensemble was dealt with in several 

ways. To mitigate the fact that the ensemble is most likely unbalanced (see Müller et 

al., 2021), the analysis focusses on multi-model median, a statistic less sensitive to 

outliers than the mean. Furthermore, we report inter-model agreement of 70% as a 

measure of robustness, requiring a minimum subset of crop models to agree on the 

sign of change in probability. Between the four crop types, highest rates of model 

agreement regarding probability changes at 2°C and 4°C were found for maize and 

lowest for rice (stippling in Fig. C5 & C6, asterisks in Table C1). This agrees to the 

findings by Müller et al. (2017) that recent generations of GGCMs perform best in 

reproducing temporal variability for maize and worst for rice. Uncertainties in the 

mean trend are partially mitigated by contrasting PRh with the assessment of PRr, a 

metric independent of the mean trend. Future intercomparison experiments and 

sensitivity analyses are required to better understand and reduce the level of 

uncertainty both with regard to the mean trend and extreme events, as they are both 

relevant for decision making.  

4.4.3 Outlook 

The approach presented here can be further refined, especially with regard to the bias 

adjustment of the exposure data, the detrending method, the definition of historical 

reference periods, and the choice of risk metrics. 

Here, gridded baseline crop production was bias adjusted using country-level 

production statistics provided by the FAO. A bias correction on a grid point level has 

the potential to increase accuracy, especially for larger countries. For this, an 

approach similar to Jägermeyr et al. (2020) can be followed instead, using gridded 

production estimates from the Spatial Production Allocation Model 2005 
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(SPAM2005, IFPRI and IIASA, 2016), and identifying and filling gaps based on data 

from the dataset Monthly Irrigated and Rainfed Crop Areas around the year 2000 

(MIRCA2000, Portmann et al., 2010) and Ray et al. (2012) yield data. 

Detrending is instrumental to the risk assessment presented here, mainly to avoid an 

artificially increased variability due to a trend within the analyzed bin of data points. 

The choice of the detrending method can have an impact on the distribution of the 

detrended data. Here, we applied a 2nd order polynomial regression model for 

detrending. The robustness of risk assessments based on climate-crop model 

ensembles should be tested with regard to detrending in future studies. Specifically, 

results could be compared for detrending with polynomial and locally weighted 

regression, centered moving average, and spline smoothing models, that have shown 

high skill for detrending historical maize yield data in the USA (Lu et al., 2017). 

The historical reference period was set to entail all simulated years with global mean 

temperature (GMT) between 0°C and 1°C above pre-industrial levels. This choice is 

based on the applied context of this study, focusing on future change in risk 

compared to historical levels. DGMT is currently starting to exceed DGMT =1°C, that 

is, the upper limit of this bin. For studies focusing more on climate change 

attribution, however, this reference bin is not ideal, because it covers a considerable 

degree of anthropogenic climate change signal already. For a climate change 

attribution study, a historical reference period could be set as DGMT ranging from 

0°C ±0.5°C instead. 

While the use of a historical percentile as threshold is common practice in climate 

impact and attribution studies, the relative threshold is less established. Here, the 

relative threshold was set to 10% below the mean because this value is straight-

forward to communicate and interpret for a wide audience. The choice of 10 % was 

also based on Tigchelaar et al. (2018). Following up on the experience with applying 

a relative threshold here, further research could explore alternative statistics and 

metrics to assess the aspect of crop production risk that is variability-induced and 

independent of the mean trend. For example, future studies could compare and 

evaluate current and future risk based on internal variability as measured by the 

variance, coefficient of variation, skewness, or apply relative thresholds such as mean 

minus the standard deviation. Reciprocally, the historical threshold could be set to 

mean-10% instead of the 2.5th percentile, to increase consistency between the two 

probability metrics. Like this, the robustness of results to the choice of thresholds can 

be analyzed and risk metrics identified that are both statistically robust and 

meaningful to a broader audience.  

Future rounds of model intercomparison projects (e.g., facilitated by ISIMIP) have 

the potential to improve the robustness of crop production risk assessments. 

Improvements can be achieved by further development of models and 
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parameterizations, as well as broadened experimental design with varying 

management options to better inform adaptation efforts. The implementation in 

CLIMADA can be further used for adaptation options appraisal (Bresch and Aznar-

Siguan, 2021). For example, the setup can be used to explore the potential of varying 

crop types, land-use patterns, and irrigation ratios for climate change adaptation. The 

use of normalized crop yields as hazard component allows to circumvent biases 

arising from potential offsets in absolute yields between the individual GGCMs. 

Another advantage of this modular design is that the hazard can easily be combined 

with alternative crop production exposure data for country- or even farm-level 

specific case studies and risk assessments. Like this, the flexibility of the 

implementation allows for a broad range of applications. 

Moving beyond the narrow definition of agricultural risk as the ‘potential for reduced 

food production’ (Challinor et al., 2018), agricultural risk assessments can further 

explore socio-economic impacts of reduced crop production, i.e., on food supply 

(in-)stability (Hurlbert et al., 2019), income, political stability, or global and local 

markets. In order to build a risk assessment with a socio-economic dimension, the 

quantitative estimates of crop production risk per country could be linked with socio-

economic vulnerability indicators, such as the governance strength indicator of 

adaptive capacity developed by Andrijevic et al. (2020). This would allow for an 

update and quantitative amendment of recent assessments of climate-related risks to 

the agricultural system and food security such as the study by Meza et al. (2019). 

Furthermore, the resulting crop production values and risk metrics can be used for 

downstream risk assessments, for example as input for trade network analysis, 

assessing country-level food reserves relative to domestic use (stocks-to-use ratio) as 

in Jägermeyr et al. (2020). Alternatively, vulnerability can be added directly to the 

risk assessment in the form of impact functions relating variations of normalized 

crop yield to impact measures such as people affected, direct economic damage, 

supply chains, or price shocks. For example, based on reports of economic costs of 

crop failure, impact functions can be calibrated to simulate the relationship of 

normalized crop yields to economic damages. It should be noted that with an 

assessment of ‘downstream risk’ associated to crop production losses, the definitions 

within the risk framework are shifted, with regard to what hazard, exposure, and 

vulnerability are. The crop production risk assessed here would rather have the status 

of a hazard, when combined with socio-economic vulnerability factors or trade 

analysis. In such a framework, exposure would not be defined as the baseline local 

crop production but rather people, companies, or states directly or indirectly affected 

by food supply instability. 

Next to the multi-crop risk assessment presented here, future research could further 

explore crop production risk due to of compound extreme events. Soil moisture and 
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heat memory implemented in state-of-the-art GGCMs allows for assessing the 

probability of repeated low production in consecutive years. Also, the setup can be 

further exploited to calculate the probabilities of concurrent crop failures in multiple 

breadbaskets under historical and future climatic conditions, building on recent 

studies by Gaupp et al. (2019, 2020), Lange et al. (2020), Vogel et al. (2019), and 

Zscheischler (2018, 2020), among others. For a better understanding of the drivers of 

crop production risk, simulated years of low production can be attributed to climatic 

extremes identified in the climate model output, for example droughts and heat 

waves, building on the methodology used by Jägermeyr and Frieler (2018) for 

historical events. 

4.5 Conclusion  

The combination of different risk metrics and consistency measures allows for a 

differentiated risk assessment on country level. This can be used to identify countries 

and regions with above- or below-average risk of crop production losses in a 

changing climate – both due to trends in the mean and the probability of extreme 

events relative to the mean. This study exploits a multi-crop-model ensemble to 

assess the climate-related risk to crop production for elevated levels of global mean 

temperature on a country level. While known caveats and uncertainties remain, the 

methodology allows for a differentiated risk assessment per country based on current 

state-of-art GCMs and GGCMs, producing quantitative estimates of the production 

value that is at risk. In the country-level risk assessment presented here, we used two 

complementary risk metrics to highlight countries and crop types for which models 

agree on future decreases or increases in the probability of low crop production 

extremes. Like this, we were able to identify hotspots of potential future crop failure 

risk based on state-of-the-art climate-crop simulations without ignoring the 

uncertainties entailed. 

The results of this risk assessment are future projections of the risk climate change 

poses to today’s levels of crop production. This assessment might inform adaptation 

strategies on a global level or serve as a starting point for more detailed adaptation 

studies both on a global and a country level. Across the globe, maize production is 

threatened by climate change already at global mean temperatures 2°C above 

preindustrial levels, as to be expected within the coming few decades. In many 

countries, projected increases in absolute crop yields for rice, soybean, and wheat are 

contrasted by increases in variability-induced risk. At 4°C global warming, partial 

yield increases for 2°C are diminished. Increased risk is projected for multiple main 

producing countries across crop types, especially for countries with low historical 

variability-induced risk. While some countries are projected to experience increasing 

crop yields in a warming climate, the projected changes in crop production risk could 
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lead to both local food crisis and adverse distributional effects. Therefore, the results 

highlight the urgency to mitigate climate change, limiting global warming to levels of 

2°C or below. For countries with an increase in crop production risk projected, 

adaptation of the agricultural sector to climate change should be addressed in a 

prioritized manner. Overall, our results highlight substantially increased risk to crop 

production under warming projected for the mid to end 21st century and the need to 

assess crop yield projections more differentiated in future climate risk assessments. 
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5. Discussion and outlook 

5.1 Central findings 

All three studies presented here share a common aim, to work towards globally 

consistent, yet regionally differentiated modeling of climate-related economic 

impacts and risks, both under current and future climatic conditions. Therefore, I 

will first briefly recap and discuss central findings of each chapter before moving to a 

discussion of generalizable insights beyond the scope of the single studies.  

The central finding in Chapter Two (1st paper) is that socioeconomic indicators such 

as GDP or total asset values can be realistically disaggregated from country-level 

aggregates proportionally to a multiplicative combination of gridded nightlight 

intensity data (Lit) with gridded population density data (Pop). Evaluation of the 

LitPop method for 14 countries showed that the approach has skill in disaggregating 

country-level GDP to state or district level. A visual assessment of derived high-

resolution asset value maps of metropolitan areas further suggests that the 

combination of Lit and Pop can mitigate known artifacts in nightlight products, such 

as blooming and saturation, given a sufficient resolution of population data. We 

concluded that combining Lit and Pop improves the subnational spatial 

disaggregation skill for GDP and correlated macroeconomic indicators compared to 

using only one of the two data types. The comparison of different exponents m and 

n in Litm	∙	Popn generally returned the highest skill for m=1, n=1 (Lit1	∙	Pop1). 

Providing both a high-resolution (30 arcsec) global asset exposure dataset and the 

underlying methodology open-source and documented has the potential to lower the 

entry-level for global-scale assessments of direct economic damage due to natural 

hazards. Still, the relatively straight-forward methodology comes with caveats and 

uncertainties. These include limitations of the evaluation due to missing data on sub-

national levels, and the omittance of asset classes and critical infrastructure not 

correlated to population density and luminosity. Uncertainties and limitations are 

further summarized in Section 5.3 below. 

The direct comparison of the simulated impact of several hundred tropical cyclone 

(TC) events with reported direct economic damage records around the globe in 

Chapter Three (2nd paper) resulted in a calibrated set of TC impact functions for nine 

world regions. The investigation revealed that a global impact function did not 

represent TC damage potential adequately around the globe. Before calibration, 

simulations overestimated TC damage potential considerably in the North West 

Pacific region, strongest for Taiwan, Hong Kong, Japan, Macao, and South Korea. In 

contrast, damage potential was underestimated for Madagascar and Mozambique in 

the South Indian Ocean and most South Pacific countries. On a sub-regional level, a 
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case study for the Philippines provides insight on further potential for improvement 

of the TC impact modeling setup. This includes the potential to differentiate on the 

hazard side, i.e., to account for storm surge and pluvial flooding explicitly and to 

differentiate between urban and rural exposure and vulnerabilities (see outlook in 

Section 5.5.2). In conclusion, we postulate large potentials for further reducing the 

considerable uncertainties associated with the calibration of TC impact functions. 

Most prominently, we suggest differentiating rural and urban exposure types, 

simulating sub-perils such as storm surge and torrential rain explicitly, and 

improving and harmonizing quality standards for archiving and documenting 

reported damage data. 

Central findings presented in Chapter Four (3rd paper) touch upon the potential and 

limitations of exploiting gridded global output from state-of-the-art climate-crop 

model ensembles for the assessment of 21st century crop production risk. While 

model uncertainties are considerable, with often contradictory results from 

individual crop models, we identified combinations of countries and crop types with 

high model agreement regarding future change in crop production risk. By 

juxtaposing both a fixed historical threshold and a relative threshold for the 

calculation of crop production loss probabilities, we highlighted cases where the 

more established historical threshold could not detect a signal of variability-induced 

increase in risk as detected by the relative threshold. For example, we found such a 

constellation for future soybean production in the USA and wheat production in 

China. Methodologically, we concluded that using a relative threshold adds value to 

the risk assessment. However, we propose further research and exploration of 

alternative measures of variability-induced crop production risk. A deepening 

reflection on the complementary risk metrics in relation to uncertainty can be found 

in Section 5.3. 

Chapters Two to Four do not only contribute to the development of individual 

components of a global risk modeling framework, but also towards a better 

understanding of opportunities and challenges related to the combination of 

heterogeneous input data for global risk assessments, with the ambition to model risk 

globally consistent yet regionally differentiated. Furthermore, we discuss practical 

implications in the context of their immediate application and beyond in Section 5.4. 

One central aggregated finding is that the multitude of data and methodologies 

available today make it possible to spatially-explicitly represent hazard, exposure, and 

vulnerability – and thus representing relevant risk components at a global scale. The 

modularity of the risk framework also allows for a flexible representation of weather- 

and climate-related risks, acute and chronic, event-focused and annually aggregated, 

direct and indirect, including pre-conditioning and attribution – as further discussed 

below, based on the comparison of model configurations in Section 5.2 and the 
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outlook for compound crop risk assessments in Section 5.5.3. This provides the basis 

for multi-hazard and multi-sectoral risk modeling on a global scale, moving far 

beyond the scope of traditional integrated assessment models. The increase in 

complexity about what is represented in spatially explicit risk model configurations 

comes however at cost, as multi-step modeling chains entail cascading uncertainties. 

Additional auxiliary data and local calibration can improve the representation of 

either single events or regional particularities in exposure and vulnerability. 

However, auxiliary input data inflate the complexity of the modeling setup even 

further, and are often not consistently available on a global scale. A deepening 

discussion of the uncertainties, how they are addressed in this thesis, and derived 

findings can be found in Section 5.3 below. The practical implications of this thesis 

constitute a relevant outcome of the research and development project and are 

discussed in Section 5.4 followed by outlook and future research in Section 5.5. 

5.2 Comparison of risk model configurations 

A comparison of the impact modeling setup presented in the three papers (Chapters 

2-4) serves well as a starting point to reflect upon the broad range of opportunities a 

modular risk assessment framework as provided by CLIMADA offers for modeling 

weather and climate-related risks. Chapters Two and Three contribute to a globally 

consistent model for the impacts and risks posed by TCs (and comparable hazard 

types) on the built environment. In Chapter Four, we integrated climate-crop model 

output to assess climate impacts on country-level crop production risk for maize, 

rice, soybean, and wheat. The comparison of TC and crop production risk modeling 

can illustrate two very different manifestations of what we attempt to represent with 

climate-related physical risk models. By contrasting these two implementations from 

different perspectives, the wide range of how risk components can be defined for 

physical risk modeling within the framework of hazard, exposure, and vulnerability 

can be probed and discussed. The respective model configurations are discussed in 

detail in the corresponding chapters and Section 1.5. Here, we focus on comparing 

different aspects of these configurations.  

The TC impact model is a single-hazard model, while crop production risk modeling 

requires a more complex representation of hazard and vulnerability motivated from 

the perspective of a particular economic sector exposed to climate-related risk. In 

Chapter Three, the TC hazard set was used to simulate direct economic damage in 

the form of impact to the built environment. The same hazard set could just as well 

be applied to model damages to human lives and livelihoods, to forests, power 

production – and also agricultural production. In contrast, the fractional crop yield 

used as hazard set in Chapter Four is tied to the agricultural sector, representing crop 
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yield responses to climatic conditions. This implies several fundamental deviations 

of the crop production risk modeling setup compared to the implementation for TCs. 

First of all, there is a conceptual difference between the two model configurations 

regarding the vulnerability component. For TC, vulnerability is represented by 

impact functions relating wind speed to damage. For crop production, the 

vulnerability of crop yields to climate variables is represented in a more complex way 

by the process-based crop models. In this configuration, an additional modulation 

via an impact function in CLIMADA would only make sense for the assessment of 

indirect impacts, not for simulating the direct response in crop production to climate 

variations (see outlook Section 5.5.3 for further elaboration). The second major 

difference stems from the definition of ‘events’ in the two different model 

configurations. The TC hazard consists of a set of clearly defined events, each 

representing a specific natural phenomenon: the cyclone’s windspeed footprint, with 

a certain extent in space in time. Several TC events can occur in the same year and 

even affect the same location. Compound effects of consecutive TCs affecting the 

same area are not implemented in the current setup but could be accounted for by 

adjustments to exposure and impact functions after a TC hit, e.g., via post-processing 

of the impact set. On the contrary, normalized crop yield represents the compound 

modeled response of crop yields to various climatic conditions, including droughts 

and heat waves occurring within a given year, that is, all climatic conditions provided 

by the driving climate model output and considered in the process-based crop 

models. Memory effects in crop models also allow a partial representation of pre-

conditioned events as defined by Zscheischler et al. (2020). The representation of 

compound events also hinges on proper representation in the driving climate 

simulations. A recent study analyses the representation skill of bivariate compound 

events in state-of-the-art climate models, specifically “the co-occurrence of heavy 

rain and strong wind, and heat waves and meteorological drought” (Ridder et al., 

2021). The authors conclude that “[…] some CMIP6 models can be used to examine 

compound events, particularly over North America, Europe, and Eurasia” (Ridder et 

al., 2021), but still with large potential for improvement. It should be noted that the 

aggregated crop yield response is not attributed to the specific climatic drivers in 

Chapter Four. Each ‘event’ of normalized crop yield represents one year’s climate-

related deviation of the productive potential from a temporal mean, analyzed 

spatially explicitly, that is, for each grid cell individually. For this reason, this model 

configuration needs a definition of which event is considered disastrous under what 

local (grid cell or country-aggregate) conditions. This was achieved in Chapter Four 

by aggregating the modeled yearly absolute crop production per country and 

identifying years with production values below a given threshold. Another possibility 

would be a step or gradient in the impact function, however requiring further 

justification for choosing a threshold per grid cell. Another perspective on the 
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different approaches to ‘events’ in the two implementations can be gained using the 

lenses of acute and chronic risk introduced in Section 1.4.1. While TC events fall 

under the category of acute physical risk (see Section 1.4.1), crop production risk as 

assessed here represents a combination of chronic and acute risk. The creeping 

character of changing climatic conditions over time can lead to chronic risk, while 

the variability-driven risk due to specific conditions in a simulated year can be 

considered an acute risk. However, the distinction of acute and chronic risk is blurred 

in the case of any long-term change in variability, putting the usefulness of these 

definitions in a scientific context to question. In conclusion, this comparison 

illustrates the flexibility of the risk framework applied here and highlights 

implications for experimental setup and the evaluation and analysis of respective 

results when defining hazard, exposure, and vulnerability with a certain degree of 

creativity. 

5.3 Uncertainties 

Climate risk modeling entails cascading uncertainties all along the modeling chain. 

The hazard component alone is constructed from input data that is either based on 

processed measurements (Zumwald et al., 2020), survey data and/or output from 

models (e.g., climate models, hydrological models, crop models, TC wind field 

models). The same holds for the exposure (e.g., remote sensing data and country-

level asset value estimates) and vulnerability components (e.g., the shape and scaling 

of impact functions). The cascade of uncertainties can be illustrated by the example 

of the calibration of TC impact functions presented in Chapter Three. The calibration 

builds on TC wind footprints as hazard component and an estimate of gridded asset 

values as exposure component. Both input data sets are resulting from modeling 

endeavors themselves, with their own uncertainties. For calibration of the impact 

function, hazard and exposure are then combined with further – often highly 

uncertain – data, such as reported estimates of direct economic damage per event. 

Sensitivity analysis is a common approach to assess model uncertainties. For 

sensitivity analyses, input data and model parameters are sampled from a (plausible) 

range or distribution (Saltelli, 2002). The many steps involved in climate risk 

modeling make systematic uncertainty assessments rather extensive and require 

many assumptions with regard to parameters varied and their plausible ranges that 

need to be constrained in order to keep the assessment computationally tractable. 

Therefore, providing a rigorous sensitivity analysis for risk assessments building on 

multiple modeling chains is often not feasible. However, well designed uncertainty 

analyses focusing on relevant drivers are technically possible and beneficial to model 

developers and decision-makers interpreting model results. For crop yield 

simulations, a study of uncertainties of state-of-the-art climate-crop ensembles was 
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published by Müller et al. (2021). The authors explored uncertainties in climate-crop 

ensembles such as the GC6 ensemble analyzed in Chapter Four, driven by climate 

models from both CMIP5 and CMIP6. The authors calculated the share of variance 

explained by the spread of  both climate and crop models. Thereby, they 

differentiated by crop types and modeled year, as model uncertainty in transient 

climate simulations is not stationary over time. This kind of uncertainty analysis is 

pivotal for the experimental design and the discussion and interpretation of results. 

The study presented in Chapter Four benefited greatly from their findings, guiding 

methodological decisions such as the detrending and binning of years by global mean 

temperature to mitigate uncertainties due to differences in the climate sensitivity of 

climate models.  

The focus of neither of the three studies presented in this thesis was on the systematic 

analysis of uncertainty. In all three studies, the main objective was to contribute a 

science-based component to an end-to-end climate risk assessment while making key 

uncertainties visible and providing guidance both for present usage and future, more 

systematic uncertainty assessments. The guiding principle was to provide users with 

results and methods that can be put into practical use in a straight-forward fashion – 

also outside the academic discourse – while informing them of uncertainties and 

most relevant assumptions entailed. This purpose is served in multiple ways, however 

with some common features that have proven both valuable and feasible in the 

context of the academic papers and the applied project. As a basis, uncertainties, 

limitations, and assumptions in the input data were discussed based on scientific 

literature. Based on this discussion, choices with regard to input data and methods 

were made, considering both fitness for purpose as well as availability and 

accessibility. In all three studies, uncertainties with regard to methodological choices 

are made visible by comparing results for several, preferably complementary choices. 

In the first two studies, the discussion of uncertainties and comparison of 

complementary metrics is complemented with regional case studies. In Chapter Two, 

limitations of the LitPop method are discussed along an example of the metropolitan 

area around Mexico City and a quantitative evaluation of skill metrics for 14 

countries. In Chapter Three, possible reasons for large deviations in event damage 

ratios (EDRs) are discussed for the Philippines, based on studies with a regional 

focus, and analyses for single TC events. Both case study regions were chosen due to 

low robustness in results as diagnosed by a large spread between the complementary 

metrics discussed above. 

The LitPop methodology presented in Chapter Two disaggregates country-level asset 

values to obtain a gridded layer of asset exposure estimates. The methodology is 

evaluated by comparing complementary skill metrics for a plausible range of 

exponents weighting the two input data sets (nightlight intensity and population 
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count). Based on the quantitative evaluation, the local case study, and literature, we 

were able to identify the following drivers of uncertainty in the LitPop methodology. 

(1) The choice of the best estimate of national total asset values comes with 

uncertainty, scaling the resulting exposure values within each country in a linear 

fashion. (2) Due to limited data availability, the evaluation of disaggregation skill was 

limited to 14 countries and of these 14 countries, only two are lower-middle 

income countries and none are low income countries, biasing the evaluation to 

countries that are economically better off. (3) The level of detail of the gridded 

population data used as input varies between countries and the data is usually less 

detailed for low income countries that were also not evaluated, see (2). (4) For 

evaluation, disaggregation skill was assessed for gross domestic product (GDP) 

instead of asset value, due to lack of sub-national asset value data. While GDP and 

asset values can be expected to be strongly correlated within countries, the spatial 

distribution of the two indicators is not necessarily identical, potentially introducing 

biases to the evaluation. (5) While the evaluation and case study suggest that the 

methodology has skill both for urban and rural area, the performance on a local level 

was not validated. 

For the calibration of regional TC impact functions (Chapter Three), two 

complementary cost functions based on the ratio of simulated to reported event 

damage were assessed. A comprehensive explanation is given for each cost function: 

The total damage ratio (TDR), on the one hand, integrates damage over time before 

the ratio is calculated, making the result more sensitive to outliers with large total 

damage. The root-mean squared fraction (RMSF), on the other hand, weights the 

relative ratio of each event equally, irrespective of the total damage caused by each 

event. The resulting impact functions based on minimizing TDR are more optimistic 

(or ‘conservative’), simulating lower damage values than those calibrated by 

minimizing RMSF. Based on the two cost functions and resulting sets of impact 

functions, users in an applied context are thus well informed to make a choice tailored 

to the scope and aim of their particular application. Advanced users can build a 

robustness analysis on the alternative impact functions, or even based on the spread 

of individually fitted impact functions as provided in the study. The difference 

between results for the two complementary cost functions can be taken as an 

indicator of the robustness of the calibration in each region. Relevant drivers of 

uncertainties in the calibration of regional TC impact functions as identified in 

Chapter Three are: (1) Reported damage data comes with lack of transparency with 

regard to inconsistencies and potential biases that are not quantified. Inconsistencies 

in reported damage data can potentially be explained by the wide range of capacities, 

scope, and conflicting interests of data providers (governments, insurance 

companies, research institutes, NGOs, etc.) as well as the damage type represented 

(direct, indirect, insured, etc.). (2) The modeling setup uses maximum wind speed as 
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hazard intensity, lacking an explicit representation of TC-related sub-hazards with 

high damage potential such as storm surge and torrential rain. (3) The exposure layer 

comes with the uncertainties summarized above, especially a potential under- or 

over-estimation of total asset values can bias the damage estimates and resulting 

impact functions. (4) Certain sectors exposed to TC impacts are not represented in 

the exposure layer, most notably agricultural production. (5) The TC tracks used as 

basis for the TC hazard are from different data providers with known inconsistencies 

in reporting standards. (6) The wind field model by Holland (2008) does not 

represent variations in topography and surface roughness explicitly. Furthermore, 

the wind field model was developed for hurricanes in the North Atlantic and might 

not be fully adequate for other ocean basins. All mentioned drivers of uncertainty in 

the TC impact function calibration are – for obvious reasons – also drivers of 

uncertainty in TC risk assessments. 

In the assessment of crop production risk (Chapter Four), we do not analyze to which 

degree the projected changes in mean production and variability are represented 

adequately by the single crop models. But in the discussion of uncertainties, the study 

draws on comprehensive model uncertainty analyses such as those by Müller et al. 

(2017, 2021). Methodologically, the impact of crop model uncertainty on the 

resulting risk metrics is addressed by assessing the risk for each individual crop 

model. After that, the risk metrics per crop model are combined, communicating 

both the multi-model median as well as an indicator of model agreement. In this 

study, again, two complementary metrics are calculated. The probability (P) and 

probability ratio (PR) of years with extremely low crop production are computed 

based on two complementary thresholds. The historical threshold is fixed at the 2.5th 

percentile of yearly crop production in the subset of years driven with climate model 

output with global warming at historical levels (0.5°C ± 0.5°C above pre-industrial 

levels). The relative threshold is independent of historical production levels, set to 10 

% below the mean production at a given level of global warming. Like this, the 

historical threshold puts an emphasis on changes in total production numbers while 

the relative threshold is used to identify changes in variability-induced changes in the 

probability of extreme events. Again, users of the study’s result can either chose 

between the two metrics based on their priorities or combine them to obtain a 

differentiated profile of crop production risk as projected by the climate-crop model 

ensemble, that is an ensemble of global gridded crop models driven with climate data 

from a selection of global climate models. With this approach and a transparent 

discussion of known uncertainties, the study attempts to make best use of the 

available ensemble of state-of-the-art climate-crop simulations without concealing 

the considerable cascading uncertainties of the climate-crop-risk modeling chain. 

Major sources of uncertainty relevant for the crop production risk assessment setup 

and results presented in Chapter Four are (1) climate model uncertainties with regard 
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to the representation of global and regional extremes, compound events, and climate 

variability under both historical and unpreceded levels of global warming and (2) 

crop model uncertainties, especially with regard to the parameterization and process-

representation of climatic extremes and CO2 effects (e.g., fertilization) with 

consequences on the robustness of projections of both mean yields and inter-annual 

variability on a global and regional level. (3) Imbalances and outliers in the climate-

crop simulation ensemble have the potential to distort risk metrics and results. (4) 

The choice of risk metric, threshold value, and detrending method can have 

consequences on the outcome of the assessment of variability-induced crop 

production risk. The robustness of the results with regard to these choices has not yet 

been analyzed systematically. (5) The study rests on multiple assumptions with 

regard to agricultural management and technologies, including land-use, irrigation 

ratios, and crop types and varieties. The choice to keep such management factors 

constant at current levels is nonetheless a choice and the sensitivity of results to the 

underlying assumptions stands yet to be analyzed. 

In conclusion, the general approach towards the cascading uncertainties entailed in 

any of the presented modeling chains is a pragmatic one. In all three main chapters, 

we attempted to discuss uncertainties based on literature and explorative case studies. 

Consequently, the studies were designed to address the most relevant known 

uncertainties and to communicate remaining uncertainties, both quantifiable and 

non-quantifiable ones, in a rather descriptive manner. While this approach does not 

replace more rigorous uncertainty analyses, I am convinced that it can  provide 

guidance for users of the methods and results presented, model developers, as well as 

researchers conducting uncertainty analyses in the future. This guidance includes 

pinpointing relevant sources of uncertainty and provides a rationale for plausible 

parameter ranges and choices. 

5.4 Practical implications 

5.4.1 Use of results in an applied context 

The spatially explicit and globally consistent modeling of climate risk offers potential 

to expand the disclosure of climate related physical risk as promoted by the TCFD 

(Bloomberg et al., 2017). This thesis contributes science-based open-source risk 

modeling tools, as well as discussions of their skills and limitations with relevance for 

this wider applied context. An overview of how the outcomes from this thesis and the 

whole PhD project are put into use in the particular context of the implementing 

partner is provided in Section 1.3. Here, practical implications from our findings are 

discussed beyond the scope of the joint research and development project. For this 

discussion, I am guided by the typology of users of climate services postulated by 
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Skelton et al. (2019). In their study, the authors classify users of the Swiss climate 

scenarios CH2011 into the three groups ‘observers’, ‘sailors’, and ‘divers’. Here, I am 

adapting this typology to the context of the assessment and modeling of climate-

related risk (Fig. 20), to organize the discussion of the practical implications of this 

thesis. 

 
Figure 20: Conceptual illustration of Skelton et al. (2019)’s typology of climate scenario use, drawing 
on the metaphor of the iceberg, and adapted for the context of the assessment and modeling of 
climate-related risk and the studies presented in this thesis. Divers are interested in using the bulk 
of methodology and data accessible only to those with the skills, such as risk modeling platform 
CLIMADA and gridded simulated climate impact data from the ISIMIP project. Sailors make use of 
key results visible from the surface (and are supported by the raw data), such as asset exposure 
data from Chapter Two, calibrated impact functions from Chapter Three, or return periods of crop 
production loss from Chapter Four. Observers are interested in aggregated results (i.e., the iceberg), 
such as identifying country-specific information and interregional differences in TC vulnerability or 
crop production risk. Figure and caption adapted from Skelton et al. (2019, p.4), original illustration: 
S. Bösch, ETH Zurich.  

All three studies presented in this thesis aim at applications geared towards the 

assessment and modeling of global-scale climate-related impacts and risks. To this 

end, the methodology and results presented in this thesis are useful in a straight-

forward manner across the user types illustrated in Figure 20. Observers aim to learn 

something relevant from the studies without getting into the water themselves, i.e. 

without engaging in data analysis or applying any methodology. They primarily 

benefit from aggregated quantitative results such as current and future crop 

production risk profiles per country (Chapter Four) or inter-regional vulnerability 

differences in damage inflicted by tropical cyclones (Chapter Three). These aggregate 

results can help to identify hotspots of tropical cyclone vulnerability or crop 

production risk in need of adaptation efforts at country scale. Sailors might make use 

of the global data set of gridded asset value estimates disaggregated with the LitPop-

methodology (Chapter Two) that can easily be downloaded and integrated as an 

exposure layer for all kinds of spatially explicit risk assessments across platforms. 
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Both sailors and divers might also adapt the calibrated TC impact functions from and 

risk metrics for crop production risk in their own risk assessments. I consider users 

as divers if they use a full risk modeling platform such as CLIMADA or want to make 

use of gridded global climate-impact model ensemble output data from ISIMIP, such 

as crop yields or surface water discharge. Divers might make use of the modules and 

methodologies developed in this thesis and made available in the CLIMADA 

repository (see Section ‘Code and data availability’). For example, CLIMADA’s TC 

hazard module can be combined with the LitPop-based asset exposure data and the 

calibrated TC impact functions for both global and regional impact assessments, 

down to a resolution of a few kilometers (yet still globally consistent). Expert risk 

modelers can also explore the robustness of their probabilistic risk modeling setup by 

testing the range of parameter choices evaluated for the LitPop methodology 

(exponents m and n, see Chapter Two) and alternative impact functions based on the 

complementary cost functions in Chapter Three. Users who want to dive into the 

extensive output data from ISIMIP as a basis for the assessment of future climate-

related risk can get guidance from the approach followed in Chapter Four to deal with 

a large set of climate-crop model simulations and cascading uncertainties. Again, a 

code basis is provided along with the study that can be adapted for similar 

assessments based on output from future rounds of ISIMIP, and also integrated into 

modeling chains for the assessment of downstream sectoral risk.  

In conclusion, as one practical implication of this thesis, global TC risk modeling 

efforts should always consider inter-regional differences in TC vulnerability even on 

an aggregated level, and should not apply one single impact function globally. For 

assessments of future climate-related risks, such as crop production risk, this thesis 

can provide guidance for the choice of risk metrics and the post-processing of the 

output from global-scale climate-impact model ensembles. For applications like risk 

assessments on sub-regional scale, users should be aware that global consistency 

might come at cost of local accuracy, as discussed in Chapters 2 and 3. The exposure 

data, impact functions, and crop production risk estimates presented here are most 

likely inadequate to be used locally, especially at resolutions higher than few 

kilometers. However, they can be used for a first assessment of the general situation, 

e.g., to identify potential hotspots and to estimate the order of magnitude of impacts 

before assembling local data and knowledge for a more adequate local-scale risk 

assessment. 

5.4.2 Joint research and development for climate risk modeling 

As the urgency for action on climate change increases across sectors, more and more 

researchers as well as private sector actors engage in global-scale climate risk 

modeling. However, such efforts have proven to be resource intensive in terms of 
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research, the development of tools and code, and computational costs. Purely 

academic studies are often not perceived as useful for direct implementation by 

practitioners, possibly due to the different focus of academic research questions, and 

sometimes also simply because data and methods are often not documented 

adequately nor licensed for use outside academia. On the other hand, the costliness 

of climate risk modeling puts it beyond the scope of many public authorities and 

smaller to mid-sized organizations and businesses, for example in the financial and 

insurance sector, who are nonetheless affected by climate risk. To address this gap 

between science and application, more and more resources in the form of code and 

data are and have been made available for climate risk assessments in recent years, 

both by research groups, scientific collaborative projects like ISIMIP and CLIMADA, 

but also by industry-led pre-competitive research and development projects such as 

the Oasis Loss Modelling Platform (Oasis LMF, online). This makes pre-competitive 

collaborations publishing results and methods, like the one presented here, pivotal 

for the joint cross-sectoral progress in addressing the multiple challenges posed by 

climate change. While the implementing partner benefits from the collaboration by 

shaping the focus and methodology of the research and being the first to make use of 

outcomes, the scientific community and further organizations benefit from open-

access and open-source publication of results and methods that do not involve 

intellectual property of the implementing partner. With the collaboration 

accompanying this thesis, I made the experience that climate risk modeling efforts 

can benefit from joint research and development that moves collaboration beyond 

the level of mere consultancy or one-way knowledge transfer. One challenge in joint 

research and development are intellectual property and licensing aspects of both 

input and output data as well as co-developed tools. For this, it is crucial to generate 

scientific output intended for applied use available under a permitting license. Many 

projects have realized this requirement for their output to be impactful beyond 

academia, including CLIMADA which is published under the GNU General Public 

License1 version 3 (Free Software Foundation, Inc., 2007), and ISIMIP’s success in 

convincing most contributors to publish their data under the Creative Commons2 

license CC BY 4.0 putting no constraints on commercial use (Creative Commons, 

online). It is sometimes debated whether research funded with public money should 

be made available for commercial use just to be picked up by private sector actors and 

hidden behind pay-walls. While I don’t want to rule out that there can be abuse, my 

experience is rather that added value by commercial utilization has the potential to 

act as a multiplier of the societal impact of scientific outcomes. What is more, 

                                                                    

1 https://www.gnu.org/licenses/gpl-3.0.en.html (last accessed February 19, 2021) 

2 https://creativecommons.org/licenses/by/4.0/ (last accessed March 1, 2021) 
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research groups can control the dissemination of their science by publishing research 

methods and results with elaborate licensing and a sufficient level of documentation 

and support, and by engaging in joint research and development projects. Still, joint 

research and development receiving public funding should always make a 

contribution to the public domain. At the same time, parts of the input to an applied 

risk modeling setup are likely to involve trade secrets and intellectual property of the 

implementing partner. The modular risk framework implemented in CLIMADA, 

like in most risk modeling platforms, allows for a clear definition of the individual 

risk components, such as hazard, exposure, impact functions, and also pre- and 

postprocessing as well as clear interfaces between single modules. The ambit of both 

partners can be defined along the boundaries of these modules, clarifying both 

competence and ownership between research and implementing partner. This can be 

illustrated by example of the TC impact model implemented alongside this thesis (see 

Section 1.5.1). Here, the hazard data is based on publicly available data and a 

scientifically published wind field model. Based on scientific literature, the initiation 

of the probabilistic historical and future hazards set was implemented in the open-

source and open-access CLIMADA repository. The same is true for the calibrated 

impact functions presented in Chapter Three. These two parts of the TC impact 

model are thus published in the public domain and contribute to extending both 

academic debate and applied risk assessments, being available for use and further 

development beyond the scope of this project. The main competitive advantage of 

the implementing partner comes from combining these scientific hazard and 

vulnerability modules with their own exposure layer, i.e., their company asset 

location database. Being involved in the research design of this thesis, the results are 

directly applicable by the implementing partner, because the studies’ outcomes 

directly meet their requirements for a globally consistent yet spatially explicit risk 

assessment. Implementing partners in research and development projects also 

benefit from the credibility added to their products as far as crucial ingredients are 

not only science-based but also embedded and published in the academic debate. For 

this to be possible, the research partner requires a high degree of freedom, but also 

time allocated, for conducting their research with all scrutiny required and 

accommodating the full peer-review process for publication. Implementing partners 

can move even further, allowing their research partners to use data sets considered to 

be trade secret on an aggregated or anonymized level, further increasing both the 

academic leverage and the transparency of and trust in their work. Framed carefully 

and complaisantly, pre-competitive joint research and development can lead to 

multiple co-benefits as well as transparency towards the wider public and particularly 

clients, as opposed to black box solutions developed completely in-house. Given the 

resource intensity and high degree of uncertainty entailed in climate risk modeling, 

customers should in fact be suspicious of claims for products to be ‘science-based’ 
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when the underlying climate risk modeling is not transparent nor embedded in 

collaborative research and development with academia or pre-competitive platforms, 

and research outcomes shall be made available to the public with no strings attached. 

5.5 Future research and outlook 

5.5.1 Global asset exposure 

We developed the nightlight-population (LitPop) method to provide a globally 

consistent asset value exposure layer for modeling natural hazard impact on assets 

such as the built environment and infrastructure. For the project’s scope and further 

unrestricted use by developers and stakeholders working with the open-source and -

access platform CLIMADA, one of the main requirements was that all input data is 

open-access and licensed for both academic and commercial use. Furthermore, the 

aim was not to produce a black box but rather a transparent, easily understandable, 

and reproducible methodology to ensure a low entry threshold for a wide variety of 

users. The main advantage of the LitPop method is that it can be updated relatively 

easily as new versions of gridded population data or nightlight intensity data become 

available. One major disadvantage are a lack of local precision and the inability to 

project the distribution of asset values to the future. Future projections of population 

distribution exist for a variety of shared socioeconomic pathways (SSPs) (Jones and 

O’Neill, 2016; Leyk et al., 2019), including efforts to incorporate climate change 

impacts (Rigaud et al., 2018). Annual global population data at 0.5° and 2.5' 

resolutions for the years 2006-2100 for a variety of SSPs and based on the population 

projections described in Jones and O’Neill (2016) are provided by ISIMIP as 

secondary input data (ISIMIP, online, https://www.isimip.org/gettingstarted/input-

data-bias-correction/details/62/, last accessed 15 February 2021). The LitPop method 

can be improved and expanded based on such datasets, possibly replacing the GPW 

population dataset used in Chapter Two, which is flawed with varying spatial detail 

between countries. However, this could require an adaptation of the disaggregation 

method for future projections because nightlight intensity as used by LitPop is an 

intrinsically empirical variable and not available for the future. This also holds for 

many other auxiliary data sets such as street networks used in alternative approaches 

(e.g., Geiger, 2018; Murakami and Yamagata, 2019). In 2019, the Global Human 

Settlement Layer Data Package 2019 (GHS P2019) became available (Florczyk et al., 

2019), providing global gridded data of built-up area and settlements from 1975 till 

2015, under a fully open and free data and methods policy. Such data sources could 

be applied to substitute or refine LitPop-based exposure, especially for applications 

requiring a high degree of local representation. In the same direction, future research 

should also be aimed at evaluating the skill of the LitPop method with varying 
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parameters, both locally and regionally, against ground-truth data, such as census 

data or detailed building registers, or alternative data sources such as GHS P2019. For 

risk modeling studies using LitPop-exposure attempting a systematic analysis of 

uncertainties, the following parameters and input variables could be varied within 

reasonable ranges with reference to Chapter Two: spatial resolution, exponents m 

and n in the disaggregation factor 𝐿𝑖𝑡= ∙ 𝑃𝑜𝑝I, total asset value per country, and 

source of nightlight and population data. Any such concerted effort towards a 

globally consistent projection of exposure, best including an occupational and 

sectorial split, would benefit many projects well beyond natural catastrophe risk 

assessment and climate change impact studies and hence well justify substantial 

resources to be put in this endeavor. 

5.5.2 Tropical cyclone impact modeling 

The field of TC hazard and impact modeling is progressing quickly these days and 

future research should keep up with developments in the private sector, especially 

regarding the representation of hazard intensity and the probabilistic and process-

based modeling of historical and future TC events. There has been progress in 

improving wind field models (e.g., Done et al., 2020) and creating probabilistic event 

sets with statistical resampling techniques (Bloemendaal et al., 2020). While the 

dynamical downscaling of TC events from climate model output remains a challenge, 

there has been considerable progress over the past two decades in modeling current 

and future TC tracks and characteristics (e.g., Bhatia et al., 2018; Bloemendaal et al., 

2020; Emanuel et al., 2006; Emanuel, 2013; Knutson et al., 2015; Lee et al., 2018, 2020; 

Roberts et al., 2020b, 2020a; Walsh et al., 2015, 2016). Relevant recent observed 

changes in TC characteristics are summarized as follows: “Some studies have 

suggested that changes in tropical cyclones are potentially detectable in the present 

day (Knutson et al., 2019). Observed changes in intensity (Elsner et al., 2008; Kossin 

et al., 2013), including the migration [geographical shift] of the location of maximum 

intensity (Altman et al., 2018; Kossin et al., 2014; Sharmila and Walsh, 2018), have 

been documented, with possible links to frequency (Kang and Elsner, 2015). 

Evidence for reductions in propagation speeds since 1949 has been suggested 

(Kossin, 2018) and also questioned (Lanzante, 2019; Moon et al., 2019), while 

changes in precipitation associated with individual TCs have also been proposed 

(Emanuel, 2017; Risser and Wehner, 2017; Van Oldenborgh et al., 2017). However, 

disentangling natural variability from anthropogenic forcing remains challenging 

(Knutson et al., 2019)” (Roberts et al., 2020b). 

For the future, a review paper by Knutson et al. (2020) identified the following 

projected responses of TC characteristics to anthropogenic warming: (1) higher 

storm inundation levels due to sea level rise, (2) increased TC precipitation rates, (3) 
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increase in global average TC intensity, (4) increase in proportion and frequency of 

high intensity TCs (category 4-5), (5) poleward expansion of the latitude of 

maximum TC intensity in the western North Pacific, (6) decrease in global TC 

frequency, and (7) a slowdown in TC translational speed (Knutson et al., 2020). For 

the applied part of the thesis presented here, we based a future TC hazard set on 

projected changes in event frequency and intensity from Knutson et al. (2015), see 

also Section 1.5.1. Frequency and intensity are two relevant characteristics prone to 

be affected by climate change, and the change rates from Knutson et al. (2015) are 

within the ranges per ocean basin predicted in the IPCC’s 5th Assessment Report 

(Christensen et al., 2013). However, there are other relevant projected changes in TC 

characteristics neglected by this approach, as listed above. For the representation of 

these complex responses in TC characteristics to climate change, future TC risk 

modeling efforts should aim at incorporating modeled future TC hazard sets (e.g., 

Emanuel et al., 2006; Emanuel, 2013; Lee et al., 2018, 2020) instead of manually 

adjusting parameters of historically recorded events. Attention should be paid to 

biases and discontinuities when historical hazard sets based on observed TC events 

are compared to modeled TC event sets. 

A TC represents a weather system associated to a number of possible disastrous 

outcomes (associated with so-called sub-hazards), including strong winds, flooding 

due to storm surge (e.g., Bloemendaal et al., 2019) and torrential rain, as defined in 

the typology of compound weather and climate events by Zscheischler et al. (2020). 

With regard to further calibration and fitting of the vulnerability component, the 

representation of sub-hazards is one of the most decisive next steps, as it also affects 

impact functions, as discussed in Chapter Three: “For TC impact models, we echo 

the call for a more refined representation of TC hazards as a combination of wind-, 

surge-, and rain-induced flood and landslide events. When modeling multiple TC 

sub-perils, aggregated reported damage data are not sufficient to constrain impact 

function calibration. This might be resolved by consulting socio-economic- and 

engineering-type data and knowledge. Furthermore, our case study for the 

Philippines suggests that model accuracy could be improved by differentiating 

between urban and rural asset exposure, considering topography in wind speed 

estimations, and including exposed agricultural assets” (Eberenz et al., 2021b). When 

applying the calibrated impact functions presented here, it should always be kept in 

mind that they were fit to represent aggregated damage in an area, integrated across 

building types. For the development of improved building type specific impact 

functions, future research could start from the basis provided by previous TC impact 

modeling projects (Federal Emergency Management Authority [FEMA], 2010; 

Yamin et al., 2014), however keeping limitations for local applications in mind that 

arise irrespective of the chosen impact function when not adapted to local conditions. 

As for heuristics, one might refer to commercial buildings being about half, and 



 114 

industrial sites about a quarter as vulnerable as common residential ones (oral 

communication by David N. Bresch, supervisor of this thesis, summarizing more 

than thirty years of industry experience by him and fellow applied catastrophe 

modelers) and hence seek ways to evaluate this rule-of-thumb as often applied in 

industry catastrophe modeling with proper data analysis.  

Further research and development could also focus on a better representation of 

compound events related to TC weather systems.  On the one hand, this requires 

simulating an adequate impact for multiple TCs hitting the same area or asset in a 

short period of time. On the other hand, the interaction of several sub-hazards 

associated with the same TC could be represented explicitly; for example, wind-

induced damage to roofs can amplify rain-induced losses, or agricultural land 

flooding with saltwater can render simultaneous wind-induced impacts to the same 

area irrelevant. The possibility to combine TC impacts with crop yield simulations to 

assess multi-hazard risk to agricultural production is further discussed in the 

following subsection. 

5.5.3 Assessing climate-related risk to agricultural production 

In Chapter Four, we developed a framework that integrates current and future 

generations of climate-crop model ensemble output in CLIMADA for use in a 

probabilistic risk assessment. Possible outlooks about the particular choice of 

detrending techniques and, more importantly, the selecting risk metrics and 

underlying thresholds are presented in the discussion section of Chapter Four. Most 

relevant for increasing the robustness of crop production risk assessments such as the 

one presented here, future studies should explore alternative risk metrics to assess 

variability-induced crop production risk, as measured by the probability Pr in the 

present study. The latest generation of GGCMs, as run for GC6 (ISIMIP3b) used in 

Chapter Four entails soil moisture and temperature memory effects (Jägermeyr et al., 

under review), enabling the model setup to represent pre-conditioned events to a 

certain extent. Probabilities of consecutive extreme years and spatial 

interconnectedness could be analyzed further in the present setup, thereby expanding 

the scope of crop risk modeling. Furthermore, extreme years identified in the crop 

yield hazard could be attributed to causal climate variables in the driving climate 

simulations. 

Recent literature also offers new opportunities for crop risk modeling approaches 

based directly on climate model output for the hazard component. In 2020, Franke 

et al. presented the first version of spatially calibrated emulator functions 

representing crop yield responses to changes in CO2, temperature, water, and 

nitrogen (Franke et al., 2020a). These crop yield response emulators are derived from 

an ensemble of climate-crop simulations comparable to the one used in Chapter 
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Four. Müller et al. (2021) used these emulators to explore uncertainties in global 

climate-crop projections driven by climate model simulations from both CMIP5 and 

CMIP6. The study benefited from the resource-effectiveness of using emulators 

instead of running process-based crop models for each ensemble member. Likewise, 

such emulators could be used as impact functions in risk assessments with hazard 

sets comprising temperature, water availability, and CO2 concentrations based on 

climate model output. It should be noted however, that the emulators by Franke et 

al. (2020a) represent yield responses to yearly mean values of driving climate 

variables (e.g., temperature or water availability) and are thus not well suited  to 

represent the response to extreme events at a higher temporal resolution relevant for 

risk to crop production due to extreme events. 

Yearly crop production derived from climate-crop model simulations consider 

multiple hazard types. The crop models simulate crop yield response to climatic 

extremes in the driving climate data. The most relevant environmental drivers 

include temperature and water availability, but also fertilizing factors such as CO2 

concentration and nitrogen availability (Elliott et al., 2014; Franke et al., 2020a; 

Müller et al., 2017; Rosenzweig et al., 2014). While crop yields are simulated per year, 

the climate model output driving them comes at a higher temporal resolution. 

Simulating the interaction of multiple drivers on different time scales (short time 

events like heat waves, mean weather conditions during a growing season, long term 

CO2 trends, etc.) is at the very core of what GGCMs are developed for.  

Furthermore, there are weather and climate hazards putting crop production at risk 

that most crop models do not resolve, e.g., gusts of wind knocking down plants and 

flooding of agricultural area caused by TC surge, as well as pluvial and fluvial 

flooding, but also slow-onset factors such as soil depletion, erosion, and salination. 

The case study on TC impacts in the Philippines (Chapter Three) highlighted the 

relevance of TC impacts on the agricultural area for subnational TC risk assessments. 

The integration of a crop production exposure layer in CLIMADA is opening up the 

arena for the combination of crop yield simulations with the impacts not only from 

multiple drivers represented by crop models but also from other natural hazards. For 

a physically consistent multi-hazard and compound assessment of current and future 

weather and climate risks for crop production, simulations from the ISIMIP 

framework driven by the same climate model runs could be exploited. This can be 

illustrated by a though experiment. Consider the scenario of the following climate 

impact simulations to be available, all driven by the same selection of benchmarked 

and bias-corrected climate model runs as specified by the experimental protocol of 

the respective round of ISIMIP: (1) an ensemble of climate-crop simulations such as 

the one used in Chapter Four; (2) Hydrological model output and / or flood hazard 

data from a fluvial routing model such as CaMa-Flood (Yamazaki et al., 2011) used 
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in the river flood study by Sauer et al. (in press); (3) TC hazard footprints for wind 

and possibly also storm surge and torrential rain driven by the same climate model 

runs, e.g., based on downscaling experiments. This would allow a multi-hazard 

impact assessment for each year simulated by the driving climate models. For 

example, such a setup could be used to analyze probability and impact of a fluvial 

flood or strong wind gusts ruining the harvest in an area coinciding with an otherwise 

good or bad simulated crop yield. Using harmonized climate simulations, this could 

be done not only for selected years, but for a whole climate-crop model ensemble 

with hundreds of years simulated. Currently, (1) and (2) are available for ISIMIP2 

and should become available for ISIMIP3 soon. Sauer et al. (in press) processed 

output from ISIMIP2 in CLIMADA to assess damages caused by fluvial flooding. 

Currently, TC tracks (above) based on the same harmonized set of climate model 

simulations are not yet available openly. However, recent scientific progress in the 

field is promising (see Section 5.5.2). In a recent multi-hazard study, Lange et al. 

(2020) already combined the analysis of ISIMIP2 simulations with future projections 

of TC exposure implemented in CLIMADA, using a TC hazard based on dynamical 

downscaling by Emanuel (2013). In the future, the harmonization of climate data 

driving TC simulations and crop models, could allow assessments of crop production 

risks to consider combined effects of impacts represented by GGCM simulations, 

river floods, TCs, and possibly additional hazards like wild fires, on a yearly basis. By 

doing so, the diverse communities developing sectoral climate impact models and 

probabilistic risk models would move even closer and provide information of crucial 

relevance for society to navigate in increasingly turbulent times. 

5.6 Conclusion 

This thesis resulted in globally consistent yet regionally specific quantifications of 

asset value distribution, tropical cyclone impact functions, and future crop 

production risk, as well as guidance, metrics, and open-source and -access tools for 

future assessments of global climate impacts and risk in academia and beyond. Set in 

the context of a joint research and development project, its focus is on building and 

evaluating methods and datasets for the spatially explicit modeling of climate-related 

economic risk on a global scale. Main objectives were to conduct research and to 

develop tools that contribute both to the academic debate and practical use, with the 

goal to extend research and tools for science-based climate adaptation efforts across 

sectors. Both conceptually and methodologically, the research and its applications 

presented here are situated in a wider framework of climate risk, where risk is 

expressed as a function of hazard, exposure, and vulnerability, and implemented with 

the open-source and -access risk modeling platform CLIMADA. The scientific 

papers forming the main chapters of this thesis combine diverse data sets and 
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methodologies to quantify and integrate selected hazard, exposure, and vulnerability 

components for global-scale risk assessments. Chapter Two develops a method to 

estimate global gridded asset value exposures by disaggregating country-level asset 

values with a combination of gridded nightlight intensity and population data 

(LitPop method). In Chapter Three, these exposures are used for the regional 

calibration of tropical cyclone impact functions by fitting simulated impact functions 

against reported damage data. In Chapter Four, we use gridded crop yield 

simulations from a large climate-crop model ensemble facilitated by ISIMIP3b for a 

global assessment of country-level crop production risk under 21st century climate 

change. The latter study required a flexible conceptualization of what represents 

hazard, exposures, and vulnerability, providing a starting point both to reflect upon 

this traditional framework and to explore its flexibility in applications using input 

from diverse sources, including complex modeling chains. 

Going forward, the integration of impact model output from ISIMIP in CLIMADA 

offers great potential for probabilistic multi-hazard risk modeling, building on the 

effort the ISIMIP community puts into the harmonization, benchmarking, and 

evaluation of process-oriented climate and impact models. Not a process-oriented 

model itself, CLIMADA can benefit from the integration of statistical emulators, for 

example for a resource-efficient simulation of crop yield responses to climatic 

conditions, similar to the TC impact functions calibrated in Chapter Three. The 

discussion presented here further offers outlook and guidance for pragmatic 

approaches to communicate and mitigate the manifold uncertainties entailed in 

complex risk modeling chains, demonstrated in its own modeling with quantitative 

ranges for single components that can be used in future uncertainty analyses. 

In addition to the research presented in Chapters Two to Four, the joint project 

required mediation of differences in pace, priority, and measures of success. Working 

in an applied context allowed for and guided research and development that would 

have been much harder to achieve without an implementing partner, not least daring 

to build end-to-end impact modeling chains without getting lost in every single 

detail. We managed this while adhering to and promoting scientific standards and a 

pragmatic yet transparent treatment of uncertainties. For a rigorous and science-

based assessment of climate-related physical risk as fostered by initiatives such as the 

TCFD, there is no way back from the standards set by this thesis and the open-source 

and -access modeling platform CLIMADA, with regard to both the spatially explicit 

and globally consistent modeling of climate risk. 
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Code and data availability 

The CLIMADA repository (Aznar-Siguan and Bresch, 2019; Bresch and Aznar-

Siguan, 2021; CLIMADA-Project, 2019) implemented in Python is openly available 

online at https://github.com/CLIMADA-project/climada_python (Bresch et al., 

2020) under the GNU GPL license version 3 (Free Software Foundation, Inc., 2007, 

gnu.org/licenses/gpl-3.0.en.html ). The repository includes the LitPop asset exposure 

module (CLIMADA v1.2.0+), regionally calibrated TC impact functions, crop hazard 

and exposure module, and low flow hazard module (all CLIMADA v.1.5.1+), as 

developed as part of this project. The code repository of CLIMADA v1.4.1, as used 

for the calibration in Chapter Three, is archived at http://doi.org/10.5905/ethz-1007-

252 (Bresch et al., 2020). The documentation of CLIMADA is hosted on Read the 

Docs (https://climada-python.readthedocs.io/en/stable/), including a link to the 

interactive tutorial of CLIMADA. 

Python scripts reproducing the main results and figures of Chapters Two and Three 

are available at https://github.com/CLIMADA-project/climada_papers (Aznar-

Siguan et al., 2020; https://doi.org/10.5281/zenodo.4467858, Eberenz et al., 2021a). 

The scripts reproducing the main results and figures of Chapter 4 are available at 

https://github.com/sameberenz/climada_papers_crop_production_risk_isimip 

(Eberenz and Steinmann, 2021, http://doi.org/10.5281/zenodo.4549259).  

Further material is permanently available online in the supplements published 

alongside the two peer-reviewed publications (Eberenz et al., 2020, 2021b). 

Furthermore, LitPop asset exposure data (in US dollars, value of 2015) at a resolution 

of 30 arcsec for 224 countries (see Chapter Two) are archived in the ETH Research 

Repository with link https://doi.org/10.3929/ethz-b-000331316 (Eberenz et al., 

2019). 

Gridded output from crop models and hydrological models used as input for 

computing relative crop yield, baseline crop production, and the low river flow 

hazard have been (ISIMIP2) or will inshallah be (ISIMIP3) made available under a 

Creative Commons 4.0 license via ISIMIP (ISIMIP, online, https://esg.pik-

potsdam.de/search/isimip/). Readily prepared hazard and exposure sets for TC, crop 

production, and low flow hazards are planned to be made available for download via 

the CLIMADA project in the near future. 
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Disclaimer 

The focus on quantifiable economic impacts of natural hazard and climate change 

proliferated here represents a radical simplification. While it makes sense to quantify 

climate risk to inform decision makers, this approach neglects that weather and 

climate events can damage and destroy irreplaceable values, like the life and health of 

affected persons, but also historical, cultural, and ecological assets (Lyubchich et al., 

2020). It is often forgotten just how radical and potentially harmful the simplification 

is that comes with quantification. Therefore, I find it of utmost importance to keep 

also the risk in mind, which weather and climate events and thus climate change 

entail for assets that are not to be quantified and expressed in monetary terms – also 

and especially while conducting research that focusses on the quantifiable. 
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A. Supplementary Material to Chapter 2 
Table A1: List of countries used for evaluation with the number of regions on the administrative level 
1, the World Bank income group 2016, and GRP data source with URLs as accessed in January 
2019. The income groups are low income (1), lower-middle income (2), upper-middle income (3), 
and high income (4). In total, GRP data for 507 regions in 14 countries were used. 
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Table A2: (a) Comparison of ρ for 10 exponent combinations and 14 countries: Australia (AUS), 
Brazil (BRA), Canada (CAN), Switzerland (CHE), China (CHN), Germany (DEU), France (FRA), 
Indonesia (IDN), India (IND), Japan (JPN), Mexico (MEX), Turkey (TUR), the United States of America 
(USA), and South Africa (ZAF). Best fit would mean ρ=1. Linear correlation is statistically significant 
with a p value lower than 0.05 for all shown countries and combinations. (b) Comparison of β for 10 
exponent combinations and 14 countries: Australia (AUS), Brazil (BRA), Canada (CAN), Switzerland 
(CHE), China (CHN), Germany (DEU), France (FRA), Indonesia (IDN), India (IND), Japan (JPN), 
Mexico (MEX), Turkey (TUR), the United States of America (USA), and South Africa (ZAF). Best fit 
would mean β=1. Linear correlation is statistically significant with a p value lower than 0.05 for all 
shown countries and combinations. (c) Comparison of RMSF for 10 exponent combinations and 14 
countries: Australia (AUS), Brazil (BRA), Canada (CAN), Switzerland (CHE), China (CHN), Germany 
(DEU), France (FRA), Indonesia (IDN), India (IND), Japan (JPN), Mexico (MEX), Turkey (TUR), the 
United States of America (USA), and South Africa (ZAF). Best fit would mean RMSF =1. 
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Table A3: Comparison of three skill metrics measuring the fit between modeled and reference nGRP. 
The table shows the median and IQR over 14 countries computed from the data in Table A2.2a–c. 
Perfect fit would mean a value of 1 for each metric. 

 

 

Figure A1: Maps of disaggregated asset exposure value. Values are spatially distributed 
proportionally to nightlight intensity of 2016 (Lit1, a), population count as of 2015 (Pop1, b), and the 
product of both (Lit1Pop1, c) for Mexico City (MEX) and New York (USA). The maps are restricted to 
the wider metropolitan areas of Mexico City (18.9–20∘ N, 99.8–98.6∘ W) and New York (40–41∘ N, 
74.6–73∘ W). The color bar shows asset exposure values in current US dollars in 2014. 

Supplement 

The supplement related to this article (including Tables S1 & S2 mentioned in 

Chapter Two) is available online at: https://doi.org/10.5194/essd-12-817-2020-

supplement. 
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B. Supplementary Material to Chapter 3 

Figure B1: Event damage ratio (EDR) from 1980 to 2017 for 473 matched TC events worldwide. 
The nine calibration regions are differentiated by color. The area size of the dots represents the 
absolute normalized reported damage (NRD) per event. The green shading demarcates the range 
from EDR = 0.1 to 10. Regions by color: red: the Caribbean with Central America and Mexico (NA1); 
blue: the USA and Canada (NA2); green: North Indian Ocean (NI); purple: Oceania with Australia 
(OC); orange: South Indian Ocean (SI); yellow: South East Asia (WP1), brown: the Philippines (WP2); 
rose: mainland China (WP3); black: the rest of the north West Pacific Ocean (WP4). 

 

Figure B2: Simulated event damage (SED) vs. normalized reported damage (NRD) for 473 TC events 
worldwide computed with three different sets of impact functions: (a) uncalibrated default 
(Vhalf= 74.7 m s−1), (b) RMSF optimized, and (c) TDR optimized. The nine calibration regions are 
differentiated by color. 

 

Figure	B3: No significant correlation between event damage ratio (EDR) and normalized reported 
damage (NRD) was found. The scatter plots show the relationship for 473 TC events worldwide 
computed with three different sets of impact functions: (a)	uncalibrated default (Vhalf= 74.7 m s−1), 
(b)	RMSF optimized, and (c)	TDR optimized. The nine calibration regions are differentiated by color. 
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Table B1: List of countries per calibration region. Countries marked with an asterisk (*) are 
considered for calibration (53 in total). 

 

Table B2: Resulting impact function slope parameter Vhalf and optimization metrics RMSF and TDR 
per region for (a) the global default impact function (uncalibrated), (b) calibrated by optimizing RMSF, 
and (c) calibrated by optimizing TDR. The regions NA1 to WP4 are defined in Table B1. The row 
“combined” summarizes results for all regions combined based on the regionalized calibration; the 
row “global calibration” is based on one unified global calibration based on all matched TC 473 
events. RMSF: root-mean-squared fraction; TDR: total damage ratio. 
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Table B3: Total asset exposure values (TAVs) per region. First column: TAV based on Eberenz et 
al. (2020) as used in this study. Second and third columns: reference values of TAV from GAR 2013 
and Gettelman et al. (2017). The unit is 1012 US dollars ($T) valued according to the year noted in 
brackets. AAD relative to TAV is reported in Table 1. * USA and Bermuda. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B4 (next page): Detailed information on the 21 TCs in the matched events list with the largest 
normalized reported damage: storm name (local name in brackets) and year, normalized reported 
damage (NRD), simulated event damage (SED; simulated with Vhalf= 84.7 m s−1), event damage ratio 
(EDR), simulated intensity for the capital city Manila (at 14.5∘ N, 121.0∘ E), and associated disasters 
according to the literature and EM-DAT, as well as affected sectors and asset types as reported by 
the literature. Sources of information: 1 peer-reviewed study; 2 public report; 3 data field “associated 
disasters” in EM-DAT. (References in Table: Abon et al., 2011; Blanc and Strobl, 2016; Cooper and 
Falvey, 2009; Cruz and Narisma, 2016; Espada, 2018; IFRC, 2009; Inokuchi et al., 2011; Joint 
Typhoon Warning Center, 1995; Lagmay et al., 2015; Mas et al., 2015; Nakasu et al., 2011; NDCC, 
2009a, 2009b; NDRRMC, 2010, 2011, 2012, 2013, 2014; Soria et al., 2015; Yumul et al., 2008, 
2012) 
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Code availability and data availability 

The full array of fitted impact function parameters can be found in the Supplement 

of this paper. The scripts reproducing the main results of the paper and the figures 

are available at https://github.com/CLIMADA-project/climada_papers (Aznar-

Siguan et al., 2020; https://doi.org/10.5281/zenodo.4467858, Eberenz et al., 2021a). 

The CLIMADA repository (Aznar-Siguan and Bresch, 2019; CLIMADA-Project, 

2019) is openly available (https://github.com/CLIMADA-project/climada_python, 

Bresch et al., 2020) under the GNU GPL license (Free Software Foundation, Inc., 

2007). The documentation is hosted on Read the Docs (https://climada-

python.readthedocs.io/en/stable/), including a link to the interactive tutorial of 

CLIMADA. CLIMADA v1.4.1 was used for this publication, which is permanently 

available at the ETH Data Archive: http://doi.org/10.5905/ethz-1007-252 (Bresch et 

al., 2020). 
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C. Supplementary Material to Chapter 4 
Table C1: Production risk changes for single crops. Baseline mean crop production and probability 
of crop production to fall short of the historical and the relative threshold for maize (a), rice (b), 
soybean (c), and wheat (d) under historical (5°C) and future (2°C and 4°C) levels of global warming. 
Values are provided on a globally aggregated level and for twelve major crop producing countries. 
Multi-model median probabilities are shown with the inter-quartile range of single crop model results 
provided in brackets. Blue shading marks a decrease in probability as compared to 0.5°C levels. 
Orange shading marks an increase in probability as compared to 0.5°C levels. The asterisk (*) implies 
more than 70% crop model agreement on the sign of probability change compared to 0.5°C of global 
warming.The countries are USA, China (CHN), Brazil (BRA), Argentina (ARG), Mexico (MEX), India 
(IND), Ukraine (UKR), France (FRA), Canada (CAN), South Africa (ZAF), Romania (ROU),  Thailand 
(THA), Myanmar (MMR), Philippines (PHL), Japan (JPN), Pakistan (PAK), Paraguay (PRY), Bolivia 
(BOL), Russia (RUS), Uruguay (URY), Indonesia (IDN), Bangladesh (BGD), Australia (AUS), Germany 
(DEU), Turkey (TUR), and Kazakhstan (KAZ). 
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Table C2: Global gridded crop model (GGCMs) providing ensemble members to GC6 (ISIMIP, 
2020b). Table adapted from Jägermeyr et al. (under review, Table S3). 

Crop model 
(version) 

Model type Crops 
simulated1 

Heat/ 
cold 
stress 

Other 
stresses2 

Phenology 
response to 
temperature 
increase 

CO2 effects 

LPJmL (5t) Ecosystem Mai, wwh, 
swh, soy, ri1, 
ri2 

Cold 
stress 

N, W Linear 
(Tbase) 

 

[CO2] increase 
affects stomatal 
conductance, 
Rubisco/PEP 
Carboxylation 
(Calvin Cycle), 
Photorespirati
on 

EPIC-IIASA Site-based Mai, wwh, 
swh, soy, ri1, 
ri2 

Both N, W, 
aeration 

Linear RUE 

PEPIC Site-based Mai, wwh, 
swh, soy, ri1, 
ri2 

Both N, W Linear RUE and plant 
transpiration 

CROVER Ecosystem Mai, wwh, 
swh, soy, ri1 

Both W Linear 
(Tbase) 

 

Stomatal 
conductance, 
carboxylation, 
photorespiratio
n, dark 
respiration 

GYGMA 
(1p74) 

Site-based Mai, wwh, 
swh, soy, ri1, 
ri2 

Both N, W, 
water 
excess 

Linear 
(Tbase, 
Topt, Tmax) 

 

RUE and plant 
transpiration 

SIMPLACE-
LINTUL5+ 

Site-based Mai, wwh, 
swh 

Heat 
stress 

W Linear Reduction in 
potential 
transpiration 
rates and 
increase in 
RUE under 
elevated [CO2] 

PROMET Site-based Mai, wwh, 
swh, soy, ri1 

Both N, W Curvlinear 
(Tbase, 
Topt, Tmax) 

[CO2] increase 
affects stomatal 
conductance, 
Rubisco/PEP 
Carboxylation 
(Calvin Cycle), 
Photorespirati
on 

AquaCrop-
ACEA 

Biophysical 
based on 
water 
productivity 

Mai, soy Both W Curvlinear 
(Tbase, 
Topt, Tmax) 

Water 
productivity is 
adjusted to 
[CO2] 

1 Crop codes: mai (maize); ri1 (rice first season); ri2 (rice second season); soy (soybean), swh (spring 

wheat), wwh (winter wheat). 2 Stresses codes: N (nitrogen deficit), W (water deficit). 
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Table C3: Global climate model (GCM) simulations used to drive crop models for GC6. Original GCM 
data was extracted from the CMIP6 archive for ISIMIP3b. The bias-adjustment of the GCM output 
for ISIMIP3b, please refer to Cucchi et al. (2020) and Lange et al. (2019). Table adapted from the 
ISIMIP3b simulation round protocol (ISIMIP, 2020b). End-of-century change in global mean 
temperature (DGMT) is the global multi-year mean near-surface temperature difference between 
2069-2099 and pre-industrial control run. 

Title Institution 
Ensemble 

member 

End-of-century 

DGMT SSP126 

[°C] 

End-of-century 

DGMT SSP585 

[°C] 

GFDL-

ESM4  

National Oceanic and Atmospheric 

Administration, Geophysical Fluid 

Dynamics Laboratory, Princeton, NJ 

08540, USA 

r1i1p1f1 1.4 3.7 

UKESM1-

0-LL  

Met Office Hadley Centre, Fitzroy 

Road, Exeter, Devon, EX1 3PB, UK 
r1i1p1f2 2.7 6.5 

MPI-

ESM1-2-

HR  

Max Planck Institute for Meteorology, 

Hamburg 20146, Germany 
r1i1p1f1 1.5 3.8 

IPSL-

CM6A-

LR  

Institut Pierre Simon Laplace, Paris 

75252, France 
r1i1p1f1 2.4 6.0 

MRI-

ESM2-0  

Meteorological Research Institute, 

Tsukuba, Ibaraki 305-0052, Japan 
r1i1p1f1 1.7 4.3 
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Table C4: Crop type coverage per climate model (columns) and crop model (rows) in the crop yield 
simulation ensemble used for this study. Crop codes: mai (maize); ri1 (rice first season); ri2 (rice 
second season); soy (soybean), swh (spring wheat), wwh (winter wheat). 

 GFDL-ESM4 UKESM1-0-LL 
MPI-ESM1-2-
HR 

IPSL-CM6A-
LR 

MRI-ESM2-0 

LPJmL (5t) 
Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

EPIC-IIASA 
Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

PEPIC 
Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

CROVER 
Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

GYGMA 
(1p74) 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

Mai, wwh, swh, 
soy, ri1, ri2 

SIMPLACE-
LINTUL5+ 

Mai, wwh, swh, 
soy 

Mai, wwh, swh, 
soy 

Mai, wwh, swh, 
soy 

Mai, wwh, swh, 
soy 

Mai, wwh, swh, 
soy 

PROMET 
Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

Mai, wwh, swh, 
soy, ri1 

AquaCrop-
ACEA 

- Mai, soy - - Mai, soy 

 

 

 

Figure C1: Baseline crop production per 0.5° x 0.5° pixel in tons per year for maize, rice, soybean, 
and wheat combined. The map shows mean values at 0.5°C ± 0.5°C of global warming, bias 
corrected with FAO statistics (see Section 2.3). 
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Figure C2: Share of irrigated crop production per country for maize (a), rice (b), soybean (c), and 
wheat (d) based on ‘Farming the planet’ for the year 2000 (Monfreda et al., 2008; Ramankutty et al., 
2008). Countries with zero production of the respective crop in the dataset are shaded grey. 

 

 

Figure C3: Multi-model median crop production per country at 0.5°C global warming (historical 
reference bin, DGMT = 0.5°C ± 0.5°C). Absolute crop production per year bias corrected with FAO 
statistics is shown in mio. tons for (a) maize, (b) rice, (c) soybean, and (d) wheat.   
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Figure C4: Multi-model median probability of any given year that crop production falls below a given 
threshold per country, for maize, rice, soybean, and wheat combined. The historical threshold (left, a-
c) is defined as the 2.5th percentile of production at 0.5°C global warming. The relative threshold 
(right, d-f) is defined as 10% below the mean production for each level of global warming (GMT bins 
of width 1°C). 

 

 

Figure C5: Probability ratio PRh at 4°C per country for for maize (a), rice (b), soybean (c), and wheat 
(d). PRh is calculated as he ratio of Ph at 4°C to Ph at 0.5°C of global warming (historical reference). 
Ph is the probability of crop production in any given year to fall short of the 2.5th percentile of crop 
production at 0.5°C (historical threshold). Blue colors (PR<1) indicate a decrease in probability. For 
PR>1 probability is increased compared to 0.5°C. Countries are colored in grey if the respective 
crop is not grown there. Stippling indicates a crop model agreement above 70% on the sign of 
probability change. 
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Figure C6: Probability ratio PRr at 4°C per country for for maize (a), rice (b), soybean (c), and wheat 
(d). PRr is calulcated as he ratio of Pr at 4°C to Pr at 0.5°C of global warming (historical reference). 
Pr is probability that crop production in a given year falls more than 10% short of the mean of the 
given warming level (relative threshold). Blue colors (PR<1) indicate a decrease in probability. For 
PR>1 probability is increased compared to 0.5°C. Countries are colored in grey if the respective 
crop is not grown there or if Pr is equal to 0 % at 0.5°C, making it impossible to calculate PRr. 
Stippling indicates a crop model agreement above 70% on the sign of probability change. 
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All crop types combined: 

 

Figure C7 (all crops combined): Simulated global yearly crop production for maize, rice, soybean, and 
wheat combined in million tons. Color demarcates the DGMT bins of 0.5°C (blue), 2°C (purple), and 
4°C (orange), each bin with a width of 1°C. The black lines demarcate mean (solid line), mean-10% 
(dashed line), and 2.5th percentile (dotted line) of each DGMT bin. Each subplot shows crop 
production based on one individual crop model (a-f). 

 
Figure C8 (all crops combined): Detrended and mean-corrected simulated yearly crop production 
aggregated globally for maize, rice, soybean, and wheat combined in million tons. Color demarcates 
the DGMT bins of 0.5°C (blue), 2°C (purple), and 4°C (orange), each bin with a width of 1°C. Values 
are detrended over time and subsequently the original mean production per DGMT bin is added to 
sustain the same mean values per bin as before detrending. The black lines demarcate mean (solid 
line), mean-10% (relative threshold, dashed line), and 2.5th percentile (dotted line) of each DGMT 
bin. The historical threshold is equal to the 2.5th percentile of the 0.5°C bin (dotted line with blue 
shading). Each subplot shows crop production based on one individual crop model (a-h). 
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Maize:

 

Figure C9 (maize): same as Fig. C7 for maize. 

 
Figure C10 (maize, detrended): same as Fig. C8 for maize. 
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Rice: 

 

Figure C11 (rice): same as Fig. C7 for rice. 

 

Figure C12 (rice, detrended): same as Fig. C8 for rice. 
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Soybean: 

 

Figure C13 (soybean): same as Fig. C7 for soybean. 

 

Figure C14 (soybean, detrended): same as Fig. C8 for soybean. 
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Wheat: 

 

Figure C15 (wheat): same as Fig. C7 for wheat. 

 

Figure C16 (wheat, detrended): same as Fig. C8 for wheat. 
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Figure C17: Country-level relative deviation of maize production from the historical mean for a global 
warming of 0.5° (historical reference bin, blue), 2°C (purple) and 4°C (orange) for the major maize 
producing countries USA (a), China (b), Brazil (c) and Argentina (d). Solid lines demarcate the multi-
crop-model median, thin lines the individual crop models, and shading the inter-quartile range of the 
individual models. 

 

Figure C18: Country-level relative deviation of maize production from the mean within each global 
warming bin for 0.5° (blue), 2°C (purple) and 4°C (orange) for the major maize producing countries 
USA (a), China (b), Brazil (c) and Argentina (d). Solid lines demarcate the multi-crop-model median 
and shading the inter-quartile range of the individual models. 
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Figure C19: Country-level relative deviation of rice production from the historical mean for a global 
warming of 0.5° (historical reference bin, blue), 2°C (purple) and 4°C (orange) for the major rice 
producing countries China (a), India (b), Indonesia (c) and Bangladesh (d). Solid lines demarcate the 
multi-crop-model median, thin lines the individual crop models, and shading the inter-quartile range 
of the individual models. 

 

Figure C20: Country-level relative deviation of rice production from the mean within each global 
warming bin for 0.5° (blue), 2°C (purple) and 4°C (orange) for the major rice producing countries 
China (a), India (b), Indonesia (c) and Bangladesh (d). Solid lines demarcate the multi-crop-model 
median and shading the inter-quartile range of the individual models. 
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Figure C21: Country-level relative deviation of soybean production from the historical mean for a 
global warming of 0.5° (historical reference bin, blue), 2°C (purple) and 4°C (orange) for the major 
soybean producing countries USA (a), Brazil (b), Argentina (c) and China (d). Solid lines demarcate 
the multi-crop-model median, thin lines the individual crop models, and shading the inter-quartile 
range of the individual models. 

 

Figure C22: Country-level relative deviation of soybean production from the mean within each global 
warming bin for 0.5° (blue), 2°C (purple) and 4°C (orange) for the major soybean producing countries 
USA (a), Brazil (b), Argentina (c) and China (d). Solid lines demarcate the multi-crop-model median 
and shading the inter-quartile range of the individual models. 
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Figure C23: Country-level relative deviation of wheat production from the historical mean for a global 
warming of 0.5° (historical reference bin, blue), 2°C (purple) and 4°C (orange) for the major wheat 
producing countries China (a), India (b), Russia (c) and USA (d). Solid lines demarcate the multi-crop-
model median, thin lines the individual crop models, and shading the inter-quartile range of the 
individual models. 

 

Figure C24: Country-level relative deviation of wheat production from the mean within each global 
warming bin for 0.5° (blue), 2°C (purple) and 4°C (orange) for the major wheat producing countries 
China (a), India (b), Russia (c) and USA (d). Solid lines demarcate the multi-crop-model median and 
shading the inter-quartile range of the individual models. 
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Code and data availability 

The scripts reproducing the main results of the paper and the figures are available at 

https://github.com/sameberenz/climada_papers_crop_production_risk_isimip 

(Eberenz and Steinmann, 2021, http://doi.org/10.5281/zenodo.4549259). The 

CLIMADA repository (Aznar-Siguan and Bresch, 2019; Bresch and Aznar-Siguan, 

2021; CLIMADA-Project, 2019) implemented in Python is openly available online at 

https://github.com/CLIMADA-project/climada_python (Bresch et al., 2020) under 

the GNU GPL license version 3 (Free Software Foundation, Inc., 2007). The 

repository includes the modules relative_cropyield (hazard) and crop_production 

(exposures) (CLIMADA v.1.5.1 and later) developed as part of this study. The 

documentation of CLIMADA is hosted on Read the Docs (https://climada-

python.readthedocs.io/en/stable/), including a link to the interactive tutorial of 

CLIMADA. 

Gridded output from crop models used as input for computing relative crop yield 

and baseline crop production have been (ISIMIP2) or will be (ISIMIP3) made 

available under a Creative Commons license via ISIMIP (ISIMIP, online, 

https://esg.pik-potsdam.de/search/isimip/). 
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