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Abstract

Across the world, electric power systems are experiencing drastic changes

mainly attributable to the technical improvements and cost reductions of tech-

nologies such as wind, solar, and batteries, along with ambitious climate and

energy targets (e.g., net-zero greenhouse gas emission, coal, and nuclear/coal

phase-out). These trends lead to the proliferation of distributed energy re-

sources and contribute to transforming the traditional centralized power sys-

tem into a more decentralized system. However, both the intermittency nature

of the variable generation and the gradual phase-out of favorable policies pose

significant challenges to the operations and the investments of distributed en-

ergy resources. To better exploit the economic value of distributed energy re-

sources, an aggregator is considered to enable their market participation and

integrate the characteristics of diverse resources into a single entity. The re-

search question of what would be the optimal dispatch and the optimal mix of

distributed energy resources in a market environment is addressed.

The first part of the thesis focuses on developing the optimal dispatch and

bidding strategies for an aggregator of distributed energy resources’ mix in a

market environment. We first assume that the aggregator is a price-taker. To

assess the benefits of participating in sequential markets, we derive the opti-

mal bidding strategy for each market using a rolling-horizon approach. This

approach allows the aggregator to modify the dispatch schedules and market

biddings based on the updated information (e.g., more accurate generation

forecast of wind and PV) when getting closer to real-time. The value of aggre-

gating and combining different energy resources is also quantified. Second,

we assume that the aggregator is a price-maker and model the aggregator’s

market power using a bi-level structure. We investigate the impacts of market

share, price elasticity of the demand curve, the import electricity price, and

the generation mix on the incentives of exerting the market power. We fur-

ther explore the influence of the variable generation output uncertainty on the
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optimal bidding and dispatch strategies using a distributionally robust opti-

mization model. This model enables us to describe the uncertainties using a

family of possible distributions without requiring the full knowledge of the un-

certainty distribution. Based on the out-of-sample analysis, the distribution-

ally robust optimization model is shown to achieve a good balance between

the expected performance and performance in extreme cases, with acceptable

computational effort. Additionally, the performance of the model can be fur-

ther improved using an auto-regressive moving average model.

In the second part, we aim to optimize the investment decisions of an ag-

gregator in a market environment by considering the detailed hourly opera-

tional decisions and thus accounting for the fluctuations in electricity demand

and supply. We investigate the impacts of market participation, the flexibil-

ity of the reserve products, demand response potentials, policy targets, and

forecast errors on the investment and operational decisions. Results show that

both participating in the reserve market and increasing the flexibility of reserve

products encourage investments in flexible units (e.g., dispatchable generation

units and storage units). However, the investment profitability is highly sensi-

tive to the forecast accuracy of the variable generation output. To model the

short-term forecast errors of the variable generation output in a proper way,

we propose a model that jointly optimizes the investment and operational de-

cisions based on distributionally robust optimization. Further, we analyze the

impacts of including different statistical information of the uncertainty distri-

bution in distributionally robust optimization.

Finally, the third part presents a techno-economic optimization model to

analyze the economic viability of PV-battery systems for different customer

groups in Switzerland. The customer groups are clustered based on their an-

nual electricity consumption values, rooftop sizes, annual irradiation levels,

and geographical locations. For each customer group, the investment deci-

sions to be optimized include the investment capacity of the PV unit, the in-

vestment energy capacity, and the power capacity of the battery unit. The in-

vestment decisions are optimized by maximizing the net present value over a

30-year horizon. The considered cash inflows and outflows comprise the in-

vestment costs and subsidies, the distribution system injection tariffs or the

profits from selling the generation surplus to the market, tax rebates, savings
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from self-consumption, degradation costs, operational costs, and the reinvest-

ment costs. To investigate how the investment decisions change over time,

we conduct simulations for the years 2020-2050 with a five-year step while ac-

counting for the long-term developments of the parameters. Driven by the

projected cost decrease, results show that the optimal PV and battery sizes in-

crease over the years, and in 2050 the PV investment is limited mainly by the

rooftop size. The payback periods of the investment fluctuate between 2020

and 2035 as a result of the mixed effects of policy changes, electricity price,

and cost developments. By analyzing the economic viability of the PV-battery

system across different customer groups, it is found that the investments are

most likely to favor the customer groups with higher annual irradiation levels

and electricity consumption values. Furthermore, the conducted sensitivity

analyses illustrate the impacts of parameters such as payback periods, costs,

load profiles, electricity prices, and tariffs. Finally, we analyze the dynamics of

residual load profiles caused by the seasonal and diurnal patterns of the solar

generation output and identify the need for flexibilities in the electricity system

considering the increasing penetration of solar power.





Kurzfassung

Weltweit untergehen Energiesysteme drastischen Veränderungen, hauptsäch-

lich aufgrund technischer Verbesserungen und sinkenden Kosten von Tech-

nologien wie Wind, Solar und Batterien, sowie ambitionierten Klima- und En-

ergiezielen. Diese Veränderungen führen zur Verbreitung dezentraler Energier-

essourcen und tragen dazu bei, dass sich traditionelle zentralisierte Energiesys-

teme in vermehrt dezentralisierte Systeme verwandeln. Allerdings stellen

sowohl die fluktuierende Stromerzeugung als auch auslaufende Subventionen

große Herausforderungen für den Betrieb und die Investitionen von dezen-

traler Energieressourcen dar. Um die Wirtschaftlichkeit dezentraler Energier-

essourcen zu steigern, können Aggregator deren Marktteilnahme ermöglichen

und die Eigenschaften der verschiedenen Ressourcen in einer einzigen Ein-

heit integriert. Die Forschungsfrage, wie der optimale Einsatz (Dispatch) und

Mix von dezentralen Energieressourcen in einer Marktumgebung wäre, wird

behandelt.

Der erste Teil der Arbeit konzentriert sich auf die Entwicklung der opti-

malen Dispatch- und Gebotsstrategien für einen Aggregator mit einem Mix

aus dezentralen Energieressourcen in einer Marktumgebung. Erstens, nehmen

wir an, dass der Aggregator ein Preisnehmer ist. Um die Vorteile der Teil-

nahme an sequenziellen Märkten zu bewerten, wird die Gebotsstrategie für

jeden Markt unter einer rollierenden Planung optimiert. Dieser Ansatz er-

möglicht es dem Aggregator, die Einsatzpläne und Marktgebote auf der Grund-

lage der aktualisierten Informationen (z. B. genauere Erzeugungsprognosen

für Wind und PV) zu ändern, wenn er sich der Echtzeit nähert. Der Wert der

Aggregation und Kombination verschiedener Energieressourcen wird eben-

falls quantifiziert. Zweitens nehmen wir an, dass der Aggregator ein Preisset-

zer ist und modellieren die Marktmacht des Aggregators unter Verwendung

einer zweistufigen Struktur. Wir untersuchen die Auswirkungen des Mark-

tanteils, der Preiselastizität der Nachfragekurve, des Importstrompreises und
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des Erzeugungsmixes auf die Anreize zur Ausübung der Marktmacht. Des

Weiteren untersuchen wir den Einfluss der Unsicherheit der variablen Erzeu-

gungsleistung auf die optimalen Gebots- und Dispatch-Strategien mit Hilfe

eines verteilungsrobusten Optimierungsmodells. Dieses Modell ermöglicht es

uns, die Unsicherheiten mit Hilfe einer Familie von möglichen Verteilungen zu

beschreiben, ohne dass die vollständige Kenntnis der Unsicherheitsverteilung

erforderlich ist. Basierend auf der Out-of-Sample-Analyse wird gezeigt, dass

das verteilungsrobuste Optimierungsmodell ein gutes Gleichgewicht zwischen

der erwarteten Leistung und der Leistung in Extremfällen bei akzeptablem

Rechenaufwand erreicht. Zusätzlich kann die Leistung des Modells durch ein

autoregressives gleitendes Mittelwertmodell weiter verbessert werden.

Im zweiten Teil zielen wir darauf ab, die Investitionsentscheidungen eines

Aggregators in einer Marktumgebung zu optimieren, indem wir die detail-

lierten stündlichen Betriebsentscheidungen berücksichtigen und somit die

Schwankungen der Stromnachfrage und des Angebots berücksichtigen. Wir

untersuchen die Auswirkungen der Marktteilnahme, der Flexibilität der Re-

serveprodukte, der Demand-Response-Potenziale, der politischen Ziele und

der Prognosefehler auf die Investitions- und Betriebsentscheidungen. Die

Ergebnisse zeigen, dass sowohl die Teilnahme am Reservemarkt als auch die

Erhöhung der Flexibilität der Reserveprodukte Investitionen in flexible Ein-

heiten (z.B. steuerbare Erzeugungseinheiten und Speichereinheiten) fördern.

Die Rentabilität der Investitionen ist jedoch stark abhängig von der Prog-

nosegenauigkeit der variablen Erzeugungsleistung. Um die Prognosefehler der

kurzfristigen variablen Erzeugungsleistung in geeigneter Weise zu modellieren,

schlagen wir ein Modell vor, das die Investitions- und Betriebsentscheidungen

gemeinsam auf Basis einer verteilungsrobusten Optimierung optimiert. Weit-

erhin analysieren wir die Auswirkungen der Einbeziehung verschiedener statis-

tischer Informationen der Unsicherheitsverteilung in die verteilungsrobuste

Optimierung.

Schließlich wird im dritten Teil ein techno-ökonomisches Opti-

mierungsmodell vorgestellt, um die Wirtschaftlichkeit von PV-Batterie-

Systemen für verschiedene Kundengruppen in der Schweiz zu analysieren,

die anhand ihrer jährlichen Stromverbrauchswerte, Dachgrößen, jährlichen

Einstrahlungsniveaus und der geografischen Standorte gruppiert werden. Für
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jede Kundengruppe umfassen die zu optimierenden Investitionsentscheidun-

gen die Kapazität der PV-Anlage sowie die Energie- und Leistungskapazität

der Batterieeinheit. Die Investitionsentscheidungen werden durch Max-

imierung des Kapitalwerts über einen 30-Jahres-Horizont optimiert. Die

betrachteten Einnahmen und Kosten umfassen die Investitionskosten und

Subventionen, die Einspeisetarife des Verteilnetzes (Gewinne aus dem

Verkauf des Erzeugungsüberschusses an den Markt), Steuerrückerstattungen,

Einsparungen aus dem Eigenverbrauch, Degradationskosten, Betriebskosten

und die Reinvestitionskosten. Um zu untersuchen, wie sich die Investition-

sentscheidungen im Laufe der Zeit verändern, werden Simulationen für die

Jahre 2020-2050 (jedes fünfte Jahr) durchgeführt, wobei die langfristigen

Entwicklungen der Parameter berücksichtigt werden. Vor allem aufgrund

des prognostizierten Kostenrückgangs zeigen die Ergebnisse, dass die op-

timalen PV- und Batteriegrößen mit der Zeit zunehmen und im Jahr 2050

die PV-Investition hauptsächlich durch die Dachgröße begrenzt wird. Die

Amortisationszeiten der Investition schwanken zwischen 2020 und 2035 als

Ergebnis der gemischten Effekte von politischen Änderungen, Strompreis-

und Kostenentwicklungen. Durch die Analyse der Wirtschaftlichkeit des

PV-Batterie-Systems über verschiedene Kundengruppen hinweg wird fest-

gestellt, dass die Investitionen am ehesten die Kundengruppen mit höheren

jährlichen Einstrahlungswerten und Stromverbrauchswerten begünstigen.

Darüber hinaus veranschaulichen die durchgeführten Sensitivitätsanalysen

die Auswirkungen von Parametern wie Amortisationszeiten, Kosten, Lastpro-

filen, Strompreisen und -tarifen, etc. Schließlich analysieren wir die Dynamik

der Restlastprofile, die durch die saisonalen und tageszeitlichen Muster

der solaren Erzeugungsleistung verursacht werden, und identifizieren den

Bedarf an Flexibilitäten im Elektrizitätssystem unter Berücksichtigung der

zunehmenden Durchdringung mit Solarstrom.
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Chapter 1

Introduction

1.1 Background and Motivation

Motivated by the ambitious energy and climate goals, the favorable govern-

ment policies that help achieve the goals, and the technological improvements

and cost declines, the electric power systems worldwide have been undergoing

a transition from a traditional centralized energy system towards a more decar-

bonized and more decentralized system. Distributed Energy Resources (DERs),

which are mainly small-scale renewable energy sources (e.g., distributed solar,

wind and storage units) connected to the distribution system, play a signifi-

cant role in this transition. According to the report published by Navigant Re-

search [6], the annual installation capacity of DERs, including the distributed

generation, distributed energy storage, electric vehicles, demand response,

and energy efficiency, is expected to exceed 200 GW by 2025. This is nearly

twice as much as the annual investment capacity in 2019. Furthermore, the

annual global DER capacity addition is foreseen to surpass the annual invest-

ments in centralized generation units in the near future [6].

Despite the proliferation of renewables and DERs, to align with the global

climate goals to limit global warming to well below 2 degree Celsius above the

pre-industrial levels by the end of this century, the annual investments in re-

newables are required to be almost tripled from the current level of around

300 billion US dollars to 800 billion US dollars by 2050 [7]. Moreover, new

generation investments are needed to fill the energy demand gap introduced
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by the policies such as nuclear and coal phase-out. However, after a continu-

ous growth for over a decade, according to the data published by International

Renewable Energy Agency (IRENA) in March 2020 [8], the global power capac-

ity expansion of renewables has seen a slowdown in 2019, which was the first

time since 2001. This is likely to be attributed to the gradual phase-out of fa-

vorable policies such as investment subsidies, feed-in tariffs, and tax rebates

worldwide. The COVID-19 pandemic further worsens the situation by having

a widespread negative impact on the world economy, including the power in-

dustry.

To enable a smooth transition from a subsidy-based to a market-based

scheme and to realize the sustainable growth in renewables and DERs, it is

essential to develop the optimal investment and dispatch strategies when de-

pending entirely on markets instead of government supports or incentives. Ad-

ditionally, the issues caused by the intermittency and the uncertainty of vari-

able generation units, which pose significant challenges to the power plant

operators and the electric power system operators, need to be addressed.

This thesis focuses on the investment and dispatch optimization of DERs in

a market environment. An aggregator is considered to integrate the character-

istics of diverse DERs into a single entity and to enable the DERs to behave sim-

ilarly to a conventional unit. Note that the proposed methods (especially the

modeling of uncertainty and the market bidding strategies) in general could

also be applied to large-scale renewable sources. Consequently, we aim to ad-

dress the following questions with this thesis:

• What is the optimal bidding1 strategy for a DER aggregator in a sequential

market environment, and how does the market environment influence the

bidding strategies?

• What are the benefits of aggregating and coordinating different types of en-

ergy resources?

• How does the bidding strategy of the aggregator impact the market results?

What are the influences of the aggregator’s market share, the output-based

subsidies, the price elasticity of demand, the potential market price cap, and

the generation mix of the aggregator on the market power of the aggregator?

1In this context, bidding refers to both the offers made by the market participant to sell the
electricity to the market and to purchase the electricity from the market.
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• How can the effects brought by output uncertainties of variable generation

units (e.g., wind and Photovoltaic (PV)) be mitigated?

• Given the policy targets and the demand profile, what is the optimal mix of

DER technologies in terms of the cost in a market environment? How are the

investment decisions influenced by market participation and different levels

of uncertainties?

• When optimizing the investments in PV-battery systems from an individual

household’s perspective, how are the decisions affected by the customer het-

erogeneity, and how does the optimal decision change over time?

• How sensitive is the economic viability of the PV-battery system to uncer-

tainties related to parameters such as investment and operational costs, load

profiles, electricity prices and tariffs? Which are the driving factors?

• Considering the potential investments of PV-battery systems in the coming

years, what are the potential challenges and opportunities for investors, re-

tailers, electricity system operators, and policy-makers?

1.2 Contributions

The main contributions of this thesis are divided into three parts following the

structure of the thesis.

Stochastic Dispatch Optimization

We derive a stochastic optimization model to determine the optimal bidding

strategies for an aggregator that acts as either a price-taker or a price-maker in

a market environment.

• We assess the impacts of participating in sequential markets and including

different numbers of intraday auctions using a rolling-horizon optimization

approach, which enables the aggregator to modify the real-time dispatch

and bidding decisions for each market using the updated information closer

to the real-time delivery. To account for the development of forecast errors

over time, we use a probabilistic forecasting method to generate scenarios

for variable generation outputs. In this way, the model manages to reflect
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the motivation of variable generation units to participate in sequential mar-

kets (especially the intraday market) better by integrating a reduced level of

variable generation output uncertainties when trading in markets that are

cleared closer to real-time.

• We incorporate the risk control into the modeling to characterize the risk

associated with profit variability, which stems from different levels of un-

certainties (e.g., uncertainties of market prices and variable generation out-

puts).

• To consider the potential influence of the biddings on the market results,

we develop a stochastic bi-level model to derive the strategic biddings for a

hybrid wind-solar aggregator that acts as a price-maker in sequential elec-

tricity markets. A probabilistic chance-constrained formulation is utilized to

model the uncertainty regarding wind and PV productions.

• The benefits of strategic bidding are verified by comparing its results against

the non-strategic bidding case. Moreover, we conduct comprehensive sensi-

tivity analyses to investigate the influences of the aggregator’s market share,

the import electricity prices, the price elasticity of the system demand curve,

and the generation mix of the aggregator on the incentives to exercise market

power.

• We then extend the stochastic bi-level model by modeling the uncertainty

using Ditributionally Robust Optimization (DRO). Out-of-sample analyses

are carried out to compare the performance of the DRO model to the models

applying two popular alternative methods, namely Stochastic Optimization

(SO) and Robust Optimization (RO). Results show that DRO outperforms RO

in the expected out-of-sample performance with comparable computational

efforts, and it achieves similar expected results as SO but better worst-case

performance than SO with much less computational time.

• To further improve the uncertainty modeling, we propose to use the Auto-

regressive Moving Average (ARMA) model to learn the auto-correlations and

the cross-correlations of uncertainties using the historical data and to gen-

erate the scenarios for the future path in a rolling manner. The effectiveness

of the method is validated by comparing with two benchmark cases, i.e., the

perfect information case and the deterministic case, using one year’s worth

of data.
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Stochastic Investment Optimization

We formulate a multi-stage stochastic optimization model to derive the opti-

mal investment decisions of a DER aggregator, which consists of storage units,

variable and dispatchable generation units, and Demand Response (DR), con-

sidering its participation in the reserve, energy, and balancing markets.

• We first propose a model to optimize the investments considering the oper-

ational decisions over 8760 hours of the examined year to account for the

seasonal, daily, and hourly variations from both the demand and the sup-

ply side. Uncertainties of the variable generation outputs are modeled using

robust optimization. With this model, we investigate the impacts of market

participation, the flexibility of the reserve products, demand response poten-

tials, policy targets and forecast errors on the investment, and operational

decisions.

• We then improve the modeling of short-term variable generation output un-

certainty using distributionally robust optimization. As the distributionally

robust optimization model is shown to achieve a good balance between the

expected performance and the performance in extreme cases with accept-

able computational effort, we further investigate the influence of including

different statistical information into the ambiguity set for DRO.

Techno-economic Analysis of PV-battery Systems

We propose a techno-economic optimization model to analyze the economic

viability of the Photovoltaic-battery (PVB) systems using the Net Present Value

(NPV) over a 30-year horizon. A case study is conducted for a variety of cus-

tomer groups in Switzerland. The revenue streams considered comprise the

subsidies, Distribution System Operator (DSO) injection tariffs, potential prof-

its from selling generation surplus to the market, tax rebates, savings from

self-consumption, operational costs, degradation costs, and investment costs,

which include the reinvestment cost of the battery as it has a shorter lifetime

than the simulation horizon.

• By simulating the investment years from 2020 through 2050 with a five-year

step while accounting for the potential developments of parameters such as

the investment costs, electricity prices, tariffs, and subsidies in future years,
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we show how the economic viability of the PVB system changes over time.

The results are illustrated at three levels, i.e., the single customer group’s

level, the regional and the national levels.

• We investigate the influence of customer group heterogeneity on the eco-

nomic viability of the investments by clustering the customers using differ-

ent rooftop sizes, annual irradiation levels, electricity consumption values,

individual load profiles, and geographical regions.

• We conduct a comprehensive sensitivity analysis to investigate the impacts

of costs, load profiles, electricity prices, and tariffs on the optimal investment

decisions, including the optimal C-rate of the battery units.

• We analyze the potential grid impacts caused by the seasonal and diurnal

patterns of the solar generation and identify the needs for system flexibility.

• We identify the potential challenges and opportunities for the investors,

retailers, electricity system operators, and policy-makers in the coming

decades considering the proliferation of solar power.

1.3 Thesis Organization

The remainder of the dissertation is divided into three parts. The first part fo-

cuses on dispatch optimization of DERs in a market environment, whereas the

second part focuses on joint investment and dispatch optimization. The third

part focuses on the techno-economic analysis of investments in PVB systems.

PART I: Stochastic Dispatch Optimization in a Market Environment

Chapter 2 focuses on deriving optimal dispatch and bidding strategies for an

aggregator who participates in sequential markets, including a day-ahead mar-

ket, an intraday market with several intraday auctions, and a balancing market.

The considered aggregator consists of storage devices, loads, dispatchable and

variable generation units. The optimization problem is solved using multi-

stage stochastic programming, which is subject to different levels of uncertain-

ties such as variable generation outputs, day-ahead and intraday market prices.

Risk management is conducted to investigate the effect of risk exposure on the
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total profits of the aggregator. We use a rolling-horizon optimization approach

to optimize the bidding strategy for each market bidding session using the

updated information and quantify the benefits of sequential market participa-

tion.

Chapter 3 investigates the impact of considering market power on a hybrid

wind-solar aggregator’s optimal dispatch and trading strategies. A stochastic

bi-level model is presented to derive optimal offering strategies for the aggre-

gator, who participates as a price-maker in both the day-ahead and intraday

markets, and a deviator in the balancing market. The problem considered is

stochastic and subject to different levels of uncertainties. Uncertainties con-

cerning intraday rival producers’ offers are modeled using scenarios, while the

uncertainty of the variable generation output is taken into consideration by

formulating probabilistic constraints (i.e., chance constraints).

Chapter 4 improves the uncertainty modeling in the previously introduced

models by applying distributionally robust optimization. A two-stage distri-

butionally robust optimization model is proposed to derive optimal bidding

strategies for an aggregated wind power plant that participates as a price-

maker in the day-ahead market and a deviator in the balancing market. Fol-

lowing the principle of distributionally robust optimization, the uncertainty

in wind generation output is characterized by an ambiguity set that defines a

family of distributions, and the optimal decision is robust to the expectation

over the worst-case uncertainty distribution.

Chapter 5 extends the works in Chapter 3 and Chapter 4 by integrating storage

units into the aggregator. Hence, distributionally robust optimal bidding strate-

gies for a price-maker wind-storage aggregator that participates in the day-

ahead market and the balancing market are derived. To further improve the

method’s performance, an ARMA model is used to learn the auto-correlations

and the cross-correlations of historical forecast errors and then generate the

future paths of day-ahead forecast errors in a rolling manner.

PART II: Stochastic Investment Optimization in a Market Environment
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Chapter 6 presents an optimization model to jointly optimize the genera-

tion mix and the operations for an aggregator of distributed energy resources’

mix to satisfy the demand and policy targets while minimizing the total costs.

The components considered include the distributed storage units, demand re-

sponse programs, variable and dispatchable generation units. To better exploit

the economic value of the distributed energy resources, distributed energy re-

sources are assumed to have access to reserve and energy markets. Compre-

hensive sensitivity analyses are carried out to investigate the impacts of market

participation, demand response potentials, policy targets, and forecast errors.

Chapter 7 extends the work in Chapter 6 by modeling the uncertainties in wind

and PV generation forecasts using distributionally robust optimization. A case

study demonstrates the effectiveness of the proposed distributionally robust

optimization model. Out-of-sample analyses are conducted to compare its

performance to two benchmark models, i.e., a robust optimization model and

a stochastic optimization model. Furthermore, the impacts of considering dif-

ferent statistical constraints in the ambiguity set and the imbalance prices are

investigated.

PART III: Techno-economic Analysis of PV-battery Systems

Chapter 8 presents a techno-economic optimization model to analyze the eco-

nomic viability of a PVB system for different customer groups in Switzerland

clustered based on their annual electricity consumption values, rooftop sizes,

annual irradiation levels, and geographical locations. The simulations for a

static investment model are carried out for the years 2020-2050. A comprehen-

sive sensitivity analysis is conducted to investigate the impacts of individual

parameters such as costs, load profiles, electricity prices, and tariffs.

Chapter 9 summarizes the thesis, concludes, and provides the potential future

work.
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Chapter 2

Dispatch Optimization of the

Aggregator as a Price-taker

In this chapter, optimal dispatch and bidding strategies are derived for an ag-

gregator of distributed energy resources’ mix. The aggregator participates in

sequential electricity markets, including a day-ahead market, an intraday mar-

ket with several intraday auctions, and a balancing market. The considered

aggregator consists of storage devices, loads, dispatchable and variable gener-

ation units. The optimization problem is solved using multi-stage stochastic

programming, subject to different levels of uncertainties such as variable gen-

eration outputs, day-ahead, and intraday market prices. Risk management is

conducted to investigate the effect of risk exposure on the aggregator profit. A

rolling-horizon optimization approach is used to derive the optimal bidding

strategy for each market using the updated information and quantify the ben-

efits of participating in sequential markets. Results show that the coordination

of different units within the aggregator realizes higher flexibility provisions and

more profits for the aggregator. Furthermore, the presented rolling-horizon op-

timization method enables the aggregator to modify the dispatch schedules and

market biddings based on the updated information when getting closer to the

real-time delivery. Integration of more intraday auctions increases the total ag-

gregator profits while guaranteeing lower imbalance quantities. This chapter is

based on [9].
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2.1 Introduction

2.1.1 Motivation and Related Work

Favorable governmental policies along with decreasing costs have been driving

the growth in the penetration of Distributed Energy Resources (DERs), which

are dominated by wind and Photovoltaic (PV) and are steadily replacing ex-

isting conventional units. As DER industries mature, more and more govern-

ments have announced cuts to subsidies. As a consequence, DERs urgently

need to develop optimal strategies to make a profit when depending entirely

on markets instead of government supports or incentives. However, DERs’ par-

ticipation in the market is still challenging due to the restrictions imposed by

market regulations and the lack of communications with the system operators.

These factors thus limit DERs’ contributions to system operations and could

lead to low overall energy efficiency. In order to fully utilize the value of flexibil-

ity potentials of different DERs, coordinated dispatch of diverse technologies

such as combining the variable generation units with storage or dispatchable

generation units is of great interest. The study presented in [10] shows that

combining variable generation units with the dispatchable generation unit (e.g.

Combined Heat and Power (CHP) unit) could reduce the imbalance error due

to the forecast error of variable generations (up to 90% depending on the sea-

son and the strategy) by rescheduling the operations of dispatchable units at

real-time. Depending on the scale of the resources, the principle of Virtual

Power Plant (VPP) and hybrid project have been proposed and a number of

related projects have been initiated or are under development. According to

the study [11] published in 2020, there have been in total 4.6 GW of wind, gas,

oil and PV power plants co-located with batteries in the US, while another 14.7

GW are in the immediate development pipeline. In the following context, we

will refer to the operators of such hybrid systems as (hybrid) aggregators.

Despite the proliferation of DERs, their intermittent and uncertain nature

poses great challenges to both the power plant operators and the electricity

system operators. The work in [12] proposes a method to assess the impact

of wind prediction errors on the incomes of the wind power plant and con-

cludes that the error prediction costs can reach as much as 10% of its annual

incomes in the electricity market. Based on the fact that the forecast error is
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highly related to the forecast lead time2, the intraday trading is more interest-

ing to DERs as it is cleared closer to real-time and thus provides opportunities

to adjust schedules and to trade with lower uncertainty levels. Actually, the re-

duction of imbalance costs is one of the main drivers for trading in the intraday

market [13]. Therefore, besides the coordination and the aggregation of differ-

ent types of DERs, considering a complete market structure is also important

for increasing the profits of DER operations.

A lot of work has been done in the field of designing optimal trading strate-

gies in sequential short-term markets. For example, the works in [14,15,16,17]

focus on designing optimal trading strategies for large-scale wind power plants,

while references [18, 19, 20, 21] present strategies either for wind producers co-

ordinated with energy storage technologies or a mixed renewable portfolio.

In addition, different market structures are considered in different works, for

instance, [14] and [16] focus on the bidding of wind energy in the Intraday Mar-

ket (IDM), while [22] considers the additional participation in the Day-ahead

Market (DAM). The method presented in [18] incorporates the participation in

both the DAM and the Balancing Market (BM), and a more complete market

structure that consists of the DAM, the IDM and the BM is considered in [15].

In this chapter, we assume that a mix of distributed storage devices, loads,

variable and dispatchable generation units can participate in an electricity

market including different trading floors through an aggregator. The aggre-

gator establishes an interface between the individual unit and the system op-

erators, following the principle of VPP3. While most of the existing research on

bidding strategies of VPPs focuses on one specific market [14,16,23] or neglect

the details of the market [24, 25], this work aims to provide optimal trading

strategies for an aggregator considering its participation in multiple trading

floors, namely a DAM, an IDM with multiple intraday auctions and a BM. Sim-

ilar to the method applied in [26], a rolling-horizon approach is used to opti-

mize the bidding decisions for each trading floor and to modify the real-time

dispatch decisions with the reduced forecast uncertainties closer to real-time.

Details of the rolling-horizon method will be described in Section 2.6.

2Forecast lead time is defined as the length of time between making the forecast and the actual
realization of the value (e.g. generation, demand, price etc.) that is predicted.

3VPPs provide an alternative way to enable the bidding of different types of distributed energy
resources in power markets, by aggregation and provision of an overall operating profile.
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Consequently, the contributions of this chapter are as follows:

1. Derive a stochastic optimization model to determine the optimal trad-

ing strategies for an aggregator, which consists of storage units, loads,

dispatchable and variable generation units, in a multi-market environ-

ment.

2. Use a rolling-horizon optimization method to enable the aggregator to

use the updated information and to modify the real-time dispatch and

the market bidding decisions in a rolling manner. To do so, the model

incorporates a reduced level of variable generation output uncertainties

when trading in markets that are cleared closer to the real-time delivery.

3. Model an intraday market with multiple intraday auctions and assess

the impacts of including different numbers of intraday auctions.

4. Incorporate the risk control into the modeling to characterize the risk

associated with profit variability, which stems from the uncertainties of

market prices and variable generation outputs.

Note that wind is the only type of variable generation units considered in this

work, however, it is straightforward to apply the presented approach to other

variable generation units such as PV power plants.

2.1.2 Chapter Organization

The remainder of the chapter is organized as follows: the problem description

and the main modeling assumptions are presented in Section 2.2, and Section

2.3 focuses on the multi-stage stochastic programming method. The mathe-

matical formulations and the proposed optimization model are presented in

Section 2.4. The method applied to generate wind scenarios considering the

lead time is described in Section 2.5. Section 2.6 provides an analysis for a case

study. Finally, limitations and the future work are provided in Section 2.7, and

conclusions are drawn in Section 2.8.

2.2 Problem Descriptions and Model Assumptions
In this chapter, questions concerning the design of optimal trading strategies

for the aggregator are addressed, enabling its participation in multiple elec-

tricity markets. The aggregator is assumed as a price-taker, i.e. its bidding
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Figure 2.1: Structure for the aggregator of distributed energy resources’ mix.

decisions have little impact on markets and all its offerings and biddings can

be accepted by the considered electricity markets.

2.2.1 Structure of the Aggregator

The aggregator is modeled as a cluster of storage devices, loads, dispatchable

and variable generators (i.e., wind generator). It integrates the characteristics

of diverse units into a single entity and generates a single dispatch portfolio.

Aggregation is required to take the advantage of different technologies and si-

multaneously enable their participation in power markets, in order to mitigate

uncertainty problems and contribute to the provision of flexibility. The struc-

ture of the aggregator is shown in Fig. 2.1. All units within the aggregator are

assumed to be sited in the same location, i.e. no transmission limits of the

power flows between the units are considered.

2.2.2 Sequential Market Environment

The aggregator is assumed to participate in an electricity market that is orga-

nized around three trading floors: the day-ahead, the intraday and the balanc-

ing market, with multiple intraday auctions considered for the IDM. As shown

in Fig. 2.2, similar to the regulations of European Power Exchange (EPEX), the

DAM is assumed to be cleared the day before (i.e. day d − 1) at 11:00 offering

the hourly product in a uniform auction for the following day (i.e. day d).
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Figure 2.2: Structure of the day-ahead market and the intraday market with
multiple intraday auctions.

There are mainly two forms of intraday tradings in Europe: continuous in-

traday trading that uses the pay-as-bid pricing scheme and the auction-based

intraday trading that is based on the uniform pricing. Although the intraday

markets in most of the European countries are in the form of continuous trad-

ing or a mix of continuous and auction-based tradings (e.g. Switzerland), the

auction-based intraday trading is proved to have higher allocative efficiency

and price transparency than the continuous one [13]. A study in [27] demon-

strates that both the liquidity and the market depth increase while the price

volatility decreases when introducing auctions to the existing continuous intra-

day trading, which is consistent with the observations that liquidity in Central

Western European power markets based on the continuous intraday trading is

lower than in Italy and Spain where auction based intraday tradings are imple-

mented [28]. Thus, to increase the flexibility of the market framework and to

provide more opportunities for market participants to modify their schedules,

multiple Intraday Auctions (IDAs) are considered in this work.

Inspired by the structure of the auction based intraday bidding sessions in

Spain, four IDAs named as IDA1-IDA4, which are cleared one hour before the

start of each corresponding delivery period, are considered. As illustrated in

Fig. 2.2, IDA1 to IDA4 are cleared at 23:00 on the day before the delivery day (i.e.

day d−1), 4:00, 7:00 and 12:00 on the delivery day (i.e. day d), respectively. The

considered power delivery periods in sequence for IDA1 to IDA4 are assumed

to be 00:00-24:00, 5:00-24:00, 8:00-24:00 and 13:00-24:00 for day d. When bid-

ding closer to real-time, the wind forecast scenarios are updated (from Sw1 to



Chapter 2. Dispatch Optimization of the Aggregator as a Price-taker 19

Sw4) using the newly arrived information, leading to a reduced level of fore-

cast uncertainty, which will be referred to as the certainty gain effect in the

following context.

In addition, in order to focus on the certainty gain effect brought by the

reduced forecast uncertainty closer to the delivery time, we assume that the

aggregator participates in multiple IDAs only for the purpose to reduce the im-

balance costs. This is equivalent to reducing imbalance quantities, since the

imbalance prices are modeled in a way to be always unfavorable to the corre-

sponding DAM and IDM prices. To better quantify the impacts of including

multiple IDAs on imbalance costs, we exclude the possibility of arbitrage be-

tween different IDAs by assuming the same market prices for all IDAs. Details

of the bidding process and the generation of wind forecast scenarios will be

explained in Section 2.3 and Section 2.5, respectively.

Finally, the balancing market is designed to compensate the differences be-

tween the scheduled and the measured energy and it is cleared after the re-

alizations of supply and demand [29]. In this context, it is assumed that all

imbalances can be corrected through the balancing market.

2.3 Multi-stage Stochastic Programming
As the aforementioned problem is subject to different levels of uncertainties

such as market prices and wind generation outputs, the stochastic program-

ming framework is used. Since the most straightforward way to model a

stochastic process is to use scenarios, in this work, a set of scenarios charac-

terizing different sources of uncertainties is developed based on the following

structure [30]:

1. GenerateNda scenarios for DAM prices.

2. For each DAM price scenario, generateN id scenarios for IDM prices.

3. For each IDM price scenario, generateNw scenarios for real-time wind

output.

Thus, we have in totalN tot = Nda×N id×Nw scenarios, which are assumed to

have the same probability of realization. Note that the real-time wind output

scenario set, i.e. Sw, is updated with the reduced forecast uncertainties when

bidding into the markets that are cleared closer to real-time. As depicted in
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Fig. 2.2, the real-time wind generation scenario sets generated by the aggrega-

tor when bidding into the DAM and IDA1, IDA2, IDA3 and IDA4 are Sw1, Sw2,

Sw3 and Sw4, respectively.

As the information is revealed sequentially, the scenario structure described

above is fed into a multi-stage stochastic optimization model. It is important

to mention the non-anticipativity characteristic of the multi-stage stochastic

programming formulation, which means that if realizations of stochastic pro-

cesses are identical up to a certain stage, then their decision variables must

be identical up to that stage [30]. The structure of the proposed multi-stage

optimization model is as follows [18, 21]:

• In electricity markets, producers and consumers must decide their sup-

ply and demand curves, respectively. As depicted in Fig. 2.2, shortly

before 11:00 on the day (i.e., day d− 1) before the delivery day, as a pro-

sumer, the aggregator submits its Day-ahead (DA) supply and demand

curves considering the initial wind forecast scenarios Sw1 for 00:00 to

24:00 of the next day (i.e., day d). The submitted supply and demand

curves consist of the price-quantity pairs (one for each DA price sce-

nario) derived by the solution of the proposed problem. Both curves are

unique (scenario independent) for each hour of the scheduling period,

i.e. they are the same for all possible realizations of stochastic variables

in the following stages.

• After the revelation of the DAM prices, the accepted quantity of the ag-

gregator’s biddings in the DAM is known (based on the submitted supply

and demand curves). Then after the closure of the DAM and shortly be-

fore the closure of the IDA1, the aggregator updates the forecast of the

wind generation outputs for hours 0:00 to 24:00 of the delivery day d

considering the information newly arrived between the DAM and the

closure IDA1, i.e. the realized wind generations between 11:00 and 23:00

of day d− 1. Based on the updated forecast and the realized DA results,

the aggregator fixes the realized biddings into the DAM and re-optimizes

the bids for the following IDAs so as to correct its resources’ schedules.

The bidding processes for IDA2-IDA4 are modeled similarly to that for

IDA1.
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• After the IDA1 is cleared and shortly before the closure of the IDA2, the

aggregator updates the forecast of the wind generation outputs for hours

5:00 to 24:00 of the delivery day d considering the wind output realiza-

tions between the closure times of IDA1 and IDA2, i.e. 0:00-4:00 of day

d. Based on the updated information, the aggregator fixes the biddings

accepted by the DAM and the IDA1 and then re-optimizes the bids for

the following IDAs so as to correct its resources’ schedules.

• After the IDA2 is cleared and shortly before the closure of the IDA3, the

aggregator updates the forecast of the wind generation outputs for hours

8:00 to 24:00 of the delivery day d considering the wind output realiza-

tions between the closure times of IDA2 and IDA3, i.e. 4:00-7:00 of day

d. Based on the updated information, the aggregator fixes the bidding

quantities accepted by the DAM and IDA1-IDA2 and then re-optimizes

the bids for the following IDAs so as to correct its resources’ schedules.

• After the IDA3 is cleared and shortly before the closure of the IDA4, the

aggregator updates the forecast of the wind generation outputs for hours

13:00 to 24:00 of the delivery day d considering the wind output realiza-

tions between the closure times of IDA3 and IDA4, i.e. 7:00-12:00 of day

d. Based on the updated information, the aggregator fixes the bidding

quantities cleared by the DAM and IDA1-3 and then re-optimizes the

bids for IDAs4 so as to correct its resources’ schedules.

• For each hour of the delivery day d, after the DAM and all the IDAs re-

lated to that hour are cleared, i.e. the total accepted DAM and IDM sup-

ply and demand quantities submitted by the aggregator for that hour

are known, the aggregator decides on the Real-time (RT) dispatch of all

units within the aggregator.

Note that when the aggregator submits the supply and demand curves to the

DAM at 11:00 for day d − 1, it has to forecast the wind output for 00:00 to

24:00 of the following day (i.e., day d), 13-37 hours in advance. When bidding

into the IDAi (i ∈ {1, 2, 3, 4}), the historical wind output between the closures

of the DAM and the IDAi is realized, and thus can be used to improve the

hourly wind forecast for the delivery day. In other words, the aggregator bids

into the IDAi with a reduced wind uncertainty level than that for the DAM

and the previous IDAs. However, due to the lack of data, as shown in Fig. 2.2,
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the aggregator is assumed to bid into the DAM and the IDA1 considering an

identical set of wind scenarios, i.e. Sw1. In other words, the wind scenarios are

not improved/updated between 11:00 and 23:00 on day d− 1.

2.4 Mathematical Formulation
As introduced in Section 2.2, the aggregator consists of four different types of

components, namely loads, storage devices, dispatchable and variable genera-

tion units (i.e. wind units), as shown in Fig. 2.1. It participates in the day-ahead,

intraday and balancing markets. To optimize the trading strategies of the aggre-

gator, all types of devices as well as how they are coordinated and the market

environment in which they participate need to be modeled.

2.4.1 Aggregator Modeling

Dispatchable Generation Unit

The power output of the dispatchable generation unit P g
t,ω at time t for sce-

nario ω is limited by the maximum and the minimum power output P g,max

and P g,min, and the maximum ramp rate rg,max, i.e.,

u
g
t,ωP

g,min ≤ P g
t,ω ≤ u

g
t,ωP

g,max (2.1)

|P g
t,ω − P

g
t−1,ω| ≤ rg,max (2.2)

where ug is a binary variable denoting the on or off status of the generator. The

startup and shut down statuses are denoted by two binary variables yg and zg,

which are restricted by

y
g
t,ω − z

g
t,ω = u

g
t,ω − u

g
t−1,ω (2.3)

y
g
t,ω + z

g
t,ω ≤ 1 (2.4)

ensuring that the dispatchable generation unit may not operate in startup and

shut down modes simultaneously.

The total generation cost of the dispatchable unit consists of two parts: 1)

the startup and shut down cost CSUD and 2) the production cost COP that is

approximated with a piece-wise linear function based on [31, 32], which con-

sists of a fixed production cost and the total marginal production costs over
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Nb production blocks. Mathematically,

CSUD
t,ω = csuy

g
t,ω + csdz

g
t,ω (2.5)

COP
t,ω = cfocu

g
t,ω +

Nb∑
b=1

cvoc
b P

g
t,ω,b (2.6)

where csu, csd, cfoc and cvoc are constants. VariableP g
t,ω,b is the power produced

by the dispatchable generation unit at time t for scenario ω and production

block b and it is related to the total power output of the dispatchable unit with

the following equation:

P
g
t,ω = P g,minu

g
t,ω +

Nb∑
b=1

P
g
t,ω,b (2.7)

0 ≤ P g
t,ω,b ≤ ∆P

g
b (2.8)

where ∆P
g
b is the maximum power that could be produced by the dispatchable

unit for production block b.

Storage Device

A generic storage model is applied. The minimum and the maximum stored en-

ergy of the storage are defined byEs,min andEs,max, while the maximum inflow

and outflow of the storage are indicated by P ch,max and P dis,max, respectively.

This results in the following set of equations:

Es,min ≤ Es
t,ω ≤ Es,max (2.9)

0 ≤ P ch
t,ω ≤ P ch,max (2.10)

0 ≤ P dis
t,ω ≤ P dis,max (2.11)

where Es, P ch and P dis indicate the stored energy, charging and discharging

power of the storage, respectively. Finally, the relationship of storage levels for

two consecutive time steps are defined by

Es
t,ω = Es

t−1,ω + ηsP ch
t,ω∆t− P dis

t,ω∆t/ηs (2.12)
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where ηs indicates the one-way conversion efficiency of the storage unit and

∆t is the length of one time step.

Load

It is assumed that parts of the aggregator’s loads are flexible and participate

in the Demand Response Program (DRP) through load shifting from the initial

load estimation lest (including both flexible and inflexible loads). The final

scheduled load profile is given by

lsch
t,ω = lest

t + rlu
t,ω − rld

t,ω (2.13)

where rlu and rld indicate the load increase and decrease, respectively. The load

increase and decrease are determined considering the following constraints: 1)

the load increase or decrease cannot exceed the maximum load allowed to be

shifted for each hour denoted by ldr (defined by the DRP contract signed be-

tween the aggregator and the consumers); 2) the load decrease is limited by

the current energy consumption lest,flex of the flexible portion of the total load;

and 3) the load increase cannot exceed the difference between the maximum

energy consumption llsh,max (i.e. capacity) of the flexible load and the current

energy consumption of the flexible load. Mathematically, rlu and rld are en-

forced to satisfy the following equations [33]:

0 ≤ rld
t,ω ≤ ldruld

t,ω (2.14)

0 ≤ rlu
t,ω ≤ ldrulu

t,ω (2.15)

0 ≤ rld
t,ω ≤ lest,flex

t uld
t,ω (2.16)

0 ≤ rlu
t,ω ≤ (llsh,max − lest,flex

t )ulu
t,ω (2.17)

uld
t,ω + ulu

t,ω ≤ 1 (2.18)

where ulu and uld are binary variables indicating the load increase or decrease,

respectively. The last equation ensures that only one of ulu or uld is 1. Further-

more, for each day starting at time t0, the total daily shifted load defined as

the sum of absolute values of the load decreases and increases over the day is
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restricted by an upper limit, i.e.,

t0+24∑
t=t0

(rlu
t,ω + rld

t,ω)∆t ≤ E lsh,max (2.19)

Additionally, it is required that the total daily energy consumption should not

be changed, i.e.,

t0+24∑
t=t0

(rlu
t,ω − rld

t,ω) = 0 (2.20)

Under the assumption that the DRP is based on the long-term contracts with

consumers, the cost for the DRP is therefore neglected.

Aggregator’s Portfolio

The aggregator along with the sequential markets (i.e., the DAM, the IDM and

the BM) constitutes a closed energy system that must be balanced at each time

step. This means that the amount of energy that is generated from both the

dispatchable and wind power plants and drawn from the storage units minus

the amount of energy that is consumed by the load and used to charge the

storage units must be equal to the exchange in spot electricity markets for each

time step, i.e.

P
g
t,ω + Pw

t,ω + P dis
t,ω − lsch

t,ω − P ch
t,ω = qDA

t,ω + qID
t,ω + qBM+

t,ω − qBM-
t,ω (2.21)

where Pw is the power output of the wind unit, qBM+ and qBM- are the positive

and negative imbalances. The aggregator’s DAM and IDM bidding quantities

qDA and qID are defined as

qDA
t,ω = qDAs

t,ω − qDAb
t,ω (2.22)

qID
t,ω = qIDs

t,ω − qIDb
t,ω (2.23)

where qDAs and qDAb are the non-negative DAM supply and demand quantities,

while qIDs and qIDb are the non-negative IDM supply and demand quantities.
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2.4.2 Formulation of the Electricity Markets

Day-ahead Market

We decompose the aggregator’s DA bidding curve (qDA
t,ω, pr

DA
t,ω), into a supply

curve (qDAs
t,ω , pr

DA
t,ω) and a demand curve (qDAb

t,ω , pr
DA
t,ω), where each block of the

supply and demand curves is associated with one scenario of the DAM price

prDA. The non-decreasing (non-increasing) characteristic of the resulting sup-

ply (demand) curve is ensured by

qDAs
t,ω ≤ qDAs

t,ω′ ∀t,∀ω, ω′ : prDA
t,ω ≤ prDA

t,ω′ (2.24)

qDAb
t,ω ≤ qDAb

t,ω′ ∀t,∀ω, ω′ : prDA
t,ω ≥ prDA

t,ω′ (2.25)

The non-anticipativity of the DAM decisions is enforced by

qDAs
t,ω = qDAs

t,ω′ ∀t,∀ω, ω′ : prDA
t,ω = prDA

t,ω′ (2.26)

qDAb
t,ω = qDAb

t,ω′ ∀t,∀ω, ω′ : prDA
t,ω = prDA

t,ω′ (2.27)

which forces the DA decisions to be the same in all scenarios with identical

DAM prices. In other words, the hourly DA supply (demand) curve is unique,

irrespective of the market prices and wind output realizations [30].

Intraday Market

As depicted in Fig. 2.2, four intraday auctions that are cleared at 23:00 on day

d − 1, 4:00, 7:00 and 12:00 on day d respectively, are considered. The IDAs

are modeled in a similar way as the DAM, except that their gate closure times

are closer to real-time delivery and the biddings into the IDAs are exposed to

a reduced level of the wind output uncertainty. Besides the non-decreasing

(non-increasing) characteristic, the hourly supply (demand) curve submitted

to each IDA is unique, i.e. independent of the realizations of the IDA prices and

the real-time wind outputs. Consequently, for each IDAi, the decisions (points

on the supply/demand curve) should be equal in all scenarios with identical

realizations of uncertainties up to IDAi, i.e. DAM prices, IDAs prices and wind
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outputs between the DAM and the corresponding IDA. This is modeled as

qIDs
t,ω,i ≤ qIDs

t,ω′,i ∀t, ∀ω, ω′ : prID
t,ω ≤ prID

t,ω′ (2.28)

qIDb
t,ω,i ≤ qIDb

t,ω′,i ∀t, ∀ω, ω′ : prID
t,ω ≥ prID

t,ω′ (2.29)

qIDs
t,ω,i = qIDs

t,ω′,i ∀t, ∀ω, ω′ : prDA
t,ω = prDA

t,ω′ (2.30)

∀t, ∀ω, ω′ : prID
t,ω = prID

t,ω′ (2.31)

qIDb
t,ω,i = qIDb

t,ω′,i ∀t, ∀ω, ω′ : prDA
t,ω = prDA

t,ω′ (2.32)

∀t, ∀ω, ω′ : prID
t,ω = prID

t,ω′ (2.33)

Note that the IDA prices are not dependent on the IDA index i as the market

prices for all IDAs are assumed to be the same (see subsection 2.2.2 for more

details). Variables qIDs and qIDb are the aggregator’s supply and demand quan-

tities for IDAiwith

N ida∑
i=1

qIDs
t,ω,i = qIDs

t,ω (2.34)

N ida∑
i=1

qIDb
t,ω,i = qIDb

t,ω (2.35)

where N ida is the total number of IDAs, i.e. four in this work. As mentioned

in Section 2.2.2, the considered power delivery periods for the four IDAs are

assumed to be 00:00-24:00, 5:00-24:00, 8:00-24:00 and 13:00-24:00 for the deliv-

ery day, respectively. Therefore, the bidding quantities for the periods that are

not considered by the corresponding IDA should be set to zero, i.e.

qIDs/b
t,ω,2 = 0, t0 ≤ t ≤ t0 + 4 (2.36)

qIDs/b
t,ω,3 = 0, t0 ≤ t ≤ t0 + 7 (2.37)

qIDs/b
t,ω,4 = 0, t0 ≤ t ≤ t0 + 12 (2.38)

Although the total intraday trading volume increases continuously in recent

years, it is still low compared to the total energy traded in the DAM. According

to the data published in [34], the total energy traded in the EPEX spot markets

in 2019 amounted to 593.2 TWh, of which 501.6 TWh are from the DAM trad-
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ing, whereas the volume of the IDM trading for the same year is equal to the

remaining 91.6 TWh (i.e., 83.2 TWh from intraday continuous trading and 8.4

TWh from intraday auctions). Based on this fact, a parameter γID is defined to

limit the trading volume in the IDM according to

T∑
t=1

qID
t,ω ≤ γID

T∑
t=1

qDA
t,ω (2.39)

where T is the simulation horizon.

Balancing Market

Balancing market prices are modeled following a two-price settlement scheme,

which is commonly applied in European electricity markets. Compared to a

single-price imbalance price settlement scheme, where imbalance prices are

irrespective of wether the balance group is in deficit or surplus, the imbalance

prices in a two-price system are determined according to the deviation direc-

tion of a balance group. The price of the positive imbalance, i.e. the price of

selling electricity in the BM in the case of surplus generation or deficit con-

sumption, is defined by prBM+ and the price of the negative imbalance, i.e. the

price of purchasing electricity in the BM under the situation of deficit gener-

ation or surplus consumption, is defined by prBM-. In this work, we assume

that the hourly BM price is dependent on the DAM and IDM prices of that

hour and therefore the uncertainty concerning the BM price is not considered.

This is defined by the following equation, which ensures that the aggregator

can only sell (purchase) electricity in the BM at a price lower (higher) than the

corresponding day-ahead and intraday market prices [29]:

prBM+
t,ω = a1 ·min{prDA

t,ω, pr
ID
t,ω} ∀t,∀ω (2.40)

prBM-
t,ω = a2 ·max{prDA

t,ω, pr
ID
t,ω} ∀t, ∀ω (2.41)

where a1 and a2 are all positive constants with 0 ≤ a1 ≤ 1 and a2 ≥ 1 .

2.4.3 Formulation of Risk Constraints

Additionally, trade-offs have to be made between the expected profit and the

impact of uncertainty. Hence, the objective function consists of two parts: one
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maximizing the expected profitR of the aggregator, and the other minimizing

the risk exposure to uncertainties using the Conditional Value at Risk (CVaR)

[35] of the expected profits, i.e.

max

(1− β)R+ β(ζ − 1

1− α

N tot∑
ω=1

ξωζω)

 (2.42)

where ξω represents the realization probability of scenario ω with in totalN tot

scenarios considered; β is a weighting parameter with β ∈ [0, 1]; α is the con-

fidence level with α ∈ (0, 1); ζ and ζω are auxiliary variables restricted by

ζ −Rω ≤ ζω
ζω ≥ 0

(2.43)

whereRω is the profit of scenario ω with
∑N tot

ω=1 ξωRω = R.

2.4.4 Formulation of the Optimization Problem

The total profits of the aggregator comprise the profits from participating in

the day-ahead market, the intraday market and the balancing market minus

the generation costs. Mathematically,

R =

T∑
t=1

N tot∑
ω=1

ξω(prDA
t,ωq

DA
t,ω + prID

t,ωq
ID
t,ω − prBM-

t,ω q
BM-
t,ω + prBM+

t,ω q
BM+
t,ω

− COP
t,ω − CSUD

t,ω ) (2.44)

Note that only generation costs of the conventional units are considered, while

the generation costs of variable generation units (i.e. wind units) and storage

devices are assumed to be zero.

Finally, the optimization problem is formulated as:

max

(1− β)R+ β(ζ − 1

1− α

N tot∑
ω=1

ξωζω)

 (2.45)

s.t. Constraints (2.1)-(2.43)
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Figure 2.3: Example probabilistic forecasts generated using the method from
[1] with the 13-hour to 36-hour ahead lead time along with the day-ahead point
forecast and the real-time measurement data for the simulation day.

where constraints regarding different components of the aggregator (i.e. stor-

age, load, dispatchable and variable generation units), different electricity mar-

kets are given in (2.1)-(2.41), and the constraints concerning risk control are

given in (2.43).

2.5 Wind Scenario Generation
To optimize the trading strategies of the aggregator in sequential electricity

markets that have different gate closure times, forecasts of wind should be gen-

erated in a way to account for the development of the forecast uncertainties

over time (i.e., a reduced level of wind output uncertainty should be consid-

ered when bidding into the market that is cleared closer to the real-time deliv-

ery). We therefore generate the scenarios for wind forecasts using the method

proposed in [1, 36] to account for the interdependence of forecast errors with

different lead times and to better simulate the development of wind forecasts

in reality. Based on the available historical forecast and measurement data,

it is proposed by [1, 36] to convert the series of the forecast errors to a multi-

variate Gaussian random variable, whose interdependence structure is then

described by a unique covariance matrix. We applied the method by setting
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Figure 2.4: Example day-ahead wind forecast scenarios generated using the
method from [1] along with the day-ahead point forecast data from Nord Pool
for the same time period as Fig. 2.3.

the forgetting factor that permits an adaptive tracking of the interdependence

structure of prediction errors to 0.995, which is identical to the value used in [1].

The resulting probabilistic forecast of the real-time wind generation takes the

form of a predictive distribution over 9 quantiles ranging from 10% to 90% with

an increment of 10%. As an example, the probabilistic forecast for the simu-

lation day with the lead time from 13-hour to 36-hour ahead along with the

DA point forecasts and the real-time measurements based on the Nord Pool

2016 data for Denmark [37] is presented in the form of a fan chart in Fig. 2.3.

In addition, 100 real-time wind output scenarios generated using the method

from [1] along with the DA point forecast for the same time period are shown in

Fig. 2.4. These real-time wind output scenarios have a lead time from 13-hour

to 36-hour ahead, which corresponds to the wind output scenario Sw1 faced

by the DAM and the IDA1 biddings. Wind scenarios Sw2, Sw3 and Sw4, which

are used when bidding into the IDA2-IDA4, are updated based on the corre-

sponding newly arrived wind output realization information. Due to the lack

of data to generate wind output scenarios with shorter lead times, the wind

scenarios are updated by selecting the wind scenarios that have the highest

forecast accuracy4 for the revealed wind output realizations for the delivery

day d. To be more specific, the aggregator bids into the DAM and IDA1 using

4The forecast accuracy is estimated using the mean squared error.
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Figure 2.5: Updated wind generation scenarios over different bidding stages
along with the realized wind output at real-time. From top to down the figures
correspond to the real-time wind output scenarios Sw1, Sw2, Sw3 and Sw4.

the initial wind output scenario set Sw1 built with a lead time from 13-hour

to 36-hour ahead by applying the method in [1, 36]. When bidding into the

IDA2 shortly before 4:00 on the delivery day d, the updated wind scenario set

Sw2 is built by selecting theNw2 wind scenarios in Sw1 that achieve the highest

forecast accuracy for the forecast period 0:00 to 4:00 on day d, where Nw2 is

the number of scenarios included in scenario set Sw2. Similarly, based on the

realizations of the real-time wind outputs, wind scenario sets Sw3 and Sw4 are

generated by selecting the scenarios that obtain the highest forecast accuracy

for the periods 0:00-7:00 and 0:00-12:00 on day d, respectively.

Figure 2.5 shows the resulting wind scenarios (i.e. Sw1, Sw2, Sw3 and Sw4)

corresponding to the four bidding stages5 generated following the process de-

scribed above. It can be observed that a shorter lead time enables a reduced

forecast uncertainty.

5DAM and IDA1 are combined as one bidding stage due to the assumption of identical real-
time wind output scenarios, while IDA2-IDA4 are considered as the second, third and the fourth
bidding stages, respectively.
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Table 2.1: Parameters of units within the aggregator.

Category Parameter Adopted Value

Wind
Capacity 200 MW

Marginal cost 0 EUR/MWh

Battery

Storage

Capacity 240 MWh

Max./min. energy level 240/20 MWh

Initial energy level 0 MWh

Max. charging/discharging power 120 MW

Charging/discharging efficiency 90%

Dispatchable

Generator

Capacity 120 MW

Max./min. production level 120/40 MW

Initial production level 40 MW

Startup/shutdown cost 800/100 EUR

Fixed operational cost 1000 EUR

Marginal cost

40-60 MW: 23.5 EUR/MWh

60-80 MW: 31.5 EUR/MWh

80-100 MW: 45.6 EUR/MWh

100-120 MW: 72.3 EUR/MWh

DRP

Max. hourly shiftable power 30 MW

Max. daily shiftable energy 150 MWh

Max. consumption of flexible load 72 MW

2.6 Case Study
In this section, we first show the results considering the aggregator’s participa-

tion only in the DAM and the BM, i.e. no IDM is considered. Then we investi-

gate the impacts of including different numbers of IDAs and the influence of

the modeled intraday trading limits.

2.6.1 Input Data

The proposed methodology is implemented using the MATLAB toolbox Yalmip

[38]. Information of the units per category within the aggregator is provided in

Table 2.1, where the parameters of the dispatchable generation unit are modi-

fied based on the data from [32]. All units considered are aggregated and con-

sist of several individual generators, loads or storage devices. The load (includ-

ing the DRP information) is from the example in [33] and the estimation of the

total load as well as the flexible load is shown in Appendix 9.3.

Market price forecasting is outside the scope of this thesis, we therefore sim-

ulate the scenarios of the market prices based on the historical data obtained

from EPEX. These data are publicly available [39] and correspond to the DAM



34 2.6. Case Study

0

20

40

60

[E
U

R
/M

W
h

]

DAM Price Scenario

DAM Price Mean

0

20

40

60
[E

U
R

/M
W

h
]

IDM Price Scenario

IDM Price Mean

4 8 12 16 20 24

Hour

0

20

40

60

[E
U

R
/M

W
h

]

BM+ Price Scenario

BM- Price Scenario

BM+ Price Mean

BM- Price Mean

Figure 2.6: Scenarios for day-ahead, intraday and balancing market prices.

and IDM prices that occurred on the Tuesdays from August 2016 to Septem-

ber 2016. As mentioned in subsection 2.2.2, the market price of all IDAs are

assumed to be the same so as to focus on the certainty gain effect brought by

the IDM trading. The number of market price scenarios are six and the av-

erage DAM and IDM prices for this period were 33.45 EUR/MWh and 32.39

EUR/MWh, respectively. Balancing market prices are difficult to predict or

simulate and the rules for calculating the balancing market prices vary from

market to market, we therefore set the parameters for the balancing market

price as a1 = 0.5 and a2 = 1.5 so as to possibly avoid the arbitrage opportuni-

ties between the BM and the DAM or the IDM. Scenarios for the DAM, the IDM

and the BM prices are shown in Fig. 2.6. Scenarios for the real-time wind out-

put is generated based on the data from Nord Pool [37] following the process

described in Section 2.5. The number for the RT wind output scenario setsSw1,

Sw2, Sw3 and Sw4 are set as 100, 50, 25 and 13, respectively.

The confidence level α for calculating the CVaR is set to 0.95, while the

weighting parameter β is set as 0 (i.e., the aggregator is assumed to be risk-

neutral) for the Baseline scenario and sensitivity analysis is conducted for sim-

ulating different values of β between 0 and 0.8. The simulation is carried out

for one day (i.e., 24 hours), but due to the low computational efficiency, the

simulation horizon can be expanded in a straightforward way.
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Figure 2.7: Single scenario analysis for the aggregator participating only in the
day-ahead and the balancing markets: market trading behaviors are shown in
the top figure; deviations of the wind generation of the considered scenario
from the expected wind generation of all scenarios named as ”Delta-Wind” are
shown in the bottom figure.

2.6.2 Results: Analysis of the Day-ahead Market Behavior

In this section, we analyze the results considering that the aggregator only par-

ticipates in the DAM and the BM, i.e. no IDM is considered. To better illustrate

the results, we first show the results of one example scenario, then the benefits

of coordinating different types of units are analyzed. Finally, to analyze the in-

fluence of the risk appetite of the aggregator, sensitivity analyses are conducted

by applying different values of β (the aggregator is assumed to be risk-neutral

in the Baseline scenario with β set to 0).

Single Scenario Analysis

Figure 2.7 shows the market trading behaviors of the aggregator in an example

scenario (i.e., top figure) together with the deviations of the wind generation

of the considered scenario from the expected wind generation of all scenar-

ios named as ”Delta-Wind” (i.e., bottom figure). Focusing on the top figure

that depicts the trading behaviors of the aggregator, it is seen that generally

the aggregator is a market seller as it generates more than it consumes, and
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Figure 2.8: Single scenario analysis for the aggregator participating only in the
day-ahead and the balancing markets: optimal real-time dispatch of different
units within the aggregator as well as the aggregator’s market biddings and the
rescheduled hourly load named as ”Load-New”.

it trades in the market according to the "buy low, sell high" strategy. Futher-

more, since BM prices are always unfavorable to DAM prices, balancing energy

should only be used for covering deviations between scheduled electricity and

actually produced electricity. This is confirmed by the observation that the neg-

ative imbalance occurs mainly in hours 11 and 18 when the wind generation

level of the considered scenario is much lower than that of the expected wind

generation (i.e., Delta-Wind is negative). However, the imbalance quantities

are limited compared to the wind deviation (i.e., Delta-Wind). This is likely to

be explained by the coordination of different units within the aggregator and

is further analyzed using Fig. 2.8, which shows the real-time dispatch of differ-

ent units as well as the market biddings and the rescheduled hourly load (i.e.,

Load-New) of the aggregator. Combining Fig. 2.7 and Fig. 2.8, we can see that

both the storage device and the flexible load operate mainly in response to the

DAM prices and the wind output deviation. More specifically, on one hand,

the flexible load (the storage device) shifts up (charges) during the lower price
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Table 2.2: Impacts of coordinations on the profit obtained by each unit within
the aggregator and the total aggregator profit.

Dispatchable unit Wind Storage Load Total
Without coordination [EUR] 27’141 63’761 983 -50’905 40’981
With coordination [EUR] 22’434 72’587 -51’373 43’648 (+6.5%)

Negative values indicate the costs.

period, i.e. hours 3, 4 and 6 (hours 1, 3-5), and shifts down (discharges) during

the high price period, i.e. hours 9, 19-20 (hours 9-12); on the other hand, the

flexible load and the storage device also operates in order to possibly reduce

the imbalances caused by the wind output deviation. For example, despite the

comparably low DAM price level in hour 18, the flexible load shifts down and

the storage device discharges so as to reduce the large negative wind devia-

tions during that hour. Similarly, the dispatchable generation unit ramps up

and down considering the impact of the DAM prices and the wind generation

deviation. It is also worth noting that even during the period when market

prices are lower than the marginal cost of the first production block (i.e. 23.5

EUR/MWh) of the dispatchable generator, i.e., hour 3-5, the dispatchable gen-

erator still stays online and operates at a low level due to the effects of startup

and shut-down costs.

Benefits of Coordination

The benefits of the coordination between different units within the aggrega-

tor are already shown in the previous section, to quantify these benefits, we

compare the profits obtained with and without considering the coordination

of different units. In the case without coordinations, each unit is assumed to

operate and bid into the market aiming to maximize its own profits without

considering the impact on the total profits of the aggregator. Results of these

two cases are listed down in Table 2.2, where positive and negative values indi-

cate the profits and costs, respectively. Note that it is difficult to separate the

profits achieved by each single unit in the case with coordination. The profits

obtained by the dispatchable unit are calculated as the sum of the product of

the DAM price and the generation minus the total generation costs over the

simulation horizon, the profits for the load unit are calculated as the sum of

the negative load consumption multiplied by the DAM price, while the remain-
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ing profits of the aggregator are assumed to be generated together by the wind

and the storage units. It can be observed in Table 2.2 that compared to the case

without coordination the total aggregator profits increase by 6.5% in the case

with coordination, however, this is at the cost of decreasing the profits earned

by the dispatchable unit and the load unit. Hence, it is important to design an

appropriate mechanism to distribute the total profits of the aggregator to the

different units within it in a fair and an efficient way. The work in [40] addresses

the problem of profit allocation between an energy storage aggregator and its

constituent storage units by using a Nash Bargaining Process.

Impact of Risk Control

In this section, the optimization problem (2.45) is solved applying different

values of the weighting parameter β with β ∈ [0, 1], and the impact of risk

control is analyzed by comparing the resulting DA bidding curves, imbalances

and the total profits of the aggregator. As a reminder, the aggregator is more

risk-averse with an increasing value of β.

The aggregator bids into the DAM with a bidding curve, which consists of a

series of price-quantity pairs and are independent of the DA price realizations.

The DA bidding curve of the aggregator under the risk-neutral case (i.e. β = 0)

and the risk-averse case (i.e. β = 0.8) for example hours 9, 10 and 11 are shown

in Fig. 2.9. It can be seen that the lowest price at which the aggregator is willing

to supply varies between hours, which is likely due to the different expectation

of electricity prices for different hours. Comparing the risk-neutral case (i.e.

β = 0) to the risk-averse case (i.e. β = 0.8), in general the aggregator prefers

to offer less in the DAM when it becomes more risk-averse.

To further investigate the impacts of risk control, we plot the development

of imbalances and the profits with β increasing from 0 to 0.8 with a step of 0.1

in Fig. 2.10. It shows that in general the negative imbalance decreases with

the increasing level of risk aversion, while the change of positive imbalances

is negligible. Furthermore, the total aggregator profit decreases and the CVaR

increases as the risk exposure decreases. The trade-off between the risk expo-

sure and the profits helps to hedge against uncertainty when participating in

sequential electricity markets.
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Figure 2.9: Day-ahead bidding curves of the aggregator under β = 0 and β =
0.8 for example hours 9, 10 and 11.
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Figure 2.10: Impacts of risk aversion on the expected imbalance quantities
(i.e., left figure) and the aggregator profits (i.e., right figure).

2.6.3 Results: Impacts of the Intraday Market

In this section, the impacts of including the IDM as well as the number of the

considered IDAs are investigated. In order to compare the results of including

different numbers of IDAs in a reasonable way, we carried out the simulations

based on a rolling horizon approach, which is capable of solving a multi-stage

problem periodically considering the additional information available at each
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Table 2.3: Impacts of including different numbers of intraday auctions.

1 IDA 2 IDAs 3 IDAs 4 IDAs
Expected profit [kEUR] 34.4 34.8 35.2 36.9
Expected imbalance cost [kEUR] 16.6 15.8 14.9 9.9
Expected net imbalance [MWh] -293 -280 -263 -146

stage. The simulations are conducted in a rolling manner following the steps

below:

• Step 1: The optimization problem (2.45) is solved considering the initial

wind output forecast scenario Sw1 and without considering IDA2-IDA4

(i.e., bidding quantities for IDA2-IDA4 are set to be zero).

• Step 2: The resulting optimized DAM and the IDA1 decisions from step

1 are then fixed and fed back to the model. The optimization problem

(2.45) is solved again by fixing the biddings into the DAM and the IDA1,

replacing Sw1 with the updated wind scenario Sw2 and including the

possibility to bid into the IDA2.

• Step 3: The resulting optimized IDA2 decisions from step 2 are then fixed

and fed back to the model. The optimization problem (2.45) is solved

again by fixing all biddings into the DAM and IDA1-IDA2, replacing Sw2

with the updated wind scenario Sw3 and including the possibility to bid

into the IDA3.

• Step 4: The resulting optimized IDA3 decisions from step 3 are then fixed

and fed back to the model. The optimization problem (2.45) is solved

again by fixing the biddings into the DAM and IDA1-IDA3, replacingSw3

with the updated wind scenario Sw4 and including the possibility to bid

into the IDA4.

Table 2.3 compares the expected profits, the imbalance costs and the net im-

balance quantities considering different numbers of IDAs. The resulting prof-

its, the imbalance quantities and costs of the aggregator considering different

number of IDAs are calculated using the actual realized wind output for the

simulation day, while the real-time dispatch of the aggregator is the expected

value over the considered scenarios. Results for considering one to four IDAs

are obtained by carrying out step 1, step 1-2, steps 1-3 and steps 1-4, respec-

tively.



Chapter 2. Dispatch Optimization of the Aggregator as a Price-taker 41

0

20

40

P
o
s
 I
m

b
 [
M

W
h
]

1 IDA 2 IDAs 3 IDAs 4 IDAs

0

200

400

N
e
g
 I
m

b
 [
M

W
h
]

1 2 3 4 5 6

DA Price Scenario Index

-300

-200

-100

0

N
e
t 
Im

b
 [
M

W
h
]

(a) Imbalance Quantity

-0.6

-0.4

-0.2

0

P
o
s
 I
m

b
 C

o
s
t

[k
E

U
R

]

1 IDA 2 IDAs 3 IDAs 4 IDAs

0

10

20

N
e
g
 I
m

b
 C

o
s
t

[k
E

U
R

]

1 2 3 4 5 6

DA Price Scenario Index

0

10

20

N
e
t 
Im

b
 C

o
s
t

[k
E

U
R

]

(b) Imbalance Cost

Figure 2.11: Realized imbalance quantity and cost developments at real-time
considering different numbers of intraday auctions.

Comparing the results considering different numbers of IDAs, it can be seen

that the expected profit increases and the imbalance costs and quantities de-

crease, as more IDAs are considered. This is due to the fact that the gate closure

time is closer to the real-time delivery from IDA1 to IDA4, which provides ad-

ditional opportunities for the aggregator to adjust its positions with reduced

uncertainties of the real-time wind generation outputs. When looking at the

positive and negative imbalance quantities and costs for each individual DAM

price scenario shown in Fig. 2.11, it can be observed that although the positive

imbalance increases when IDA4 is considered, in general both the imbalance

quantities and the imbalance costs are significantly reduced in all DAM price

scenarios.

To further analyze how this certainty gain effect is realized, we compare the

resulting expected real-time dispatch and the market biddings of the aggrega-

tor considering one and four IDAs for an identical DAM price scenario. The

differences of the results considering four IDAs and one IDA are depicted in

Fig. 2.12, with the results for the case considering one IDA serving as the ref-

erence values. The wind deviation is defined as the difference of the expected

wind generation over the most updated scenarios considered in the four IDAs

and one IDA cases, i.e. difference of the expected wind generations over wind
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Figure 2.12: Re-dispatch of the units and the adjustment of the market bid-
dings under an example day-ahead market price scenario, as a reaction to the
updated wind forecasts considering four intraday auctions compared to the
case considering only one intraday auction.

scenarios Sw1 and Sw4. A positive (negative) wind deviation means that based

on the updated wind scenario the wind unit is expected to generate more (less)

than what is predicted in the original wind scenario, which could lead to pos-

itive (negative) real-time imbalances assuming that the updated scenario is

more accurate and the dispatch and the market biddings of the aggregator re-

main unchanged. Similarly, the imbalance deviation and the bidding deviation

are the differences of the resulting expected net imbalance quantity (i.e., pos-

itive imbalance minus negative imbalance) and the net supply quantity (i.e.,

market sale minus market purchase) for all considered markets in these two

cases (i.e., DAM and IDA1 when one IDA is considered, and DAM and IDA1-

IDA4 when four IDAs are considered). The top figures of Fig. 2.12 shows that

the aggregator adjusts the market biddings and the dispatch of the units6 in a

6The total dispatch and market bidding adjustment of the aggregator is defined as the differ-
ence between the resulting net generation and net market purchase considering four IDAs and
one IDA, respectively.
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Table 2.4: Effects of the intraday market trading limit.

ID trading
limit

Expected aggregator
profit [EUR]

Net imbalance
[MWh]

Unlimited 45’249 Neg. imb. 48.2
30% 44’211 (-2%) Neg. imb. 67.3 (+40%)
20% 43’276 (-4%) Neg. imb. 76.4 (+59%)
10% 41’983 (-7%) Neg. imb. 76.5 (+59%)

way so as to possibly eliminate the impacts of the wind forecast deviation us-

ing the updated wind scenario information. This leads to the in general much

lower imbalance deviations than what could be caused by the wind forecast

deviation. The bottom figure shows how each type of unit within the aggre-

gator contributes to the total dispatch and market bidding adjustments of the

aggregator.

2.6.4 Results: Effects of the Intraday Market Trading Limit

The effects of the intraday trading limit are analyzed in this section. Table 2.4

compares the expected profit and net imbalance quantities considering 10%,

20% and 30% IDM trading limits or no trading limits. As defined by constraint

(2.39), for each scenario the energy traded in the IDM for the simulation hori-

zon (i.e. 24 hours) is thus limited to 10%, 20% and 30% of the energy traded

in the DAM or not limited. The changes of the results under different Intraday

(ID) trading limits using the unlimited case results as a reference are shown

in parentheses. As expected, a tighter restriction on the ID trading volumes

results in a decrease on the aggregator profits and an increase on the net im-

balance quantity, whereas it is worth noting that the relative changes are de-

pendent on the assumptions made for the DAM and the IDM prices.

2.7 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this

section. First, several assumptions are made to simplify the intraday market

tradings. It is assumed that the aggregator participates in the intraday-market

only for the purpose to reduce the potential real-time imbalance costs, while

other motivations for intraday tradings such as arbitrage across different mar-

kets [13] are not considered. To eliminate the arbitrage opportunities across



44 2.7. Limitations and Future Work

different intraday auctions or between the intraday and balancing markets

so as to focus on the influence of additional intraday auctions on imbalance

costs, identical market prices are assumed for all intraday auctions and the bal-

ancing market prices are modeled to be always unfavorable to the day-ahead

and intraday market prices. Furthermore, considering the low liquidity of the

intraday market, we adopt a constant value to limit the aggregator’s bidding

quantities that can be submitted to the intraday market. However, the intra-

day market trading in real-world is limited due to multiple factors, such as the

transmission capacity limit, generation mix of the electricity system (especially

the share of variable energy resources and hydro power plants), the volatility

of the intraday market price, the pricing scheme of the imbalance etc., which

can hardly be simplified as a single number. Future work should model the

intraday market trading quantity in a more appropriate way to take the above

mentioned factors into account, which though might require additional input

data and implementation efforts. Additionally, the tradings in sequential mar-

kets are modeled in a way without considering the preference of the traders.

However, in reality it was found that most trades are carried out shortly be-

fore the gate closure to use the updated renewable forecast information with

short forecast horizons [13], which might be more expensive as it requires the

rescheduling of dispatchable units in short time. A future version should there-

fore incorporate this characteristic into the modeling.

Second, the day-ahead, intraday and balancing market prices are modeled

using limited number of scenarios based on historical data. In future work, a

proper method is required to predict the electricity prices in sequential electric-

ity markets while accounting for the correlations of prices between different

markets and the influence of market rules. Example forecasting methods for

this purpose include Auto-regressive Integrated Moving Average (ARIMA) [41],

Generalized Autoregressive Conditional Heteroskedastic (GARCH) [42] and Ar-

tificial Neural Network (ANN) [43], etc.

Third, the wind forecast error scenarios are generated based on the historical

aggregated country-wide data from Denmark, provided by Nord Pool. Due to

the statistical smoothing effects when aggregating wind generation data espe-

cially for regions with significant amount of wind capacities installed [44], the

generation forecast errors for the wind units within the considered aggregator
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cannot be well represented (i.e. are underestimated) by using the country-

wide dataset. Moreover, due to the lack of data, only the day-ahead forecast

scenarios with 13-hour to 36-hour ahead lead time are generated based on

the probabilistic method proposed in [1]. Updating the wind forecast when

bidding closer to the delivery time is simplified as selecting the most accurate

scenarios from the day-ahead forecast scenarios. This compromise, although

still reflects the certainty gain effect to some extent, can be improved by using

a more complete dataset and generating a new set of scenarios applying the

method from [1] shortly before the closure of each considered trading floor.

Thus, future work should use a more realistic and complete dataset that is con-

sistent with the modeled wind capacity.

Fourth, we estimate the load profiles as well as the demand response pro-

grams using the synthetic data from [33] that undoubtedly deviate from real-

world data. Future work should utilize realistic load patterns and demand re-

sponse contracts.

Fifth, the sizes of the units within the aggregator are fixed and are not opti-

mized, but the results might be different under different assumptions of the

sizes of the units. The optimal dispatch and trading strategy model should

therefore be integrated into a generation investment model to assess the im-

pacts of sizing, more about this topic will be discussed in the second part of

the thesis.

Lastly, the simulation horizon is limited to one day thereby neglecting the

seasonal fluctuations. Furthermore, the volatility of the day-to-day profit as

well as the generation of wind and PV units is high. Hence, it would be inter-

esting to expand the time horizon and simulate multiple days across different

seasons.

2.8 Summary and Conclusions
A stochastic programming methodology to derive optimal trading strategies for

an aggregator participating in sequential electricity markets is presented. The

benefits of participating in sequential markets and including more intraday

trading auctions are examined by applying a rolling horizon approach, which

enables the adjustment of the dispatch and market bidding decisions using the

updated information closer to real-time.



46 2.8. Summary and Conclusions

The coordination of different units within the aggregator realizes higher flex-

ibility provisions and increased total profits for the aggregator, although this

might reduce the individual profit of some unit. The risk control is conducted

to assure a certain risk level when designing optimal trading strategies and

in general the aggregator prefers to offer less in the day-ahead market when

it becomes more risk-averse. Simulation results considering different num-

bers of intraday auctions show that the presented rolling-horizon optimization

method enables the aggregator to modify the dispatch schedules and market

biddings based on the updated information. As a result, the integration of

more trading floors results in an increase in the aggregator profits, guarantee-

ing at the same time lower imbalance quantities.



Chapter 3

Dispatch Optimization of the

Aggregator as a Price-maker

In this chapter, we investigate the impact of considering market power on the

optimal dispatch and trading strategies of a hybrid wind-solar aggregator. A

stochastic bi-level model is presented to derive optimal offering strategies for the

aggregator, who participates as a price-maker in both the day-ahead and intra-

day markets, and a deviator in the balancing market. The upper-level represents

the profit maximization problem of the aggregator, while the two lower-levels

represent the market clearing problems of the day-ahead and the intraday mar-

kets, respectively. The problem considered is stochastic and subject to different

levels of uncertainties. Uncertainties concerning intraday rivals’ offers are mod-

eled using scenarios, while the uncertainty of the variable generation output

is taken into consideration by formulating chance constraints. The stochastic

bi-level optimization problem is then solved by being transformed into a mixed-

integer linear programming model using the Karush-Kuhn-Tucker optimality

conditions and the strong duality theory. A case study based on a modified Swiss

system demonstrates the effectiveness of the proposed model. Sensitivity analy-

ses are conducted to investigate the impacts of the aggregator’s market share, the

import electricity prices, the price elasticity of the system demand curve, and the

generation mix of the aggregator on the offering strategy and the profits of the

aggregator as well as the market results. Finally, the effect of incorporating the

variable generation output using chance constraints is analyzed. This chapter

is based on [45].
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3.1 Introduction

3.1.1 Motivation and Related Work

In recent years, driven by its contributions to enabling a sustainable energy fu-

ture, the penetration of Variable Renewable Energy (VRE), such as wind power

and solar power, has increased dramatically. Furthermore, governmental poli-

cies contribute to further expansions of the VRE capacities. As a result, the mar-

ket share of VRE in some countries is high enough (e.g. wind power plants in

Denmark) to enable them to bid strategically and to exercise market power7 so

as to make more profits. Although VRE is challenging to dispatch and difficult

to forecast, due to the continuous decreasing subsidies, VRE are forced to trade

in the same market environment as conventional generators. To better exploit

the economic value of VRE, the aggregation of VRE of different technologies

and at different locations is of great interest to the power plant operators and

owners, since it results in smoothing effects on the aggregated generation out-

puts especially when the power plants are spatially distributed. It also enables

small-sized variable generation power plants especially distributed wind and

solar power plants to participate in the electricity markets. It is therefore im-

portant to answer the question of what would be the optimal offering strategy

for a VRE aggregator considering its market power. The VRE aggregator consid-

ered in this chapter consists of wind and Photovoltaic (PV) units and it will be

referred to as a hybrid aggregator or an aggregator in the following context.

A lot of work has been done on the topic. Optimal bidding strategies have

been developed for wind producers [15, 47, 48, 49, 50], PV power plants [51]

or virtual power plants [23, 25, 33] in recent years. Several works design bid-

ding strategies considering the producer’s market power in different markets.

For example, the work in [48] presents a bi-level model to optimize the trad-

ing strategies for a wind producer that acts as a price-taker in the Day-ahead

Market (DAM) and as a price-maker in the Balancing Market (BM), while ref-

erences [49, 50] model the market power of a wind producer in both the DAM

and the BM. A stochastic bi-level model to optimize the pool strategy of a price-

7Following the definition in [46], market power is defined as the ability to profitably alter prices
away from competitive levels.
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maker storage system in the day-ahead (including the reserve market) and bal-

ancing markets is proposed in [52].

While most of the work targets at developing strategies considering only two

conventional electricity markets, i.e. day-ahead and balancing market, as men-

tioned in the previous chapter, the Intraday Market (IDM) is more interest-

ing to variable generation units as it is cleared closer to the real-time delivery,

which provides the opportunities for the VRE operators to modify the dispatch

schedules with reduced forecast uncertainties. The works [15] and [47] deter-

mine the offering strategies for a wind power plant considering a complete

market structure (day-ahead, intraday and balancing markets), but the wind

power plant is modeled as a price-taker in all trading floors. However, since the

trading volume of the IDM is generally lower than that of the DAM, the IDM

price is more vulnerable to the aggregator’s offers and the market power of the

aggregator should be taken into account in IDMs. As a result, there is a lack of

studies taking into account the market power of variable generation units in

both day-ahead and intraday markets. However, with the further expansion of

VRE capacities and the deepening interests of VRE producers in market partic-

ipation, this is becoming increasingly important.

The focus of this chapter is on a hybrid aggregator which is modeled as price-

makers in both the DAM and the IDM, and as deviators in the BM. Different

uncertainties concerning VRE power outputs and IDM rivals’ offers are consid-

ered. In order to account for VRE forecast deviations in a comprehensive way

and at the same time ease the computational burden resulting from a large

number of scenarios, probabilistic constraints (i.e., chance constraints) are

employed. Uncertainties regarding IDM rival producers’ offers are modeled

using scenarios. The goal of this chapter is therefore threefold: to optimize the

offering strategies for a hybrid aggregator in a multi-market environment, to

investigate the impacts of the aggregator’s offerings on electricity markets and

to study the effects of different uncertainties on the results.

Consequently, the contributions of this chapter are:

1. To propose a stochastic bi-level model that allows strategic offerings for

a hybrid wind and PV aggregator that acts as a price-maker in both day-

ahead and intraday markets, and as a deviator in the balancing market.
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2. To model the uncertainty regarding wind and PV productions using the

probabilistic constraint and combine it with stochastic optimization.

3. To validate the model using a modified Swiss system and conduct sen-

sitivity analyses to investigate the impacts of the aggregator’s market

share, the import electricity prices, the price elasticity of the system de-

mand curve and the generation mix of the aggregator.

3.1.2 Chapter Organization

The remainder of this chapter is organized as follows: the problem descrip-

tions and main model assumptions are presented in Section 3.2, and the math-

ematical formulations of the proposed optimization model are given in Section

3.3. Section 3.4 describes the test system for the case study and the results are

shown in Section 3.5. Finally, limitations and the future work are discussed in

Section 3.6, and conclusions are drawn in Section 3.7.

3.2 Problem Descriptions and Model Assumptions

In this section, we first introduce the multi-market environment that the hy-

brid aggregator is involved in and illustrate how the uncertainties are incor-

porated. Afterwards, the proposed bi-level model and the main modeling as-

sumptions are described.

3.2.1 Multi-market Environment

Similar to the market environment defined in the previous chapter, the hybrid

aggregator is assumed to participate in an electricity market that is organized

around three major trading floors: the day-ahead, the intraday and the balanc-

ing markets, as illustrated in Fig. 3.1. The day-ahead market is assumed to be

cleared at 11:00 on day d−1, i.e. the day before the delivery day d, in a uniform

auction, while the intraday market is simplified as a single intraday auction

that is cleared shortly before the delivery day (i.e. the day before delivery at

23:00). Finally, the balancing market is designed to compensate the difference

between the scheduled and the measured energy. In this context, it is assumed

that all imbalances can be corrected through the balancing market.
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Day d-1 Day d

Day-ahead Market
Clearing

Intraday Market
Clearing Balancing Market

Clearing

Figure 3.1: Structure of the sequential spot electricity markets.

3.2.2 Uncertainty Characterization

The hybrid aggregator faces different levels of uncertainties such as the rival

producers’ offers, demands’ bids and the power outputs of VRE. In this model,

we neglect uncertainties regarding demands’ bids as demands are in general

inelastic. It is however straightforward to incorporate this into the model and

a sensitivity analysis is conducted to assess the impact of the price elasticity of

demands. Additionally, rivals’ offers in the day-ahead market are assumed to

be deterministic and are modeled based on the rival units’ marginal costs and

available capacities, while the uncertainty concerning rivals’ intraday offers are

modeled using scenarios. This is based on the fact that intraday market prices

are more volatile, as they reflect events which were not foreseen on the day be-

fore the delivery. Furthermore, to reach a compromise between accuracy and

computational time, instead of using scenarios, the VRE output uncertainty

is taken into consideration by formulating probabilistic constraints. The VRE

output forecast error is modeled assuming that it is subject to the Gaussian

distribution. The resulting chance constraints are analytically reformulated

into the deterministic ones without adding computational complexity to the

original problem. A method to model the uncertainties in a more realistic way

without requiring to specify the distribution of the random variables will be

presented in the following chapter. Note that since the BM prices are in gen-

eral difficult to simulate and forecasting the BM prices is beyond the scope of

this thesis, BM prices are modeled using a function of the DAM and IDM prices

and therefore uncertainties concerning the BM prices are not considered.
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Upper 

Level
Aggregator 

Profit Maximization
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DA Market
Social Welfare 
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DA offers DA price

ID Market
Social Welfare 
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Figure 3.2: Structure of the bi-level model.

3.2.3 Stochastic Bi-level Model

The hybrid aggregator aims to maximize its profits by participating in all three

trading floors, i.e. the day-ahead, the intraday and the balancing markets. As

mentioned, the hybrid aggregator is assumed to act as a price-maker in both

day-ahead and intraday markets, and as a deviator in the balancing market.

The offering strategy is formulated as a stochastic bi-level optimization prob-

lem, which is shown in Fig. 3.2. The upper-level represents the aggregator’s

profit maximization problem, while the two lower-levels represent the day-

ahead and the intraday market clearing problems, respectively.

The bi-level model is formulated as a Mathematical Program with Equilib-

rium Constraints (MPEC), by replacing the two lower level problems with their

first-order Karush-Kuhn-Tucker (KKT) conditions and integrating them into

the upper level problem. Then the resulting MPEC model is further trans-

formed into a Mixed-Integer Linear Programming (MILP) using the KKT op-

timality conditions and strong duality theory [20, 53].

3.2.4 Model Assumptions

The main assumptions made in this chapter are summarized as follows:

• The hybrid aggregator is assumed to participate in an electricity market

that is organized around three major trading floors: the day-ahead, the

intraday and the balancing markets.

• An auction-based intraday trading that is based on uniform pricing is

assumed, while instead of four Intraday (ID) trading floors that are as-
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sumed in Chapter 2, only one ID auction is considered as the focus of

this chapter is to analyze the impact of market power.

• Due to the lack of data, identical DAM and IDM participants are as-

sumed. Based on the fact that the total energy traded in the IDM is much

less than that in the DAM [34], the supply quantity of each producer as

well as the demand quantities for the DAM and the IDM are assumed to

be 90% and 10% of the total supply and demand quantities for the DAM

and the IDM together.

• The aggregator is assumed to be the only one in the market that could

bid strategically, i.e. all rival producers are assumed to be non-strategic

producers with offering curves constructed based on their correspond-

ing marginal costs and available capacities. While rivals’ offers in the

day-ahead market are assumed to be deterministic, uncertainties con-

cerning rivals’ intraday offers are modeled using scenarios.

• Both the DAM and the IDM demands are assumed to be inelastic in the

Baseline scenario, while a sensitivity scenario is simulated to investigate

the influence of the price elasticity of demand.

• The BM prices are assumed to be independent of the aggregator’s posi-

tion, i.e. the aggregator is a price-taker in the balancing market. This as-

sumption, however, might need to be reconsidered when the aggregator

accounts for a significant share of the market. Moreover, it is assumed

that all imbalances can be corrected through the balancing market.

• The simulated modified Swiss electricity system is assumed to be uncon-

gested, i.e. no network constraints are considered, which is consistent

with the zonal pricing scheme of the European electricity markets.

• The cross-border transmission is modeled as a non-strategic rival pro-

ducer, while sensitivity analyses are conducted to analyze the impact of

the import electricity’s offering prices.

Note that the simulated electricity system and the market environment are a

simplification of a much more complex reality.

3.3 Mathematical Formulation
In this section, we first present the mathematical formulation of the determin-

istic bi-level optimization model and how it can be reformulated as a MILP
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model. Then, the final formulation of the proposed stochastic MILP model is

described by integrating the modeling of uncertainties.

3.3.1 Upper Level Formulation

The Upper-Level (UL) problem is the aggregator’s profit maximization problem

and is defined by (3.1a)-(3.1f). The objective function represents the aggrega-

tor’s profit, which comprises the profits from the day-ahead, the intraday and

the balancing markets. Note that the generation costs for the wind and PV

units within the aggregator are assumed to be zero. Mathematically,

max

T∑
t=1

(
λDA
t PDA

t + λID
t P

ID
t + prBM

t P BM
t

)
(3.1a)

where λDA
t and λID

t are the day-ahead and intraday market clearing prices at

time t, PDA
t and P ID

t are the dispatch quantities of the aggregator in the day-

ahead and intraday markets. The term prBMP BM is equal to prBM+P BM+ −
prBM-P BM-, where prBM+/prBM- and P BM+/P BM- denote the positive/negative

balancing prices and quantities. The simulation horizon is denoted by T .

The aggregator’s total dispatched quantities in all three markets should be

equal to the aggregator’s real-time outputs, which are the sum of wind outputs

PW and PV outputs P S. The real-time wind and PV outputs are limited by the

wind forecast PWf and PV forecast P Sf in the case of perfect forecast, respec-

tively. Mathematically,

PW
t + P S

t = PDA
t + P ID

t + P BM
t (3.1b)

0 ≤ PW
t ≤ PWf

t (3.1c)

0 ≤ P S
t ≤ P Sf

t (3.1d)

Furthermore, as the considered aggregator has no ability to store energy, it is

assumed that it cannot purchase energy from the market8. The minimum offer

quantity is equal to zero, while the maximum offer quantitiesQDA andQID that

the aggregator submits to the day-ahead and intraday markets are limited to

8The possibility of virtual bidding, which refers to the trading of electricity without physically
producing or consuming the electricity, is not considered.
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the total wind and PV installed capacities PWc + P Sc, i.e.,

0 ≤ QDA
t ≤ PWc + P Sc (3.1e)

0 ≤ QID
t ≤ PWc + P Sc (3.1f)

3.3.2 Lower Level Formulation

As mentioned, the two Lower-Level (LL) problems represent the market clear-

ings of the day-ahead and intraday markets. As the derivation for offering

strategies in the IDMs is analogous to the derivation of the ones in the DAM,

only the lower-level problem of the DAMs is described here. It is assumed that

results of IDMs are independent from DAMs.

The objective of the LL problem is to maximize the social welfare, as ex-

pressed by

max
αDA
t ,P

DA
t

T∑
t=1

Nm∑
m=1

λDA,D
t,m PDA,D

t,m −
T∑
t=1

N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b −

T∑
t=1

αDA
t PDA

t (3.2a)

where PDA,D
t,m and λDA,D

t,m is the consumers’ Day-ahead (DA) price-quantity pair

of bidding block m at time t, while λDA,O
t,j,b and PDA,O

t,j,b is the DA price-quantity

pair of offering block b of rival producer j at time t. The number of consumers’

demand bidding blocks, the number of rival producers and the number of the

rival producers’ offering blocks are denoted as Nm, N j and Nb, respectively.

Finally, αDA and PDA is the DA price-quantity pair of the aggregator. The LL

problem is subject to two types of constraints: 1) offering and bidding quanti-

ties’ minimum/maximum limits expressed by (3.2b)-(3.2d); and 2) the power

balance constraint (3.2e) which forces the summation of DAM dispatched of-

fering quantities to be equal to the DAM dispatched bidding quantities for each
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time step, i.e.

0 ≤ PDA
t ≤ QDA

t : µDAmin
t , µDAmax

t (3.2b)

0 ≤ PDA,O
t,j,b ≤ P

DA,Omax
t,j,b : µDA,Omin

t,j,b , µDA,Omax
t,j,b (3.2c)

0 ≤ PDA,D
t,m ≤ PDA,Dmax

t,m : µDA,Dmin
t,m , µDA,Dmax

t,m (3.2d)

PDA
t +

N j∑
j=1

Nb∑
b=1

PDA,O
t,j,b −

Nm∑
m=1

PDA,D
t,m = 0 : λDA

t (3.2e)

where PDA,Omax and PDA,Dmax are the maximum DAM offering quantities of

the rival producers and the maximum bidding quantities of the demand. The

dual variables are denoted following a colon after each corresponding equa-

tion. Note that PDA indicates the power that the aggregator expects to be dis-

patched for, which is an outcome of the lower-level market clearing problem

as it models the dispatch of the market. The total power that the aggregator is

dispatched for is the summation over all offering or bidding blocks. The same

holds for PDA,O and PDA,D.

3.3.3 Bi-level Formulation with Two Lower Levels

Thus, the overall bi-level problem can be formulated as:

UL: max

T∑
t=1

(
λDA
t PDA

t + λID
t P

ID
t + prBM

t P BM
t

)
s.t. (3.1b)-(3.1f)

LL1: argmax
αDA
t ,P

DA
t

T∑
t=1

Nm∑
m=1

λDA,D
t,m PDA,D

t,m −
T∑
t=1

N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b −

T∑
t=1

αDA
t PDA

t

s.t. (3.2b)-(3.2e)

LL2: argmax
αID
t ,P

ID
t

T∑
t=1

Nm∑
m=1

λID,D
t,mP

ID,D
t,m −

T∑
t=1

N j∑
j=1

Nb∑
b=1

λID,O
t,j,bP

ID,O
t,j,b −

T∑
t=1

αIDM
t P ID

t

s.t. equivalent ID constraints of (3.2b)-(3.2e)
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3.3.4 Mathematical Program with Equilibrium Constraints

(MPEC) Formulation

As the lower-level problem (3.2) is convex, it can be replaced by the following

set of KKT conditions:

αDA
t − λDA

t + µDAmax
t − µDAmin

t = 0 (3.3a)

λDA,O
t,j,b − λ

DA
t + µDA,Omax

t,j,b − µDA,Omin
t,j,b = 0 (3.3b)

λDA,D
t,m − λDA

t − µDA,Dmax
t,m + µDA,Dmin

t,m = 0 (3.3c)

0 ≤ PDA
t ⊥ µDAmin

t ≥ 0 (3.3d)

0 ≤ PDA,O
t,j,b ⊥ µ

DA,Omin
t,j,b ≥ 0 (3.3e)

0 ≤ PDA,D
t,m ⊥ µDA,Dmin

t,m ≥ 0 (3.3f)

0 ≤ (QDA
t − PDA

t ) ⊥ µDAmax
t ≥ 0 (3.3g)

0 ≤ (PDA,Omax
t,j,b − PDA,O

t,j,b ) ⊥ µDA,Omax
t,j,b ≥ 0 (3.3h)

0 ≤ (PDA,Dmax
t,m − PDA,D

t,m ) ⊥ µDA,Dmax
t,m ≥ 0 (3.3i)

PDA
t +

N j∑
j=1

Nb∑
b=1

PDA,O
t,j,b −

Nm∑
m=1

PDA,D
t,m = 0 (3.3j)

where (3.3a)-(3.3c) are stationary conditions. Inequalities on the left-hand side

and the right-hand side of (3.3d)-(3.3i) declare the feasibility of the primal and

dual problems, respectively.

Thus, the resulting MPEC formulation is:

max

T∑
t=1

(
λDA
t PDA

t + λID
t P

ID
t + prBM

t P BM
t

)
(3.4a)

s.t. (3.1b)-(3.1f) (3.4b)

DAM KKT conditions (3.3a)-(3.3j) (3.4c)

IDM KKT conditions equivalent to (3.3a)-(3.3j) (3.4d)

3.3.5 Mixed-integer Linear Programming (MILP) Formulation

Note that the resulting MPEC is a non-linear and non-convex optimization

problem that is difficult to solve. On one hand, the non-linearity of the MPEC
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is caused by the complementarity conditions (3.3d)-(3.3i) and the equivalent

IDM conditions. On the other hand, it is due to the non-linear part λDA
t PDA

t

and λID
t P

ID
t in the objective function. Hence, in the following the problem is

transformed into a MILP formulation.

First, the equations including the perpendicularity operator ”⊥” are lin-

earized using binary variables [54]:

0 ≤ PDA
t ≤M1u

DA1
t (3.5a)

0 ≤ PDA,O
t,j,b ≤M2u

DA,O1
t,j,b (3.5b)

0 ≤ PDA,D
t,m ≤M3u

DA,D1
t,m (3.5c)

0 ≤ µDAmin
t ≤M4(1− uDA1

t ) (3.5d)

0 ≤ µDA,Omin
t,j,b ≤M5(1− uDA,O1

t,j,b ) (3.5e)

0 ≤ µDA,Dmin
t,m ≤M6(1− uDA,D1

t,m ) (3.5f)

0 ≤ QDA
t − PDA

t ≤M7u
DA2
t (3.5g)

0 ≤ PDA,Omax
t,j,b − PDA,O

t,j,b ≤M8u
DA,O2
t,j,b (3.5h)

0 ≤ PDA,Dmax
t,m − PDA,D

t,m ≤M9u
DA,D2
t,m (3.5i)

0 ≤ µDAmax
t ≤M10(1− uDA2

t ) (3.5j)

0 ≤ µDA,Omax
t,j,b ≤M11(1− uDA,O2

t,j,b ) (3.5k)

0 ≤ µDmax
t,m ≤M12(1− uDA,D2

t,m ) (3.5l)

uDA1
t , uDA,O1

t,j,b , u
DA,D1
t,m , uDA2

t , uDA,O2
t,j,b , u

DA,D2
t,m ∈ {0, 1} (3.5m)

whereM1,2,...,12 are large enough constants.

Second, the non-linear part λDAPDA and λIDP ID in the objective function are

linearized by applying the strong duality theorem to the lower-level problems

and using some of the KKT conditions stated before. According to the strong

duality theorem, the primal optimal objective and the dual optimal objective

is equal, which means that for the DA market clearing problem the following
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holds:

T∑
t=1

Nm∑
m=1

λDA,D
t,m PDA,D

t,m −
T∑
t=1

N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b −

T∑
t=1

αDA
t PDA

t

=

T∑
t=1

µDAmax
t QDA

t +

T∑
t=1

N j∑
j=1

Nb∑
b=1

µDA,Omax
t,j,b PDA,Omax

t,j,b

+

T∑
t=1

Nm∑
m=1

µDA,Dmax
t,m PDA,Dmax

t,m

(3.6)

By reformulating (3.3a), (3.3d) and (3.3g), we obtain

T∑
t=1

αDA
t PDA

t =

T∑
t=1

PDA
t (λDA

t − µDAmax
t + µDAmin

t ) (3.7)

PDA
t µDAmin

t = 0 (3.8)

PDA
t µDAmax

t = QDA
t µDAmax

t (3.9)

Substituting (3.8) and (3.9) into (3.7) yields

T∑
t=1

αDA
t PDA

t =
T∑
t=1

λDA
t PDA

t −
T∑
t=1

µDAmax
t QDA

t (3.10)

and with (3.6), we have

T∑
t=1

λDA
t PDA

t =−
T∑
t=1

N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b +

T∑
t=1

Nm∑
m=1

λDA,D
t,m PDA,D

t,m (3.11)

−
T∑
t=1

N j∑
j=1

Nb∑
b=1

µDA,Omax
t,j,b PDA,Omax

t,j,b −
T∑
t=1

Nm∑
m=1

µDA,Dmax
t,m PDA,Dmax

t,m

With the linearization of the KKT complementarity conditions, the linearized

form of λDA
t PDA

t in (3.11), as well as the equivalent linearization for the IDM LL

problem, the MPEC model is converted to an MILP model. It can be written as:
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max

T∑
t=1

prBM
t P BM

t

+

T∑
t=1

Nm∑
m=1

(
λDA,D
t,m PDA,D

t,m − µDA,Dmax
t,m PDA,Dmax

t,m

)

−
T∑
t=1

N j∑
j=1

Nb∑
b=1

(
µDA,Omax
t,j,b PDA,Omax

t,j,b + λDA,O
t,j,bP

DA,O
t,j,b

)

+

T∑
t=1

Nm∑
m=1

(
λID,D
t,mP

ID,D
t,m − µID,Dmax

t,m P ID,Dmax
t,m

)

−
T∑
t=1

N j∑
j=1

Nb∑
b=1

(
µID,Omax
t,j,b P ID,Omax

t,j,b + λID,O
t,j,bP

ID,O
t,j,b

)
(3.12a)

s.t. (3.1b)-(3.1f) (3.12b)

KKT conditions (3.3a)-(3.3c), (3.3j) for DAM (3.12c)

KKT conditions for IDM equivalent to

(3.3a)-(3.3c), (3.3j) (3.12d)

Linearized complementarity constraints

(3.5a)-(3.5m) for DAM (3.12e)

Linearized complementarity constraints

for IDM equivalent to (3.5a)-(3.5m) (3.12f)

With the deterministic formulation of the problem, now various uncertainty

levels need to be considered. As mentioned in Section 3.2, uncertainties con-

cerning rivals’ offers in the IDM are modeled using scenarios, while the VRE

output uncertainties are modeled using probabilistic constraints. The details

of the uncertainty modeling will be discussed in the following paragraphs.

3.3.6 Modeling Variable Generation Output Uncertainties Us-

ing Probabilistic Constraints
VRE output fluctuates significantly and the variation from one hour to another

can be large. In this part, we assume that the VRE output is not known in
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advance, but rather is a random variable and is represented as the sum of the

VRE forecast and the forecast error:

PW
t = PWf

t + ∆PW
t (3.13)

P S
t = P Sf

t + ∆P S
t (3.14)

where PW and P S are the actual wind and PV outputs, ∆PW and ∆P S are the

wind and PV generation forecast errors. The DA wind and PV forecast errors

are modeled as Gaussian random variables with mean zero and standard devi-

ations σW and σS, i.e. ∆PW
t ∼ N (0, (σW

t )2) and ∆P S
t ∼ N (0, (σS

t )
2).

The chance-constrained power balance equation for the upper-level, i.e.

constraint (3.1b), is now formulated as

P
[
PDA
t + P ID

t + P BM
t ≤ PW

t + P S
t

]
≥ 1− ε (3.15)

With (3.13) and (3.14) we obtain

P
[
PDA
t + P ID

t + P BM
t ≤ PWf

t + ∆PW
t + P Sf

t + ∆P S
t

]
≥ 1− ε (3.16)

where ε denotes the violation probability. The constraint can be reformulated

analytically into a deterministic equation [55]:

PDA
t +P ID

t +P BM
t ≤ PWf

t +P Sf
t −Φ−1(1−ε)

[√
(σW
t )2+(σS

t )
2

]
(3.17)

where Φ is the probability distribution function.

The inverse of the cumulative distribution function is the quantile function,

and the quantile function of the standard Gaussian distribution is called the

”probit function”, which can be expressed in terms of the inverse error function:

Φ−1(p) =
√

2 · erf−1(2p− 1), p ∈ (0, 1) (3.18)

Thus, (3.17) becomes:

PDA
t +P ID

t +P BM
t ≤PWf

t +P Sf
t −
√

2erf−1(1−2ε)

[√
(σW
t )2+(σS

t )
2

]
(3.19)
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which can replace (3.1b) without adding computational complexity.

3.3.7 Modeling Market Uncertainties using Scenarios

As the price elasticity of demand is close to zero, and the DA offering prices are

assumed to be close to the marginal costs, only the uncertainty regarding rival

producers’ IDM offers is considered.

The final stochastic bi-level model with probabilistic constraints is as follows:

max

T∑
t=1

Nω∑
ω=1

αω
(
λDA
t,ωP

DA
t,ω + λID

t,ωP
ID
t,ω − prBM

t,ωP
BM
t,ω

)
(3.20a)

s.t. (3.1b)-(3.1f), (3.19), ∀ω (3.20b)

KKT conditions (3.3a)-(3.3c), (3.3j) for DA, ∀ω (3.20c)

KKT conditions for IDM equivalent to

(3.3a)-(3.3c), (3.3j), ∀ω (3.20d)

Linearized complementarity constraints

(3.5a)-(3.5m) for DA, ∀ω (3.20e)

Linearized complementarity constraints

for IDM equivalent to (3.5a)-(3.5m), ∀ω (3.20f)

PDA
t,ω′ = PDA

t,ω, ∀ω, ω′ (3.20g)

QDA
t,ω′ = QDA

t,ω, ∀ω, ω′ (3.20h)

λDA
t,ω′ = λDA

t,ω, ∀ω, ω′ (3.20i)

P ID
t,ω ≤ P ID

t,ω′ , ∀ω, ω′ : λID
t,ω ≤ λID

t,ω′ (3.20j)

where αω is the realization possibility of scenario ω and Nω indicates the to-

tal numbers of scenarios considered. Note that constraints (3.20b)-(3.20f) are

all dependent on scenario index ω. Equations (3.20g)-(3.20i) force the non-

anticipativity of DA decisions, while (3.20j) ensures the non-decreasing char-

acteristic of the resulting ID offer curves. It should be mentioned that the con-

sideration of consumers’ bids’ uncertainties can be incorporated into the for-

mulation without incurring large additional computational cost.
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3.4 Case Study - Test System
The proposed methodology is implemented using the MATLAB toolbox Yalmip

[38] and is applied to a modified Swiss system. Since a one-year simulation is

computationally expensive, the model is simulated for four selected weeks in

2016, namely the first weeks of January, April, July and October, each represent-

ing one season. Thus, all data used for the case study are from this period and

the corresponding 28-day simulation results are presented.

The simulated system comprises 15 generation technology types with a to-

tal maximum capacity of 22’599 MW. Table 3.1 lists the installed capacities

and the marginal cost assumptions for each technology type simulated for the

modified Swiss system. Note that the assumed marginal cost includes both

the variable operational cost and the fuel cost. In addition, subsidies for pro-

cessing the waste are considered for the waste incinerators [3]. Units with the

same technology type are merged and are assumed to submit the identical

offering curves to the electricity market. Capacity factors of all units except hy-

dro, wind and PV are assumed to be one. The capacity factors that are applied

for different types of hydro power plants in different seasons are based on the

data from [56] and the adopted values for the simulation are summarized in

Table 3.2. All hydro power plants are modeled as normal generation units, i.e.

the pumping and turbining behaviors are not modeled.

Table 3.1: Parameters of the units simulated for the modified Swiss system.

Unit types Capacity [MW] Marginal price [CHF/MWh] Source
Nuclear 2’865 29.1 [57, 58]
Run-of-river hydro 3’957 9.5 [56]
Storage hydro 7’957 11.0 [56]
Pumped hydro 4’655 9.0 [56]
PV 2’492 2.7 [59, 60]
Wind 75 2.5 [60, 61]
Biogas plant 10 65.0 [62, 63, 64]
Waste incinerator 266 2.5 [3, 65]
Gas turbine 71 86.7 [3, 60, 65, 66, 67]
Waste wood 6 2.0 [62, 66]
Oil 3 240.7 [3, 60, 65]
Gas CHP 3 60.0 [58, 62]
Wood CHP 133 30.2 [3, 62, 65]
Biogas CHP 81 65.0 [63, 64, 65]
Oil CHP 25 240.7 [3, 60, 62]
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Table 3.2: Capacity factors for different types of hydro power plants.

Winter Spring Summer Autumn
Run-of-river hydro 0.23 0.44 0.68 0.44
Storage hydro 0.28 0.23 0.14 0.23
Pumped hydro 0.20 0.15 0.10 0.13

As shown in Table 3.1, the Swiss power system is highly dependent on the

supply of hydro power plants and with the gradual nuclear phase-out the hydro

power already accounts for more than half of the Swiss electricity supply [65].

Since the generation of the hydro power plants is seasonal, the Swiss electric-

ity system is not self-sufficient during seasons with low hydro power outputs

(i.e., winter seasons). Thanks to the central location and the up to 9 GW cross-

border transmission capacities of Switzerland, which is substantial consider-

ing its around 10 GW peak demand [68], the Swiss system demand deficits are

able to be partly satisfied through imports from neighboring countries. As the

modeling of the cross-border trading is beyond the scope of this thesis, the

modified Swiss system is simplified by assuming that there is sufficient import

energy available. The import electricity is modeled as a rival unit with the max-

imum capacity of 5000 MW and offering prices at around 65 CHF/MWh, which

is a simplification of a highly complex reality. In reality, the cross-border elec-

tricity exchange quantity and price curves vary over time and are influenced by

multiple factors, such as the seasons, the availability of transmission capacities,

the trading country especially its generation mix and the energy path. Further-

more, the modeled Swiss electricity system is assumed to be uncongested, i.e.

the network constraints are not considered.

Demands are assumed to be price inelastic for both the DAM and the IDM,

i.e. the demand is independent of market prices. The total system demand is

modeled based on the data from [69] with an hourly maximum and minimum

load of 9’358 MW and 5’450 MW, respectively. Market participants for the IDM

are assumed to be the same as those for the DAM, but the maximum offering

quantities of all market participants as well as the demand quantities for the

DAM and the IDM are assumed to be 90% and 10% of that for the DAM and

IDM in total. This is based on the fact that the total energy traded in the Swiss

IDM is much less than the energy traded in the DAM [29]. As the rival produc-
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ers’ offering quantities and prices for the market are confidential and hardly

available, we consider that all rival producers are non-strategic producers with

offering curves constructed based on their available capacities and marginal

costs. To be more specific, the offering curve for each non-strategic unit con-

sists of four blocks. Under the assumption that in a competitive market each

market participant will offer close to its marginal cost, the offering price for

each block is set to 1, 1.05, 1.1 and 1.15 times of the unit’s marginal cost while

the corresponding offering quantity for each block is set to 60%, 20%, 10% and

10% of the unit’s total available offering quantity. Since the IDM prices are

more volatile than the DAM prices, we consider 20 scenarios to represent the

uncertainty concerning rivals’ offering prices in the IDM. The IDM offering

price of rival unit type j for block b under scenario ω is simulated as

λID,O
t,j,b,ω = λDA,O

t,j,b (1 + εID
j,ω) (3.21)

where εID follows a Gaussian distribution, i.e. εID ∼ N (µID, (σID)2) with the

mean µID and the standard deviation σID set to 0 and 0.3, respectively. These

offering price scenarios are associated with equal realization probability (i.e.,

5%). The aggregated hourly average DAM offering curve of all rival producers

along with the hourly average inelastic DA demand curve is shown in Fig. 3.3,

while the aggregated hourly average IDM offering curves of the rival producers

under different scenarios and the hourly average inelastic ID demand curve

are shown in Fig. 3.4. Note that for the offering curves shown in Fig. 3.3 and

Fig. 3.4 the capacity factors of all units are set to the corresponding annual

average values.

The positive and negative imbalance prices (i.e., prBM+ and prBM-) are mod-

eled based on the hourly DAM and IDM prices in the case when the market

share of the aggregator is zero, i.e. prDA and prID. Mathematically,

prBM+
t,ω = a1 ·min{prDA

t,ω, pr
ID
t,ω} ∀t, ∀ω

prBM-
t,ω = a2 ·max{prDA

t,ω, pr
ID
t,ω} ∀t,∀ω

(3.22)

where a1 and a2 are constants and are set to 0.7 and 1.3 based on the values

provided in [70]. The hourly positive and negative imbalance prices, as well

as the average DAM and IDM prices over all IDM offering price scenarios con-
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Figure 3.3: Average aggregated hourly day-ahead offering curve of rival pro-
ducers and an inelastic demand curve with the demand quantity equaling to
the average hourly day-ahead market demand quantity.

sidering zero market share of the aggregator (i.e. prDA and prID) for the four

representative weeks are shown in Fig. 3.5.

Finally, the strategic hybrid aggregator is assumed to be an aggregated port-

folio of several wind and PV power plants. The maximum generation output

of the wind and PV are calculated based on the corresponding wind and PV

market shares, which are defined as the ratio of the wind and PV generation to

the total system demand over the four-week simulation horizon, respectively.

Note that the strategic hybrid aggregator is introduced to the market to replace

the existing capacities in the system, i.e., as the market share of the aggregator

increases, the market share of other non-strategic units decreases correspond-

ingly while keeping the total supply of all strategic and non-strategic units (ex-

cluding the imports) the same.

The hourly capacity factors of wind and PV units for the four representa-

tive weeks are modeled based on the data from Renewables.ninja [71] and are

shown in Fig. 3.6. These capacity factors are applied to both the wind and PV

units within the aggregator and the existing non-strategic wind and PV units

modeled in the system. The violation probability ε used in the probabilistic

constraint is chosen to be 5% [55].
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Figure 3.4: Average aggregated hourly intraday offering curves of rival pro-
ducers under different intraday market offering price scenarios and an intra-
day market inelastic demand curve with the demand quantity equaling to the
hourly average of the intraday market demand quantity.

3.5 Case Study - Results

In this section, we first validate the effectiveness of the proposed model

by comparing a strategic aggregator using the presented method to a non-

strategic aggregator in the Baseline scenario, where the optimization is carried

out considering only the uncertainty regarding the IDM offerings of the rival

producers. The strategic aggregator optimizes both the offering quantities and

prices aiming to maximize its total profits, whereas the non-strategic aggrega-

tor is assumed to offer all forecasted power to the DAM and the IDM at a price

of zero. Then to investigate how the results are affected by our assumptions,

we show the results of conducting a set of one-at-a-time sensitivity analyses

of the aggregator’s market share, the price of the import electricity, the price

elasticity of the demand, the generation mix of the aggregator and the forecast

uncertainty while keeping the remaining parameters equal to the Baseline sce-

nario value. Parameters modeled in the Baseline and the sensitivity scenarios

are summarized in Table 3.3.
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Figure 3.5: The hourly average positive and negative imbalance prices, as well
as the day-ahead and intraday market prices over all intraday price scenarios
considering only the offering of the non-strategic rivals for the four represen-
tative weeks corresponding to four seasons (from left to right: winter, spring,
summer, autumn).

Figure 3.6: Hourly capacity factors of wind and PV units for four weeks corre-
sponding to four seasons (from left to right: winter, spring, summer, autumn).

3.5.1 Strategic offering vs. Non-strategic offering

In this section, we compare the results of the strategic and non-strategic offer-

ings in the Baseline scenario.

Figure 3.7 shows the DA offering quantities and the resulting DAM clear-

ing prices of a winter, a spring, a summer and an autumn day under strategic
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Figure 3.7: Day-ahead offering quantities and the resulting market clearing
prices for strategic and non-strategic offerings in the Baseline scenario for four
selected days from four seasons.
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Table 3.3: Modeled input parameters in the Baseline and the sensi-
tivity scenarios.

Parameter Baseline value Sensitivity analysis value
Import electricity offering price 65 CHF/MWh 97.5 CHF/MWh, 130 CHF/MWh
Standard deviation of forecast errors 0% 0~30%
Demand bidding curve price inelastic increased elasticity
Aggregator market share 10% 0%-35%
Wind share within the aggregator 50% 0~100%
PV share within the aggregator 50% 0~100%

and non-strategic offerings. In general, the strategic aggregator manages to in-

crease the market prices by withholding its offering quantities for some hours

during the day. This can be observed for example in hours 11-17 in Fig. 3.7b

and hour 12 in Fig. 3.7c where strategic offering quantities are lower than non-

strategic quantities, resulting in an increase of the market prices during these

hours. However, it can be observed that in most of the hours the DA offering

quantities and the resulting DA market clearing prices under strategic offerings

are identical to those under the non-strategic offerings. This is due to the fact

that on one hand the market power (i.e. the ability to alter the market price)

of the strategic aggregator is influenced by a lot of factors, such as the market

share of the aggregator, the demand elasticity and the market price cap etc.

More details of these influencing factors will be discussed in the following sec-

tions. On the other hand, the strategic aggregator always faces a price-volume

trade-off, which means that it can choose to be dispatched for a higher quan-

tity and at a lower price, or it can choose to be dispatched for a lower quantity

and at a higher price [72]. Whenever the revenues earned in the latter case are

higher than the revenues earned in the former case, the aggregator will exercise

the market power and withhold the capacity by either offering part of the avail-

able capacities at higher prices or offering less quantities than the available

capacities.

Furthermore, it can be noticed that the maximum DAM price of the four se-

lected days does not exceed 65 CHF/MWh, which is the marginal cost assumed

for the import electricity. The DAM prices remain at this level during the win-

ter and the spring seasons, when the output of the hydro power plants and PV

power plants are in general low, e.g. hours 1-7 and 18-24 in Fig. 3.7a as well as

hours 8-11 and 18-20 in Fig. 3.7b. This is due to the assumption that the im-
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port electricity is sufficient enough to meet the system demand deficit. More

specifically, when part of the system demand is satisfied by the imported elec-

tricity, i.e. the total offering quantities within the system that are associated

with an offering price below 65 CHF/MWh (i.e. the import electricity offering

price) are lower than the corresponding system demand, the market clearing

price will remain at the import electricity offering price. Furthermore, it can

be seen that the strategic aggregator does not withhold the capacity whenever

the market clearing price under the non-strategic offering reaches the offering

price of the import electricity. This is because the offering price of the import

electricity acts similar to a price cap under the assumption that sufficient im-

port electricity is available, the aggregator therefore cannot further increase

the market price by withholding the capacity in this case. The impact of the

import electricity price is further analyzed by conducting sensitivity analyses

and the results are discussed in the following sections.

Figure 3.8 shows the average IDM offering quantities and the resulting IDM

clearing prices over all ID offering price scenarios under the strategic and non-

strategic offerings for the same four days that are considered in Fig. 3.7. It

shows that the IDM clearing prices are more volatile than the DAM clearing

prices as the uncertainties of the IDM offerings of other participants in the

market are incorporated. Furthermore, it can be seen that the strategic aggre-

gator exercises the market power, i.e. withholds the outputs, more frequently

that it does in the DAM. This is likely due to the fact that with the incorporated

uncertainties, the aggregator needs to withhold less quantity to increase the

market clearing price to the level of the next-highest offer in the market.

3.5.2 Impacts of the Market Share

In this section, we analyze the impact of the aggregator’s market share, which

is defined as the ratio of the total aggregator’s generation to the total system

demand over the four representative weeks. Table 3.4 shows the results consid-

ering market shares of the aggregator increasing from 0% to 35% with a step of

5% in the strategic and non-strategic offering cases, respectively. Same as the

Baseline scenario, it is assumed that both the wind and the PV units contribute

to the same amount of market share of the aggregator, which is specified in the

table. It shows that both increase and decrease in DAM prices are observed in
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Figure 3.8: Average intraday offering quantities and the resulting market clear-
ing prices for strategic and non-strategic offerings in the Baseline scenario for
four selected days from four seasons.
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Table 3.4: Impact of the aggregator’s market share on day-ahead
market prices and the aggregator profit.

Results for Non-strategic Offering
Market share [%] Average DAM weekly price [CHF/MWh] Aggregator

profit [mCHF]Tot. Wind PV Week 1 Week 2 Week 3 Week 4
0 0 0 50.43 32.97 29.77 32.07 n/a
5 2.5 2.5 50.26 34.60 29.06 32.29 9.54
10* 5 5 52.94 35.85 28.50 31.76 17.82
15 7.5 7.5 53.47 37.90 29.56 31.38 24.71
20 10 10 53.67 38.89 32.97 30.88 30.42
25 12.5 12.5 52.55 40.21 36.00 32.23 35.39
30 15 15 52.21 42.83 36.14 33.73 40.28
35 17.5 17.5 51.58 44.19 36.42 33.88 44.97

Results for Strategic Offering
Market share [%] Average DAM weekly price [CHF/MWh] Aggregator

profit [mCHF]Tot. Wind PV Week 1 Week 2 Week 3 Week 4
0 0 0 50.43 32.97 29.77 32.07 n/a
5 2.5 2.5 53.46 37.28 30.32 34.54 9.96 (+4.4%)
10* 5 5 58.16 43.10 31.94 37.19 20.25 (+13.7%)
15 7.5 7.5 62.28 48.06 38.60 41.55 30.98 (+25.3%)
20 10 10 63.30 55.11 46.48 48.41 42.48 (+39.7%)
25 12.5 12.5 64.57 60.55 57.47 58.00 55.20 (+56.0%)
30 15 15 65.00 62.44 61.37 60.52 68.81 (+70.8%)
35 17.5 17.5 65.02 64.15 63.08 64.57 82.64 (+83.8%)

* Baseline value.
Note that values in () are the increase in profits of the aggregator in the case of strategic

offering compared to that of non-strategic offering under the same market share.

the case of non-strategic offering. This is likely due to the mixed impacts of a

few factors: 1) with the increasing market share of the non-strategic aggrega-

tor, an increasing amount of offering quantities are submitted to the market

at price zero, which could have a negative impact on the market prices during

these hours; 2) based on the definition of the market share, the non-strategic

aggregator’s market share increases as a replacement of the existing capacities

within the system. As a result of the diurnal and seasonal pattern of the ag-

gregator’s output, more demand needs to be satisfied by the import electricity

during the periods of low aggregator generations (e.g. winter), the electricity

market prices during these hours are thus increased since the import electric-

ity offering price is in general higher than the average market price. Moreover,

with the increasing market share, the price increase in the case of strategic

offerings is stronger than that in the case of non-strategic offerings. This is

because the aggregator exerts the market power and succeeds in increasing
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Table 3.5: Impact of the aggregator’s market share on market
revenues and costs.

Market share [%] Revenue [mCHF] Cost [mCHF]
Tot. Wind PV Aggregator Rival producers Demand Import
0 0 0 n/a 172.82 178.19 5.37
5 2.5 2.5 9.96 175.44 190.34 5.20
10* 5 5 20.25 183.36 207.85 5.54
15 7.5 7.5 30.98 197.36 231.28 6.65
20 10 10 42.48 213.92 257.59 8.72
25 12.5 12.5 55.20 232.66 287.59 12.01
30 15 15 68.81 227.49 297.21 16.04
35 17.5 17.5 82.63 219.96 305.14 20.70

* Baseline value.

market prices by withholding the outputs. When comparing the total expected

profits (including the profits from all markets) of the strategic and the non-

strategic aggregators considering different values of the market share. It is no-

table that the profit of the strategic aggregator grows at a higher rate than the

profit of the non-strategic aggregator. More specifically, with the aggregator

market share changing from 5% to 35%, the aggregator’s profit in the case of

strategic offering is from 4.4% higher to 83.8% higher than the aggregator’s

profit in the corresponding non-strategic offering case. This is due to the fact

that the non-strategic aggregator offers into the market at price zero. When its

market share increases, market clearing prices drop dramatically during the

periods when the aggregator generations are high. In contrast, the strategic

aggregator has more market power and more control of the market price by

withholding big amounts of the output when the market share increases. Re-

sults for IDM price changes under different market shares of the aggregator are

not shown, but as the market participants for the DAM and IDM are assumed

to be identical, the findings of the IDM results are in general consistent with

those of the DAM.

We further analyze the impact of market shares by showing the revenues and

costs of different market participants under different values of market shares

in the case of strategic offerings in Table 3.5. The numbers shown include the

revenues and costs incurred in both the DAM and the IDM. Note that the rev-

enues shown for the strategic aggregator are identical to the profits shown in

Table 3.4, as no generation cost is considered for the aggregator and the wind
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Table 3.6: Impact of the import electricity price.

Import offering
price [CHF/MWh]

Average DAM weekly price [CHF/MWh] Aggregator
profit [mCHF]

Aggregator offer
DAM & IDM [TWh]Week 1 Week 2 Week 3 Week 4

65* 58.16 43.10 31.94 37.19 20.25 0.44
97.5 82.18 52.58 32.80 43.35 23.94 0.43
130 107.39 64.38 34.49 50.12 27.86 0.42

* Baseline value.

and PV outputs are assumed to be perfectly forecasted in the Baseline scenario.

The results show that both the revenues of the strategic aggregator and the ri-

val producers increase as the aggregator’s market share increases from 0% to

25%, even though the aggregator’s market share increases as a replacement of

the existing capacities in the system. This can be explained by the increasing

average market prices shown in Table 3.4, which leads to more revenues for

each MWh of quantities offered to the market and could possibly recover the

losses caused by the reduced offering quantities. The revenues of the rival pro-

ducers decrease after the market share of the aggregator reaches 25%, which

means that additional revenues generated by the further increase in market

prices are not sufficient enough to recover the losses incurred by the reduced

market share. It is worth noting that since the import electricity offering price

acts similar to a price cap under the assumption that there is sufficient im-

port energy available, import offering price therefore limits the market price

increase and the revenues earned by the producers in the market (i.e., market

participants who offer to supply the electricity). In general, the total revenues

earned by all producers within the system increase as the market share of the

strategic aggregator increases, however, as shown in Table 3.5, this increase is

at the cost of increasing costs for the demand and for the imports, which might

not be favored by the system regulators and policy makers. Moreover, although

in reality the demand is in general inelastic to the price changes in the short

run, its price elasticity increases in the long run [73], which means that as a

result of the high market clearing prices and producer surplus in the long run

part of the demand might turn to alternative energy sources.

3.5.3 Impacts of the Import Electricity Price

To analyze the impact of the assumption on the import electricity offering

prices, we conduct the sensitivity scenarios by increasing the import offering
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Table 3.7: Impact of the price elasticity of demand.

Demand
Average price
[CHF/MWh]

Producer revenue
[mCHF]

Demand
cost

Aggregator
DAM & IDM offer

DAM IDM Aggregator Rivals [mCHF] [TWh]
Inelastic* 42.60 42.56 20.25 183.36 207.85 0.44
Increased elasticity 36.95 37.92 19.05 156.85 164.54 0.51

* Baseline value.

prices to 150% and 200% of the value assumed in the Baseline scenario (i.e.

65 CHF/MWh). The results are shown in Table 3.69. It is obvious that the

DAM prices increase significantly with the increase of the import electricity

price. This is because with the increasing import price the strategic aggrega-

tor has more incentives to exercise the market power, i.e. it has more space to

increase the market price by withholding the outputs, This can be justified by

the increasing aggregator profits and the decreasing total offering quantities

to the markets shown in Table 3.6. Furthermore, this phenomenon is more

pronounced during winter when there is less spare capacity in the system.

3.5.4 Impacts of the Price Elasticity of Demand
According to the work in [74], demand elasticity can contribute to mitigating

the strategic bidding behavior of the producers. In addition, despite the in gen-

eral low price elasticity of demand, even a small increase in demand elasticity

can result in appreciable improvement of the market performance. To analyze

how the assumption of the price elasticity of demand impacts the offering be-

haviors of the aggregator and the market results, in this section we simulate

a sensitivity scenario, i.e. a scenario with increased demand elasticity. In this

scenario, for each hour the total demand is assumed to consist of two parts:

a) inflexible demand, which accounts for 90% of the total demand; b) flexible

demand, which accounts for the remaining 10% of the demand. The short-

term price elasticity of the flexible demand part is assumed to be -0.3 based

on [73], which means that for each 1% increase (decrease) in electricity price,

the demand quantity will decrease (increase) 0.3%. Note that the values are

only taken for illustration purposes and in reality they may vary across sectors,

seasons, hours and regions, etc. As shown in Table 3.7, with the increasing

price elasticity of demand, the market clearing prices and the producers’ rev-

9IDM market results are similar to the results of the DAM and therefore are not shown.
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Table 3.8: Impact of the aggregator’s generation
mix.

Results for Non-strategic Offering
Share [%] Average price [CHF/MWh] Aggregator

profit [mCHF]Wind PV DAM IDM
100% 0% 35.48 37.18 18.13
80% 20% 36.15 37.66 18.61
60% 40% 36.91 38.34 18.52
40% 60% 37.49 38.87 16.76
20% 80% 37.62 39.23 14.12
0% 100% 38.18 39.75 10.96

Results for Strategic Offering
Share [%] Average price [CHF/MWh] Aggregator

profit [mCHF]Wind PV DAM IDM
100% 0% 42.56 42.48 22.20
80% 20% 42.43 42.43 21.71
60% 40% 42.42 42.36 20.81
40% 60% 42.82 42.76 19.61
20% 80% 43.09 43.21 18.10
0% 100% 43.08 44.03 16.22

enues decrease whereas the demand costs decrease. This is because with the

increased price elasticity of demand the strategic aggregator has less incentive

to exercise the market power as further increase the market price could reduce

the consumption of demand. Thus, the aggregator increases the total offering

quantities to the DAM and the IDM from 0.44 TWh in the inelastic demand

case to 0.51 TWh in the increased elasticity demand case. In general, introduc-

ing the elasticity to the demand side could shift the additional surplus due to

the exercise of market power from the supply side to the demand side, which

could increase the efficiency of the market. This observation is consistent with

the findings of [74].

3.5.5 Impacts of the Generation Mix of the Aggregator

In this section, the impact of the aggregator’s generation mix, i.e. the share

of wind and PV generation within the aggregator, on the market power and

the resulting profits of the aggregator are analyzed. To do so, we simulate the

sensitivity scenarios by changing the (total generation) share of wind and PV

units within the aggregator from 0% to 100% with a step of 20%, while keeping

the market share of the aggregator the same as the Baseline scenario, i.e. 10%.
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The results under both the non-strategic offerings and the strategic offerings

are shown in Table 3.8.

It can be seen that in both the strategic and non-strategic offering cases, in

general the market price slightly increases as the share of wind decreases. Fur-

thermore, while the aggregator achieves the highest profits when the share of

wind and PV is around 80%:20% in the case of non-strategic offering, the strate-

gic aggregator obtains the highest profits when the share of wind is 100%. To

better understand the reasons behind this, we plot the average hourly DAM

and IDM offering quantities and the resulting market clearing prices for strate-

gic and non-strategic offerings over the four representative weeks under two

extreme cases, namely the 100% wind case and the 100% PV case in Fig. 3.9.

It can be seen that in general the DAM results are similar to the IDM results

except that more capacities are withheld in the IDM. When focusing on the re-

sults of 100% PV in the case of strategic offerings, it is noticeable that due to the

diurnal pattern of the PV generation, the strategic aggregator needs to withhold

significant amount of capacity during the hours with high PV generation so as

to possibly eliminate the negative impact of the concentrated generation on

the market clearing price. In contrast, in the case of 100% wind under strategic

offering, as the aggregator generation is more evenly distributed across differ-

ent hours of the day, the aggregator withholds the capacity in almost all hours

of the day and with less quantities to be withheld for each hour in order to make

a good price-volume trade-off. As a result, the aggregator has more incentives

and flexibilities to exercise market power and therefore achieve higher profits,

when the aggregator generation is more evenly distributed between hours, i.e.

when the share of wind is higher. In the case of non-strategic offering, under

the assumption that the aggregator submits all forecasted output at a price

of zero, higher profits can be achieved when the generations of the aggregator

match well with the profile of the demands. Additionally, this is also influenced

by the available capacities of existing producers in the system.

3.5.6 Impacts of the Forecast Uncertainty

In this section, we analyze the impact of wind and PV generation forecast er-

rors by carrying out simulations with the forecast error standard deviations

(i.e. σW and σS) increased from 5% to 30% of the corresponding wind and PV
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(a) DAM - 100% Wind
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(c) IDM - 100% Wind
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Figure 3.9: Average hourly day-ahead and intraday market offering quantities
and the resulting market clearing prices for strategic and non-strategic offer-
ings over the four representative weeks under two extreme generation mix
cases: 100% wind and 100% PV.
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Figure 3.10: Impacts of forecast uncertainty on the aggregator profits: results
under the strategic offering are shown in the top figure; results under the non-
strategic offering are shown in the bottom figure.

generation forecast, while other parameters remain unchanged as the Base-

line scenario. Values of σW and σS are assumed to be the same for each of the

simulated sensitivity scenarios.

The resulting revenues from the DAM, the IDM and the BM as well as the

total profits of the aggregator over the four representative weeks under the

strategic offering and the non-strategic offering are shown in Fig. 3.10. It can

be seen that in the case of strategic offering the aggregator’s revenues from the

DAM and IDM and the total profits decrease as the considered standard devia-

tions increase from 5% to 30%, while the imbalance cost only slightly increases

(i.e. revenues from the balancing market slightly decreases). This is because

with the increasing values of σW and σS more conservative offering strategies

are adopted, i.e. the aggregator offers less to the DAM and the IDM, so as to

possibly avoid high costs in the balancing market. In contrast, in the case of

non-strategic offering, since the aggregator always offers all forecasted power

to the DAM and the IDM at zero prices, the revenues from the DAM and the

IDM are the same for different values of σW and σS. However, the deviation of

the forecast from the real-time output increases as σW and σS increase, leading
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to the increasing imbalance costs and decreasing total profits of the aggrega-

tor. Comparing the results of the strategic and the non-strategic offering cases,

while the total profits for the strategic offering case decrease from 18.9 mCHF

to 11.2 mCHF by 41%, the total profits for the non-strategic offering case de-

crease from 15.5 mCHF to 4.0 mCHF by 74%, which shows the importance of

integrating forecast uncertainties into the offering strategies.

3.6 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this sec-

tion. First, the market environment is simplified assuming that the aggregator

is the only one that could bid strategically in the market. Moreover, the market

participants of the day-ahead and intraday markets are assumed to be identi-

cal, which might not be the case in reality as the motivations for participating

in these two markets are different. A future version should model a more realis-

tic market environment by introducing competitions among multiple strategic

producers using an equilibrium model, and differentiate the participants in

different electricity markets.

Second, the uncertainties of wind and PV generation forecasts are incorpo-

rated using the chance constraints, which are reformulated assuming that the

forecast errors are Gaussian distributed. However, the distributions of the wind

and PV forecast errors in the real world are found to deviate substantially from

the standard Gaussian distribution [75, 76]. A more realistic method to model

the uncertainty without requiring the full knowledge of the uncertainty distri-

bution will be presented in the following chapters.

Third, the network constraints including both the transmission limits within

the modified Swiss electricity system and the cross-border transmission limits

are not considered. However, the network constraints are expected to have a

significant impact on the incentive to exercise market power as the network

constraints limit the ability of producers in other areas to respond to the price

changes [72]. Depending on whether the price zone that the aggregator is lo-

cated in is importing electricity from or exporting electricity to the neighboring

price zones, the aggregator might intend to increase the local market price by

making the transmission limit binding or not binding through the exercise of

market power.
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Fourth, the balancing market prices are assumed to be independent of the

forecast errors introduced by the aggregator, however, this assumption might

not hold when the market share of the aggregator is high enough to influence

the day-ahead and intraday market prices. Future work should include a more

realistic modeling of the balancing market price and consider the mutual influ-

ence between the aggregator’s forecast errors and the balancing market prices.

3.7 Summary and Conclusions
A stochastic bi-level model to derive optimal offering strategies for a hybrid

aggregator that consists of wind and PV units and acts as a price-maker in

both the day-ahead and intraday markets is presented. Uncertainties regarding

the intraday market offers from rival producers are incorporated using scenar-

ios, whereas the uncertainties of the wind and PV outputs are modeled using

chance constraints.

The proposed offering strategy enables the aggregator to offer more effi-

ciently into the markets and therefore to make more profits than the non-

strategic aggregator. As the market share increases, the aggregator has more

market power to increase the market price by withholding the output. As a re-

sult, the total profits for the aggregator grow at a higher speed than its market

share increase, which however is at the cost of increasing system demand and

import costs. In addition, the impact of import electricity offering prices is in-

vestigated, as under the assumption that the modified Swiss electricity system

is not self-sufficient and the import electricity is sufficiently enough to supply

the demand deficits, the import electricity price works similar to the market

price cap. Results show that increasing the assumed import electricity offering

price will increase the profits of the aggregator as it gives the strategic aggrega-

tor more space to exert market power. This phenomenon is more pronounced

during winter when there is less capacity available in the system due to the low

output level of hydro power plants, which are the main electricity suppliers

in the system. Besides the market price cap, the ability to exercise the mar-

ket power is also limited by the price elasticity of the demand curve. Results

show that increasing the price elasticity of the demand curve could shift the

additional producer surplus generated by exercising the market power from

the supply side back to the demand side, which increases the market efficiency.
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With regard to the influence of the wind and PV generation mix of the aggrega-

tor, due to the diurnal pattern of the PV generation, an increasing share of PV

limits the opportunities to exert market power to the high PV generation peri-

ods, i.e. noon time. The total profits of the aggregator therefore decrease when

the share of the PV generation increases in a hybrid aggregator that consists

of wind and PV units. Finally, the incorporated wind and PV forecast uncer-

tainty using chance constraints assures a certain risk level when designing the

optimal offering strategies.





Chapter 4

Modeling Uncertainty using

Distributionally Robust

Optimization

The main challenge for variable renewable energy is to deal with the generation

output uncertainty. To model this uncertainty more realistically and adequately,

in this chapter, we present a two-stage distributionally robust model to derive

optimal bidding strategies for an aggregated wind power plant that participates

as a price-maker in the day-ahead market and a deviator in the balancing mar-

ket. The market power is realized using a bi-level model. The uncertainty in

wind generation output is characterized by an ambiguity set that defines a fam-

ily of possible uncertainty distributions, and the optimal decision is robust to the

expectation over the worst-case distribution. A case study based on a modified

Swiss system verifies the effectiveness of the proposed distributionally robust op-

timization model. Out-of-sample analyses are conducted to compare its perfor-

mance to that of a deterministic optimization model, a robust and a stochastic

optimization model. This chapter is based on [77].
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4.1 Introduction

4.1.1 Motivation and Related Work

The penetration of Variable Renewable Energy (VRE) (e.g. wind power and

solar power) has increased dramatically in recent years, driven by the favor-

able governmental policies and its contributions to enabling a sustainable en-

ergy future. However, their intermittent and uncertain nature poses great chal-

lenges to both the VRE operators and the electricity system operators. Due to

the continuous decreasing subsidies, VRE is forced to trade in the same mar-

ket environment as conventional generators, although it is challenging to dis-

patch and difficult to forecast. While the optimal bidding strategy of wind or

Photovoltaic (PV) units in sequential markets as a price-taker [15] or as a price-

maker [45, 49, 78] as presented in Chapter 2 and Chapter 3 has been studied

extensively, the distribution of uncertain VRE generation forecast errors was of-

ten assumed to be known. Most of the work assumes that the wind and PV gen-

eration forecast errors are subject to Gaussian distribution (e.g. [55, 79, 80, 81]),

while beta and Weibull distributions have been applied as well (e.g. [48]). Nev-

ertheless, it has been shown that these assumed distributions differ greatly

from the wind and PV generation forecast errors in reality [75,76]. It is therefore

important to answer the question of what would be the optimal offering strat-

egy for VRE considering the forecast uncertainties are modeled in a proper way.

In this chapter, a bidding strategy for an aggregated price-maker Wind Power

Plant (WPP) based on Ditributionally Robust Optimization (DRO) is proposed.

Note that the work in this chapter focuses primarily on wind power plants,

however, the presented approaches are also applicable for PV power plants.

DRO falls into the general category of Stochastic Optimization (SO). Tradi-

tionally, SO incorporates uncertainties in the form of random variables and cor-

responding scenarios generated by using Monte Carlo simulations or probabil-

ity distributions. The minimization/maximization of the objective function is

then carried out over these scenarios. However, with an increasing number of

random variables and scenarios, the problem quickly grows to unmanageable

sizes. Moreover, an exact uncertainty distribution that is rarely available is re-

quired for SO. Robust Optimization (RO) [82] on the other hand has attracted a

lot of attention due to its tractability and robustness. In this approach, it is not
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necessary to know the probability distributions of the random variables but

the worst case is considered. Nevertheless, it achieves results that are robust

against parameter uncertainties requiring limited computation time while the

resulting optimal solutions are often over-conservative. Different from RO and

SO, DRO does not require the knowledge of exact distribution of uncertainties

and it considers the uncertainty in distributions using an ambiguity set, which

is constructed based on partial distributional information such as moment

statistics or uncertainty range. Based on the fact that historical realizations of

random variables are usually accessible, statistical data (e.g. expectation, stan-

dard deviation etc.) needed for building the ambiguity set is generally readily

available. In this way, DRO can avoid over-conservative solutions by effectively

extracting statistical features from empirical data, without requiring the spe-

cific probability distribution. While the solutions in RO are optimized against

the worst-case realization, DRO seeks to protect against the worst-case distri-

bution. To summarize, generally DRO acts as intermediary between SO and

RO and achieves acceptable optimality with reasonable computational effort.

At the moment, the most popular method applied to optimize bidding strate-

gies is stochastic optimization, e.g. [25] and [33]. However, as already men-

tioned, stochastic optimization often suffers from high computational com-

plexity resulting from a large number of scenarios. Even though there are

studies researching scenario reduction algorithms [83, 84], the applicability

of stochastic optimization can also be limited by the fact that the uncertainty

distribution is not always available.

Instead of requiring the knowledge of the uncertainty distribution, robust

optimization is used to obtain a bidding strategy that optimizes the worst-case

scenario over an uncertainty set, e.g. in [85] and [86]. RO is often compu-

tationally tractable as it requires only the range of possible variations of the

random variable, but the performance of robust optimization is restricted by

its conservativeness. To take advantage of both stochastic optimization and

robust optimization, the work in [87] models the wind and price uncertainties

by confidence bounds and scenarios, respectively. It combines adaptive robust

optimization and stochastic programming to solve the offering problem of a

virtual power plant.
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By minimizing the worst-case expected cost, DRO aims to optimize prob-

lems under uncertainty taking both the risk and the ambiguity into account

[88]. In DRO, the worst-case is taken over an ambiguity set, i.e. a family of

distributions characterized through certain known properties of the unknown

data-generating distribution [89]. In recent years, the method became popular

again and research regarding a tractable framework and formulation for DRO

has been carried out [88, 90, 91, 92]. Particularly, a Linear Decision Rule (LDR)

that restricts the adaptive decisions to be affinely dependent on the uncer-

tain parameters is used to enable tractability. To increase the flexibility of LDR

functions, an enhanced LDR method that restricts the adaptive decisions to

be affinely dependent on both the primary and the newly introduced auxiliary

random variables, was also proposed in [88].

Lately, DRO has been applied to power system problems [93, 94, 95, 96]. In

[93], a DRO model based on the enhanced LDR method was proposed to solve

a unit commitment problem considering uncertain wind power generation.

In [95], the same method is applied to solve the optimal power flow (OPF) prob-

lem considering uncertainties from wind power generation and load-based re-

serves, and DRO and a chance-constrained approach are compared. The work

in [94] is an extension of the approach presented in [93] where the ambigu-

ity set is extended by including non-linear functions and considering statistic

characteristics such as the standard deviation. Finally, it is reformulated as

a mixed-integer convex optimization problem with second-order cone con-

straints. Different from the method described above, [96] proposed another

distributionally robust optimization model to solve the energy and reserve dis-

patch problem. It is modeled as a semi-definite programming problem and

the delayed constraint generation algorithm was used to solve it in a tractable

manner.

Some work has been done in terms of comparing DRO with RO and SO meth-

ods. It is shown in [91] and [96] that generally DRO outperforms RO as more

statistical information is included, however, the DRO model is also more diffi-

cult to solve. The work in [97] demonstrates that in terms of the objective value,

DRO is more conservative than the traditional SO as SO only accounts for the

reference distribution, but the SO model also results in the highest computa-

tional time. Furthermore, both [91] and [97] concluded that compared to the
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SO model, the DRO model stands out as being more reliable, i.e. its optimal

solution is insensitive to probability distribution function (PDF) perturbations.

To our knowledge, however, there is a lack of studies dealing with optimizing

bidding strategies using distributionally robust optimization. In this chapter, a

bi-level model is developed to optimize the bidding strategy of a price-maker

wind aggregator under uncertainty. It is formulated as a two-stage optimiza-

tion problem: the Day-ahead (DA) bidding is the ”here-and-now” first-stage

decision and the real-time dispatch is the ”wait-and-see” second-stage deci-

sion. The objective of the wind aggregator is to maximize the sum of its day-

ahead profits and the expected worst-case Balancing Market (BM) profits over

the ambiguity set. It is assumed that the wind aggregator acts as a price-maker

in the Day-ahead Market (DAM), and as a deviator in the BM. To guarantee the

tractability, the second-stage decisions are assumed to be linearly dependent

on random variables by using the enhanced LDR method proposed in [88]. Fol-

lowing the linearization process presented in Chapter 3, the two-stage bi-level

problem is solved by being transformed into a Mixed-Integer Linear Program-

ming (MILP) model using the Karush-Kuhn-Tucker (KKT) optimality condi-

tions and strong duality theory.

Consequently, the contributions of this chapter are:

1. To propose a two-stage DRO model to optimize the offering strategies

of a wind aggregator that acts as a price-maker in the DAM, and as a

deviator in the balancing market.

2. To validate the model using a modified Swiss system and compare the

results of the DRO model to that of a Deterministic Optimization (DO)

model, a RO model and a SO model.

4.1.2 Chapter Organization

The remainder of the chapter is organized as follows: the main model assump-

tions are described in Section 4.2. The mathematical formulations and the pro-

posed optimization model are presented in Section 4.3. Section 4.4 provides

an analysis for a case study based on a modified Swiss electricity system. The

limitations and future work are discussed in Section 4.5. Finally, conclusions

are drawn in Section 4.6.
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4.2 Model Assumptions
The main modeling assumptions for this chapter are summarized as follows:

• The wind aggregator is assumed to participate in the day-ahead and the

balancing markets, while the DAM demand is assumed to be price in-

elastic, i.e. the demand quantity does not respond to the price changes.

• All producers other than the strategic wind aggregator are assumed to

be fully competitive and offer their productions at their marginal costs.

If the market power of multiple strategic producers are considered and

modeled in the market, the model will be an equilibrium problem with

equilibrium constraints. This extension is beyond the scope of this the-

sis and is left for future research.

• The BM prices are assumed to be independent of the aggregator’s posi-

tion, i.e. the aggregator is a price-taker in the balancing market. This as-

sumption, however, might need to be reconsidered when the aggregator

accounts for a significant share of the market. Moreover, it is assumed

that all imbalances can be corrected through the balancing market.

• The simulated modified Swiss electricity system is assumed to be un-

congested, i.e. no network constraints are considered, which is con-

sistent with the zonal pricing scheme of the European electricity mar-

kets. Futhermore, the cross-border transmission is modeled as a non-

strategic rival producer with sufficient transmission capacity.

• The wind turbines in this work are assumed to be the ones receiving

investment subsidies or negligible output subsidies, thus the effects of

output subsidies on offering strategies are not considered. When con-

sidering output subsidies, the market power through capacity withhold-

ing will be limited and the offering strategy will change depending on

whether the extra profits realized by wind curtailments are more than

the benefits from output subsidies or not. The impact of the output sub-

sidies on strategic biddings will be analyzed in Chapter 5.

4.3 Formulation of the Optimization Problem
This section presents the derivation of the distributionally robust optimiza-

tion formulation of a wind aggregator’s bidding problem. Similar to Chap-
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ter 3, the market power of the aggregator is modeled using a bi-level structure.

The upper-level represents the wind aggregator’s profit maximization problem,

while the lower-level represents the DAM clearing.

In the upper level model, the wind aggregator makes its offering decisions

(i.e. one price-quantity pair (αDA
t , QDA

t ) for each time step t) using the lower-

level outcome, namely the day-ahead market clearing prices λDA
t , as an input.

On the other hand, the lower level model clears the DAM by maximizing the

social welfare using the bidding quantities as an input and communicates the

resulting market clearing prices to the upper-level model. As we only consider

the uncertainty of real-time wind generations, the DA bidding is unique in the

balancing market whereas the balancing market dispatch depends on the ac-

tual wind generation realization. In Section 4.3.1 and 4.3.2, we first present the

general formulation of the bi-level optimization model and then show how it

can be reformulated as a MILP model using KKT conditions and duality theory.

However, the problem is intractable as it requires computing a solution for all

possible realizations of the wind generation output uncertainty. Therefore, in

Section 4.3.3, a tractable two-stage bi-level MILP model is derived by approxi-

mating the second-stage decisions using enhanced LDR, while the wind gener-

ation output uncertainty is modeled using an ambiguity set, where the family

of distributions is characterized by statistical parameters calculated from the

historical data. Note that only uncertainties regarding real-time wind outputs

are considered here, it is however straightforward to incorporate other uncer-

tainties into the model.

4.3.1 Bi-level Bidding Model
The strategic bidding model is formulated using a bi-level structure.

Upper-level Formulation

The Upper-Level (UL) problem is the wind aggregator’s profit maximization

problem, i.e. it maximizes the profits obtained from the DAM and the BM.

Note that the generation cost for wind is assumed to be zero. Mathematically,

the objective function is given by

max

T∑
t=1

(
λDA
t PDA

t + prBM
t P BM

t

)
(4.1a)
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where PDA
t is the DA dispatched quantity for time step t and λDA

t is the market

clearing price. The term prBMP BM equals to prBM+P BM+ − prBM-P BM-, where

prBM+/-
t and P BM+/-

t denote the prices and quantities for positive/negative im-

balances, respectively. Balancing market prices are modeled as constants and

the values are chosen such that it is guaranteed that the wind aggregator can

only sell (purchase) electricity in the BM at a price lower (higher) than the cor-

responding DAM price [15]. Variable T indicates the simulation time horizon.

It is assumed that the wind aggregator cannot purchase energy from the mar-

ket. The minimum offer quantity is therefore set to zero, and the maximum

offer quantities of the wind aggregator are limited by its capacity PWc. Mathe-

matically,

0 ≤ QDA
t ≤ PWc (4.1b)

Note that whileQDA is the quantity that is offered to the market, PDA indicates

the power that the wind aggregator expects to be dispatched for, which is an

outcome of the lower-level market clearing problem as it models the dispatch

of the market.

The wind aggregator along with the DAM and the BM constitute a closed

energy system that must be balanced at each time period. This means that the

actual wind generation PW must be equal to the total exchange in the electric-

ity markets, while PW is limited by the sum of wind forecasts PWf and forecast

error δ, and the imbalance quantities must be non-negative:

PDA
t + P BM

t = PW
t (4.1c)

PW
t ≤ PWf

t + δt (4.1d)

P BM
t = P BM+

t − P BM-
t (4.1e)

P BM+
t , P BM-

t ≥ 0 (4.1f)

where free wind curtailment is assumed. The modeling of the forecast error δ

will be elaborated in the following section.
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Lower-level Formulation

The Lower-Level (LL) represents the day-ahead market clearing and the objec-

tive is to maximize the social welfare, as expressed by

max
αDA
t ,P

DA
t

T∑
t=1

Nm∑
m=1

λDA,D
t,m PDA,D

t,m −
T∑
t=1

αDA
t PDA

t −
T∑
t=1

N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b (4.2a)

where αDA and PDA are the day-ahead offering price and the dispatched DA

offering quantity of the wind aggregator. Variables λDA,O
t,j,b and PDA,O

t,j,b are the of-

fering price and the day-ahead dispatched offering quantity for block b of rival

producer j at time t, while λDA,D
t,m and PDA,D

t,m are the bidding price and the dis-

patched day-ahead bidding quantity for bidding blockm of the consumer. The

number of consumers’ demand bidding blocks, the number of rival producers

and the number of the rival producers’ offering blocks are indicated by Nm,

N j andNb, respectively. As the rival producers’ offering quantities and prices

for the market are hardly available, we consider that they are non-strategic

producers with offering price-quantity pairs constructed based on their corre-

sponding marginal costs and available capacities.

The LL problem is subject to two types of constraints: 1) the upper and lower

limits on the offering quantities of the producers and the bidding quantities

of the demands; and 2) the power balance constraint which enforces that the

summations of the production quantities are equal to the load dispatch quan-

tities for each time step, i.e.

0 ≤ PDA
t ≤ QDA

t : µDAmin
t , µDAmax

t (4.2b)

0 ≤ PDA,O
t,j,b ≤ P

DA,Omax
t,j,b : µDA,Omin

t,j,b , µDA,Omax
t,j,b (4.2c)

0 ≤ PDA,D
t,m ≤ PDA,Dmax

t,m : µDA,Dmin
t,m , µDA,Dmax

t,m (4.2d)

Nm∑
m=1

PDA,D
t,m −

N j∑
j=1

Nb∑
b=1

PDA,O
t,j,b − P

DA
t = 0 : λDA

t (4.2e)

The dual variables are denoted following a colon after each corresponding

equation.
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4.3.2 Linearization of the Bidding Model

As the linearization process is similar to what has been presented in Chapter 3,

a brief version is presented here for the completeness of the mathematical

formulations. For more details of the reformulation and linearization process,

please refer to Chapter 3. For readers who have read Chapter 3, it is suggested

to skip the linearization process and directly jump to the resulting linearized

MILP model (4.6).

The bi-level model is formulated as a mathematical program with equi-

librium constraints (Mathematical Program with Equilibrium Constraints

(MPEC)), by replacing the lower level problem with the first-order KKT con-

ditions and integrating them into the upper level problem.

The stationary and the equality constraints are:

Nm∑
m=1

PDA,D
t,m −

N j∑
j=1

Nb∑
b=1

PDA,O
t,j,b − P

DA
t = 0 (4.3a)

αDA
t − λDA

t + µDAmax
t − µDAmin

t = 0 (4.3b)

λDA,O
t,j,b − λ

DA
t + µDA,Omax

t,j,b − µDA,Omin
t,j,b = 0 (4.3c)

− λDA,D
t,m + λDA

t + µDA,Dmax
t,m − µDA,Dmin

t,m = 0 (4.3d)

0 ≤ PDA
t ⊥ µDAmin

t ≥ 0 (4.3e)

0 ≤ PDA,O
t,j,b ⊥ µ

DA,Omin
t,j,b ≥ 0 (4.3f)

0 ≤ PDA,D
t,m ⊥ µDA,Dmin

t,m ≥ 0 (4.3g)

0 ≤ (QDA
t − PDA

t ) ⊥ µDAmax
t ≥ 0 (4.3h)

0 ≤ (PDA,Omax
t,j,b − PDA,O

t,j,b ) ⊥ µDA,Omax
t,j,b ≥ 0 (4.3i)

0 ≤ (PDA,Dmax
t,m − PDA,D

t,m ) ⊥ µDA,Dmax
t,m ≥ 0 (4.3j)

Note that the resulting MPEC is a non-linear and non-convex optimization

problem. On one hand, the non-linearity of the MPEC is caused by the com-

plementarity conditions (4.3e)-(4.3j). On the other hand, it is due to the non-

linear part λDAPDA in the objective function (4.1a). To reduce the problem

complexity, in the following the problem is transformed into a MILP.
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First of all, complementarity conditions (4.3e)-(4.3j) are linearized using the

”Big-M” method [53, 98]. For example, equation (4.3e) is reformulated as:

0 ≤ PDA
t ≤M1z

DA
t (4.4a)

0 ≤ µDAmin
t ≤M2(1− zDA

t ) (4.4b)

whereM1,2 are large enough constants and zDA is a binary variable. The same

method is used for linearizing (4.3f)-(4.3j). Furthermore, the objective function

(4.1) is linearized by applying the strong duality theorem to the lower-level

problem and using some of the KKT conditions stated before. The non-linear

part λDAPDA is linearized as follows:

ZDA =

T∑
t=1

λDA
t PDA

t

=−
T∑
t=1

N j∑
j=1

Nb∑
b=1

(
λDA,O
t,j,bP

DA,O
t,j,b + µDA,Omax

t,j,b PDA,Omax
t,j,b

)
+

T∑
t=1

Nm∑
m=1

(
λDA,D
t,m PDA,D

t,m − µDA,Dmax
t,m PDA,Dmax

t,m

)
(4.5)

With linearizations of the KKT complementarity conditions and the linearized

form of
∑T
t=1 λ

DAPDA in (4.5), the MPEC model is converted into an MILP
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model. It can be written as:

max −
T∑
t=1

N j∑
j=1

Nb∑
b=1

(
λDA,O
t,j,bP

DA,O
t,j,b + µDA,Omax

t,j,b PDA,Omax
t,j,b

)
+

T∑
t=1

Nm∑
m=1

(
λDA,D
t,m PDA,D

t,m − µDA,Dmax
t,m PDA,Dmax

t,m

)
+

T∑
t=1

prBM
t P BM

t (4.6a)

s.t. (4.1b)-(4.1f) (4.6b)

KKT conditions (4.3a)-(4.3d) (4.6c)

Linearized form of equations (4.3e)-(4.3j) (4.6d)

4.3.3 Modelling of Wind Uncertainty

In this section, we will discuss how to use DRO to model the wind uncertainty.

We first rewrite (4.6) in following compact form:

min
{
oTx+ φ(x, δ)

}
s.t. x ∈Xf

(4.7)

where oTx is the first-stage cost and the adaptive second-stage cost is

expressed as φ(x, δ), i.e. a function of the first-stage decision matrix

x = {αDA,QDA,P DA,P DA,D,P DA,O,λDA,µDAmin,µDAmax,µDA,Omin,µDA,Omax,

µDA,Dmin,µDA,Dmax} and the realizations of the random vector δ. The set Xf

represents the feasibility region of the first-stage decision x defined by equa-

tions (4.6b)-(4.6d).

SO Formulation

In traditional SO, random vector δ is described by a set of scenarios that are

drawn from a known distribution I and the objective is to optimize the first-

stage cost plus the expectation over the optimal second-stage costH(x, δ):

φ(x, δ) = EI
{
H(x, δ)

}
(4.8)
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whereH(x, δ) is expressed as:

H(x, δ) = min

−
T∑
t=1

prBM
t P BM

t


s.t. Constraints (4.1c)-(4.1f)

(4.9)

RO Formulation

In RO, δ is described by an uncertainty set U , and the objective is to optimize

the first-stage cost plus the worst-case optimal second-stage cost, i.e.,

φ(x, δ) = sup
δ∈U

{
H(x, δ)

}
(4.10)

DRO Formulation

DRO combines the characteristics of both RO and SO, i.e. in DRO, the proba-

bility distribution I of the random vector δ is uncertain and it belongs to an

ambiguity set F which will be explained later. The second-stage cost is refor-

mulated as the worst-case expectation over a family of distributions:

φ(x, δ) = sup
I∈F

EI
{
H(x, δ)

}
(4.11)

Thus, the second-stage problem based on DRO can be written as:

φ(x, δ) = min sup
I∈F

EI

−
T∑
t=1

prBM
t P BM

t


s.t. Constraints (4.1c)-(4.1f)

(4.12)

Modelling Ambiguity Set As mentioned, the Probability Distribution Func-

tion (PDF) of δ, namely I , is uncertain and it belongs to an ambiguity set F ,

which represents a family of distributions sharing some common statistical

features (e.g. expectation, deviation, variance, etc.). Similar to the classical RO

problems, the tractability of a DRO problem is also dependent on the choice

of the ambiguity set. In this work, we focus on a standard ambiguity set where

the family of distributions are characterized by a group of second-order cone
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representable constraints and a linear support set. This is because the robust

counterpart corresponding to a second-order cone uncertainty set is at most

a Second-order Cone Program (SOCP), which can be solved by off-the-shelf

solvers [88]. The ambiguity set modelled in this work is:

F =


I :

EI [δt] = 0

EI [|δt|] ≤ γ1,t
EI [(δt)2] ≤ γ2,t
Pr(δ ∈ W ) = 1


The first line ensures that the expectation of δt for each time point t is zero,

while the second and third lines guarantee that the expected absolute devia-

tion and variance are limited to γ1,t and γ2,t, respectively. The last equation

implies that all realizations of δ belong to a support set W defined as:

W = {δmin
t ≤ δt ≤ δmax

t }

where δmin
t and δmax

t indicate the lower and upper bounds of δt. As the ex-
pectation terms in the second and third constraints are difficult to compute,

based on the lifting theorem proposed in [99], a set of auxiliary random vari-

ables u = {u1,u2} is introduced to set bounds and achieve an ambiguity set

that has only linear expectation constraints, namely the lifted ambiguity set

G. The lifted ambiguity set and the second-order cone representable extended

uncertainty set are defined as:

G =


J :

EJ [δt] = 0

EJ [u1,t] ≤ γ1,t
EJ [u2,t] ≤ γ2,t
Pr{(δ, u) ∈ W } = 1


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W =



δmin
t ≤ δt ≤ δmax

t

|δt| ≤ u1,t
(δt)

2 ≤ u2,t
u1,t ≤ umax

1,t = max{δmax
t ,−δmin

t }
u2,t ≤ umax

2,t = max{(δmax
t )2, (δmin

t )2}


where the second and third lines in W set u1 and u2 as upper bounds for |δ|
and (δ)2, so that the second and third constraints inF and inG are equivalent.

To make the support set less conservative, the fourth and fifth lines in W limit

u1 and u2 to the worst-case [93], which can be calculated using historical data.

With constraints on random vectors δ and u in the lifted ambiguity set G,

the inner maximization problem of (4.12) can be reformulated as:

sup
J∈G

EJ

−
T∑
t=1

prBM
t P BM

t


= sup

∫
W

−
T∑
t=1

prBM
t P BM

t df(δ, u) (4.13a)

s.t.

∫
W

δdf(δ, u) = 0 : ρ (4.13b)∫
W

udf(δ, u) ≤ γ : β (4.13c)∫
W

df(δ, u) = 1 : η (4.13d)

f(δ, u) ≥ 0, ∀(δ, u) ∈ W (4.13e)

Constraints (4.1c)-(4.1f) (4.13f)

where f(δ, u) is the probability density function and the dual variables are de-

noted following a colon after each corresponding equation. Equations (4.13b)-

(4.13d) are equivalent to the four lines in set G. Problem (4.13) is known as a

Continuous Linear Programming (CLP) problem. Based on the Lagrange du-

ality theory for CLP problems presented in [100] and [101], the corresponding

Lagrange dual function of (4.13a)-(4.13e) is defined as the supreme of the La-
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grangian over f(δ, u):

L(δ, u) = sup
{∫

W

−
T∑
t=1

prBM
t P BM

t df(δ, u)− ρ
∫

W

δdf(δ, u)

− η(

∫
W

df(δ, u)− 1)− β(

∫
W

udf(δ, u)− γ)
}

= sup
{∫

W

(−
T∑
t=1

prBM
t P BM

t − η − ρδ − βu)df(δ, u)

+ η + γβ
}

(4.14)

Depending on the value of δ and u, this can be:

L(δ, u) =

η + γβ if η + ρδ + βu ≥ −
∑T
t=1 pr

BM
t P BM

t ,

+∞ otherwise.

Thus, the Lagrange dual problem is defined as

min η + γβ

s.t. β ≥ 0

η + ρδ + βu ≥ −
T∑
t=1

prBM
t P BM

t

Constraints (4.1c)-(4.1f)

(4.15)
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Thus, combining (4.15) with the first-stage constraints and objective, the over-

all two-stage maximization problem is:

max ZDA − η − γβ (4.16a)

s.t. β ≥ 0 (4.16b)

η + ρδ + βu ≥ −
T∑
t=1

prBM
t P BM

t (4.16c)

Constraints (4.1b)-(4.1f) (4.16d)

Constraints (4.3a)-(4.3d) (4.16e)

Linearized form of equations (4.3e)-(4.3j) (4.16f)

However, constraints (4.16c) and (4.16d) are in general intractable, as it re-

quires solving recourse problems over all outcomes of uncertain parameters

[102]. Thus, an appropriate decision rule should be applied to solve the prob-

lem via approximation.

Approximate Reformulation using Enhanced LDR We first approximate the

second-stage decision {P BM+, P BM-} by using the linear affine functions of the

random vector δ and auxiliary random vector u:

P BM+
t = k0t + k1t δt + k2t u1,t + k3t u2,t

P BM-
t = l0t + l1t δt + l2tu1,t + l3tu2,t

(4.17)



102 4.3. Formulation of the Optimization Problem

Substituting (4.17) into constraints (4.16c)-(4.16d), the following problem

results

max ZDA − η − γβ (4.18a)

s.t. β ≥ 0 (4.18b)

η + ρδ + βu ≥
T∑
t=1

prBM-
t (l0t + l1t δt + l2tu1,t + l3tu2,t)

− prBM+
t (k0t + k1t δt + k2t u1,t + k3t u2,t) (4.18c)

PDA
t + (k0t + k1t δt + k2t u1,t + k3t u2,t)

− (l0t + l1t δt + l2tu1,t + l3tu2,t) = PW
t (4.18d)

− PW
t ≥ −PWf

t − δt (4.18e)

k0t + k1t δt + k2t u1,t + k3t u2,t ≥ 0 (4.18f)

l0t + l1t δt + l2tu1,t + l3tu2,t ≥ 0 (4.18g)

Constraints (4.1b), (4.3a)-(4.3d) (4.18h)

Linearized form of equations (4.3e)-(4.3j) (4.18i)

Constraints (4.18d)-(4.18g) correspond to (4.16d) in the considered problem

which are on the other hand equivalent to (4.1c)-(4.1f). Instead of iterating

over all possible random variable realizations, (4.18) minimizes the objective

by optimizing the coefficients of the enhanced LDR, i.e. k0∼3 and l0∼3. As

constraints (4.18c)-(4.18g) include uncertainty variables δ and u that are re-

stricted by the uncertainty set W , they should be reformulated considering the

constraints in W . For example, by moving all terms to the left side, constraint

(4.18c) can be written as the following worst-case optimization problem that is

subject to the constraints in W :

min
J∈G
{η + ρδ + βu− [

T∑
t=1

(prBM-
t l0t − prBM+

t k0t )

+ (prBM-
t l1t − prBM+

t k1t )δt + (prBM-
t l2t − prBM+

t k2t )u1,t

+ (prBM-
t l3t − prBM+

t k3t )u2,t]} ≥ 0

(4.19)
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s.t.
∥∥∥−δ + δmin + 1

∥∥∥ ≤ δ − δmin + 1 : π1, ζ1

‖δ − δmax + 1‖ ≤ −δ + δmax + 1 : π2, ζ2

‖δ − u1 + 1‖ ≤ −δ + u1 + 1 : π3, ζ3

‖0‖ ≤ u1 : π4, ζ4

‖u1‖ ≤ umax
1 : π5, ζ5∥∥∥∥∥∥

 1−u2

2

δ

∥∥∥∥∥∥ ≤ u2 + 1

2
: π6, ζ6

‖u2‖ ≤ umax
2 : π7, ζ7

(4.20)

where π1∼7 and ζ1∼7 are the corresponding dual variables.

We first rewrite the objective function in (4.19) in a compact form

gprimal(δ, u), then the following equivalences are satisfied.

min {gprimal(δ, u)} ≥ 0 (4.21)

⇔ max {gdual(π, ζ)} ≥ 0 (4.22)

⇔∃ π, ζ : gdual(π, ζ) ≥ 0 (4.23)

where gdual(π, ζ) represents the dual objective function.

The first equivalence is obtained by applying the Lagrange duality theory to

the primal SOCP (4.19) and (4.20) [100], [103]. As stated by the strong duality

theorem, the solution to the primal (minimization) problem is always equal

to the solution to the associated dual (maximization) problem. The second

equivalence holds as the feasible set of the primal minimization problem is

not empty [103]. Finally, to integrate (4.19) and (4.20) into (4.18), the following

constraints derived using duality theory are formulated:

η +

T∑
t=1

[
prBM+
t k0t − prBM-

t l0t

−
(
δmin1
t π1

t + δmin2
t ζ1t + δmax1

t π2
t + δmax2

t ζ2t

+ π3
t + ζ3t + umax

1,t ζ
5
t + [1/2, 0]π6

t +
ζ6t
2

+ umax
2,t ζ

7
t

)]
≥ 0 (4.24a)
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−π1
t + ζ1t + π2

t − ζ2t + π3
t − ζ3t + [0, 1]π6

t

= ρt + prBM+
t k1t − prBM-

t l1t (4.24b)

−π3
t + ζ3t + ζ4t + π5

t = β1
t + prBM+k2t − prBM-l2t (4.24c)

[−1/2, 0]π6
t +

ζ6t
2

+ π7
t = β2

t + prBM+k3t − prBM-l3t (4.24d)

‖πnt ‖ ≤ ζnt , 0 ≤ ζnt , n = 1, 2, ..., 7 (4.24e)

Constraint (4.18d)-(4.18g) can be rewritten following the similar process as that

for constraint (4.18c). As (4.18d)-(4.18e) are equivalent to

− PDA
t − (k0t + k1t δt + k2t u1,t + k3t u2,t)

+ (l0t + l1t δt + l2tu1,t + l3tu2,t) ≥ −PWf
t − δt (4.25)

and can be reformulated as:

−PDA
t − k0t + l0t + PWf

t − (δmin1
t πa1t + δmin2

t ζa1t

+ δmax1
t πa2t + δmax2

t ζa2t + πa3t + ζa3t

+ umax
1,t ζ

a5
t + [1/2, 0]πa6t +

ζa6t
2

+ umax
2,t ζ

a7
t )] ≥ 0 (4.26a)

−πa1t + ζa1t + πa2t − ζa2t + πa3t − ζa3t + [0, 1]πa6t

= 1− k1t + l1t (4.26b)

−πa3t + ζa3t + ζa4t + πa5t = −k2t + l2t (4.26c)

[−1/2, 0]πa6t +
ζa6t
2

+ πa7t = −k3t + l3t (4.26d)

‖πant ‖ ≤ ζant , 0 ≤ ζant , n = 1, 2, ..., 7 (4.26e)

Constraints (4.18f) is reformulated as

k0t − (δmin1
t πb1t + δmin2

t ζb1t + δmax1
t πb2t + δmax2

t ζb2t + πb3t

+ ζb3t + umax
1,t ζ

b5
t + [1/2, 0]πb6t +

ζb6t
2

+ umax
2,t ζ

b7
t )] ≥ 0 (4.27a)
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−πb1t + ζb1t + πb2t − ζb2t + πb3t − ζb3t + [0, 1]πb6t = k1t (4.27b)

−πb3t + ζb3t + ζb4t + πb5t = k2t (4.27c)

[−1/2, 0]πb6t +
ζb6t
2

+ πb7t = k3t (4.27d)

‖πbnt ‖ ≤ ζbnt , 0 ≤ ζbnt , n = 1, 2, ..., 7 (4.27e)

Constraints (4.18g) is reformulated as

l0t − (δmin1
t πc1t + δmin2

t ζc1t + δmax1
t πc2t + δmax2

t ζc2t + πc3t

+ ζc3t + umax
1,t ζ

c5
t + [1/2, 0]πc6t +

ζc6t
2

+ umax
2,t ζ

c7
t )] ≥ 0 (4.28a)

−πc1t + ζc1t + πc2t − ζc2t + πc3t − ζc3t + [0, 1]πc6t = l1t (4.28b)

−πc3t + ζc3t + ζc4t + πc5t = l2t (4.28c)

[−1/2, 0]πc6t +
ζc6t
2

+ πc7t = l3t (4.28d)

‖πcnt ‖ ≤ ζcnt , 0 ≤ ζcnt , n = 1, 2, ..., 7 (4.28e)

where δmin1
t , δmin2

t , δmax1
t and δmax2

t in equations above are assigned to δmin
t + 1,

−δmin
t + 1,−δmax

t + 1 and δmax
t + 1, respectively.

Thus, the final optimization problem is:

max ZDA − η − γβ

s.t. β ≥ 0

Constraints (4.24a)-(4.28e)

Constraints (4.1b), (4.3a)-(4.3d)

Linearized form of equations (4.3e)-(4.3j)

4.4 Case Study

4.4.1 Input Data
The proposed methodology is applied to a modified Swiss system, with details

of the system given in Chapter 3. Same as the definition provided in Chap-
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ter 3, the market share of the wind aggregator is defined as the ratio of the total

generation of the aggregator to the total system demand over the simulation

horizon. Furthermore, the strategic aggregator is introduced to the market to

replace the existing capacities in the system. In other words, the market share

of other non-strategic units decreases as the market share of the aggregator

increases so as to keep the same total supply within the system. Considering

the time consumed by running the SO model, the simulation horizon is set as

24 hours with an hourly resolution. However, it is worth mentioning that as the

optimization problem is time-decoupled, theoretically the computational bur-

dens for running the DRO, SO and the RO models for each single step are not

influenced by the expansion of the time horizon. All simulations are conducted

on a Windows 10 machine with Intel(R) Xeon(R) Gold 6154 CPU @ 3.00 GHz

and 479 GB memory. All optimization models are established by Yalmip [38] in

MATLAB and solved with Gurobi.

In the Baseline scenario, the market share of the aggregator is set as 10% ,

while the samples of the nominal wind output forecast errors are generated

using the random number generation function in Matlab under Gaussian dis-

tribution with zero mean and 10% standard deviation. The wind forecast error

is calculated as the product of the nominal wind forecast error and the capacity

of the wind aggregator. 1000 samples of wind output forecast error δ are gener-

ated for each time step, and we assume that the upper and lower bounds of δ

used to construct the uncertainty set for DRO, the empirical mean, the mean

absolute deviation and standard deviation used to build the ambiguity set for

DRO are calculated based on the sample data.

4.4.2 Results

In this section, we first validate the effectiveness of the LDR applied by the DRO

model by comparing the LDR approximation of the second-stage decisions

with the fitting curves of the second-stage decisions obtained by simulating

the SO model under the same simulation assumptions. Then we conduct sen-

sitivity analyses to investigate the impacts of wind aggregator’s market shares

and the wind output forecast errors’ standard deviations. In the end, the per-

formance of the DRO model is compared to that of the DO, RO and SO models
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Figure 4.1: Approximation of the optimal second-stage decisions, i.e. positive
and negative imbalances, using the enhanced linear decision rule applied by
the distributionally robust optimization model.

from the perspective of the computational time, the expected and the worst-

case out-of-sample results.

Enhanced linear decision rule approximation

In this section, the performance of approximating the second-stage decisions

(i.e. positive and negative imbalance quantities) using the enhanced linear

decision rule defined by equation (4.17) is evaluated. To do so, we compare the

results of running both the DRO and SO models assuming 10% wind aggregator

market share with forecast errors generated under Gaussian distribution with

zero mean and 0.25 standard deviation. Note that the SO results are selected to

serve as benchmark results as SO has complete information of the uncertainty

set, it is without doubt that the resulting optimal second-stage decisions of SO

are superior to that of RO and DRO. Moreover, 200 scenarios are considered by

running the SO model due to the computational time consumed by SO, more

about this will be discussed in the last part of the results section.

Figure 4.1 shows the results of DRO by applying the LDR for an example hour.

It can be seen that the positive imbalances are a lot higher than the negative

imbalances, even in the case when the forecast error is slightly below zero. This

result corresponds to the fact that the proposed DRO bidding strategy is in gen-

eral risk-averse, as it optimizes the result under the worst-case expectation

over the uncertain distributions. Moreover, as the negative imbalance price

(i.e. 144 CHF/MWh for the example hour) is in general much higher than the
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(b) Positive imbalances

Figure 4.2: Approximation of the optimal second-stage decisions, i.e. positive
and negative imbalances, using the results of stochastic optimization.

positive imbalance price (i.e. 10 CHF/MWh for the example hour), the wind

aggregator will always bid lower in the DAM so as to avoid high negative imbal-

ance costs at real-time.

Figure 4.2 shows the optimal second-stage decisions of SO and overlying

them with the corresponding second-degree polynomial curves fitting to deter-

mine the relationship of the optimal second-stage decisions and the simulated

forecast errors. Comparing Fig. 4.1 and Fig. 4.2, it can be observed that the

enhanced LDR provides a good approximation as the approximation curves of

DRO and the fitting curves of SO have very similar patterns.

Impacts of Market Share

To analyze the impacts of the market share on the trading strategies of the wind

aggregator, we conduct simulations considering the aggregator’s market share

increases from 5% to 20% with a step of 5%, while the samples of forecast er-

rors are generated randomly using the Gaussian distribution with zero mean

and 0.1 standard deviation, which is the same as the Baseline scenario. For

better illustrations, we run the SO model and the DO model10, i.e. bidding

into the market without considering the potential DA forecast errors, under

the same simulation setup and use their results as the benchmark results. Fig-

10The DO model is built by setting the upper and lower bounds of the forecast errors in the RO
model to zero.
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ure 4.3 shows the resulting DA offers and the DAM prices of these three models,

i.e. the DO, SO and DRO models under different market shares. Note that as

mentioned before, the market share of the aggregator increases as a replace-

ment of the capacity of other units in the system. Comparing the resulting

DA offering quantities of the DO model to the corresponding DA wind gener-

ation forecasts, it can be seen that the wind aggregator exerts market power

by withholding the capacity at all considered market share levels, while more

market power is exercised (i.e. more outputs withheld) with the increased mar-

ket share. Furthermore, when comparing the results of DO, DRO and SO, it

is obvious that as the aggregator market share increases, both the SO and the

DRO offering strategies become more risk-seeking and the difference between

DA bidding quantities of the DRO and the SO decreases. When the aggregator

market share reaches 20% (i.e. Fig. 4.3d), the offering strategies of the three

considered models, i.e. DO, SO and DRO models, become identical.

The resulting profits of the DRO model considering 5% to 20% wind aggre-

gator market shares are given in Table 4.1. It shows that the profits from the

DAM increases at a rate that is lower than the market share increase. This can

be explained by the fact that, as shown in Fig. 4.3, for most of the hours the

market prices remain at around 65 CHF/MWh, i.e. the offering price of the

assumed to be sufficient import electricity11, and the aggregator can hardly

further increase the market price using the increasing market power brought

by the increasing market share. Furthermore, the BM profits slightly increase

with the increasing market share, the changes in DAM and BM profits together

result in a total profit that increases almost proportionally with the market

share.

Effects of forecast error’s variance

To investigate how the day-ahead bidding behaviors of the aggregator are in-

fluenced by the variance of the wind forecast errors, we conduct simulations

using forecast errors generated under Gaussian distributions with mean zero

and Standard Deviations (SDs) increased from 0.05 to 0.3 with a step of 0.05.

Figure 4.4 shows the resulting aggregator’s DA offering quantities and the DA

11The market prices are high as the considered simulation day is a day from the winter season,
when the demand is relatively higher and the supply that is dominated by hydro power plants is
comparatively lower than other seasons.
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(b) Market Share - 10%
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(c) Market Share - 15%
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Figure 4.3: Resulting day-ahead offers of the deterministic, stochastic and the
distributionally robust optimization models assuming the aggregator market
share as 5%, 10%, 15% and 20%.
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Table 4.1: Market profits resulted by the distributionally robust optimization
model under different aggregator market shares

Market share
DAM profit

[mCHF]
BM profit
[mCHF]

Total profit
[mCHF]

5% 1.31 -0.21 1.10
10% 2.34 (+79%) -0.26 2.08 (+89%)
15% 3.03 (+132%) -0.13 2.90 (+164%)
20% 3.53 (+170%) 0.11 3.64 (+231%)
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Figure 4.4: Aggregator’s day-ahead offering quantities and the resulting day-
ahead market prices with 10% market share and forecast errors generated un-
der Gaussian distributions with mean zero and standard deviations ranging
from 0.05 to 0.3.

market clearing prices under 10% wind aggregator market share with different

values of SDs. It is obvious that as the SD increases, the aggregator offers less

so as to consider the worst forecast error distribution. Moreover, the resulting

DA market price increases as the aggregated market supply curve is shifting to

the left with less offered by the wind aggregator.

Comparison of different optimization methods

To compare the performance of deterministic optimization, stochastic opti-

mization, robust optimization and distributionally robust optimization in a

reasonable way, we carry out the following simulations:



112 4.4. Case Study

1. For each time step, generate scenarios using the random number gen-

eration function under Gaussian distributions with mean zero and stan-

dard deviations set as 0.05, 0.1, 0.15 and 0.2, respectively. 2000 scenarios

are generated for each time step under each of the considered Gaussian

distributions and are split evenly into two sets, i.e. set 1 and set 2, each

contains 1000 samples for each time step. Set 1 serves as the training

set to optimize the DA decisions and set 2 serves as the out-of-sample

test set to validate the optimality of the methods. To investigate the per-

formance of the methods in the case when the actual distribution of

the forecast errors deviates from the simulated one, additional out-of-

sample scenarios under two different distributions, namely the uniform

distribution and the beta distribution, with mean zero and SDs set as

0.05, 0.1, 0.15 and 0.2 are generated. Finally, set 2 includes 9 subsets

of scenarios under Gaussian, uniform and beta distributions with zero

mean and SDs from 0.05 to 0.2, while each subset contains 1000 samples

for each time step. Distributions of the forecast errors included in the

training set 1 and the out-of-sample test set 2 are shown in Fig. 4.5.

2. With the information of set 1, we assume that the upper and lower

bounds of the forecast error δ that are used to construct the uncertainty

set for RO and DRO, the empirical mean, the mean absolute deviation

and standard deviation that are used to build the ambiguity set for DRO

are calculated based on the sample data from set 1. Then we optimize

the decisions using the DO, SO, RO and DRO models. Note that the SO

model is solved using only 200 scenarios from set 1, since further in-

creasing the scenario number significantly increases the computational

burden and also results in memory issues12.

3. Fix the resulting optimal DA decisions achieved by DO, SO, RO and DRO

and calculate the real-time decisions (i.e. positive and negative imbal-

ance quantities) using the out-of-sample scenarios of set 2. Compare

the performances of different models by calculating the expected and

the worst-case out-of-sample profits.

12When increasing the number of scenarios above 200, some of the simulation cases cannot be
solved within 24 hours using the SO model even by relaxing the optimality gap.
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(a) 5% SD (b) 10% SD

(c) 15% SD (d) 20% SD

Figure 4.5: Distribution of forecast errors included in the training set 1 and in
the out-of-sample test set 2 with mean zero and standard deviations ranging
from 0.05 to 0.2 with a step of 0.05.

Here, we limit the number of scenarios generated to build the uncertainty and

ambiguity sets for RO and DRO to 1000, as continuously increasing the number

does not affect the result too much. However, it is worth noting that the com-

putational complexity of both the RO and the DRO models is not influenced by

the number of scenarios. The optimality gap is set to 0.01% for all optimization

models except for the SO model, whose optimality gap is set to be 0.3% to en-

sure that for each simulated case the model can be solved within a reasonable

time (i.e., maximum one hour for solving the model for one time step).
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Table 4.2: Comparison of aggregator’s expected simulation profits, the ex-
pected and the worst-case out-of-sample profits with standard deviations rang-
ing from 0.05 to 0.2 resulted by deterministic, robust, distributionally robust
and stochastic optimization models.

SD Method

Sim. profit
[mCHF]

Expected out-of-sample
profit [mCHF]

Worst-case out-of-sample
profit [mCHF]

Gaussian Gaussian Beta Uniform Gaussian Beta Uniform

0.05

DO 2.53 2.39 2.39 2.38 0.82 1.00 1.75
RO 1.87 2.03 2.03 2.04 1.77∗ 1.86∗ 1.94∗

DRO 2.35 2.41∗ 2.42∗ 2.41∗ 0.96 1.14 1.89
SO 2.42 2.41∗ 2.42∗ 2.41∗ -0.97 -0.78 -0.03

0.1

DO 2.53 2.19 2.19 2.15 -1.66 -0.35 0.61
RO 0.94 1.28 1.28 1.28 0.65∗ 1.03∗ 1.10∗

DRO 2.08 2.24∗ 2.25∗ 2.22 -1.20 0.03 0.96
SO 2.24 2.24∗ 2.25∗ 2.23∗ -3.19 -1.88 -0.92

0.15

DO 2.53 1.95 1.95 1.89 -3.55 -1.11 -0.66
RO 0.35 0.81 0.81 0.81 -0.06∗ 0.50∗ 0.53∗

DRO 1.80 2.04∗ 2.07∗ 2.00∗ -2.87 -0.48 -2.32
SO 2.06 2.04∗ 2.06 2.00∗ -4.71 -2.32 -1.94

0.2

DO 2.53 1.70 1.70 1.62 -4.32 -1.22 -1.92
RO 0.04 0.57 0.57 0.57 -0.03∗ 0.25∗ 0.20∗

DRO 1.53 1.83∗ 1.86∗ 1.78∗ -3.50 -0.51 -1.18
SO 1.85 1.83∗ 1.86∗ 1.78∗ -5.23 -5.24 -2.91

For each simulation case, the best out-of-sample results, i.e. the highest expected profits and highest worst-case
profits, among all are marked with ∗.

Table 4.2 compares the aggregator’s expected simulation profits with fore-

cast errors modeled using training set 1, the expected and the worst-case out-

of-sample profits calculated using samples under different distributions from

test set 2 with SDs ranging from 0.05 to 0.2 resulted by running the DO, RO,

DRO and SO models. The market share of the aggregator is assumed to be

10%. The best out-of-sample results for each simulation case are marked with
∗. Moreover, to be consistent with the optimality gap set for simulations, the

number of digits for the results shown is set as two.

Compared to RO, DRO and SO, DO has the best simulation results in all cases

as it does not account for the potential forecast errors and the resulting imbal-

ances costs. However, as expected, similar profits cannot be achieved by DO

during the out-of-sample test due to the incurred high imbalance costs, and

the situation worsens with the increasing value of the SD. As a result, both the

expected and the worst-case out-of-sample profits obtained by DO are com-
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paratively lower among all models in all simulated cases, which strengthens

the importance of integrating forecast uncertainties into modeling.

We further compare the expected out-of-sample profits of all models. It can

be observed that the best results are always achieved by either the DRO or

the SO model or both of them, whereas the results differences between these

two models are negligible. The high profits achieved by DRO shows that the

performance of the model can be improved by incorporating statistical infor-

mation of the uncertainty distribution. It is without doubt that the SO model

performs the best when the out-of-sample scenarios are generated under the

same distribution as the one used to build the training set, i.e. Gaussian dis-

tribution. Nevertheless, the SO model also delivers good performance under

beta and uniform distributions, which seem to be against the expectation that

the performance of SO will deteriorate when the actual distribution of the un-

certainties deviates from the simulated one. Furthermore, when comparing

the performance of SO as well as other optimization models under different

distributions, limited differences in terms of the expected out-of-sample prof-

its are observed. This is likely to be explained by the fixed mean and standard

deviation values under all distributions in both the training and the test sets.

As shown in Fig. 4.5, the weighted average values of the forecast error samples

under different distributions are close to zero, which is verified by calculating

the mean of the forecast error samples under different distributions. Since the

out-of-sample BM prices are deterministic13 and the imbalance quantities are

linearly related to the forecast errors, the expected imbalance costs, which are

calculated as the sum of the product of the BM price and the corresponding im-

balance quantity, are comparable under different out-of-sample distributions.

For a better illustration, we plot the distributions of imbalance quantities un-

der Gaussian, beta and uniform distributions resulted by distributionally ro-

bust optimization, stochastic optimization and robust optimization models

under two extreme SD cases, i.e. SD=0.05 and SD=0.2 in Fig. 4.6. It can be seen

that the distributions of imbalance quantities under different out-of-sample

forecast error distributions are similar. The similar imbalance costs therefore

13The DA decisions including the the DAM prices are fixed during the out-of-sample test. The
BM prices, which are modeled as a function of the DAM prices, are thus deterministic.
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(a) 5% SD (b) 20% SD

Figure 4.6: Distributions for the resulting imbalance quantities of distribu-
tionally robust optimization, stochastic optimization and robust optimization
models assuming that the forecast errors are subject to Gaussian, beta and uni-
form distributions with standard deviations set as 0.05 and 0.2.

lead to the similar expected out-of-sample profits under different distributions

for each optimization model.

However, when focusing on the worst-case out-of-sample profits, the results

differ a lot under different out-of-sample distributions, which can be explained

by the different values of worst-case forecast errors and the resulting different

worst-case imbalance quantities under different distributions (see Fig. 4.5 and

Fig. 4.6). Furthermore, it can be noticed that RO achieves the highest worst-

case profits during the out-of-sample test in all cases, as its decisions are op-

timized against the worst case with almost no negative imbalance penalties

incurred at real-time (see Fig. 4.6). Compared to RO, DRO is less conservative

as its decisions are immune against a family of distributions, the worst-case

performance of DRO is therefore not as good as RO but still much better than

that of DO and SO.

Comparing the results under different SDs, it can be seen that in general

the resulting simulation and out-of-sample test profits of all models decrease

with the increasing SD. In addition, compared to RO and DRO, the worst-case

out-of-sample profits of the SO model are more sensitive to the variance of

the forecast errors, i.e. the worst-case profit decreases dramatically with the
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Table 4.3: Problem size and the average computational time for solving the
optimization problem of one time step using different methods.

DO RO DRO SO

Variable No.
122

(46 integer)
121

(46 integer)
279

(46 integer)
24’001

(9’200 integer)
Constraint No. 217 216 347 (28 quadratic) 47’777
Computation time (s) 2 2 2 243

Robust optimization was solved using the integrated module in Yalmip [38].

increasing SD, since the SO decisions are optimized only considering the ex-

pected objective value under all scenarios.

The problem size and the average computational time consumed by DO, RO,

DRO and the SO model considering 200 scenarios for solving the problem for

one time step are compared in Table 4.3. As mentioned, the optimization prob-

lem is time decoupled, i.e. the complexity of the problem does not increase

with the expansion of the time horizon. It can be seen that although the DRO

model is more complex than the DO and RO models, i.e. it has more variables

and constraints including additional quadratic constraints, due to the limited

problem size, the average computational time of running the DRO model is

the same as that of running the RO and DRO models. In contrast, solving the

SO model in average consumes much more time as the problem size is much

bigger, though only 200 scenarios are considered for the simulation.

To summarize, compared to SO and RO, DRO achieves a good trade-off be-

tween the expected and the worst-case performance, with the computational

effort that is comparable to that of using RO and DO. The DRO model is there-

fore more appropriate in cases with large amount of uncertainty realizations

data available but the unknown probability distribution of the uncertainty.

4.5 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this

section. First, the ambiguity set for distributionally robust optimization is con-

structed considering the mean, the mean absolute deviation and the standard

deviation of the wind output forecast errors. Thus, the symmetry and the de-

gree of peakedness of the distribution, which are important to characterize

the wind forecast error distributions [76], are not captured. A future version of
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the ambiguity set could incorporate skewness and kurtosis to describe these

two characteristics. In order to consider the correlation of the forecast errors

between different time steps, the covariance matrix could be included in the

ambiguity set, which will however increase the computational complexity of

the method. An alternative approach, which incorporates the correlation of

wind forecast errors between hours without adding the computational com-

plexity, is presented in Chapter 5. Moreover, instead of using synthetic wind

forecast errors, it is more interesting to estimate the performance of the model

using real-world data.

Second, the aggregator is assumed to be the only market participant that

could act strategically. For future work, a more realistic market environment

can be modeled by introducing competitions among multiple strategic produc-

ers using an Equilibrium Problem with Equilibrium Constraints (EPEC) model.

Furthermore, the assumptions related to the number of wind power producers

in the system should be gradually relaxed, which allows to assess the market

value and the strategic positioning of the price-maker aggregator not only with

respect to its size but also to its correlation with the aggregate wind power pro-

duction in the system.

Third, a simple version of linear decision rule is applied in this work, which

might not always deliver a good approximation. To reduce the approximation

error, an extended version of the simple linear decision rule, such as the segre-

gated linear decision rule that introduces a piece-wise linear approximation of

the uncertainties [104], can be applied.

4.6 Summary and Conclusions
In this chapter, a distributionally robust optimization method is presented to

optimize the bidding strategies for a wind aggregator, who participates as a

price-maker in the day-ahead market and a deviator in the balancing market.

The enhanced linear decision rule that is applied by the distributionally ro-

bust optimization model provides a good approximation of the second-stage

decisions, which is verified by comparing the approximation curves to the fit-

ting curves obtained by stochastic optimization. Sensitivity analyses regard-

ing the market share of the aggregator and the standard deviation of the fore-

cast errors show that aggregator is more risk-seeking with increasing market
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shares and it offers less to the day-ahead market when the standard devia-

tion of the wind output forecast error increases. Furthermore, we compare

the performance of distributionally robust optimization with two extensively

applied methods, i.e. stochastic optimization and robust optimization, as well

as the deterministic method that does not consider the potential forecast er-

rors. Based on the out-of-sample test results, it is shown that distributionally

robust optimization outperforms robust optimization in the expected prof-

its with comparable computational efforts, and it achieves similar results as

stochastic optimization with much less computational time. Compared to the

results of other models, deterministic optimization model does not deliver a

good performance in any of the simulated cases, which shows the importance

of uncertainty modeling.





Chapter 5

The Integration of Storage

Units

This chapter expands the work in Chapter 3 and Chapter 4 by integrating the

storage units into the aggregator. Hence, distributionally robust optimal bid-

ding strategies for a wind-storage aggregator that participates as a price-maker

in the day-ahead market and a deviator in the balancing market are derived.

To improve the performance of the method, we use an Auto-regressive Moving

Average (ARMA) model to learn the auto-correlations and the cross-correlations

of historical forecast errors and generate the day-ahead forecast error scenarios

in a rolling manner. Then the potential distributions of the uncertain forecast

errors are described by extracting the statistical information of these scenarios.

A case study based on one-year Nord Pool data validates the effectiveness of the

model. In addition, the impact of output-based renewable subsidies and ag-

gregation levels are investigated. Finally, the value of integrating storage units

is assessed by comparing the performance of a wind-storage aggregator to that

of a wind aggregator in all simulated cases. Two benchmark cases, namely the

perfect information case and the deterministic case, are used to analyze the per-

formance of the model. In the deterministic case, the aggregator is assumed to

bid at the day-ahead forecast without considering potential forecast errors. Re-

sults show that the model performance can be improved by applying the ARMA

model. Moreover, both the distributionally robust optimization models with

and without ARMA outperform the deterministic benchmark case. This chapter

is based on [105].
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5.1 Introduction

5.1.1 Motivation and Related Work

As mentioned in previous chapters, the intermittent and uncertain nature of

Variable Renewable Energy (VRE) poses great challenges to VRE operators and

electricity system operators. These challenges can be approached mainly in

two ways: 1) incorporate the uncertainties into the modeling to take preventive

steps in the bidding process; 2) combine different energy resources (especially

storage units) to compensate for the imbalances of individual units. In Chap-

ter 4, we’ve already tried tackling the uncertainty problem following the idea

of option 1) by applying Ditributionally Robust Optimization (DRO), which en-

ables to incorporate the uncertainty in a more realistic way. To further alleviate

the problem following the principle of option 2), wind and Photovoltaic (PV)

units can be combined with storage units in order to compensate for the their

variable and uncertain generation outputs. Due to the advancement in storage

industries in terms of costs and technologies, the combination of VRE (which

consists mainly of wind and solar energy) and storage units has drawn signif-

icant attention in recent years and is viewed as a viable option to overcome

these challenges. The operators of such hybrid systems will be referred to as

aggregators in the following context.

In this chapter, we expand the work in the Chapter 4 and focus on addressing

the following questions:

• As wind and PV units have zero marginal costs and enjoy subsidies, what

is the aggregator’s optimal bidding strategy with and without consider-

ing the output subsidies and how does it impact the market?

• How does the level of aggregation affect the market?

• How can the effects brought by wind and PV output forecast uncertain-

ties be mitigated?

• What is the benefit of combining wind or PV units with storage units?

The benefit of bidding hybrid energy resources in a coordinated way has

been verified in Chapter 2 and in the literatures [25, 106, 107]. It is shown that

higher efficiency and lower costs can be achieved through the coordination.

The main advantage of combining storage units with solar or wind is to alle-

viate the real-time imbalances caused by generation forecast errors and to en-
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able arbitrage in different markets. Under the assumption that the size of the

aggregator is not large enough to impact the market, the aggregator is modeled

as a price-taker in most of the work. However, the realization of large-scale vir-

tual power plants and hybrid projects (e.g. Tesla’s Virtual Power Plant (VPP)

project in South Australia and Arizona Public Service’s solar-storage hybrid

project) shows that the market power of these aggregators cannot be neglected

in the near future. The authors of [23, 86, 87] propose methods to optimize the

offering strategy of virtual power plants, while uncertainties are considered us-

ing point estimation, robust optimization and adaptive robust optimization,

respectively. In [108], the wind-storage aggregator is modeled as a price-maker

using the residual demand curve, whereas uncertainties are modelled using a

limited number of scenarios and the simulation is carried out only for a few

days of the year thereby neglecting the seasonal fluctuations and uncertainties

of the variable resources. An analysis regarding market interactions between

different types of market participants, e.g. storage, wind and conventional

units, is provided in [109].

To fill the identified gaps in the existing research, in this chapter, distribu-

tionally robust optimal bidding strategies for a price-maker wind-storage ag-

gregator that participates in the day-ahead and balancing markets are derived.

Consequently, the contributions of this chapter are:

1. To propose a two-stage DRO model to optimize the bidding strategies of

a wind-storage aggregator that acts as a price-maker in the Day-ahead

Market (DAM), and as a deviator in the balancing market.

2. To improve the performance of the model using an ARMA model to learn

the auto-correlations and the cross-correlations of historical forecast er-

rors and to generate the day-ahead forecast error scenarios in a rolling

manner. Finally, the potential distributions of the uncertain forecast er-

rors are described by extracting the statistical information of these sce-

narios.

3. To validate the model using one year worth of data of Nord Pool and

compare the results to two benchmark cases, namely the perfect infor-

mation case and the deterministic case (i.e. bidding at the day-ahead

forecast without considering potential forecast errors).
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5.1.2 Chapter Organization

The remainder of the chapter is organized as follows: the main model assump-

tions are described in Section 5.2. The mathematical formulations and the pro-

posed optimization model are presented in Section 5.3. Section 5.4 provides

an analysis for a case study based on one-year Nord Pool data. Limitations

and future work are discussed in Section 5.5. Finally, conclusions are drawn in

Section 5.6.

5.2 Model Assumptions

The main assumptions made in this chapter are summarized as follows:

• The wind-storage aggregator is assumed to participate as a price-maker

in the day-ahead and a deviator the balancing markets.

• The aggregator is assumed to be the only one that could bid strategi-

cally into the market. The rival producers and consumers are modeled

through the historical Nord Pool supply and demand curves of 2018. For

each hour, due to the computational limit, the original supply (offering)

and demand (bidding) curves that consist of up to nearly 1000 blocks

are approximated focusing on bids and offers near the original market

clearing point. The resulting approximated supply and demand curves

for rival producers and the consumers have a maximum of 79 blocks.

• The Balancing Market (BM) prices are assumed to be independent of the

aggregator’s position, i.e. the aggregator is a price-taker in the balancing

market. This assumption, however, might need to be reconsidered when

the aggregator accounts for a significant share of the market. Moreover,

it is assumed that all imbalances can be corrected through the balancing

market.

• The simulated electricity system is assumed to be uncongested, i.e. no

network constraints are considered, which is consistent with the zonal

pricing scheme of the European electricity markets.

Note that the simulated electricity system and the market environment are a

simplification of a much more complex reality.
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5.3 Mathematical Formulation
In this section, we extend the distributionally robust optimization formulation

of a wind aggregator bidding problem presented in previous chapters to that

of a wind-storage aggregator bidding problem. Note that the formulations pre-

sented will focus on the changes required for this extension.

5.3.1 Bi-level Bidding Model

The trading strategy is formulated as a bi-level optimization problem.

Upper-level Formulation

The Upper-Level (UL) problem is the aggregator’s profit maximization prob-

lem, i.e. it maximizes the profits obtained from the DAM and the BM:

max

T∑
t=1

(
λDA
t (PDAs

t − PDAb
t ) + prBM+

t P BM+
t − prBM-

t P BM-
t

)
(5.1a)

where PDAs
t and PDAb

t are the dispatched Day-ahead (DA) supply and demand

quantity of the aggregator for time step t, and λDA is the DA market clearing

price. The positive/negative imbalance prices and quantities are denoted by

prBM+/- and P BM+/-. The simulation horizon is denoted by T .

The upper-level problem is subject to two groups of constraints: the market

constraints and the operational constraints. Market constraints include the

limits on the supply and demand quantity QDAs and QDAb of the aggregator.

Note that whileQDAs andQDAb are the supply and demand quantities that are

submitted to the market,PDAs andPDAb indicate the power that the aggregator

expects to be dispatched for, which are the outcomes of the lower-level market

clearing problem. The submitted DA supply quantityQDAs of the aggregator is

restricted by the sum of the capacity of the wind PWc and the maximum dis-

charging rate of the storage P dis,max, while its submitted DA demand quantity

QDAb is limited by the maximum charging rate of the storage P ch,max, i.e.

0 ≤ QDAs
t ≤ PWc + P dis,max (5.1b)

0 ≤ QDAb
t ≤ P ch,max (5.1c)
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The real-time output of the wind unit is equal to the sum of the wind output

forecast PWf and the wind output forecast error δ , i.e.,

0 ≤ PW
t ≤ PWf

t + δt (5.1d)

where modeling of the forecast error δ will be elaborated in following sections.

For storage units, the real-time charging and discharging powers P ch and

P dis are non-negative and are limited by the maximum charging and discharg-

ing ratesP ch,max andP dis,max. The storage levelEs is required to be in the range

of [Es,min, Es,max]. Mathematically,

0 ≤ P dis/ch
t ≤ pdis/ch,max (5.1e)

Es,min ≤ Es
t ≤ Es,max (5.1f)

In addition, the storage levels of the two consecutive time steps are defined by:

Es
t+1 = Es

t + ηsP ch
t ∆t− P dis

t ∆t/ηs (5.1g)

where ηs is the one-way efficiency.

As all the deviations of the aggregator are assumed to be cleared in the BM,

the real-time output of the aggregator must be equal to the total market ex-

change in the DAM and the BM for each time period, i.e.,

PDAs
t − PDAb

t + P BM+
t − P BM-

t = PW
t + P dis

t − P ch
t (5.1h)

P BM+
t , P BM-

t ≥ 0 (5.1i)

Lower-level Formulation

The Lower-Level (LL) represents the day-ahead market clearing problem and

the objective is to maximize the social welfare, as expressed by

max
αDAs/b
t ,P DAs/b

t

T∑
t=1

(αDAb
t PDAb

t +

Nm∑
m=1

λDA,D
t,m PDA,D

t,m

− αDAs
t PDAs

t −
N j∑
j=1

Nb∑
b=1

λDA,O
t,j,bP

DA,O
t,j,b ) (5.2a)
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where αDAs and αDAb are the offering and bidding price of the aggregator. Vari-

ables λDA,O
t,j,b and PDA,O

t,j,b are the offering price and dispatched offering quantity

for block b of rival producer j at time t, while λDA,D
t,m and PDA,D

t,m are the bidding

price and dispatched bidding quantity of consumer’s bidding blockm at time

t. The number of consumers’ demand bidding blocks, the number of rival pro-

ducers and the number of the rival producers’ offering blocks are indicated by

Nm,N j andNb, respectively.

The LL problem is subject to two types of constraints: upper and lower limits

on bidding quantities and the power balance constraint which enforces the

summations of the DAM dispatched supply quantities equal to the dispatched

demand quantities for each time step, i.e.

0 ≤ PDAs
t ≤ QDAs

t : µDAsmin
t , µDAsmax

t (5.2b)

0 ≤ PDAb
t ≤ QDAb

t : µDAbmin
t , µDAbmax

t (5.2c)

0 ≤ PDA,O
t,j,b ≤ P

DA,Omax
t,j,b : µDA,Omin

t,j,b , µDA,Omax
t,j,b (5.2d)

0 ≤ PDA,D
t,m ≤ PDA,Dmax

t,m : µDA,Dmin
t,m , µDA,Dmax

t,m (5.2e)

Nm∑
m=1

PDA,D
t,m + PDAb

t − PDAs
t −

N j∑
j=1

Nb∑
b=1

PDA,O
t,j,b = 0 : λDA

t (5.2f)

where variables after the columns are the corresponding dual variables.

Following the linearization and reformulation process presented in Chap-

ter 3, the bi-level problem can finally be reformulated as a Mixed-Integer Lin-
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ear Programming (MILP) problem as follows:

min

T∑
t=1

N j∑
j=1

Nb∑
b=1

(
λDA,O
t,j,bP

DA,O
t,j,b + µDA,Omax

t,j,b PDA,Omax
t,j,b

)
−

T∑
t=1

Nm∑
m=1

(
λDA,D
t,m PDA,D

t,m − µDA,Dmax
t,m PDA,Dmax

t,m

)
−

T∑
t=1

prBM+
t P BM+

t +

T∑
t=1

prBM-
t P BM-

t (5.3a)

s.t. Upper-level constraints (5.1b)-(5.1i) (5.3b)

Linearized reformulations of LL problem (5.2) (5.3c)

5.3.2 Modelling of Uncertainty

Since the forecast error δ in (5.1d) is subject to uncertainty, problem (5.3) is

in general intractable as the optimal real-time decisions need to be found by

looping over all possible realizations of δ . Therefore, we first use the linear

decision rule to approximate the real-time decisions {P BM+/-, PW, Es, P ch/dis}
using an affine function of the forecast error:

P BM+
t = kBM+

t,0 + kBM+
t,1 δt (5.4)

P BM-
t = kBM-

t,0 + kBM-
t,1 δt (5.5)

PW
t = kW

t,0 + kW
t,1δt (5.6)

Es
t = ks

t,0 + ks
t,1δt (5.7)

P ch
t = kch

t,0 + kch
t,1δt (5.8)

P dis
t = kdis

t,0 + kdis
t,1δt (5.9)

As mentioned, different from Stochastic Optimization (SO) that describes the

uncertainty using finite scenarios, DRO incorporates the uncertainty by de-

scribing the possible distributions I of the uncertainty using an ambiguity set

F . The ambiguity set describes the common statistical information shared by
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all possible distributions. The ambiguity set considered in this work, i.e.

F =

I :

EI [δt] = 0

EI [|δt|] ≤ γt
Pr(δ ∈ W ) = 1


restricts the expectation and mean absolute deviation of the random vector δ

to 0 and γ, respectively. The last line requires that all realizations of δ should

be within the uncertainty set W , which defines the upper and lower limits of δ

as follows:

W = {δmin
t ≤ δt ≤ δmax

t }

Note that in order to lower the computational burden, only linear constraints

are considered in F . To guarantee the tractability of the problem and to in-

crease the flexibility of the linear decision rule, an auxiliary variable ut for each

time step t is introduced [99] and the ambiguity set and the uncertainty set are

reformulated as F and W given by

F =

J :

EJ [δt] = 0

EJ [ut] ≤ γt
Pr{(δ, u) ∈ W } = 1



W =


δmin
t ≤ δt ≤ δmax

t

|δt| ≤ ut
ut ≤ umax

t = max{δmax
t ,−δmin

t }


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Correspondingly, the affine functions of the real-time decisions are rewritten

as follows:

P BM+
t = kBM+

t,0 + kBM+
t,1 δt + kBM+

t,2 ut (5.10)

P BM-
t = kBM-

t,0 + kBM-
t,1 δt + kBM-

t,2 ut (5.11)

PW
t = kW

t,0 + kW
t,1δt + kW

t,2ut (5.12)

Es
t = ks

t,0 + ks
t,1δt + ks

t,2ut (5.13)

P ch
t = kch

t,0 + kch
t,1δt + kch

t,2ut (5.14)

P dis
t = kdis

t,0 + kdis
t,1δt + kdis

t,2ut (5.15)

To integrate the modeling of uncertainty described above into problem (5.3),

we first write (5.3) in a compact form:

min
x

Θ(x) + φ(x, δ) (5.16a)

s.t. x ∈Xf (5.16b)

A(δ) +By(δ, u) ≤D(δ) (5.16c)

where x = {PDAs/b, αDAs/b, QDAs/b, λDA, PDA,O, PDA,D} represents the first-

stage decisions, Θ(x) and φ(x, δ) correspond to the first-stage term (i.e., the

day-ahead market cost) and the second-stage term (i.e., the balancing market

cost) in the objective function (5.3a), respectively. The feasibility region of x

based on constraints (5.1b)-(5.1c) and (5.1h) in (5.3b) and constraint (5.3c) is

defined byXf . Constraint (5.16c) corresponds to real-time constraints (5.1d)-

(5.1i) in (5.3b). Following the principle of DRO, i.e. the decisions should be

optimized against the expectation of the worst-case distribution, the second-

stage optimization problem is formulated as:

φ(x, δ) = min
k0,1,2
t

sup
J∈F

EJ


T∑
t=1

Cbm
t (δ, u)

 (5.17a)

s.t. A(δ) +By(δ, u) ≤D(δ) (5.17b)
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where Cbm
t (δ, u) equals prBM-

t P BM-
t (δ, u) − prBM+

t P BM+
t (δ, u). This prob-

lem can be solved by optimizing the linear decision rule parameters, i.e.

{kBM+, kBM-, kW, ks, kch, kdis}. As δ and u are subject to constraints in F , the

inner problem of (5.17) can be reformulated as:

sup
J∈F

EJ


T∑
t=1

Cbm
t (δ, u)


= sup

∫
W

T∑
t=1

Cbm
t (δ, u)df(δ, u) (5.18a)

s.t.

∫
W

δdf(δ, u) = 0 : ρ (5.18b)∫
W

udf(δ, u) ≤ γ : β (5.18c)∫
W

df(δ, u) = 1 : η (5.18d)

f(δ, u) ≥ 0, ∀(δ, u) ∈ W (5.18e)

A(δ) +By(δ, u) ≤D(δ) (5.18f)

where ρ, β and η are the corresponding dual variables, f(δ, u) is the probabil-

ity density function. Finally, according to duality theory [100], we rewrite (5.16)

as follows by replacing the second-stage problem with its dual form:

min Θ(x) + η + γβ (5.19a)

s.t. β ≥ 0 (5.19b)

η + ρδ + βu ≥
T∑
t=1

Cbm
t (δ, u) (5.19c)

A(δ) +By(δ, u) ≤D(δ) (5.19d)

x ∈Xf (5.19e)

where δ-related and u-related equations, i.e. (5.19c) and (5.19d), also need to

satisfy the constraints in W . Constraints (5.19c) and (5.19d) are fulfilled only if

the worst-case is fulfilled. Taking (5.19c) as an example, it can be reformulated
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as:

min {η + ρδ + βu−
T∑
t=1

Cbm
t (δ,u)} ≥ 0 (5.20a)

s.t. δmin ≤ δ ≤ δmax : π1,π2 (5.20b)

− u ≤ δ ≤ u : π3,π4 (5.20c)

u ≤ umax : π5 (5.20d)

where π1∼5 are the corresponding dual variables. Using the Linear Decision

Rule (LDR) approximation (5.4) in (5.20) to linearize the term
∑T
t=1 C

bm
t (δ,u),

the resulting dual equivalence of (5.20) is:

max η+

T∑
t=1

[
prBM+
t kBM+

t,0 −prBM-
t kBM-

t,0 +
(
δmin
t π1

t −δmax
t π2

t −umax
t π5

t

)]
(5.21a)

s.t.
T∑
t=1

(π1
t −π2

t +π3
t −π4

t ) =

T∑
t=1

(ρt+pr
BM+
t kBM+

t,1 −prBM-
t kBM-

t,1 ) (5.21b)

T∑
t=1

(π3
t +π4

t −π5
t ) =

T∑
t=1

(βt+pr
BM+
t kBM+

t,2 −prBM-
t kBM-

t,2 ) (5.21c)

πnt ≥ 0, n = 1, 2, ..., 5 (5.21d)

Applying the strong duality theory, (5.21a) is equivalent to:

η+

T∑
t=1

[
prBM+
t kBM+

t,0 −prBM-
t kBM-

t,0 +
(
δmin
t π1

t −δmax
t π2

t −umax
t π5

t

)]
≥ 0 (5.22)
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Figure 5.1: Comparison of the original market offering/bidding curves and the
approximated offering/bidding curves for an example hour.

Constraint (5.19d) can be reformulated following a similar process and the final

optimization problem is:

min Θ(x) + η + γβ

s.t. β ≥ 0

Constraints (5.21b)-(5.21d) and (5.22) that are equivalent to (5.19c)

Reformulated constraints equivalent to (5.1d)-(5.1i) in (5.19d)

x ∈Xf

5.4 Case Study

5.4.1 Input Data

Parameters of the wind-storage aggregator are listed in Table 5.1. Supply and

Table 5.1: Parameters of the wind-storage aggregator

Es,max Es,min Es
1, E

s
T+1 ηs pch/dis,max PWc

100 MWh 10 MWh 50 MWh 0.95 100 MW 250 MW
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Figure 5.2: Comparison of the original and the approximated market clearing
prices and quantities for the simulation year 2018.

demand curves are based on the Nord Pool market clearing data of 2018. For

each hour the original supply (offering) and demand (bidding) curves consist

of up to nearly 1000 blocks, due to the computational limit, the original supply

(offering) and demand (bidding) curves are approximated focusing on the bids

and offers near the original market clearing point. The resulting approximated

supply and demand curves for each hour consist of a maximum of 79 blocks.

To visualize the results, Fig. 5.1 shows the original and the approximated DAM

offering and bidding curves for an example hour. The original and the resulting

approximated day-ahead market clearing prices as well as quantities are shown

in Fig. 5.2.

In order to simulate the case for Denmark, the total Nord Pool system-level

bidding and offering quantities are scaled down by a factor of 0.08 while the

prices remain unchanged. The scaling results in maximum hourly demand

quantity ranges from 2’026 MW to 5’302 MW. The wind forecast and real-time

output data are from the Denmark region in 2018. For each simulation day in

2018, the scenarios to build the ambiguity set are generated based on the 2017

data and all the data of 2018 before that simulation day.
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Different from the assumptions made in previous chapters, the aggregator is

in general14 assumed to participate in the market without replacing the market

share of the existing market participants. In other words, the aggregator enters

the market by adding its offers and bids to the existing offering and bidding

curves. Due to the price suppression effect when introducing the aggregator

into the market, balancing market prices are modified as follows to guarantee

that the aggregator can only sell (purchase) electricity in the balancing market

at a price lower (higher) than the DAM price:

prBM+
t = min {prBM+0

t , a1 · (prDA
t − p1)}

prBM-
t = max {prBM-0

t , a2 · (prDA
t + p2)}

where prBM-0, prBM+0 and prDA are the original negative imbalance, positive

imbalance and DA market clearing prices from Nord Pool. Constants a1 and

a2 are set to 0.8 and 1.2, price adjustments p1 and p2 are set to 10 EUR/MWh

based on the values provided in [29]. Based on the renewable subsidy scheme

published by the Danish Energy Agency in 2017 [110] and considering the fact

that the subsidies are subject to further decrease in the future, a conservative

subsidy level of 13 EUR/MWh which corresponds to 100 DKK/MWh 15 is as-

sumed when analyzing the impact of subsidies.

5.4.2 Results

The results section consists of three parts. In the first part, a perfect forecast

for the wind generation is assumed, which means that only the DAM without a

balancing market is considered. Under this assumption, the impacts of market

power and subsidies for a wind aggregator and a wind-storage aggregator are

analyzed. In addition, the influence of aggregating existing wind producers in

the market is investigated. In the second part, the effects of forecast errors are

analyzed. and the deviations caused by forecast errors that cannot be balanced

by the storage are assumed to be cleared in the balancing market. Finally, in

the last part, the value of storage units is investigated by comparing the results

with and without the integration of storage units in all simulated cases.

14An exception is when analyzing the impact of aggregation, details will be given in the corre-
sponding subsection.

15The exchange rate is assumed to be 0.13 EUR/DKK.
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All the results shown in this section are from the simulation over 8760 hours

of the examined year 2018. No subsidies are considered except in the cases for

analyzing the impact of subsidies.

Impacts of market power

In this section, we analyze the impacts of the aggregator’s market power by

simulating four cases detailed as follows:

• PT1: the price-taker case, i.e. the aggregator bids all forecasted output

at a price of zero. The aggregator only consists of wind units.

• PT2: the price-taker case, i.e. the aggregator bids all forecasted output at

a price of zero. The aggregator consists of both wind and storage units.

• PM1: the price-maker case, i.e. the aggregator maximizes its profits by

optimizing both the bidding price and the quantity, taking into account

their impacts on the market. The aggregator only consists of wind units.

• PM2: the price-maker case, i.e. the aggregator maximizes its profits by

optimizing both the bidding price and the quantity, taking into account

their impacts on the market. The aggregator consists of both wind and

storage units.

Table 5.2 shows the results for the four cases described above along with the

Base case, which corresponds to the case without the market participation of

the wind-storage aggregator, i.e. the actually realized market results. Social

welfare is calculated based on (5.2a), which is equal to the total payoffs of all

market participants. The demand satisfaction rate is defined as the ratio of the

total dispatched demand quantities to the total demand bidding quantities

submitted into the market. The curtailment rate of the aggregator is the ratio

of the wind output that is not offered to the market to the total wind outputs.

These definitions also apply to the results presented in the following sections.

As wind units have near-zero marginal costs, by introducing the wind-

storage aggregator to the market, both the social welfare and the demand satis-

faction rate in the system are increased while the average DAM price decreases

compared to the Base case.

Comparing the results of the price-maker cases (i.e., PM1 and PM2) to those

of the corresponding price-taker cases (i.e., PT1 and PT2), it can be seen that

the aggregator achieves higher profits in the price-maker cases. This is because
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Table 5.2: Impacts of market power.

Case
Social

welfare
[mEUR]

Demand
satisfaction

rate [%]

Average
DAM price

[EUR/MWh]

Aggregator
Profit

[mEUR]
Market

share [%]
Curtailment

[%]
Base 2598.89 98.002 44.04 n/a n/a n/a
PT1 2624.34 98.065 42.36 24.68 2.08 0
PT2 2624.34 98.064 42.36 24.69 2.08 0
PM1 2599.52 98.062 42.52 24.82 2.06 1.09
PM2 2599.44 98.060 42.63 25.12 2.06 0.65

the price-maker strategies consider the impact of their offerings and biddings

on the market, higher profits are therefore obtained by softening the price de-

crease using wind curtailments. However, there is limited space for exerting

market power as the demand coverage rate is high, in addition the ability of

the aggregator to exercise market power is limited by its market share.

Figure 5.3 shows the offering strategies and the resulting Market Clearing

Prices (MCPs) of PT2 and PM2 for four selected weeks corresponding to four

seasons in 2018, all starting from a Monday16. Comparing the MCPs of different

seasons, it can be seen that the prices are more volatile and in general lower

during the winter and spring weeks [111], which is likely due to the fact that

the share of wind generation in Nord Pool (which consists of mainly Nordic

countries) is relatively high during winter and spring seasons when the wind

blows strongly.

Furthermore, in contrast to the PT2 case, it can be seen that the suppress-

ing effect of the market price caused by the increasing wind penetration can

be mitigated by exerting market power in the PM2 case. To be more specific,

the aggregator in the PM2 case manages to withhold the generation output to

increase the market price when it results in more profits, e.g. the beginning

of days 5 and 6 in Fig. 5.3c and the beginning of day 3 in Fig. 5.3d. Results for

PT1 and PM1, while are not shown here, are similar to those of PT2 and PM2,

respectively. In addition, the results in Table 5.2 show that the integration of

storage units helps the aggregator to achieve more profits with less wind out-

puts being curtailed. However, the difference is negligible in the price-taker

case (i.e. PT1 vs. PT2) as storage units are barely used in this case (i.e. PT2).

16The market clearing prices on the first days of the winter and the spring weeks are relatively
low as they correspond to January 1st and April 2nd in 2018, which are holidays.
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Figure 5.3: Comparison of the offering quantities (i.e., top figure) and the re-
sulting market clearing prices of PT2 and PM2 (i.e., bottom figure) for four
selected weeks in 2018 corresponding to four seasons. All weeks start from a
Monday.
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This means that in the case of PT2, making the arbitrage using the price spread

between peaks and troughs alone is not sufficient to support profitable battery

operations. To better explore how batteries help to make more profits in the

price-maker case (i.e. PM2), in Fig. 5.4 the storage operations of PM2 for the

same four weeks in 2018 as those presented in Fig. 5.3 are shown. A mutual in-

fluence between the storage operations and the MCPs can be observed: on one

hand the storage units charge (discharge) during low (high) price periods; on

the other hand, the charging/discharging behaviors of the storage units help

to smooth the total generation of the aggregator and also the resulting MCP.

Small differences are observed when comparing the results of the four dif-

ferent cases (i.e. PT1, PT2, PM1 and PM2) and this can be explained by the

following reasons: 1) the market power of the aggregator is limited by its size,

i.e. the market share. Given the maximum hourly load bidding ranging from

2026 MW to 5302 MW and an average capacity factor of wind as 0.28, assuming

98% of the demand is met, the market share for a 250 MW wind power plant

ranges from 1.35% to 3.53%; 2) other market suppliers are considered to be

non-strategic and most of their offers center on prices around 40 EUR/MWh,

which further limits the aggregator’s ability to exercise the market power; c)

as perfect forecast is assumed for the cases shown in this section, the value of

storage is underestimated as it can only be used to shift wind generation from

low price to high price periods and to reduce the wind curtailments.

Effects of subsidies

As the aggregator often exerts market power by withholding generation capac-

ity, output-based subsidies are only paid if the generator actually provides gen-

eration. Hence, the aggregator needs to balance the usage of market power by

withholding output and the receipt of subsidies for production.

Table 5.3: Effects of output-based subsidies.

Case
Social

welfare
[mEUR]

Average
DAM price

[EUR/MWh]

Aggregator
Profit

[mEUR]
Subsidy
[mEUR]

Market
share [%]

Curtailment
[%]

PM1 2599.52 42.52 24.82 n/a 2.06 1.09
PM1sub 2599.59 42.43 24.75 7.98 2.08 0.22
PM2 2599.44 42.63 25.12 n/a 2.05 0.65
PM2sub 2599.46 42.59 25.06 7.97 2.06 0.28
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Figure 5.4: The top figure shows the storage operations in the case of PM2
for the four selected weeks; the bottom figure illustrates the original market
clearing prices and the market clearing prices of PT2 and PM2 for the four
selected weeks. All weeks start from a Monday.
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In this section, effects of subsidies on the aggregator’s bidding strategy and

the market results are analyzed by simulating two additional cases, i.e. the

price-maker case without and with storage units considering the payment of

subsidies, which are named as PM1sub and PM2sub, respectively. These two

cases (i.e., PM1sub and PM2sub) are then compared to the corresponding

price-maker cases without subsidies defined before, i.e. PM1 and PM2. As

mentioned in Section 5.4.1, a subsidy level of 13 EUR/MWh is assumed for the

wind generation. Table 5.3 compares the results of these four cases. It illus-

trates that less wind is curtailed when considering subsidies, which leads to

lower market prices. Moreover, the total social welfare increases in the case

considering subsidies, but the increase is negligible when it is compared to the

subsidies that are paid to the aggregator.

Effects of the aggregation level

As companies such as Statkraft [112] are working on grouping existing wind,

solar and storage units into large virtual power plants, it is thus important to

study the impact if some of the existing units in the market are aggregated.

In this section, we investigate the impact of aggregating existing wind power

plants in the market on these wind power plants’ profits and on the market

results. It is assumed that the existing wind turbines in the market are the

ones that offer near-zero prices. When aggregated, instead of offering at prices

zero, they can influence the market by exercising the market power. It is worth

noting that instead of introducing new producers to the market as what is sim-

ulated in previous sections, the aggregation is assumed to be applied to the

existing wind power plants (i.e., the ones that offer near-zero prices) in the

system. Furthermore, no storage units are considered in this section.

Table 5.4: Effects of the aggregation level.

Case
Social

welfare
[mEUR]

Demand
satisfaction

rate [%]

Average
DAM price

[EUR/MWh]

Aggregator
Profit

[mEUR]
Curtailment

[%]
Unit profit
[EUR/MW]

Base 2598.86 98.002 44.04 n/a n/a n/a
PM1agg1 2596.83 98.002 44.05 5.25 0.04 105’036
PM1agg2 2594.76 98.002 44.06 10.51 0.10 105’065
PM1agg3 2592.69 98.002 44.08 15.77 0.17 105’102
PM1agg4 2590.59 98.002 44.12 21.03 0.29 105’160
PM1agg5 2588.42 98.001 44.22 26.32 0.51 105’263
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Table 5.4 shows the results considering different aggregation levels, where

cases PM1agg1 to PM1agg5 correspond to an aggregation of 50 MW to 250

MW of wind capacities with a step of 50 MW. As defined before, the Base case

corresponds to the original actually realized market results. The results show

that as the aggregation level increases, the market prices increase as the ag-

gregator can better exert market power to its benefit by curtailing more wind

outputs, which leads to higher unit profits per MW capacity. Therefore, for

units that have near zero marginal costs in the market, such as small wind or

PV units, their profits can be increased through aggregation. However, for mar-

ket operators, as both the demand satisfaction rate and the social welfare in

general decrease with the increasing level of aggregation, possible regulations

should be introduced to maintain the market efficiency.

Effects of forecast errors

In this section, we investigate the effects of DA wind forecast errors by simulat-

ing and comparing the results of the following four cases:

• Benchmark1: The aggregator optimizes the biddings to the market with

perfect information of the real-time wind generation.

• Benchmark2: The aggregator optimizes the biddings to the market ac-

cording to the original DA wind forecast without considering potential

forecast errors at real-time.

• DRO: The aggregator optimizes the biddings to the market consider-

ing potential forecast errors using an ambiguity set constructed using

the historical wind forecast error data over 2014-2017 clustered on a

monthly basis17.

• DRO_ARMA: An ARMA model is applied trying to learn the historical

forecast error and improve the performance of the model following four

steps: a) Build the ARMA model by learning the auto-correlations and

the cross-correlations of historical forecast errors; b) Use the ARMA

model to generate scenarios of the forecast errors of the next day based

on historical data until the the day before; c) Correct the forecast errors

using the mean value of the generated forecast error scenarios so as to

keep the expectation of the forecast error equal to zero and update the

17The statistical properties of the nominal wind forecast errors for the same hour in the same
month of the year are assumed to be the same.
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Table 5.5: Day-ahead forecast improvements using the ARMA model.

Mean absolute
percentage error [%]

Mean absolute
deviation [MW]

Original DA forecast 33.65 1079
ARMA corrected forecast 29.79 1058

DA forecast; d) Similar to case DRO, construct the monthly based am-

biguity set based on the corrected forecast errors and then optimizes

the offerings and biddings to the market considering potential forecast

errors using this updated ambiguity set and the updated forecast.

ARMA model is applied to generate scenarios of the wind forecast error as it

can capture the cross-correlations of the data and generate numerous sample

paths of the wind forecast errors while retaining the same probabilistic proper-

ties, such as the variance of the error and the distribution of the length of the

crossing-time distributions [113]. Implementations of the ARMA model to sim-

ulate wind forecast errors can be found in a lot of works such as [113, 114, 115].

Same as the model simulated in [115, 116], a simple ARMA(1,1) model is

applied since increasing the order of the model does not substantially im-

prove the results. However, the results might be different when different wind

datasets are used. Comparison of the performance of the forecast before and

after using the ARMA model is illustrated in Table 5.5.

Results of the above described four cases with and without considering the

integration of storage units are shown in Table 5.6. For each case, the uncer-

tainty capture rate is calculated as the ratio of the aggregator’s profits in this

case to the aggregator’s profits in the corresponding Benchmark1 case, i.e. the

perfect information case. Note that the results of Benchmark1 without/with

storage units differ from the results of case PM1/PM2 under perfect informa-

tion shown in the previous sections as the balancing market is considered

in Benchmark1 case and the arbitrage between the DAM and balancing mar-

ket is allowed, which is however limited due to unfavorable imbalance prices.

Comparing the results of Benchmark2, DRO and DRO_ARMA, it can be seen

that DRO_ARMA achieves the highest profits, which is mainly due to the de-

crease of imbalance costs. Moreover, compared to Benchmark2, both DRO

and DRO_ARMA consider the potential forecast errors and do not overbid into
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Table 5.6: Impact of the forecast error.

Results without Storage Units

Case
Avg. DAM price

[EUR/MWh]
DAM profit

[mEUR]
BM profit
[mEUR]

Tot. profit
[mEUR]

Uncertainty
capture [%]

Benchmark1 42.76 22.90 1.34 24.24 100
Benchmark2 42.48 25.05 -2.30 22.74 93.83
DRO 42.64 24.91 -2.04 22.86 94.32
DRO_ARMA 42.68 23.96 -0.94 23.02 94.96

Results with Storage Units

Case
Avg. DAM price

[EUR/MWh]
DAM profit

[mEUR]
BM profit
[mEUR]

Tot. profit
[mEUR]

Uncertainty
capture [%]

Benchmark1 42.82 23.83 0.97 24.80 100
Benchmark2 42.60 25.35 -1.72 23.62 95.27
DRO 42.73 25.16 -1.44 23.73 95.68
DRO_ARMA 42.78 24.15 -0.27 23.88 96.30

the DAM, therefore the DAM prices in these two cases are higher, resulting in

relatively higher profit for each MW bidding into the DAM. When using the

ARMA model to learn the forecast error and then simulate the future path of

the forecast errors, significant improvements of the results can be observed.

Value of storage units

In this section, the value of integrating storage units are analyzed by compar-

ing the cases with and without storage units analyzed in the previous sections.

As stated, storage units can contribute to increasing the aggregator’s profits by:

1) charging and discharging to alleviate the price suppressing effect caused by

wind penetration, as illustrated in the section to analyze the impact of mar-

ket power; 2) reducing the imbalances due to forecast errors through real-time

operations. These two effects can be verified by Fig. 5.5, which shows the real-

time storage operations as well as the DA market clearing prices of an example

week of the simulation year in the DRO case. It can be seen that in general the

battery mainly discharges in the morning when the market price peaks and

charges at night when the DAM prices are relatively low. In addition, the charg-

ing/discharging behaviors are also influenced by the wind forecast errors. For

example, on day 4 of the example week, the battery charges in the afternoon

and discharges at night so as to possibly alleviate the impacts of wind forecast

errors, although the market prices in the afternoon are relatively higher than

the prices at night.
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Figure 5.5: The real-time battery operations along with the day-ahead market
price and the day-ahead wind forecast error of the DRO case over an example
week. The battery operations are influenced by both the day-ahead market
prices and the day-ahead wind forecast errors.

To better quantify the benefits of integrating storage units, the profits of dif-

ferent cases with and without storage units in Table 5.2 and Table 5.6 are listed

again in Table 5.7, where the first row corresponds to the results of the PM1 and

PM2 cases in Table 5.2, the second to the fifth rows correspond to the results

in Table 5.6. Furthermore, as it is interesting to know whether it is profitable

to invest in storage units, i.e. if the benefits justify the investment, the value of

storage and the maximum acceptable investment cost of the storage units are

calculated to answer this question. The value of per kWh storage valunit
s equals

the yearly profit difference between the corresponding case with and without

storage divided by the capacity of the storage unit. The maximum acceptable

investment cost cinv
s for the storage unit is calculated by

cinv
s = valunit

s

1− 1/(1 + r)lt

r
(5.23)
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Table 5.7: Comparison of the aggregator’s profits in cases with and without
storage units along with the resulting maximum acceptable investment cost of
the storage unit.

Case
Profit

without storage
[mEUR]

Profit
with storage

[mEUR]

Value per unit
storage

[EUR/kWh/year]

Max. acceptable
investment cost

[EUR/kWh]
PM 24.82 25.12 3.03 31.42
Benchmark1 24.24 24.80 5.59 58.03
Benchmark2 22.74 23.62 8.81 91.47
DRO 22.86 23.73 8.66 89.91
DRO_ARMA 23.02 23.88 8.63 89.58

where r and lt denote the discount rate and the storage unit’s lifetime, which

are assumed to be 5% and 15 years, respectively.

Comparing the results of different cases, it is obvious that the profits of

the aggregator increase when integrating storage units. PM and Benchmark 1

cases are under the assumption of perfect information, while forecast errors

are simulated for the Benchmark2, DRO and DRO_ARMA cases. Comparing

the value of per unit storage of these two groups of cases, it can be seen that

the storage unit plays an important role in reducing the imbalance costs as the

unit profit is more than doubled or almost doubled when accounting for fore-

cast errors, depending on whether taking PM or Benchmark 1 as the reference

case. Moreover, the corresponding maximum acceptable unit investment cost

reaches a level of 90 EUR/kWh, which is below the current cost of the 1-hour

utility-scale battery storage (i.e. 601 USD/kWh) [117] and requires a significant

decrease. However, considering the multi-applications of the storage units

such as the additional participation in the reserve market and the trend of de-

creasing battery prices, investments in battery storage could still possibly be

profitable in the not so distant future or even today [118].

5.5 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this

section. First, the statistical information of the wind forecast errors for the

wind aggregator is calculated based on the historical Denmark wind data at the

country level, without accounting for the fact that in general the forecast errors

can be reduced when aggregating the data from multiple sites. The work in [44]
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identifies the statistical smoothing effects when aggregating wind generation

data for a region with spatially distributed wind farms, and it is found that the

improvement of the prediction is noticeable even for small regions and only

few sites. Future work should model the locations and the sizes of the wind

power plants within the aggregator in a more realistic way and use a dataset

that is consistent with the modeled locations and sizes.

Second, the balancing market prices are assumed to be independent of the

aggregator’s imbalance positions. However, this assumption might not be valid

when the aggregator accounts for a significant share in the market. In other

words, with the increasing market share of the aggregator, the influence of the

aggregator’s imbalance positions on the balancing market prices cannot be

neglected. Future work should include modeling the mutual influences of the

forecast errors of the aggregator and the balancing market prices.

Third, the total wind capacity and the storage energy capacity are fixed, i.e.

they are not optimized. Furthermore, the C-rate of the storage units are fixed

to be one-hour. Nevertheless, the resulting profits of the aggregator and the

resulting values of integrating the storage units might change when different

assumptions regarding the wind and storage capacities are made. A future ver-

sion should interface the presented model with an investment model that aims

to optimize the size of each unit. The second part of the thesis will focus on op-

timizing the investment decisions of an aggregator in a market environment.

5.6 Summary and Conclusions
A stochastic distributionally robust optimization model to derive optimal bid-

ding strategies for a wind-storage aggregator is presented in this chapter. Com-

pared to the price-taker strategy, the price-maker strategy can achieve higher

profits as it considers the potential impacts on the market. The integration of

storage units can further strengthen this effect. Furthermore, numerical results

suggest that considering the output-based subsidies reduces the aggregator’s

motivation to exert market power, which increases the resulting social welfare.

However, the increase in social welfare is not comparable to the subsidies paid

to the power plants. When simulating the cases of aggregating existing wind

power plants in the system, results show that higher aggregation levels result in
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higher unit revenues, but at the cost of a decrease in social welfare and the de-

mand satisfaction rate. The analysis of the forecast uncertainty shows that the

proposed distributionally robust optimization model can achieve higher prof-

its than the benchmark case of bidding at the day-ahead forecast. Additionally,

the application of the ARMA model can further improve the performance of

the model.
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Chapter 6

Investment Optimization

considering Joint Reserve and

Energy Market Participation

In this chapter, an optimization model is presented to optimize the generation

mix and the operations of a distributed energy resource aggregator jointly to

satisfy the demand and policy targets while minimizing the total costs. The

components considered in the aggregator include the distributed storage units,

demand response programs, variable and dispatchable generation units. In or-

der to better exploit the economic value of the distributed energy resources, their

participation in reserve and energy markets is considered. As the investment

and market bidding decisions are made sequentially, a multi-stage stochastic

programming model is formulated to minimize the sum of the long-term invest-

ment cost and the short-term cost. The latter includes the fixed and variable

operating cost, fuel costs, emission cost, and market participation cost. A case

study demonstrates the effectiveness of the proposed model, shows the benefits

of market participation and coordinated bidding, analyzes the impact of differ-

ent reserve market products, and finally investigates the influences of the policy

targets and demand response programs. This chapter is based on [119].
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6.1 Introduction

6.1.1 Motivation and Related Work

The potential demand gap that is mainly due to the policies such as nuclear

or coal phase-out urgently requires new generation investments in power sys-

tems. Driven by favorable government policies and ambitious renewable gen-

eration penetration and emission reduction targets, the electricity industry

worldwide is experiencing three major changes: electrification, decentraliza-

tion and digitization. All these trends provide opportunities to invest in Dis-

tributed Energy Resources (DERs) including the Demand Response Programs

(DRPs). On the one hand it is beneficial to the system as it reduces grid losses

and possibly decreases or defers capacity investments, on the other hand it

provides customers more economical energy solutions and chances to make

profits by participating in the supply and demand balancing process. These

effects are strengthened by the ongoing decrease in costs of DERs such as Pho-

tovoltaic (PV) or storage units. In order to fully utilize the economic value of

DERs’ investments, aggregation is of great interest as it enables DERs to par-

ticipate in the electricity markets and to provide grid services (e.g. reserve

provision). Without considering the possibility of energy arbitrage and reserve

provisions, values of DER investments are underestimated. As lots of system

operators such as California Independent System Operator (CAISO) have al-

ready implemented rules or consider to do so to allow DERs’ market partici-

pation, it is important to address the research question of what would be the

optimal generation mix and operational decisions of DERs considering their

participation in the markets.

With the increasing penetration of DERs such as storage devices, wind and

PV generation units in recent years, modern generation expansion planning

models of DERs are more complex and focus on one or the coordinated plan-

ning of several DER technologies. For example, [120] and [121] investigate the

effects of electric vehicles’ penetration. References [122] and [123] focus on the

integration of Demand Response (DR), while [124] and [125] consider the incor-

poration of both DR and storage investments. In [126,127,128], approaches for

planning and operating renewable energies and storage devices are proposed

whereas in [129] a planning method to decide on optimal locations, sizes and



Chapter 6. Investment Optimization considering Joint Reserve and Energy
Market Participation 153

mix of both dispatchable and intermittent distributed generation is presented,

with renewable outputs’ uncertainties incorporated using robust optimization.

The authors of [130] propose a method that considers a comprehensive con-

figuration of microgrids with DRP, considering solar, wind and battery as the

candidate technologies. As a result, most of the existing models only target the

optimization of investment decisions considering limited options of candidate

technologies and without considering their participation in electricity markets.

However, because of the uncertain nature of variable generation outputs, it is

important to consider the coordination of different units already in the plan-

ning phase to support their integration. Furthermore, as DERs are expected

to participate in markets and contribute flexibility, it is important to consider

their market participation to exploit the economic value of DER investments.

Furthermore, limited by the computational complexity, traditional genera-

tion expansion planning models often adopt the sliced load duration curve

[131] to approximate the temporal characteristics of the load profile. Despite

the computational tractability, this method on one hand cannot preserve the

chronology to reflect the correlation of demand and variable generation out-

puts; on the other hand it does not allow the modeling of the inter-temporal

operational decisions (e.g. operations of storage units). As shown in [132, 133],

the temporal details have a significant impact on investment decisions and

the impacts increase with the increasing share of Renewable Energy Sources

(RESs). Although attempts have been made to model the variations in demand

and supply while maintaining the computational efficiency by using represen-

tative days [134, 135], the number of the days are limited and they are often

selected using some simple heuristics.

Consequently, the goal of this chapter is to optimize the investment deci-

sions of a DER aggregator by optimizing the operational decisions over the full

8760 hours for each examined year. The aggregator is assumed to have access

to both the reserve and the energy markets.

6.1.2 Chapter Organization

The remainder of this chapter is organized as follows: the problem description

and the main modeling assumptions are given in Section 6.2, mathematical

formulations and the proposed optimization model are presented in Section
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6.3. Section 6.4 presents the results of a case study. Limitations and future work

are discussed in Section 6.5. Finally, conclusions are drawn in Section 6.6.

6.2 Problem Description and Model Assumptions
The considered investment model aims to optimize the investment decisions

of a distributed energy resources mix for an examined year (i.e., 2020, 2030,

2040 and 2050) using an hourly resolution. Given the electricity market prices,

the model trades-off between investing in local distributed energy resources

and purchasing electricity from the wholesale market to satisfy the demands

and the policy targets, while minimizing the total costs. The trade-off is real-

ized by jointly optimizing the investments and operations of a DER aggregator

considering different types of storage units, variable and dispatchable gener-

ation units, and the DRP, while taking the participation into the energy and

reserve markets into consideration. The planner, which also acts as an aggre-

gator, is assumed to have full control over all units and have access to demand

response. It integrates the characteristics of diverse units into a single entity

and generates a single dispatch portfolio. Aggregation is done to take advan-

tage of a variety of DERs and to contribute efficiently to covering the flexibility

needs of the system. To lower the computational burden, a static planning for

a particular year is modeled.

Similar to the Swiss market structure, it is assumed that the reserve capacity

market is cleared one-week ahead, while the energy market is cleared one day

ahead. The aggregator acts as a price-taker and a uniform pricing scheme is

assumed in both markets. Given the market prices as inputs, the optimal de-

cisions to be made are the purchase/sale from/to the energy market and the

optimal capacity bidding into the reserve market. The real-time reserve activa-

tion is simulated using the historical activation rate. Note that all units except

for the variable generation units are assumed to be able to provide reserves.

The structure of the multi-stage optimization model is:

• 1st stage: The aggregator optimizes investment decisions for the examined

year (i.e. how much should be invested for each type of units).

• 2nd & 3rd stage: The second and the third stages correspond to two markets:

reserve and energy markets. Following a realistic market structure, the ag-

gregator first decides its bids into the reserve market and then to the energy
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market. All units are assumed to participate in the Day-ahead (DA) energy

market and all units except variable generation units are assumed to have

access to the reserve market. Note that only a general form of reserve is con-

sidered in this work.

• 4th stage: Finally, re-dispatch occurs due to reserve activation at real-time,

while deviations caused by DA variable generation forecast errors are cleared

in the balancing market.

The main modeling assumptions considered in this chapter are summarized

as follows:

• The aggregator is assumed to have access to both the energy and the reserve

markets, and only a general form of reserve is considered. Participation in

the long-term future markets is not considered.

• To limit the computational complexity, a static investment model for a partic-

ular year is simulated. Furthermore, a green-field investment is modeled for

each examined year, i.e. investments in previous years are not considered.

• Uncertainties regarding wind and PV outputs are incorporated using robust

optimization.

• No subsidies such as the investment subsidies or feed-in tariffs for renew-

ables are modeled.

• It is assumed that the investment decisions are made by a central planner,

i.e. the aggregator. Although it might not be the case in reality, the results

could offer the aggregator and the policy-makers the insights about what

would be the optimal generation mix in terms of the cost considering the

given demand and policy targets [136].

6.3 Mathematical Formulation

In this section, we first describe the constraints for each stage of the multi-

stage stochastic optimization problem, then we present the overall objective

function and the final optimization problem.
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1st-stage Constraints

For the examined investment year, the investment capacity xinv
i in candidate

unit type i has to be non-negative:

0 ≤ xinv
i , ∀i ∈ I (6.1)

where I is the set of candidate unit types.

2nd- and 3rd-stage Constraints

Since only uncertainties in the DA forecast of variable generation are consid-

ered, both the week-ahead reserve capacity bidding and the day-ahead energy

bidding are optimized taking into account the day-ahead variable generation

forecasts.

Dispatchable Generation Unit We use G to indicate the set of dispatchable

generation unit types. The DA scheduled output pda
g,t at time t of dispatchable

generation unit type g with g ∈ G considering the full downward reserve ca-

pacity activation is non-negative, while the maximum output considering the

full upward reserve capacity activation is limited by the invested capacity xinv
g .

Mathematically,

pda
g,t − qRD

g,t ≥ 0 (6.2)

pda
g,t + qRU

g,t ≤ xinv
g (6.3)

qRU
g,t, q

RD
g,t ≥ 0 (6.4)

where qRU
g and qRD

g denote the upward and downward reserve capacity con-

tributed by the dispatchable generation unit g, respectively.

Variable Generation Unit The DA output pda
v,t of variable generation unit v

where v ∈ V is non-negative and limited by the product of the investment

capacity and the generation forecasts in percentage pf
v,t:

0 ≤ pda
v,t ≤ xinv

v pf
v,t (6.5)
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It is assumed that variable generation output can be curtailed with a direct cost

of zero.

Battery Storage Unit Let S denote the set of candidate storage unit types.

The DA scheduled stored energyEda
s,t of the storage unit swith s ∈ S at time t

is non-negative and limited by the invested battery energy capacity xinv
s , while

the initial stored energy is set by (6.7). The relationship of the energy storage

levels of two consecutive time steps is defined by (6.8), with DA charging and

discharging powers denoted by pch,da
s and pdis,da

s , respectively.

0 ≤ Eda
s,t ≤ xinv

s (6.6)

Eda
s,1 = E ini

s x
inv
s (6.7)

Eda
s,t = (1− ζs)Eda

s,t−1 + ηsp
ch,da
s,t ∆t− η−1s pdis,da

s,t ∆t (6.8)

where ∆t is the time step length, ζs and ηs indicate the self-discharging rate

and one-way efficiency.

To ensure that the charging and discharging powers of the battery units are

within the limits in the case of full up-/downward reserve capacity activation,

constraints (6.9) and (6.10) are defined. More specifically, the sum of the DA

charging minus the discharging plus the activation of the full downward re-

serve capacity qRD
s is limited by the maximum charging power pch,max

s , while

the sum of the DA discharging minus charging plus the activation of the full

upward reserve capacity qRU
s is limited by the maximum discharging power

pdis,max
s . Furthermore, constraints (6.11) and (6.12) guarantee that the stored

energy of the storage unit is within the range in case of full reserve activation

occurs, where τRM is the duration of reserve provision. Mathematically,

pch,da
s,t − pdis,da

s,t + qRD
s,t ≤ pch,max

s xinv
s (6.9)

pdis,da
s,t − pch,da

s,t + qRU
s,t ≤ pdis,max

s xinv
s (6.10)

Eda
s,t − τRMη−1s qRU

s,t ≥ 0 (6.11)

Eda
s,t + τRMηsq

RD
s,t ≤ xinv

s (6.12)

pch,da
s,t , pdis,da

s,t , qRU
s,t, q

RD
s,t ≥ 0 (6.13)
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Different from other units, in the case that only upward-reserve or downward-

reserve is activated over a period of time, the cumulative effects of continuous

discharging or charging would result in an empty or a fully-charged battery

in extreme cases, which does not allow the further discharging or charging.

To guarantee the reserve provision in these cases, additional constraints are

enforced to limit the day-ahead scheduled energy stored in the battery to be

within an energy band [Eself,min, Eself,max], and in addition to limit the reserve

capacity qRU/RD
s,t provided by the storage to only a fraction βres of the maximum

charging/discharging power [137], i.e.,

Eself,min
s xinv

s ≤ Eda
s,t ≤ Eself,max

s xinv
s (6.14)

0 ≤ qRU
s,t ≤ pdis,max

s βres
s xinv

s (6.15)

0 ≤ qRD
s,t ≤ pch,max

s βres
s xinv

s (6.16)

Load To ensure the full reserve capacity to be provided by the load unit l

for each time step, the absolute value of the day-ahead load shifting lsh,da

plus/minus the downward/upward reserve qRD/RU
l is limited to the maximum

hourly load shifting, which is defined as a fraction βsh,max of the load estima-

tion lest. Furthermore, the load consumption for each day starting at time t0
are required to be constant before and after the shifting. Mathematically,

lsh,da
t − qRU

l,t ≥ −βsh,maxlest
t (6.17)

lsh,da
t + qRD

l,t ≤ βsh,maxlest
t (6.18)

t0+24∑
t=t0

lsh,da
t = 0 (6.19)

qRU
l,t , q

RD
l,t ≥ 0 (6.20)

Policy Constraints A self-sufficiency rate target βss and a renewable target

βres are set to guarantee that a certain amount of the load is served by local
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generation and local renewable resources, i.e.

T∑
t=1

∑
i∈I

pda
i,t ≥ βss

T∑
t=1

lest
t (6.21)

T∑
t=1

∑
i∈I res

pda
i,t ≥ βres

T∑
t=1

lest
t (6.22)

where I res is the set of the renewable unit categories.

Power Balance Constraint For each time step, the DA bidding quantity qDA

needs to equal the DA scheduled generation of all units minus the sum of the

load estimation and the scheduled load shifting, i.e.∑
g∈G

pda
g,t +

∑
v∈V

pda
v,t +

∑
s∈S

(pdis,da
s,t − pch,da

s,t )− (lest
t + lsh,da

t ) = qDA
t (6.23)

Market Constraints The power that is exchanged between the aggregator

and the system considering the reserve provision is set to be limited by the

transformer capacity. As the transformer is rarely fully loaded in reality for se-

curity reasons, the transformer capacity is estimated by the aggregator’s peak

demand lest,max multiplied by a factor γex that is greater than one, i.e.

qRU
g,t + qRU

s,t + qRU
l,t = qRU

t (6.24)

qRD
g,t + qRD

s,t + qRD
l,t = qRD

t (6.25)

qRU
t + qDA

t ≤ γexlest,max (6.26)

qRD
t − qDA

t ≤ γexlest,max (6.27)

In addition, the reserve bidding capacity is generally required to to be provided

for a certain period of time (e.g. one week):

qRU
t = qRU

tres
0

for ∀t ∈ [tres
0 , t

res
0 + ∆res] (6.28)

qRD
t = qRD

tres
0

for ∀t ∈ [tres
0 , t

res
0 + ∆res] (6.29)
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where tres
0 is the starting time point of each reserve bidding period and ∆res is

the minimum time length of the reserve provision. Moreover, constraint (6.30)

needs to be enforced if the reserve bidding is required to be symmetric.

qRU
t = qRD

t (6.30)

4th-stage Constraints

At real-time, re-dispatch is required due to the realization of day-ahead vari-

able generation forecast error δ and the upward/downward reserve activation

qRUact/RDact
i for unit iwith i ∈ {s, l, g}. Therefore, real-time dispatchable gener-

ation pg , load l and variable generation pv are given by

pg,t = pda
g,t + qRUact

g,t − qRDact
g,t (6.31)

lt = lest
t + lsh,da

t + qRDact
l,t − qRUact

l,t (6.32)

0 ≤ pv,t ≤ xinv
v (pf

v,t + δv,t) (6.33)

where the variable generation is assumed to be curtailed at a cost of zero. Sim-

ilarly, the real-time storage charging pch
s , discharging pdis

s and the storage level

Es are defined as follows:

0 ≤ Es,t ≤ xinv
s (6.34)

0 ≤ pch
s,t ≤ pch,max

s xinv
s (6.35)

0 ≤ pdis
s,t ≤ pdis,max

s xinv
s (6.36)

pdis
s,t − pch

s,t = pdis,da
s,t − pch,da

s,t + qRUact
s,t − qRDact

s,t (6.37)

Es,1 = E ini
s x

inv
s (6.38)

Es,t = (1− ζs)Es,t−1 + ηsp
ch
s,t∆t− η−1s pdis

s,t∆t (6.39)

Note that limitations on the constant daily load consumption is not required

at real-time, since reserve activation is generally small, almost symmetric over

long-time and hardly predictable. Moreover, adding the constraint may result

in extra imbalance costs that should not be undertaken by reserve providers.
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The real-time power balance equation∑
g∈G

pg,t+
∑
v∈V

pv,t+
∑
s∈S

(pdis
s,t−pch

s,t)−lt=qDA
t +qBM

t +qRUact
t −qRDact

t (6.40)

ensures that the sum of the market exchange equals the real time generation

of all units minus the final load. In this equation, we have used

qBM
t = qBM+

t −qBM-
t with qBM+

t , qBM-
t ≥ 0 (6.41)

qRDact
t = qRDact

l,t + qRDact
g,t + qRDact

s,t (6.42)

qRUact
t = qRUact

l,t + qRUact
g,t + qRUact

s,t (6.43)

where qBM+ and qBM- are the positive and negative imbalances. The reserve

activation is modeled as the product of the reserve bidding capacity and the

corresponding historical reserve activation rate.

Objective

The objective of the problem is to minimize the sum of the annualized in-

vestment cost C inv, the fixed and variable operating costs C foc and Cvoc, the

day-ahead energy market costs CDAM, the reserve market costs CRM and the

balancing market costsCBM over the simulation horizon, i.e.

C inv =
∑
i∈I

αann
i cinv

i xinv
i (6.44)

C foc =
∑
i∈I

cfoc
i x

inv
i (6.45)

Cvoc
t =

∑
i∈I

(cvoc
i + cfuel

i )pi,t (6.46)

CDAM
t = −prDA

t qDA
t (6.47)

CRM
t = −prcRU

t qRU
t −prcRD

t qRD
t −praRU

t qRUact
t +praRD

t qRDact
t (6.48)

CBM
t = −prBM+

t qBM+
t + prBM-

t qBM-
t (6.49)

where investment, fuel, fixed and variable operating cost parameters are de-

noted by cinv, cfuel, cfoc and cvoc, while prDA, prcRU/D, praRU/D and prBM+/- are

the day-ahead market, reserve capacity, reserve energy and positive/negative
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imbalance price parameters. Note that the reserve market costs comprise the

costs related to the procurement of the reserve capacity and the costs related to

the reserve energy activation. Parameter αann is the annuity factor computed

by r
1−1/(1+r)lt with r and lt denoting the Weighted Average Cost of Capital

(WACC) and the candidate unit’s lifetime. Finally, the optimization problem

can be written as:

min C inv + C foc + αd
T∑
t=1

(Cvoc
t + CDAM

t + CRM
t + CBM

t )

s.t. Constraints (6.1)-(6.49)

(6.50)

where T is the total number of hours of all selected days and αd equals the

number of days of the examined year divided by the number of representa-

tive days. In this work, we optimize the investment and operational decisions

considering the full 8760 hours of the year, αd is therefore equal to one.

6.4 Case Study

6.4.1 Input Data

The case study is simulated using the 2018 load and price data published by

Elia (Belgium’s electricity system operator) [138]. The cost parameters for the

considered unit types of the aggregator are listed in Table 6.1. The initial stor-

age level of the battery is set to 50%. Note that the costs shown in Table 6.1

are given as ranges since they vary according to the considered investment

year (i.e., 2020, 2030, 2040 and 2050). Details of the costs over all considered

investment years are provided in Appendix 9.3.

Input parameters modeled in the Baseline scenario as well as the sensitivity

scenarios including electricity market prices and the WACC assumption are

summarized in Table 6.2. The total Elia grid demand is scaled down by a factor

of 0.003 to serve as the simulated demand of the aggregator and the result-

ing hourly peak and minimum load for simulation are 39.7 MW and 20.5 MW,

respectively.



Chapter 6. Investment Optimization considering Joint Reserve and Energy
Market Participation 163

Table 6.1: Parameters of candidate units.

Category Unit type Parameter Adopted value Source

Variable
Generation
Unit

PV

Investment cost 677’000~1’481’000 EUR/MW [2]
Fixed operational cost 5’000~10’000 EUR/MW-year [2]

Variable operational cost 0 EUR/MWh [2]
Lifetime 30 years [2]

Wind
(land-based)

Investment cost 1’458’000 ~2’219’000 EUR/MW [2]
Fixed operational cost 28’000~36’000 EUR/MW-year [2]

Variable operational cost 0 EUR/MWh [2]
Lifetime 30 years [2]

Battery
Storage
Unit

Battery
(2-hour)

Investment cost 154’000~364’000 EUR/MWh [2]
Fixed operational cost 13’000~31’000 EUR/MW-year [2]

Lifetime 15 years [2]
Depth of discharge 100% [2]

Roundtrip efficiency 85% [2]
Lifetime 15 years [2]

Dispatchable
Generation
Unit

CHP

Investment cost 1’346’000~1’564’000 EUR/MWp [3]
Fixed operational cost 0 EUR/MW-year [3]

Variable operational cost 16~17 EUR/MWh [3]
Fuel cost 56~110 EUR/MWh [3]

Electrical efficiency 0.37~0.40 [3]
Thermal efficiency 0.47~0.50 [3]

Boiler efficiency 0.75 [139]
Gas price 86~117 EUR/MWh [3]
Lifetime 20 years [3]

Original values are converted to Euros based on the exchange rates of 0.91 EUR/CHF and 0.85 EUR/USD.
Fuel cost for Combined Heat and Power (CHP) units are calculated based on the equation from [139], i.e.
prgas

ηe (1 − ηth

ηb ), where prgas, ηe, ηth, ηb are the gas price, the electrical, thermal and the boiler efficiencies

of the CHP unit.

6.4.2 Results

In this section, we first validate the effectiveness of the proposed model by an-

alyzing the results of the Baseline scenario. Then to account for the uncertain-

ties that our results are subject to, we conduct a set of one-at-a-time sensitivity

analyses related to market participation, reserve bidding requirement, policy

targets, the demand response shifting potential and the forecast error respec-

tively, while keeping the remaining parameters equal to the Baseline scenario

values. Note that as the considered investment model is static and aims to

minimize the total cost for the examined year, all costs or profits shown in this

section are the annualized values.

Analysis of the Baseline Scenario

In the Baseline scenario, we run the model assuming the investment year as

2020, 2030, 2040 and 2050, respectively. More specifically, we run the static
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Table 6.2: Input parameters and market prices for modeling.

Parameter Baseline value Sensitivity analysis Source
Self-sufficiency target 80% 0~100% n/a
Renewable target 50% 0~100% n/a
Worst-case nominal DA forecast error 0% 0~40% n/a
Transmission limit 120 % of peak demand n/a n/a
Time length of reserve product 168 hrs 4, 8, 16, 24, 168 hrs Elia
Symmetry of reserve product Symmetric Asymmetric n/a
Battery day-ahead energy band [0.2,0.8] n/a [137]
Battery reserve bidding limit 80% n/a n/a

Avg. reserve activation rate
Downward: 10%

Upward: 8%
n/a Elia

Day-ahead market price -32~499 EUR/MWh n/a Elia
Reserve capacity price 3~18 EUR/MW n/a Elia

Reserve activation price
Downward: 0~79 EUR/MWh
Upward: 0~149 EUR/MWh

n/a Elia

DR shifting limits 10% of load estimation 0%, 20% [140]
WACC 4% n/a [141]

investment model for each investment year without considering any invest-

ments in previous years (i.e., a greenfield investment is simulated for each in-

vestment year). As given in Table 6.2, all forecasts are assumed to be perfect

in the Baseline scenario, and the renewable and the self-sufficiency target are

set to 50% and 80%. Note that sensitivity analyses will be conducted in the fol-

lowing sections to investigate the impacts of the policy targets. Furthermore,

the aggregator is assumed to participate in both reserve and energy markets,

while reserve bidding quantities need to be symmetric, i.e. up- and downward

reserve bidding quantities are equal, with a provisioning time of one week.

Figure 6.1 shows the installed capacity and the annual generation by technol-

ogy type for investment years 2020 to 2050 for the Baseline scenario. It can be

observed that the aggregator invests as much as the Self-suffiency (SS) target

requires (i.e., SS target constraint is binding) for all considered years, which

means that purchasing electricity from the wholesale markets is more attrac-

tive compared to investing in self-generations. This is mainly due to the fact

that 1) the electricity market prices are assumed to be constant over the years

without considering the influence of fuel cost or emission cost increase; and 2)

subsidy policies such as the heat credits for CHP units or investment subsidies

for wind and PV units are not considered, which might lead to different results.

Futhermore, it shows that the renewable generation surpasses the renewable

target from 2030 onwards. More specifically, while the optimal generation mix
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Figure 6.1: Comparison of the annual generation and the installed capacity
by technology type for years 2020, 2030, 2040 and 2050 under the Baseline
scenario.

to meet both the renewable and the SS targets in 2020 is achieved with a similar

output share of CHP, wind and PV, the optimal generation mix is dominated by

renewables (i.e., wind and PV) after 2030. These observations can be attributed

to a combination of technological improvements and cost declines of renew-

ables. However, this growth of renewable investments is not evenly distributed

between wind and PV. After an increase in both wind and PV investments in

2030, PV gradually replace wind in the optimal generation mix after 2030. This

is because compared to the cost decrease for wind units a larger cost decrease

is projected for PV units in future years. The battery units start to be invested in

2030, which is likely due to the drastic cost reduction betweens 2020 and 2030

(see Appendix 9.3 for more details). The investment in CHP units decreases

over the years and no CHP units are invested after 2030 as a result of its high

operating and fuel costs and the projected cost reductions of renewables.

To present the results for the generation and load dispatch on the daily and

hourly timescales, the optimal real-time dispatch results of one example winter

and an example summer week both starting from a Monday for 2020 and 2050

are shown in Figs. 6.2-6.3. The hourly results for electricity generation by tech-
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(a) 2020 - Winter

(b) 2020 - Summer

Figure 6.2: The hourly generation by technology type over an example winter
and summer week for 2020 under the Baseline scenario.
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(a) 2050 - Winter

(b) 2050 - Summer

Figure 6.3: The hourly generation by technology type over an example winter
and summer week for 2050 under the Baseline scenario.
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nology type, the DA market exchange, reserve activations, original load and

net load18 are presented, where storage discharging/charging is represented by

positive/negative values. During the winter week (i.e., Fig. 6.2a and Fig. 6.3a),

the net load is mostly positive and the aggregator mainly purchases the elec-

tricity from the wholesale market. During the summer week (i.e., Fig. 6.2b and

Fig. 6.3b), the net load repeats the plunge and the recovery pattern from day to

day and the aggregator switches between selling electricity to and purchasing

electricity from the market. This dynamic behavior of the net load is mainly

due to the diurnal pattern of the PV generation that is more strengthened by the

high solar irradiation during summer. Compared to 2020, this phenomenon is

more pronounced in 2050 when more PV capacities are installed. The need for

flexible resources to match the highly dynamic pattern of the net load during

the summer weeks are mainly satisfied by the flexibilities provided by:

• Battery storage units: The battery units (in 2050) mainly charge (discharge)

during negative (positive) net load hours to absorb the excess generation

(satisfy the demand deficit). However, exceptions are observed in the early

morning of the summer week of 2050 when the battery still charges even

though the net load is positive. This is because of the low electricity prices

during this period (see Fig. 6.4), the battery charges so as to discharge later

during high electricity price periods.

• CHP units: The CHP units (in 2020) mainly ramp up (down) during positive

(negative) net load hours;

• DR: Similar to the battery units, DR helps to balance the variations of the net

load and to reduce the total aggregator cost by shifting the load from high

electricity price and high net load hours to the low electricity price and low

net load periods (see Fig. 6.4 for the impact of electricity prices);

• Electricity exchange with the market: In general, the aggregator sells (pur-

chases) electricity to (from) the market during the period of the negative

(positive) net load, while respecting the transmission capacity limit.

To summarize, the dispatch of different resources within the aggregator and

the market exchange behaviors of the aggregator are highly impacted by the

net load variations, but they are also influenced by the hourly electricity prices.

18Net load is defined as the load minus the variable generation, i.e. Net Load = Load - (Wind +
PV generation).
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Figure 6.4: Day-ahead dispatch of battery and demand response programs
over an example winter and summer week for 2050 along with the day-ahead
market prices for the same period under the Baseline scenario.
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To visualize the impact of Day-ahead Market (DAM) prices on the dispatch

of DR and battery units, we plot the DA dispatch of the battery and the DR over

an example winter and a summer week for 2050 along with the DAM prices

for the same period under the Baseline scenario in Fig. 6.4. Results for other

investment years can be found in Appendix 9.3. It shows that during the ex-

ample winter week in general both the battery units and the DR shift demand

from the high DAM price hours to hours with comparatively lower DAM prices

to reduce the total cost of purchasing electricity from the wholesale market.

However, different behaviors can be observed in the example summer week:

the battery charges and the DR shifts up mainly during the noon time when

the electricity market price is generally high. This is because the PV generation

during the noon time of the summer week is so high that the energy injection

from the aggregator to the grid already reaches the transmission capacity limit.

Hence, batteries charge and the DR shifts up the load to absorb the excess PV

generation, and then discharge and shifts down during evening hours when

there is no PV generation. In this way, the aggregator reduces the electricity

cost by decreasing the renewable curtailment. In general the battery behaves

similarly to the DR, but exceptions may occur since the DA scheduled State of

Charge (SOC) of the battery is limited by the day-ahead energy band and the

DR up and down shiftings are limited by the maximum hourly shifting poten-

tial and the constant daily consumption constraint.

Figure 6.5 shows the DA and Real-time (RT) battery operations and its re-

serve capacity biddings as well as the reserve activations over an example

winter and summer week for 2050 under the Baseline scenario, where the up-

ward/downward reserve capacity procurement and activation are represented

by positive/negative values. Results for other investment years can be found

in Appendix 9.3. When comparing the battery dispatch between the example

summer and the example winter weeks, it can be noticed that in general the

SOC of the battery during the summer week follows a pattern of increasing

during the day and then decreasing at night, which is consistent with the di-

urnal pattern of the PV generation. Furthermore, it can be seen that the RT

battery operation deviates from the DA schedule due to the reserve activation,

but thanks to the limits on the DA SOC and the reserve provision quantity, the

battery units are able to provide continuous net upward reserves or downward
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Figure 6.5: Day-ahead and real-time battery operations, reserve capacity bid-
dings as well as the reserve activations over an example winter and summer
week for years 2050 under the Baseline scenario.
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Figure 6.6: Impacts of coordinated bidding on the investments decisions.

reserves for some time. In addition, the battery units adjust their biddings into

the reserve capacity market according to the day-ahead and real-time SOC lev-

els. The time-varying reserve bidding of the battery units is enabled by the

coordinated dispatch of different units within the aggregator. More specifi-

cally, instead of fulfilling the reserve bidding requirement by each of the sin-

gle unit, the dispatch coordination of different energy resources enables the

time-varying reserve bidding of each single unit while satisfying the market

requirements through the aggregated bidding.

Effects of coordinated bidding

To quantify the impacts of coordinated aggregator bidding, we simulate two

cases: one with coordinated bidding and one without. More specifically, in

the case without coordinated bidding the market requirements such as the

symmetric reserve bidding with a minimum provisioning time of one week

should be fulfilled by the bids of each energy resource within the aggregator,

while they only have to be satisfied by the aggregator’s bids in the case with

coordinated bidding.

Figure 6.6 shows the investment capacity per technology type for investment

years 2020 to 2050 in the case with and without coordinated biddings. We can

see that compared to the case without coordinated bidding, the battery in-

vestments increase significantly from 2030 to 2050 while both increase and de-
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Table 6.3: Comparison of the results with and without coordinated
bidding considering the same investment decisions.

Results without Coordinated Bidding

Year
Tot. cost Op. cost DAM cost RM profit RM bidding [MW]
[mEUR] [mEUR] [mEUR] [mEUR] Battery DR CHP

2020 20.15 7.31 3.00 2.05 0 2.13 7.05
2030 15.75 3.96 3.07 2.36 17.8 (42%*) 1.78 0.19
2040 14.36 3.38 3.06 2.26 17.2 (41%*) 1.71 0
2050 12.89 3.01 2.98 2.35 17.5 (41%*) 1.46 0

Results with Coordinated Bidding

Year
Tot. cost Op. cost DAM cost RM profit RM bidding [MW]
[mEUR] [mEUR] [mEUR] [mEUR] Battery DR CHP

2020 20.00 7.18 2.99 2.07 0 2.53 6.84
2030 14.67 4.06 3.07 3.48 27.4 (65%*) 2.25 0.46
2040 13.46 3.39 3.10 3.16 25.3 (61%*) 2.16 0
2050 11.99 3.01 3.06 3.29 27.1 (60%*) 1.76 0

*: Percentage share of the corresponding installed battery power capacity.
Reserve market bidding capacities shown are the average of the up- and downward values.

crease are observed for PV and wind investments in the case with coordinated

bidding.

To better investigate and illustrate the reasons behind, we run the simula-

tions without coordinated bidding with the investment decisions fixed as the

values in the Baseline scenario (i.e., investment decisions resulted by coordi-

nated bidding). Results with and without coordinated bidding considering the

same investment decisions are compared in Table 6.3. It shows that the coor-

dinated bidding results in less total costs for the aggregator, which is mainly

due to the increasing profits from the reserve market, while changes in the op-

erating and DAM costs are negligible. When focusing on the reserve bidding

quantities in these two cases, it can be seen that the coordinated bidding in

general allows higher bidding quantities into the reserve market. Moreover,

it is obvious that the percentage share of the battery power capacity (marked

with ∗ in the table) that bids into the reserve market significantly increases

in the case with coordinated bidding. This in turn increases the profitability

of the investments in battery storage units and could explain the increasing

battery investments shown in Fig. 6.6.
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Table 6.4: Impacts of different reserve products on investments and costs.

Impacts of different Reserve Products for 2020
Symmetry of bids n/a Sym. Asym.
Provisioning time n/a 1-week 1-week 24-hr 16-hr 8-hr 4-hr

Total cost [mEUR] 21.19 20.00 19.14 18.93 18.82 18.52 18.38
DAM cost [mEUR] 2.25 2.99 1.86 1.55 1.43 1.11 1.03

RM profit [mEUR] n/a 2.07 3.86 4.72 4.95 5.32 5.44
RM profit from CHP [mEUR] n/a 1.44 3.30 4.16 4.38 4.72 4.82
RM profit from storage [mEUR] n/a n/a n/a n/a n/a n/a n/a
RM profit from DR [mEUR] n/a 0.63 0.56 0.55 0.57 0.60 0.62

CHP investment [MW] 13.3 16.4 30.7 37.7 39.3 42.0 42.5
Wind investment [MW] 8.6 24.5 38.9 44.1 45.2 44.5 44.7
PV investment [MW] 107.7 80.3 55.2 46.1 44.2 45.4 45.1
Battery investment [MWh] 0 0 0 0 0 0 0

Impacts of different Reserve Products for 2050
Symmetry of bids n/a Sym. Asym.
Provisioning time n/a 1-week 1-week 24-hr 16-hr 8-hr 4-hr

Total cost [mEUR] 13.16 11.99 11.47 10.95 10.68 9.81 9.58
DAM cost [mEUR] 3.02 3.06 3.14 3.14 3.06 2.94 2.87

RM profit [mEUR] n/a 3.29 5.20 6.29 6.41 7.77 8.06
RM profit from CHP [mEUR] n/a n/a n/a n/a n/a n/a n/a
RM profit from storage [mEUR] n/a 2.94 4.83 5.81 6.00 7.35 7.63
RM profit from DR [mEUR] n/a 0.35 0.37 0.48 0.41 0.42 0.43

CHP investment [MW] 0 0 0 0 0 0 0
Wind investment [MW] 26.6 42.4 52.6 53.9 46.00 34.1 32.9
PV investment [MW] 161.8 131.3 110.3 106.8 119.3 139.4 141.3
Battery investment [MWh] 0 44.8 72.7 88.6 95.3 122.8 127.6

Effects of market participation and different reserve products

Following the roadmaps of various transmission system operators such as

Swissgrid [142], reserve products are expected to have shorter provisioning

times and more flexible bidding structures in the future. In this section, simu-

lations assuming different available reserve products are carried out to analyze

their impacts on investment decisions and the aggregator’s total costs.

Table 6.4 shows the results considering the availability of different reserve

products along with the results of only participating in the DAM (i.e., the first

column of the table) for years 2020 and 2050. Comparing the cases with and

without considering the participation in the reserve market, it can be seen that

the total cost of the aggregator increases and the economic viability of battery

units decreases when only considering the DAM participation. More specif-

ically, no battery is invested in 2020 or 2050 when the Reserve Market (RM)

participation is not considered, which means that the profits from the arbi-
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trage using the price spread in the DAM are not sufficient enough to cover

the total battery costs, even considering the projected cost reductions by 2050.

This result might change if the assumption of the battery cost changes. When

comparing the investment decisions considering different reserve products for

one specific year, in general, the availability of more flexible reserve products

encourages the investments in units that are able to provide the reserves, e.g.

the CHP units in 2020 and the batteries in 2050. Furthermore, both introducing

the asymmetric reserve products and shortening the minimum reserve provi-

sioning time decrease the total aggregator costs by realizing more profits from

the reserve market. However, the benefit of introducing more flexible reserve

products for the battery storage and the CHP units is limited, since storage

units in general bid upward and downward reserves closer to half of the energy

capacity and CHP units prefer to bid downward reserves closer to their gen-

eration outputs. Although the more flexible reserve products are expected to

mostly benefit the reserve bidding of flexible loads, both increase and decrease

in RM profits from DR are observed in Table 6.4. This is because the aggregator

coordinates the dispatch of different resources in order to minimize the total

cost of the aggregator, which might not necessarily minimize the cost that each

single unit faces. It is therefore important to research on how to allocate the

total profits to each unit within the aggregator [143, 144], which is however

beyond the scope of this thesis.

Impacts of policy targets

In the Baseline scenario, we assume a 50% RES target and a 80% SS target. As

shown by the investment results in the Baseline scenario, these two targets (es-

pecially the SS target constraint) are binding most of the time. To analyze the

impact of the policy targets, we simulate two sensitivity scenarios: 1) assuming

0-100% RES target with a step of 10% while keeping the SS target same as the

Baseline scenario (i.e. 80%); 2) assuming 0-100% SS target with a step of 10%

while keeping the RES target same as the Baseline scenario (i.e. 50%).

Figure 6.7 shows the results of sensitivity analysis 1), namely the sensitivity

analysis against the RES target for 2020 and 2050. The results can be analyzed

by splitting the RES target into two ranges:
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Figure 6.7: Comparison of the total generation and costs for 2020 and 2050 un-
der different renewable targets. Data shown are from simulations of applying
the renewable target from 0% to 100% while keeping the remaining parameters
equal to the Baseline scenario value.

• RES target ranges from 0% to 80% (i.e. RES target value lower or equal to the

80% Baseline SS target value): It can be seen that in 2020, when increasing

the RES target from 0% to 80%, the total cost increases and the total gener-

ations from CHP are gradually replaced by wind and PV investments. This

is due to the fact that in 2020 it is economic viable to meet the SS target by

investing in CHP units, the investments in wind and PV thus increase with

the RES target increase with the RES target binding all the time. In contrast,

in 2050, both the optimal generation mix and the total cost are unchanged

when increasing the RES target from 0% to 80%. This is because with the

projected cost reduction it is more profitable to invest in wind and PV units

to meet the SS target in 2050, the RES target therefore is not binding when it

is lower than or equal to the SS target.

• RES target ranges from 90% to 100% (i.e. RES target value greater than the

80% Baseline SS target value): The total cost increases by around 10% and

5% in 2020 and 2050, respectively. The wind generation increases while the

PV generation is almost unchanged when the RES target increases from 90%

to 100%. Further increasing the RES target does not increase the generations

of wind and PV simultaneously, as the PV generation is likely to be limited
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Figure 6.8: Comparison of the total generation and costs for 2020 and 2050
under different self-sufficiency targets. Data shown are from simulation of ap-
plying the self-sufficiency target from 0% to 100% while keeping the remaining
parameters equal to the Baseline scenario values.

by the transmission capacity. More specifically, the diurnal pattern of the

PV generation profile in general increases the peak electricity injection into

the grid, which might result in curtailments when the transmission limit is

reached.

Similarly, Fig. 6.8 shows the results of the sensitivity analysis against the SS

target. It can be seen that while the optimal investment portfolio remains the

same with the SS target ranging from 0% to 50% (i.e. the Baseline RES target

value) for both 2020 and 2050, further increasing the SS target results in sig-

nificant increase in wind and/or CHP investments, which is likely due to their

comparatively higher annual generation outputs.

In general, both increasing the RES target and increasing the SS target result

in higher aggregator costs, as compared to investing in local generations it is

more favorable to purchase the electricity from the wholesale market. While

the cost change in percentage for increasing the SS target from 0% to 100%

(using the cost at 0% SS target as the reference) is similar for 2020 and 2050

(around 12% cost increase for both years), this is not the case when changing

the RES target. The aggregator cost increases by around 35% when increasing

the RES target from 0% to 100% in 2020, whereas it only increases by 5% in
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Table 6.5: Impact of demand response on the results for years 2020 to 2050.

Impacts of Demand Response for 2020

βsh,max CHP
[MW]

Wind
[MW]

PV
[MW]

Battery
[MWh]

RM profit [mEUR] Tot. shift
[GWh]

Tot. cost
[mEUR]CHP Battery DR Tot.

0% 16.6 23.5 81.9 0 1.62 0 0 1.62 0 20.70
10% 16.4 24.5 80.3 0 1.44 0 0.63 2.07 20.31 20.00
20% 16.4 25.8 77.9 0 1.31 0 1.25 2.55 39.92 19.30

Impacts of Demand Response for 2050

βsh,max CHP
[MW]

Wind
[MW]

PV
[MW]

Battery
[MWh]

RM profit [mEUR] Tot. shift
[GWh]

Tot. cost
[mEUR]CHP Battery DR Tot.

0% 4.1 38.8 132.0 44.1 0.13 2.79 0 2.92 0 13.14
10% 0 42.4 131.3 44.8 0 2.94 0.55 3.29 20.68 11.99
20% 0 44.4 127.1 52.8 0 3.37 0.87 4.24 40.78 11.18

2050, which is due to the drastic projected cost reductions of renewables in

future years. Note that the results might change when different assumptions

about the unit cost and the generation profiles are made.

Impacts of demand response

To investigate the impacts of the assumptions regarding the demand response,

we run the simulations for investment years 2020, 2030, 2040 and 2050, assum-

ing that the maximum hourly load shifting (i.e. Lsh,max) to be: 0%, 10%, 20%.

The results for 2020 and 2050 under different maximum load shifting assump-

tions are shown in Table 6.5. It can be seen that as the level of shiftable load

increases:

• The profits from the reserve market are increased and the total aggregator

costs are reduced. Considering the cost decrease and total demand to be

shifted, the profits for each MWh of demand shifting can be calculated as the

cost reduction divided by the additional demand to be shifted. In this way,

the profits brought by each unit of demand shifting are 34.5 EUR/MWh and

35.7 EUR/MWh when increasing the shifting potential from 0% to 10% and

from 10% to 20% in 2020, and the corresponding values for 2050 are 55.61

EUR/MWh and 40.30 EUR/MWh. The higher values of demand response in

2050 could be related to the higher wind and PV installed capacities. Note

that this calculation is a simplification of the real-world complexity, but it

could provide an insight about how much should be paid for utilizing the

DR.
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• Investments in CHP units are in general decreased as more flexibilities are

provided from the demand side.

• Both increase and decrease are observed in wind and PV investments. This is

likely due to the combination of a multitude of effects. Clearly, as DR shifting

potential increases, the energy shifting potential of the aggregator increases.

This on one hand can be used to reduce the wind and PV curtailment rate,

i.e. using more of the available generation, which leads to a lower need in

PV and wind investments for the same amount of electricity supply. On the

other hand, the flexibility can be also used to increase the market value of PV

and wind generations by shifting their generations from the low price period

to the high price period, thereby encouraging an increase in PV and wind

investments.

• Investments in batteries are increased (without considering the case with-

out battery investments), although this result seems to be against the fact

that DRPs and battery units are in general substitutes, it can be explained

by two effects: 1) the higher DR shifting potential can allow a higher range

of energy and reserve bids that the load can submit to the market, which

accordingly increases the flexibility of the reserve capacity that batteries bid

into the market, since the reserve market requirement19 is fulfilled by the

coordinated bidding of all energy resources. The possibly higher profits ob-

tained by batteries from the reserve market therefore increases the economic

viability of battery investments. This can be verified by the fact that under

the same load shifting potential, the RM profit obtained by DR is lower in the

case with battery installations than that without battery investments. 2) the

higher DR shifting potential can shift more productions from a high variable

generation period to a low variable generation period, which leads to a lower

need for investment in dispatchable generation units. This, however, in turn

could require the installation of more batteries to fill the flexibility gap as

batteries serve as flexibility providers.

Effects of forecast error

The forecast error δv of variable generation unit v is assumed to belong to an

uncertainty set {−δv ≤ δv ≤ δv} and decision variables are optimized us-

19In the Baseline scenario, the reserve bidding is required to be symmetric and the minimum
reserve provisioning time is one week.
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Figure 6.9: Comparison of the investment and cost results for 2020 and 2050
under different forecast error assumption.

ing robust optimization, i.e. they are feasible for all realizations within the

uncertainty set and optimal for the worst-case objective function. It is ob-

vious that the worst-case scenario occurs when the forecast error hits the

lower bound of the interval, which means the real-time variable generation

is max{xinv
v (pf

v,t − δv), 0}. Thus, equation (6.33) is replaced by

0 ≤ pv,t ≤ max {xinv
v (pf

v,t − δv), 0} (6.51)

Figure 6.9 shows the results for 2020 and 2050 considering that the worst-case

nominal forecast error ranges from 0% to 40%. In general, the investments in-

crease with the increasing forecast errors so as to cover the shortage caused

by the worst-case variable generation outputs, which results in the growth in

investment costs and thereby the total costs. Furthermore, the rate of the cost

increase accelerates with the increasing forecast error as more variable genera-

tion units are installed in the system and then the same increase in the forecast

error will have bigger impact on variable generations and total costs. The CHP

investment is stable in 2020 and it is invested in 2050 when the worst-case

forecast error increases to 40%, as increasing the uncertainty in wind and PV

outputs is equivalent to decrease the profitability of their investments. In ad-

dition, the total aggregator cost could increase by up to more than 30% and
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50% in 2020 and 2050 when the nominal worst-case forecast error increases

to 40%, which strengthens the importance of the forecasting accuracy and the

modeling forecast errors in a proper way.

6.5 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this

section. First, policy regulations such as the subsidies for renewables are not

considered in this work. However, they are expected to have significant influ-

ence on the economic viability of different candidate units (especially wind

and PV). As pointed out in [145], the current DER business models are driven

more by regulatory and policy factors than by technological factors. The future

version should therefore account for influences of the policy regulations and

their uncertainties in future years.

Second, electricity market prices are modeled using historical market data

and the prices are assumed to be constant over the years. In this way, the in-

fluence of the fuel and emission cost increase and the price suppression effect

due to the increasing penetration of renewables especially during high wind

and PV generation hours cannot be captured. The future work should include

a proper modeling of future market prices. In addition, how the investment

decisions and the economic viability of different units are influenced by the

generation mix of the electricity market should be investigated.

Third, although a comprehensive sensitivity analysis is conducted to analyze

the uncertainties that the planners face, most of the uncertainties considered

are short-term ones, which are related to the day-to-day variability [146]. The

long-term uncertainties, which correspond to the yearly changes, such as de-

mand growth, electricity price developments, technology improvements and

cost developments for the candidate units (especially the renewable and bat-

tery units) are not incorporated.

Fourth, it is assumed that the DER investment decisions are made by a cen-

tral planner (i.e., an aggregator) in this work, which however might not always

be the case in reality. Although the results provide the insights for the optimal

generation mix in terms of the total aggregator cost while respecting the de-

mand and the policy targets, the considered objective function might not be
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able to fully reflect the intentions of individual investors to invest in distributed

energy resources.

Lastly, the investment decisions are optimized mainly considering the rev-

enue streams from the reserve and the energy markets, while additional rev-

enue streams from providing firm capacities or increasing self-consumptions

and so on are not considered.

Some of the limitations described above are addressed in Chapter 8, which

focuses on analyzing the economic viability of PV-battery systems in Switzer-

land.

6.6 Summary and Conclusions
A multi-stage stochastic optimization model to derive optimal generation mix

in a market environment is presented. Comprehensive sensitivity analyses are

conducted to investigate the impacts of the market participation, coordinated

bidding, reserve bidding requirement, policy targets, the demand response

shifting potential and the forecast errors on the investment decisions and the

aggregator’s total costs.

While the renewable target is binding in 2020, as a result of the decreasing

costs, the renewable investments gradually replace the CHP investments in the

optimal generation mix, resulting in more renewable generations than the re-

newable target requires from 2030 onwards. Nevertheless, the self-sufficiency

target is binding for all examined investment years as it is more favorable to

purchase the electricity from the wholesale market under the simulation as-

sumptions.

Coordinated bidding enables the time-varying reserve bidding of the individ-

ual unit while satisfying the market requirements with the aggregated bidding

quantity, thus realizes higher profits for the aggregator. Numerical results pre-

sented also suggest that having access to the reserve market encourages the

investments in flexibility providers in the system (e.g. storage units and CHP

units). However, for each MW of reserve capacity bidding into the market, the

benefits of having more flexible reserve products for the battery and the CHP

units might be limited. This is due to the fact that storage units in general bid

upward and downward reserves closer to half of the energy capacity and CHP
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units mostly bid downward reserves closer to their generation outputs. Fur-

thermore, the aggregator cost decreases with the increasing DR shifting poten-

tial, and the value of each MWh of demand shifting increases with the increas-

ing investments in wind and PV units. Sensitivity analysis regarding the policy

targets shows that both increasing the renewable and the self-sufficiency tar-

get result in higher costs for the aggregator. Moreover, compared to 2020, the

impact of increasing the renewable target is less pronounced in 2050 due to the

decreasing cost for PV and wind units. Finally, simulation results with varying

forecast errors suggest the importance of have an accurate forecast and also

modeling the forecast uncertainties in a proper way.





Chapter 7

Investment Optimization

Focusing on the Forecast

Uncertainty Modeling

In this chapter, we extend the work in the previous chapter by modeling the

uncertainties in wind and Photovoltaic (PV) generation forecasts using distribu-

tionally robust optimization. Following the principle of distributionally robust

optimization, the uncertainties are characterized by an ambiguity set that de-

fines a family of distributions. A multi-stage stochastic programming model is

formulated to minimize the worst-case expectation of the total long-term and

short-term costs. A case study demonstrates the effectiveness of the proposed dis-

tributionally robust optimization model. Out-of-sample tests are conducted to

compare its performance with two benchmark models, i.e., a robust optimiza-

tion model and a stochastic optimization model. Furthermore, the impacts of

considering different statistical constraints in the ambiguity set and the imbal-

ance prices are investigated. This chapter is based on [147, 148].
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7.1 Introduction

7.1.1 Motivation and Related Work

The electric power system has been experiencing a trend of decentralization,

as a result of decreasing costs of distributed generation units, governmental

subsidies, increasing electricity tariffs and emission costs, environmental con-

siderations and the concerns of reliance on third-party electricity supply. With

the continuous growth in distributed generations, generation companies and

system operators face both challenges and opportunities. On one hand, Dis-

tributed Energy Resources (DERs) that mainly consist of solar and wind genera-

tions are subject to uncertainties in outputs, which may cause high imbalance

costs for owners and high system operating costs for system operators; on the

other hand, DERs, especially distributed storage units and Demand Response

Programs (DRPs), could contribute to system flexibility and generate profits by

participating in electricity markets. Therefore, questions regarding the optimal

generation mix and how DERs can be better valued considering their output

uncertainties need to be answered.

While a significant amount of work has been done in terms of generation

investment in the past, most investment models mainly focus on determinis-

tic problems [149], or consider uncertainties using traditional stochastic opti-

mization [121,126,128] or robust optimization [129,130]. Nevertheless, as men-

tioned in previous chapters, the random parameters’ distribution for Stochas-

tic Optimization (SO) is rarely known and SO often suffers from high compu-

tational complexity resulting from a large number of scenarios. The Robust

Optimization (RO) model on the other hand is often computationally tractable

as the uncertainty considered is distribution free and described only by an un-

certainty set, which results in much lower computational cost but more con-

servative results. Ditributionally Robust Optimization (DRO), which is applied

in this work, acts as an intermediate between SO and RO. Following the prin-

ciple of DRO, the decisions are optimized against the worst-case distribution

over an ambiguity set, i.e. a family of distributions described by certain statis-

tical characteristics (e.g. expectation and standard deviation) of the unknown

data-generating distribution [90, 150].
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The focus of this chapter is on optimizing investment decisions of a DER ag-

gregator considering the operational decisions over four representative weeks

of the examined year, while uncertainties of wind and PV forecast errors are

modeled using DRO.

The contributions of this chapter are:

1. To propose a multi-stage distributionally robust optimization model that

jointly optimizes the investment and operational decisions of a DER aggre-

gator that participates in the Reserve Market (RM), the Day-ahead Market

(DAM) and the Balancing Market (BM). The considered aggregator includes

the DRP, storage units, variable and dispatchable generation units.

2. To model uncertainties of forecast errors of wind and PV generation outputs

using distributionally robust optimization.

3. To verify the effectiveness of the proposed distributionally robust optimiza-

tion model by comparing its results to the results of two benchmark models,

i.e. the robust optimization model and the traditional stochastic optimiza-

tion model.

4. To analyze the effects of including different statistical information into the

ambiguity set.

7.1.2 Chapter Organization

The remainder of the chapter is organized as follows: mathematical formula-

tions and the proposed optimization model are given in Section 7.2. Section

7.3 presents the results of a case study. Limitations and future work are dis-

cussed in Section 7.4. Finally, conclusions are drawn in Section 7.5. To avoid

repetitions, please refer to Section 6.2 of Chapter 6 for the problem description

and the main modeling assumptions. Note that instead of robust optimiza-

tion, we use distributionally robust optimization to model the uncertainties in

variable generation outputs.

7.2 Mathematical Formulation
This section presents the derivation of the DRO, SO and RO formulations of

the optimization problem detailed in Section 6.3 of Chapter 6. To avoid dupli-

cations, we only focus on the changes required for the extension.
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7.2.1 General Stochastic Formulations

To be able to adjust the day-ahead bidding based on the expectation of the

variable generation forecast errors at real-time, constraint (6.5) is adapted to

0 ≤ pda
v,t ≤ xinv

v (7.1)

Correspondingly, the self-sufficiency and the renewable target constraints

(6.21) and (6.22) are adapted to the following equations:

T∑
t=1

∑
v∈V

xinv
v pf

v,t +

T∑
t=1

∑
i∈I\V

pda
i,t ≥ βss

T∑
t=1

lest
t (7.2)

T∑
t=1

∑
v∈I res∩V

xinv
v pf

v,t +

T∑
t=1

∑
i∈I res\V

pda
i,t ≥ βres

T∑
t=1

lest
t (7.3)

To enable the dispatchable generation unit and the battery storage unit to re-

duce the imbalances caused by the variable generation forecast errors through

re-dispatch, constraints (6.31) and (6.37) are relaxed. In addition, the real-time

generation of the dispatchable unit is forced not to be greater than the genera-

tion capacity, i.e.

0 ≤ pg,t ≤ xinv
g (7.4)

Finally, the optimization problem can be written as:

min C inv + C foc + αd
T∑
t=1

(Cvoc
t + CDAM

t + CRM
t + CBM

t )

s.t. Constraints (6.1)-(6.49), with (6.5), (6.21), (6.22), (6.31)

and (6.37) replaced by (7.1)-(7.4)

(7.5)

7.2.2 Uncertainty modeling

In this section, based on the principle of DRO, an ambiguity set is constructed

to describe a family of possible distributions of the random variables, using

statistical information extracted from historical data. Then, a tractable second-



Chapter 7. Investment Optimization Focusing on the Forecast Uncertainty
Modeling 189

order cone model is derived by approximating the uncertainty-related opera-

tional decisions using the Linear Decision Rule (LDR).

We first rewrite the problem (7.5) in the following compact form:

min Θ(x) + φ(x, δ)

s.t. x ∈Xf

(7.6)

where Θ(x) = C inv +C foc +αd
∑T
t=1(CDAM

t + CRM
t ) includes the uncertainty-

unrelated costs. Only uncertainties regarding Day-ahead (DA) variable gen-

eration forecast errors are considered in this work. All first-, second- and

third-stage decision variables that are not subject to uncertainty, i.e. variables

{xinv, qDA, pda
g , p

da
v , p

ch/dis,da
s , Eda

s , q
RU/RD, qRU/RD

g , qRU/RD
s , qRU/RD

l }, can therefore

be described by a vector x. The feasibility region Xf of x is defined by (6.1)-

(6.4), (6.6)-(6.20), (6.23)-(6.30) and (7.1)-(7.3). The second part in the objective

function φ(x, δ) = αd
∑T
t=1(Cvoc

t + CBM
t ) represents the uncertainty-related

cost. The principle of DRO is to describe a family of potential uncertainty dis-

tributions I with an ambiguity set F and to optimize the decisions against the

expectation of the worst-case distribution. The term φ(x, δ) therefore can be

formulated as:

φ(x, δ) = min
y

sup
I∈F

EI

αd
T∑
t=1

Cadpt
t

 (7.7a)

s.t. A(δ) +By ≤D(δ) (7.7b)

whereCadpt = Cvoc +CBM and y = {pg, pv, pdis/ch
s , Es, q

BM} is the uncertainty-

related decision vector. Constraint (7.7b) corresponds to (6.32)-(6.36), (6.38)-

(6.41), (6.46), (6.49) and (7.4), whereA(δ) andD(δ) are the affine functions of

δ.

Modelling Ambiguity Set The Probability Distribution Function (PDF) of δ,

namely I , is uncertain and it belongs to an ambiguity setF , which represents a

family of distributions sharing some common statistical features (e.g. expecta-

tion, deviation, variance etc.). In this work, we focus on a standard ambiguity

set where the family of distributions are characterized by a group of second-
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order cone representable constraints and a linear support set. The ambiguity

set modelled in this work is:

F =


I :

EI [δv,t] = 0

EI [|δv,t|] ≤ γ1v,t
EI [(δv,t)2] ≤ γ2v,t
Pr(δ ∈ W ) = 1


where the first line defines that the expectation of uncertainty δv,t of variable

generation unit v at time t is set to zero. The second and third lines limit the

expected absolute deviation and variance to γ1v,t and γ2v,t, respectively. The last

line guarantees that all uncertainty realizations are within set W , where

W = {δmin
v,t ≤ δv,t ≤ δmax

v,t }

As the expectation terms in the second and third constraints are difficult to

compute, according to the lifting theorem introduced in [99], a set of auxiliary

random variables u = {u1,u2} is introduced to ensure the tractability of the

problem and to increase the flexibility of the later introduced linear decision

rule [88]. Thus, the lifted ambiguity set F and the second-order cone repre-

sentable extended uncertainty set W can be written as:

F =


J :

EJ [δv,t] = 0

EJ [u1v,t] ≤ γ1v,t
EJ [u2v,t] ≤ γ2v,t
Pr{(δ, u) ∈ W } = 1



W =



δmin
v,t ≤ δv,t ≤ δmax

v,t

|δv,t| ≤ u1v,t
(δv,t)

2 ≤ u2v,t
u1v,t ≤ u

1,max
v,t = max{δmax

v,t ,−δmin
v,t }

u2v,t ≤ u
2,max
v,t = max{(δmax

v,t )2, (δmin
v,t )2}


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where the second and third lines in W set the upper bounds of |δv,t| and (δv,t)
2

asu1v,t andu2v,t, makingF equivalent toF . To make the support set less conser-

vative, the fourth and fifth lines in W limit u1v,t and u2v,t to the worst-case [93],

which are constants that can be calculated based on historical data.

Enhanced LDR Approximation Although distributions of the uncertainty δ

are constrained by the ambiguity set, it is still required to loop over all un-

certainty realizations to find the optimal solution, which makes the problem

intractable. Thus, LDR is used to limit the adaptive decision y to be affinely

dependent on the uncertainties. Finally, a tractable second-order cone model

is derived. Details of the reformulation process and the tractable second-order

cone model are given in Appendix 9.3.

To allow for comparisons of DRO against RO and traditional SO, formula-

tions applying RO and traditional SO are presented in Appendix 9.3.

7.3 Case Study
The case study is simulated using the 2018 load and price data from Elia [138].

The cost parameters for the considered DER units and the input parameters for

modeling are based on the values in Table 6.1 and the baseline values in Table

6.2 in Chapter 6, respectively. To focus on modeling the uncertainty of wind

and PV output forecast, the Renewable Energy Source (RES) target is set to

100%, the Self-suffiency (SS) target is thus neglected. Furthermore, the reserve

bidding is assumed to be asymmetric.

Considering the computational burden, four weeks corresponding to the

four seasons are selected to represent the variations in supply and demand

over the year. The nominal20 wind and PV forecast outputs as well as the de-

mand for the four representative weeks are shown in Fig. 7.1.

In this work, we consider the DA wind and PV generation forecast errors

as random variables, while other parameters are assumed to be deterministic.

The forecast error is defined as the real-time value minus the forecast value and

all historical forecast error data are normalized using the corresponding wind

20The wind and PV outputs are normalized based on the corresponding wind and PV capacities,
while the demand is normalized using the peak demand.
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Figure 7.1: Nominal PV and wind power output forecast as well as demand
values over four weeks corresponding to four seasons (from left to right: winter,
spring, summer, autumn).

or PV capacities. To build the stochastic models, we collect 70’176 historical

realizations of day-ahead wind and PV forecast errors that correspond to the

difference between the 15-min system wind and PV real-time output data and

the DA generation forecast from 2016 to 2017 published by Elia [138].

To analyze how the distributions of wind and PV forecast errors are related to

different hours of the day and different seasons of the year, we first categorize

the historical data into 4*24 groups, depending on which season21 of the year

and which hour of the day each data point belongs to. Then a whisker plot is

drawn in Fig. 7.2 to show the distributions of wind and PV forecast errors over

24 hours of the day and four seasons of the year. A strong seasonal pattern

can be observed in the distribution of PV output forecast errors for different

hours of the day, which is likely due to the seasonal and diurnal patterns of the

PV generation output, while this phenomenon is less obvious for wind output

forecast errors. Furthermore, the distributions of wind and PV forecast errors

are almost symmetric with mean values close to zero.

In order to make use of the identified seasonal patterns of the forecast errors,

we construct the simulation dataset Data-sim of the forecast errors by catego-

21It is assumed that winter begins on December 1st, spring begins on March 1st, summer begins
on June 1st and autumn begins on September 1st.
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(a) PV (b) Wind

Figure 7.2: Whisker plot on nominal PV and wind forecast errors categorized
according to the hours of the day and seasons of the year (from left to right:
winter, spring, summer, autumn).

rizing the 2016 to 2017 data into 24*4 groups. Then we generate the scenarios

required by SO and the uncertainty set parameters used for RO as well as the

statistical parameters used to build the ambiguity set for DRO as follows:

• Stochastic Optimization: Under the assumption that the forecast errors fol-

low the Gaussian distribution with zero mean, the function ”histfit” in Mat-

lab is used to create Gaussian distribution density functions to fit the data for

each one of the 24*4 groups in simulation set Data-sim for both DA wind and

PV output forecast errors, respectively. Considering the computational time,

for each hour of the four representative weeks, the fitted Gaussian distribu-

tion functions created before are then used to generate up to 400 random

scenarios of the wind and PV output forecast errors for SO.

• Robust Optimization: For each hour of the four representative weeks, de-

pending on which hour of the day and which season of the year it belongs

to, i.e. which one of the 24*4 groups in Data-sim it fits in, the minimum

and the maximum values of the corresponding group are drawn to build the

corresponding uncertainty set used for RO.

• Distributionally Robust Optimization: Similar to the process to build the

uncertainty set for RO, for each hour of the four representative weeks, de-

pending on which hour of the day and which season of the year it belongs
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to, i.e. which one of the 24*4 groups in Data-sim it fits in, the minimum,

the maximum, the mean absolute deviation and the standard deviations are

drawn to build the corresponding uncertainty set and the ambiguity set used

for DRO.

Similar to the work in previous chapters, the balancing market prices are

modeled following a two-price settlement scheme. It is assumed that the

hourly BM prices are dependent on the corresponding day-ahead energy price

prDA and reserve activation prices praRD/aRU, which is specified in the following

equations. The equations ensure that the aggregator can only sell (purchase)

electricity in the BM at a price lower (higher) than the minimum (maximum) of

the day-ahead market and the downward (upward) reserve activation prices:

prBM+
t = a1 ·min{prDA

t , praRD
t } (7.8)

prBM-
t = a2 ·max{prDA

t , praRU
t } (7.9)

where a1 and a2 are set to 0.7 and 1.3 in the Baseline scenario. Sensitivity

analyses are conducted to investigate the impact of the selected values of a1
and a2.

All simulations are conducted on a Windows 10 machine with Intel(R)

Xeon(R) Gold 6154 CPU @ 3.00 GHz and 479 GB memory. All optimization

models are established by Yalmip [38] in MATLAB and solved with Gurobi.

In the following results sections, we first evaluate the performance of the

DRO model by comparing its results to the results obtained by the RO and the

SO models. Then we investigate the effects of including different statistical

constraints in the ambiguity set for DRO. Finally, the impacts of the imbalance

prices are analyzed. Note that while the comparisons between DRO, RO and

SO are conducted for all considered investment years (i.e. 2020, 2030, 2040

and 2050), the influences of the statistical constraints and imbalance prices

are investigated focusing on the 2020 results so as to eliminate the impacts of

transformer capacity limit. Moreover, all quantities, profits and costs shown in

this section are the annual values.
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7.3.1 Results: Comparison of Different Optimization Models

To compare the performance of distributionally robust optimization, robust

optimization and stochastic optimization in a reasonable way, we carry out

the following simulations:

1. Run the DRO, SO and RO models described in Section 6.3 and Appen-

dices 9.3-9.3 with the simulation dataset Data-sim. Fix the optimized in-

vestment decisions, the week-ahead reserve bidding decisions and the day-

ahead decisions.

2. Build the out-of-sample dataset Data-test using the historical realizations of

the DA wind and PV output forecast errors from 2018. Similar to the process

to build the simulation dataset Data-sim based on the 2016-2017 data, we

categorize the historical 2018 data into 24*4 groups depending on the hour of

the day and the season of the year they belong to. To build one out-of-sample

scenario, for each hour of the four representative weeks, the wind and PV

forecast errors are simulated by randomly drawing samples correspondingly

from one out of the 24*4 groups, depending on the hour and the season the

considered hour belongs to. This process is repeatedN test times, whereN test

is the number of the out-of-sample test scenarios.

3. For each one of the out-of-sample test scenarios, solve the deterministic

problem with the fixed investment, week-ahead and day-ahead decisions

achieved before by the DRO, the SO and the RO model, respectively.

The number of the out-of-sample scenariosN test is set to 1000. In the baseline

scenario, we limit the number of scenarios simulated by the SO model to 200,

as continuously increasing the number does not affect the result too much but

has a significant impact on the computational time of the SO model. The DRO

model is simulated with an ambiguity set considering all statistical constraints

described in Section 7.2.2, including the expectation, the mean absolute devia-

tion and the variance. Results and the computational complexity of simulating

the SO model considering different number of scenarios and the DRO model

considering different statistical constraints are analyzed in the following para-

graphs.

Comparisons of these three methods, namely the RO, DRO and SO models,

are analyzed from the following perspectives: optimal investments, day-ahead
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Figure 7.3: Comparison of the resulting investment decisions of the robust op-
timization (i.e., top figure), the distributionally robust optimization (i.e., mid-
dle figure) and the stochastic optimization models (i.e., bottom figure) with
and without considering the reserve market participation.

bidding strategies, the expected simulation cost calculated using the simula-

tion set Data-sim, the expected out-of-sample results calculated using test set

Data-test and the computational efficiency.

Optimal investments

Figure 7.3 compares the investment decisions of RO, DRO and SO with and

without considering the reserve market participation. It is obvious that battery

is only invested when the RM participation is considered, since the additional

revenue stream from the RM increases the economic viability of battery invest-

ments. Moreover, the Combined Heat and Power (CHP) units are only installed

in the case with reserve market in 2020, when the costs for wind and PV invest-

ments are relatively high and the revenues from the day-ahead and the reserve

markets are sufficient enough to cover the total cost of CHP investments.

When focusing on the case without (i.e., Fig. 7.3a) or with the reserve market

(i.e., Fig. 7.3b), for each investment year, results show that the share of wind in

the investment portfolio in general increases from RO to DRO and then to SO

(i.e., from top figure to the bottom figure). The change in wind and PV invest-

ments is likely due to the fact that 1) as shown in Fig. 7.2, the volatility of wind
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output forecast errors is higher than that of PV. For example, the worst-case

wind generation (i.e. 305 MWh/MW-year) is only 16% of the DA generation

forecast (i.e. 1880 MWh/MW-year), while the worst-case PV generation (i.e.

265 MWh/MW-year) accounts for 25% of its DA forecasted output (i.e. 1055

MWh/MW-year). Therefore, the profitability of wind investments improves

more than that of the PV investments with the decreasing conservativeness of

the model solutions. 2) The profitability of PV investment is limited by the fact

that the excess PV generation during high solar irradiation hours (e.g. during

summer), which exceeds the transformer capacity, needs to be curtailed. This

impact is more pronounced when the uncertainty of forecast errors is modeled

in a less conservative way, i.e. from RO to SO. However, when comparing the

results over the years, it can be seen that the renewable investments in general

shift from wind to PV, which can be traced back to the stronger projected cost

declines assumed for PV. To be more specific, the investment cost for PV is as-

sumed to decrease from 1481 EUR/kW in 2020 to 677 EUR/kW in 2050 by 54%,

while the investment cost for wind only decreases 34% from 2219 EUR/kW in

2020 to 1458 EUR/kW in 2050 (see Appendix 9.3 for more details).

Furthermore, when focusing on the results for one specific optimization

method for the case with or without reserve market participation, it can be

observed that the difference between the investment decisions over the years

(especially between 2030 and 2050) is relatively small. This is because com-

pared to investing in local generations it is in general more favorable to pur-

chase the electricity from the wholesale market and the RES target is binding

in all simulated cases. For better illustrations, Table 7.1 shows the results of

different optimization methods simulated using Data-sim for 2020 to 2050 in

the cases with and without RM participation. Results shown include the an-

nualized investment cost, total simulation cost and the demand cost, which is

defined as the cost (including investment cost) incurred to satisfy each MWh

of the demand, while respecting the assumptions and constraints. It can be

seen that the calculated demand cost is higher than the average DAM price

(i.e., 54.45 EUR/MWh) in 2020 and 2030. With the projected cost reductions,

the demand costs resulted by DRO and SO are lower than the average DAM

price for 2050 in the case without RM and for 2040 to 2050 in the case with RM.

However, this seems to be against the observation that the investments ob-
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Table 7.1: Annualized investment cost, total annual simulation cost and de-
mand cost of different optimization methods for 2020 to 2050.

Results without considering the Reserve Market
2020 2030 2040 2050

RO DRO SO RO DRO SO RO DRO SO RO DRO SO
Ann. inv. cost [mEUR] 21.28 20.21 19.06 12.66 12.69 12.72 11.19 11.22 11.28 9.73 9.75 9.75
Ann. tot. cost [mEUR] 34.60 24.77 24.52 24.98 15.58 16.44 23.52 14.11 15.04 21.80 12.40 13.33
Demand cost [EUR/MWh] 131.97 94.48 93.54 95.29 59.44 62.70 89.70 53.83 57.37 83.17 47.29 50.84

Results considering the Reserve Market
2020 2030 2040 2050

RO DRO SO RO DRO SO RO DRO SO RO DRO SO
Ann. inv. cost [mEUR] 21.64 20.85 22.13 13.62 13.49 14.56 12.10 12.08 13.44 10.91 10.60 12.23
Ann. tot. cost [mEUR] 34.30 24.45 23.34 23.40 14.83 14.21 21.59 13.06 12.48 19.47 10.99 10.50
Demand cost [EUR/MWh] 130.83 94.26 89.01 89.25 56.55 54.19 82.34 49.81 47.59 74.26 41.90 40.05

Demand cost is calculated as the annual total simulation cost divided by the annual demand consumption.

tained by each optimization model from 2030 to 2050 are at a similar level and

the RES target is still binding in 2050. This is because the modeled transformer

capacity limits the profitability of RES investment (especially PV investment),

i.e. the transformer capacity limit and the diurnal pattern of PV generations

lead to the curtailment of PV generation during high solar irradiation hours

(e.g. during summer).

Additionally, the investment cost decreases over the years, mainly as a result

of the projected cost reductions. For each investment year and for each opti-

mization method, the investment costs in the case with RM are higher than

the corresponding case without RM, which suggests that the RM participation

increases the economic viability of the DER investments.

When focusing on the the total simulation cost, in general it decreases from

RO to DRO and then to SO because of the decreasing conservativeness of the

model solutions. Nevertheless, exceptions can be observed in the case with-

out RM for years 2030 to 2050, when the total simulation cost for DRO is lower

than that of SO. This can be explained by the fact that scenarios used for SO are

simulated assuming that the forecast errors are subject to the Gaussian distri-

bution with mean and variance information extracted from Data-sim, without

accounting for the mean absolute deviation that is considered by DRO. As the

actual distribution of the forecast errors deviates from the Gaussian distribu-

tion that is assumed by SO, the variation of the forecast errors could be over-

estimated by simply using the standard deviation. To visualize this, Fig. 7.4

shows the historical PV and wind forecast errors together with the Gaussian
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Figure 7.4: Historical PV and wind forecast errors and the corresponding Gaus-
sian distribution fitting assumed by stochastic optimization for an example
hour.

distribution fitting curves for an example hour. It is obvious that the actual dis-

tribution of the forecast errors is leptokurtic (i.e. a shape with high peaks and

fatter tails), which significantly deviates from the fitted Gaussian distribution

curve. This is consistent with the findings in [76].

Day-ahead bidding strategies

To better understand the results of these three models, we further investigate

the difference in their DA bidding strategies. For better illustrations, results

shown in this section are for 2020 without considering the reserve market. Fig-

ure 7.5 shows the DA biddings of the RO model and the DRO model along

with the forecast range, whose upper/lower bound is defined by the sum of the

point forecast value and the maximum/minimum forecast errors, over the four

representative weeks. It can be observed that the RO model always bids at the

lower bound of the forecast range, since the RO solutions are optimized against

the worst-case. In contrast, the DRO bidding is less conservative and in general

it falls into the purple area that is bounded by the mean absolute deviation22,

since more statistical information of the forecast error uncertainty is incorpo-

rated into the ambiguity set for DRO. However, exceptions are observed in the

22The upper/lower bound of the purple area is calculated as the DA point forecast plus/minus
the mean absolute deviation.
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Figure 7.5: Comparison of the day-ahead bidding strategies of the robust opti-
mization and the distributionally robust optimization models for 2020 without
considering the reserve market.

summer week when the DRO model bids lower than the lower bound of the

purple area. This is because the PV generation during the summer week is so

high that the power injection from the aggregator to the transmission system

reaches the limit of the assumed transformer capacity, which is defined by a

factor of the aggregator’s peak demand.

Figure 7.6 shows the DA biddings of the SO model over the four representa-

tive weeks in the bottom figure together with the relative difference between

the imbalance price and the DAM price using the DAM price as the reference
23 in the top figure. Different from the RO and the DRO models, the SO model

represents the uncertainty of the forecast error using a series of scenarios. In

the bottom figure of Fig. 7.6, we plot both the DA bidding of the SO model us-

ing the red curve and the expected real-time output of the aggregator in blue,

which is calculated as the sum of the DA point generation forecast and the av-

23The relative difference between the imbalance price and the DAM price is defined as the ratio
of the difference between the DAM price and the imbalance price to the DAM price
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Figure 7.6: The relative difference between the imbalance price and the day-
ahead market price over the four representative weeks (top figure); the day-
ahead biddings of the stochastic optimization model over the four representa-
tive weeks for 2020 without considering the reserve market (bottom figure).

erage forecast errors of all scenarios considered. The SO model is expected to

bid exactly the same amount as the expected real-time output so as to mini-

mize the real-time imbalances, however, Fig. 7.6 shows that the DA bidding (i.e.

red curve) deviates from the expected real-time output (i.e. blue curve). This

can be explained by the relative difference between the positive/negative im-

balance price and the DAM price as shown in the top figure of Fig. 7.6. The red

curve defines the ratio of the difference between the DA price and the positive

imbalance price to the DAM price, whereas the blue curve denotes the ratio of

the difference between the negative imbalance price and the DAM price to the

DAM price. It can be observed that in general the SO model bids lower/higher

than the expected real-time output (i.e. the aggregator tends to be long/short)

when the relative difference between the negative imbalance price and the DA

price is higher/lower than the relative difference between the DA price and

the positive imbalance price so as to minimize the potential imbalance costs.

To summarize, while the RO and the DRO models bid into the DAM mainly
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Table 7.2: The expected, worst-case and the standard deviation of the out-of-
sample imbalance and total costs of different optimization methods for 2020
to 2050 with and without considering the reserve market.

Results without considering the Reserve Market
Cost

[mEUR]
2020 2030 2040 2050

RO DRO SO RO DRO SO RO DRO SO RO DRO SO

Expected
Total 32.66 24.74 24.43 23.05 16.45 16.33 21.58 14.98 14.91 19.87 13.26 13.20
imbalance -1.94 1.02 2.32 -1.94 0.55 1.40 -1.94 0.55 1.12 -1.94 0.55 0.96

Worst-case
Total 34.60 41.91 43.18 24.98 30.53 32.26 23.52 29.06 29.79 21.80 27.35 27.46
imbalance 0 18.20 21.07 0 14.63 17.33 0 14.63 16.00 0 14.63 15.22

Standard
deviation

Total 0.09 0.32 0.31 0.09 0.30 0.34 0.09 0.30 0.34 0.09 0.30 0.33
imbalance 0.09 0.32 0.31 0.09 0.30 0.34 0.09 0.30 0.34 0.09 0.30 0.33

Results considering the Reserve Market
Cost

[mEUR]
2020 2030 2040 2050

RO DRO SO RO DRO SO RO DRO SO RO DRO SO

Expected
Total 32.22 23.98 23.45 21.39 15.27 14.06 19.56 13.51 12.36 17.40 11.42 10.44
imbalance -1.91 0.46 0.16 -2.01 0.15 1.09 -2.01 0.15 1.07 -2.04 0.15 1.22

Worst-case
Total 34.31 40.72 40.39 23.46 29.47 31.97 21.66 27.57 30.00 19.54 25.38 27.89
imbalance 0 13.91 5.97 0.07 14.35 18.99 0.09 14.20 18.71 0.10 14.11 18.67

Standard
deviation

Total 0.09 0.31 0.27 0.09 0.26 0.28 0.09 0.26 0.28 0.09 0.26 0.27
imbalance 0.09 0.25 0.11 0.09 0.26 0.28 0.09 0.26 0.28 0.09 0.26 0.27

considering the worst-case and the worst distribution of the variable forecast

errors, the SO model optimizes the bidding into the DAM considering both the

expected real-time forecast errors and the relationship of the DAM price and

the imbalance prices at real-time. It is worth noting that the imbalance prices

are assumed to be perfectly forecasted in this work and the performance of the

SO model might be influenced when the uncertainty of the imbalance prices

are considered.

Out-of-sample results

Table 7.2 compares the expected, the worst-case and the standard deviation of

the out-of-sample imbalance and total costs obtained by solving the determin-

istic problem with the fixed investment and day-ahead decisions from the RO,

DRO and SO models over 1000 test scenarios from Data-test. As expected, it

shows that RO achieves the lowest expected imbalance cost, the lowest worst-

case imbalance and total costs, and the lowest standard deviation of the im-

balance and total costs in all simulation years and cases. However, this is at

the cost of having over-conservative solutions that yield the highest expected

total costs among all models. The conservative nature of RO is due to the fact

that the uncertainties are captured using an uncertainty set and the decisions

are optimized against the worst-case scenario. In contrast to RO, the SO model
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in general obtains the lowest expected total costs, the highest worst-case im-

balance and total costs, and the highest standard deviation of the imbalance

and total costs. This is because the SO model describes the uncertainty using a

set of scenarios and computes the optimal expected cost over these scenarios,

which could address the over conservatism issue in RO but can hardly protect

against extreme cases that rarely happen. As shown in Fig. 7.6, the SO model

optimizes the DA bidding considering the relationship of the DAM and the im-

balance prices. As the market prices are assumed to be perfectly forecasted,

this bidding strategy manages to improve the performance of the SO model

in the out-of-sample test. Furthermore, while the difference between the total

expected costs achieved by the DRO and the SO models is negligible in the case

without considering the RM, the difference becomes greater in the case with

RM for years 2030 to 2050. This can be explained by the significant amount of

batteries invested by SO from 2030 to 2050 in the case with RM, which helps to

reduce the real-time cost through re-dispatch.

The DRO models perform better than the RO model in terms of the expected

costs, as they incorporate more of the uncertainty distribution information so

as to provide less conservative results. Moreover, while the expected out-of-

sample cost that the DRO model achieves are slightly higher than that of the

SO model, the worst-case performance of the DRO model is much better than

the SO model. To summarize, as an intermediate method between SO and RO,

DRO could achieve a good trade-off between the expected performance and

the performance in extreme cases.

Computational efficiency

The problem size and the computational time consumed by robust optimiza-

tion, distributionally robust optimization and stochastic optimization consid-

ering different number of scenarios are compared in Table 7.3. The optimality

gap is set to 0.05% for all optimization models. While the solver time is the time

that Gurobi takes to solve the problem, the total time is the elapsed time from

starting to build the model until the model returns the output. It can be seen

that the RO model takes the shortest time to solve as it has the lowest number

of variables and constraints. Nevertheless, the total time consumed by the RO

model is much longer than the solver time, which is likely due to the fact that
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Table 7.3: Problem size and the computational time of different optimization
methods.

Results without considering the Reserve Market
RO DRO SO

Scenario No. n/a n/a 100 200 400
Variable No. 25’570 1’077’932 1’154’530 2’296’930 4’581’730

Constraint No. 11’428
776’165

610’180 1’214’980 2’435’332
( 26’880 quadratic)

Solver time [s] 1 221 331 1’951 5’800
Computational time [s] 76 1’312 338 1’969 5’835

Results considering the Reserve Market
RO DRO SO

Scenario No. n/a n/a 100 200 400
Variable No. 43’042 1’090’700 1’172’674 2’315’074 4’599’874

Constraint No. 22’180
781’541

620’932 1’225’732 2’435’332
( 20160 quadratic)

Solver time [s] 2 222 524 2’243 28’900
Computational time [s] 137 1’808 533 2’264 28’927

Robust optimization was solved using the integrated module in Yalmip.

the it is solved using the integrated RO module in Yalmip. In contrast to the

RO model, it takes much longer time to solve and to construct the DRO model

since a significant amount of quadratic constraints are incorporated. However,

the dimension and the solver time of the DRO model are much smaller and

shorter than that of the SO model considering only 200 scenarios. Further-

more, when increasing the scenario number of the SO model from 100 to 400,

the corresponding computational time increases more than the problem di-

mension increase. The results suggest that compared to SO the RO and DRO

methods are more applicable for cases with large amounts of historical data

available since the dimension of the problem and the computational time of

these two models do not increase with the size of the dataset. However, it is

worth mentioning that enough memory should be available when applying the

DRO model with quadratic constraints.

7.3.2 Results: Effects of Statistical Constraints in the Ambiguity

Set

In this section, case studies are conducted to demonstrate how investment

decisions and costs, the out-of-sample performance and the computational

efficiency are affected by considering different types of statistical constraints
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Table 7.4: Impact of considering different statistical data in the ambiguity set.

Results without considering the Reserve Market

Case
CHP

[MW]
Wind
[MW]

PV
[MW]

Inv. cost
[mEUR]

Out-of-sample cost [mEUR] Computational
time [s]Expected Worst-case

DRO_simp1 0 0 249.1 21.3 26.1 40.2 232
DRO_simp2 0 45.8 167.3 20.2 24.7 41.9 234
DRO_full 0 45.8 167.3 20.2 24.7 41.9 1’312

Results considering the Reserve Market

Case
CHP

[MW]
Wind
[MW]

PV
[MW]

Inv. cost
[mEUR]

Out-of-sample cost [mEUR] Computational
time [s]Expected Worst-case

DRO_simp1 0.3 0 249.1 21.4 25.9 39.9 233
DRO_simp2 7.2 53.6 153.3 20.8 24.0 40.7 241
DRO_full 7.2 53.6 153.3 20.8 24.0 40.7 1’808

Battery storage units are not invested in the above presented cases.

in the ambiguity set. Three cases are defined depending on the statistical con-

straints included in the ambiguity set:

• DRO_simp1: The ambiguity set is constructed only considering the expecta-

tion of the forecast errors.

• DRO_simp2: The ambiguity set is constructed considering the expectation

and the mean absolute deviation of the forecast errors.

• DRO_full: The ambiguity set is constructed considering the expectation, the

mean absolute deviation and the variance of the forecast errors. This is also

the model applied in the baseline scenario.

Table 7.4 shows the investment and the out-of-sample results as well as the

computational time for 2020 of the proposed DRO model with different types

of statistical data included in the ambiguity set to capture the distribution of

forecast errors. It can be seen that in general the expected out-of-sample cost

decreases and the worst-case out-of-sample cost increases with more statisti-

cal information included into the ambiguity set. This is because the worst-case

distribution of wind and PV forecast errors improves with more statistical in-

formation and the resulting decisions are therefore less conservative.

Moreover, the results of case DRO_simp2 and case DRO_full shown in Ta-

ble 7.4 are the same. This seems to be against the expectation that including

the additional variance constraints into the ambiguity set could further limit

the variability of both the wind and PV output forecast errors and improve the

expected worst-case wind and PV forecast error distributions. To investigate
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Figure 7.7: Hourly mean absolute deviation of the day-ahead PV output fore-
cast errors (i.e., top plot) and wind output forecast errors (i.e., bottom plot)
simulated for distributionally robust optimization and calculated for the Gaus-
sian distributed scenarios with the same mean and absolute deviation.

the reasons behind this observation, we generate 1000 Gaussian distributed

random wind and PV forecast error scenarios with the same mean and variance

data used by DRO_full. The Mean Absolute Deviation (MAD) of the Gaussian

distributed forecast errors together with the nominal MAD of the PV and wind

forecast errors used by DRO_full over the considered four representative weeks

are shown in Fig. 7.7. Note that the consistent pattern of the days of the same

season is due to the fact that for each season the statistical information is only

differentiated depending on the hour of the day. It can be noticed that the MAD

used by DRO_full is in general lower than the MAD of the Gaussian distributed

random scenarios generated with the mean and variance used by DRO_full, i.e.

the worst-case distribution is still decided by the mean absolute deviation con-

straint. As the standard deviation emphasizes the larger deviations by adding

more weights to data that are far from the mean value (i.e., extreme values),

a dataset with more extreme values could result in a much higher standard

deviation. Furthermore, although standard deviation is widely used for statis-

tical analysis, it is argued by researchers that the mean absolute deviation is

more efficient as an estimate of a population parameter in the real-life situa-
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Figure 7.8: Demand cost and the imbalance cost developments by running the
distributionally robust optimization model under different values of positive
and negative imbalance price parameters a1 and a2.

tion where the data contain tiny errors, or do not form a completely perfect

Gaussian distribution [151].

Regarding the computational time, it is obvious that while the computational

time consumed by DRO_simp1 and DRO_simp2 is comparable, the computa-

tional complexity significantly increases for the DRO_full model since a num-

ber of quadratic variance constraints are considered.

To summarize, the investment and total out-of-sample costs in general de-

crease when more statistical constraints are considered as the worst-case dis-

tribution is improved. However, people might need to consider only incor-

porating the absolute deviation constraints into the ambiguity set especially

when the distribution of the uncertainties deviates from the Gaussian distri-

bution, as the model is easier and faster to solve and delivers a result that is

comparable to the one that incorporates the additional variance constraints.

7.3.3 Results: Impacts of the Imbalance Price

In this section, we analyze the impacts of imbalance prices by carrying out the

simulations with different values of the positive and negative imbalance price

parameters a1 and a2 in equations (7.8) and (7.9). As a reminder, a lower value

of a1 and a higher value of a2 mean a lower positive imbalance price and a

higher negative imbalance price, which could translate into higher imbalance
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penalties for the aggregator. Results of the investment year 2020 for the case

with and without considering the RM are shown in Fig. 7.8. It can be seen that

the demand cost, i.e. the cost for satisfying each MWh of demand, increases by

around 3% when changing the ratio of a1/a2 from 80%/120% to 40%/160% for

both the cases with and without the RM. Furthermore, the ratio of the imbal-

ance cost to the total aggregator cost increases from 3.5% to 5.5% in the case

without RM and from 1.8% to 3% in the case with RM. The lower ratio in the

case with RM could be attributed to the investment of battery and CHP units,

which help to reduce the real-time imbalances via re-dispatch. However, it

is worth noting that the imbalance cost might be underestimated due to the

utilization of country-level generation and forecast data from Elia.

7.4 Limitations and Future Work
This work has several limitations and a few of which are highlighted in this sec-

tion. First, the ambiguity set is constructed considering the mean, the mean

absolute deviation and the standard deviation of the wind and PV output fore-

cast errors. Statistical information such as skewness and kurtosis, which are

important to characterize the forecast error distributions [76], are not captured.

Futhermore, correlations of the forecast errors between hours and the in gen-

eral inverse correlation of PV and wind forecast errors are not considered [152].

A future version should investigate the impacts of incorporating these statisti-

cal characteristics.

Second, the volatility of the wind and PV forecast errors are underestimated

using the historical country level data from Elia, which is due to the statistical

smoothing effects when aggregating the generation data for a region [44]. The

work could be improved by using a more proper dataset.

Third, sensitivity analysis is required to investigate the impacts of the long-

term uncertainties of the planning problem, e.g. changes in demand and elec-

tricity market prices over the years.

7.5 Summary and Conclusions
A multi-stage distributionally robust optimization model to derive optimal in-

vestment decisions for a DER aggregator in a market environment is presented.
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Comparison of the proposed distributionally robust optimization model with

the robust and traditional stochastic models shows that the distributionally

robust optimization model achieves a good balance between the expected per-

formance and the performance in extreme cases with acceptable computa-

tional effort. Thus, the distributionally robust optimization model is more

appropriate in cases when a large amount of historical data is available and

the probability distribution of the random variables is unknown. Analysis re-

garding the impacts of the statistical constraints included in the ambiguity set

suggests that in general the out-of-sample performance improves when more

statistical constraints are considered as the worst-case distribution of the fore-

cast errors is improved. However, since the mean absolute deviation provides

a good estimation of the variance of the data especially when the data do not

form a completely perfect Gaussian distribution [151], adding the variance in-

formation to an ambiguity set that already incorporates the expectation and

the mean absolute deviation limits does not necessarily improve the perfor-

mance of the model but greatly increases the computational complexity of the

problem.
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Chapter 8

Case study: Techno-economic

Analysis of PV-battery

Systems in Switzerland

This chapter presents a techno-economic optimization model to analyze the eco-

nomic viability of a Photovoltaic-battery (PVB) system for different customer

groups in Switzerland clustered based on their annual electricity consumption

values, rooftop sizes, annual irradiation levels, and located regions. The sim-

ulations for a static investment model are carried out for the years 2020-2050.

A comprehensive sensitivity analysis is conducted to investigate the impacts of

individual parameters such as costs, load profiles, electricity prices, and tariffs.

Results show that while combining Photovoltaic (PV) with batteries already re-

sults in better net present values than PV alone for some customer groups today,

the payback periods fluctuate between 2020 and 2035 due to the mixed effects

of policy changes, cost and electricity price developments. The optimal PV and

battery sizes increase over time, and in 2050 the PV investment is mainly limited

by the rooftop size. The economic viability of PVB system investments varies be-

tween different customer groups. The investments with the shortest payback pe-

riod are primarily accessible to customer groups with higher annual irradiation

and electricity consumption levels. In addition, investment decisions are highly

sensitive to payback periods, future costs, electricity prices and tariff develop-

ments. Lastly, the grid impact of the PVB system deployments is investigated
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by analyzing the residual Swiss system load profile. The dynamics of residual

load profiles caused by the seasonal, daily, and hourly patterns of the solar gen-

eration emphasize the need for flexible resources with fast ramping capabilities.

This chapter is based on [153].
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8.1 Introduction

8.1.1 Motivation

Solar energy is widely recognized as a solution to tackle climate change by low-

ering worldwide greenhouse gas emissions from the energy sector [154]. After

a slowdown in 2018, the global solar energy market experienced a strong re-

covery in 2019, reaching 627 GW of cumulative PV installations [155]. This ca-

pacity accounts for nearly 3% of the global electricity demand and contributes

to around a 5% reduction in worldwide electricity related CO2 emissions [156].

Major drivers for the increasing PV penetration are the provision of subsidies

and the overall decreasing costs. But subsidies that aim to compensate the

capital-intensive PV investment are changing: feed-in tariffs are decreasing

continuously while injection remunerations that are paid by the local Distri-

bution System Operators (DSOs) (which we will refer to as the injection tariff

in the following context) are already or will soon be lower than the retail tariff,

which encourages self-consumption of PV generation. One of the means to

enable the further development of PV installations is the use of battery storage,

which is able to increase the PV self-consumption rate and also resolve the

real-time imbalances caused by forecast errors [105]. In the past, high costs

and limited combinations of use cases were the greatest barriers for battery

installations. However, as battery prices have declined dramatically over the

last decade24, mainly driven by developments in the Electric Vehicles (EV) in-

dustry, batteries are now considered to be one of the most promising solutions

to enable the transition towards renewable energy sources. In addition, with

a proper combination of different applications, investments in battery storage

units could already be attractive today [118].

8.1.2 Literature review

Techno-economic assessments of PVB systems have been extensively re-

searched in recent years, especially in Germany where favorable renewable

policies are implemented. As shown in Table 8.1, the existing techno-economic

models can be categorized into optimization and simulation models, depend-

ing on whether the capacity of PV and battery units are optimization variables

24Battery packs decreased from over 1100 USD/kWh in 2010 to around 150 USD/kWh in 2019.
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or simulated as exogenous parameters. While most of the existing studies fo-

cus on applications of PVB systems in residential sectors, some also investigate

commercial and industry sectors [118, 158, 175, 177].

Most of the existing research focuses on lithium-ion or lead-acid batteries,

however, recent studies have shown that lithium-ion batteries are more viable,

techno-economically, than lead-acid batteries [170, 181] thanks to their recent

drastic cost reductions and technology improvements. Some works also in-

vestigate hydrogen-based battery units [166] as well as reused electric vehicle

batteries [177]. A review of different stationary electricity storage technologies

can be found in [182].

Concerning battery operation strategies, most works [141, 167, 170, 173, 174]

adopt simple rule-based strategies that aim to maximize the self-consumption

rate, i.e. surplus PV generation is primarily used to charge the battery while

any demand deficit is first satisfied by the stored energy in the battery. Some

consider hybrid operation strategies, e.g. [169] applies batteries to peak shav-

ing while [175] investigates uses in frequency reserve provision. In [118], the

benefits of combining different applications of battery storage units are inves-

tigated. As mentioned in [166], simple rule-based strategies might underesti-

mate the economic value of the investment and it is indeed important to adopt

appropriate operation strategies in the analysis.

Since the input data and parameters such as costs, load profiles, wholesale

and retail electricity prices, and local policies vary widely across published

studies, different conclusions concerning the economics of PVB systems are

drawn. While references [167] and [171], published in 2017, state that the inte-

gration of batteries is not attractive at that time in the UK and Australia, [141]

and [118], published in 2014 and 2016, indicate that it could be profitable for

certain PVB in Germany. However, a comparatively low battery cost, i.e. 171

EUR/kWh + 172 EUR/kW, is assumed in [141]. The work in [174] shows that

pairing Battery Energy Storage Systems (BESS) with PV systems can improve

the economics and performance of a PVB system in the US and [169] identifies

that the electricity bill could be reduced by 87% for the considered residential

house in Portugal. Some studies investigate the break-even price of battery

units. For example, [158, 159, 168, 173, 180], which were published between

2016 and 2020 and simulated battery costs between 138-400 EUR/kWh, con-
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cluded that batteries could be profitable for commercial or residential sectors

in Belgium, Germany, the UK, Switzerland and Thailand. In contrast, the study

in [164] estimates that the break-even price of BESS in Germany ranges from

900 to 1200 EUR/kWh, whereas the work in [165] finds that battery costs of

500–600 EUR/kWh may make PVB systems generally profitable in Germany

even without subsidies.

Based on this literature review, the identified research gaps are as follows:

• Most existing works consider one single representative household for the en-

tire country, i.e one single price and one tariff for the PVB system, thereby ne-

glecting price differences between different PV/battery categories, regional

differences within one country, and different trade-offs faced by different

household groups. This makes it difficult for policy-makers and regulators

to learn from these studies.

• Most existing works assume a simple rule-based battery operation strategy

that aims to maximize the self-consumption rate, which underestimates the

value of battery investments by ignoring the multi-applications case (e.g.

price arbitrage).

• There is limited discussion about battery C-rates (i.e. the rate to quantify

the maximum discharging rate of the battery as a reference to its maximum

capacity) and most works only make energy-related cost assumptions.

• Specific types of load profiles are utilized for the analyses, e.g. scaled aggre-

gated load profiles as well as synthetic profiles or real measurements taken

from individual households. But there is limited analysis of the impact of

load profiles, which are expected to affect the PV self-consumption rate and

the profitability of battery units.

• There is almost no analysis of the grid impact (e.g., maximum hourly injec-

tion and ramping etc.) of PVB system installations.

This work aspires to address these gaps and presents a static investment op-

timization model to assess the economics of PVB systems by minimizing the

total investment and operational costs over a 30-year horizon. The optimiza-

tion is conducted for a variety of customer groups in Switzerland in the years

from 2020 through 2050. The customer group’s heterogeneity is modeled using

different rooftop sizes, annual irradiation and electricity consumption values,

individual load profiles and geographical regions.
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8.1.3 Status of PV and Battery in Switzerland
To support the implementation of the Energy Strategy 2050 [183] and a smooth

transition towards a nuclear phaseout, Switzerland introduced different poli-

cies to encourage the deployment of renewables, especially PV investments,

including: a feed-in tariff, investment subsidy, tax rebates and injection remu-

nerations. PV is considered to be the most promising renewable resource in

Switzerland due to the high social acceptance and the high deployment po-

tential. The solar installation potential on rooftops and building facades in

Switzerland is estimated to be 67 TWh (including 17 TWh from facades) [184].

As a result, the annual PV deployment increased from 26 MW in 2009 to 327

MW in 2019 [155], reaching a cumulative installed capacity of 2.5 GW and ac-

counting for about 3.3% of the annual Swiss electricity demand in 2019 (i.e.

2.11 TWh of PV toward the 63.4 TWh demand). However, to achieve the am-

bitious net-zero greenhouse gas emissions targets by 2050 and to replace the

phasing-out nuclear power, nearly 50 GW of new PV installations are required

by 2050 according to Swisssolar [185], which translates into around 1.6 GW of

new installations annually.

According to data published by Swisssolar [59], the battery storage market

in Switzerland, although still quite small, has experienced an increase in an-

nual installed capacity in the last few years. In 2018, 14.6 MWh were added,

while in 2019 new installations increased to 20.4 MWh (including 20.3 MWh

lithium-ion and 0.09 MWh lead-acid batteries), leading to a total battery stor-

age capacity of 50.7 MWh. Additionally, the average system size increased from

9.1 kWh in 2018 to 13.5 kWh in 2019, which is consistent with the increase in

the average installed PV unit size (from 19.4 kW in 2018 to 22.5 kW in 2019). In

addition, around 15% of newly installed PV systems for single-family houses

are equipped with battery storage units.

Based on these trends and developments, this work aims to answer ques-

tions such as:

• How are the PVB system economics affected by different customer groups

that are categorized by rooftop sizes, annual electricity consumption and

irradiation values, and geographical location of deployment?

• How does the optimal size of the PVB system change across different cus-

tomer groups?
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• What are the expected cumulative investments of the PVB system at both the

regional and the national levels over the coming years?

• How sensitive is the economic viability of the PVB system to uncertainties

related to e.g. costs, load profiles, electricity prices, etc. and which are the

driving factors?

• What are the potential challenges and opportunities for investors, retailers,

electricity system operators and policy-makers?

The rest of the chapter is organized as follows: Section 8.2 describes the data

and assumptions in this research. Mathematical formulations of the proposed

optimization model are given in Section 8.3. Section 8.4 analyzes the results

and a further discussion of the results from different perspectives is given in

Section 8.5. Finally, limitations of this work and conclusions are stated in Sec-

tion 8.6 and Section 8.7, respectively.

8.2 Data

8.2.1 General Assumptions

We run the static investment model for the examined years 2020-2050 with a

step of 5 years and the lifetime of the PVB system is assumed to be the same

as the lifetime of PV, i.e. 30 years. Weighted Average Cost of Capital (WACC)

is set to be 4% [141] and the amortization period is the same as the lifetime

of the invested unit. Since the lifetime of battery units are in general shorter

than 30 years, a battery replacement is assumed and the potential remaining

value of the last reinvested battery by the end of the PVB system lifetime is also

calculated.

8.2.2 Rooftop Potential and Data Clustering

We focus on rooftop solar and simulate each potential rooftop based on the

Sonnendach dataset [186], which analyzes the solar generation potential for

Switzerland by accounting for the roof area, orientation, tilt, utilization type

and region. The high level of detail in this dataset thus enables a high level of

granularity in our simulation results. According to [186], only buildings with

roof areas greater than 10 m2 and an annual solar irradiation higher than 1000

kWh/m2 should be considered. The availability factors of the rooftops, which
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reduce the effective rooftop area, range between 42% and 80% depending on

building types, roof sizes and tilt. This range accounts for the possible un-

availability of the roof areas due to factors such as obstructions, windows and

shadings (for details see page 7 of [186]). After accounting for these factors, the

theoretically available rooftop area is reduced from 630 km2 to 304 km2 (i.e.

105 GW to 51 GW assuming 6 m2/kWp). We further process the data by focus-

ing on detached buildings (i.e. Einzelhaus) with warm water consumption that

account for around 94% of the potential solar generations and exclude poten-

tials from bridges, high buildings, buildings under construction, etc. Finally,

the total potential rooftop area modeled in this work equals 224 km2 (i.e. 37

GW), which corresponds to 3’795’145 rooftop data entries.

To lower the computational burden, these nearly 4 million data entries are

clustered into different groups depending on their annual irradiation, roof

sizes, warm water consumption (which is used to approximate their electricity

consumption), and geographical regions:

• IRR1-IRR5: 5 irradiation categories in kWh/m2/year with a step of 150

kWh/m2/year, i.e. 1’000-1’150, 1’150-1’300, 1’300-1’450, 1’450-1’600 and

>1’600;

• A1-A40: 40 roof size categories with a step of 6 m2 between 12 m2 and 60 m2,

a step of 12 m2 between 60 m2 and 180 m2, a step of 30 m2 between 180 m2

and 600 m2, a step of 300 m2 between 300 m2 and 1’200 m2, a step of 600 m2

between 1’200 m2 and 2’400 m2 and a step of 1’200 m2 between 2’400 m2

and 6’000 m2;

• L1-L11: 11 annual electricity consumption categories in kWh/year25, i.e. 0-

1’600, 1’600-2’500, 2’500-3’500, 3’500-4’500, 4’500-5’500, 5’500-7’500, 7’500-

13’000, 13’000-25’000, 25’000-30’000, 30’000-150’000 and >150’000;

• REG1-REG26: 26 regions corresponding to the 26 cantons in Switzerland.

After clustering, all data entries are categorized into 5*40*11*26 = 57’200 groups

which we will refer to as customer groups in the following context. We analyze

the economic viability of PVB systems across the nearly 4 million rooftops con-

25Since the annual electricity consumption data is not available, we approximate the annual
electricity load as 125% of the warm water consumption [187, 188, 189]. The corresponding warm
water consumption levels in kWh/year are: 0-1’280, 1’280-2’000, 2’000-2’800, 2’800-3’600, 3’600-
4’400, 4’400-6’000, 6’000-10’400, 10’400-20’000, 20’000-24’000, 24’000-120’000 and >120’000.
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Figure 8.1: Structure and power flows of the modeled PV-battery system.

sidered in Switzerland by evaluating each customer group using the median

values from within each group.

8.2.3 Parameters of the PV-battery System
Each one of the 57’200 customer groups faces an investment optimization

problem for a PVB system. The fundamental model created for the PVB system

consists of five components: the PV module, the battery unit, the inverter, the

load and the grid. The structure of the PVB system and the power flows mod-

eled between different components are illustrated in Fig. 8.1. The battery unit

is assumed to be AC-coupled since compared to DC-coupling AC-coupling

provides higher operational flexibility although it requires an additional bat-

tery inverter.

Table 8.2 gives the parameters for the considered PVB system using 2020 as

the reference year. Based on historical PV installation data of Switzerland [59],

although the average installed capacity of PV is increasing, most of the recent

investments are still small-scale. For example, PV categories smaller than 1000

kWp account for almost all PV deployments in 2019, i.e. <30 kWp (40%), 30-100

kWp (16%) and 100-1000 kWp (39%), while >1000 kWp PV investments make

up the remaining 5% of the total installed capacity. Therefore, we include five

PV categories (i.e., 0-6 kWp, 6-10 kWp, 10-30 kWp, 30-100 kWp, >100 kWp)

and limit the minimum and maximum capacity to 2 kWp and 50 MWp, which

covers most of the potential investments and also corresponds to the range

of PV units that could apply for the one-time investment subsidies in Switzer-
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Table 8.2: Parameters of the PV-battery system.

Category Parameter Adopted value Source

PV

Investment cost 754~2’786 EUR/kWp [3]

Operational cost 1.7~2.6 cent/kWh [3]

Module efficiency 17% [3]

Inverter efficiency 98% [3]

Performance ratio 80% [3]

Lifetime 30 years [3]

Area requirement 6 m2/kWp [3]

Battery

Investment cost
295~459 EUR/kWh

+ 249~388 EUR/kW
[190]

Operational cost
3.7~5.7 EUR/kW/year

+ 1.1~1.7 EUR/MWh
[190]

Lifetime 13 years [190]

Depth of discharge 100% [190]

Charging/discharging

efficiency
93% [190]

Inverter efficiency 100% n/a

Self-discharge 0% [190]

PVB system Degradation rate 0.5% per year [3, 164]

Note: Original values are converted to Euros based on the exchange rate of 0.91
EUR/CHF and 0.85 EUR/USD.

land [191]. The most commonly used batteries combined with a small-scale

PV are lithium-ion and lead-acid batteries. Although lead-acid batteries have

lower capital costs, lithium-ion batteries are proven to be more cost-efficient

as a result of better Depth of Discharge (DOD) and cycle life [172, 192]. In ad-

dition, the Swiss battery market is dominated by lithium-ion with only a negli-

gible amount of lead-acid batteries installed in recent years; we therefore only

consider lithium-ion batteries in this work. Note that the costs shown in Ta-

ble 8.2 are for the year 2020 and are given as ranges since they vary according

to the invested unit size and the considered scenario. As the assumed bat-

tery costs vary greatly between different studies, ranging from 250 EUR/kWh

to 1883 USD/kWh, we provide, for comparative reasons, a list of the cost as-

sumptions made by some recent works in Table 8.3 along with the cost data

selected in our simulations which are based on [190]. Future investment and

operational costs for PV and batteries are estimated using projections from [3]

and [193]26, respectively. Details of the costs for future years are provided in

Appendix 9.3 and Appendix 9.3.

26Data for missing years are estimated using an interpolation or extrapolation method.
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8.2.4 Load and Generation Profiles

We use synthetic load profiles for individual households generated using the

”LoadProfileGenerator” [203] with the location set as Munich. Then for each

customer group, the load profiles are scaled so that the total consumption

matches the annual electricity demand approximated using the warm water

consumption. To model the load profile of different consumption categories

(i.e. L1-L11), we use different predefined household settings of ”LoadProfile-

Generator” detailed as follows:

• L1: predefined household CHR07 (i.e. single, employed) with an annual elec-

tricity consumption of 1’502 kWh;

• L2: predefined household CHR02 (i.e. couple, 30-64 age, both employed) in

energy saving mode with an annual electricity consumption of 1’864 kWh;

• L3: predefined household CHR02 (i.e. couple, 30-64 age, both employed) in

energy intensive mode with an annual electricity consumption of 3’346 kWh;

• L4: predefined household CHR04 (i.e. couple, 30-64 age, 1 employed, 1 at

home) with an annual electricity consumption of 4’677 kWh;

• L5: predefined household CHR03 (i.e. family, 1 child, both employed) with

an annual electricity consumption of 5’460 kWh;

• L6: predefined household CHR05 (i.e. family, 3 children, both employed)

with an annual electricity consumption of 6’689 kWh;

• L7-L11: a combination of predefined household CHR02 and CHR03 with an

annual electricity consumption of 8’826 kWh. The electricity consumption

of buildings with multiple households are assumed to fall into these con-

sumption categories.

Solar irradiation profiles are based on historical hourly data from Me-

teoSwiss [204], using data of stations located in the capital or the main city

to represent the profile of each canton. The irradiation profiles are then scaled

according to the annual irradiation category collected from the Sonnendach

data. A perfect forecast of PV generation is assumed and the generation profile

is calculated as the production resulting from the invested module area, mod-

ule efficiency, inverter efficiency, performance ratio and the irradiation profile

(a summary of the PVB system parameter inputs used in this work is given in

Table 8.2).
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8.2.5 Policies and Regulations
To account for the impacts of the legislative and regulatory framework on the

investment decisions for PV units, we consider available subsidies, DSO injec-

tion tariffs and tax rebates:

• Subsidies: Currently, both an output-based feed-in-tariff subsidy scheme

and a capacity-based investment subsidy scheme exist in Switzerland. How-

ever, the feed-in-tariff scheme is expected to expire in 2022 and due to the

long waiting list, only PV units registered before July 2012 could qualify to

benefit from it [205]. From 2020 on, units above 100 kWp within the feed-

in-tariff scheme are obliged to participate in direct marketing that aims to

replace the fixed tariff with a more market-oriented remuneration tariff [206].

Units ranging from 2 kWp to 50 MWp can apply for the one-time investment

subsidy that could cover up to 30% of their investment costs based on the in-

stalled capacity and the PV category [191]. The current one-time investment

subsidy is valid until 2030, but recent reports indicate that the Swiss federal

council is planning a possible extension to 2035 [207].

• DSO injection tariffs: To account for income earned from PV generation that

is fed back into the local electricity grid, we include the injection tariffs that

are set by regional DSOs. Since these injection tariffs vary from DSO to DSO,

we use data available from [4] and make an estimation of the average value

for each canton as DSO regions and cantons are only partially congruent.

The inclusion of this injection tariff is important for quantifying the revenue

earned from PV generation that is not self consumed. Even more critically,

it is needed to quantify the economic benefits of the PV-batteries that help

increase the earnings of the PVB system by reducing the PV generation sold

at this injection tariff by storing for later use as self consumption. Sensitivity

analysis is conducted to analyze the impact of injection tariffs.

• Tax rebates: The available tax rebate covers 20% of the net investment

costs (i.e., investment cost minus the investment subsidy) in all Swiss can-

tons [208]. We assume these tax rebates to remain constant until 2050.

Policies and regulations modeled in the Baseline scenario including tariffs and

the WACC assumption are summarized in Table 8.4. While the investment sub-

sidy and DSO injection tariffs are based on the current year’s information (i.e.

2020), we assume the retail and wholesale electricity prices for 2020 using the
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Table 8.4: Input parameters for modeled policies and
regulations.

Parameter Value Source
Investment subsidy 909 EUR + 273~309 EUR/kW [191]
Investment subsidy change -2%/year n/a
Investment subsidy expires 2030 [191]
DSO injection tariff 5.7~11.8 cent/kWh [4]
DSO injection tariff change up to -10%/year27 [173]
Retail el. tariff 12.3~35.4 cent/kWh [5]
Retail el. tariff change +1%/year [141]
Wholesale el. tariff 0~161.4 EUR/MWh [209]
Wholesale el. tariff change +1.5%/year [141]
Tax rebate 20% of net investment cost [208]
WACC 4% [141]

Note: the exchange rate is assumed to be 0.91 EUR/CHF.

historical 2018 data from [5] and [209], respectively. In the Baseline scenario,

consumers are assumed to have no access to the hourly wholesale market and

the electricity injected back into the grid is reimbursed at the regional injec-

tion tariff. The regional injection tariff is assumed to decrease 10% per year.

However, if the injection tariff in a given year and in a given region drops below

the Swiss average annual wholesale price of that year, the PV injection in that

region is instead paid at that average annual wholesale price. This assumption

is based on the guidelines provided in the Swiss Energy Ordinance [210] that

requires the remuneration to be based on the costs incurred by the grid op-

erator for the purchase of equivalent electricity from third parties or its own

production facilities. Details of the regional injection tariff can be found in

Appendix 9.3.

8.2.6 Scenarios

The profitability of PVB system investments is subject to uncertainties as the fu-

ture development of PV and battery costs, injection tariffs, retail and wholesale

market prices, subsidy policies etc. are unknown. Additionally, in our model,

financial parameters such as WACC and amortization periods are simplified as

a constant value for all modeled PV categories, which is likely not the case in

reality28. To investigate how the profitability of PVB systems, and consequently

28In fact, different potential investors, from individual homeowners to larger industrial opera-
tors, might have different needs regarding their desired payback periods as well as different con-
siderations about financing an investment in PV including the amount of debt they take on and
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the investment decisions, are affected by our assumptions, we conduct a set of

one-at-a-time sensitivity analyses on some main parameters, such as the pro-

jections of PV and battery costs, load profiles, retail and wholesale electricity

price developments, PV injection tariffs, and the WACC. Note that the sensitiv-

ity scenarios described below are only simulated for the example of the canton

of Zurich in 2050, while the Baseline scenario is simulated for 2020-2050 for all

cantons.

PV and battery cost scenarios

In addition to the Baseline scenario (as introduced in Table 8.2), two additional

cost sensitivity scenarios, namely a high cost scenario SC1, and a low cost sce-

nario SC2 are simulated. On average, the high (low) cost scenario corresponds

to 15% higher (lower) costs for the PV and 54% higher (lower) costs for the

battery than the Baseline scenario. The differences among the three scenar-

ios vary across the years. The different size categories and details of the cost

projections for these three scenarios based on [3] and [190] can be found in

Appendices 9.3 and 9.3.

Load profile scenarios

In the Baseline scenario, we model the load profile of consumption categories

L1-L11 using different load profiles generated by ”LoadProfileGenerator”. The

work in [164] indicates that using aggregated load profiles leads to higher

shares of self-consumption compared to the use of an individual profile. Figure

8.2 shows the average weekly normalized aggregated load profile for the can-

ton of Zurich in 2018 together with eleven normalized synthetic load profiles

adopted for consumption categories L1-L11. It can be seen that the individual

load profiles are quite different than the aggregated profile. The individual pro-

files tend to peak once in the morning and once during the evening while the

aggregated profile peaks just once during the day. Furthermore, the aggregated

load profile follows a pattern with lower consumption during the weekend

whereas the individual customers consume more during the weekend. Such

differences could result in different estimates of PV self-consumption and eval-

uations of the battery installations if aggregated load profiles are used instead

the interest rate set by their lenders. Additionally, the constant assumptions ignore that some in-
vestors have non-economic desires, such as early adopters and innovators who might be driven
by environmental issues versus laggards and late majority who might have a higher risk aversion.
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Figure 8.2: Normalized aggregated load profile for canton Zurich and synthetic
individual load profiles for consumption categories L1-L11.

of individual profiles. Therefore, we simulate a sensitivity scenario SL, where

the synthetic load profiles of all consumption categories are replaced by the

corresponding aggregated cantonal load profile, to analyze the impact of using

the aggregated load profile.

Electricity price scenarios

In the Baseline scenario, we assume that the retail electricity price increases by

1% per year and the prosumers have no access to the hourly wholesale mar-

ket. All excess generation injected back into the grid is reimbursed by the

regional injection tariff. The regional injection tariff is assumed to decrease

10% per year until it reaches the corresponding yearly average Swiss wholesale

electricity price, which is assumed to increase by 1.5% per year. In all years

afterwards, the regional injection tariff is instead set equal to the yearly aver-

age Swiss wholesale price (see Appendix 9.3 for details of the regional injection

tariff).

However, it is highly uncertain how the injection tariffs as well as the retail

and wholesale electricity prices evolve in future years and it is also unclear to

what extent small prosumers will have access to the wholesale market. To ana-

lyze the impact of replacing the injection tariff with the wholesale market price

(i.e., simulate the case when end consumers have access to the wholesale mar-

ket), nine electricity price sensitivity scenarios SP1-SP9 detailed in Table 8.5
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Table 8.5: Parameters of price scenarios SP1-SP9.

Scenario name Retail price change Wholesale price change

SP1

+ 0%/year

- 1%/year

SP2 + 1.5%/year*

SP3 + 3%/year

SP4

+ 1%/year*

- 1%/year

SP5 + 1.5%/year*

SP6 + 3%/year

SP7

+ 2%/year

- 1%/year

SP8 + 1.5%/year*

SP9 + 3%/year

Note: values that are the same as the Baseline scenario are noted with
an asterisk (*).

are simulated similar to the electricity price scenarios modeled in [141]. One

other sensitivity scenario (i.e. SP10) is simulated to analyze the extreme case of

having an injection tariff equal to zero and no access to the hourly wholesale

market while the retail prices increase by 1% per year (same as the Baseline

scenario).

Battery scenario

In the Baseline scenario, we set the battery costs based on [190], which projects

the development of the battery costs using a number of international reports.

Since the battery costs (especially the labor cost) in Switzerland are generally

higher than the global average, we create a sensitivity scenario (i.e., SB1) in

which we adjust the battery investment cost assumption for 2020 using the

current Tesla Powerwall 2 price in Switzerland (i.e. 14’700 CHF equivalent to

13’364 EUR accounting for the total costs incurred for installing a 13.5 kWh

Tesla Powerwall 2), while the cost reduction rate over the years remains the

same as the Baseline scenario. Furthermore, we also simulate a sensitivity

scenario without any batteries (i.e., SB2) to analyze the financial benefit of

installing batteries.

WACC scenarios

Cost of capital is defined as the expected rate of return that market partici-

pants require in order to attract funds for a particular investment [211]. In the

Baseline scenario, we assume a 4% WACC for all PVB system investments.

The value of WACC varies over time and between different technologies, e.g.

smaller PVB systems are mainly invested by households, who face lower WACC
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Table 8.6: Summary of the sensitivity scenarios.

Scenario name Changed parameters Remarks

SC1-2 PV and battery costs
A high cost (SC1) and

a low cost scenario (SC2)

SL Load profile
Individual load profiles replaced

by the aggregate profile

SP1-9
Retail and wholesale

el. price development

Access to wholesale market;
injection tariff replaced

by hourly wholesale price

SP10
Retail el. price
development;
injection tariff

No access to wholesale market;
injection tariff is zero

SB1-2
Battery price;

battery investment

Battery price adjusted using current
Tesla price in Switzerland (SB1);

battery forced not to be installed (SB2)

SW1-2 WACC
A 2% WACC (SW1) and

a 8% WACC scenario (SW2)

than investors of larger-sized PVB systems. Therefore, we simulate two sensi-

tivity scenarios assuming a 2% (i.e. SW1) and a 8% (i.e. SW2) WACC to compare

against the Baseline assumption.

Table 8.6 summarizes the main parameter changes of the different sensitivity

scenarios compared to the Baseline scenario.

8.3 Method
In this section, the mathematical formulation of the optimization problem is

first described, followed by the definitions of the technical and economic indi-

cators used for evaluating the investment decisions.

In this work, the investment decisions are optimized using a static model.

More specifically, for each region and each examined year we run the opti-

mization considering a 30-year lifetime of the PVB system. The simulation

optimizes the investment decisions over the full 30-year lifetime by optimizing

the operational decisions for all 8760 hours of the examined year and assuming

identical operations along with projections for other parameters (e.g., whole-

sale price and injection tariff) over the remaining lifetime of the PVB system, i.e.

29 years. The model formulation, described below, is applied to each region,

hence the region index is omitted in the following equations for simplification.

To optimize the investment and operational decisions, three groups of con-

straints are considered: 1) investment constraints, 2) operational constraints
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and 3) system power balance constraints. The objective is to minimize the to-

tal investment and operating costs of the PVB system, which consists of the PV

unit, the battery unit and the load, over the 30-year simulation horizon. Details

of the objective function are given after the constraints are described.

8.3.1 Investment Constraints

Each rooftop in each region reg ∈ REG is categorized by which customer

group c it fits into, defined by the combination of irradiation category i ∈ I ,

electricity consumption category j ∈ J , and roof size category k ∈ K (i.e, for

each region this is 1 out of 2200 possible customer groups). In other words,

the customer group setC with c ∈ C includes all combinations of irradiation,

electricity consumption and roof size categories, i.e. C = {(i, j, k) : i ∈ I, j ∈
J, k ∈ K}. Each combination (i, j, k) is represented by a specific customer

group c.

As mentioned, five PV candidate units corresponding to five size categories

(i.e., 0-6 kWp, 6-10 kWp, 10-30 kWp, 30-100 kWp, >100 kWp) are considered

in this work. Let P denote the set of all these five candidate PV categories.

For each customer group c, the sum of the installed capacity cappv
p,c over all PV

categories p ∈ P is non-negative and limited by the maximum deployment

potential deppv,max
c , which is equal to the corresponding available rooftop area

of the customer group divided by the rooftop area required for 1 kWp of PV (i.e.

6m2/kWp, provided in Table 8.2). Consequently,

0 ≤
∑
p∈P

cappv
p,c ≤ deppv,max

c (8.1)

The installed capacity cappv
p,c of each PV category should be greater or equal to

the minimum size requirement of that category cappv,min
p , i.e.,

cappv
p,c = upv

p,cx
pv
p,c (8.2)

cappv
p,c ≥ upv

p,ccap
pv,min
p (8.3)

where upv is a binary variable that indicates whether the PV unit is invested

or not and xpv is the continuous investment capacity variable. All investment
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decisions are non-negative:

cappv
p,c, cap

bat-e
c , capbat-p

c ≥ 0 (8.4)

where capbat-e and capbat-p are the invested energy and power capacity of the

PV-battery unit, respectively. Note that the battery C-rate is not fixed and is

decided by the invested energy and power capacity of the battery.

8.3.2 Operational Constraints

The PV generation output genpv
t,p,c of PV unit p and customer group c at time t

is limited by the invested module areaApv multiplied by the module efficiency

ηpv-mod, inverter efficiency ηinv, performance ratio ηpv-pf and the solar irradia-

tion Ipv at time t, i.e.,

0 ≤ genpv
t,p,c ≤ Apv

p,cη
pv-mod
p ηinv

p ηpv-pf
p Ipv

t,c (8.5)

Apv
p,c = cappv

p,ca
pv
p (8.6)

where apv
p is the rooftop area required by each kWp of the installed PV. The

inequality in constraint (8.5) allows the possibility of PV curtailment.

The PV-battery has no direct connection to the grid and, in general, it

charges (discharges) when the demand of the customer is lower (higher) than

the PV generation. The stored energy of the PV-battery unit Ebat is limited

by its maximum DOD indicated byDODmax and the installed energy capacity

capbat-e:

(1−DODmax)capbat-e
c ≤ Ebat

t,c ≤ capbat-e
c (8.7)

The PV-battery inflow pch and outflow pdis are non-negative and limited by

the installed power capacity of the battery capbat-p. Mathematically,

0 ≤ pch
t,c ≤ capbat-p

c (8.8)

0 ≤ pdis
t,c ≤ capbat-p

c (8.9)
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Finally, the relationship of the storage levelEbat at the end of each time step

across two consecutive time steps is defined by:

Ebat
t,c = Ebat

t−1,c + ηbat,cpch
t,c∆t− pdis

t,c∆t/(η
bat,dηbat,inv) (8.10)

where ηbat,c and ηbat,d are the charging and discharging efficiencies of the bat-

tery, The battery inverter efficiency is denoted as ηbat,inv and ∆t is the length of

one time step.

8.3.3 Power Balance Constraints

As shown in Fig.8.1, the power from the PV units could be used to 1) charge

the battery with ppv2bat, 2) supply (at least part of) the demand with ppv2l or 3)

be injected into the grid with ppv2g. Note that each customer group c has the

choice to invest in any category and any number of PV panels as long as the

corresponding rooftop size allows. At each time step, the sum of the power

outflows of all PV units installed by customer group c should not be greater

than the total PV generation:

ppv2bat
t,c + ppv2l

t,c + p
pv2g
t,c ≤

∑
p∈P

genpv
t,p,c (8.11)

p
pv2g
t,c , p

pv2l
t,c ≥ 0 (8.12)

ppv2bat
t,c = pch

t,c (8.13)

Similarly, at each time step, the demand l can be satisfied by: 1) power from

PV to the load ppv2l, 2) power from the battery to the load pbat2l or 3) power from

the grid to the load pg2l. Mathematically,

ppv2l
t,c + pbat2l

t,c + p
g2l
t,c ≥ lt,c (8.14)

pbat2l
t,c , p

g2l
t,c ≥ 0 (8.15)

pbat2l
t,c = pdis

t,c (8.16)

The self-consumed portion of the PV generation psc is defined as the total

PV electricity output that is directly or indirectly consumed by the customer

[212], which corresponds to the power from PV to load and from battery to
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load, respectively, i.e.

psc
t,c = ppv2l

t,c + pbat2l
t,c (8.17)

8.3.4 Formulation of the Optimization Problem

The objective is to optimize the investment and operational decisions of the

PVB system while minimizing the cost. The cost can be assessed using the

discounted cash flow method, which calculates the Net Present Value (NPV) of

the investment as the sum of investment costs and all discounted future cash

flows.

The total investment cost comprises the net PV investment cost C inv,pv and

the battery investment cost C inv,bat. The PV portion accounts for the invest-

ment subsidy rsub,pv and the tax rebate rtax,pv per kWp. The investment costs

across the five PV categories is then given by

C inv,pv
c =

∑
p∈P

(1− rtax,pv)(cinv,pv
p − rsub,pv

p )cappv
p,c (8.18)

where cinv,pv is the cost of PV per kWp for category p. The battery portion con-

siders both the energy-related cinv,bat-e and the power-related cinv,bat-p invest-

ment costs, namely

C inv,bat
c = cinv,bat-ecapbat-e

c +cinv,bat-pcapbat-p
c (8.19)

Future annual costs Cout
y,c in year y include both variable and fixed opera-

tional and maintenance costs of the PVB system, i.e.,

Cout
y,c =

T∑
t=1

(
∑
p∈P

cvoc,pv
p genpv

t,p,c + cvoc,bat-epdis
t,c)

+ cfoc,bat-pcapbat-p
c

(8.20)

where cvoc,pv, cvoc,bat-e and cfoc,bat-p are the variable cost parameter of PV, along

with the energy-related and the power-related cost parameters of the PV-

battery. The simulation horizon of the examined investment year is denoted

by T .
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The annual revenuesRin include incomes from reimbursement of injecting

electricity to the grid and savings from self consumption. To account for the

degradation of the system, the annual revenues are multiplied by the annual

system degradation rate δdeg to the power of y − y0, which is the difference

between the considered year y and the investment year of the PVB system y0.

This results in the following equation:

Rin
y,c =

T∑
t=1

(p
p2g
t,c pr

inj
y,t,c + psc

t,cpr
retail
y,t,c)(1− δdeg)y−y0 (8.21)

where prinj and prretail are the injection tariff and the retail electricity tariff. The

savings from the self-consumed portion of the PV generation in the model is

calculated as the product of the self-consumed electricity and the retail elec-

tricity tariff, which better reflects the consumers’ savings and economic trade-

offs. The retail electricity tariff is modeled using a dual tariff system with vary-

ing high and low tariffs depending on the corresponding annual electricity con-

sumption category. Details of the retail electricity tariffs for the considered

consumption categories L1-L11 are provided in Appendix 9.3.

Furthermore, since the lifetime of the battery unit (i.e., 13 years) is shorter

than that of the PVB system (i.e., 30 years), a replacement of the battery unit

and the possible residual value of the new battery unit at the end of the PVB

system needs to be accounted for. The replacement cost Crpl,bat
y′,c in the year of

replacement y′ is calculated using the investment cost in that year (i.e., cinv,bat-e
y′

and cinv,bat-p
y′ ), while the reinvested power and energy capacity of the battery is

assumed to be the same as for the initial battery, i.e.

Crpl,bat
y′,c = cinv,bat-e

y′ capbat-e
c + cinv,bat-p

y′ capbat-p
c (8.22)

y′ = lbatn′+1,

n′ ∈ {n′ : n′ ∈ Z, 1 ≤ n′ ≤ b(lsys − 1)/lbatc}
(8.23)

where lsys and lbat are the lifetimes of the PVB system and the battery. The

number of needed battery replacements is calculated as b(lsys − 1)/lbatc.

The residual value of the last reinvested batteryCres is calculated as the mul-

tiplication of the annuity factor γann, with the corresponding replacement cost
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and the residual battery lifetime by the end of the PVB system calculated as

lbat-res:

Rres,bat
c = γannlbat-resCrpl,bat

y′=lbatb(lsys−1)/lbatc+1,c
(8.24)

γann =
wacc

1− 1/(1 + wacc)lbat (8.25)

lbat-res = [lbat(b(lsys − 1)/lbatc+ 1)− lsys] (8.26)

where the year when the last required battery replacement takes place is

lbatb(lsys−1)/lbatc+1. For example, if battery lifetime (i.e., lbat) is 13 years and

the PVB system lifetime (i.e., lsys) is 30 years, then the number of needed bat-

tery replacements is calculated as two (i.e., b(lsys− 1)/lbatc) and the year of the

last required battery replacement is the 27th year (i.e., lbatb(lsys − 1)/lbatc+ 1)

starting from the investment year.

Finally, the optimization problem for the entire lifetime of the PVB system

can be formulated as

min
∑
c∈C

[C inv,pv
c + C inv,bat

c +

lsys∑
y=y0

Cout
y,c −Rin

y,c

(1 + wacc)y

+

b(lsys−1)/lbatc∑
n′=1

Crpl,bat
y′=lbatn′+1,c

−Rres,bat
c ]

s.t. Constraints (8.1)-(8.26)

where all future revenues and costs are discounted by WACC to convert to the

NPV.

8.3.5 Technical and Economic Indicators
Technical indicators for self-consumption rate and an economic indicator for

payback period that will be used in the following analysis are described as fol-

lows:

Self-consumption rate

Based on definitions given in [212], the Self-consumption Rate (SCR) is equal

to the total PV electricity output that is directly or indirectly consumed by the

PVB system owner divided by the total PV generation.
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Self-sufficiency rate

The Self-suffiency Rate (SSR) represents the ratio of the electricity demand that

can be satisfied by the PVB system over the total electricity consumption of the

PVB system owner [212].

Payback period

The Payback Period (PBP) is defined as the investment cost divided by the

yearly cash flow. The shorter the PBP is, the more attractive the investment

is.

8.4 Case Study Results
In the Baseline scenario, we run the model for each region and each customer

group considering possible investments between 2020-2050 using a 5-year

time step. More specifically, we run the static investment model for each in-

vestment year without considering any investments in previous years (i.e., a

greenfield investment is simulated and the potentials for deployment are the

same for each investment year). Investment decisions are optimized by mini-

mizing all investment and operating costs over a 30-year lifetime assumed for

the PVB system, where the operational decisions over all 8760 hours of the ex-

amined year are simulated and are assumed to be the same for the years of

the remaining lifetime of the PVB system. Different from the dynamic multi-

period investment model that also optimizes investment timing and provides

investment pathways, this work mainly aims to answer the question of how

the economic viability of the PVB system changes over time, i.e. for different

investment years and its relation to the characteristics of different customer

groups. Each sensitivity scenario is only simulated for one example region (i.e.,

canton of Zurich) for the investment year 2050.

To better explain the results, in this section, we first show the results of an

example customer group in Section 8.4.1, then we illustrate the results for the

example of the canton of Zurich in Section 8.4.2. Finally, the results at the na-

tional level (i.e., Switzerland) are analyzed in Section 8.4.3. For the first two

subsections (i.e., Section 8.4.1 and Section 8.4.2), the Baseline results are pre-

sented first, followed by the results of the sensitivity analyses.
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8.4.1 Results for One Representative Customer Group

The average annual electricity consumption per household in Switzerland is

5000 kWh [213] and the average annual solar irradiance in Switzerland is 1267

kWh/m2 [60]. To represent an average customer group in Switzerland, we se-

lect the group with the following criteria: canton of Zurich (REG1), rooftop

size of 108-120 m2 (A13), annual irradiation of 1150-1300 kWh/m2/year (IRR2)

and electricity consumption of 4500-5500 kWh/year (L5). As mentioned in

Section 8.2.2, each customer group is represented using the median values of

the rooftop size, the annual irradiation and the electricity consumption from

within the group. Since a range of rooftop sizes in a particular customer group

are analyzed together using representative characteristics, the investment deci-

sion for each group yields a single combination of PV and battery investments

for all rooftops within this group. For example, the selected customer group

has a median annual electricity consumption of 5025 kWh, a median annual

solar irradiation of 1212 kWh/m2 and a median rooftop size of 113 m2 (i.e.,

equivalent to 18.8 kWp potential of PV). The aggregated rooftop area within

the considered customer group is equal to 20’751 m2, which means the op-

timized decision for the representative customer is reflective of around 184

customers (i.e., total rooftop size divided by the median rooftop size of the cus-

tomer group). Note that the results shown in this section are only for the single

representative rooftop within the single selected customer group.

Baseline Results - Investment

Table 8.7 shows the optimal investment decisions of the example customer

group over the simulation horizon (i.e. 2020-2050) for the Baseline scenario.

Comparing the results over the years, the optimal PV and battery sizes for the

representative rooftop in this customer group continue to increase. The PBP

in general follows a decreasing trend from above 13 years in 2025 to below 10

years in 2050 except for an increase from 2030 to 2035, which is mainly due to

the subsidy expiration by the end of 2030. Correspondingly, the NPV in gen-

eral increases over time except a slight decrease from 2030 to 2035. Changes

to these optimal investment decisions and the resulting PBP and NPV over the

years can be mainly traced back to the decreasing PV and battery costs and the

increasing retail electricity tariffs. The PVB C-rate is fairly consistent over the



240 8.4. Case Study Results

Table 8.7: Baseline analysis for the representative rooftop of the example cus-
tomer group.

Year

Investment size
[kW or kWh] NPV

[kEUR]
PBP

[Year]
SCR SSR

PV
BESS-e

/ BESS-p
BESS

C-rate
2020 0 0 / 0 n/a n/a n/a n/a n/a
2025 2.0 3.0 / 0.6 0.20 0.5 13.5 74% 29%
2030 2.3 5.7 / 1.0 0.19 1.4 11.8 80% 36%
2035 2.7 7.2 / 1.4 0.20 1.3 13.0 80% 42%
2040 3.3 8.6 / 1.8 0.21 2.3 11.7 77% 48%
2045 6.0 10.0 / 2.3 0.23 3.4 11.4 56% 64%
2050 6.0 10.3 / 2.3 0.22 5.1 9.5 56% 65%

years between 0.19-0.23, which is reasonable considering the popular house-

hold consumer solar battery systems available nowadays (e.g. the 13.5 kWh/3.6

kW Tesla Powerwall2 with a C-rate of 0.27 [214] and the 15 kWh/3.3 kW Son-

nenbatterie Eco9 with a C-rate of 0.22 [215]). Furthermore, the SSR increases

with the increasing size of the PVB system, meaning that the homeowner is

able to supply more and more of its own demand. In contrast, the SCR first in-

creases and then decreases, indicating that the larger PVB systems tend to sell

a larger portion of their production to the grid. This result also shows that the

investment profitability in early years is driven by the high SCR while further

into the future it is instead driven by the decreasing costs. In these future years,

it is also profitable to install a PVB system that is larger than required for the

consumers’ demand.

Baseline results - dispatch

Figure 8.3 shows the generation and load dispatch of the PVB system of an

example winter and summer week for 2030 and 2050, respectively. Both the

selected winter and summer weeks start from a Monday. Low electricity tariff

hours (i.e., off-peak hours) are marked by the gray area, while the rest is the

high electricity tariff period.

In general, the battery discharges/charges when the load is higher/lower

than the PV generation to increase the self-consumption rate and in turn im-

prove the profitability of the PVB system investment. An exception can be

observed on the 7th day (i.e., Sunday) of the winter weeks, when the battery

charges even though the load is higher than the PV generation. This is due to



Chapter 8. Case study: Techno-economic Analysis of PV-battery Systems
in Switzerland 241

1 2 3 4 5 6 7

Day of the Week

-3

-2

-1

0

1

2

3

E
le

c.
 G

en
./L

oa
d 

[k
W

h]

PV generation Battery discharge Grid purchase
PV injection Battery charge Off-peak hours
Load

(a) Winter - 2030

1 2 3 4 5 6 7
Day of the Week

-5
-4
-3
-2
-1
0
1
2
3
4
5

E
le

c.
 G

en
./L

oa
d 

[k
W

h]

(b) Summer - 2030

1 2 3 4 5 6 7
Day of the Week

-3

-2

-1

0

1

2

3

E
le

c.
 G

en
./L

oa
d 

[k
W

h]

(c) Winter - 2050
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Figure 8.3: Dispatch of the PV-battery system for the representative rooftop of
the example customer group in 2030 and 2050.
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the assumption that all hours on Sunday are low electricity tariff hours (i.e., off-

peak). The PVB system therefore takes advantage of the cheap electricity from

the grid to supply the demand while the PV-battery absorbs the PV generation

for later use during high electricity tariff hours. Furthermore, discharging is

ideally done during the peak electricity tariff hours (i.e., 6:00-22:00 from Mon-

day to Saturday) in order to reduce the electricity bill. Note that in the Baseline

scenario, the retail electricity tariffs are modeled using a dual system while the

injection tariff is assumed to be constant over all hours. Hence, non-unique so-

lutions might occur as the charging/discharging in different hours in the same

price tier could result in the same objective value. However, this is irrelevant

for our study.

As shown in Table 8.7, the optimal invested battery size increases from 5.7

kWh/1.0 kW in 2030 to 10.3 kWh/2.3 kW in 2050, whereas the optimal PV size

increases from 2.3 kW to 6.0 kW between the same years. Comparing the 2050

dispatch results to that of 2030 both shown in Fig. 8.3, the grid purchases de-

crease while the PV injections increase due to the larger size of the installed PV

system. Although the battery size is also expanded, the general pattern of the

PVB system behavior does not change significantly. Additionally, the dynam-

ics of the power consumed/sold to the grid are exacerbated since in 2050 the

installed battery capacity per kW of PV is lower.

Sensitivity Scenario Results

The results of simulating different sensitivity scenarios in 2050 are provided in

Table 8.8. The main observations are:

• Cost sensitivity: The optimal battery size and the NPV decreases/increases,

and the PBP increases/decreases in the high/low cost scenario (i.e.,

SC1/SC2), while the optimal PV size is unchanged. This is due to the fact

that the future battery cost is subject to higher uncertainties than that of PV.

• Load sensitivity: When applying the aggregate load profile (i.e. SL) with

equal energy consumed, the optimal PV size stays unchanged, but both the

optimal battery size and battery C-rate are reduced. This is because the ag-

gregate load profile is flatter and better matches the PV generation profile

than the individual load profiles, therefore a smaller battery is required to
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Table 8.8: Sensitivity analysis for the representative rooftop of the example
customer group in 2050.

Year

Investment size
[kW or kWh] NPV

[kEUR]
PBP

[Year]
SCR SSR

PV
BESS-e

/ BESS-p
BESS

C-rate
Baseline 6.0 10.3 / 2.3 0.22 5.1 9.5 56% 65%
SC1 6.0 8.6 / 1.9 0.23 3.2 11.8 55% 63%
SC2 6.0 14.4 / 2.7 0.19 7.2 7.0 57% 67%
SL 6.0 7.1 / 1.4 0.20 5.4 8.9 57% 65%
SP1 2.1 5.6 / 1.1 0.19 0.6 14.7 82% 34%
SP2 6.0 8.6 / 2.1 0.24 1.0 14.8 54% 63%
SP3 6.0 7.9 / 2.0 0.25 2.0 12.9 54% 62%
SP4 6.0 10.5 / 2.4 0.22 4.7 9.9 56% 65%
SP5 6.0 10.3 / 2.4 0.23 5.4 9.3 56% 65%
SP6 10.0 10.6 / 2.6 0.24 7.0 9.6 39% 75%
SP7 6.0 11.8 / 2.6 0.22 11.6 6.2 57% 66%
SP8 10.0 12.5 / 2.8 0.22 12.6 7.2 39% 76%
SP9 12.3 12.2 / 3.0 0.24 15.1 7.2 34% 79%
SP10 6.0 10.6 / 2.4 0.22 4.3 10.2 56% 65%
SW1 6.0 10.5 / 2.3 0.22 8.3 9.8 56% 65%
SW2 6.0 10.5 / 2.3 0.22 1.6 8.7 56% 65%
SB1 6.0 7.6 / 1.8 0.23 3.7 11.0 53% 62%
SB2 2.0 n/a n/a 0.9 11.9 49% 19%

achieve similar SCR and SSR values to those of the Baseline scenario, which

results in a higher NPV and a shorter PBP.

• Price sensitivity I: Having access to the hourly wholesale market (i.e. SP1-

SP9) has mixed impacts on the investment decisions, the NPV and the PBP,

depending on how the retail and wholesale electricity prices evolve.

Comparing the results under the same retail electricity price (i.e., SP1 vs.

SP2 vs. SP3; SP4 vs. SP5 vs. SP6; SP7 vs. SP8 vs. SP9), higher wholesale market

prices increase the optimal PV investment size and the NPV, and reduce

the SCR since it means greater revenues for the same amount of electricity

injection. However, higher wholesale prices in general reduce the optimal

battery (energy and power) capacity invested per unit installed PV capacity.

This is because the spread between wholesale and retail electricity prices

is smaller when higher wholesale electricity is simulated, which lowers the

savings earned by using batteries. Interestingly, the battery C-rate increases

with the increasing wholesale price development (i.e., from SP1 to SP3, from

SP4 to SP6 and from SP7 to SP9) since higher wholesale prices encourage
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investments in a larger PV unit, which in turn requires a higher C-rate to

cope with the increased dynamics of the net load.

Comparing the results under the same wholesale electricity price (i.e.,

SP1 vs. SP4 vs. SP7; SP2 vs. SP5 vs. SP8; SP3 vs. SP6 vs. SP9), the higher retail

electricity prices (i.e., SP7-SP9) reduce the PBP and increase the NPV and the

optimal size of both PV and battery units.

The impact of the wholesale electricity price is limited compared to the

influence of the retail electricity tariff as in general the retail electricity price

level is higher than the wholesale electricity price.

• Price sensitivity II: When the injection tariff is zero and no wholesale market

access is granted (i.e. SP10), the optimal PV size is the same but the battery

size is slightly higher. The resulting NPV decreases and the PBP increases

slightly compared to the Baseline scenario, which shows the limited impact

of injection tariffs in 2050 for the example of the considered customer group.

• WACC sensitivity: Increasing the value of the WACC from 4% (i.e., Baseline)

to 8% (i.e., SW1) or reducing it to 2% (i.e., SW2) does not impact the invested

PV and battery sizes and only slightly changes the PBP. However, the NPV

varies significantly under different assumptions of WACC because of the dis-

counting factor of future cash flows.

• Battery price sensitivity: Adjusting the battery price using the current Tesla

Powerwall 2 cost in Switzerland (i.e., SB1) results in even less battery invest-

ments than the high cost scenario SC1, which highlights the importance of

considering regional differences of the PVB system investment costs.

• Battery integration sensitivity: When no battery installation is considered

(i.e., SB2), the NPV is much lower and the PBP is longer than in the Baseline

scenario, which shows that the successful combination of battery units with

PV does contribute to increasing the profitability of the PVB system for the

example customer group in 2050.

The NPV and the PBP are subject to future uncertainties and vary greatly be-

tween different sensitivity simulation scenarios. The economic viability of the

PVB system is especially sensitive to the future cost of PV and battery and the

electricity price development.
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Table 8.9: Baseline results analysis for canton Zurich, years 2020-
2050.

Year

WAVG investment size
[kW or kWh]

WAVG
NPV

[kEUR]

WAVG
PBP

[Year]

Cum.
PV

[GW]

Cum.
BESS

[GWh / GW]PV BESS-e / BESS-p
BESS

C-rate
2020 4.5 1.1 / 0.3 0.25 2.3 11.5 1.4 0.4 / 0.1
2025 5.8 7.0 / 1.5 0.21 3.3 11.7 2.2 2.7 / 0.6
2030 7.6 14.0 / 2.8 0.20 6.0 11.0 3.0 5.4 / 1.1
2035 7.8 16.7 / 3.4 0.20 6.5 11.6 3.0 6.4 / 1.3
2040 8.3 18.1 / 3.7 0.20 8.9 10.2 3.2 7.0 / 1.4
2045 8.8 18.9 / 3.9 0.20 10.9 9.3 3.4 7.3 / 1.5
2050 9.2 19.8 / 4.0 0.20 13.3 8.3 3.6 7.7 / 1.6

WAVG is the abbreviation for weighted-average.

8.4.2 Results for All Customer Groups within Canton Zurich
To broaden the scope of the results, this subsection discusses the resulting

optimal investment decisions for all 2200 customer groups in the canton of

Zurich. The combination of these customer groups represents 435’815 individ-

ual consumers/households and a combined rooftop space of 28.4 km2, which

is equivalent to a cumulative PV potential of 4.7 GW.

Baseline results

Table 8.9 shows the weighted average size, NPV and PBP as well as the cumula-

tive capacity of the PVB investments across all customer groups in the canton

of Zurich. The assigned weights are the number of customers (i.e., rooftops)

in each customer group. Different from the results of the example customer

group, it is profitable to invest in PV and PV-battery for some customer groups

already in the current year (i.e., 2020) in Zurich. Moving from 2020 to 2050,

the weighted average size of the invested PV and battery units is increasing,

mainly as a result of the decreasing costs. This result is consistent with the

observation drawn from the previous results of the example customer group.

This growth is prominent for the battery during the period between 2020 and

2035, when the estimated battery price drops significantly (for more details see

Appendix 9.3). Although the NPV increases over the years, the weighted aver-

age PBP fluctuates between 2020 and 2035 and decreases afterwards, which

is due to the mixed impacts of the investment subsidy decrease, the injection

tariff variation, the retail tariff increase and the investment cost decrease. In

other words, the annual net cash inflow does not increase as much as the in-
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Figure 8.4: Cumulative PV investments in different size categories for the can-
ton of Zurich, years 2020-2050.

vestment cost during this period (i.e., 2020-2035). Individual impacts of some

of these important input factors will be further investigated later using sensitiv-

ity analysis. Similar to the trend of the weighted average investment capacity,

the cumulative PV and battery investment capacities also increase over time

from 1.4 GW and 0.4 GWh/0.1 GW in 2020 to 3.6 GW and 7.7 GWh/1.6 GW in

2050, while the total PV deployment potential modeled for the canton of Zurich

is 4.7 GW. It is worth noting that the resulting investment capacities account

for all investments that could achieve positive NPV, even if small, over the 30-

year lifetime of the PVB system, while in reality investors might have higher

expectations for the NPV and the PBP.

Figure 8.4 shows the cumulative PV investments in different size categories

from 2020 to 2050 for the canton of Zurich. Please note by cumulative, we refer

to the summation over all customer groups in any particular year and not over

time as we start with a greenfield in every considered year. While the cumula-

tive investments in 6-10 kW and 10-30 kW PV units increase significantly from

2020 to 2050, investments in other PV size categories fluctuate over the years:

a) investments in PV sizes below 6 kW first increase then decrease, which is

likely due to the fact that investments are driven by high SCR in early years and

most customer groups install smaller PV units that do not fully exploit the po-
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tential of their rooftop sizes29. Since the optimal PV size increases mainly as a

result of the decreasing investment cost, the cumulative PV investment capac-

ity gradually shifts from smaller to greater PV size categories; b) investments

in PV above 30 kW in general increase over time except for a small decrease be-

tween 2030 and 2035, which shows that compared to that of smaller PV units

the economic viability of larger PV units relies more on the investment subsidy.

Figure 8.5 depicts the relationship between the total optimal PV and battery

investment capacities and the PBP over all 2200 customer groups. In all three

plots, each line represents the accumulated capacity of the 2200 customer

groups, which have been ordered by increasing PBPs. In general, the total ca-

pacities of the invested PV and battery units increase over the years, along with

yielding more capacities that have shorter PBP. However, the curves of 2030

and 2035 (especially for the PV investment capacity) intersect/overlap, which

is, as elaborated already also earlier, mainly because of the mixed effects of

cost reductions and the investment subsidy expiration by the end of 2030.

Sensitivity Scenario Results

Figure 8.6 illustrates the changes compared to the Baseline of the total invest-

ment capacities of PV and batteries in the canton of Zurich for each sensitivity

scenario in 2050. Focusing on the PV investment results, several different sce-

narios result in a similar cumulative PV capacity to the Baseline, (i.e. costs

SC1-SC2, load profiles SL and WACC values SW1-SW2). In contrast, the opti-

mal PV investment capacity is highly sensitive to the electricity price develop-

ments (i.e., SP1-SP10), with the lowest/highest price scenario (i.e., SP1/SP9)

yielding the lowest/highest level of PV integration. Alternatively, the cumula-

tive battery energy and power capacities vary significantly among scenarios,

with the lowest battery capacity invested in the aggregated load scenario SL

and the highest battery capacity invested in the low cost scenario SC2. Consid-

ering price scenarios SP1-SP10, the highest total battery investment capacity

is obtained under the price scenario SP7 (i.e., highest retail price increase of

2%/year and lowest wholesale price increase of -1%/year), while the lowest

29Assuming the considered available rooftop potential in the canton of Zurich is fully exploited
(i.e., PV units sizes are maximized for every single house based solely on the corresponding rooftop
size), then the maximum investments in 0-6 kW, 6-10 kW, 10-30 kW, 30-100 kW and >100 kW PV
units are 0.53 GW, 0.77 GW, 2.29 GW, 0.82 GW and 0.33 GW, respectively.
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Figure 8.5: Optimal investments against payback periods of the Baseline sce-
nario of 2020-2050 for the canton of Zurich.
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Figure 8.6: Investment changes in the example of the canton of Zurich under
different scenarios.

battery investment is obtained under the price scenario SP3 (i.e., lowest retail

price increase of 0%/year and highest wholesale price increase of 3%/year).

This is likely due to the fact that a smaller spread between wholesale and retail

electricity prices in turn decreases the profitability of battery investments in

2050, when in general more PV is invested than required for the consumers’

demand and the battery investment is driven more by shifting the PV injection

from low to high wholesale electricity price hours than to increase the SCR.

8.4.3 Results for Switzerland

In this section, we only show results for the Baseline scenario and for years

2020, 2030, 2040 and 2050. The results consider all 26 regions (i.e., cantons)

in Switzerland with 2200 customer groups within each region. The com-

bination of all these customer groups represents 3’795’145 individual con-
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sumers/households and a rooftop area of 224 km2, which is equivalent to a

cumulative PV potential of 37 GW.

Since the investment decisions are optimized by maximizing the NPV of the

investment, the resulting PBP could be up to the lifetime of the PVB system

(i.e., 30 years). However, most investors would expect a PBP that is much

shorter than the lifetime of the PVB system. The PBP of the currently installed

PVB systems varies across countries, locations and customer groups. A recent

study [216] conducted in Australia shows a PBP of 5 to 12 years, whereas some

research [217] suggests that the PBP could be as long as 16 years.

Investments that result in long PBPs are likely not of high interest to cus-

tomers. We therefore focus on two cases and define them as follows:

• Fast recoverable investment: PBP is less than 10 years;

• Moderately fast recoverable investment: PBP is less than 15 years.

Baseline Results - Investment

Figure 8.7 shows the optimal investments in Switzerland between 2020-2050.

Each year is represented by a whisker plot where each value within this plot

represents the cumulative capacity that is built in Switzerland with a PBP from

zero to 30 years. The investment decision is highly sensitive to the acceptable

PBP, especially between 2030 and 2040, when the cost reduction is not high

enough to achieve a short PBP for all customer groups. It can be observed that

for each year, the resulting 15-year PBP investment results are almost always

on the top edge of the box. This can be explained by the fact that most of

the investments have a PBP shorter than 15 years30, which can also be seen in

Fig. 8.5. In 2050, almost all investments achieve a PBP of less than 10 years.

Figure 8.8 shows the regional investment capacities of fast recoverable and

moderately fast recoverable investments in both 2020 and 2050, and PV in-

vestments are broken down into different PV size categories. In 2020, the fast

recoverable investments are mainly large PV units. In cantons with high DSO

injection tariffs (e.g. BS and GE), a significant share of deployment potentials

30The investment decisions are optimized by maximizing the net present value over the 30-year
lifetime of the PVB system, which is not equivalent to allow all investments that have a PVB below
30 years. This is because the NPV is calculated considering the time value of the money, which is
not the case when calculating the PBP.
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Figure 8.7: Optimal yearly investment under different payback periods.

is already qualified as fast recoverable in 2020. While in 2050, the fast recov-

erable investments are more evenly distributed between different regions and

different PV categories. Moreover, profitable PV investment capacities increase

while the corresponding PBPs decrease from 2020 to 2050.

Figure 8.9 presents distributions of the fast recoverable investments in 2050

over different irradiation, rooftop size and annual electricity consumption cat-

egories. It can be noticed in Fig. 8.9a and Fig. 8.9b that the most attractive

investments mainly belong to the customer groups that are in the higher an-

nual irradiation and higher electricity consumption categories. Furthermore,

the optimal PV investment size is generally limited by the rooftop size, as il-

lustrated in Fig. 8.9c with the separated ordering of the colored PV categories

from light to dark green, which shows the importance of considering rooftop

size limits in the techno-economic model.

Baseline Results - Load

Figure 8.10 shows the average hourly Swiss load per month and the average

hourly residual load between 2020-2050 assuming a fast or a moderately fast
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(c) Fast recoverable investment - 2050
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(d) Mod. fast recoverable investment - 2050

Figure 8.8: Optimal regional investment of a fast and a moderately fast recov-
erable investment cases under the Baseline scenario in 2020 and 2050.
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Figure 8.9: Distribution of the fast recoverable investment of the Baseline sce-
nario in 2050.
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Figure 8.10: Monthly load and residual-load of different years under a fast and
a moderately fast recoverable investment case.

recoverable investment case, i.e. investments are only made if the PBP is less

than 10 years or less than 15 years, respectively. This residual load represents

the Swiss demand that is not supplied by the invested PVB units, which is equal

to the Swiss load minus the consumers’ load that is self-supplied by the in-

vested PVB units and minus the excess PV generation that is injected into the

grid. The original Swiss load profile is shown to be higher in winter months,

with a peak in January, and lower in summer months. This seasonal pattern is

impacted by higher electricity demand during the cold winter months along

with very limited existing cooling in summer. We see that while the residual

load remains high in winter of all years, it is increasingly reduced over time dur-

ing summer, which is directly attributable to the cumulative PV installations
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over all customer groups and regions that fulfill the respective PBP limit in the

considered year. This seasonality is more pronounced when moving from fast

recoverable to moderately fast recoverable investments since the less stringent

PBP threshold enables more PV to be viable. It is worth noting that the original

Swiss load is assumed to be constant over the years, but expectations for future

demand changes as well as electrification are not expected to make significant

differences to the seasonal pattern of the Swiss demand.

Figure 8.11 shows the original hourly load of Switzerland and the residual

load for the years 2020 through 2050 for one winter week in January and one

summer week in July for both the fast recoverable and the moderate fast recov-

erable investment cases. In all weeks, the original Swiss load follows a similar

pattern with higher consumption during the day and less at night. Over the

years, in general the residual load profiles deviate more and more from the

original Swiss load profile during the afternoon hours when the PV generation

peaks. One exception can be observed on the 7th day (i.e., Sunday) in Fig. 8.11a

and Fig. 8.11c when the residual load profile in 2020 is lower than or similar to

that of 2030-2050. This is due to the fact that although PV generation is higher

in 2030-2050, more batteries are also installed in 2030-2050 and absorb the PV

generation during these hours, which is relatively lower due to the winter sea-

son, while the load is instead supplied by the grid at the low retail electricity

tariff available during these Sunday hours. By 2050, every sunny day in both

the winter and summer weeks exhibits a highly dynamic plunge and recovery

pattern. It can be seen that the residual load can vary drastically from one

day to the next and also from one hour to the next. Both phenomena become

more pronounced as the PV penetration level increases from 2020 to 2050 and

the analyzed investments extend from fast recoverable to the moderately fast

recoverable ones. The increasingly dynamic pattern of the residual load on

an hourly and daily basis emphasizes the need for flexible resources with fast

ramping capabilities.

Baseline results - self-consumption

Table 8.10 shows the Baseline self-consumption results analysis for the fast and

moderately fast recoverable investments from 2020 to 2050. It can be seen that

in both cases while the PV generation increases over time, the SCR peaks in



256 8.4. Case Study Results

1 2 3 4 5 6 7
Day of the Week

0

2

4

6

8

10

H
ou

rly
 L

oa
d 

[G
W

h]
Load
Residual-load 2020
Residual-load 2030
Residual-load 2040
Residual-load 2050

(a) Winter - Fast

1 2 3 4 5 6 7
Day of the Week

-20

-15

-10

-5

0

5

10

H
ou

rly
 L

oa
d 

[G
W

h]

Load
Residual-load 2020
Residual-load 2030
Residual-load 2040
Residual-load 2050

(b) Summer - Fast

1 2 3 4 5 6 7
Day of the Week

0

2

4

6

8

10

H
ou

rly
 L

oa
d 

[G
W

h]

Load
Residual-load 2020
Residual-load 2030
Residual-load 2040
Residual-load 2050

(c) Winter - Mod. fast

1 2 3 4 5 6 7
Day of the Week

-20

-15

-10

-5

0

5

10

H
ou

rly
 L

oa
d 

[G
W

h]

Load
Residual-load 2020
Residual-load 2030
Residual-load 2040
Residual-load 2050

(d) Summer - Mod. fast

Figure 8.11: Hourly original Swiss load and residual-load of a winter and a
summer week under a fast and a moderately fast recoverable investment case.



Chapter 8. Case study: Techno-economic Analysis of PV-battery Systems
in Switzerland 257

Table 8.10: Baseline self-consumption results analysis for the fast / moderately
fast recoverable investments, years 2020-2050.

Year
PV

generation
[TWh]

SCR
Savings

[billion EUR]

Required retail
tariff increase

[cent/kWh]
2020 3.5 / 14.3 54% / 64% 0.4 / 1.8 0.7 / 4.3
2030 8.7 / 22.2 74% / 72% 1.4 / 3.4 3.0 / 9.7
2040 13.1 / 23.9 76% / 73% 2.4 / 4.0 5.6 / 12.0
2050 24.0 / 27.3 68% / 67% 4.2 / 4.7 12.6 / 15.4

2040 since later investments are more driven by the low cost of the PVB sys-

tem than by trying to increase the SCR. We can now also analyze the inherent

losses for the retailers and DSOs caused by the reduced electricity purchase

and compute by how much they would have to increase the retail price in or-

der to recover these losses. The extra retail electricity tariff charge is calculated

as the revenue loss of the DSOs divided by the sum of the residual load. The

revenue loss is assumed to be equal to the savings earned by end-consumers

on their electricity bills as a result of self-consumed PV generation instead of

purchasing from the grid. From Table 8.10 we can see that this extra required re-

tail electricity tariff calculated rises significantly over the years, especially from

2040 to 2050, which is due to the strong increase in self-consumption savings

and the reduction in residual loads. Using the Swiss average household tariff in

2020 (i.e., 18.8 cent/kWh [218]) as a reference, the 12.6 cent/kWh and the 15.4

cent/kWh required tariff increase in 2050 in the fast and moderately fast recov-

erable investment cases translate into a total increase of 67% and 82%, which

is equivalent to a yearly increase of 1.7% and 2.0% between 2020-2050. This

of course is a simplified analysis as it does not take into account the rebound

effect on PV and battery investments that would be driven by the increase in

these retail prices but it points to an important issue that retailers and DSOs

will likely face in the future.

8.5 Discussions

8.5.1 From Investors’ Perspective

Results show that combining a battery with a PV unit is in some cases already

economically viable today and especially for investors that have high annual
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electricity consumption. However, the average payback period might fluctuate

between 2020 and 2035 mainly due to the mixed impacts of subsidy policy

changes, cost reductions, injection tariff and electricity price developments. A

significant decrease of the PBP is expected after 2040.

In addition, profitability and optimal size of the PVB system vary among con-

sumer groups due to their diverse annual electricity consumption, locations,

solar irradiation and rooftop sizes. It is therefore important to consider the

heterogeneity of different investors when assessing the economic viability of

the investment.

Furthermore, the economics of the PVB system are especially sensitive to PV

and battery cost developments, injection tariff changes and wholesale and re-

tail electricity price changes. Having access to the wholesale market can either

increase or decrease the economic viability of the PVB system, depending on

how the retail and wholesale electricity prices develop in the future and their

relationship to each other.

Please note that the assumptions made in this work heavily affect our re-

sults obtained from the scenario simulations and we do not account for ideal-

istic motivations, i.e., non-economical reasons, to install PV and battery units.

Therefore, we do not claim that the optimized investment decisions will be

realized, given the modeled regulatory and legislative framework. However,

the results indicate how the development of costs and electricity prices over

the years affect the PVB system investment and operation decisions. Also, we

conducted sensitivity analyses to better understand how our assumptions on

different parameters (e.g., payback period and unit costs) affect the potential

investments in PVB systems.

8.5.2 From Retailers’ Perspective

According to our results with respect to the fast and moderately fast recover-

able investments, by the end of 2050, 24.0 TWh and 27.3 TWh of the PV genera-

tion, which account for 37.9% and 43.1% of the total Swiss demand in 2019 (i.e.

63.4 TWh), could be self-consumed by the end-consumers. The resulting rev-

enue losses from the decrease in electricity purchases of the prosumers could

be recovered by increasing the retail electricity tariff. However, a higher retail
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electricity tariff will in turn further encourage investments in PV and battery

units.

The current retail electricity tariff (including the grid tariff) scheme is mainly

energy-based (i.e. electricity charged based on the kWh of electricity con-

sumed). Although the PVB system investments tend to decrease the annual net

electricity consumption, the possibly higher dynamics of their residual load

profile and the absolute value of their peak net-load will increase the burden

on the grid. Therefore, an additional capacity-based grid tariff could enable

a more reasonable pricing scheme and incentivize the prosumers to optimize

their dispatch more in favor of the grid.

However, it is also worth mentioning that the future load profile is also sub-

ject to uncertainties brought by the electrification of heating and the trans-

portation sector, which could compensate the loss of the self-consumption or

further exacerbate the problem by increasing the self-consumption.

8.5.3 From System Operators’ Perspective

The seasonality of the residual load increases in all future years and is more

pronounced in 2050 as the PV penetration level is higher. This trend indicates

a need for greater seasonal flexibility that could impact the operation of cen-

tralized power plants as well as the pattern of imports and exports. Similarly,

the increasingly dynamic pattern of the residual load on an hourly and daily

basis emphasizes the need for flexible resources with fast ramping capabilities

such as hydro dams with storage reservoirs and load shifting units like pumped

hydro, battery storage, or Demand-side Management (DSM). Furthermore, in

future years, more frequent curtailments of non-dispatchable units, while in

general not being popular, will likely make economic sense. With the integra-

tion of high levels of non-dispatchable PV, a shortage of flexibility in the power

system will have a negative effect on grid security and, thus, will contribute to

the risk of systemic failures. All these issues will potentially impact the actions

of and services provided by the system operator.

8.5.4 From Policy-makers’ Perspective

The optimization results in the Baseline scenario show that most PVB systems

could result in positive NPV even without policy support after 2030. However,
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the payback periods of the invested projects fluctuate between 2020 and 2040

in the Baseline scenario, which indicates that there are competing influences

that could reduce the economic attractiveness for customers. The increasing

dynamics of residual load profiles require increased levels of flexibility provi-

sions in the distribution and transmission networks while at the same time

lower DSO revenues are expected as a result of lower electricity purchases of

prosumers. Policy-makers therefore may have to rethink the market design

and rules to not only promote investments in renewable generations but also

in resources that are capable of providing the required flexibility. We believe

that the sensitivity analyses in this work that assess the impacts of different

input parameters enable policy-makers to identify the main driving factors for

investments in PV and battery units.

8.6 Limitations and Future Work

This work has several limitations and a few of which are highlighted in this

section. First, we estimate the load profiles of different customer groups using

a number of synthetic load profiles that undoubtedly deviate from real-world

data. Thus, we do not capture the variety of different consumption behaviors

between various regions and sectors. Furthermore, due to the lack of input

data, we approximate the annual electricity consumption of individual cus-

tomers using the warm water consumption data; additionally, the annual elec-

tricity consumption value is assumed to be constant over the years, which does

not capture the possibility of an increase in EV penetrations or other electrifi-

cation. Future work should include a bottom-up representation of buildings’

electricity demand by utilizing realistic load patterns that evolve from year to

year and differ from region to region.

Second, we group the rooftop data using a limited number of clusters and

represent each group using the median data. The groups with highly varied

data and the groups with few data therefore cannot be well represented; this

is especially important since these two cases mostly correspond to the groups

with high electricity consumption or large roofs. However, increasing the num-

ber of clusters causes higher computational complexity and longer simulation

time. In future work, a proper clustering method is possibly required and a
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comprehensive analysis is needed to investigate the impact of the clustering

on the results.

Third, we model the investment behavior using a NPV-maximization objec-

tive without considering non-economic factors. A future version should ac-

count for a heterogeneous investor population, including, for example, varying

risk profiles and cost-unrelated objectives such as peer-effects. These enhance-

ments toward a diverse consumer perspective would enable a more realistic as-

sessment of the investment decisions and their impacts on the grid. However,

completing such improvements requires additional input data and increases

the implementation overhead.

Fourth, we adopt historical wholesale market prices and apply different mul-

tiplication factors to simulate the different wholesale electricity price scenarios

in the future. However, in this way the price suppression effect of PVB system

injections especially during high PV generation hours cannot be captured. In

addition, because of the central hub position of Switzerland, the Swiss whole-

sale electricity prices are also impacted by generation mix changes in surround-

ing countries.

And finally, a higher time resolution could be employed for both the hourly

operational decisions and the 5-year investment optimization to enable a more

granular assessment of operations and the economics for investing in PVB sys-

tems.

8.7 Conclusions
This chapter presents a techno-economic optimization model to analyze the

economic viability of PVB systems for different customer groups in Switzer-

land clustered based on their annual electricity consumption, rooftop size, an-

nual irradiation, and region. There are in total 2200 customer groups consid-

ered for each of the 26 regions in Switzerland. Each of the customer groups

is represented using median values for each of the dimensions that define the

group. The optimization of a static investment model is carried out consider-

ing a greenfield investment for each of the investment years from 2020 through

2050 (i.e., each year run independently without taking investments from previ-

ous years into account). The resulting optimal decisions are then applied to all
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customers within the corresponding customer group. A comprehensive sensi-

tivity analysis is conducted for an example of a particular canton (i.e., Zurich)

in 2050 to investigate the impacts of input parameters such as costs, load pro-

files, electricity prices and tariffs on the optimal investment decisions.

Results show that the combined PV plus battery system investments for

some customer groups already yield a better NPV than PV alone today. The

payback period of PVB system investments fluctuates between 2020 and 2035

due to the mixed effects of policy changes, costs, and electricity price devel-

opments, but decreases significantly afterwards. The optimal PV and battery

sizes increase over time. In 2050, the PVB system investment is profitable for

most customer groups and the PV investment with the shortest PBP is mostly

limited by the rooftop size. Optimal investment decisions vary between differ-

ent customer groups and fast recoverable investment (i.e., with the shortest

PBP) is mostly accessible to customer groups that have high annual irradia-

tion and electricity demand, which suggests that it is important to consider

the heterogeneity of different customer groups when assessing the economic

viability of PVB system investments. With regard to the grid impact, dynamics

of new system load profiles caused by the seasonal, daily and hourly patterns

of the solar generation emphasize the need for system flexibility. Furthermore,

the electricity purchases of the end-consumers decrease dramatically over the

years since more consumers turn into prosumers. Such a change could require

rethinking the current electricity tariff and subsidy policy design. In addition,

investment decisions are highly sensitive to the expected payback periods, fu-

ture costs, injection tariff developments, and wholesale and retail electricity

price changes. It is therefore important to identify the driving factors of the

PVB system investments and understand the future uncertainties of different

input parameters when discussing the economic viability of PVB systems in

the future.



Chapter 9

Conclusions and Outlook

9.1 Summary

In this thesis, stochastic optimization models are proposed to solve the invest-

ment or/and dispatch scheduling problems of aggregated distributed energy

resources (especially variable generation energies) in a market environment.

The first part of the thesis focuses on stochastic dispatch optimization in

a market environment. Chapter 2 investigates the benefits of participating

in sequential markets and the impacts of including different numbers of in-

traday auctions for an aggregator that consists of storage devices, loads, dis-

patchable, and variable generation units. Chapter 3 investigates the impact

of considering market power on the optimal dispatch and trading strategies

of a hybrid wind-solar aggregator. Chapter 4 improves the uncertainty mod-

eling in the previously introduced models by applying distributionally robust

optimization. Then, Chapter 5 extends the works in Chapter 3 and Chapter 4

by integrating storage units into the aggregator and quantifying the additional

values brought by the storage units.

The second part focuses on joint investment and dispatch optimization in a

market environment. Chapter 6 presents an optimization model to optimize

the generation mix and the operations for an aggregator of distributed energy

resources’ mix jointly to satisfy the demand and policy targets while minimiz-

ing the total costs. The aggregator is assumed to have access to both the en-

ergy and the reserve markets. Chapter 7 extends the work in Chapter 6 and
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proposes a distributionally robust optimization model to incorporate the wind

and Photovoltaic (PV) output uncertainties properly.

The third part focuses on the techno-economic analysis of the investments

in Photovoltaic-battery (PVB) systems. In Chapter 8, a case study is conducted

to analyze the economic viability of PVB systems for different customer groups

in Switzerland for the years 2020 through 2050. The customer groups are con-

structed based on the electricity consumption values, rooftop sizes, annual

solar irradiation levels, and geographical regions. Comprehensive sensitivity

analyses are conducted to investigate the impacts of individual parameters

such as costs, load profiles, electricity prices and tariffs.

9.2 Conclusions
Some of the main conclusions and observations of the thesis are summarized

as follows:

• The coordination of different units within the aggregator realizes higher flex-

ibility provisions and increased total profits for the aggregator, although this

might reduce the profit of some individual units.

• Including more intraday auctions enables the aggregator to modify the dis-

patch schedules and market biddings based on the updated information,

thus increasing the aggregator’s total profits by reducing the imbalance quan-

tities.

• The profits of the aggregator could be increased by implementing the strate-

gic bidding strategies, which enables the aggregator to bid more efficiently

into the markets by considering the potential influence of the biddings on

the market prices. The market power of the strategic aggregator is influenced

by multiple factors, such as the market share of the aggregator, the market

price cap, and the price elasticity of the demand bidding curve. Both intro-

ducing the market price cap and increasing the price elasticity of the demand

curve could reduce the incentives of exerting the market power.

• The strategic aggregator is more risk-seeking with the increasing market

share and it offers less to the day-ahead market when the standard devia-

tion of the output forecast error increases.

• Comparison of the proposed distributionally robust optimization model

with the robust and traditional stochastic models shows that the distribu-
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tionally robust optimization model achieves a good balance between the

expected performance and the performance in extreme cases with accept-

able computational effort. Thus, the distributionally robust optimization

model is more appropriate when a large amount of historical data is avail-

able and the probability distribution of the random variables is unknown.

The results can be further improved by applying the Auto-regressive Moving

Average (ARMA) model to learn the cross-correlations of uncertainties using

the historical data and then to simulate the future path of the uncertainties

while retaining the same probabilistic properties.

• Sensitivity analysis of including different statistical constraints into the

moment-based ambiguity set suggests that, in general, including more sta-

tistical information improves the worst-case distribution of the uncertainty

and thus improves the model performance. However, exceptions might

occur when adding the variance constraints into an ambiguity set that al-

ready contains the expectation and the mean absolute deviation informa-

tion, which results in almost the same out-of-sample performance but re-

quires much more computational effort.

• The introduction of the output-based subsidies could reduce the aggrega-

tor’s motivation to exert market power and then increase the resulting social

welfare. However, the increase in social welfare is not comparable to the

subsidies that are paid to the power plants.

• Coordinated bidding of diverse energy resources within the aggregator en-

ables the time-varying reserve bidding of each unit while satisfying the mar-

ket requirements, thus realizing higher profits for the aggregator.

• The market participation in general increases the profitability of Distributed

Energy Resource (DER) investments. Notably, the reserve market participa-

tion encourages investments in flexibility providers such as storage units and

dispatchable generation units.

• The combined PV plus battery system investments for some customer

groups already yield a better Net Present Value (NPV) than PV alone today.

However, the payback period of the investments fluctuates between 2020

and 2035 due to the mixed impacts of policy changes, costs, and electricity

price developments.
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• The optimal PV and battery sizes increase over time mainly due to the pro-

jected cost reductions. In 2050, the PVB system investment is profitable

for most customer groups in Switzerland, and the PV investment is limited

chiefly by the rooftop size.

• Optimal PVB system investment decisions vary between different customer

groups, and the fast recoverable investment is mainly accessible to customer

groups with higher annual irradiation and electricity demand values.

• Concerning the grid impact, dynamics of new system load profiles caused

by the seasonal and diurnal patterns of the solar generation emphasize the

need for system flexibility provisions.

• With the expected increasing investments in PVB systems, the electricity pur-

chases of the end-consumers decrease dramatically over time since more

consumers turn into prosumers. Such a change could reduce the profits of

electricity retailers and therefore requires rethinking the current electricity

tariff and subsidy policy design.

• Sensitivity analysis shows that the PVB system investment decisions are sus-

ceptible to the expected payback periods, future costs, injection tariff devel-

opments, wholesale and retail electricity price changes.

9.3 Outlook
Based on the summary and conclusions drawn above, some of the directions

of the future work are summarized as follows:

• The electricity market prices are modeled mainly based on historical data.

The future work should apply a proper method to predict the electricity

prices in sequential spot markets while accounting for the correlations be-

tween the prices of different markets and the generation mix, especially the

share of renewables. When the market share of the aggregator is sufficiently

high to influence the energy market prices, the mutual influence between

the aggregator’s balancing position and the balancing market price should

also be considered.

• The network constraints, including the transmission limits of the consid-

ered region and the cross-border transmission capacity between regions,

are not considered when modeling the market clearing problem. Although

this is consistent with the current pricing scheme of the European electric-
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ity markets, the network constraints are expected to influence the market

results and thus the incentive to exert the market power. Moreover, a single-

node approach is applied when optimizing the investment decisions of dis-

tributed energy resources, i.e., the distribution network constraints and the

placement of the units are ignored. Although results in [219] show that the

economic benefit of incorporating the network constraints into the DER in-

vestment optimization problem is limited compared to modeling an uncon-

strained network and accounting for the potential network reinforcement

costs, the (positive and negative) influences of the DER installations on the

system reliability should be analyzed [220].

• In Chapters 3-5, the aggregator is assumed to be the only one that could bid

strategically in the market. In this way, the market power and the associated

profits of the aggregator might be overestimated as the competitions among

multiple strategic producers are not considered. A more realistic market en-

vironment should be considered by modeling multiple strategic market par-

ticipants using an Equilibrium Problem with Equilibrium Constraints (EPEC)

model.

• The moment-based ambiguity set considered for Ditributionally Robust Op-

timization (DRO) in this work includes the mean, the mean absolute devi-

ation, and the standard deviation of the uncertain variables. In order to

reduce the conservativeness of the solutions and then improve the perfor-

mance of the model, additional information on the uncertainty distribution

such as the symmetry, the degree of peakedness, and the unimodality should

be included. Furthermore, the influence of incorporating the correlation

of uncertainties between different time steps and between different uncer-

tainty levels should be investigated. This extension will, however, increase

the computational complexity of the method.

• This thesis focuses on the implementation of a moment-based ambiguity

set. However, it is interesting to investigate the application of other types

of ambiguity sets. A popular alternative is the metric-based ambiguity set,

which describes the potential distributions using a reference distribution

and a probability distance quantified using metrics such as the Wasserstein

metric and the Kullback–Leibler divergence [221].
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• In the investment optimization models, long-term uncertainties related to

the changes from year to year, e.g., the uncertainties in electricity demand

and electricity market price developments, are either not considered or mod-

eled by applying different multiplication factors to the historical values. In

this way, the influences of the emission cost increase, the price suppression

effect due to the increasing penetration of renewables, especially during high

wind and PV generation hours, and the electrification of demand cannot be

well captured.

• The investment behaviors are modeled mainly using a cost-minimization or

an NPV-maximization objective without considering non-economic factors.

The future work should account for the investor heterogeneity by modeling

a multi-objective function to include the cost-unrelated influencing factors

such as environmental concerns, peer effects and risk appetite.
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Appendices

Appendix: Total and Flexible Load Estimation

Table 9.1 describes the hourly total and flexible load estimation used in Chap-

ter 2 based on data from [33].

Table 9.1: Estimation of the total load and the flexible load.

Hour Total Load Flexible Load
1 6 0
2 6 0
3 6 0
4 6 0
5 6 0
6 12 0
7 24 12
8 36 24
9 36 24
10 60 0
11 108 0
12 108 0
13 108 0
14 84 0
15 72 0
16 72 0
17 84 0
18 96 36
19 144 36
20 144 36
21 108 36
22 84 0
23 24 0
24 6 0
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Appendix: Future Costs of Candidate Units

Tables 9.2-9.5 describe the cost data used in Chapter 6.

Table 9.2: Battery (2-hour) cost for 2020-2050 [2].

2020 2030 2040 2050
Investment cost [EUR/MWh] 364’000 205’000 179’000 154’000
Fixed operational cost [EUR/MW-year] 31’000 17’000 15’000 13’000

Table 9.3: PV cost for 2020-2050 [2].

2020 2030 2040 2050
Investment cost [EUR/MW] 1’481’000 881’000 779’000 677’000
Fixed operational cost [EUR/MW-year] 10’000 6’000 6’000 5’000

Table 9.4: Wind cost for 2020-2050 [2].

2020 2030 2040 2050
Investment cost [EUR/MW] 2’219’000 1’597’000 1’531’000 1’458’000
Fixed operating cost [EUR/MW-year] 36’000 33’000 31’000 28’000

Table 9.5: CHP cost for 2020-2050 [3].

2020 2030 2040 2050
Investment cost [EUR/kW] 1564 1491 1418 1346
Variable operating cost [EUR/MWh] 16.2 16.2 15.9 15.5
Fuel cost [EUR/MWh] 55.6 77.8 94.2 109.7
Electrical efficiency [%] 37 38 39 40
Thermal efficiency [%] 50 49 48 47
Gas price efficiency [EUR/MWh] 86.9 97.9 107.5 117.1
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Appendix: Additional Results

This section provides the additional results for Chapter 6.
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Figure 9.1: Battery operations over an example winter and summer week for
years 2030 to 2050 under the Baseline scenario.
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Figure 9.2: Day-ahead dispatch of battery and demand response programs
over an example winter and summer week for 2020 to 2040.
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Appendix: Reformulation of the Distributionally Ro-

bust Optimization Model

Following the principle of Linear Decision Rule (LDR), the adaptive decision y

is approximated by an affine function of δ and u, i.e.,

yt(δ,u) = k0t + k1t δt + k2tu
1
t + k3tu

2
t (9.1)

where k0t ∈ RI2 , k1t ∈ RI1×I2 , k2t ∈ RI1×I2 and k3t ∈ RI1×I2 , with I1 and

I2 being the number of uncertainty levels and the dimension of y. Therefore,

φ(x, δ) can be rewritten as:

φ(x, δ) = min
k0∼3
t

sup
J∈F

EJ

αd
T∑
t=1

Cadpt
t (δ, u)

 (9.2a)

s.t. A(δ) +By(δ, u) ≤D(δ) (9.2b)

which can be solved by optimizing parameters k0∼3
t .

Based on the constraints in the lifted ambiguity set F , the inner maximiza-

tion problem of (9.2) can be written as:

sup
J∈F

EJ

αd
T∑
t=1

Cadpt
t (δ, u)


= sup

∫
W

αd
T∑
t=1

Cadpt
t (δ, u)df(δ, u) (9.3a)

s.t.

∫
W

δdf(δ, u) = 0 : ρ (9.3b)∫
W

udf(δ, u) ≤ γ : β (9.3c)∫
W

df(δ, u) = 1 : η (9.3d)

f(δ, u) ≥ 0, ∀(δ, u) ∈ W (9.3e)

A(δ) +By(δ, u) ≤D(δ) (9.3f)
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where f(δ,u) is the density function. Constraints (9.3b)-(9.3d) correspond

to the four lines in F , and ρ, β and η are the corresponding dual variables.

According to the derivations in [100] using Lagrange duality, the dual form of

(9.3) is:
min η + γβ

s.t. β ≥ 0

η + ρδ + βu ≥ αd
T∑
t=1

Cadpt
t (δ, u)

A(δ) +By(δ, u) ≤D(δ)

(9.4)

Therefore, the combined problem of all stages is:

min Θ(x) + η + γβ (9.5a)

s.t. β ≥ 0 (9.5b)

η + ρδ + βu ≥ αd
T∑
t=1

Cadpt
t (δ, u) (9.5c)

A(δ) +By(δ, u) ≤D(δ) (9.5d)

x ∈Xf (9.5e)

As δ and u are also subject to constraints in the uncertainty set W , δ- and u-

related constraints (9.5c) and (9.5d) need to be rewritten incorporating these
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limits. For example, (9.5c) is satisfied only if the worst-case is satisfied, i.e.

min
J∈F
{η + ρδ + βu− αd

T∑
t=1

Cadpt
t (δ,u)} ≥ 0 (9.6a)

s.t.
∥∥∥−δ + δmin + 1

∥∥∥ ≤ δ − δmin + 1 : π1, ζ1 (9.6b)

‖δ − δmax + 1‖ ≤ −δ + δmax + 1 : π2, ζ2 (9.6c)∥∥∥δ − u1 + 1
∥∥∥ ≤ −δ + u1 + 1 : π3, ζ3 (9.6d)

‖0‖ ≤ u1 : π4, ζ4 (9.6e)

‖u1‖ ≤ u1,max : π5, ζ5 (9.6f)∥∥∥∥∥∥
 1−u2

2

δ

∥∥∥∥∥∥ ≤ u
2 + 1

2
: π6, ζ6 (9.6g)

‖u2‖ ≤ u2,max : π7, ζ7 (9.6h)

whereπ1∼7 and ζ1∼7 are the corresponding dual variables and the equivalent

dual problem is:

η+αd
T∑
t=1

[
− (cvoc

g + cfuel
g )kg,0t −prBM-

t kBM-,0
t +prBM+

t kBM+,0
t

−
(
δmin1
v,t π1

v,t+δ
min2
v,t ζ1v,t+δ

max1
v,t π2

v,t+δ
max2
v,t ζ2v,t

+π3
v,t+ζ

3
v,t+u

2,max
v,t ζ5v,t+[1/2, 0]π6

v,t+
ζ6v,t
2

+u1,max
v,t ζ7v,t

)]
≥ 0 (9.7a)
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T∑
t=1

(−π1
v,t + ζ1v,t + π2

v,t − ζ2v,t + π3
v,t − ζ3v,t + [0, 1]π6

v,t)

=

T∑
t=1

[
ρv,t+α

d(−(cvoc
g + cfuel

g )kg,1v,t−prBM-
t kBM-,1

v,t +prBM+
t kBM+,1

v,t )
]

(9.7b)

T∑
t=1

(−π3
v,t + ζ3v,t + ζ4v,t + π5

v,t)

=

T∑
t=1

[
β1
v,t+α

d(−(cvoc
g + cfuel

g )kg,2v,t−prBM-
t kBM-,2

v,t +prBM+
t kBM+,2

v,t )
]

(9.7c)

T∑
t=1

([−1/2, 0]π6
v,t +

ζ6v,t
2

+ π7
v,t)

=

T∑
t=1

[
β2
v,t+α

d(−(cvoc
g + cfuel

g )kg,3v,t−prBM-
t kBM-,3

v,t +prBM+
t kBM+,3

v,t )
]

(9.7d)

‖πmv,t‖ ≤ ζmv,t, 0 ≤ ζmv,t, m = 1, 2, ..., 7; v = 1, ..., I1 (9.7e)

where δmin1
v,t , δmin2

v,t , δmax1
v,t and δmax2

v,t in equations above are assigned to δmin
v,t +1,

−δmin
v,t +1,−δmax

v,t +1 and δmax
v,t +1, respectively.

Following a similar process, constraints in (9.5d) are reformulated as a set of

equivalent linear constraints. Finally, the overall problem can be written as:

min Θ(x) + η + γβ

s.t. β ≥ 0

Constraints (9.7a)-(9.7e)

Reformulated constraints equivalent to (6.32)-(6.36), (6.38)-(6.41),

(6.46), (6.49) and (7.4) in (9.5d)

x ∈Xf
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Appendix: Formulations of Alternative Methods

This section describes the formulations for two additional optimization meth-

ods, i.e. stochastic optimization and robust optimization, used in Chapter 7.

Stochastic Optimization Formulation

The objective of Stochastic Optimization (SO) is to optimize the sum of the

deterministic cost and the expectation of all uncertainty-related costs over all

realization scenarios, while the constraints for each scenario ω need to be sat-

isfied, i.e.

min C inv + C foc + αd
T∑
t=1

[CDAM
t + CRM

t +

Nω∑
ω=1

ξω(Cvoc
t,ω + CBM

t,ω)]

s.t. Constraints (6.1)-(6.49), with (6.5), (6.21), (6.22), (6.31)

and (6.37) replaced by (7.1), (7.2), (7.3) and (7.4)

for each scenario ω

(9.8)

where ξω is the realization probability of scenarioω andNω is the total number

of scenarios.

Robust Optimization Formulation

The principle of Robust Optimization (RO) is to optimize against the worst-

case realization of the uncertainty:

min C inv + C foc + sup
δ∈U

αd
T∑
t=1

(Cvoc
t + CDAM

t + CRM
t + CBM

t )


s.t. Constraints (6.1)-(6.49), with (6.5), (6.21), (6.22), (6.31)

and (6.37) replaced by (7.1), (7.2), (7.3) and (7.4)

(9.9)

where U is the uncertainty set of δ.
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Appendix: Input Data of Cost Scenarios for PV Units

Table 9.6 describes the three Photovoltaic (PV) cost scenarios used in Chapter 8

based on data from [3] and [60].

Table 9.6: A Baseline, a high and a low PV cost scenario for 2020-2050.

Baseline PV Cost Scenario
2020 2030 2040 2050

PV investment
cost (EUR/kWp)

0-6 kWp 2’496 2’060 1’770 1’654
6-10 kWp 2’393 1’964 1’578 1’204

10-30 kWp 1’916 1’572 1’308 1’102
30-100 kWp 1’272 1’036 895 816

>100 kWp 814 664 573 523

PV operational
cost (cent/kWh)

0-6 kWp 2.6 2.1 1.9 1.7
6-10 kWp 2.6 2.1 1.8 1.7

10-30 kWp 2.6 2.1 1.8 1.7
30-100 kWp 2.6 2.1 1.8 1.7

>100 kWp 1.7 1.4 1.2 1.2

High PV Cost Scenario
2020 2030 2040 2050

PV investment
cost (EUR/kWp)

0-6 kWp 2’786 2’322 2’060 1’857
6-10 kWp 2’546 2’241 1’854 1’411

10-30 kWp 2’066 1’813 1’561 1’308
30-100 kWp 1’382 1’225 1’083 989

>100 kWp 885 784 694 633

PV operational
cost (cent/kWh)

0-6 kWp 2.6 2.2 1.9 1.7
6-10 kWp 2.6 2.2 1.9 1.7

10-30 kWp 2.6 2.2 1.9 1.7
30-100 kWp 2.6 2.2 1.9 1.7

>100 kWp 1.7 1.5 1.3 1.2

Low PV Cost Scenario
2020 2030 2040 2050

PV investment
cost (EUR/kWp)

0-6 kWp 2’351 1’799 1’480 1’422
6-10 kWp 2’241 1’715 1’300 996

10-30 kWp 1’790 1’354 1’056 996
30-100 kWp 1’178 864 691 644

>100 kWp 754 553 442 412

PV operational
cost (cent/kWh)

0-6 kWp 2.6 2.1 1.9 1.7
6-10 kWp 2.6 2.1 1.8 1.7

10-30 kWp 2.6 2.1 1.8 1.7
30-100 kWp 2.6 2.1 1.8 1.7

>100 kWp 1.7 1.4 1.2 1.1



Appendices 305

Appendix: Input Data of Cost Scenarios for Battery

Units

Table 9.7 describes the three battery cost scenarios used in Chapter 8 based on

data from [190].

Table 9.7: A Baseline, a high and a low battery cost scenario for 2020-2050.

Baseline Battery Cost Scenario
2020 2025 2030 2035 2040 2045 2050

Investment cost
(energy-related) EUR/kWh

377 233 158 123 110 103 96

Investment cost
(power-related) EUR/kW

319 197 133 104 93 87 81

Operation cost
(energy-related) EUR/MWh

1.41 0.87 0.59 0.46 0.41 0.38 0.36

Operation cost
(power-related) EUR/kW-year

4.70 2.91 1.97 1.54 1.37 1.28 1.20

High Battery Cost Scenario
2020 2025 2030 2035 2040 2045 2050

Investment cost
(energy-related) EUR/kWh

459 329 247 206 178 171 158

Investment cost
(power-related) EUR/kW

388 278 209 174 151 145 133

Operation cost
(energy-related) EUR/MWh

1.72 1.23 0.92 0.77 0.67 0.64 0.59

Operation cost
(power-related) EUR/kW-year

5.73 4.10 3.08 2.56 2.22 2.14 1.97

Low Battery Cost Scenario
2020 2025 2030 2035 2040 2045 2050

Investment cost
(energy-related) EUR/kWh

295 137 69 41 41 34 34

Investment cost
(power-related) EUR/kW

249 116 58 35 35 29 29

Operation cost
(energy-related) EUR/MWh

1.10 0.51 0.26 0.15 0.15 0.13 0.13

Operation cost
(power-related) EUR/kW-year

3.68 1.71 0.85 0.51 0.51 0.43 0.43
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Appendix: Assumed DSO Injection Tariff by Canton

Table 9.8 describes the PV injection tariff data used in Chapter 8.

Table 9.8: The DSO injection tariff in cent/kWh for PV estimated for each Swiss
Canton for years 2020 to 2050 [4].

Canton 2020 2025 2030 2035 2040 2045 2050
ZH 6.6 5.6 6.1 6.5 7.0 7.6 8.2
BE 6.9 5.6 6.1 6.5 7.0 7.6 8.2
LU 7.3 5.6 6.1 6.5 7.0 7.6 8.2
UR 9.0 5.6 6.1 6.5 7.0 7.6 8.2
SZ 7.0 5.6 6.1 6.5 7.0 7.6 8.2
OW 10.0 5.9 6.1 6.5 7.0 7.6 8.2
NW 5.9 5.6 6.1 6.5 7.0 7.6 8.2
GL 6.8 5.6 6.1 6.5 7.0 7.6 8.2
ZG 11.2 6.6 6.1 6.5 7.0 7.6 8.2
FR 8.5 5.6 6.1 6.5 7.0 7.6 8.2
SO 8.7 5.6 6.1 6.5 7.0 7.6 8.2
BS 11.8 7.0 6.1 6.5 7.0 7.6 8.2
BL 9.1 5.6 6.1 6.5 7.0 7.6 8.2
SH 7.3 5.6 6.1 6.5 7.0 7.6 8.2
AR 5.7 5.6 6.1 6.5 7.0 7.6 8.2
AI 9.1 5.6 6.1 6.5 7.0 7.6 8.2
SG 8.2 5.6 6.1 6.5 7.0 7.6 8.2
GR 9.1 5.6 6.1 6.5 7.0 7.6 8.2
AG 6.2 5.6 6.1 6.5 7.0 7.6 8.2
TG 7.3 5.6 6.1 6.5 7.0 7.6 8.2
TI 8.2 5.6 6.1 6.5 7.0 7.6 8.2
VD 7.4 5.6 6.1 6.5 7.0 7.6 8.2
VS 7.0 5.6 6.1 6.5 7.0 7.6 8.2
NE 8.5 5.6 6.1 6.5 7.0 7.6 8.2
GE 11.1 6.6 6.1 6.5 7.0 7.6 8.2
JU 6.9 5.6 6.1 6.5 7.0 7.6 8.2
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Appendix: Assumed Retail Electricity Tariff by Can-

ton

Table 9.9 describes the retail electricity tariff data for 2020 used in Chapter 8.

Table 9.9: The base retail electricity tariff in cent/kWh estimated for con-
sumption categories L1-L11 of each Swiss Canton in 2020 [5].

Canton L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
ZH 20.5 18.3 16.7 16.7 15.8 15.8 15.5 14.3 12.3 16.3 14.3
BE 27.7 25.1 23.1 23.1 22.1 22.1 22.2 19.7 17.6 22.3 19.9
LU 23.0 22.7 21.0 21.0 20.7 20.7 22.1 17.8 14.9 21.0 17.0
UR 28.4 25.5 23.3 23.3 22.2 22.2 22.2 19.2 15.8 20.9 16.7
SZ 23.9 21.7 20.1 20.1 19.2 19.2 18.7 16.9 15.0 19.2 16.7
OW 26.9 24.0 22.1 22.1 21.0 21.0 20.8 19.1 16.6 19.9 17.7
NW 24.2 21.4 19.9 19.9 18.8 18.8 18.1 17.0 15.6 17.5 16.1
GL 27.7 25.1 22.3 22.3 20.1 20.1 18.5 17.1 15.1 20.9 19.5
ZG 21.0 20.1 18.2 18.2 17.4 17.4 17.7 14.9 12.8 18.1 15.3
FR 24.5 22.2 20.1 20.1 19.3 19.3 19.8 17.3 14.0 19.9 19.1
SO 26.1 23.2 21.6 21.6 20.7 20.7 20.6 18.6 16.2 21.0 18.8
BS 27.4 27.2 25.8 25.8 25.9 25.9 27.3 23.1 21.0 29.6 25.6
BL 25.4 23.0 21.5 21.5 20.7 20.7 20.4 17.1 17.2 20.7 18.8
SH 24.8 22.1 20.6 20.6 19.6 19.6 19.1 16.4 15.3 19.3 16.7
AR 21.0 19.3 17.8 17.8 16.6 16.6 16.0 14.2 13.1 16.3 13.5
AI 22.2 19.2 17.6 17.6 16.5 16.5 15.9 14.3 13.0 16.2 14.1
SG 23.2 20.5 18.8 18.8 17.7 17.7 17.0 15.5 14.1 17.8 15.2
GR 24.9 22.2 21.1 21.1 20.4 20.4 20.4 18.8 16.6 19.9 19.6
AG 26.8 20.4 18.7 18.7 17.6 17.6 17.0 15.5 13.3 17.1 16.2
TG 23.2 20.6 19.0 19.0 17.9 17.9 17.3 159 14.3 18.6 16.5
TI 21.4 20.2 18.9 18.9 18.6 18.6 18.6 17.0 15.6 18.8 19.2
VD 24.1 22.6 20.9 20.9 20.2 20.2 20.5 183 15.7 20.3 17.7
VS 20.3 18.3 17.3 17.3 18.6 18.6 15.4 16.0 13.3 16.8 15.2
NE 25.4 23.8 214 21.4 20.1 20.1 20.2 18.0 14.9 21.1 18.8
GE 20.5 20.2 19.1 19.1 19.0 19.0 20.0 18.1 16.2 20.7 19.5
JU 32.2 28.6 26.3 26.3 25.3 25.3 25.6 21.1 17.6 25.5 21.8

Note: the low retail electricity tariff for off-peak hours and the high retail electricity tariff for peak hours
are assumed to be 71% and 107% of the base tariff.
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Table 9.10 describes the information of electricity consumption categories

used in Chapter 8.

Table 9.10: Information of electricity consumption categories [5].

Category Annual electricity consumption Electricity tariff category

L1 0-1’600 kWh H1

L2 1’600-2’500 kWh H2

L3 2’500-3’500 kWh H2, H3

L4 3’500-4’500 kWh H2, H3

L5 4’500-5’500 kWh H3, H4

L6 5’500-7’500 kWh H3, H4

L7 7’500-13’000 kWh H8

L8 13’000-25’000 kWh H7

L9 25’000-30’000 kWh H6

L10 30’000-150’000 kWh C2

L11 >150’000 kWh C3
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