
ETH Library

Structural identification with
physics-informed neural ordinary
differential equations

Journal Article

Author(s):
Lai, Zhilu ; Mylonas, Charilaos; Nagarajaiah, Satish; Chatzi, Eleni 

Publication date:
2021-09-15

Permanent link:
https://doi.org/10.3929/ethz-b-000488395

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Journal of Sound and Vibration 508, https://doi.org/10.1016/j.jsv.2021.116196

Funding acknowledgement:
679843 - Smart Monitoring, Inspection and Life-Cycle Assessment of Wind Turbines (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-6227-6123
https://orcid.org/0000-0002-6870-240X
https://doi.org/10.3929/ethz-b-000488395
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1016/j.jsv.2021.116196
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Structural Identification with Physics-informed
Neural Ordinary Differential Equations

Zhilu Lai1,∗, Charilaos Mylonas1, Satish Nagarajaiah2, Eleni Chatzi1

1 Chair of Structural Mechanics and Monitoring, Institute of Structural Engineering, Department of

Civil, Environmental and Geomatic Engineering, ETH-Zürich, Zürich, Switzerland
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ABSTRACT

This paper exploits a new direction of structural identification by means of Neural Ordinary

Differential Equations (Neural ODEs), particularly constrained by domain knowledge, such as

structural dynamics, thus forming Physics-informed Neural ODEs, aiming at governing equa-

tions discovery/approximation. Structural identification problems often entail complex setups

featuring high-dimensionality, or stiff ODEs, which pose difficulties in the training and learning

of conventional data-driven algorithms who seek to unveil the governing dynamics of a system

of interest. In this work, Neural ODEs are re-casted as a two-level representation involving a

physics-informed term, that stems from possible prior knowledge of a dynamical system, and

a discrepancy term, captured by means of a feed-forward neural network. The re-casted for-

mat is highly adaptive and flexible to structural monitoring problems, such as linear/nonlinear

structural identification, model updating, structural damage detection, driving force identifica-

tion, etc. As an added step, for inferring an explainable model, we propose the adoption of

sparse identification as an additional tool to transparentize the trained nets into closed-form

expressions that embed a more straightforward engineering interpretation. We demonstrate the

framework on a series of numerical and experimental examples, with the latter pertaining to a

structural system featuring highly nonlinear behavior, which is successfully learned by the pro-

posed framework. The proposed structural identification with Physics-informed Neural ODEs

comes with the benefits of direct approximation of the governing dynamics, and a versatile and

flexible framework for discrepancy modeling in structural identification problems.

Keywords: Neural Ordinary Differential Equations; physics-informed machine learning; sci-

entific machine learning; discprepancy modeling; structural identification; structural damage

detection; structural health monitoring
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1. INTRODUCTION

The term structural identification or structural-system identification (SI)1–4 defines a set of

methodologies for inverse modeling of structural systems, where information stemming from

data is used to inform mathematical models that can be used for estimations and predictions

of increased confidence on the condition and residual life of structural systems. In recent years,

the rapid growth of sensing techniques and the associated development of machine learning

methods,5 has spawned a broad array of identification tools that are reliant on machine learning

with applications across various domains.6–9

Research efforts have been extensively carried out to transform measured response, either

in the lab or in the field, into either mechanistic (physically interpretable) or non-mechanistic

(“black-box”) models, which can be used for the purpose of prediction given new inputs. In the

field of structural engineering, we attempt to classify these efforts into two main clusters, namely

purely data-driven methods and physics-driven methods. The first class includes classical iden-

tification tools formulated in the time domain, such as eigensystem realization algorithm,10 or

in the frequency domain, such as frequency domain decomposition,11 or latent space tools, such

as blind source separation12–15 fall in this class. In most cases, these tools are constrained in

the application onto identification of linear systems. The physics-driven class typically assumes

a model structure, which can be either a prior parameterized model or a general structure of

differential equations for instance. The parameters in a prior parameterized model can be recur-

sively updated by minimizing the error between the prediction from the prior structured model

and the corresponding experimental data, by means of either an optimization or a stochastic,

e.g., Bayesian updating approach.16–21 If the model structure is given by a general structure, for

instance, the format of differential equations, a new branch that is affiliated to the physics-driven

class is comprised of the so-called governing equations discovery/approximation methods.22–25

These attempt to recover a mathematical expression (governing equations) directly from exper-

imental data, without a prior assignment of a specific model structure. The expressive power of

these methods predominately depends on the appropriate structuring of a pre-defined pool of

candidate basis functions.

In this work, we explore the feasibility of linear/nonlinear structural identification via adop-

tion of Neural ODEs as a tool for governing equations approximation. As a family of deep neural

network models, Neural Ordinary Differential Equations (Neural ODEs),26 have established a

framework and viewpoint bridging neural networks, i.e., a typically data-driven element, with

differential equations, i.e., a physics-based element. Neural ODEs have proven their capacity

in learning the underlying governing dynamics from measured data of a dynamical system.26–29
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Instead of abstractly seeking a nonlinear transform from input to output variables, Neural ODEs

approximate the derivative of the transform with a neural network, allowing for a flexible descrip-

tion of the system evolution. The fact that neural networks can be used as universal function

approximators30 allows for the description of arbitrarily complicated dynamics, covering most of

the typical use-cases in engineering. Owing to this, SI by means of Neural ODEs can be applied

to complex nonlinear systems that are not easily modeled via purely physics-based models.

Empirical experiments with Neural ODEs in this paper indicate that the networks might be

less trainable (requiring more careful training) and the approximated governing equations might

be less capable of extrapolation, when applied to high-dimensional dynamical systems or stiff

ODEs, which are though often met in the field of structural health monitoring. The integration

of domain knowledge into the architectures of deep learning models31–39 enhances interpretability

and physical consistency of the derived models. This work builds on the concept of universal

differential equations, as introduced in the work of Rackauckas et al.40 The approach is adopted

for the particular purpose of structural identification by seeding domain knowledge, in this case

from structural dynamics, thus forming Structural Identification with Physics-informed Neural

ODEs. The framework is advantageous from the point of view of ease of training, interpretability,

and flexibility in error/discrepancy modeling. The key idea lies in splitting the format of Neural

ODEs into a physics-informed term (a known portion that stems from possible prior knowledge)

and an unknown discrepancy term taken up by a neural network. By training these blended

Neural ODEs, the discrepancy between the prior assumption on the driving physics and the

true system is learned. This approach to discrepancy modeling41,42 can find application across

a diverse suite of problems, such as model updating, structural damage detection, nonlinear

component modeling, driving force identification, etc. It is noted that very recently, Roehrl

et al.43 share a similar motivation in their work within the field of automatic control, and

adopt neural networks to approximate non-conservative forces in a dynamical system. In this

paper, we present an adaptation to the specific challenges of structural identification and health

monitoring, especially for nonlinear dynamical systems, described by uncertainty. The latter

drives the necessity on inference of the model discrepancy term.

The proposed framework contributes to the field of structural identification and health mon-

itoring in terms of: (1) Physics-informed Neural ODEs serving as learners of the governing

dynamics of the systems, rather than a simple mapping between input and output relationship.

The learned function is in the format of an ODE, which lends itself for reuse in prediction given

new initial conditions or new driving forces that are different to the ones used for training. (2)

The scheme is applicable to both linear and nonlinear systems, featuring a versatile approach to

discrepancy modeling in structural identification problems. It is demonstrated that in the case
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of linear systems, the stiffness and damping matrices can be directly recovered from the weights

of the trained networks. In the case of nonlinear systems, sparse identification of nonlinear dy-

namical systems23,24 is suggested as an additional tool for turning a trained “black-box” neural

network into a model with mechanistic intuition.

2. FRAMEWORK

2.1 Neural Ordinary Differential Equations (Neural ODEs)

Neural Ordinary Differential Equations26 (Neural ODEs) along with their variants27,29 have

raised significant attention in recent years, offering a new paradigm and insights into the linkage

of neural networks with differential equations. As a branch of deep neural networks, Neural

ODEs can be interpreted as a continuous representation of Residual Networks (ResNets).44

In ResNets, a hidden state (or hidden layer in the language of neural networks) h(t) allows

transitioning from a layer t to the next layer t+ 1 through a differentiable function ft(·):

ht+1 = ht + ft(ht) (1)

This transformation can be interpreted as a numerical integration via a forward Euler’s scheme

(explicit) with a time step ∆t = 1 (i.e., ht+1 = ht + ft(ht)∆t). By letting ∆t→ 0, the following

limit is attained:

lim
∆t→0

ht+1 − ht

∆t
=
dh(t)

dt
= f(h(t), t,θ) (2)

This essentially converts a discretized ODE into a continuous ODE. The function ft(·) corre-

sponds to a time derivative function f(·) that is constant throughout the flow. The key idea of

Neural ODEs builds on parameterizing a continuous dynamical system using neural networks,

in the format of ordinary differential equations for an initial value problem (IVP):

dh(t)

dt
= f(h(t), t,θ) h(t0) = h0 (3)

where f(·) is represented by a neural network parameterized by θ; θ includes all the weights of

the neural network; the initial condition is given as h(t0) = h0. h(t) can be interpreted as the

function governing state evolution over time t (trajectories), and f(·) mathematically defines

the derivative of the evolution (or the rate of the change of a system state).

In Neural ODEs, one can map the input as an initial state h(t0) to an output h(tp) (e.g., a

state evolved after p time steps) by solving an ODE numerically — ODESolve(h(t0), f, t0, tp,θ).

This forward procedure is mathematically encoded in a loss function L(·),26 evaluating the
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distance between output h(tp) and the desired measurements h(tp)measure

L (h(tp)) = L

(
h(t0) +

∫ tp

t0

f(h(t), t,θ)dt

)
= L (ODESolve(h(t0), f, t0, tp,θ)) (4)

where ODESolve can be given by established ODE solvers (such as Runge-Kutta methods).

Then, the neural network f(·) is trained/learned by determining the weights θ that minimize

the loss function L. Chen et al.26 have suggested to implement an adjoint sensitivity method

that is applicable to any ODE solver in order to compute the gradients ∂L
∂θ

with respect to the

weights θ for reducing memory costs. Once the gradient ∂L
∂θ

is computed, optimization methods

such as gradient descent, ADAM45 can be further implemented for determining the weights θ

that minimize L. Ultimately, the mapping from h(t) to dh(t)
dt

is represented by the trained neural

network f(·), which aims to approximate the time derivative of h(t).

It is noted that the training of a Neural ODE only exploits the state vector h(t) as input

(the explicit measurements/input of the derivative dh(t)
dt

is not required). This allows to learn

the underlying dynamics from measured data directly, regardless of the prior knowledge on

function f(·), due to the universal approximation theorem.30 The governing equations are

finally approximated by a trained neural network. A neural network is essentially a function,

thus the procedure of solving a trained Neural ODE in Eq.(3) may exploit established methods

of solving ordinary differential equations.
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2.2 Structural Identification with Physics-informed Neural ODEs

+
Baseline model

Sparse 
Identification Mechanistic Models

(closed-form)

Figure 1: Illustration of Physics-informed Neural ODEs

2.2.1 Physics-informed Neural ODEs

In this section, we will discuss the feasibility of structural identification with Neural ODEs, for

dealing with problems of structural identification, damage detection, and health monitoring.

One can observe that the format of Neural ODEs aligns with the typical format of a dynamical

system, when the hidden state h(t) is interpreted as a state vector representation: h(t) =

[x(t) ẋ(t)]T ∈ Rn, in which x(t) and ẋ(t) represent the displacement and velocity vectors,

respectively.

In consideration of the fact that most real-world structural dynamics problems are forced

vibration rather than only IVPs, and with the intention of incorporating domain knowledge into

the architecture of Neural ODEs, we reformat these into either Eq.(5a) or Eq.(5b), depending

on whether the neural network accounts for the entire or partial entries of dh(t)
dt

:

dh(t)

dt
= fphy(h(t), t,u(t)) +NN(h(t), t,θ) (5a)

or, for the cases examined as part of this work, where the nonlinear contribution pertains to

6



specific components of the state vector:

dh(t)

dt
= fphy(h(t), t,u(t)) +

 0p1×1

NN(h(t), t,θ) ∈ Rn−p1−p2

0p2×1

 (5b)

in which, n is the dimension of the state vector h(t); 0p1×1 and 0p2×1 are zero vectors reflecting

that the neural network (NN(·) : Rn → Rn−p1−p2) contributes to only a part of the components

of dh(t)
dt

(i.e., the dimension of the output of NN(·) is not necessarily set equal to n); u(t) is an

array of driving forces acting on the system; f(·) in Eq.(3) has been split into a physics-informed

term fphy(·), specified by possible prior domain knowledge (this can stem partially or entirely

from theoretical models or even finite element models) and a supplemental term NN(·) that

is encoded by a feed-forward neural network; NN(·) is parameterized by weights θ (including

W(j) and b(j)), which is typically given in a chain structure with l + 1 layers:46

NN(·) :



h(1) = σ(1)(W(1)Th(0) + b(1))

h(2) = σ(2)(W(2)Th(1) + b(2))

...

h(1) = σ(l)(W(l)Th(l−1) + b(l))

(6)

where h(j) denotes a vector of hidden unit at the jth layer, and h(0) and h(l) are therefore assigned

as input and output vector, respectively; matrix W(j) provides a linear transform from (j− 1)th

layer to jth layer, and vector b(j) provides the bias vector in jth layer; σ(j)(·) denotes a nonlinear

function at jth layer usually called an activation function, which can be specified by functions

such as tanh(·), sigmoid(·), ReLU (rectified linear unit47), etc.

It is noted that we incorporate time variable t in fphy(·), as time-dependant factors, such as

degradation modeling, environmental effects, can be taken into account. Compared to standard

Neural ODEs, as illustrated in Figure 1, the framework basically constrains the search space with

a baseline model/function whose derivatives are given by fphy(·). This renders the enhancement

of physical consistency for the trained models (i.e., the search space is physically constrained).

A similar procedure to Eq.(4) is suggested to define the loss function, with f(·) replaced by

fphy(·) +NN(·), and the mean squared error used for defining the loss function.

The Julia libraries48 termed DifferentialEquations.jl49 and DiffEqFlux.jl50 developed by Rack-

auckas et al. are herein adopted as tools for implementing Physics-informed Neural ODEs.

It is noted that in Eq.(5), the term NN(·) essentially manages to learn and model the
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dependency between the true dynamics and the physics-informed term, which attempts to reflect

the existing (but limited) knowledge of the system. This discrepancy modeling approach finds

application in different problems within the domain of system identification and SHM, such as

• model updating : if fphy(·) is given by an analytical model or finite element model, and

NN(·) accounts for the updated information for this model.

• damage detection: if fphy(·) is interpreted as the healthy (intact) state of a structural

system and NN(·) accounts for an alteration of the system due to damage.

• modeling nonlinearity : the direct modeling of a nonlinear dynamical system is non-trivial

since the type (function) of underlying nonlinearity is often unknown. fphy(·) can be

assigned as the linear portion of the system, while NN(·) is then intended to learn the

behavior the nonlinear portion of the system.

• force identification: if a system is driven by external forces and fphy(·) is setup to reflect

the state evolution of the dynamical system itself (including inertia, damping forces, and

conservative forces, etc.), NN(·) can be used for learning the external driving force, which

forms a function of time t.

2.2.2 Transparentization of trained nets

In order to further extract closed-form analytical expressions from the trained neural networks

NN(·), linking to an expected mechanistic behavior, as an additional (optional) tool, sparse

identification of nonlinear dynamical systems (SINDy)23,24 may be adopted, as illustrated in

Figure 1. We refer to this process as transparentization of the Neural ODE. (1) Upon training

of the the Neural ODEs, and under availability of information on initial conditions and driving

forces, Eq.(5) is solved via numerical integration to obtain the predicted state h(t). (2) The

predicted h(t) is fed into the trained nets NN(·) to compute the output NN(h(t), t,θ). (3)

SINDy is performed in order to derive closed-form expression of the discrepancy term, through

setting up a sparse regression problem to obtain a sparse solution of coefficient matrix Ξ:

NN(h(t), t,θ) = Θ(h(t))Ξ (7)

where Θ(h(t)) is an augmented feature matrix of h(t), which is formed by stacking evaluations

of h(ti) (i = 1, 2, 3, ..., N) via a series of pre-selected basis functions N(·), such as polynomial
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functions and trigonometric functions, as follows:

Θ(h(t)) =


hT (t1) N(hT (t1))

hT (t2) N(hT (t2))
...

...

hT (tN) N(hT (tN))

 (8)

where h(ti) = [h1(ti), h2(ti), ...., hn(ti)]
T denotes the state vector at time ti. After a sparse

solution of Ξ is determined, the closed-form expressions concatenated with the known portion

fphy(·) are given as:
dh

dt
= fphy(h, t,u) + ΞT (Θ(h))T (9)

which is a symbolic expression. This serves as the predictive model of the system, which can be

used for new inputs and ICs, beyond those used for training. The fidelity of the model, depends

on the richness of the training set, which should be selected so as to activate the full range of

underlying nonlinearity. The Python package PySINDy51 for SINDy is adopted to this end.

3. NUMERICAL EXAMPLES

3.1 A 4-degree-of-freedom (4-DOF) Dynamical System with Cubic Nonlinearity

3.1.1 Free vibration case

Figure 2: Illustration of a 4-DOF nonlinear structural dynamical system

To illustrate the proposed framework, we first present a numerical example of a 4-DOF structural

system, which is schematically illustrated in Figure 2. The system represents a typical spring-

mass model often adopted in structural dynamics simulations, with the first DOF featuring an

additional nonlinear stiffness element, of cubic nonlinearity knx
3
1. The equations of motion of
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the free vibration are given as:

m1ẍ1(t) + (k1 + k2)x1(t)− k2x2(t) + c1ẋ1(t) + knx
3
1(t) = 0

m2ẍ2(t)− k2x1(t) + (k2 + k3)x2(t)− k3x3(t) + c2ẋ2(t) = 0

m3ẍ3(t)− k3x2(t) + (k3 + k4)x3(t)− k4x4(t) + c3ẋ3(t) = 0

m4ẍ4(t)− k4x3(t) + k4x4(t) + c4ẋ4(t) = 0

(10)

where xi(t), ẋi(t) and ẍi(t) (i = 1, 2, 3, 4) designate the vectors of displacement, velocity and

acceleration, respectively; the stiffness coefficients are selected as k1 = k2 = k3 = k4 = 10;

viscous damping is assumed, with the damping coefficients c1 = c2 = c3 = c4 = 0.5; while the

coefficient associated with the cublic nonlinearity is selected as kn = 2; the mass for each DOF

are set to be equal to 1 (m1 = m2 = m3 = m4 = 1) reflecting a mass normalized system. The

state vector h(t) ∈ R8×1 is formulated as::

h(t) = [x1(t) x2(t) x3(t) x4(t) ẋ1(t) ẋ2(t) ẋ3(t) ẋ4(t)]T (11)

Eq.(10) can be therefore rewritten in state-space form, comprising superposition of a linear term

dhL and a nonlinear vector dhNL, which includes the cubic nonlinearity knx
3
1(t):

dh(t)

dt
=

[
0 I

−K −C

]
h(t) +

[
0 0 0 0 −knx3

1(t) 0 0 0
]T

︸ ︷︷ ︸
ftrue(·)

(12a)

or
dh(t)

dt
= dhL + dhNL (12b)

where ftrue(·) denotes the complete dynamical system, that is the entire expression on the right-

hand-side, and will be later used as a reference for evaluating the learning performance of the

proposed Physics-informed Neural ODEs; 0 ∈ R4×4 is a zero matrix; I ∈ R4×4 is the identity

matrix; K and C designate the stiffness and damping matrices corresponding to the linear

portion of the dynamics, respectively:

K =


k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4

0 0 −k4 k4

 ; C =


c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4

 ; (12c)
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Eq.(12) is considered as the reference ODE that will be learnt and approximated. In Table 1, we

list three schemes that reflect three different degrees of prior knowledge of the system: (1) scheme

1 (no physics informed): this corresponds to adoption of Neural ODEs for directly learning the

entire dynamics; (2) scheme 2 (physics weakly informed): this reflects incorporation of knowledge

with respect to existence of a linear transfer matrix, albeit at (severe) error, corresponding to

30% reduction of matrices K and C; (3) scheme 3 (physics strongly informed): the true linear

transfer matrix is assumed to be available.

In addition, Table 1 lists the ground-truth of the model discrepancy term ftrue(·) − fphy(·)
for each scheme.

Table 1: Three implementation schemes of Neural ODEs

Schemes fphy(·) NN(·) ftrue(·)− fphy(·)
scheme 1

(no physics informed)

[
0 I

0 0

]
h(t)

[
0 0

−K −C

]
h(t) + dhNL

scheme 2
(physics weakly informed)

[
0 I

−0.7K −0.7C

]
h(t) NN : R8 → R4

[
0 0

−0.3K −0.3C

]
h(t) + dhNL

scheme 3
(physics strongly informed)

[
0 I

−K −C

]
h(t) dhNL

According to Eq.(5), Eq.(12) can be split as:

dh(t)

dt
= fphy(h(t)) +

[
0

NN(h(t))

]
(13)

where fphy(h(t)) is the physics-informed term, each time described by one of the three schemes

in Table 1; 0 is a zero vector ∈ R4; the unknown (discrepancy) portion of the dynamical

system is every time learned by a neural network (NN : R8 → R4). The input for the Neural

ODEs is the state variable h(t), while the output is assumed to be limited to the 4-dimensional

acceleration vector [ẍ1(t), ẍ2(t), ẍ3(t), ẍ4(t)]T , since the first four equations in Eq.(12) are always

ẋ1(t) = ẋ1(t), ẋ2(t) = ẋ2(t), ẋ3(t) = ẋ3(t) and ẋ4(t) = ẋ4(t). It is noted that, in this example, the

architecture of the NN(·) is designed identically for the three schemes featuring only one hidden

layer, with a hyperbolic tangent function tanh assigned as activation function σ(·). According

to the expression in Eq.(6), the architecture is given by:

NN(h) : W(2)T [σ(W(1)Th + b(1))] + b(2) (14)
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The number of neurons assumed in the hidden layer is equal to 30, and therefore the dimension

of the weights are assigned as: W(1) ∈ R8×30; b(1) ∈ R30; W(2) ∈ R30×4; b(2) ∈ R4.

A free vibration problem is considered here under two cases of initial conditions h1(t0) =

[2, 0, 0, 0, 0,−2, 0, 0]T and h2(t0) = [−2, 0, 0, 3,−2, 0, 0, 0]T . Simulated state data xi(t) and ẋi(t)

(i = 1, 2, 3, 4) over a duration of 6 seconds are used for training the Neural ODEs.

Figure 3 compares the history of loss evaluations under consideration of the three schemes,

overviewed in Table 1, which reflect a different level of knowledge of the underlying physics. In

the first 3000 iterations, the response for initial condition h1(t0) is used to perform a training,

followed by a training for response under initial condition h2(t0). It is evident that the schemes

that are informed by prior knowledge of the system (scheme 2 and 3) display faster convergence

than scheme 1, which assumes no prior knowledge on the underlying physics. In addition,

schemes 2 and 3 correspond to lower loss values in the range of 10−2, while scheme 1 corresponds

to higher loss values for the same number of iterations. The integration of prior knowledge of

the system into the neural network architecture, Physics-informed Neural ODEs exhibit faster

convergence and a higher precision than the direct implementation of Neural ODEs.

0 2500 5000 7500 10000
Iteration

10−2

100

102

104

L
os

s

scheme 1 (no physics informed)

scheme 2 (physics weakly informed)

scheme 3 (physics strongly informed)

Figure 3: History of evaluations of loss function for the three schemes listed in Table 1.

After the completion of training, Figure 4 shows the prediction of displacement and velocity

response xi(t) and ẋi(t) (i = 1, 2, 3, 4) for each one of the trained models according to the three

schemes listed in Table 1, under the initial conditions h2(t0). The results from 0 second to 6 sec-

onds (the period of the data used for training) display identical predictions by all three schemes
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as expected, closely approximating the ground truth. When extrapolating the prediction to

12 seconds, it is observed that the prediction by scheme 1 starts to slightly deviate from the

ground truth. This indicates that the extrapolation ability of the trained scheme 1 is weaker

than predictive ability of schemes 2 and 3.
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Figure 4: Response estimation for each candidate model, under the initial conditions h2(t0) used
for training.
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In the testing stage, a new initial condition h3(t0) = [0, 4, 0, 0, 0, 0, 0, 0]T that is different

to those used in training, i.e., h1(t0) and h2(t0), is adopted. Figure 5 indicatively illustrates

the prediction of velocity response. It is observed that scheme 1 under-performs with respect

to schemes 2 and 3. It is noted that magnitude of the response lies beyond the range used in

training (if we compare Figure 5 to Figure 4b), which implies that Physics-informed ODEs are

capable of extrapolation and generalization to some extent, provided they have captured the

degree of nonlinearity that describes the physics.
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Figure 5: Comparison of the velocity response estimation delivered by each (trained) candidate
models for an initial condition that is different to the ones used for training.

The neural network NN(·) used by each scheme essentially accounts for the discrepancy

terms between ftrue(·) and fphy(·), corresponding to the acceleration vector. In Figure 6, we

visualize the outputs of trained NN(h(t)) versus each inter-DOF displacement (xi(t)− xi−1(t))

for each scheme, in comparison to their corresponding references. The references stem from the

ftrue(·)− fphy(·) listed in Table 1 with respect to the acceleration vector. Notation NN(h(t))[:

, j] (j = 1, 2, 3, 4) on the y-axis in Figure 6 represents the jth element of the output of the

trained nets NN(·) fed by the predicted state h(t).

One can see that the discrepancy terms in scheme 1 (Figure 6a) are captured by the neural

network, while mild “mismatch” is still observed. This can be used to explain the sub-par
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predictive capability of scheme 1, as shown in Figure 4 and 5. It also demonstrates that if the

governing dynamics (or the discrepancy dynamics) are not fully captured, the trained model

only serves for interpolation of the training data, with less potential in its exploitation for

prediction given new initial or forcing conditions. Schemes 2 and 3 (Figure 6b and 6c) yield a

higher precision, almost perfectly capturing the behavior of the reference (measurements) with

no evident “mismatch”. Hence, the proposed framework achieves effective discrepancy modeling

given different levels of prior knowledge of the system, and the Physics-informed neural ODEs

can be sufficiently trained to adaptively represent this discrepancy. In addition, it is noted that

the architecture of the neural network NN(·) only features one hidden layer and the size of the

training data set is plausibly small, which demonstrates the possibilities of using shallow neural

networks and small data set to train the Physics-informed Neural ODEs.
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Figure 6: Outputs of the trained NN(h(t)) versus each inter-DOF displacement (xi(t)−xi−1(t))
for the three schemes listed in Table 1, compared against their corresponding references.

In this example, following the proposed framework in Section 2.2.2, we undertake a further

step for schemes 2 and 3 with the purpose of translating the model inferred by the trained

neural networks into closed-form expressions via sparse identification. The reference, or true,

17



discrepancy term listed in Table 2 is obtained as the difference between true model ftrue(·) in

Eq.(12) and prior models fphy(·) with the correspondence to the acceleration vector xi(t) (i =

1, 2, 3, 4). Table 2 compares the true and recovered discrepancy terms, as obtained from the

sparse identification for schemes 2 and 3. It is evident that the recovered closed-form expressions

comprise the appropriate terms, with the respective identified coefficients lying close to the

correct ones. This transparentization step serves to offer a more mechanistic insight as opposed

to a “black-box” neural network.

Table 2: Recovered discrepancy models via sparse identification

True discrepancy model Recovered discrepancy model

scheme 2

ẍ1 −6x1 + 3x2 − 0.15ẋ1 − 2x3
1 −6.002x1 + 2.998x2 − 0.149ẋ1 − 1.994x3

1

ẍ2 3x1 − 6x2 + 3x3 − 0.15ẋ2 3.008x1 − 6.000x2 + 2.999x3 − 0.151ẋ2

ẍ3 3x2 − 6x3 + 3x4 − 0.15ẋ3 3.006x2 − 5.975x3 + 2.969x4 − 0.151ẋ3

ẍ4 3x3 − 3x4 − 0.15ẋ4 2.993x3 − 2.982x4 − 0.149ẋ4

scheme 3

ẍ1 −2x3
1 −1.996x3

1

ẍ2 0 0

ẍ3 0 0

ẍ4 0 0

3.1.2 Forced vibration case

The proposed framework is here demonstrated for the forced vibration case with known input

excitation. We implement this for the same system presented in Section 3.1.1, where an external

force is applied on the first DOF. In the training stage for this case, a white-noise excitation is

used for a duration of 4 seconds at a 100 Hz sampling rate. We scale the excitation across four

different levels of amplitudes from low to high for training, resulting in an adequate training

dataset in order to successfully train the neural network in capturing the cubic nonlinearity.

Scheme 3, listed in Table 1, is adopted for implementing the Physics-informed Neural ODEs,

where the true linear transform matrix is assumed to be available. Upon completion of the

training, the trained Neural ODEs are first used to predict the structural response (displacement,

velocity, and acceleration) of the system under a white noise excitation, which is used for training,

as shown in Figure 7. As observed, the response of the first mass (x1(t), ẋ1(t), and ẍ1(t)) closely

approximates the reference ground truth. We also present the force-displacement behavior of the

first mass m1 derived from the trained Physics-informed Neural ODEs (we sum up the products

of acceleration at each DOF and its mass, and plot the summation versus the displacement x1),
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in comparison to the ground truth derived from the analytical model. It is observed that the

recovery is capable of capturing the major behavior of the cubic nonlinearity of the system,

though the two tips of the loops are not perfectly captured.

-4 -2 0 2 4
x1

-300

-200

-100

0

100

200

300

in
te

r-
D

O
F

fo
rc

e
of

th
e

fir
st

m
as

s

ground truth

recovery from the trained NN

0 1 2 3 4
-4
-2
0
2
4

x
1
(t

)

ground truth

prediction

0 1 2 3 4
-40
-20

0
20
40

ẋ
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ẍ
1
(t

)

Figure 7: (Left): the force-displacement loops of the first DOF; (right): displacement, velocity
and acceleration response estimation for the first degree of freedom, using the excitation applied
for training.

In the testing (validation) stage, we apply i) a white-noise excitation that is different from the

one used for training, and ii) a record of the El-centro earthquake, i.e., a non-white excitation to

the first DOF of the system, respectively. The predicted time history of x1(t), ẋ1(t), and ẍ1(t)

are now illustrated in Figures 8 and 9, respectively. As observed, the estimated response does

follow the dynamics of the system as the governing dynamics are closely approximated by the

neural network embedded in the ODEs, albeit the generalization ability of the trained model in

this forced random vibration case proves weaker than the one in the free vibration case. Let’s

revisit Eq.(4), and for a forced vibration case, one also integrate the excitation to predict the

state, potentially introducing added numerical error to the state prediction.
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Figure 8: Validation I: displacement, velocity and acceleration response for the first degree of
freedom using a white-noise excitation that is different to the ones adopted for training.
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Figure 9: Validation II: displacement, velocity and acceleration response for the first degree
of freedom using a record of the El-centro earthquake that is different to the one adopted for
training.
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4. EXPERIMENTAL EXAMPLES

4.1 A Structural System Equipped with a Negative Stiffness Device

To further validate the proposed framework via use of experimental data, we employ the pro-

posed scheme to learn the governing dynamics of a structure equipped with a negative stiffness

device (NSD)52–57 serving for vibration mitigation, which results in a highly nonlinear dynamical

system. As shown in Figure 10, the structure is a three-story frame that has been tested on a

single-axis shake table. The structure is subjected to ground motion, thus following a forced

vibration response. In between the first floor and the shake table, a negative stiffness device was

installed introducing a modification to the primary force-displacement behavior of the first floor.

Figure 11b schematically presents the mechanical behavior of the NSD in terms of the delivered

force-displacement loops; the negative stiffness effect is activated when the displacement (or

inter-story drift) is larger than a pre-defined value (note that the value of 0.2 inch is adopted

as the pre-defined value in this experimental testing). As shown in Figure 11c, a linear primary

structure (illustrated in Figure 11a) equipped with a NSD delivers an almost bi-linear behavior.

A further description of the model can be found in the corresponding report53 of the Multidis-

ciplinary Center for Earthquake Engineering Research (MCEER), established at University at

Buffalo.

Figure 10: The structural system equipped with a negative stiffness device in between the first
floor and the shake table.
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Figure 11: Schematic illustration of the force-displacement behaviors of (a) a linear primary
structure; (b) NSD; and (c) primary structure installed with NSD

This structure is heavily instrumented with linear variable differential transformers (mea-

suring displacements), strain gauges, and accelerometers. The measured ground acceleration

provided by the shake table and the time histories of the displacement response at each slab are

used to train a Physics-informed Neural ODE. The dynamical system is simplified into a 3-DOF

spring-mass model. The velocities for each slab are computed through numerical differentiation

followed by a low-pass filtering.

4.2 Implementation of Physics-informed Neural ODEs

In the training stage, two phases are distinguished for learning the dynamics of this system: (1)

Phase 1 (model updating); (2) Phase 2 (nonlinear component (the NSD) modeling). These are

described in detail in what follows.

4.2.1 Phase 1: the structure without NSD installed

In Phase 1, we consider the structure without NSD installed. A 3-DOF spring-mass dynamical

system is considered to represent the system. The equations of motion are established by

defining a state vector h(t) = [x1(t) x2(t) x3(t) ẋ1(t) ẋ2(t) ẋ3(t)]T ∈ R6×1, where xi(t) and

ẋi(t) (i = 1, 2, 3) are the relative displacement and velocity of the ith slab, respectively:

dh(t)

dt
= fphy(h(t)) +

[
0

NN1(h(t))

]
+

[
0

−1ẍg(t)

]
(Phase 1) (15)
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or explicitly:

dh(t)

dt
=

[
0 I

−M−1K −M−1C

]
h(t) +

[
0

NN1(h(t))

]
+

[
0

−1ẍg(t)

]
(Phase 1) (16a)

in which, 0 ∈ R3×1 is a zero vector; 1 ∈ R3×1 denotes a vector of all ones; ẍg(t) is the ground

acceleration provided by the shake table; the mass matrix M, stiffness matrix K, and damping

matrix C are given by:

M =
1

386

9.2 0 0

0 9.2 0

0 0 9.0

 (unit: lbs); K =

 20.26 −11.16 0

−11.16 20.33 −9.17

0 −9.17 9.17

 (unit: kips/inch);

C =

0.015 0 0

0 0.015 0

0 0 0.015

 (unit: inch/sec.2 )

(16b)

The physics-informed term fphy(·) retains the prior knowledge of mass, stiffness, and damping

coefficients that are reported in the literature,53 illustrated in Eq.(16). It is noted that a highly

accurate representation of M, K, and C is not necessary, since the supplemental term NN1(·)
is able to learn the discrepancy by training to update the initial model. The architecture of the

neural network NN1(·) features only one hidden layer comprising 10 neurons, and no nonlinear

activation functions are used since we only consider a liner dynamical system in this case, as

illustrated in Table 3. Similar to the numerical example, the input for NN1(·) is the state

variable h(t) ∈ R6×1, and the output is only three-dimensional, contributing to the last three

elements of dh(t)
dt

(e.g., acceleration vector [ẍ1(t), ẍ2(t), ẍ3(t)]T ), since the first three equations

in Eq.(16a) are always by default identities (in the continuous domain) where no updating is

required.

Table 3: Physics-informed Neural ODEs for the NSD experiment.

initial model fphy(h(t))

[
0 I

−M−1K −M−1C

]
h(t)

NN1(h(t)) : R6 → R3
W(2)T (W(1)Th + b(1)) + b(2)

number of neurons in hidden layers: 10

NN2(h(t)) : R6 → R1
W̄

(3)T
σ[W̄

(2)T
σ(W̄

(1)T
h + b̄

(1)
) + b̄

(2)
] + b̄

(3)

number of neurons in hidden layers: 20
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A scaled record of the Kobe earthquake and the Pacoima earthquake was used as the ground

motion for the shake table. Under this scaled low-amplitude earthquake excitation, the struc-

ture remains in the linear regime. Thus, a linear neural network is sufficient, which is also

easier to interpret. Additionally to ground motion measurements, the measured displacement

data x1(t), x2(t), x3(t) at a 256 Hz sampling rate and their corresponding computed velocities

ẋ1(t), ẋ2(t), ẋ3(t) are used for training the Physics-informed Neural ODEs.

Figure 12 compares the measured time history of the displacement and velocity of the first

degree of freedom when the structure is subjected to the scaled Kobe earthquake, with the

computed predictions from the initial model and the ones from the initial model supplemented

by NN1(·). The initial model is capable of capturing the major dynamics of the system while

discrepancy can still be observed. As observed, the amplitudes of the response decay faster than

the measured ones, indicating that the damping matrix is not appropriately estimated in the

initial model. It shows that the prediction of the response (the black dashed line) via the trained

Neural ODEs of Eq.(15) agrees highly with the corresponding measured data. Only a limited

data set is available for this linear regime testing. Thus, in order to validate the generalization

ability of the trained model, we extrapolate the prediction for a duration of 10 seconds beyond the

training data set. The obtained results indicate that the prediction via the trained Neural ODEs

still follows the dynamics of the measured data with no evident inconsistent. This demonstrates

that the updated model (initial model supplemented by the trained discrepancy term NN1) is

capable of representing the structural system in Phase 1.

24



12 14 16 18 20 22 24

Time t [sec.]

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

x
1
(t

)

training extrapolation

measured data (Phase 1)

fphy (initial model)

fphy +NN1

12 14 16 18 20 22 24

Time t [sec.]

-10

-5

0

5

10

ẋ
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Figure 12: Comparison of time history of the response for displacement x1(t) and velocity ẋ1(t)
for the NSD experiment (Phase 1).

Let’s take a further step to interpret the trained NN1(·) term. Being aware that NN1(·)
merely comprises a linear transformation (no activation functions are used in NN1(·)), Eq.(16)

can be expanded as:

dh(t)

dt
=

[
0 I

−M−1K −M−1C

]
h(t)+

[
0 I

W1 W2

]
h(t)+

[
0

W(2)Tb(1) + b(2)

]
+

[
0

−1ẍg(t)

]
(17a)

where W1 ∈ R3×3 and W2 ∈ R3×3 are the first three columns and the last three columns of

W(2)TW(1)T , respectively:

W(2)TW(1)T =
[
W1 W2

]
(17b)

As is evident, an updated stiffness matrix is conveniently delivered as K−MW1, with a similar

procedure being applicable for updating the damping matrix as C −MW2. Table 4 lists the
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updated stiffness and damping matrices. Note that the updated stiffness matrix does not deliver

a typical symmetric banded matrix as assumed in Eq.(16), and as observed, the updated stiffness

is slightly higher than the prior assumption. This also implies that when the actual system is

simplified into a 3-DOF spring-mass model, the format of the stiffness matrix might differ from

the one derived from the theoretical model. The updated damping matrix delivers non-zero

off-diagonal elements that better represent the actual damping of this system, as evidenced in

Figure 12 (the decay rate shown in the time history matches the actual measurements).

Table 4: Updated stiffness and damping matrices

Updated stiffness matrix Updated damping matrix

Kupdated =

26.179 −11.646 −3.227

−7.987 20.510 −10.838

−7.532 −9.150 13.020

 Cupdated =

 0.047 −0.040 0.007

−0.101 0.149 −0.086

0.273 −0.343 0.169



4.2.2 Phase 2: the structural system with NSD installed

After the linear term, NN1(·), is derived via training in Phase 1, in Phase 2, a new training set

is established, this time using data measured from the structure with the NSD installed between

the first floor slab and the shake table. This results in the first story exhibiting nonlinear

behavior. Compared to Phase 1, the dynamical system is now strongly modified and admits a

nonlinear constitutive term. In capturing the latter, an additional neural network NN2, listed

in Table 3, that accounts for the mechanical behavior of the installed NSD is supplemented into

to Eq.(15), while the learned weights of NN1 (in Phase 1) are assumed as fixed (no updating

is required for the learned weights of NN1 in Phase 2). It is noted that the output of NN2(·)
is set to be only one-dimensional, since the NSD is installed in the first floor and it is assumed

that the introduced modification to the force-displacement behavior only occurs in the first floor

(the output of NN2 only contributes to ẍ1(t)). The Leaky rectified linear unit (Leaky ReLU)58

scheme is adopted as the activation function in this example.

dh(t)

dt
= fphy(h(t)) +

[
03×1

NN1(h(t))

]
+

 03×1

NN2(h(t))

02×1

+

[
03×1

−1ẍg(t)

]
(Phase 2) (18)

In Phase 2, the training data set is derived from the sensor measurement where the ground mo-

tion ẍg(t) remains the same as the one used earlier the scaled Kobe earthquake and the Pacoima

earthquake records. Figure 13 demonstrates the prediction of the first floor displacement and
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velocity via use of i) the trained Eq.(15) and ii) the trained Eq.(18) when the ground motion

is the Kobe earthquake, compared against the measured data, which serve as reference. As ob-

served, the estimation delivered by the trained Eq.(15) (black dashed line) can no longer follow

the reference (nonlinear) behavior, which is strongly modified due to presence of the NSD in

Phase 2. By supplementing NN2, the delivered prediction, which is denoted by the solid blue

line indicates a close agreement to the actual measurements, thereby demonstrating the efficacy

of the Neural ODE scheme in tracking nonlinear behavior. In addition, similar to Phase 1, the

prediction is extrapolated for a duration that is longer to 10 seconds and the trained model

(“fphy + NN1 + NN2”) still closely approximates the dynamics of the measured data, while

the model derived from Phase 1 (“fphy + NN1”) fails to track the behavior. In addition, it is

noted that the period of extrapolation is longer than the one of training, further demonstrating

the feasibility of using small training data set to successfully train the Physics-informed Neural

ODEs. This is of course only valid as long as the training is sufficient to allow capturing the

full extend of the nonlinear behavior of the model. In the event of a model featuring by deteri-

oration effects, for example, the required training and underlying state space description would

need to be modified. Naturally, what is further of interest from an identification point of view,

is whether the NN2 structure can be deciphered the major dynamics of this highly nonlinear

structure.
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Figure 13: Comparison of time history of the response for displacement x1(t) and velocity ẋ1(t)
for the NSD experiment (Phase 2).

To gain an insight into the trained NN2 (R6 → R1), one can feed the measured h(t) through

the network, and obtain the one-dimensional output which is corresponding to the acceleration

at the first slab. We multiply this output by the mass of the first slab to recover the force solely

exerted by the NSD, and plot the recovery against the inter-story drift x1(t) in the first floor, as

shown in Figure 14. When comparing against the real measurement, as derived from a load cell

measuring the forces exerted by the NSD, it occurs that the signal recovered via the NN2 term

follows the major mechanical behavior of the NSD (close to a bilinear behavior). This indicates

that the trained nonlinear term is capable of representing the mechanical behavior of the system.

However, one can see the slope (the stiffness) in the region of negative displacement is slightly

lower than the actual measurements. In the loss function of Neural ODEs shown in Eq.(4),

only displacement and velocity data are taken into account. This leads to information that is

possibly imprinted in the acceleration, such as high frequency components of the response, to
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not be adequately captured by the neural networks. As manifested at around the 12.5 seconds

of the time history of ẋ1(t) in Figure 13, it is observed that the sharp peak is not fully captured

by the trained model.
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Figure 14: Comparison of the NSD forces estimated via the nonlinear term NN2, and the
measurement delivered by the load cell.

5. CONCLUSIONS

This paper investigates and further demonstrates a promising direction of linear/nonlinear struc-

tural identification via use of Physics-informed Neural ODEs. The ODE delivers a mathematical

description of the state-space function of a dynamical system. Prior domain knowledge of the

dynamical system can be conveniently embedded in such a formulation, as demonstrated in this

work, while remaining terms in the inferred representation are captured by a feed-forward neural

network, which yields hybrid ODE formulation, herein termed Physics-informed Neural ODEs.

The presented numerical and experimental examples in this paper demonstrate the benefits of

the proposed framework in the direct approximation of the governing dynamics, offering a versa-

tile framework for discrepancy modeling. A transparentization of the trained neural network can

be achieved by coupled implementation of a sparse identification scheme, which distills closed-

form expressions from the derived nonlinear neural network terms, thus enhancing engineering

insight in the workings of the model as opposed to the more blind approximation delivered

by a purely “black-box” model. This paper presents a proof-of-concept for application of the

framework in the domain of system identification. Next steps include work towards a hybrid
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modeling technique, concatenating high-fidelity finite element models with Neural ODEs. A key

limitation in structural identification via Neural ODEs lies in the requirement that the full state

(displacement and velocity) should be available (measured).
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[30] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty of Sciences,

Etvs Lornd University, Hungary, 24(48):7, 2001.

[31] Anuj Karpatne, Gowtham Atluri, James H Faghmous, Michael Steinbach, Arindam Banerjee,

Auroop Ganguly, Shashi Shekhar, Nagiza Samatova, and Vipin Kumar. Theory-guided data

science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and

Data Engineering, 29(10):2318–2331, 2017.

[32] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar. Physics-guided neural net-

works (pgnn): An application in lake temperature modeling. arXiv preprint arXiv:1710.11431,

2017.

[33] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear

partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

[34] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear partial

differential equations. Journal of Computational Physics, 378:686–707, 2019.

[35] Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-lstm networks for metamodeling

of nonlinear structures. arXiv preprint arXiv:2002.10253, 2020.

[36] Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-guided convolutional neural network (phycnn)

for data-driven seismic response modeling. Engineering Structures, 215:110704, 2020.

[37] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. Explainable machine learn-

ing for scientific insights and discoveries. IEEE Access, 8:42200–42216, 2020.

[38] Zhiming Zhang and Chao Sun. Structural damage identification via physics-guided machine learn-

ing: a methodology integrating pattern recognition with finite element model updating. Structural

Health Monitoring, page 1475921720927488, 2020.
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