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Abstract. The success, if not survival, of service businesses depends on their ability to sat-
isfy their customers. Yet, businesses often recognize slumping customer satisfaction too
late and ultimately fail. To prevent this, marketers require early warning tools. In this pa-
per, we build upon online ratings as a direct measure of customer satisfaction and, based
on this, predict business failures. Specifically, we develop a variable-duration hidden Mar-
kov model; it models the rating sequence of a service business in order to predict the likeli-
hood of failure. Using 64,887 ratings from 921 restaurants, we find that our model detects
business failures with a balanced accuracy of 78.02%, and this prediction is even possible
several months in advance. In comparison, simple metrics from practice have limited abili-
ty in predicting business failures; for instance, the mean rating yields a balanced accuracy
of only around 50%. Furthermore, our model recovers a latent state (“at risk”) with an ele-
vated failure rate. Avoiding the at-risk state is associated with a reduction in the failure
rate of more than 41.41%. Our research thus entails direct managerial implications: we as-
sist marketers in monitoring customer satisfaction and, for this purpose, offer a data-
driven tool that provides early warnings of impending business failures.

History:Olivier Toubia served as the senior editor this article.
Open Access Statement: This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. You are free to download this work and share with others,
but cannot change in any way or use commercially without permission, and youmust attribute this
work as “Marketing Science. Copyright © 2021 The Author(s). https://doi.org/10.1287/mksc.2021.
1317, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by-nc-nd/4.0/.”

Supplemental Material: The data and e-companion are available at https://doi.org/10.1287/mksc.2021.
1317.
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1. Introduction
The success (and survival) of service businesses is
highly dependent on the perceived quality of their
services (Parasuraman et al. 1988). If quality falls be-
hind expectations, financial figures could decline,
which might ultimately lead to failure and business
closure. Given that more than 50% of service busi-
nesses fail within 4.5 years (Luo and Stark 2015), pre-
dicting those failures well in advance would be of
enormous practical relevance. If businesses are at risk
for failing, marketing managers will require timely
feedback—preferably from metrics that directly mea-
sure customer satisfaction—so as to be able to adjust
their services and operations, ultimately preventing a
business failure.

Marketers have several tools at their disposal to
gather feedback on business performance (Ittner and
Larcker 2003). One example from practice is the

monitoring of financial indicators (Sharma and Ma-
hajan 1980, Mahajan et al. 2002), which have inher-
ent deficits because they are only a delayed reflec-
tion of poor customer satisfaction (e.g., earnings
reports at the end of a quarter; cf. Ittner and Larcker
2003, Lervik-Olsen et al. 2014). Hence, literature rec-
ommends to gather direct feedback on customer
satisfaction (Ittner and Larcker 2003). A well-known
method is SERVQUAL, a survey-based instrument
(Parasuraman et al. 1988) that has proven to be very
reliable over decades of research (for an overview,
see Asubonteng et al. 1996, Buttle 1996, Ladhari
2009). SERVQUAL, with its 22 items, allows for pre-
cise assessments of service quality, yet, because of
the survey-based method of data collection, prohib-
its scalable use. To this end, online ratings, which
are said to reflect customer satisfaction (e.g., Ho et al.
2017, Schneider et al. 2021), allow for a scalable use
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and provide marketing managers with direct feed-
back regarding online customer satisfaction.

In this study, we use online customer ratings to pre-
dict the likelihood of business failures. By doing so, we
provide marketing managers an early warning indica-
tor that might help to prevent business failures. Predict-
ing business failures on the basis of customer ratings,
however, is a challenge. One might think that studying
the most recent ratings or monitoring the average rating
of a service inherently reflects service performance and
will thus be sufficient. Yet this is untrue, as such metrics
lack predictive power. As we show later, the mean rat-
ing score yields a balanced accuracy of around 50%,
and is thus on par with a random guess. As we will
demonstrate, making inferences from customer ratings
requires a more sophisticated modeling framework that
considers the full rating sequence.

To predict business failures from a rating sequence,
we draw upon the hidden Markov model (HMM)-based
framework (e.g., Netzer et al. 2008, Schweidel et al. 2011,
Ascarza and Hardie 2013, Schwartz et al. 2014, Ascarza
et al. 2018). Formally, we model the sequence of individ-
ual ratings so that each rating is a noisy realization of a
latent state. The latent state refers to the current level of
service performance. As we shall see later, we find that
one of the latent states—the “at-risk” state—serves as an
early warning indicator: it signals phases during which
businesses are at an elevated risk of failure. In our work,
we model the failure risk as a function of the duration
spent in the at-risk state, for which we develop a
variable-duration hidden Markov model (VD-HMM).
Different from a traditional HMM, our modeling ap-
proach allows us to make inferences not only from a la-
tent state but from the duration spent in a latent state.

The intuition of our model is as follows. Let us as-
sume a restaurant, for which we aim to predict wheth-
er it will survive or fail in the near future based on its
rating history. However, the course of ratings is likely
to change over time, as restaurants vary in their ser-
vice performance. The service performance can fur-
ther change due to various events such as, for exam-
ple, the hiring of a new chef, the refurnishing of the
restaurant, or the introduction of a new menu. A res-
taurant that is well rated over a long duration will
have many repeat customers and is thus more likely
to survive. Conversely, some restaurants’ service per-
formance might also not be sufficient to survive, and,
hence, they will find themselves in an at-risk state of
business failure. Being in such an at-risk state just
once is unlikely to force the restaurant to close imme-
diately. However, the longer a restaurant remains in
the at-risk state, the greater its chances of failure. Fol-
lowing this idea, it is beneficial not only to consider
whether a restaurant has been in an at-risk state, but
also for how long. The latter is modeled by the
variable-duration component in our VD-HMM.

We demonstrate the effectiveness of our model on
the basis of 64,887 customer ratings drawn from 921
different restaurants in Phoenix, Arizona. Of these res-
taurants, nearly one quarter (24.43%) were classified
as business failures, highlighting the importance of
early warning mechanisms for management. We test
different detection mechanisms using an out-of-
sample setting, that is, whether one can detect the cor-
rect timing of failures for unseen businesses. To this
end, the mean rating, a conventional metric from prac-
tice, achieves a balanced accuracy of around 50%,
whereas conventional machine learning approaches
would achieve 72.05%. Our model, in contrast, detects
business failures with a balanced accuracy of 78.02%,
a prediction that is even possible several months in
advance. The model further identifies an at-risk state
as being associated with a failure rate of 35.00%. In
comparison, the failure rate in other states is lower by
at least 41.41%. Hence, avoiding the at-risk state is as-
sociated with a considerable reduction in the estimat-
ed failure risk. The at-risk state is usually attained
more than 78 weeks before failure of the business (i.e.,
exiting the market), giving marketers enough time to
adjust their service portfolio.

This study has several implications with regard to
both practice and research in marketing. In terms of
practice, our model presents a data-driven early warn-
ing tool to prevent business failures by monitoring on-
line customer ratings. Once a business arrived at the
at-risk state, marketers would be able to take preven-
tive actions in time, for example, by adjusting their
service offering. Hence, these early warnings may
help marketers meet their customers’ demands and
ultimately prevent their businesses from failing. To
this end, customer ratings have obvious benefits. They
are not only a direct measure of customer satisfaction
but are also publicly available, thus allowing them to
be leveraged in data-driven modeling. Regarding re-
search, we develop a novel, variable-duration HMM
that considers the duration of latent states (as opposed
to only the latent states, as in a traditional HMM). The
use of a VD-HMM is beneficial for all applications in
which the latent dynamics are affected by repeated ex-
posure. Based on our model, we show that customer
ratings can be used to predict the risk of failure.

The remainder of this paper is organized as fol-
lows. In Section 2, we present related work on moni-
toring business performance via customer ratings. In
Section 3, we develop a tailored, variable-duration
HMM that models rating sequences in order to pre-
dict business failures. In Section 4, we describe the
empirical setting, and in Section 5, we compare our
model against common baselines from business de-
cision making. In Section 6, we discuss findings and
managerial implications.
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2. Related Work
To infer insights concerning customers and markets,
scholars in marketing frequently mine user-generated
content (Fader and Winer 2012). For example, market-
ing scholars have analyzed user-generated content
from social networks (e.g., Toubia and Stephen 2013,
Wang et al. 2015). In the context of customer reviews,
scholars applied text mining to derive not only informa-
tion on market structure (Lee and Bradlow 2011, Netzer
et al. 2012) but also on customer preferences (Archak
et al. 2011, Culotta and Cutler 2016). Other scholars
used sentiment analysis to study customer reviews and
the relationship between customer opinions—positive
or negative—and business performance (Sonnier et al.
2011, Tirunillai and Tellis 2012, Ludwig et al. 2013). Be-
sides using qualitative data such as texts, scholars ex-
tensively used online customer ratings to measure busi-
ness performance, as summarized in the following.

2.1. Relationship Between Online Ratings
and Business Performance

Customer satisfaction has been considered an impor-
tant dimension for many marketers when monitoring
business performance, as it should theoretically pre-
cede sales (Ittner and Larcker 2003). Thus, scholars
have extensively studied the relationship between
customer satisfaction, reflected by online ratings (Ho
et al. 2017, Schneider et al. 2021), and key financial fig-
ures such as revenue and sales.

Previous research on online ratings has repeatedly
confirmed a positive relationship between ratings
and business performance (see Appendix A in the
e-companion for a literature summary). Ratings drive
sales for a variety of products such as books (e.g.,
Chevalier and Mayzlin 2006) and movies (e.g.,
Dellarocas et al. 2007, Chintagunta et al. 2010). A
meta-analysis of effect sizes is provided in Babić
Rosario et al. (2016). In some works, the customer rat-
ing is augmented further by a score quantifying the
textual sentiment of the written review (e.g., Archak
et al. 2011). Prior research has primarily used an ex-
planatory approach to study the correlation between
ratings and sales (e.g., Chevalier and Mayzlin 2006,
Liu 2006, Dellarocas et al. 2007, Chintagunta et al.
2010, Zhu and Zhang 2010, Moe and Trusov 2011),
yet a few have used ratings to predict sales (Liu 2006,
Dellarocas et al. 2007, Archak et al. 2011). Nonethe-
less, these studies differ fundamentally from our
work (see Appendix A in the e-companion). Whereas
theses papers have used ratings to study sales, we
use online ratings to predict business failures.

2.2. Indicators of Business Failures
Long studied in prior marketing literature, business
failures are relevant when monitoring performance so

that early warnings for managers can be provided
(e.g., Sharma and Mahajan 1980). Additionally, busi-
ness failures are relevant for other disciplines such as
banking (Sarkar and Sriram 2001) and accounting
(Altman 1968). Given that various disciplines study
business failures in different contexts, several syno-
nyms for business failure have emerged, including
bankruptcy (Laitinen 1991), organization mortality
(Swaminathan 1996), and organizational collapse
(Argenti 1976). Likewise, definitions of business fail-
ure vary. Here, we refer to Pretorius (2009) for an
overview of definitions, which range from “losses to
creditors” (Lussier 1995, p. 9) to “deaths of entire
firms” (Henderson 1999, p. 291). In this paper, we
adopt the latter definition.

Prior literature on modeling business failures has
mainly focused on financial data. These studies find
that business failures are correlated with financial ra-
tios (Beaver 1966, Olsen et al. 1983) and weighted fi-
nancial ratios (z-scores; Altman 1968). Besides these
correlation analyses, scholars have applied techniques
from explanatory modeling such as logit/probit mod-
els (Ohlson 1980) and Bayesian models (Sarkar and
Sriram 2001). However, these works focus extensively
on financial variables, specifically financial ratios
(Altman 1968). These financial ratios can successfully
signal failure risk, for instance, in banking (Sarkar and
Sriram 2001); however, in the service sector, other
measures for business outcomes are more common,
such as customer satisfaction.

Marketers could theoretically also use financial in-
dicators to monitor customer satisfaction. However, fi-
nancial indicators have an obvious caveat: they are
only an indirect measurement of customer satisfac-
tion. This is because “quality drive[s] consumer satis-
faction, which in turn drives customer buying behav-
ior, which in turn drives profits” (Ittner and Larcker
2003, p. 5). Hence, for marketers, financial indicators
are considered “symptoms of failures” (Sharma and
Mahajan 1980, p. 83). To measure business outcomes,
marketers require performance indicators that directly
reflect customer satisfaction, such as online ratings
(e.g., Ho et al. 2017, Schneider et al. 2021). To this end,
our work studies the predictive value of using online
ratings to forecast the probability of business failures.
However, business failure may not depend solely on
customer satisfaction—that is, quality—but also on
operational inputs. High quality may come at the cost
of excessive investments. Hence, to link both, we next
discuss the literature on the service-profit chain (SPC;
Heskett et al. 1994, Kamakura et al. 2002).

2.3. Cost Structure of Service Businesses
In the context of service businesses, prior literature has
developed a framework linking customer satisfaction
to costs: the SPC framework (e.g., Heskett et al. 1994,
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Kamakura et al. 2002, Mittal et al. 2005). The SPC
framework suggests that business outcomes (Rust et al.
1995) depend not only on customer satisfaction but
also on operational inputs/costs (Kamakura et al.
2002). Hence, a business can either improve satisfac-
tion or reduce costs (or both, i.e., dual emphasis;
see Mittal et al. 2005) to positively influence business
outcomes (Mittal et al. 2005). For example, restaurants
may achieve a high level of satisfaction but at the
expense of high (service) costs, due to which they
are unsustainable in the long-term. When predicting
business outcomes, we must take into account both
satisfaction—measured via ratings—and costs.

In the context of our specific research setting, that
is, restaurants, we can identify several cost drivers.
Here, it is common to distinguish between equipment
and service costs (for instance, see the operational effi-
ciency model in Kamakura et al. 2002). In the context
of equipment costs, literature suggests the size (Yoon
and Jang 2005; Camillo et al. 2008; Parsa et al. 2011a,
b, 2015; Mun and Jang 2018) and the rent level (Bayou
and Bennet 1992, Parsa et al. 2011a, Mun and Jang
2018). In the context of service costs, there are the
“costs of goods sold” (Mittal et al. 2005, p. 546). Dur-
ing modeling, this is often reflected by the price level,
which is found to be an important determinant for
restaurant failure (Bayou and Bennet 1992, Camillo
et al. 2008, Mun and Jang 2018). Another factor in the
context of service costs is service work. The latter is
typically modeled based on data from salaries or wag-
es (Bayou and Bennet 1992, Camillo et al. 2008, Mun
and Jang 2018). Here, the literature links between-city
variation in salaries to restaurant failures. However,
this is in contrast to our work, where we perform a
within-city analysis. In a within-city setting, the over-
all wage level should remain fairly equal and, hence,
is omitted from our model. Instead, we focus on the
number of seats as a proxy of service personnel. Out-
side of the SPC framework, a key determinant of res-
taurant failures is location. This finding has been em-
pirically backed in prior literature; for example, Parsa
et al. (2011b) found that location (encoded via restau-
rant density) is strongly correlated with restaurant
failure (correlation coefficient, 0.9919). Hence, location
is considered in our model as another predictor. To
this end, following the SPC framework, we consider
both customer satisfaction and operational costs to
predict business failures.

2.4. Inferences from User Behavior with Hidden
Markov Models

HMMs represent a flexible class of time-series models
with latent dynamics (Rabiner 1989, Netzer et al. 2008);
that is, an observable time series (the so-called emis-
sions) undergoes transitions between a discrete set of
unobservable (i.e., latent) states. The relationship

between both observations and latent states is as-
sumed to be of stochastic nature, that is, observations
are modeled as noisy realizations of a latent state via
an emission probability. The latent states, in turn,
change with a specific transition probability. Based on
this, a sequence of latent states can be inferred. In prac-
tice, latent states are associated with certain interpreta-
tions (e.g., by naming them “at risk”), and reaching a
state is often used as a signal to trigger a predefined
management action (Netzer et al. 2008, Ding et al.
2015, Ascarza et al. 2018).

Because of their flexibility, HMMs have seen fre-
quent application in marketing science, for example,
in the context of customer churn (Ascarza and Hardie
2013, Ascarza et al. 2018), purchase intent modeling
(Montgomery et al. 2004, Abhishek et al. 2012, Ding
et al. 2015, Hatt and Feuerriegel 2020), targeting
(Montoya et al. 2010), and customer relationship dy-
namics (Netzer et al. 2008, Schweidel et al. 2011,
Zhang et al. 2014a). Further examples include unob-
servable competitive promotions (Moon et al. 2007)
and cross-selling analyses (Li et al. 2011).

HMMs are based on theMarkov property, according
to which the transition probability is based merely on
the single previous state (Rabiner 1989). In other words,
the probability is independent of the previous state se-
quence. HMMs can be extended such that they consid-
er the duration of the previous latent state. Note that
this requires profound changes regarding the underly-
ing estimation routine: simply incorporating the dura-
tion of latent states is not feasible as the duration is also
latent and thus unknown. Instead, both latent states
and latent state durations must be modeled jointly.
This is subsumed under the wider class of hidden semi-
Markovmodels (HSMMs;Murphy 2002, Yu 2016).

In hidden semi-Markov models, the latent state se-
quence is relaxed into a semichain. Here, different
model variants exist (Murphy 2002, Yu 2016). One
variant (called an explicit-duration HMM) models the
renewal probability of latent states, so that the renew-
al probability depends on the latent state duration
(Chiappa 2014). This alters the expected duration of a
latent state and is thus beneficial for applications in
which one state is of longer duration than others (e.g.,
when states capture deep engagement or cognitive ab-
sorption). A different variant (called a variable-
duration HMM) models the transition probabilities, so
that the transition probabilities depend on the latent
state duration (Murphy 2002). This fulfills the need of
our research, as we want to make inferences regarding
a business’s failure risk based on how long the busi-
ness was exposed to an at-risk state. Previous applica-
tions of HSMMs can be found outside marketing
science (e.g., for analyzing DNA sequences; see Barbu
and Limnios 2008), whereas we add a specific HSMM
for marketers.
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3. Model Development
3.1. Overview
We model the sequence of online ratings in order to
predict the risk of failure. To this end, we utilize the
HMM-based framework for three reasons. First, it
considers the sequence of rating events and thus
yields a dynamic model. Second, it assumes that rat-
ings are stochastically linked to a latent service perfor-
mance for which ratings represent noisy observations
and, by modeling this stochastically, the prediction
performance is improved. Third, the HMM-based
framework models latent states, which, in our case,
are relevant to decision making: if we observe an
at-risk state, this indicates that the business may fail in
the long run. This state thus calls for managerial ac-
tions by decision makers in order to restore perfor-
mance to a well-running state.

Our proposed model takes the observed sequence of
rating events (i.e., the number of stars) for each busi-
ness as input. It also considers their order and the time
between two consecutive ratings.1 Business failures
are likely to reveal considerable between-business var-
iation (e.g., a chain restaurant might be unlikely to
close as it draws a customer base despite poor ratings).
Hence, we consider various covariates describing the
between-business heterogeneity as part of our input.
We further account for unobserved heterogeneity
through a random-effects specification (as in, e.g., Net-
zer et al. 2008, Schweidel et al. 2011). Eventually, the
model recovers a sequence of latent states and, based
on these, infers the probability of a business failure.

The intuition of our model is as follows. Businesses
such as restaurants have different levels of service
performance over time. For example, a restaurant
might have a well-rated service performance, but its
service performance might deteriorate after its kitchen
chef left. In our model, we capture the service perfor-
mance through latent states. One state denotes when a
restaurant is at risk of a business failure. The longer a
restaurant is now exposed to the at-risk state, the
more likely it is to fail (e.g., because of word of mouth
or because repeat customers have moved on to other
restaurants). Analogously, the longer a restaurant is in
a state with well-rated service performance, the less
likely it will leave the state (e.g., because of a growing
base of repeat customers). Hence, we use the duration
of a restaurant being in an at-risk state for predicting
business failures (and, analogously, the duration of a
well-running state for predicting survival).

Traditional HMMs are based on the Markov proper-
ty, whereby latent dynamics consider the previous
latent state (e.g., Montgomery et al. 2004, Netzer et al.
2008, Ascarza and Hardie 2013, Ding et al. 2015,
Ascarza et al. 2018), but not the duration of the latent
state. However, the duration of latent states is likely to

be of value in our work: the longer the exposure to an
at-risk state, the higher the likelihood of a business
failure. At the same time, it should also make it more
likely that a business remains at risk. This is similar to
other applications in marketing where renewal proba-
bilities change with repeated use (Fader et al. 2018).
Following this motivation, we develop a custom mod-
el, that is, a variable-duration HMM, where the dura-
tion of latent states is explicitly considered.

To make predictions, our model has two emission
components linking the latent states to observable out-
comes. On the one hand, we use an emission compo-
nent to formalize the state–rating link. On the other
hand, we introduce a secondary emission component—
as in Ascarza and Hardie (2013)—to predict business
failures from the latent dynamics. As a result, both rat-
ings and failures are emissions from the same latent
state and, thus, can be estimated jointly. The model fi-
nally recovers a sequence of latent states. The latent
states allow for managerially relevant interpretation. As
in Ascarza et al. (2018), one state is later named the
at-risk state. Our results show that failures in the at-risk
state are twice as likely as for the other states.

Upon deployment, the model takes a rating se-
quence as input and then outputs the failure probabili-
ty for the given business. Here, we strive for accurate
predictions regarding which businesses will fail and
when. To achieve this, we build upon a prediction
framework similar to that of Ding et al. (2015) or Mont-
gomery et al. (2004).2 The former, that is, which busi-
ness fails, is addressed by evaluating the model based
on out-of-sample businesses from the holdout set. For
this, the model returns an output Fi (with Fi � 1 in the
case of failure). The latter, that is, when it fails, is ad-
dressed by choosing an appropriate Fi during estima-
tion. If the model is estimated with data from one-
month-ahead failures, it predicts the one-month-ahead
probability of failure; if it is estimated with two-
month-ahead failures, it predicts the two-month-ahead
failure probability, etc.

3.2. Specification of the Variable-Duration Hidden
Markov Model

Our proposed VD-HMM consists of five components:
(1) the observable rating sequence, (2) latent states, (3)
the state–rating emission component, (4) the state–
failure emission component as an additional emission
in order to predict business failures, and (5) the
variable-duration transition mechanism between states.
The resulting VD-HMM is schematically illustrated in
Figure 1. The five components are detailed in the
following.

3.2.1. Observable Rating Sequence. The VD-HMM
models a sequence of ratings across different busi-
nesses. The ratings are usually given by a star rating

Naumzik, Feuerriegel, and Weinmann: Predicting Failures from Customer Ratings
192 Marketing Science, 2022, vol. 41, no. 1, pp. 188–207, © 2021 The Author(s)



from a discrete set R � {1, : : : ,R}. For instance, Yelp
uses ratings from one to five stars. Other representa-
tions of ratings can be handled in a straightforward
manner (shown later), simply by choosing an appro-
priate distribution in the emission. Formally, let
Rij ∈R denote the rating score for business i � 1, : : : ,N
belonging to rating event j � 1, : : : ,Mi. Note that the
rating sequences of each business can be different and,
hence, the length of the sequence Mi is business specif-
ic. This is consistent with research in marketing science
where a sequence of events, each associated with a
time difference between two consecutive events, is
modeled and where calendar-time effects are captured
in a nonhomogeneous transition mechanism via a co-
variate denoting the time difference between two
events (Montgomery et al. 2004, Ding et al. 2015).

3.2.2. Latent States. Each rating is associated with a
latent state Sij. Specifically, the VD-HMM assumes the
existence of S different latent states, so that Sij ∈
{1, : : : ,S} holds. These latent states are not directly ob-
servable; instead, each rating is linked stochastically to
the latent states via the state–rating emission compo-
nent. We later show how latent states can be recovered.

Latent states are also associated with a latent state
duration dj(s) as follows. Let dj(s) denote the prior du-
ration spent in a latent state s. Note that the variable
dj(s) is—analogous to the latent state—also unobserv-
able and thus latent. We model the latent state dura-
tion in discrete time, that is, in the number of ratings.
This is consistent with research in marketing science
where a sequence of events, each associated with a
time difference between two consecutive events, is
modeled (Montgomery et al. 2004, Ding et al. 2015).
Modeling duration through the number of ratings has
practical benefits. We expect that the failure risk in-
creases when a large number of customers have been
unsatisfied with the service experience. By using the
number of ratings, we implicitly account for the

overall exposure (visitor frequency), which is advan-
tageous for predicting the failure probability. For in-
stance, an at-risk state might be even more dangerous
for survival if the restaurant has only a few visitors,
that is, is rated only rarely. By choosing our modeling
approach for the latent state duration, we directly per-
form this adjustment before estimating the failure
probability πi(j) (see Equation (3)).3 For reasons of no-
tation, let the S-dimensional vector dj ∈ {1: : : ,j}S de-
note the latent state duration for all latent states
s � 1, : : : ,S. Again, we later discuss how the latent
state duration can be recovered.

3.2.3. State–Rating Emission Component. The state–
rating link introduces a so-called emission component
b(s)(r). It defines a probability that a certain rating r
from a business is observed given the current latent
state s. Mathematically, the emission probability is
written as

b(s)(r) � P (Rij � r | Sij � s)
for all r ∈R and s ∈ {1, : : : ,S}: (1)

The exact specification of b(s)(r) must consider that rat-
ings are of a discrete nature. For this reason, we follow
prior literature on ratings (e.g., Moe and Schweidel
2012, Lee et al. 2015) and model the emission probabil-
ity as an ordered probit model, that is,

b(s)(r) � P(Rij � r | Sij � s)

�
1−Φ(ηs − c1), if r � 1,

Φ(ηs − cr−1) −Φ(ηs − cr), if 1 < r < R,

Φ(ηs − cR−1), if r � R,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where Φ denotes the cumulative standard normal dis-
tribution function, c1, : : : , cR−1 are cut points, and ηs
denotes state-specific intercepts for s ∈ {1, : : : ,S}. Iden-
tifiability of the intercepts is ensured by setting η1
to zero.

Figure 1. Proposed Variable-Duration HiddenMarkovModel
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Notes. Shown is the VD-HMM for a given business i. Ratings represent the observable variables in the model, based on which failures are to be
predicted. This is achieved by capturing latent dynamics behind service performance. Different from a traditional HMM, our model not only ac-
commodates latent states but also their durations. The latter is responsible for the variable-duration component.
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3.2.4. State–Failure Emission Component for Predict-
ing Business Failures. The VD-HMM has a second
emission component in order to predict business fail-
ure after rating j. This is different from a traditional
HMM, which is limited to only a single emission com-
ponent.4 This allows us to model both ratings and
business failures as emissions from the same latent
state, so that both can be estimated jointly. A similar
idea has been put forward in the context of customer
churns (Ascarza and Hardie 2013); however, we tailor
it to our setting in the following. In our work, the sec-
ondary emission component is estimated with data
from past business failures (Fi). Here, Fi is a binary
variable that denotes whether a business has failed
(Fi � 1) or whether the business is still in operation
(Fi � 0). The exact meaning of the failure flag must be
chosen during model estimation and allows one to
calibrate the model to different prediction horizons: if
the model is estimated with past data with Fi as one-
month-ahead failures, it predicts one-month-ahead
failures, etc. Hence, by varying which Fi is fed into the
model during estimation, the prediction horizon can
be chosen according to the needs of marketers.

Mathematically, the failure probability πi( j) for
business i is modeled via logit and consists of three
parts. First, it includes an intercept ω0 that refers to
the baseline probability. Second, the inference is based
on the duration dj(s) in a latent state s. This is motivat-
ed by evidence that models in marketing benefit from
considering duration times (e.g., Helsen and Schmit-
tlein 1993, Schweidel et al. 2008). In our case, the intui-
tion is that a longer duration in an at-risk state is
linked to a higher failure probability. Put simply, we
model the failure probability to be a function of the
current state and how long the state has been in effect.
For this reason, we draw upon the duration dj(s) for a
specific state s but where the effect varies across states
because of a state-specific coefficient ωs. The duration
is entered as a logarithmic value because it helps to
better distinguish smaller durations. Third, we control
for between-business variation. Altogether, this yields
the following logit model:

πi( j) � logit−1 ω0︸︷︷︸
baseline probability

+∑S
s�1

ωs log dj(s)
( )

︸︷︷︸
latent state duration

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+ ν zij︸︷︷︸

business covariates

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

with coefficients ω0,ω1, : : : ,ωS and ν.
The failure probability πi( j) is then linked to the bina-

ry variable Fi (where Fi � 1 is used to indicate a failure
and Fi � 0 otherwise). We model Fi to follow a Bernoulli

distribution. Hence, the corresponding likelihood is
derived as

log P Fi | Ri1, : : : ,Rij

( )( )
� Fi log (πi( j))
+ (Fi − 1) log (1−πi( j)): (4)

The variable Fi is later set during estimation according
to the desired forecast horizon. One can predict fail-
ures one month ahead by estimating the model with
historical data on Fi from one-month-ahead failures;
one can predict failures two months ahead by estimat-
ing the model with historical data on Fi from two-
month-ahead failures; etc.

3.2.5. Variable-Duration Transition Mechanism Be-
tween Latent States. The transition component de-
scribes the probability of moving from a latent state s
to a new state s′. In a traditional HMM, the probability
of moving to a new state s depends only on the current
state s′, whereas, in contrast, our model considers the
duration dj(s) of the latent state.

Two types of transitions can occur. These distin-
guish the new latent state s′ given that the model exits
state s: (1) A transition occurs where the latent state re-
mains the same, that is, s � s′. We refer to this transi-
tion as recurrent. Such a self-transition occurs with a
probability γs, as defined below. (2) The latent state
can transition to a different state, that is, s≠ s′. We re-
fer to this as nonrecurrent. Such a transition occurs
with probability 1− γs. Both transitions—recurrent
and nonrecurrent—are detailed in the following:

Recurrent part (s � s′). The recurrent part models
the probability with which the current state is main-
tained. Hence, this allows us to control the duration of
a latent state. This is done by modeling the (discrete-
time) hazard function of staying in the current state.
Formally, the probability of a self-transition is defined
via a logit model

γs(dj,Δj,j+1,σij) � logit−1 λs
0 +λ1log 1+ dj(s)

( )[
+λ2 log 1+Δj,j+1

( )
+λ3 σij

]
(5)

with additional variables as follows. The parameters
λs
0, λ1, λ2, and λ3 are estimated from the data. We

point out that the intercept λs
0 is state specific; that is,

we yield different intercepts λ1
0, : : : ,λ

S
0 for each state.

This models a different propensity for self-transition
in certain states. As we shall see later, reaching an
at-risk state is associated with a high probability that
the business will remain in this state. The variable
dj(s) is the latent state duration. It turns the model into
a variable-duration HMM, so that certain states become
more sticky because of repeated exposure. In other
words, the probability of self-transition depends on
the prior duration in a state. The variable Δj,j+1
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denotes the time difference (in calendar time) between
two consecutive ratings. We intentionally include
Δj,j+1 as it allows us to control for the elapsed time be-
tween the two ratings. Therefore, the parameter λ2

captures the effect of calendar time. This is consistent
with research in marketing science (Montgomery et al.
2004, Ding et al. 2015), where, analogously, the time
difference between two events is modeled via a non-
homogeneous transition mechanism. By including
Δj,j+1, we implicitly consider the popularity of a busi-
ness. The more ratings a business receives, the shorter
the time difference Δj,j+1 should be. Finally, the vari-
able σij controls for the review sentiment.

Nonrecurrent part (s≠ s′). The nonrecurrent part
models the transitions from a latent state s to a different
latent state s′ with s′ ≠ s. The transition from s to a dif-
ferent s′ is modeled by a separate probability Γss′ . This
yields a matrix Γ for which the rows are stochastic; that
is, Γss′ ∈ [0, 1] and

∑S
s′�1 Γss′ � 1 for all s, s′ ∈ {1, : : : ,S}.

Recall that after exiting state s, all potential subsequent
states of a nonrecurrent transition are given by
s′ ∈ {1, : : : ,S}\{s}. By definition, self-transitions are al-
ready modeled via the recurrent part, and, hence, the
diagonal elements of Γ are set to zero.

The transition component then combines both the
recurrent and nonrecurrent parts. It thus yields a tran-
sition probability

P Si,j+1 � s′ | Sij � s, dj
( )
� γs(dj,Δj,j+1,σij), if s′ � s,

(1 − γs(dj,Δj,j+1,σ)) × Γss′ , if s′ ≠ s:

{ (6)

We also experimented with alternative specifications,
yet with inferior results.5

3.3. Relationship to Traditional HMMs
The VD-HMM has two clear differences in comparison
with a traditional HMM. First, the VD-HMM introdu-
ces a variable-duration component, so that transitions
depend not only on the previous latent state but also
on the duration of being in a latent state. Here, we
note that the traditional HMM is a special case of our
VD-HMM. In fact, one can yield a traditional HMM
with a stationary transition matrix by fixing λ1, λ2, and
λ3 all at zero. Second, our model relaxes the assump-
tion of homogeneous transitions inherent to traditional
HMMs. In contrast, the transitions in the recurrent
part of our model are time dependent, as they consider
the time difference Δj,j+1 (in calendar time). Hence, the
evolution of states is nonhomogeneous.

The VD-HMM is a special case of a broader class of
so-called hidden semi-Markov models (Yu 2016).
These relax the assumption of traditional HMMs,
namely, that the so-called dwell time of a Markov
chain—that is, the number of rating events a chain

stays in a given state—follows a geometric distribu-
tion. Hence, the most likely dwell time for a given
state amounts a priori to one in a traditional HMM.
Hidden semi-Markov models allow for more flexible
dwell time distributions.

3.4. Model Estimation
We estimate all model parameters using a Bayesian
framework. Specifically, we derive the log-likelihood
of the VD-HMM and then apply Markov chain Monte
Carlo so that the model parameters are directly sam-
pled from their posterior distribution; see Appendix B
in the e-companion for details.

To account for unobserved heterogeneity across
businesses, we report parameter estimates from a
random-effects model. For this, we leverage a hierar-
chical Bayes procedure through the use of appropriate
priors. Specifically, we adopt a random-effects specifi-
cation as in Netzer et al. (2008) and Schweidel et al.
(2011); that is, intercepts in the transitions (λs

0) are al-
lowed to vary across businesses. We do not use a full
random-effects model as we perform predictions on
out-of-sample (i.e., unseen) businesses for the same
reasons as in Schweidel et al. (2011).

The number of latent states, S, is determined analo-
gously to prior research (Netzer et al. 2008, Ascarza
and Hardie 2013, Ascarza et al. 2018). Accordingly,
we estimate a series of VD-HMMs with a varying
number of latent states S. Then, we selected the model
with the best fit. In our experiments, we vary the
number of latent states between S � 1 and S � 4. Set-
ting S � 1 yields a baseline with no latent structure.
This model is equivalent to a logistic regression model
with business covariates and a factor controlling for
the number of ratings (note that dMi 1( ) �Mi if S � 1).
Setting S to five or larger is not reasonable, because
ratings are reported on a one-to-five scale and we thus
yield more latent states than observations.

Model selection is based on the prediction perfor-
mance of the model. This is analogous to prior HMM-
based research (Sismeiro and Bucklin 2004) and also
advocated in the literature on Bayesian modeling
(Gelman et al. 2014). We explicitly refrain from using
information criteria for the reason that they judge the
overall model fit. They thus put emphasis on the
state–rating emissions because of their larger parame-
ter space, while the state–failure emission suffers from
overfitting. However, our objective is an accurate fore-
cast of business failures. Therefore, we perform model
selection based merely on the prediction performance
with regard to business failures. As is common in pre-
dictive modeling, performance is measured by the
area under the curve (AUC) from the receiver operat-
ing characteristic (ROC) curve.
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3.5. Recovering the Latent State Sequence
We describe how we recover the latent states from a
given rating sequence. Given a rating sequence
Ri1, : : : ,Rij, the objective is to determine the most likely
latent state sequence s∗1, : : : , s∗j . It is defined by

s∗1, : : : , s
∗
j � arg max

s1, : : : , sj∈Sj

P Si1 � s1, : : : ,Sij � sj | Ri1, : : : ,Rij

( )
:

(7)

The computation is based on the Viterbi algorithm
(Rabiner 1989), which is carefully adapted to our
VD-HMM; that is, it is tailored to the variable-
duration transition mechanism inside the VD-HMM.

4. Setting
4.1. Data Set
We obtained our rating data from Yelp, which has
been used in prior research (e.g. Luca and Zervas
2016). Our sample consists of all ratings between
January 2010 and December 2017 for restaurants listed
in Phoenix, Arizona.6 This amounts to 934 distinct res-
taurants. We manually obtained ground-truth labels
concerning which restaurants experienced a failure
and when (i.e., the closing date). We followed the defi-
nition in (Henderson 1999, p. 291) whereby restaurant
closings due to relocation, lease renewal, or retirement
were not labeled as instances of failure.7 We removed
13 restaurants that had closed by the end of the obser-
vation period but for which the reasons were unclear.
This left us with a sample of 64,887 ratings from 921
restaurants, with an overall failure rate of 24.43% (225
restaurants).

We build upon a prediction framework similar to
that used in Ding et al. (2015) and Montgomery et al.
(2004).8 This allows us to test our model’s ability to pre-
dict which and when restaurants fail. As is common in
machine learning (Murphy 2012), we randomly split
the 921 restaurants into three sets as follows: (1) The
training set has 500 restaurants (54.29%). We used it
solely for estimating the model parameters. (2) The cali-
bration set (called “validation set” in machine learning)
has 100 restaurants. We used it to find optimal cutoffs
(thresholds) for the VD-HMM as well as the baseline
models, so that the failure probability is mapped onto a
binary prediction.9 (3) The test set has 321 restaurants.
We used it to measure the out-of-sample performance,
that is, how well the model generalizes to a hold-out
sample of previously unseen restaurants. If not stated
otherwise, the performance is reported out-of-sample,
that is, from the test set.

In our evaluation, we later compare different pre-
diction horizons in which we evaluate whether restau-
rant failures can be predicted one month ahead, two
months ahead, etc. For each, we used a different bina-
ry variable Fi denoting a failure in the given time

horizon (i.e., F1-month
i , F2-month

i , etc.) and, based on this,
evaluated the model. The variables F1-month

i , F2-month
i ,

etc., are computed based on the ground-truth data re-
garding which and when restaurants closed because
of failure. Crucially, the model is not retrained for this
task, but the cutoff δ is calibrated for a given predic-
tion horizon using the calibration sample. This yields
potentially different cutoffs for predicting the one-
month-ahead, two-month-ahead, etc., failure risk.

4.2. Variable Description
We collected various business-specific variables for
each restaurant in order to control for the between-
business heterogeneity (see Table 1). In accordance
with earlier rating-related research (e.g., Chen and
Lurie 2013), our choices are as follows: (1) restaurant
density, measured as the number of other restaurants
within a 500-meter radius; (2) restaurant age, measured
in months; (3) check-in rate, defined as the total number
of check-ins divided by time horizon; (4) chain status,
given by a binary variable that equals one if a restau-
rant belongs to a chain with more than 14 outlets na-
tionwide (Luca and Zervas 2016); and (5) restaurant
category, encoded based on the same classification
used by Yelp. The most popular restaurant categories
in our data set are American (27.73%), Mexican
(17.48%), and Asian (12.49%). Because each restaurant

Table 1. Model Variables and Summary Statistics

Variable Mean SD

Panel A: Model variables at rating level

Rating valence Rij (discrete, 1–5 stars) 3.70 1.46
Time lag Δj,j+1 between ratings (in days) 19.39 43.82
Review sentiment σij 0.08 0.37

Panel B: Covariates ZI,T at the restaurant level

Restaurant density 12.71 14.81
Restaurant age (in months) 48.10 29.48
Check-in rate 5.60 6.66
Chain status (affiliated � 1; independent � 0) 0.29 0.45
Restaurant categories (true � 1; false � 0)

American 0.26 0.44
Asian 0.12 0.33
Cafe 0.09 0.28
Fast Food 0.11 0.31
Mexican 0.17 0.38
Pizza 0.09 0.29
Salad 0.03 0.19
Specialty food 0.05 0.23

Restaurant size (in square meters) 228.81 259.85
Rent level (Zillow Rent Index) 1492.52 179.94
Price level ($–$$$$) (true � 1; false � 0)

$ � $10 or under 0.54 0.49
$$ � 11–30 0.45 0.49
$$$ � 31–60 0.01 0.09
$$$$ � over $61 0.00 0.00

Number of seats 98.09 103.88

Note. SD, Standard deviation.
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potentially belongs to multiple categories predefined
by Yelp, we assigned each restaurant to the most pop-
ular (as measured by numbers of restaurants on Yelp
belonging to that category).

Informed by prior literature (e.g., the SPC frame-
work), we additionally include variables that should
reflect the cost structure of restaurants. These are (6)
restaurant size (in square meters), (7) rent level (i.e., the
Zillow Rent Index, analogous to Barron et al. 2021), (8)
price level (according to Yelp classification into $–$$$$),
and (9) number of seats as a proxy for service work.

In accordance with previous studies (Archak et al.
2011), we measured the textual sentiment of reviews as
follows. Let Npos denote the number of positive words
in a review and Nneg the number of negative ones. Fur-
thermore, let Ntotal refer to the total number of words in
that review. Then the ratio (Npos −Nneg)=Ntotal ∈
−1, + 1[ ] gives the review sentiment σij. Here, we fol-
lowed common practice in sentiment analysis. This
means that we subjected the text to additional prepro-
cessing steps (Berger et al. 2020) that removed the
punctuation and discarded stop words and preformed
stemming. We tested the robustness with a variety of
dictionaries—the General Inquirer dictionary as
shipped in the Harvard IV software, the QDAP dictio-
nary, and the AFINN dictionary—leading to conclu-
sive findings. In the following, results from the latter
dictionary are reported, as it is particularly tailored to
colloquial expressions in user-generated content.

4.3. Comparison of Rating Distribution Across
Open vs. Closed Restaurants

Aggregated rating metrics, such as the mean, vari-
ance, or entropy, hardly differ between failed and
open restaurants (see Figure 2). For example, the me-
dian rating amounts to 3.65 for both. The similarity is
further underlined by a Wilcoxon–Mann–Whitney
test comparing the mean ratings across open and

closed restaurants. The test returns a p-value of 0.91,
thus pointing to equally distributed mean ratings.
Therefore, aggregated rating metrics are unlikely to
entail predictive power with regard to business fail-
ures. This explains why the above rating metrics add
little prediction power and motivate our model, in
which the complete rating sequence is considered.

4.4. Baselines
In our experiments, we compare our VD-HMM
against a traditional HMM (Rabiner 1989) that is tai-
lored to our setting. To this end, the HMM includes a
secondary emission component as in our VD-HMM,
which allows the HMM to predict failures. The HMM
has access to the same data as our VD-HMM. Specifi-
cally, the HMM uses the same business covariates in
the state–failure emission component for making pre-
dictions. Different from our VD-HMM, it models only
latent states but without considering latent state dura-
tions and, therefore, assumes a stationary transition
matrix.

Furthermore, we present a series of classification
models from machine learning that serve as our base-
lines. Analogous to our VD-HMM, these models make
dynamic predictions of failures Fi. However, as a differ-
ence, the baseline models rely upon feature engineering
rather than modeling the actual sequence of ratings.
Specifically, we experiment with different combinations
of features and prediction models as follows.

Our choice of features is informed by prior litera-
ture (Godes and Mayzlin 2004, Dellarocas and
Narayan 2006, Moe and Trusov 2011) and includes
the different variants: (1) we consider only the average
rating of each restaurant; (2) we use different rating
metrics ζij, namely, the mean rating, the volume of rat-
ings, and the volatility as measured by statistical en-
tropy (referred to as simple rating dimensions); (3)
we expand previous set of rating metrics (named

Figure 2. Rating Distribution at the End of the Observation Period Across Open and Closed Businesses
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Notes. The plots compare the distributions of ratings for restaurants that had experienced a failure and those that were still in business by the
end of our observation period. The similarity between the distributions explains the weakness of summary statistics of raw ratings as predictors
of business failure and the motivation for the modeling approach adopted in this study.
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advanced rating metrics) by additionally including
the coefficient of variation and the distribution of rat-
ings (i.e., the share of one-stars ratings, the share of
two-stars ratings, etc.); (4) we draw upon the same
business-specific covariates zij as in our VD-HMMs;
and (5) we combine both business covariates zij and
advanced rating metrics. We note that all features are
dynamic; that is, for a prediction at observation j, only
the first j ratings are considered for computing ζij. We
also experimented with the last n � 5 ratings instead
of using the mean as part of our robustness checks;
this resulted in similar conclusions.

The above features are inserted into different pre-
diction models, namely, a logistic regression model
and a random forest. The former is modeled analo-
gously to our state–failure emission from Equation
(3), so that the same time-dependent covariates zij are
considered. For instance, for rating metrics ζij and co-
variates zij, the failure risk πi(j) is predicted via

πi( j) � logit−1
[

φ0︸︷︷︸
baseline probability

+ φζ ζij︸︷︷︸
rating metrics

+ ν zij︸︷︷︸
business covariates

]
(9)

with coefficients φ0, φζ, and ν. The second baseline
model, the random forest, is known to be a powerful
machine learning classifier that can adapt to various
degrees of nonlinearity (Murphy 2012). Both baseline
models are dynamic in the sense that they depend on
features calculated for rating j.

The baselines were estimated in the same dynamic
manner as in our VD-HMMs. All hyperparameters,
such as the number of decision trees to be grown
and the number of predictors considered at each
split, were tuned via grid search and 10-fold cross-
validation. Consistent with our approach to model
selection, the baseline models were also optimized
against the AUC during training. Altogether, this
allows us to later establish that, because of the chal-
lenging nature of our prediction task, feature-based
approaches are subpar; instead, one should model
the actual rating sequence. Estimation results for
the logit model are provided in Appendix C of the
e-companion.

5. Empirical Results
As part of our model selection, we first determine the
preferred model specification. For the selected model,
we then provide an interpretation of the latent states,
discuss its predictive power, and compare it with al-
ternative classifiers.

5.1. Overall Prediction Performance
In the following, we compare the performance of the
VD-HMM across different numbers of latent states
against a traditional HMM (see Table 2). We follow
prior research (Sismeiro and Bucklin 2004) and report
the out-of-sample AUC, that is, the ability to predict
business failures on the test set. The best performance
is obtained by the VD-HMM with three latent states. It
attains an out-of-sample AUC of 85.20%. For compari-
son, a VD-HMMwith two latent states or no latent dy-
namics appears inferior. Furthermore, our VD-HMM
increases the out-of-sample AUC on the test set com-
pared with the best HMM by 1.78 percentage points.
Recall that the HMM has access to the same data as
the VD-HMM, specifically, the same covariates in the
state–failure emission. Altogether, the findings have
two implications: first, including latent dynamics with
three states is beneficial. Second, the variable-duration
component helps in making better predictions. Given
these outcomes, all subsequent analyses build upon
the VD-HMMwith three latent states.

5.2. Estimation Results
5.2.1. Characterizing the Latent States. In the follow-
ing, we examine the nature of the identified states. We
find that one of the three latent states is linked to an
increased failure risk and, hence, label it as the at-risk
state. The other two states have a considerably lower
failure risk but with different average rating scores
(i.e., very high or very low ratings). Hence, we named
them “well running” and “bad ratings but running.”

The state-dependent rating distribution reveals con-
siderable differences. Table 3 examines the posterior
emission probabilities, that is, the probability distribu-
tion of rating scores for each of the latent states. We
make the following observations:

• The well-running state has mostly positive ratings.
The probability of observing a four- or five-star rating
amounts to 88.55%. This results in a mean rating of 4.51
stars. Hence, these restaurants are associated with a
large propensity to remain in business.

Table 2. Overall Prediction Performance

Model
variant

Latent
states S

In-sample AUC
(training set)

Out-of-sample
AUC (test set)

HMM 1 78.06 76.68
2 78.57 78.50
3 81.84 83.42
4 82.12 82.68

VD-HMM 1 78.06 76.68
2 78.69 77.05
3 83.94 85.20
4 83.39 84.52

Notes. In-sample (i.e., on the training set) and out-of-sample (i.e., on
test the set) AUC values are in percentages. Best values are indicated
in bold.
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• The bad-ratings-but-running state emits mostly
negative ratings. One- or two-star ratings appear with
a combined probability of 65.71%. Accordingly, the
mean rating amounts to 2.16 and is thus the lowest of
all states. Nevertheless, these restaurants have a large
propensity to remain in business.

• The at-risk state reveals a dispersed rating behav-
ior. It has an almost uniform distribution of ratings.
This is also reflected in a mean rating of 3.53, which
ranges in between the other states.

Overall, we find that restaurants in the bad-ratings-
but-running state are subject to a lower average rating
than those in the well-running state. This motivated
our naming. The state-dependent rating behavior also
points to the challenges of our prediction task: states
with a low risk entail either mostly positive or mostly
negative ratings—yet such ratings are also likely to oc-
cur in the at-risk state. Our model can nevertheless
discern the different states by modeling the complete
rating sequence.

Despite negative ratings, restaurants in the bad-rat-
ings-but-running state are largely secure against busi-
ness failures. Luca (2011) offers an explanation: some
restaurants are less dependent on ratings, as they
have already built a customer base (e.g., because of a
brand name or being older). For instance, the mean
age of restaurants in the bad-ratings-but-running state
is 4.92 years, compared with 3.69 years for the average
restaurant in our sample. Furthermore, chains often
belong to the bad-ratings-but-running state and re-
main in business even if poorly rated.

5.2.2. State–Failure Relationship. The state–failure
emission component is responsible for making the
predictions. It links the latent state duration and addi-
tional business covariates to the probability of busi-
ness failure. The estimation results are displayed in

Table 4. We find a positive relationship for the at-risk
state. A longer duration in this state is associated with
a higher failure risk. We observe an opposite relation-
ship for the well-running and bad-ratings-but-run-
ning states. Each additional rating event corresponds
to a lower failure risk. Altogether, the different effect
on the failure probability explains the naming of the
at-risk state. In order to yield an intuitive interpreta-
tion, we report the odds ratio: in keeping all covariates
at their mean, a one standard deviation longer dura-
tion of the at-risk state increases the odds ratio of a
failure from 0.16 to 0.40. Put simply, this corresponds
to an increase in the failure probability of 14.35 per-
centage points, amounting to 28.41%.

Table 4 also reports the coefficients belonging to the
business covariates. These are supposed to control for
between-business heterogeneity and yield results in
line with our expectations. For example, failure risk is
negatively linked to age: the older a restaurant, the
lower its risk of failure. The coefficient for restaurant
density is small and not significant, suggesting that
this variable offers little or no predictive power.
Chains exhibit a lower failure risk overall than inde-
pendent restaurants. A possible reason is that chains
may be able to cross-subsidize poorly running sites.

5.2.3. State-Specific Failure Rates. In what follows,
we compare the failure rates of the different latent
states. Mathematically, we first recovered the latent
states Si,Mi from the observable ratings and then com-
pared their distribution across restaurants still in busi-
ness and those classified as failures. This distribution
is given in Table 5. In the at-risk state, 35.00% of the
restaurants fail. In contrast, the failure rates for the

Table 3. State-Dependent Rating Distribution (in %)

State

Rating valence Well running
Bad ratings
but running At risk

5 (positive) 66.09 32.31 13.14
[64.79, 67.45] [30.86, 33.81] [11.65, 14.70]

4 18.75 27.12 15.08
[18.07, 19.45] [26.34, 27.81] [14.29, 15.92]

3 6.92 14.69 11.59
[6.56, 7.28] [14.13, 15.21] [10.97, 12.21]

2 4.62 12.52 14.26
[4.33, 4.92] [12.01, 13.09] [13.54, 14.97]

1 (negative) 3.62 13.36 45.93
[3.20, 4.07] [12.50, 14.30] [43.79, 48.09]

Note. Posterior emission probabilities (means) are shown, with 95%
confidence intervals in brackets.

Table 4. Relationship Between Latent States and Business
Failure

95% CI

Parameter Posterior mean Lower Upper

Intercept −1.8205*** −2.1829 −1.5051
Latent state durations ωS

Well-running state −0.3239 −0.7166 0.0348
At-risk state 0.8862*** 0.5447 1.2519
Bad-ratings-but-running state 0.2559 −0.1335 0.6285

Business covariates
Restaurant age −0.0008*** −0.0012 −0.0004
Restaurant density −0.0035 −0.0191 0.0139
Check-in rate −0.0304 −0.0728 0.0132
Chain status −2.4051*** −3.3451 −1.5133
Restaurant size −0.0015 −0.0045 −0.0016
Rent level 0.0016*** 0.0001 0.0030
Price level −0.2767 −0.8529 0.2937
Number of seats 0.0033 −0.0021 0.0094

Restaurant categories �

Note. Posterior means are shown.
***p < 0.001.
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other states are considerably lower. These amount to a
mere 19.14% (well running) and 24.75% (bad ratings
but running). These findings highlight again the
strong link between the at-risk state and busi-
ness failures.

5.2.4. Transitions Dynamics. The evolution of the la-
tent state sequence is described by the transition dy-
namics. In the proposed VD-HMM, the transition
mechanism consists of two parts, namely, a recurrent
and a nonrecurrent part. The recurrent part models
self-transitions, that is, the probability of remaining in
the current state. The nonrecurrent part denotes the
probability of transitioning to a different state. Both
are studied in the following.

5.2.4.1. Recurrent Transition Dynamics. The recur-
rent part specifies self-transitions where the restaurant
remains in the current state. It is given by a function
that depends on (1) the latent state duration, as mea-
sured by λ1; (2) the time elapsed since the last rating, as
measured by λ2; and (3) the sentiment of the most re-
cent review, as measured by λ3. With regard to the for-
mer, we find that the posterior mean of λ1 amounts to
−0.04. Hence, self-transitions are associated negatively
with the latent state duration. Put simply, a longer ex-
posure to a state makes it more likely that the restau-
rant will leave this state. With regard to the second ele-
ment, we observe that the posterior mean of λ2 is −0.20.
Hence, larger delays between individual ratings make
it more likely that the restaurant will have switched to
a different state. Furthermore, we find that the posteri-
or mean of λ3 equals −0.01. Hence, a positive review
sentiment decreases the likelihood of a recurrent transi-
tion but only to a slight extent. Furthermore, we find
that the mean of the business-individual effects, and
thus the propensity for self-transition, differs across
states. This relationship is visualized in Figure 3, which
compares the effects from the latent state duration
(gray/black color) and the time since the last rating (x-
axis). As may be seen, the probability for self-transition
is generally highest for the well-running state and low-
est for the bad-ratings-but-running state. In both cases,
it diminisheswith a larger time since the last rating.

5.2.4.2. Nonrecurrent Transition Dynamics. Table 6
reports the transition probabilities of changing to a

different state. Most changes from the well-running
state are to the bad-ratings-but-running state. The bad-
ratings-but-running state reverts with 81.10% probabil-
ity back into the well-running state. However, some
restaurants (18.90% probability) also moved from the
bad-ratings-but-running state to the at-risk state.

5.3. Predictive Power for Business Failures
5.3.1. Out-of-Sample Comparison. Next, we examine
the ability of the VD-HMM in predicting restaurant
failures. Table 7 compares our VD-HMM against a se-
ries of baseline models. These use machine learning to
make dynamic predictions. Furthermore, they use
same data, but operate on features rather than model-
ing the complete rating sequence. All comparisons are
made for the out-of-sample AUC, that is, the predic-
tion performance as measured on the test set. Overall,
we find that our proposed VD-HMM is superior by a
considerable margin. Indeed, the VD-HMM bolsters
the AUC from the best machine learning model by
6.24 percentage points and the balanced accuracy by
5.93 percentage points. Both improvements are statis-
tically significant at the 0.1% level. Overall, the
VD-HMM achieves an AUC of 85.20% and a balanced
accuracy of 78.02%.

The baseline, which relies solely on the mean rating,
scored poorly, with the AUC being close to a random
guess (i.e., 50%). This suggests that the mean rating
lacks predictive power. In other words, it is ineffective
for service marketers to monitor the mean rating
when drawing inferences as in this study. This is ex-
pected given that the descriptive statistics did not re-
veal any differences in the mean ratings among open
and closed restaurants.

We further make the following observations. First,
including more predictors in the feature-based models
improves the performance. Second, we obtain consid-
erable performance improvements when modeling
the complete sequence of customer ratings. When
comparing the baseline models with business covari-
ates against the VD-HMM, the relative gain in the
AUC by the latter amounts to 11.10 percentage points.
This improvement must be solely attributed to the
predictive power of ratings. Third, the performance of
the dynamic logit and the random forest are largely
on par. Fourth, a closer examination of the confusion
matrix reveals that the VD-HMM competes well in

Table 5. Distribution of Recovered Latent States (at End of Observation Period)

Frequency of recovered latent state

Status Total Well running At risk Bad ratings but running

In business 696 338 130 228
Business failure 225 80 70 75
Failure rate (in %) 24.43 19.14 35.00 24.75
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detecting both restaurants that experienced a failure
(i.e., sensitivity) and those that remained in business
(i.e., specificity). This sensitivity–specificity trade-off
is also reflected in the F1 score. The difference in terms
of the F1 score between the best machine learning
model and our VD-HMM amounts to 15.83%. Fifth,
the VD-HMM is superior to the HMM, despite having
access to exactly the same data. Hence, the perfor-
mance improvement is attributed exclusively to the
model formulation that appears to be of better fit.

5.3.2. Sensitivity of Prediction Performance Across
Restaurant Subgroups. Table 8 conducts a sensitivity
analysis across different subgroups of restaurants. For
instance, the performance with regard to predicting
business failures among restaurants of different ages
is fairly similar. The prediction performance is lower

for restaurants affiliated with chains (AUC of 70.34%)
compared with independent restaurants (AUC of
82.47%); however, this can be attributed to the small
number of business failures among chains (i.e., only 5
out of 120 restaurants from chains experienced a fail-
ure). Altogether, our sensitivity analysis suggests that
there is little variability, as the prediction performance
remains robust.

5.3.3. Predicting Business Failures Early in Advance.
An important question for business decision making
concerns how far in advance the failure of a restaurant
can be predicted. Table 9 compares the performance
when making such a prediction several months in ad-
vance. Again, the VD-HMM attains the best perfor-
mance. For example, choosing a forecast horizon of
six months yields an AUC of 82.70%. When compared

Figure 3. Dynamics of Self-Transitions
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Notes. The recurrent part models self-transitions, that is, the probability of remaining in the same state. It depends on both the latent state dura-
tion (shown by differently shaded lines), the time since the last rating (shown on the x-axis), and the review sentiment σij (top panel, positive sen-
timent; bottom panel, negative sentiment). Longer exposure to a state decreases the likelihood that the state will be maintained. Larger delays be-
tween ratings increase the propensity to switch to a different state. Results are shown for the average business-specific effect. The shaded area
refers to the 95% CI.
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with the best machine learning baseline, it is also bet-
ter at a statistically significant level. Notably, simply
looking at the mean rating remains ineffective: the
mean rating hardly surpasses a random guess with an
AUC of around 50%, and, hence, predictive power is
lacking. However, if appropriately modeled, ratings
encode valuable information that facilitates long-term
forecasts. Reiteratively, the improvement of the
VD-HMM over the HMM is statistically significant for
most forecast horizons.

5.3.4. Interpreting the At-Risk State as a Leading Indi-
cator of Business Failures. The at-risk state is particu-
larly relevant to business decision makers as it is asso-
ciated with an elevated risk of business failure.
However, it represents a valuable tool for decision
makers only if they have sufficient time to implement
remedial actions. Hence, we now study how far in ad-
vance the at-risk state is attained by a restaurant be-
fore its failure date. For this, we base our analysis on
the actual timings of when restaurants closed. We
then use the Viterbi algorithm to recover the latent
state sequence from each restaurant. We further filter
for all restaurants subject to failure. Afterward, we
compute how long the at-risk state had already ex-
isted prior to the closing date. The corresponding lead
time is reported in Table 10.

As we see, half the restaurants attained the at-risk
state at least 78.43 weeks beforehand. One quarter of
the restaurants arrived at this state more than 136.65
weeks in advance. Hence, the at-risk state should be in-
terpreted by business decision makers as a leading in-
dicator of elevated failure risk and thus seen as provid-
ing an early warning in due course, thus allowing for
the implementation of appropriate managerial action.

Based on the above, one can further observe that
the duration spent in the at-risk state is also impor-
tant. Put simply, how long a restaurant has been in
the at-risk state is linked to its likelihood of experienc-
ing a business failure. Because of this, restaurants
should be particularly worried about being in the
at-risk state for an extended duration. Very few res-
taurants failed after being in the at-risk state only for a
short duration, whereas 75% of the failed restaurants
had been in the at-risk state for a long duration (i.e.,
for at least 31.96 weeks). This pattern is explained by
the above estimation results (ωs), implying that each
additional time period spent in the at-risk state is
linked to a larger failure probability.

6. Discussion
6.1. Summary of Findings
In this paper, we study the efficacy of predicting res-
taurant failures from online ratings. Therefore, we

Table 7. Comparison of Prediction Performance

Model Features AUC Balanced accuracy F1 score Specificity Sensitivity

Dynamic logit Mean rating 51.60 47.13 30.96 50.21 44.05
Random forest Mean rating 51.60 49.44 27.96 67.93 30.95
Dynamic logit Rating dimensions 64.47 58.14 41.78 60.34 55.95
Random forest Rating dimensions 56.45 55.69 39.30 57.81 53.57
Dynamic logit Business covariates 72.85 64.52 48.93 61.18 67.86
Random forest Business covariates 73.32 66.26 50.51 73.00 59.52
Dynamic logit All 79.09 70.25 55.45 73.84 66.67
Random forest All 78.64 68.04 52.83 86.08 50.00
Proposed VD-HMM 85.22 79.84 70.24 89.45 70.24

Notes. The table shows out-of-sample performance (i.e., based on test set) in percentages assessed on the evaluation sample. The best results are
in bold. Calibration of the cutoffs (thresholds) was performed separately for eachmodel based on the calibration set (i.e., validation set).

Table 6. Propensity of Transitioning to a Different State

Next state

Current state Well running At risk Bad ratings but running

Well running — 44.05 55.95
[31.98, 56.81] [43.19, 68.02]

At risk 66.97 — 33.03
[52.75, 80.48] [19.52, 47.25]

Bad ratings but running 81.10 18.90 —
[65.44, 95.89] [4.11, 34.56]

Notes. The table shows posterior means with 95% confidence intervals in brackets. The nonrecurrent part of
the transition component specifies the probability of moving from the current state to a different one.
Therefore, all self-transitions on the diagonal are omitted and are discussed as part of the recurrent part.
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compared various approaches, ranging from the sim-
ple mean (as used in practice) to machine learning
methods to customized hidden Markov models. A
classifier based on the mean rating attains an out-of-
sample AUC of around 50% and thus does not exhibit
predictive power. Machine learning methods based
on feature engineering considerably improve the pre-
dictive power. However, the best performance is
achieved by our customized HMM by modeling the
complete rating sequence, with a gain in the out-of-
sample AUC of 11.10 percentage points. Our novel
VD-HMM achieves a balanced accuracy of 78.02%. In
contrast, conventional classifiers from machine learn-
ing yield a balanced accuracy that is at least 5.97 per-
centage points lower and thus subpar. In simpler
terms, our proposed model correctly identifies failures
with a sensitivity of 67.86%; that is, 7 out of 10 failures
are predicted correctly. Transitions to the at-risk state
hint at service performance issues that, if they persist
in the long run, are likely to lead to a business failure.

Based on our evidence, we find that this state is asso-
ciated with a failure rate of 35.00% and, hence, should
be seen as an early warning.

In order to enrich our quantitative results with qual-
itative insights, we compared the content of reviews
across different states. We found that the content coin-
cides with our identified latent states (see Table 11).
Reviews from the well-running state reflect mostly
positive experiences. The reviews from the at-risk
state reveal that customer satisfaction is subject to con-
siderable variance. Reviews from the bad-ratings-but-
running state highlight consistent issues concerning
customer satisfaction, and yet there are reasons why
these restaurants remain in business (e.g., long open-
ing hours, unique geographic location, drive-through
service). These restaurants appear successful in draw-
ing customers despite frequently poor ratings.

Our results reflect an exciting finding. One might
have expected that the restaurants with the lowest rat-
ings would have the highest failure risk. However,
those restaurants often remain in business. There
could be several explanations for this. According to
the service-profit chain literature, quality is important,
but so is resource input (e.g., Heskett et al. 1994, Ka-
makura et al. 2002, Mittal et al. 2005); that is, a low-
rated restaurant could offer relatively low quality but
at correspondingly low costs. Thus, it would not fail
but remain in the market. For example, many fast-
food chains (e.g., McDonalds, Burger King) employ
this operating model of offering low-rated quality at
low costs. This is also confirmed in our analysis, in
which the bad-ratings-but-running state is common
among restaurants from fast-food chains (see Table 11).
Notwithstanding, such chains may have the advantage
of running branches in exclusive locations, despite that
these may have high costs (e.g., rent) and fail to turn a
profit. Other branches of the chain could cross-
subsidize those branches (Chevalier 2004). As a result,
such a restaurant could also remain in the market de-
spite poor ratings and high costs.

Table 9. Predicting Business Failures Early in Advance

Model Features
1 month
ahead

2 months
ahead

3 months
ahead

6 months
ahead

9 months
ahead

12 months
ahead

Dynamic logit Mean rating 51.44 51.56 50.97 48.69 48.44 53.84
Random forest Mean rating 53.36 48.54 50.62 49.40 54.12 53.01
Dynamic logit Rating dimensions 63.59 63.79 63.78 62.40 62.25 64.23
Random forest Rating dimensions 54.23 53.05 55.72 56.67 54.45 57.66
Dynamic logit Business covariates 74.00 73.84 74.31 74.79 74.98 75.45
Random forest Business covariates 73.30 73.58 74.04 74.35 75.47 75.40
Dynamic logit All 79.99 79.86 80.09 79.45 79.36 79.74
Random forest All 79.74 81.00 81.87 80.87 80.12 80.96
Proposed VD-HMM 85.05** 84.95* 84.43* 83.67* 82.90* 81.73

Notes. This table compares the out-of-sample performance to make early predictions of failures. The VD-HMM exhibits superior performance
for each of the considered forecast horizons. It is further reported whether the improvement over the best machine learning baseline is
statistically significant. The table shows out-of-sample AUC values (i.e., based on the test set) in percentages. The best model results are in bold.

*p < 0.05; ** p < 0.01.

Table 8. Comparison of Predictive Power Across
Subgroups of Restaurants

Number of restaurants

Subgroup Open Closed AUC

Overall 315 106 85.20
Age

1st quartile 75 31 83.78
2nd quartile 66 39 84.60
3rd quartile 74 31 85.96
4th quartile 100 5 74.36

Chain status
Affiliated 115 5 70.34
Independent 200 101 82.47

Restaurant category
Fast food 121 35 88.36
Others 194 71 82.98

Note. The table shows the out-of-sample AUC values (i.e., based on
the test set) for the VD-HMM in percentages.
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6.2. Limitations and Potential for
Future Research

As with any research, our results are subject to several
limitations. Although our model allows us to separate
different risk states and derive early warnings that
alert service marketers when to intervene, our model
does not tell service marketers how to reach a better
state. We also refrain from claiming causal relation-
ships between ratings and business failures, as our
purpose is not to explain but to predict. Ratings might
be subject to biases and, despite this, a favorable
prediction performance achieved. Another possible
limitation of our study is that we have focused on res-
taurants. Restaurants are certainly an important sector
within the service industry and face considerable chal-
lenges (Luo and Stark 2015); however, future studies
may look at other service sectors.

Our work opens several avenues for future re-
search. One direction would be to improve the accura-
cy of our risk assessment. This could be achieved by
considering further predictors. For instance, one may
further extend our model to accommodate expert rat-
ings (e.g., Michelin stars). In order to do this, one
would simply need to add another emission compo-
nent (see Ascarza and Hardie 2013), so that both cus-
tomer and expert ratings are driven by the same latent
dynamics. Although we already consider review sen-
timent, it might be interesting to combine our model
with text mining frameworks (e.g., Zhong and
Schweidel 2020). This would allow marketers to detect
change points in review language, and thus offer in-
terpretability through qualitative insights. A different
research direction would involve diving deeper into
the underlying mechanism of why restaurants fail.

Here, our model provides a starting point by showing
that rating dynamics are an important determinant of
business failures, whereas many other variables were
not significantly linked with failure risk. Future re-
search could also assess the effectiveness of different
marketing interventions by modeling the treatment ef-
fect on the latent state behind service performance.
This could allow marketers to quantitatively discern
which interventions only improve customer satisfac-
tion in terms of ratings and which are actually benefi-
cial for survival (i.e., which interventions are effective
in rectifying an at-risk state), thereby guiding how
marketing efforts can be directed effectively.

6.3. Implications for Academia and Management
From a theoretical perspective, our research contrib-
utes to the existing literature on online ratings. Previ-
ous work has already shown a positive correlation
between online ratings and business performance, of-
ten measured by sales (e.g., Godes and Mayzlin 2004,
Chevalier and Mayzlin 2006, Liu 2006, Dellarocas et al.
2007, Chintagunta et al. 2010, Zhu and Zhang 2010,
Archak et al. 2011; see Appendix A in the e-companion
for a summary of relevant literature). We extend these
valuable contributions by establishing a new relation-
ship between customer satisfaction and business per-
formance. Unlike earlier research, we do not measure
sales but, rather, business failures. To the best of our
knowledge, this paper is the first to evaluate the pre-
dictive power of online ratings as an early warning for
business failures.

By suggesting a variable-duration HMM, we extend
the growing literature on HMMs in the field of mar-
keting. Previous literature has used HMMs to study
different aspects of customer dynamics (e.g., Netzer
et al. 2008, Montoya et al. 2010, Schweidel et al. 2011,
Ascarza and Hardie 2013, Schwartz et al. 2014, Zhang
et al. 2014b, Ascarza et al. 2018, Montoya and Gonza-
lez 2019). However, traditional HMMs are based on

Table 11. Sample Reviews

State Rating Review

(1) Well running 4 “Really nice staff and the place is clean.”
(2) At risk 3 “My ‘salad’ had only 3 of the 7 veggies the

menu promised, and a sorry portion at
that. And while the balsamic vinaigrette
was tasty, it didn’t make up for my
poor excuse for a salad.”

(2) At risk 1 “I usually give second chances but this
place was outright horrible! This place
has bad, awkward, rude service & the
food was between mediocre & bad.”

(3) Bad ratings but running 1 “Kind of annoyed with them! I ordered an
Oreo mcflurry with hot fudge Paid for
my ice cream but no hot fudge on it
Asked for and was told they were out.”

Table 10. Lead Time of the At-Risk State Until a Business
Failure (Quantiles; in Weeks)

25% 50% 75%
31.96 78.43 136.65

Naumzik, Feuerriegel, and Weinmann: Predicting Failures from Customer Ratings
204 Marketing Science, 2022, vol. 41, no. 1, pp. 188–207, © 2021 The Author(s)



the Markov property, according to which transitions
can depend only on the previous state, whereas our
VD-HMM considers the duration of latent states. This
allows us to model effects where future dynamics are
influenced by longer exposure to a latent state. This is
likely to aid future research in marketing when simi-
lar dynamics must be modeled (e.g., to capture learn-
ing effects or retention).

Our model has also practical implications for man-
agers, customers, and platform providers. First, manag-
ers can use our model to inform their decision making
because the model provides an early warning system
for business failures. They can use the model to predict
business failures and, based on the estimated risk,
plan timely interventions. Second, the results of the
model could also benefit customers. Assuming a rating
platform decides to display a restaurant’s state on its
site, customers could factor this into their decision. For
example, they could decide to avoid bad-ratings-but-
running restaurants or support a favored restaurant
when it is in a risky state. Third, platform providers
could also benefit from our model. They could choose
to offer our model as another premium service. For ex-
ample, Yelp for Business already offers several paid
features for business intelligence.10 This allows restau-
rant owners to gain data-driven insights into their
business performance, thereby informing corporate
strategy and operations (including decisions pertain-
ing to credit as well as investors or lenders who might
provide investment). A risk analysis could comple-
ment these services.

6.4. Conclusion
In this paper, we develop a hidden Markov model for
predicting business failures from customer ratings. Us-
ing restaurant ratings, our model derives three latent
states: well running, bad ratings but running, and at
risk. Businesses in the at-risk state are associated with
a higher risk of failure. Our model predicts business
failures months before they occur, giving marketers
sufficient time to plan interventions and, ultimately,
prevent businesses from failing.
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Endnotes
1 There are two common approaches with regard to how time is
captured in HMMs (see Ascarza and Hardie 2013). One approach is
to sum usage statistics per time interval. Another is to model the

actual events (e.g., Montgomery et al. 2004, Ding et al. 2015). There-
in, the time between events is inserted in the model to account for
calendar time. It makes the assumption that latent states can only
change at each rating event. The second approach is followed in
this paper for practical reasons. It allows business owners to update
the model and thus the prediction whenever new information be-
comes available, that is, whenever a new rating is submitted. In
addition, it treats the time difference between two ratings as infor-
mative, it circumvents the need for feature engineering (e.g., as we
shall see later, the mean rating does not predict business failure and
is thus not effective for this purpose), and it allows us to incorporate
all information accompanying a rating event (e.g., the review
sentiment).
2 The prediction setting in Ding et al. (2015) and Montgomery et al.
(2004) is the following: an HMM receives an observation sequence
from an unseen entity as input and the model then outputs a classifi-
cation (i.e., a single score) for the sequence, that is, for a new entity.
This is different from path forecasting (e.g., Gopalakrishnan et al.
2018), where the model operates on the same entity at both training
and deployment. In contrast to that, we are interested in a setting
where a model generalizes across businesses, as this is crucial to pro-
vide value in management practice. This allows us to identify which
(and when) businesses fail.
3 Using duration (in days) yields an equivalent approach. The rea-
son is that we later also insert the time difference between ratings
into the model (in addition to dj) and, thus, can be transformed into
one another. Nevertheless, we implemented our model where dj
was measured as the number of days. However, this led to overfit-
ting and, thus, inferior results.
4 In theory, the failure of a business could have been modeled
through an absorbing state. We experimented with this approach as
part of our robustness checks, but it results in an inferior prediction
performance. This can be explained by the fact that businesses can
recover after reaching an at-risk state. Through improvements in
service quality, businesses can eventually earn positive customer
feedback again; thus, the at-risk state does not necessarily need to
be terminal.
5 We also tested different structural assumptions in the transition
matrix. However, this proved not to be beneficial. For example, Ab-
hishek et al. (2012) encoded a funnel structure in which transitions
could occur only between neighboring states. We experimented
with their approach; however, it resulted in an inferior model fit.
6 The start of the study period was set to 2010, as several key plat-
form features (e.g., check-ins and other community features) were
introduced in 2010, and, hence, data were available only from 2010
onward. Robustness checks comparing the prediction performance
across different time frames led to conclusive findings.
7 We performed a robustness check in which these events were la-
beled as failures, which resulted in an overall similar discriminatory
power of our model.
8 Our prediction setting is different from path forecasting, which
operates only within an entity (e.g., Gopalakrishnan et al. 2018). In
contrast, we leverage the cross-sectional structure of our data in or-
der to learn patterns of failures across restaurants. This allows us
support managers with early warnings for their own businesses.
9 The cutoffs (thresholds) are used to translate the failure probabili-
ty πi( j) ∈ 0, 1[ ] (see Equation (3)) into a binary prediction F̂i ∈ {0, 1}
of the failure of restaurant i. Hence, the model specific cutoff is giv-
en as a real number δ ∈ 0, 1[ ] such that

F̂i � 0, if πi( j) < δ,
1, if πi( j) ≥ δ:

{
(8)

10 See https://www.yelp.com/knowledge for details on Yelp’s
data-driven insights.
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