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Global well-posedness for the Vlasov-Poisson system
with massless electrons in the 3-dimensional torus

Megan Griffin-Pickeringa and Mikaela Iacobellib

aDepartment of Mathematical Sciences, Durham University, Durham, UK; bDepartment of Mathematics,
ETH Zurich, Zurich, Switzerland

ABSTRACT
The Vlasov-Poisson system with massless electrons (VPME) is widely
used in plasma physics to model the evolution of ions in a plasma.
It differs from the Vlasov-Poisson system (VP) for electrons in that
the Poisson coupling has an exponential nonlinearity that creates
several mathematical difficulties. In particular, while global well-pos-
edness in 3D is well understood in the electron case, this problem
remained completely open for the ion model with massless elec-
trons. The aim of this paper is to fill this gap by proving uniqueness
for VPME in the class of solutions with bounded density, and global
existence of solutions with bounded density for a general class of
initial data, generalising all the previous results known for VP.
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1. Introduction

In this article, we study a kinetic model for the ions in a dilute plasma. A plasma is a ionised
gas, in which gas particles have dissociated into ions and electrons. The ions are positively
charged, while the electrons are negatively charged and have a much smaller mass than the ions.
To model a fully ionised plasma one should consider a coupled system involving

both ions and electrons. However, since the masses of the two species have very differ-
ent orders of magnitude, there is a separation between the timescales on which each
species evolves. From the point of view of the electrons, the ions are very heavy and so
slow-moving. For this reason, it is common to assume that the ions are stationary over
the interval of observation. If magnetic effects are also neglected, this leads to the well-
known Vlasov-Poisson system. This system is often considered either on the whole space
or on the flat torus, and in this paper we will focus on the latter case:

ðVPÞ :¼
@tf þ v � rxf þ E � rvf ¼ 0,

E ¼ �rU,
DU ¼ 1� Ð

R
d f dv ¼ 1� qf ,

f jt¼0 ¼ f0 � 0,
Ð
T
d�R

d f0 dx dv ¼ 1:

8>>><
>>>:

(1.1)
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Here the unknown f ¼ f ðt, x, vÞ is a probability density describing the distribution of
electrons at time t, position x, and velocity v, with ðx, vÞ 2 T

d � R
d: The Vlasov-

Poisson system thus describes the evolution of the electrons under the influence of the
electrostatic potential U induced by the charge distribution of the entire plasma. This
encodes the fact that the long-range effect of the potential is dominant over the effect
of collisions between the electrons, and describes the electrostatic regime in which mag-
netic effects may be neglected.
Observe that the electric field E can be represented in the form

E ¼ �rG � qf ,
where G is the Green kernel of the negative Laplacian on the torus, that is

�DG ¼ d0 � 1: (1.2)

The Coulomb kernel K ¼ �rG has a strong singularity of order jxj�ðd�1Þ at x¼ 0, and
its derivative r2G thus has a non-integrable singularity. This is the reason why the
study of the well-posedness theory of the Vlasov-Poisson system is mathematically chal-
lenging. Global-in-time classical solutions have been constructed under various condi-
tions on the initial data (see for example [1–6]), while global-in-time weak solutions
were constructed in [7] and [8] for Lp initial data (see also [9, 10]). However, unique-
ness is not known to hold in general for weak solutions. An important contribution to
the uniqueness theory was made by Loeper [11], who showed uniqueness for solutions
of (1.1) with bounded density.

1.1. The Vlasov-Poisson system with massless electrons, or Vlasov-Poisson system
for ions

In this paper, we will consider a different model for plasma where the unknown is the
repartition function of ions, instead of the one for the electrons. This model has been
introduced to take into account the dramatically different order of magnitude between
ions and electrons. Indeed, the electrons move much more quickly than the ions, and
therefore undergo collisions much more frequently. Consequently, they approach
thermodynamic equilibrium rapidly. One therefore assumes that the electrons are ther-
malised, obeying a Maxwell-Boltzmann law. Then their spatial density is given by eU

and the induced electric field obeys a nonlinear Poisson equation with exponential non-
linearity. This leads to the Vlasov-Poisson system with massless electrons (VPME):

ðVPMEÞ :¼
@tf þ v � rxf þ E � rvf ¼ 0,

E ¼ �rU,
DU ¼ eU � Ð

R
d f dv ¼ eU � qf ,

f jt¼0 ¼ f0 � 0,
Ð
T
d�R

d f0 dx dv ¼ 1:

8>>><
>>>:

(1.3)

This system can be derived, at least formally, as the limiting regime of a coupled sys-
tem of ions and electrons, in the massless electrons limit where the ratio me=mi between
the electron and ion masses tends to zero. Bardos, Golse, Nguyen and Sentis [12]
studied this limit, considering coupled systems of the form
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@tfi þ v � rxfi þ qi
mi

E � rvfi ¼ 0,

@tfe þ v � rxfe þ qe
me

E � rvfe ¼ CðmeÞQðfeÞ,
rx � E ¼ 0, �0rx � E ¼ qiq fi½ � þ qeq fe½ �,

8>>><
>>>:

(1.4)

where Q denotes a collision operator such as a BGK or Boltzmann operator. Under
suitable assumptions on CðmeÞ and the existence of sufficiently regular solutions for the
coupled system, they derive that, in the limit as me=mi tends to zero, the electrons
indeed take on a Maxwell-Boltzmann distribution, and the system (1.4) converges to a
system similar to (1.3), but with a time-dependent electron temperature. In a similar
vein, Bouchut and Dolbeault [13] studied the long time limit (which in this setting is
closely related to the massless electrons limit) of a single-species Vlasov-Poisson model
with a Fokker-Planck collision term. See also Herda [14] for a study of the massless
electron limit in the case where an external magnetic field is also applied, leading to a
fluid model for the electrons coupled with a kinetic model for ions.
In this paper, our focus will be on studying the VPME system (1.3). The nonlinearity

in the Poisson equation is the key difference between ion and electron Vlasov-Poisson
systems, and a source of additional mathematical richness. Due to the difficulties cre-
ated by this nonlinear coupling, the VPME system has been studied less widely than the
electron model. However, global weak solutions were constructed by Bouchut [15] in
the three dimensional case. In this paper we investigate the global well-posedness for
the VPME system in dimension d¼ 2, 3.
More precisely, we begin by investigating the uniqueness of solutions and, in the spirit of

the work of Loeper [11] for the electron VP system, we show uniqueness for solutions of
the VPME system with bounded density. This extension is very far from trivial since the
exponential term eU in the Poisson equation creates several nonlinear effects. The key esti-
mates that allow us to achieve this result are obtained in Sec. 3. More specifically, the first
important step is to write the electric field E as the sum of the electric field in VP, that we
denote by �E, and a remainder Ê: Then, in Proposition 3.1, we develop a series of regularity
estimates on the electric fields �E and Ê that depend only on the Lðdþ2Þ=d-norm of the dens-
ity qf. This is crucial since the latter norm on qf can be controlled uniformly (in time)
thanks to our assumptions on the initial data (see Lemma 5.3).
With these estimates at our disposal, in Sec. 4 we are able to perform a delicate

Gronwall-type argument with respect to the Wasserstein distance in order to prove
uniqueness and stability of solutions with bounded density. Central for this argument
are the results from Proposition 3.7, showing quantitative stability estimates on the elec-
tric fields �E and Ê with respect to the density q. This concludes the proof of uniqueness
for solutions of the VPME system with bounded density.
The remainder of the paper is devoted to finding sufficient conditions on the initial

data that guarantee the global existence of solutions with bounded densities. As men-
tioned before, this kind of problem has been widely investigated in the setting of the
Vlasov-Poisson system for electrons. The key point here is that, thanks to the results
obtained in Sec. 3, we are able to deal with the additional part Ê of the electric field. In
particular, in Secs. 5 and 6 we prove propagation of moments of sufficiently high order
to guarantee the existence of solutions with uniformly bounded density (see Theorem
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6.1). It is worth mentioning that our approach is robust. Indeed, a similar strategy could
be used to extend other known well-posedness results for the Vlasov-Poisson system to
the massless electron case; for example, in a forthcoming paper we consider the case
where the VPME system is posed on the whole space. Moreover, thanks to this well-
posedness result new advances have been made regarding quasineutral and mean-field
limits for the VPME system [16].

2. Results and outline

2.1. Main result

The main result of this paper is the global well-posedness of the VPME system (1.3),
posed on the torus T

d, d¼ 2, 3, for large data with sufficiently rapid decay at infinity
in the velocity variable. This is stated precisely in the following theorem.

Theorem 2.1. Let d¼ 2, 3. Consider an initial datum f0 2 L1 \ L1ðTd � R
dÞ satisfying

f0ðx, vÞ � C0

1þ jvjk0
, for some k0 > d,

ð
T
d�R

d
jvjm0 f0ðx, vÞdxdv < þ1,

for some m0 > dðd � 1Þ:
Then there exists a global-in-time weak solution f 2 Cð½0,1Þ;PðTd � R

dÞÞ of the VPME
system (1.3) with initial data f0. This is the unique solution of (6.16) with initial datum
f0 such that

qf 2 L1locð 0, þ1Þ; L1ðTdÞÞ:
�

In addition, if f0 has compact support, then f(t) has compact support for all times, with a
bound on the size of the support which is locally uniform in time.

Remark 2.2. The VPME system has an associated energy functional, which is formally a
conserved quantity. It is defined by

E f½ � :¼ 1
2

ð
T
d�R

d
jvj2f dxdvþ 1

2

ð
T
d
jrUj2dx þ

ð
T
d
UeUdx, (2.1)

where U is the solution of the nonlinear Poisson equation in (1.3). The weak solutions
provided by Theorem 2.1 conserve this energy: for all t � 0,

E f ðtÞ� � ¼ E f0½ �:

Remark 2.3. Notice that this theorem stipulates no regularity on the initial datum f0,
only that f0 2 L1 \ L1ðTd � R

dÞ. The resulting solutions thus will not in general be C1

classical solutions. However, as we shall discuss later, since qf 2 L1locð½0, þ1Þ; L1ðTdÞÞ
they have a well-defined characteristic flow. Moreover the solution may be represented as
the pushforward of the initial datum f0 along this flow.
If the initial datum is additionally assumed to be C1, then this characteristic flow can

be used to show that the solution f provided by Theorem 2.1 is in fact C1. Theorem 2.1
thus also provides the global existence of C1 classical solutions for C1 initial data.
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2.2. Strategy

2.2.1. Analysis of the electric field
An important step of the proof is a toolbox of estimates on the electric field E, which
we set out and prove in Sec. 3. Following [17], our starting observation is that we can
consider E as a sum of the electric field that appears in the electron model (1.1), plus a
more regular nonlinear term. That is, we decompose E into the form E ¼ �E þ Ê, where

�E ¼ �r�U , Ê ¼ �rÛ ,

and �U and Û solve respectively

D�U ¼ 1� qf , DÛ ¼ e
�UþÛ � 1:

In general, we would expect Ê to be more regular than �E: In Sec. 3 we prove that
this intuition is rigorously true using techniques from calculus of variations to deal with
the nonlinearity in the equation for Û :

In the context of analysing the VPME system (1.3), what is crucial is to quantify this
gain of regularity carefully, in particular in terms of its dependence on qf. Specifically,
we prove that if qf 2 Lðdþ2Þ=dðTdÞ, then Û 2 C2, aðTdÞ for some a > 0, with a quantita-
tive upper bound on the C2, a norm that depends only on jjqf jjLðdþ2Þ=d : The choice of
ðd þ 2Þ=d as the integrability exponent is relevant because this is a quantity that we
expect to be bounded uniformly in time, as a consequence of the conservation of the
energy functional E defined in (2.1) (see Subsec. 5.1).
These quantitative estimates explain in part the influence of the dimension d: the

goal is to get estimates depending only on Lp norms of qf up to order p ¼ ðd þ 2Þ=d:
This exponent decreases as d increases, while at the same time the gain of regularity
provided by the ellipticity of the equation for Û also becomes weaker with increas-
ing dimension.
The proof of well-posedness is then divided into two auxiliary results. One is the

uniqueness of solutions for VPME under the condition that the mass density qf is
bounded in L1ðTdÞ: The other is the global existence of solutions satisfying this condi-
tion under the assumptions of Theorem 2.1.

2.2.2. Uniqueness
In Sec. 4 we prove that uniqueness holds for the VPME system (1.3) under the assump-
tion that the mass density qf is bounded in the sense of L1ðTdÞ, locally uniformly in
time. The same property has been known for the electron Vlasov-Poisson system (1.1)
ever since the work of Loeper [11]. Our proof in the VPME setting makes use of
Loeper’s strategy to handle the electric field �E: However, the extension of this strategy
to the VPME case requires nontrivial additional estimates for Ê regarding its stability
with respect to the inducing charge density qf. These estimates are proved in Sec. 3.

2.2.3. Existence of solutions
In Secs. 5 and 6, we show that global-in-time solutions of the VPME system (1.3) exist
for any initial datum f0 2 L1 \ L1ðTd � R

dÞ with a finite velocity moment of order
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m0 > d—this is a wider range of data than that considered in Theorem 2.1, but there
stronger assumptions are required for uniqueness.
The strategy of proof is based on showing that the VPME system propagates

moments of sufficiently high order. This approach was used to prove well-posedness for
the electron Vlasov-Poisson system, initially by Lions and Perthame [3] in the whole
space case where x 2 R

3: Pallard [18] (see also the previous contribution by Caglioti
and Marchioro [19]) then extended the range of moments that could be propagated in
the whole space case and showed propagation of moments on the torus T

3: Chen and
Chen [20] adapted these techniques to push even further the range of moments that
could be propagated.
In Sec. 5 we extend the proof in [20] to the VPME case, proving an a priori estimate

on the velocity moments of solutions of (1.3).
Then, in Sec. 6, we use this a priori estimate to prove global existence of solutions

for the VPME system (1.3). For this we first consider a regularised version of the
VPME system. For the regularised system, solutions can be shown to exist using, for
example, an adaptation of the methods of Dobrushin [21]. Proving uniform moment
estimates with respect to the regularisation parameter, we then extract a limit point
which we show is a solution of the original VPME system (1.3). We explain the con-
struction in detail in order to emphasise that no regularity is required on the initial
datum f0, and that the solutions so constructed are energy conserving.

2.2.4. Remarks on notation
From now on we will use qf to denote the density generated by f. Throughout the
paper, we use the notation C to denote an arbitrary positive constant, which may
change from line to line. Subscripts are used to denote parameters upon which C
depends, for example CT denotes a constant depending in some way on another param-
eter T.
We identify the d-dimensional torus T

d with the cube Qd :¼ � 1
2 ,

1
2

� �d
or its transla-

tions, with appropriate identifications of the boundary. The distance between points on
the torus is given by

dðx, yÞ ¼ inf
Z
d
jx� yþ kj: (2.2)

With an abuse of notation, we will denote this distance by jx � yj for points on the
torus. Note that for all x, y 2 T

d,

jx� yj � 1
2

ffiffiffi
d

p
:

3. Properties of the electric field

3.1. Decomposition

As explained above, we will split the electric field into a singular part, which behaves
like the electric field in the Vlasov-Poisson system, and a more regular term. To be pre-
cise, we write E in the form �E þ Ê where

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1897



�E ¼ �r�U , Ê ¼ �rÛ ,

and �U and Û solve respectively

D�U ¼ 1� q, DÛ ¼ e
�UþÛ � 1: (3.1)

We will assume for convenience, and without loss of generality, that �U has zero mean
over the torus: ð

T
d

�Udx ¼ 0:

Notice that in this way U :¼ �U þ Û solves

DU ¼ eU � q:

The remainder of this section is devoted to the study of Eq. (3.1). We consider the
existence and regularity of solutions as well as their stability with respect to the density
q. We work under the assumption q 2 L1ðTdÞ (hence also in L

dþ2
d ðTdÞ), since later we

will work with solutions of (1.3) that have this degree of integrability.

3.2. Regularity estimates on �U and Û

In this section we prove some a priori regularity estimates on the singular and regular
parts of the potential U ¼ �U þ Û : Our aim is to prove the following proposition.

Proposition 3.1 (Regularity estimates on �U and Û). Let d¼ 2, 3. Let h 2 L1ðTdÞ. Then
there exist unique �U 2 W1, 2ðTdÞ with zero mean and Û 2 W1, 2ðTdÞ satisfying

D�U ¼ 1� h, DÛ ¼ e
�UþÛ � 1:

Moreover we have the following estimates: for some constant Ca, d > 0,

jj�U jjC0, aðTdÞ � Ca, d 1þ jjhjj
L
dþ2
d ðTdÞ

� �
, a 2

( ð0, 1Þ if d ¼ 2

ð0, 1
5

i
if d ¼ 3,

jj�U jjC1, aðTdÞ � Ca, d 1þ jjhjjL1ðTdÞ
� �

, a 2 ð0, 1Þ,

jjÛ jjC1, aðTdÞ � Ca, d exp

�
Ca, d 1þ jjhjj

L
dþ2
d ðTdÞ

� ��
, a 2 ð0, 1Þ,

jjÛ jjC2, aðTdÞ � Ca, d exp exp

�
Ca, d 1þ jjhjj

L
dþ2
d ðTdÞ

� ��
, a 2

( ð0, 1Þ if d ¼ 2

ð0, 1
5

i
if d ¼ 3:

The existence of a unique solution �U 2 W1, 2ðTdÞ for h 2 L2ðTdÞ 	 L1ðTdÞ is well-
known—see for example [22, Chapter 6]. In the following lemma, we recall some stand-
ard elliptic regularity estimates for this solution, that follow from Calder�on-Zygmund
estimates for the Laplacian [23, Sec. 9.4], and Sobolev inequalities.

Lemma 3.2. Let �U 2 �H satisfy

D�U ¼ h:
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i. If h 2 L
dþ2
d ðTdÞ, then for all a 2 ð0, 1Þ (if d ¼ 2) or a 2 ð0, 15� (if d ¼ 3) there

exists a constant Ca, d > 0 such that

jj�U jjC0, aðTdÞ � Ca, d 1þ jjhjj
L
dþ2
d ðTdÞ

� �
:

ii. If h 2 L1ðTdÞ, then for any a 2 ð0, 1Þ, there exists a constant Ca, d such that

jj�U jjC1, aðTdÞ � Ca, d jjhjjL1ðTdÞ:

In order to prove estimates on the VPME equation (1.3), we would ideally like to have
good control of the regularity of the electric field. Unfortunately the estimates in
Lemma 3.2 are not strong enough to provide Lipschitz regularity for r�U as we would
like. However, a log-Lipschitz estimate is available. This well-known result is proved for
instance in [24, Lemma 8.1] for the case where the spatial domain is R2: For complete-
ness we briefly recall the proof below for general d.

Lemma 3.3 (Log-Lipschitz regularity of �E). Let �U be a solution of

D�U ¼ h

for h 2 L1ðTdÞ. Then �E :¼ �r�U satisfies

j�EðxÞ � �EðyÞj � CdjjhjjL1jx� yj 1þ log

ffiffiffi
d

p

2jx � yj

 ! !
: (3.2)

To prove this lemma, we use the representation of �E in terms of the Coulomb kernel
K ¼ �rG, where G satisfies (1.2). We will need some information about the regularity
properties of K. The following result shows that, near the singularity, the Coulomb ker-
nel on the torus is comparable to the Coulomb kernel for the whole space. For a proof,
see [25] or [26, Lemma 2.1].

Lemma 3.4. Let G denote the Green’s function for the negative Laplacian on the torus:

�DG ¼ d0 � 1: (3.3)

Then G is a smooth function other than at zero: G 2 C1ðTd n f0gÞ. Moreover, on the
ball B1=4ð0Þ of radius 1/4 and centred at zero, G can be decomposed into the following
form:

GðxÞ ¼
� 1
2p

log jxj þ G0ðxÞ d ¼ 2

1

jSd�1jjxjd�2 þ G0ðxÞ d � 3,

8>><
>>:

where G0 2 C1ðB1=4ð0ÞÞ is a smooth function, and jSd�1j denotes the surface area of the
unit sphere in dimension d.

Proof of Lemma 3.3. We use the representation of �E using the Coulomb kernel: observe
that

�E ¼ K � h
where K ¼ �rG is the Coulomb kernel on the torus, with G defined by (3.3). Thus
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j�EðxÞ � �EðyÞj ¼
ð
T
d
Kðx � zÞ � Kðy� zÞ� �

hðzÞdz
				

				: (3.4)

By Lemma 3.4, on the ball B1=4ð0Þ the kernel K has the representation

KðxÞ ¼ �Cd
x

jxjd
þ K0ðxÞ

for some K0 2 C1ðTdÞ: In particular note that K 2 L1ðTdÞ and so

j�EðxÞ � �EðyÞj � 2jjKjjL1ðTdÞjjhjjL1ðTdÞ:

Therefore, it suffices to prove the estimate (3.2) for small values of jx � yj:
We evaluate the integral (3.4) by identifying the torus T

d with the cube x þQd: We
then divide the cube into a region close to the singularity of Kðx� zÞ and region far
from the singularity. Define the regions

A1 ¼ fz 2 xþQd : jx� zj � 2jx� yjg, A2 ¼ fz 2 xþQd : 2jx � yj � jx � zjg:
Then let

Ii :¼
ð
z2Ai

Kðx � zÞ � Kðy� zÞ� �
hðzÞdz:

We now assume that jx � yj � 1
12 : This is chosen so that for all z 2 A1,

jx� zj � 2jx� yj � 1
4
, jy� zj � 3jx � yj � 1

4
:

Then I1 can be bounded in the following way:

I1 � Cd

ð
z2A1

x � z

jx � zjd
� y� z

jy� zjd

 �

hðzÞdz
					

					þ
ð
z2A1

jK0ðx� zÞ � K0ðy� zÞjjhðzÞjdz:

For the second term, we note that, for all t 2 ½0, 1�,

jx� z þ tðy � xÞj � ð2þ tÞjx � yj � 1
4
,

that is, the line segment ð1� tÞx þ ty� z is contained in the ball B1=4ð0Þ, on which K0

is a C1 function. Thus

jK0ðx� zÞ � K0ðy� zÞj � jjrK0jjL1ðB1=4ð0ÞÞjx� yj:
The second term is therefore bounded byð

z2A1

jK0ðx � zÞ � K0ðy� zÞjjhðzÞjdz � CK jjhjjL1ðTdÞjx� yj:

We bound the first term by integrating over the singularity:
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ð
z2A1

x � z

jx � zjd �
y� z

jy� zjd

 �

hðzÞdz
					

					 � jjhjjL1ðTdÞ

ð
z2A1

jx � zj�ðd�1Þdz þ
ð
z2A1

jy� zj�ðd�1Þdz
� �

� jjhjjL1ðTdÞ

ð
juj�2jx�yj

juj�ðd�1Þduþ
ð
juj�3jx�yj

juj�ðd�1Þdu

 !

� CjjhjjL1ðTdÞjx � yj:

On A2, we use the derivative of K. By Lemma 3.4, we have the estimate

jrKðxÞj � Cdjxj�d þ jjrK0jjL1ðB1=4ð0ÞÞ x 2 B1=4ð0Þ
jjrKjjL1ðBc

1=4
ð0ÞÞ x 62 B1=4ð0Þ:

8<
:

Consider the straight line segment ½ð1� tÞx þ ty� z�t2½0, 1� connecting the points x–z
and y–z. Observe that, since jx � zj > 2jx � yj, on this line segment

jð1� tÞxþ ty� zj � jx � zj � tjx � yj � 1� t
2

� �
jx � zj � 1

2
jx � zj:

Thus the derivative can be bounded by

jrKðxÞj � Cd 1þ jx� zj�d
� �

:

It follows that

jKðx� zÞ � Kðy� zÞj � Cd 1þ jx � zj�d
� �

jx � yj:
Therefore

I2 � CdjjhjjL1ðTdÞjx� yj
ð
z2A2

1þ jx � zj�d
� �

dz

� CdjjhjjL1ðTdÞjx� yj 1þ
ð ffiffiffi

d
p

2
� juj � 2jx � yj

juj�ddz

0
@

1
A

� CdjjhjjL1ðTdÞjx� yj 1� log
2jx� yjffiffiffi

d
p

� �
:

Altogether we have proved that

�EðxÞ � �EðyÞj j � CdjjhjjL1ðTdÞjx� y 1� log
2jx� yjffiffiffi

d
p

� �
,

				
which concludes the proof. w

3.3. Existence and regularity of Û

In this section we will prove the existence of Û and some useful regularity estimates.
We note that the proposition below holds in any dimension d.
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Proposition 3.5 (Existence and H€older regularity of Û ). Assume that

jjr�U jjL2ðTdÞ þ jj�U jjL1ðTdÞ � M1: (3.5)

Then the equation

DÛ ¼ eð�UþÛ Þ � 1 on T
d (3.6)

has a unique solution in W1, 2ðTdÞ. Furthermore, for any a 2 ð0, 1Þ this solution satisfies

jjÛ jjC1, aðTdÞ � C 1þ e2M1ð Þ:
If in addition, for some a 2 ð0, 1Þ, �U 2 C0, aðTdÞ, with

jj�U jjC0, aðTdÞ � M2,

then Û 2 C2, aðTdÞ with
jjÛ jjC2, aðTdÞ � C exp C M1 þ ð1þ e2M1Þ

� 
� �
M2 þ ð1þ e2M1Þ
� 


:

Proof. We prove existence of Û by finding a minimiser for the functional

h 7!E h½ � :¼
ð
T
d

1
2
jrhj2 þ ðe�Uþh � hÞdx

among all periodic functions h 2 W1, 2ðTdÞ: Indeed (3.6) is the Euler-Lagrange equation
of the above functional.
Notice that since E½h� is a strictly convex functional, solutions of the Euler-Lagrange

equation are minimisers and the minimiser is unique. Let us now prove existence of a
minimiser using the direct method of Calculus of Variations.
Consider a minimising sequence hk, that is

E hk½ � ! inf
h
E h½ � ¼: a:

We then need to prove that hk is uniformly bounded in W1, 2ðTdÞ and that the func-
tional E½h� is lower semicontinuous.
Observe that, by choosing h ¼ ��U , we get

a � E ��U½ � ¼
ð
T
d

1
2
jr�U j2 þ 1þ �Uð Þdx

Using the L1 \W1, 2ðTdÞ bound (3.5) for �U , we deduce that

a � 1
2
M2

1 þ ð1þM1Þ:

Thus, for sufficiently large k,

E hk½ � � Cð1þM2
1Þ ¼: C1: (3.7)

We observe that

e
�Uþs � s ¼ e

�U es � s � e�M1es � s � jsj � C2,

thus,
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ð
T
d
e
�Uþhk � hkdx �

ð
T
d
jhkj � C2dx: (3.8)

By Eqs. (3.7) and (3.8),ð
T
d

1
2
rhkj2 þ ðjhkj � C2Þdx � E hk½ � � aþ 1 � C1 þ 1:
		

Therefore, by Poincar�e inequality we obtain that hk are equibounded in W1, 2ðTdÞ :
jjrhkjjL2ðTdÞ þ jjhkjjL2ðTdÞ � C3:

Hence, by weak compactness of W1, 2ðTdÞ, up to a subsequence hk converges weakly in
W1, 2ðTdÞ to a function Û :

hk * Û in W1, 2ðTdÞ:
Since W1, 2ðTdÞ is compactly embedded in L2ðTdÞ, we also have strong convergence:

hk ! Û in L2ðTdÞ:
Then, up to a further subsequence, we have

hk ! Û a:e:

We claim that Û is a minimiser. Indeed, by the weak convergence in W1, 2ðTdÞ and by
strong convergence in L2ðTdÞ (which implies strong convergence in L1ðTdÞ), and by the
lower semicontinuity of the norm under weak convergence we have that:

liminf
k!1

ð
T
d

1
2
jrhkj2dx �

ð
T
d

1
2
jrÛ j2dx,

lim
k!1

�
ð
T
d
hkdx ¼ �

ð
T
d
Ûdx:

Also, by Fatou’s Lemma,

liminf
k!1

ð
T
d
e
�Uþhkdx �

ð
T
d
liminf
k!1

e
�Uþhkdx ¼

ð
T
d
e
�UþÛdx:

In conclusion we obtained that

a ¼ lim
k!1

E hk½ � � E Û½ �,

which proves that Û is a minimiser. We now need to check that Û solves the Euler-
Lagrange equations. First, observe that

C1 � a ¼ E Û½ � ¼
ð
T
d

1
2
jrÛ j2 þ e

�U eÛ � Û
� 


dx,

and therefore rÛ 2 L2ðTdÞ, Û 2 L1ðTdÞ, e�U 2 L1ðTdÞ, and eÛ 2 L1ðTdÞ: Let / 2
C1ðTdÞ, g > 0: By minimality of Û ,

E Û½ � � E Û þ g/
� �

:

Then,
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0 � E Û þ g/
� �

� E Û½ �
g

¼ 1
g

ð
T
d

1
2
jrÛ þ gr/j2 � 1

2
jrÛ j2dx

� �

þ 1
g

�ð
T
d
e
�U eÛþg/ � e

�U eÛdx

�
þ 1
g

�ð
T
d
� ðÛ þ g/Þ þ Ûdx

�

¼
ð
T
d
rÛ � r/þ gjr/j2

2
dxþ

ð
T
d
e
�UþÛ eg/ � 1

g
dx �

ð
T
d
/dx:

In the limit as g goes to 0 we obtain

0 � lim
g!0

E Û þ g/
� �

� E Û½ �
g

¼
ð
T
d
rÛ � r/dx þ

ð
T
d
e
�UþÛ/dx�

ð
T
d
/dx for all /

2 C1ðTdÞ:
Since the latter inequality is valid both for / and for �/, we have that

0 ¼
ð
T
d
rÛ � r/þ e

�UþÛ � 1
� 


/dx ¼
ð
T
d
� DÛ /þ e

�UþÛ � 1
� 


/dx for all /

2 C1ðTdÞ: (3.9)

By the arbitrariness of /, (3.9) implies that

DÛ ¼ e
�UþÛ � 1 on T

d: (3.10)

We now prove the desired estimates on Û : Our goal is to control jjÛ jjC2, aðTdÞ: To do
that, it is enough to prove that

jjÛ jjC0, aðTdÞ � C: (3.11)

Indeed, since �U 2 C0, a, then by Eq. (3.10) we will have DÛ 2 C0, a and, thanks to
Schauder’s estimates [23, Chapter 4], this implies that Û 2 C2, a: To obtain (3.11), we
will use a priori estimates on the equation satisfied by Û : For this we will need suitable
LpðTdÞ estimates on eU, which we will derive via energy estimates, that is, by using
appropriate test functions in (3.9).
In order to give a meaning to Eq. (3.9), we need / to be at least in L1 \W1, 2ðTdÞ:

We will now build a test function in L1 \W1, 2ðTdÞ that will allow us to prove a regu-
larity estimate on Û : Let us consider the truncated function

Û k :¼ ðÛ�kÞ, for all k 2 N:

Since eÛ k 2 L1ðTdÞ and rÛ 2 L2ðTdÞ,
reÛ k ¼ eÛ krÛ k ¼ eÛ krÛvfÛ<kg 2 L2ðTdÞ;

thus eÛ k 2 L1 \W1, 2ðTdÞ, and we can use it as a test function in Eq. (3.9):

0 ¼
ð
T
d
rÛ � reÛ kdxþ

ð
T
d
e
�U eðÛþÛ kÞ � eÛ k

� 

dx

¼
ð
T
d
rÛ � eÛ krÛvfÛ<kgdxþ

ð
T
d
e
�U eðÛþÛ kÞ � eÛ k

� 

dx

¼
ð
T
d
jrÛ j2eÛ kvfÛ<kgdx þ

ð
T
d
e
�U eðÛþÛ kÞdx�

ð
T
d
eÛ kdx:

(3.12)
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Since
Ð
T
d jrÛ j2eÛ kvfÛ<kgdx � 0, and C0 :¼ e�M1 � e�U � eM1 , (3.12) implies that

C0

ð
T
d
eÛþÛ k �

ð
T
d
eÛ k :

By definition of Û k we have that eÛ k is increasing and converges monotonically to eÛ ,
hence by the Monotone Convergence Theorem

C0

ð
T
d
eÛþÛ ¼ C0

ð
T
d
e2Û �

ð
T
d
eÛ ,

and we obtain that if eÛ 2 L1ðTdÞ, then eÛ 2 L2ðTdÞ: In particular, since C0 ¼ e�M1 ,

jjeÛ jjL2ðTdÞ � eM1=2
ð
T
d
eÛ

� �1=2

: (3.13)

Since Û is a solution of (3.10), we have

0 ¼
ð
T
d
DÛdx ¼

ð
T
d
eU � 1dx:

Since U ¼ �U þ Û , it follows that

1 ¼
ð
T
d
e
�UþÛdx � e�M1

ð
T
d
eÛdx:

Thus

jjeÛ jjL1ðTdÞ ¼
ð
T
d
eÛdx � eM1 ,

and hence (3.13) implies that

jjeÛ jjL2ðTdÞ � eM1 : (3.14)

If we now use the function e2Û k as test function in Eq. (3.9), we obtain

0 ¼
ð
T
d
rÛ � re2Û kdxþ

ð
T
d
e
�U eÛþ2Û ke2Û k

� 

dx

¼
ð
T
d
2rÛ � e2Û krÛvfÛ<kgdxþ

ð
T
d
e
�U eÛþ2Û k � e2Û k

� 

dx

¼ 2
ð
T
d
jrÛ j2e2Û kvfÛ<kgdxþ

ð
T
d
e
�U eÛþ2Û kdx�

ð
T
d
e2Û kdx:

Thus, as in the previous case,

C0

ð
T
d
eÛþ2Û kdx �

ð
T
d
e2Û kdx,

and by Monotone Convergence as k ! 1, recalling (3.14) we get

C0

ð
T
d
e3Û �

ð
T
d
e2Û � e2M1 :

Hence

jjeÛ jj3L3ðTdÞ � e3M1 :
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Iterating n times, with n > d, we obtain

jjeÛ jjLnðTdÞ � eM1

and hence

DÛ ¼ e
�UþÛ � 1 2 LnðTdÞ,

with

jje�UþÛ � 1jjLnðTdÞ � 1þ e2M1 :

By standard regularity estimates for the Poisson equation [23, Sec. 9.4],

jjÛ jjW2, nðTdÞ � C 1þ e2M1ð Þ:
Using Sobolev embedding for n sufficiently large, we deduce that for any a 2 ð0, 1Þ, Û 2
C1, aðTdÞ, with

jjÛ jjC1, aðTdÞ � C 1þ e2M1ð Þ:
Then, if

jj�U jjC0, aðTdÞ � M2,

we have

jjUjjC0, aðTdÞ � M2 þ C 1þ e2M1ð Þ,
and so

jjeU jjC0, aðTdÞ � C exp C M1 þ 1þ e2M1ð Þ� 
� �
M2 þ 1þ e2M1ð Þ� 


:

Thus by Schauder estimates [23, Chapter 4]

jjÛ jjC2, aðTdÞ � C jjÛ jjL1ðTdÞ þ jjeU � 1jjC0, aðTdÞ
� �

� C exp C M1 þ 1þ e2M1ð Þ� 
� �
M2 þ 1þ eM1ð Þ� 


:

w

3.4. Stability with respect to the charge density

Next we wish to study the stability of the electric field rU with respect to the charge
density q. To measure stability we shall use the 2-Wasserstein distance.

3.4.1. Wasserstein distances
To define the Wasserstein (or Monge-Kantorovich) distances, we first define a coupling
between two measures. Let ðX,FÞ be a measurable space, and let l, � 2 PðXÞ be prob-
ability measures. A coupling is a measure on the product space, p 2 PðX� XÞ, which
has marginals l and �. This means that for all A 2 F ,

pðA� XÞ ¼ lðAÞ, pðX� AÞ ¼ �ðAÞ:
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We denote the set of couplings of l and � by Pðl, �Þ: We now give the definition of the
Wasserstein distances. For further background on optimal transport distances, see [27].

Definition 3.6 (Wasserstein distances). Let p 2 ½1,1Þ: Let ðX, dÞ be a Polish space and
let F be its Borel r-algebra. Let l, � be Borel measures satisfyingð

X
dðx, x0ÞplðdxÞ,

ð
X
dðx, x0Þp�ðdxÞ < 1

for some x0. The Wasserstein distance of order p between l and � is defined by

Wp
pðl, �Þ :¼ inf

p2Pðl, �Þ

ð
X�X

dðx, yÞppðdxdyÞ:

In this paper, we will use the case X ¼ T
d � R

d: The distance d is given by

d ðx1, v1Þ, ðx2, v2Þð Þ ¼ jx1 � x2j þ jv1 � v2j,
where for the x coordinate we use the distance on the torus, defined by (2.2).
The main result of Sec. 3.4 is the following proposition. Again this holds in

every dimension.

Proposition 3.7. For each i¼ 1, 2, let �Ui be a solution of

D�Ui ¼ hi � 1,

where hi 2 L1 \ Lðdþ2Þ=dðTdÞ. Then
jjr�U 1 �r�U 2jj2L2ðTdÞ � max

i
jjhijjL1ðTdÞ W2

2ðh1, h2Þ: (3.15)

In addition, let Û i be a solution of

DÛ i ¼ e
�UiþÛ i � 1:

Then

jjrÛ 1 �rÛ 2jj2L2ðTdÞ � exp exp ½Cdð1þmax
i jjhijjLðdþ2Þ=dðTdÞÞ�max

i
jjhijjL1ðTdÞ W2

2ðh1, h2Þ:
(3.16)

For the Poisson part, we will use a stability estimate, with respect to the Wasserstein
distance, for Poisson’s equation on the torus. A proof may be found in [28]; see also
[11] for the case where x 2 R

d:

Lemma 3.8. For each i¼ 1, 2, let �Ui be a solution of

D�Ui ¼ hi � 1,

where hi 2 L1ðTdÞ. Then
jjr�U 1 �r�U 2jj2L2ðTdÞ � max

i
jjhijjL1ðTdÞ W2

2ðh1, h2Þ:

For the nonlinear part we derive a suitable energy estimate.
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Lemma 3.9. For each i¼ 1, 2, let Û i 2 W1, 2 \ L1ðTdÞ be a solution of

DÛ i ¼ e
�UiþÛ i � 1, (3.17)

for some given potentials �Ui 2 L1ðTdÞ. Then
jjrÛ 1 �rÛ 2jj2L2ðTdÞ � Ĉjj�U 1 � �U 2jj2L2ðTdÞ, (3.18)

where Ĉ depends on the L1 norms of Û i and �Ui. More precisely, Ĉ can be chosen such
that

Ĉ � exp Cd max
i

jj�UijjL1ðTdÞ þmax
i

jjÛ ijjL1ðTdÞ
� �
 �

,

for some sufficiently large dimensional constant Cd.

Proof. For convenience, we define the constant

A :¼ exp max
i

jj�UijjL1ðTdÞ þmax
i

jjÛ ijjL1ðTdÞ

 �

which will be fixed throughout the proof.
Subtracting the two equations (3.17), we deduce that Û 1 � Û 2 satisfies

DðÛ 1 � Û 2Þ ¼ e
�U 1þÛ 1 � e

�U 2þÛ 2 ¼ e
�U 1 eÛ 1 � eÛ 2

� 

þ eÛ 2 e

�U 1 � e
�U 2ð Þ: (3.19)

The weak form of (3.19) extends by density to test functions in L1 \W1, 2ðTdÞ: Since
Û 1 � Û 2 has this regularity by assumption, it is an admissible test function. Hence

�
ð
T
d
rÛ 1 �rÛ 2

		 		2dx ¼
ð
T
d
e
�U 1 eÛ 1 � eÛ 2

� 

ðÛ 1 � Û 2Þdx

þ
ð
T
d
eÛ 2 e

�U 1 � e
�U 2ð ÞðÛ 1 � Û 2Þdx ¼: I1 þ I2:

(3.20)

Observe that ðex � eyÞðx� yÞ is always non-negative. Furthermore, by the Mean
Value Theorem applied to the function x 7! ex, we have a lower bound

ðex � eyÞðx � yÞ � eminfx, ygðx � yÞ2:
We use this to bound I1 from below:

I1 � e�jj�U 1jjL1ðTd Þ�maxijjÛ ijjL1ðTd Þ jjÛ 1 � Û 2jj2L2ðTdÞ � A�1jjÛ 1 � Û 2jj2L2ðTdÞ: (3.21)

For I2 we use the fact that, again by the Mean Value Theorem,

jex � eyj � emaxfx, ygjx � yj:
Therefore

I2 � ejjÛ 2jjL1ðTdÞþmaxijj�UijjL1ðTdÞ

ð
T
d
j�U 1 � �U 2jjÛ 1 � Û 2jdx � A

ð
T
d
j�U 1 � �U 2jjÛ 1 � Û 2jdx:

By the Cauchy-Schwarz inequality, for any choice of a > 0

I2 � A ajj�U 1 � �U 2jj2L2ðTdÞ þ
1
4a

jjÛ 1 � Û 2jj2L2ðTdÞ

� �
: (3.22)
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Substituting (3.21) and (3.22) into (3.20), we obtainð
T
d
rÛ 1 �rÛ 2

		 		2dx � A ajj�U 1 � �U 2jj2L2ðTdÞ þ
1
4a

jjÛ 1 � Û 2jj2L2ðTdÞ

� �

�A�1jjÛ 1 � Û 2jj2L2ðTdÞ: (3.23)

We wish to choose a as small as possible such that

A
4a

� A�1 � 0:

Thus the optimal choice is a ¼ A2

4 : Substituting this into (3.23) givesð
T
d
rÛ 1 �rÛ 2

		 		2dx � 1
4
A3jj�U 1 � �U 2jj2L2ðTdÞ:

This completes the proof of (3.18). w

Proof of Proposition 3.7. Estimate (3.15) follows directly from Lemma 3.8. The only
remaining task is to prove (3.16). We want to apply Lemma 3.9, which requires L1ðTdÞ
estimates on �Ui and Û i (i¼ 1, 2). By Proposition 3.1,

jj�UijjL1ðTdÞ � Cd 1þ jjhijj
L
dþ2
d ðTdÞ

� �
, jjÛ ijjL1ðTdÞ � exp Cd 1þ jjhijj

L
dþ2
d ðTdÞ

� �� �
:

Hence, by Lemma 3.9, we obtain

jjrÛ 1 �rÛ 2jj2L2ðTdÞ � Cjj�U 1 � �U 2jj2L2ðTdÞ,

with

C � exp exp Cd 1þmax
i

jjhijj
L
dþ2
d ðTdÞ

� �h i
:

The Poincar�e inequality for zero mean functions implies that

jjrÛ 1 �rÛ 2jj2L2ðTdÞ � Cjj�U 1 � �U 2jj2L2ðTdÞ � Cjjr�U 1 �r�U 2jj2L2ðTdÞ:

Hence by (3.15),

jjrÛ 1 �rÛ 2jj2L2ðTdÞ � Cmax
i

jjhijjL1ðTdÞ W2
2ðh1, h2Þ,

where C may be chosen to satisfy

C � exp exp Cd 1þmax
i

jjhijj
L
dþ2
d ðTdÞ

� �� �
for some suitably large Cd. w

4. Uniqueness for solutions with bounded density

This section focuses on the uniqueness part of Theorem 2.1. The aim is to prove the
following theorem, concerning the uniqueness of solutions for the VPME system under
the condition that the mass density qf is bounded in L1ðTdÞ:
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Theorem 4.1 (Uniqueness for solutions with bounded density). Let d¼ 2, 3. Let f0 2
PðTd � R

dÞ with qf0 2 L1ðTdÞ. Fix a final time T> 0. Then there exists at most one
solution f 2 Cð½0,T�;PðTd � R

dÞÞ of (1.3) with initial datum f0 such
that qf 2 L1ð½0,T�; L1ðTdÞÞ:
The proof of this result is based on a stability estimate on solutions of the VPME sys-

tem (1.3) with respect to the initial datum. This stability estimate is quantified using
Wasserstein distances.

4.1. Strong-strong stability

In this section, we prove a quantitative stability estimate in W2 between solutions with
bounded density.1 To do this we will make use of the stability estimates for the electric
field that we have proved in Sec. 3. Following the decomposition (3.1), it is useful to
rewrite (1.3) in the form

ðVPMEÞ :¼

@tf þ v � rxf þ ð�E þ ÊÞ � rvf ¼ 0,
�E ¼ �r�U , Ê ¼ �rÛ ,

D�U ¼ 1� qf ,

DÛ ¼ e�UþÛ � 1,
qf ¼

Ð
R

d f dv
f0ðx, vÞ � 0,

Ð
T
d�R

d f0ðx, vÞ dx dv ¼ 1:

8>>>>>>>><
>>>>>>>>:

The aim is to prove the following estimate between two solutions of VPME (1.3) that
have bounded density.

Proposition 4.2 (Stability for solutions with bounded density). For i¼ 1, 2, let fi be solu-
tions of (1.3) satisfying for some constant M and all t 2 ½0,T�,

q fiðtÞ
� � � M: (4.1)

Then there exists a constant C, depending on M, such that, for all t 2 ½0,T�,

W2 f1ðtÞ, f2ðtÞ
� 
2 �

de
4
exp log

4W2 f1ð0Þ, f2ð0Þ
� 
2

de
e�Ct

 !
if t � t0

max
d
4
,W2 f1ð0Þ, f2ð0Þ

� 
2� �
eCðt�t0Þ if t > t0,

8>>>><
>>>>:

where the time t0 is defined by

t0 ¼ t0ðW2 f1ð0Þ, f2ð0Þ
� 
Þ ¼ inf t � 0 :

de
4
exp log

4W2 f1ð0Þ, f2ð0Þ
� 
2

de
e�Ct

 !
>

d
4

( )
:

Theorem 4.1 then follows from this estimate.

1Such estimates are said to be of strong-strong-type because we are requiring that both densities belong to L1:
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Proof. We will prove Proposition 4.2 by means of a Gronwall type estimate. To do this,
we will first consider the evolution of particular specially constructed couplings pt 2
Pðf1ðtÞ, f2ðtÞÞ: First, observe that fi can be represented as the pushforward of the initial
datum fið0Þ along the characteristic flow associated to (1.3). That is, given fi, consider
for each ðx, vÞ 2 T

d � R
d the system of ODEs(

_X
ðiÞ
x, v ¼ VðiÞ

x, v

_V
ðiÞ
x, v ¼ EiðXðiÞ

x, vÞ
ðXðiÞ

x, vð0Þ,VðiÞ
x, vð0ÞÞ ¼ ðx, vÞ:

(4.2)

where Ei is the electric field induced by fi:

Ei ¼ �rUi, DUi ¼ eUi � q fi½ �:
We again use the decomposition Ei ¼ Êi þ �Ei: Since q½fi� 2 L1ðTdÞ by assumption
(4.1), Lemma 3.3 implies that �Ei has log-Lipschitz regularity. Since L1ðTdÞ 
 L

dþ2
d ðTdÞ,

we have q½fi� 2 L1 \ L
dþ2
d ðTdÞ: Thus we may apply Proposition 3.1 to deduce Lipschitz

regularity of Êi: Overall this implies that Ei has log-Lipschitz regularity, which is suffi-
cient to guarantee the existence of a unique solution to the system (4.2). The uniqueness
of the flow implies that the linear Vlasov equation

@tg þ v � rxg þ Ei � rvg ¼ 0, gjt¼0 ¼ fið0Þ (4.3)

has a unique measure-valued solution g (see for instance [29, Theorem 3.1]). This solu-
tion can be represented as the pushforward of the initial data along the characteristic
flow, which means that gt satisfiesð

T
d�R

d
/ðx, vÞgtðdxdvÞ ¼

ð
T
d�R

d
/ XðiÞ

x, v,V
ðiÞ
x, v

� �
fið0, x, vÞdxdv (4.4)

for all / 2 CbðTd � R
dÞ: Since fi is also a solution of (4.3), and the solution is unique,

it follows that g ¼ fi: We deduce that fi has the representation (4.4). Note that here we
are not yet asserting any nonlinear uniqueness, because we already fixed Ei to be the
electric field corresponding to fi.
We use the representation above to construct pt. First, fix an arbitrary initial coupling

p0 2 Pðf1ð0Þ, f2ð0ÞÞ: We then build a coupling pt for which each marginal evolves along
the appropriate characteristic flow. To be precise, we define pt to be the measure such
that, for all / 2 CbððTd � R

dÞ2Þ,ð
ðTd�R

dÞ2
/ðx, v, y,wÞdptðx, v, y,wÞ ¼

ð
T
d�R

d
/ Xð1Þ

x, v,V
ð1Þ
x, v ,X

ð2Þ
y,w,V

ð2Þ
y,w

� �
dp0ðx, v, y,wÞ: (4.5)

By checking the marginals:
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ð
ðTd�R

dÞ2
/ðxi, viÞdptðx1, v1, x2, v2Þ ¼

ð
ðTd�R

dÞ2
/ XðiÞ

xi, vi ,V
ðiÞ
xi , vi

� �
dp0ðx1, v1, x2, v2Þ

¼
ð
T
d�R

d
/ XðiÞ

xi, vi ,V
ðiÞ
xi, vi

� �
fið0, xi, viÞdxidvi

¼
ð
T
d�R

d
/ðx, vÞfiðt, x, vÞdxdv,

(4.6)

we see that the representation (4.4) implies that pt 2 Pðf1ðtÞ, f2ðtÞÞ for all t 2 ½0,T�:
We now consider the quantity

DðtÞ :¼
ð
jXð1Þ

t � Xð2Þ
t j2 þ jVð1Þ

t � Vð2Þ
t j2dp0: (4.7)

We have omitted the subscripts x, v, y,w in order to lighten the notation. Since by defin-
ition (4.5) we have

DðtÞ ¼
ð
ðTd�R

dÞ2
jx� yj2 þ jv� wj2dpt ,

it follows from Definition 3.6 that

W2
2 f1ðtÞ, f2ðtÞ
� 
 � CDðtÞ: (4.8)

Moreover, since p0 was arbitrary, we have

W2
2 f1ð0Þ, f2ð0Þ
� 
 ¼ inf

p0
Dð0Þ: (4.9)

We will therefore focus next on controlling the growth of D(t). This amounts to per-
forming a Gronwall estimate along the trajectories of the characteristic flow. We give
the details in Lemma 4.3 below. We obtain a bound

DðtÞ �
de
4
exp log

4Dð0Þ
de

e�Ct

� �
if t � t0

max
d
4
,Dð0Þ

� �
eCðt�t0Þ if t > t0,

8>>><
>>>:

where t0 is defined by

t0 ¼ t0ðDð0ÞÞ ¼ inf t � 0 :
de
4
exp log

4Dð0Þ
de

e�Ct

� �
>

d
4

� �
: (4.10)

Observe that t0 is decreasing as a function of D(0). From (4.8) it follows that

W2
2 f1ðtÞ, f2ðtÞ
� 
 �

de
4
exp log

4Dð0Þ
de

e�Ct

� �
if t � t0

max
d
4
,Dð0Þ

� �
eCðt�t0Þ if t > t0,

8>>><
>>>:

Finally, taking infimum over p0 and applying (4.9) concludes the proof. w
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Lemma 4.3 (Control of D). Let D be defined by (4.7). Then

DðtÞ �
de
4
exp log

4Dð0Þ
de

e�Ct

� �
if t � t0

max
d
4
,Dð0Þ

� �
eCðt�t0Þ if t > t0,

8>>><
>>>:

where C depends on M and t0 is defined by (4.10).

Proof. Differentiating with respect to t gives

_DðtÞ ¼ 2
ð
ðTd�R

dÞ2
ðXð1Þ

t � Xð2Þ
t Þ � ðVð1Þ

t � Vð2Þ
t Þ þ ðVð1Þ

t � Vð2Þ
t Þ � E1ðXð1Þ

t Þ � E2ðXð2Þ
t Þ

h i
dp0

(4.11)

We split the electric field into four parts:

E1ðXð1Þ
t Þ � E2ðXð2Þ

t Þ ¼ �E1ðXð1Þ
t Þ � �E1ðXð2Þ

t Þ
h i

þ �E1ðXð2Þ
t Þ � �E2ðXð2Þ

t Þ
h i

þ Ê1ðXð1Þ
t Þ � Ê1ðXð2Þ

t Þ
h i

þ Ê1ðXð2Þ
t Þ � Ê2ðXð2Þ

t Þ
h i

:

Applying H€older’s inequality to (4.11), we obtain

_D � Dþ 2
ffiffiffiffi
D

p X4
i¼1

I1=2i ,

where

I1 :¼
Ð
ðTd�R

dÞ2 j�E1ðXð1Þ
t Þ � �E1ðXð2Þ

t Þj2dp0, I2 :¼
Ð
ðTd�R

dÞ2 j�E1ðXð2Þ
t Þ � �E2ðXð2Þ

t Þj2dp0;
I3 :¼

Ð
ðTd�R

dÞ2 jÊ1ðXð1Þ
t Þ � Ê1ðXð2Þ

t Þj2dp0, I4 :¼
Ð
ðTd�R

dÞ2 jÊ1ðXð2Þ
t Þ � Ê2ðXð2Þ

t Þj2dp0:
(4.12)

We estimate the above terms in Lemmas 4.4–4.7 below. Altogether we obtain

_D �
CD 1þ log

4D
d

				
				

 !
if D <

d
4

CD if D � d
4
:

8>>><
>>>:

Therefore

DðtÞ � de
4
exp log

4Dð0Þ
de

e�Ct

� �

as long as DðtÞ � d
4 , which certainly holds as long as t < t0: For t > t0 we have the

alternative bound

DðtÞ � max
d
4
,Dð0Þ

� �
eCðt�t0Þ:

w
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Lemma 4.4 (Control of I1). Let I1 be defined as in (4.12). Then

I1 � CdðM þ 1Þ2HðDÞ,
where D is defined as in (4.7) and

HðxÞ :¼
x log 4x

e2d

� 
2 if x � d
4

d if x >
d
4
:

8>><
>>:

Proof. First we use the regularity estimate for �E1 from Lemma 3.3:

I1 � Cdjjq1 � 1jj2L1ðTdÞ

ð
ðTd�R

dÞ2
jXð1Þ

t � Xð2Þ
t j2 log

e
ffiffiffi
d

p

2jXð1Þ
t � Xð2Þ

t j

 !2

dp0

¼ Cdjjq1 � 1jj2L1ðTdÞ

ð
ðTd�R

dÞ2
jXð1Þ

t � Xð2Þ
t j2 log

4jXð1Þ
t � Xð2Þ

t j2
e2d

 !2

dp0:

The function

aðxÞ ¼ x log
4x
e2d

� �2

is concave on the set x 2 ½0, de4 �: Since XðiÞ
t 2 T

d, we have jXð1Þ
t � Xð2Þ

t j2 � d
4 : Note that

a0
d
4

� �
¼ � log e2ð2� log e2Þ ¼ 0;

hence the function H(x) defined in the statement is concave on R
þ, and

I1 � Cdjjq1 � 1jj2L1ðTdÞ

ð
ðTd�R

dÞ2
H ðjXð1Þ

t � Xð2Þ
t j2Þdp0:

Then, since p0 is a probability measure, we may apply Jensen’s inequality to deduce that

I1 � Cdjjq1 � 1jj2L1ðTdÞ H
ð
ðTd�R

dÞ2
jXð1Þ

t � Xð2Þ
t j2dp0

 !
� Cdjjq1 � 1jj2L1ðTdÞ HðDÞ:

w

Lemma 4.5 (Control of I2). Let I2 be defined as in (4.12). Then

I2 � M2D,

where D is defined as in (4.7).

Proof. From (4.6), for all / 2 CðTdÞ we haveð
ðTd�R

dÞ2
/ðXðiÞ

t Þdp0 ¼
ð
T
d�R

d
/ðxÞfiðt, x, vÞdxdv ¼

ð
T
d
/ðxÞqiðt, xÞdx: (4.13)

Thus
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I2 ¼
ð
T
d
j�E1ðxÞ � �E2ðxÞj2q2ðt, xÞdx � jjq2jjL1ðTdÞjj�E1 � �E2jj2L2ðTdÞ

¼ jjq2jjL1ðTdÞjjr�U 1 �r�U 2jj2L2ðTdÞ:

We use the stability estimate from Lemma 3.8 to control the difference between differ-
ent electric fields:

I2 � maxi jjqijj2L1ðTdÞ W2
2ðq1, q2Þ � maxi jjqijj2L1ðTdÞ D:

w

Lemma 4.6 (Control of I3). Let I3 be defined as in (4.12). Then

I3 � CM, d D,

where D is defined as in (4.7) and CM, d depends on M and d.

Proof. Observe that

I3 ¼
ð
ðTd�R

dÞ2
jÊ1ðXð1Þ

t Þ � Ê1ðXð2Þ
t Þj2dp0

�
ð
ðTd�R

dÞ2
jjÊ1jj2C1ðTdÞjXð1Þ

t � Xð2Þ
t j2dp0 � jjÛ 1jj2C2, aðTdÞD

for any a > 0: To this we apply the regularity estimate on Û 1 from Proposition 3.1
with a 2 Ad :

jjÛ 1jjC2, aðTdÞ � Ca, d exp exp Ca, d 1þ jjq1jjLdþ2
d ðTdÞ

� �� � � Ca,M, d,

since

jjqijjLdþ2
d ðTdÞ � jjqijjL1ðTdÞ � M:

Thus we have

I3 � CM, d D:

w

Lemma 4.7 (Control of I4). Let I4 be defined as in (4.12). Then

I4 � CM, d D,

where D is defined as in (4.7) and CM, d depends on M and d.

Proof. Using (4.13) again, we deduce that

I4 ¼
ð
T
d
jÊ1ðxÞ � Ê2ðxÞj2q2ðt, xÞdx

� jjq2jjL1ðTdÞjjÊ1 � Ê2jj2L2ðTdÞ ¼ jjq2jjL1ðTdÞjjrÛ 1 �rÛ 2jj2L2ðTdÞ:

To control the L2ðTdÞ distance between the electric fields we use the stability estimate
in Proposition 3.7:
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jjrÛ 1 �rÛ 2jj2L2ðTdÞ � exp exp Cd 1þmax
i

jjqijjLðdþ2Þ=dðTdÞ
� �h i

max
i jjqijjL1 W2

2ðq1, q2Þ:

Therefore

I4 � exp exp ½Cdð1þmax
i

jjqijjLðdþ2Þ=dðTdÞÞ�max
i

jjqijj2L1 W2
2ðq1, q2Þ

� exp exp ½Cdð1þmax
i

jjqijjLðdþ2Þ=dðTdÞÞ�max
i

jjqijj2L1 D � CM, d D:

w

5. Propagation of moments

In this section we prove an a priori estimate on classical solutions of the VPME system,
showing that velocity moments of sufficiently high order are propagated. At this stage,
the reader may look at all the computations in this section as a priori estimates for clas-
sical solutions that decay fast enough at infinity. More precisely, we shall prove uniform
moment propagation estimates for C1 compactly supported solutions, with bounds that
are independent of the smoothness of f and of the fact that f has compact support.
Then, in Sec. 6, we will perform the same estimates on a family of solutions of regu-

larised VPME systems where all the computations will be rigorous. Of course one could
have performed these estimates directly on the regularised systems. However this choice
simplifies the notation and highlights the main ideas.
Note that a posteriori, as a consequence of our main Theorem 2.1 and Remark 2.3,

C1 compactly supported solutions of VPME system (1.3) exist whenever the initial
datum is C1 and compactly supported.

Proposition 5.1. Let the dimension d¼ 2 or d¼ 3. Let 0 � f0 2 L1 \ L1ðTd � R
dÞ have

a finite energy and finite velocity moment of order m0 > d:

E f½ � � C0 < þ1,
ð
T
d�R

d
jvjm0 f0ðx, vÞdxdv ¼ M0 < þ1:

Let f be a C1 compactly supported solution of the VPME system (1.3). Then, for all
T > 0,

sup
0,T½ �

ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv � CðT,C0,M0,m0, jjf0jj1Þ:

Our approach is based on adapting known methods for the Vlasov-Poisson system
(1.1) to the VPME case. The methods differ according to the dimension d. In the two
dimensional case d¼ 2, we follow the strategy explained in [30, Sec. 4.3]. In the three
dimensional case, we adapt techniques by Pallard [18] and Chen and Chen [20].

5.1. Interpolation estimate

The following interpolation result allows quantities such as the mass density qf to be
estimated in terms of the velocity moments. We introduce the notation Mm for the
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moment of order m> 0:

MmðtÞ :¼
ð
T
d�R

d
jvjmf ðt, x, vÞdxdv: (5.1)

Let us start with a classical Lemma 5.2, that we prove for the convenience of the reader.

Lemma 5.2. Let g � 0 be a function in L1ðTd � R
dÞ. Assume that Mm as defined in

(5.1) is finite for some m > 0. For k 2 ½0,m�, consider the local velocity moments

lkðxÞ :¼
ð
R

d
jvjkgðx, vÞdv: (5.2)

There exists a constant Cd,m, k depending on m, k and d such that

jjlkjj
L
mþd
kþd ðTdÞ

� Cd,m, kjjgjj
m�k
mþd

L1ðTd�R
dÞjjlmjj

kþd
mþd

L1 :

Proof. Fix x 2 T
d and split the integral defining lk in (5.2) into a part close to zero and

a part far from zero. We obtain, for arbitrary R> 0,

lkðxÞ ¼
ð
jvj�R

jvjkgðx, vÞdvþ
ð
jvj>R

jvjkgðx, vÞdv �
ð
jvj�R

jvjkgðx, vÞdvþ Rk�m
ð
jvj>R

gðx, vÞjvjmdv

� jjgðx, �ÞjjL1ðRdÞ CdR
kþd þ Rk�mlmðxÞ,

where Cd is a dimension dependent constant. The optimal choice of R is

RðxÞ ¼ Cd,m, k
lmðxÞ

jjgðx, �ÞjjL1ðRdÞ

 !1=ðdþmÞ

which results in the estimate

lkðxÞ � Cd,m, kjjgðx, �Þjj
m�k
mþd

L1ðRdÞlmðxÞ
kþd
mþd � Cd,m, kjjgjj

m�k
mþd

L1ðRdÞlmðxÞ
kþd
mþd:

Thus

jjlkjj
L
mþd
kþd ðTdÞ

� Cd,m, kjjgjj
m�k
mþd

L1ðTd�R
dÞjjlmjj

kþd
mþd

L1 :

w

In particular, if a solution of the VPME system (1.3) has bounded energy, then its
mass density satisfies a certain Lp estimate.

Lemma 5.3. Let g � 0 satisfy, for some constant C0,

jjgjjL1ðTd�R
dÞ � C0, E g½ � � C0,

where E is the energy functional defined in (2.1). Then,ð
T
d�R

d
jvj2gdxdv � C1, (5.3)

for some constant C1 depending on C0 only. Moreover the mass density
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qgðxÞ :¼
ð
R

d
gðx, vÞdv

lies in Lðdþ2Þ=dðTdÞ with
jjqg jjLdþ2

d ðTdÞ � C2: (5.4)

for some constant C2 depending on C1 and d only.

Proof. Recall that

E g½ � :¼ 1
2

ð
T
d�R

d
jvj2gdxdvþ 1

2

ð
T
d
jrUj2dxþ

ð
T
d
UeUdx,

where U solves �DU ¼ eU � qg : The moment estimate (5.3) follows from the fact that
for all x 2 R, xex � �e�1: Hence the boundedness of E½f � implies thatð

T
d�R

d
jvj2gdxdv � 2ðC0 þ e�1Þ:

The estimate (5.4) on qg then follows from Lemma 5.2, upon choosing m¼ 2 and
k¼ 0. w

5.2. Two dimensions

In this subsection we always take the dimension d¼ 2. The goal is to prove the follow-
ing lemma on the propagation of moments in two dimensions.

Lemma 5.4. Let f0 2 L1 \ L1ðT2 � R
2Þ satisfy E½f � � C0 < þ1 and

Mm0ð0Þ :¼
ð
T
2�R

2
jvjm0 f0ðx, vÞdxdv < þ1

for some m0 > 2. Let f be a solution of the VPME system (1.3) as in Proposition 5.1.
There exists a constant Cm0, 0, depending only on m0, Mm0ð0Þ, C0, and jjf0jjL1 , such that

Mm0ðtÞ � Cm0, 0ð1þ tÞm0þ2:

Proof. Using the pushforward representation of f, we have, for all t 2 ½0,T�,

Mm0ðtÞ ¼
ð
Q2�R

2
jvjm0 f ðt, x, vÞdxdv

¼
ð
Q2�R

2
jVðt; 0, x, vÞjm0 f0ðx, vÞdxdv:

This identity can be used to calculate the time derivative of Mm0 , using the definition
of the characteristic flow: for any m0 > 2,
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d
dt

Mm0ðtÞ ¼ m0

ð
Q2�R

2
E Xðt; 0, x, vÞð Þ � Vðt; 0, x, vÞjVðt; 0, x, vÞjm0�2f0ðx, vÞdxdv

¼ m0

ð
Q2�R

2
EðxÞ � vjvjm0�2f ðt, x, vÞdxdv

� m0

ð
Q2

jEðxÞj
ð
R

2
jvjm0�1f ðt, x, vÞdvdx ¼ m0

ð
Q2

jEðxÞj lm0�1ðxÞdx:

Applying H€older’s inequality in the x variable with exponent p gives

d
dt

Mm0ðtÞ � m0jjEjjLp0ðT2Þ jlm0�1j jjLpðT2Þ:

Choose p ¼ m0þ2
m0þ1 and apply the moment interpolation estimate from Lemma 5.2, to

obtain

d
dt

Mm0ðtÞ � Cm0 jjEjjLm0þ2ðT2ÞMm0ðtÞ
m0þ1
m0þ2

where the constant Cm0 > 0 depends only on m0: The remaining step is to estimate
jjEjjLm0þ2ðT2Þ: To do this, first use the decomposition E ¼ �E þ Ê:

jjEjjLm0þ2ðT2Þ � jj�EjjLm0þ2ðT2Þ þ jjÊjjLm0þ2ðT2Þ:

For the Poisson part �E, standard regularity estimates for the Poisson equation imply
that

jj�EjjLm0þ2ðT2Þ � Cm0 jjqf jj
L
2ðm0þ2Þ
m0þ4 ðT2Þ

Note that 2ðm0þ2Þ
m0þ4 < 2: Thus, due to the uniform control of the energy functional E

(defined in (2.1)) we have

jj�EjjLm0þ2ðT2Þ � Cm0 jjqf jjL2ðT2Þ � Cm0, 0,

where C0 > 0 depends only on m0, E½f0� and jjf0jjL1ðT2�R
2Þ: For Ê, we use Proposition

3.1 which provides the bound

jjÊjjL1ðT2Þ � exp Cd 1þ jjqf jjL2ðT2Þ
� �� �

� C0,

where C0 > 0 depends only on E½f0� and jjf0jjL1ðT2�R
2Þ (here we are using Lemma 5.3

and the fact that our solution conserves the energy). Altogether, we have the estimate

jjEjjLm0þ2ðT2Þ � Cm0, 0,

and thus

d
dt

Mm0ðtÞ � Cm0, 0Mm0ðtÞ
m0þ1
m0þ2:

It follows that there exists a constant Cm0, 0 > 0 depending on m0, E½f0�, jjf0jjL1ðT2�R
2Þ

and Mm0ð0Þ such that for all t 2 ½0,T�,
Mm0ðtÞ � Cm0, 0ð1þ tÞm0þ2:

w
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5.3. Three dimensions

In this subsection, we prove propagation of moments in the three dimensional case
d¼ 3, which is stated in the lemma below.

Lemma 5.5. Let d¼ 3. Let f be a solution of the VPME system (1.3) as in Proposition
5.1, with initial datum f0 2 L1 \ L1ðTd � R

dÞ satisfyingð
T
d�R

d
jvjm0 f0ðx, vÞdxdv ¼ M0 < þ1, m0 > d:

Then, for all T> 0,

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv � CðT,M0,m0, jjf0jjL1Þ:

As in the two dimensional case, the time evolution of the moment Mm0ðtÞ can be
studied by using the pushforward representation of f:ð

T
d�R

d
jvjm0 f ðt, x, vÞdxdv ¼

ð
T
d�R

d
jVðt; 0, x, vÞjm0 f0ðx, vÞdxdv:

Observe that

jVðt; 0, x, vÞj � jvj þ
ðt
0
E Xðt; 0, x, vÞð Þds

				
				:

The next step is to estimate E. As was discussed for the two dimensional case, the over-
all strategy is to use the decomposition E ¼ �E þ Ê, and to notice that by Proposition
3.1 and the conservation of energy, Ê is controlled uniformly in time:

jjÊðt, �ÞjjL1ðT3Þ � exp Cð1þ jjqf ðt, �ÞjjL53ðT3ÞÞ
� �

� Cðf0Þ:

The remaining step is to estimate �E: For this we use techniques established for the elec-
tron Vlasov-Poisson system by Pallard [18] and Chen and Chen [20]; here we particu-
larly follow the method of Chen and Chen [20].
First note that, by Lemma 3.4, there exists a constant C such that for all x 2 T

d,

jKðxÞj � Cð1þ jxj�2Þ: (5.5)

It follows that

j�Eðt, xÞj ¼ jK � qf ðt, xÞj � C
ð
x�Q3

qf ðt, yÞ
jx � yj2 dyþ Cjjqf jjL1ðTdÞ:

To estimate the integral term we will use a technical lemma from [20]. The estimate
therein makes use of the fact that f is the pushforward of its initial data along the char-
acteristic flow of the electron Vlasov-Poisson system. In the VPME setting, the relevant
characteristic flow has a different structure since E ¼ �E þ Ê, and so the estimate from
[20] cannot be applied immediately as stated. However, upon examining the proof it is
possible to see that the estimate also applies to other characteristic flows, under the fol-
lowing set of assumptions.
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Assumption 5.6. Let Xðt; s, x, vÞ,Vðt; s, x, vÞ denote a flow induced by a vector field of
the form

ðv, aðt, x, vÞÞ
for some function a. That is,

d
dt

Xðt; s, x, vÞ ¼ Vðt; s, x, vÞ
d
dt

Vðt; s, x, vÞ ¼ aðt,Xðt; s, x, vÞ,Vðt; s, x, vÞÞ
ðXðs; s, x, vÞ,Vðs; s, x, vÞÞ ¼ ðx, vÞ:

8>>>><
>>>>:

Assume that the following properties hold.

� (Uniform control of small increments in velocity) Define Pðt, dÞ by

Pðt, dÞ :¼ sup
ðx, vÞ2T3�R

3

ðt
t�d

jaðt,Xðs; 0, x, vÞ,Vðs; 0, x, vÞÞjds:

Assume that Pðt, dÞ is finite.
� Fix f0 2 L1 \ L1ðT3 � R

3Þ and let f be the pushforward of f0 along the flow.
Assume that there exists a constant C0 > 0 such that for all t

jjf ðt, � , �ÞjjL1 � C0,
ð
T
3�R

3
jvj2f ðt, x, vÞdxdv � C0:

By following the proof of [20, Proposition 3.3], it is possible to see that the following
estimate holds for any vector field satisfying Assumption 5.6.

Lemma 5.7. Let ðXðt; s, x, vÞ,Vðt; s, x, vÞÞ and f satisfy Assumption 5.6. Thenðt
t�d

ð
X�Q3

qf ðs, yÞ
jXðs; 0, x, vÞ � yj2 dyds � C dPðt, dÞ4=3 þ d1=2ð1þ dPðt, dÞÞ1=2Pðt, dÞ�1=2M3þeðtÞ1=2

� �
,

where the constant C> 0 depends on C0, and e > 0:

In particular, the flow induced by ðv, EðxÞÞ, where E is the electric field for a solution
of the VPME system with finite energy, satisfies these assumptions. Henceforth we
define the quantities Pðt, dÞ by

Pðt, dÞ :¼ sup
ðx, vÞ2T3�R

3

ðt
t�d

jEðt,Xðs; 0, x, vÞjds:

Using the same proof as for [20, Proposition 3.1], it can be shown that these quanti-
ties can be used to estimate the moments Mm.

Lemma 5.8. Let m> 2. There exists a constant C> 0 depending on Mmð0Þ,Mm�2ð0Þ and
M2ðtÞ such that
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MmðtÞ � C Pðt, tÞmaxf2,m�2g þ 1
h i

: (5.6)

Using these results, we can now conclude the proof of Lemma 5.5.

Proof of Lemma 5.5. We use Lemma 5.7 to bound �E: By (5.3), along each trajectory
X�ðsÞ ¼ Xðs; 0, x, vÞ we haveÐ t

t�d j�EðX�ðsÞÞjds � C
Ð t
t�d

Ð
X�ðsÞ�Q3

1

jX�ðsÞ � yj2 qf ðs, yÞdydsþ Cdjjqf jjL1ðTdÞ

� Cdþ C dPðt, dÞ4=3 þ d1=2ð1þ dPðt, dÞÞ1=2Pðt, dÞ�1=2M3þeðtÞ1=2
� �

:

(5.7)

We then deduce a bound on Pðt, dÞ by using the decomposition E ¼ �E þ Ê: First,
note that

Pðt, dÞ ¼ sup
x, v2T3�R

3

ðt
t�d

jEðXðs; 0, x, vÞÞjds

� sup
x, v2T3�R

3

ðt
t�d

j�EðXðs; 0, x, vÞÞjdsþ
ðt
t�d

jÊðXðs; 0, x, vÞÞjds
 !

:

By Proposition 3.1, Ê is bounded, uniformly in x and t. Thus there exists a constant
C> 0 depending only on jjf0jjL1 and E½f0� such that

Pðt, dÞ � Cdþ sup
x, v2T3�R

3

ðt
t�d

j�EðXðs; 0, x, vÞÞjds:

Then, by the bound (5.3) on �E,

Pðt, dÞ � Cdþ C dPðt, dÞ4=3 þ d1=2ð1þ dPðt, dÞÞ1=2Pðt, dÞ�1=2M3þeðtÞ1=2
� �

:

Multiplying by Pðt, dÞ1=2, we deduce that

Pðt, dÞ3=2 � CdPðt, dÞ1=2 þ C dPðt, dÞ11=6 þ d1=2ð1þ dPðt, dÞÞ1=2M3þeðtÞ1=2
� �

� C dPðt, dÞ11=6 þ d1=2ð1þ dPðt, dÞÞ1=2ð1þM3þeðtÞ1=2Þ
� �

:

Then, as explained in [20, Proposition 3.3], it follows from the estimate above that

Pðt, tÞ � Cð1þ tÞ 1þ sup
s2 0, t½ �

M3þeðsÞ
� �1

2:

The end of the proof then follows as in [20]. First, interpolate M3þe between M2 and
Mm0 : by H€older’s inequality,

M3þeðtÞ ¼
ð
T
3�R

3
jvj3þef dxdv � M2ðtÞ

m0�3�e
m0�2 Mm0ðtÞ

1þe
m0�2:

Thus

Pðt, tÞ � Cð1þ tÞ 1þ sup
s2 0, t½ �

Mm0ðsÞ
1þe

2ðm0�2Þ
� �

: (5.8)

Substituting estimate (5.8) into (5.3), we obtain
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Pðt, tÞ � Cð1þ tÞ 1þ Pðt, tÞmax 1þe
2 , 1þe

m0�2f g
� �

:

For sufficiently small e, the exponent maxf1þe
2 , 1þe

m0�2g is strictly less than one, and so
there is a constant C> 0 depending on t, E½f0�, jjf0jjL1ðT3�R

3Þ and Mm0ð0Þ such that

Pðt, tÞ � C:

It then follows from (5.8) that

sup
t2 0,T½ �

Mm0ðtÞ < þ1,

as desired. w

6. Construction of solutions

In this section, we show global existence of weak solutions for the VPME system (1.3)
for initial data with finite velocity moments of sufficiently high order.

Theorem 6.1. Let d¼ 2, 3. Consider an initial datum f0 2 L1 \ L1ðTd � R
dÞ satisfyingð

T
d�R

d
jvjm0 f0ðx, vÞdxdv < þ1, for some m0 > d:

Then there exists a global-in-time weak solution f 2 Cð½0,1Þ;PðTd � R
dÞÞ of the VPME

system (1.3) with initial data f0, such that for all T> 0,

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv < þ1:

To prove this theorem, we first consider a regularised system for which unique global
solutions can be constructed. Then, using the a priori estimate from Sec. 5, we extract a
subsequential limit from the regularised solutions, and show that the limit is a weak
solution of VPME (1.3) with the desired moments bounded.

6.1. Regularised VPME

We introduce a regularised version of (1.3). We define a scaled mollifier vr by letting

vrðxÞ ¼ r�dv
x
r

� �
, r 2

�
0,

1
4

i
(6.1)

Here v : Td ! R is a fixed smooth function with support contained in the unit ball.
We assume further that v is radially symmetric, non-negative and has total mass 1. We
then consider the following regularised system:

@tf ðrÞ þ v � rxf ðrÞ þ Er f ðrÞ
� �

� rvf ðrÞ ¼ 0,
Er ¼ �vr � rUr,

DUr ¼ eUr � vr � q f ðrÞ
� �

,
f ðrÞjt¼0 ¼ f0 � 0,

Ð
T
d�R

d f0 dx dv ¼ 1:

8>>><
>>>:

(6.2)
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We regularise the ion density but not the electron density, the idea being that the
thermalisation assumption should lead to a regularising effect. This is a slightly different
approach from that of Bouchut [15], where both densities are regularised.
We introduce the decomposition

Er ¼ �Er þ Êr,

where

�Er ¼ �vr � r�Ur, Êr ¼ �vr � rÛ r,

with �Ur, Û r satisfying

D�Ur ¼ 1� vr � q f ðrÞ
h i

, DÛ r ¼ e
�UrþÛ r � 1:

Notice that we are using a technique of ‘double regularisation’; for instance, �Er can
be represented in the form

�Er ¼ vr � vr � K � q f ðrÞ
h i

:

This type of regularisation appeared in the work of Horst [31], and has subsequently
been used in many other contexts. An advantage of this approach is that the system
(6.2) has an associated conserved energy, defined by

Er f½ � :¼ 1
2

ð
T
d�R

d
jvj2f dxdvþ 1

2

ð
T
d
rUrj j2dx þ

ð
T
d
Ure

Urdx: (6.3)

If f ðrÞ converges to some f sufficiently strongly as r tends to zero, then we would expect
Er½f ðrÞ� to converge to E½f �, where E is the energy of the original VPME system, defined
in (2.1).
The methods of Dobrushin [21] may be used to construct solutions to this regular-

ised system since the force-field is sufficiently regular. Dobrushin’s results cannot be
applied directly since the force is not of convolution type, but the method can be
adapted to our case.

Lemma 6.2 (Existence of regularised solutions). For every f0 2 PðTd � R
dÞ, there exists a

unique solution f ðrÞ 2 Cð½0,1Þ;PðTd � R
dÞÞ of (6.2). If f0 2 LpðTd � R

dÞ for some
p 2 ½1,1�, then for all t

jjf ðrÞðtÞjjLpðTd�R
dÞ � jjf0jjLpðTd�R

dÞ:

Proof. We sketch the proof, which is a modification of the methods of [21] in order to
handle the extra term in the electric field. First consider the linear problem for fixed
l 2 Cð½0,1Þ;PðTd � R

dÞÞ :
@tg

ðlÞ
r þ v � rxg

ðlÞ
r þ Er l½ � � rvg

ðlÞ
r ¼ 0,

EðlÞ
r ¼ �vr � rUðlÞ

r ,

DUðlÞ
r ¼ eU

ðlÞ
r � vr � q l½ �,

gðlÞr jt¼0 ¼ f0 � 0,
Ð
T
d�R

d f0ðdxdvÞ ¼ 1,

8>>>><
>>>>:

(6.4)

for f0 2 PðTd � R
dÞ: Observe that even when l is a singular probability measure, vr �
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q½l� is a function satisfying

jvr � q l½ �j � jjvrjjL1ðTdÞ:

Then by Proposition 3.1,

jjUðlÞ
r jjC1ðTdÞ � exp Cd 1þ jjvrjjL1ðTdÞ

� �h i
,

and hence EðlÞ
r ¼ vr � rUðlÞ

r is of class C1ðTdÞ, with the uniform-in-time estimate

jjEðlÞr jjC1ðTdÞ � jjvrjjC1ðTdÞjjrUðlÞ
r jjCðTdÞ � jjvrjjC1ðTdÞ exp Cd 1þ jjvrjjL1ðTdÞ

� �h i
� Cr, d:

(6.5)

This implies the existence of a unique global-in-time C1 characteristic flow. Using this
flow we may construct a unique solution gðlÞr 2 Cð½0,1Þ;PðTd � R

dÞÞ to the linear
problem (6.4) by the method of characteristics. Since the vector field ðv,ErÞ is diver-
gence free, this solution conserves LpðTd � R

dÞ norms for p 2 ½1,1�:
To prove existence for the nonlinear equation, we use a fixed point argument via a

contraction estimate in Wasserstein sense, as in [21]. To prove the required contraction
estimate, it is enough to show that the electric field EðlÞr is Lipschitz and has a stability
property in W1 with respect to l:

jjEðlÞr jjLip � Cr (6.6)

jjEðlÞr � Eð�Þr jjL1ðTdÞ � CrW1ðl, �Þ: (6.7)

The Lipschitz regularity (6.6) holds by (6.5). For the stability (6.7), once again we use
the decomposition EðlÞr ¼ �EðlÞ

r þ Ê
ðlÞ
r : First,

�EðlÞ
r ¼ �vr � r�U ðlÞ

r ¼ vr � K � vr � q l½ �,
where K is the Coulomb kernel as defined by K ¼ rG for G satisfying (1.2). This is a
force of convolution type, with a Lipschitz kernel since K 2 L1ðTdÞ and vr is smooth, so
the required stability estimate is proved in [21]. It remains to verify stability of Êr with
respect to l.
Consider two continuous paths of probability measures l, � 2 Cð½0,1Þ;PðTd � R

dÞÞ:
First note that by Young’s inequality,

jjÊðlÞ
r � Ê

ð�Þ
r jjL1ðTdÞ ¼ jjvr � ðrÛ

ðlÞ
r �rÛ

ð�Þ
r ÞjjL1ðTdÞ � jjvrjjL2ðTdÞjjrÛ

ðlÞ
r �rÛ

ð�Þ
r jjL2ðTdÞ:

By the L2 stability estimate from Lemma 3.9,

jjrÛ
ðlÞ
r �rÛ

ð�Þ
r jjL2ðTdÞ � exp C max

c2fl, �g
jj�U ðcÞ

r jjL1ðTdÞ þ max
c2fl, �g

jjÛ ðcÞ
r jjL1ðTdÞ

� �
 �

jj�U ðlÞ
r � �U ð�Þ

r jjL2ðTdÞ:

By Proposition 3.1,

max
c2fl, �g

jj�U ðcÞ
r jjL1ðTdÞ þ max

c2fl, �g
jjÛ ðcÞ

r jjL1ðTdÞ � exp Cd 1þ jjvrjjL1ðTdÞ
� �h i

:

Hence
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jjrÛ
ðlÞ
r �rÛ

ð�Þ
r jjL2ðTdÞ � Cr, d jj�U ðlÞ

r � �U ð�Þ
r jjL2ðTdÞ

� Cr, d jj�U ðlÞ
r � �U ð�Þ

r jjL1ðTdÞ ¼ Cr, d jjvr�xG�x q l½ � � q �½ �� 
jjL1ðTdÞ:

Note that vr�xG is smooth and hence Lipschitz. By Kantorovich duality for the W1 dis-
tance we have

W1ðql, q�Þ ¼ sup
jj/jjLip�1

ð
T
d
/dql �

ð
T
d
/dq�

� �
:

Thus for any x 2 T
d

vr�xG�xðql � q�ÞðxÞ ¼
ð
T
d
vr�xG½ �ðx � yÞ dðql � q�ÞðyÞ

� jjvr�xGðx � �ÞjjLipW1ðql, q�Þ � Cr, d W1ðql, q�Þ,
where Cr, d is independent of x. Hence

jjvr�xG�xðql � q�ÞjjL1ðTdÞ � Cr, d W1ðql, q�Þ:
We conclude that

jjvr � ðrÛ
ðlÞ
r �rÛ

ð�Þ
r ÞjjL1ðTdÞ � Cr, d W1ðql, q�Þ � Cr, d W1ðl, �Þ,

which shows that (6.7) holds.
Using the methods of [21], we can show that the estimates (6.6) and (6.7) imply a

Wasserstein stability estimate:

W1 gðlÞr ðtÞ, gð�Þr ðtÞ
� �

�
ðt
0
W1ðlðtÞ, �ðtÞÞ exp ðCrðt � sÞÞds:

Since Cr is independent of time, a Picard iteration proves the existence of a unique
solution f ðrÞ 2 Cð½0,1Þ;PðTd � R

dÞÞ for the nonlinear regularised equation (6.1). This
solution also preserves all LpðTd � R

dÞ norms, since it is the classical solution of a lin-
ear transport equation with divergence-free vector field ðv,Er½f ðrÞ�Þ: w

6.2. Compactness

Next, we show that the approximate solutions f ðrÞ converge to a limit as r tends to zero,
and that this limit may be identified as the unique bounded density solution of (1.3)
with data f0. In the following lemma, we collect together some useful uniform estimates
for the approximate solutions f ðrÞ:

Lemma 6.3. Let f0 2 L1 \ L1ðTd � R
dÞ have a finite velocity moment of order m0 > d,

that is, Mm0ð0Þ < þ1. For each r> 0, let f ðrÞ denote the solution of (6.2) with initial
datum f0. Then f ðrÞ have the following properties:
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i. Lp bounds: for all p 2 ½1,1�,
sup
r

sup
t2 0,T½ �

jjf ðrÞðtÞjjLpðTd�R
dÞ � jjf0jjLpðTd�R

dÞ: (6.8)

ii. Moment bounds:

sup
r

sup
t2 0,T½ �

ð
T
d�R

d
jvj2f ðrÞðt, x, vÞdxdv � CðT, f0Þ,

sup
r

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðrÞðt, x, vÞdxdv � CðT, f0Þ:

iii. Density bounds: for all r and all t 2 ½0,T�,
sup
r

jjq f ðrÞ
h i

ðt, �Þjj
L
dþ2
d ðTdÞ � Cðf0Þ, sup

r
jjq f ðrÞ
h i

ðt, �ÞjjL2ðTdÞ � CðT, f0Þ: (6.9)

iv. Regularity of the electric field: for any a 2 ð0, 1Þ,
sup
r

sup
t2 0,T½ �

jjÛ rðtÞjjC1, aðTdÞ � Cða, f0Þ,
sup
r

sup
t2 0,T½ �

jj�UrðtÞjjC0, aðTdÞ � Cða, f0Þ,
sup
r

sup
t2 0,T½ �

jj�UrðtÞjjW2, 2ðTdÞ � CðT, f0Þ:
(6.10)

v. Equicontinuity in time into W�1, 2: for any t1 < t2,

jjf ðrÞðt2Þ � f ðrÞðt1ÞjjW�1, 2ðTd�R
dÞ � Cðf0Þ jt2 � t1j, (6.11)

where W�1, 2ðTd � R
dÞ denotes the dual of W1, 2ðTd � R

dÞ:
Proof. Property (i) was proved in Lemma 6.2. For Property (ii), the second moment
bound is a consequence of the conservation of the energy functional Er½f ðrÞ� defined by
(6.3), once we check that Er½f0� is bounded uniformly in r.
Since f0 is in L1ðTd � R

dÞ and has a finite m0th order moment in velocity for some
m0 > d, the second moment of f0 is also finite. Then, by Lemma 5.2 it follows that
qf0 2 L

dþ2
d ðTdÞ: Since jjvr � qf0 jjLdþ2

d ðTdÞ � jjqf0 jjLdþ2
d ðTdÞ, by Proposition 3.1 we have

jjUrð0ÞjjL1ðTdÞ � C jjqf0 jjLdþ2
d ðTdÞ

� �
,

and so

jjDUrð0Þjj
L
dþ2
d ðTdÞ � C jjqf0 jjLdþ2

d ðTdÞ
� �

:

By regularity estimates for the Poisson equation,

jjUrð0Þjj
W2, dþ2

d ðTdÞ � C jjqf0 jjLdþ2
d ðTdÞ

� �
:

A Sobolev inequality then implies that

jjrUrð0ÞjjLpðdÞðTdÞ � C jjqf0 jjLdþ2
d ðTdÞ

� �
,

where p(2) may be any p < þ1, and pð3Þ ¼ 15
4 : In either case it follows that

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1927



jjrUrð0ÞjjLpðdÞðTdÞ � C jjqf0 jjLdþ2
d ðTdÞ

� �
:

Altogether it follows that there exists C0 such that

sup
r

sup
t2 0,T½ �

Er f0½ � � C0,

therefore

sup
r

sup
t2 0,T½ �

Er f ðrÞðtÞ
h i

� C0: (6.12)

Note that xex � �e�1: This implies that for all r and all t 2 ½0,T�,ð
T
d�R

d
jvj2f ðrÞðtÞdxdv � C,

which completes the proof of the first part of Property (ii).
The estimate on the moment of order m0 is proven using the same arguments as

used for Proposition 5.1. For the two dimensional case, since jjErjjLpðTdÞ � jjrUrjjLpðTdÞ
and jjvr � q½f ðrÞ�jjLpðTdÞ � jjq½f ðrÞ�jjLpðTdÞ for any p 2 ½1, þ1�, the same proof follows
through. For the three dimensional case, instead of the quantities Pðt, dÞ consider

QðrÞðt, dÞ :¼ sup
x, v2T3�R

3

ðt
t�d

jErðXrðs; 0, x, vÞÞjds,

where ðXrðt; s, x, vÞ,Vrðt; s, x, vÞÞ denotes the characteristic flow induced by the vector
field ðv,ErðxÞÞ: QðrÞ is well-defined due to estimate (6.5) which shows that Er 2
L1ð½0, þ1Þ � T

3Þ, and so QðrÞðt, dÞ � Crd for some constant Cr. Thus observe that
the flow ðXrðt; s, x, vÞ,Vrðt; s, x, vÞÞ satisfies Assumption 5.6. Therefore, the conclusion of
Lemma 5.7 applies for this flow:ðt

t�d

ð
Q3

1

jXrðs; 0, x, vÞ � yj2 qf ðrÞ ðs, yÞdyds

� C dQðrÞðt, dÞ4=3 þ d1=2ð1þ dQðrÞðt, dÞÞ1=2QðrÞðt, dÞ�1=2M3þeðtÞ1=2
� �

:

To bound Er, we use the decomposition

jErðXrðsÞÞj � C
ð
Q3

jKr � qf ðrÞ ðs, yÞjdyþ jK0 � qf ðrÞ ðXrðsÞÞj þ jÊrðXrðsÞÞj,

where Kr denotes the following regularisation of the singular part of the kernel:

Kr ¼ vr � vr �
1

j � j2 :

Proposition 3.1 implies that Êr is uniformly bounded due to the conservation of energy.
In Lemma 6.4 below, we show that Kr is controlled by the unregularised kernel jxj�2:

Thus

jErðXrðsÞÞj � C
ð
Q3

1

jXrðs; 0, x, vÞ � yj2 qf ðrÞ ðs, yÞdyþ C,

and so
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QðrÞðt, dÞ � C dQðrÞðt, dÞ4=3 þ d1=2ð1þ dQðrÞðt, dÞÞ1=2QðrÞðt, dÞ�1=2M3þeðtÞ1=2
� �

:

By following the remainder of the proof of Lemma 5.5, we can deduce a bound on the
velocity moment of order m of f ðrÞ, which completes the proof of Property (ii).
Property (iii) then follows from Property (ii) after applying Lemma 5.2 with k¼ 0

and either m¼ 2 or m¼ d.
For Property (iv), we first note that jjvr � q½f ðtÞ�jjLpðTdÞ � jjq½f ðtÞ�jjLpðTdÞ for any p 2

½1, þ1�: The C1, a estimate on Û r then follows directly from Proposition 3.1 and the
L

dþ2
d estimate from Property (iii). The W2, 2 estimate on �Ur follows from regularity prop-

erties of the Poisson equation and the L2 estimate on qf ðrÞ from Property (iii).
Finally, we consider the equicontinuity in time. By the transport equation

@tf
ðrÞ ¼ �divx, v ðv,Er f ðrÞðtÞ

h i
Þf ðrÞ

� �
and the bounds (6.8) and (6.12), for any function / 2 W1, 2ðTd � R

dÞ,				 ddt
ð
T
d�R

d
/f ðrÞðtÞ dx dvj ¼

				
ð
T
d�R

d
rx, v/ �

�
v,Er f ðrÞðtÞ

h i�
f ðrÞðtÞ dx dv

				
�
�ð

T
d�R

d
jrx, v/j2f ðrÞðtÞdxdv

�1=2�ð
T
d�R

d

�
jvj2 þ

				Er f ðrÞðtÞ
h i				

2�
f ðrÞðtÞdxdv

�1=2

�
�ð

T
d�R

d
jrx, v/j2dxdv

�1=2

jjf ðrÞðtÞjj1=2
L1ðTd�R

dÞ

�
�ð

T
d�R

d
jvj2f ðrÞðtÞdxdvþ jjf ðrÞðtÞjjL1ðTd�R

dÞ

ð
T
d�R

d

				Er f ðrÞðtÞ
h i				

2

dxdv

�1=2

�
�ð

T
d�R

d
jrx, v/j2dxdv

�1=2

jjf ðrÞðtÞjjL1ðTd�R
dÞ

�
�ð

T
d�R

d
jvj2f ðrÞðtÞdxdvþ

ð
T
d�R

d
jrUrj2dxdv

�1=2

� Cjjf0jjL1ðTd�R
dÞ C þ Er f ðrÞðtÞ

h i� �
jjr/jjL2ðTd�R

dÞ
� C f0½ �jjrx, v/jjL2ðTd�R

dÞ:

This estimate means that

jj@tf ðrÞðtÞjjW�1, 2ðTd�R
dÞ ¼ sup

jj/jjW1, 2ðTd�RdÞ�1

ð
T
d�R

d
/ @tf

ðrÞðtÞ dx dv � C,

thus @tf ðrÞ 2 L1ðð0,TÞ;W�1, 2ðTd � R
dÞÞ: Thus, for any t1 < t2,

jjf ðrÞðt2Þ � f ðrÞðt1ÞjjW�1, 2ðTd�R
dÞ �

ðt2
t1

jj@tf ðrÞðtÞjjW�1, 2ðTd�R
dÞ dt � Cjt2 � t1j,

which completes the proof of Property (v). w

The following lemma, used in the proof above, shows that the regularised kernel Kr

can be controlled by the function jxj�ðd�1Þ near the singularity, uniformly in r.
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Lemma 6.4 (Bounds on the regularised kernel). Let d> 1 and let vr be defined by (6.1)
for some fixed v 2 CðTdÞ. Then there exists a constant Cðd, vÞ > 0, independent of r,
such that, for all x 2 T

d,

jvr � KðxÞj � Cðd, vÞ 1þ jxj�ðd�1Þ
� �

:

Proof. By Lemma 3.4, there exists a constant Cd such that for all x 2 T
d,

jKðxÞj � Cdð1þ jxj�ðd�1ÞÞ,
where j � j denotes the distance on the torus defined by (2.2). Therefore

jvr � KðxÞj � Cd

ð
Qd

1þ jx � yj�ðd�1Þ
� �

vrðyÞdy:

First, observe that

jvr � KðxÞj � CdjjvrjjL1ðTdÞ þ Cd

ð
Qd

jx � yj�ðd�1ÞvrðyÞdy

� CdjjvjjL1ðTdÞ þ Cd

ð
Qd

jx� yj�ðd�1ÞvrðyÞdy

� Cðd, vÞ þ Cd

ð
Qd

jx � yj�ðd�1ÞvrðyÞdy:

We then consider the function

jxjd�1
ð
Qd

vrðyÞ
jx� yjd�1 dy:

There exists a constant Cd > 0 such that

jxjd�1 � Cd jx� yjd�1 þ jyjd�1
� �

:

Thus

jxjd�1
ð
Qd

vrðyÞ
jx � yjd�1 dy �

ð
Qd

jvrðyÞjdyþ
ð
Qd

jyjd�1

jx� yjd�1 jvrðyÞjdy: (6.13)

Note that, for r � 1
2 ,ð
Qd

jvrðyÞjdy ¼ r�d
ð
Qd

v
y
r

� �
dy ¼

ð
B1ð0Þ

vðyÞdy ¼ CðvÞ:

Split the second term of (6.13) as follows: for any L 2 ð0, 12
ffiffiffi
d

p �,ð
Qd

jyjd�1

jx � yjd�1 vrðyÞjdy �
ð
y2Qd :jx�yj�L

jyjd�1

jx� yjd�1

					
					vrðyÞjdy

þ
ð
y2Qd :jx�yj>L

jyjd�1

jx � yjd�1 jvrðyÞjdy:

The first term is estimated by
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ð
jx�yj�L

jyjd�1

jx� yjd�1 vrðyÞjdy � jjj � jd�1vrjjL1ðTdÞ

ð
jyj�L

1

jyjd�1 dy � CdLjjj � jd�1vrjjL1ðTdÞ:

					
Observe that, for x 2 Qd and r � 1

2 ,

jxjd�1jvrðxÞj ¼ r�1 x
r

			 			d�1
v

x
r

� �
� r�1jjj � jd�1vjjL1ðB1ð0ÞÞ � CðvÞr�1:

The second term is estimated byð
y2Qd :jx�yj>L

jyjd�1

jx � yjd�1

				vrðyÞjdy � L1�djjj � jd�1vrjjL1ðTdÞ:

For the constant, we find that

jjj � jd�1vrjjL1ðTdÞ ¼ r�d
ð
Qd

jxjd�1 v
x
r

� �				
				dx ¼ rd�1

ð
B1ð0Þ

jxjd�1vðxÞdx � CðvÞ rd�1:

Altogether this gives

jxjd�1
ð
Qd

vrðyÞ
jx� yjd�1 dy � CðvÞ 1þ r�1 CdLþ L1�drd

� 
� �
:

Minimising over L, the optimal value is L ¼ Cdr: Then

jxjd�1
ð
Qd

vrðyÞ
jx � yjd�1 dy � Cðd, vÞ:

This completes the proof. w

In the next lemma, we use the above bounds to extract a convergent subsequence of
approximate solutions, and show that the limit is a weak solution of (1.3). This com-
pletes the proof of Theorem 6.1.

Lemma 6.5. Let f0 2 L1 \ L1ðTd � R
dÞ be compactly supported. For each r> 0, let f ðrÞ

denote the solution of (6.2) with initial datum f0. Then there exists a subsequence f ðrnÞ

converging to a limit f 2 Cð½0,1Þ;W�1, 2ðTd � R
dÞÞ, in the sense that for each time hori-

zon T> 0 and for all / 2 W1, 2ðTd � R
dÞ,

lim
n!1 sup

t2 0,T½ �

ð
T
d�R

d
/ f ðrnÞðtÞ � f ðtÞ
� �

dxdv

				
				 ¼ 0:

Moreover, for each t 2 ½0,1Þ, for any p 2 ½1,1� and all / 2 LpðTd � R
dÞ,

lim
n!1

ð
T
d�R

d
/ f ðrnÞðtÞ � f ðtÞ
� �

dxdv

				
				 ¼ 0:

Furthermore f is a weak solution of (1.3) with initial datum f0, for which

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv < þ1 for all T > 0

and
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E f ðtÞ� � ¼ E f0½ � for all t 2 0, þ1Þ:½

Proof. To extract the convergent subsequence, we need to make careful use of the equi-
continuity in time. The curves

t 7! f ðrÞðtÞ 2 W�1, 2ðTd � R
dÞ

are equicontinuous in the norm topology on W�1, 2ðTd � R
dÞ by (v). They are also uni-

formly bounded in W�1, 2ðTd � R
dÞ since f ðrÞ 2 L1ð½0, þ1Þ; L2ðTd � R

dÞÞ by (i). By
an Arzel�a-Ascoli type argument we may extract a subsequence rn such that for all / 2
W1, 2ðTd � R

dÞ and all T> 0,

lim
n!1 sup

t2 0,T½ �

ð
T
d�R

d
f ðrnÞðtÞ � f ðtÞ
� �

/dxdv

				
				 ¼ 0, (6.14)

for some f 2 Cð½0, þ1Þ;W�1, 2ðTd � R
dÞÞ: In particular, since C1

c ðTd � R
dÞ 


W1, 2ðTd � R
dÞ,

lim
n!1 sup

t2 0,T½ �

ð
T
d�R

d
f ðrnÞðtÞ � f ðtÞ
� �

/dxdv

				
				 ¼ 0, for all / 2 C1

c ðTd � R
dÞ, T > 0:

(6.15)

We now want to prove that the convergence also holds weakly in LpðTd � R
dÞ, for p 2

½1,1Þ, and in L1ðTd � R
dÞ in weak� sense. For each fixed t, we have the uniform

bounds

sup
r

jjf ðrÞðtÞjjLpðTd�R
dÞ � jjf0jjLpðTd�R

dÞ, sup
r

ð
T
d�R

d
jvj2f ðrÞðt, x, vÞdxdv � Cðf0Þ:

This implies that ff ðrÞðtÞgr>0 is relatively compact in LpðTd � R
dÞ with respect to the

weak topology for p 2 ½1,1Þ and in L1ðTd � R
dÞ with respect to the weak� topology.

For each p 2 ½1,1� and t there is a further subsequence rnk and a limit g 2 LpðTd �
R

dÞ, both depending on t and p, such that for all / 2 Lp
� ðTd � R

dÞ (p� being the
H€older conjugate of p),

lim
k!1

ð
T
d�R

d
/ðf ðrnk ÞðtÞ � gÞdxdv

				
				 ¼ 0:

In particular, this holds for / 2 C1
c ðTd � R

dÞ 
 Lp
� ðTd � R

dÞ: By (6.15), we deduce
that ð

T
d�R

d
f ðtÞ / dx dv ¼

ð
T
d�R

d
g / dx dv for all / 2 C1

c ðTd � R
dÞ:

Thus f(t) ¼ g. The uniqueness of the limit implies that in fact the whole original subse-
quence f ðrnÞðtÞ converges to f(t) weakly in LpðTd � R

dÞ for p 2 ½1, þ1Þ and in
L1ðTd � R

dÞ in weak� sense.
Next we show that the convergence also holds for the mass density. Since f ðrnÞðtÞ con-

verges weakly in L1ðTd � R
dÞ, for all / 2 L1ðTdÞ we have
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lim
n!1

ð
T
d
q f ðrnÞðtÞ
h i

/ðxÞdx ¼ lim
n!1

ð
T
d�R

d
f ðrnÞðt, x, vÞ/ðxÞdxdv

¼
ð
T
d�R

d
f ðt, x, vÞ/ðxÞdxdv ¼

ð
T
d
qf ðt, x, vÞ/ðxÞdx:

In other words qrnðtÞ * qf ðtÞ weakly in L1ðTdÞ: Since, by (iii), q½f ðrnÞðtÞ� are uniformly
bounded in LpðTdÞ for all p 2 ½1, 2�, the convergence also holds in LpðTdÞ in weak sense
for p 2 ½1, 2�: In particular,

sup
t2 0,T½ �

jjqf ðtÞjjLpðTdÞ � liminf
n

jjq f ðrnÞðtÞ
h i

jjLpðTdÞ:

We deduce that

sup
t2 0,T½ �

jjqf ðtÞjjLdþ2
d ðTdÞ � C, sup

t2 0,T½ �
jjqf ðtÞjjL2ðTdÞ � CT :

Next, we prove convergence of the electric field. By (iv), for any a 2 ð0, 1Þ,
sup
r

sup
t2 0,T½ �

jjUrðtÞjjC0, aðTdÞ � C a, f0½ �, sup
r

sup
t2 0,T½ �

jjrÛ rðtÞjjC0, aðTdÞ � C a, f0½ �

which implies that UrðtÞ and rÛ rðtÞ are equicontinuous on T
d: Moreover

sup
r

sup
t2 0,T½ �

jjr�UrðtÞjjW1, 2ðTdÞ � C T, f0½ �:

Hence there exists a further subsequence for which �Urnk
ðtÞ, Û rnk

ðtÞ,rÛ rnk
ðtÞ converge

in CðTdÞ to some �UðtÞ, ÛðtÞ,rÛðtÞ and r�Urnk
ðtÞ converges strongly in L2ðTdÞ

to r�UðtÞ:
We identify the limit UðtÞ ¼ �UðtÞ þ ÛðtÞ, by showing that it is a solution of

DUðtÞ ¼ eUðtÞ � qf ðtÞ: (6.16)

The elliptic equation for UrðtÞ in (6.16) in weak form gives that for all r and all
/ 2 W1, 2 \ L1ðTdÞ, ð

T
d
rUrðtÞ � r/þ eUrðtÞ � vr � qf ðrÞðtÞ

� �
/dx ¼ 0:

The first term converges since rUrðtÞ converges to rUðtÞ in L2ðTdÞ: The second term
converges by dominated convergence, since UrðtÞ are uniformly bounded in CðTdÞ: For
the term involving vr � q½f ðrÞðtÞ�, we splitð

T
d
vr � q f ðrÞðtÞ

h i
� qf ðtÞ

� �
/dx ¼

ð
T
d
vr � q f ðrÞðtÞ

h i
� q f ðrÞðtÞ
h i� �

/dx

þ
ð
T
d
q f ðrÞðtÞ
h i

� qf ðtÞ
� �

/dx: (6.17)

For any / 2 L
dþ2
2 ðTdÞ, we have
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ð
T
d
vr � q f ðrÞðtÞ

h i
� q f ðrÞðtÞ
h i� �

/dx

				
				 ¼

ð
T
d
ðvr � /� /Þq f ðrÞðtÞ

h i
dx

				
				

� jjvr � /� /jj
L
dþ2
2 ðTdÞjjq f ðrÞðtÞ

h i
jj
L
dþ2
d ðTdÞ

� Cjjvr � /� /jj
L
dþ2
2 ðTdÞ:

The right hand side converges to zero as r tends to zero by standard results on the con-
tinuity of mollification in Lp spaces. For r ¼ rnk , the second term of (6.17) converges to
zero as k tends to infinity, for all / 2 L

dþ2
2 ðTdÞ, since q½f ðrÞðtÞ� converges to qf ðtÞ weakly

in L
dþ2
d ðTdÞ: Hence, for all / 2 W1, 2 \ L

dþ2
2 ðTdÞ,ð

T
d
rUðtÞ � r/þ ðeUðtÞ � qf ðtÞÞ/dx ¼ 0:

Since UðtÞ 2 C \W1, 2ðTdÞ and qf ðtÞ 2 L2ðTdÞ, this extends to all / 2 W1, 2ðTdÞ by
density of L

dþ2
2 ðTdÞ in L2ðTdÞ: In other words U(t) is indeed a weak solution of (6.16).

Our earlier stability estimates imply that (6.16) has at most one solution in L1 \
W1, 2ðTdÞ, which is therefore U(t) in this case. Since the limit of any convergent subse-
quence is uniquely identified, it follows that for all t we have UrnðtÞ ! UðtÞ in CðTdÞ
and W1, 2ðTdÞ, where U(t) is the unique L1 \W1, 2ðTdÞ solution of (6.16) (that is, with-
out passing to further subsequences).
Next we consider the convergence of the regularised electric field

Ern f ðrnÞðtÞ
h i

¼ �vr � rUrnðtÞ:
Since

jjErnðtÞ þ rUðtÞjjL2ðTdÞ � jjvr � ðrUrnðtÞ � rUðtÞÞjjL2ðTdÞ þ jjrUðtÞ � vr � rUðtÞjjL2ðTdÞ
� jjrUrnðtÞ � rUðtÞjjL2ðTdÞ þ jjrUðtÞ � vr � rUðtÞjjL2ðTdÞ,

it follows that Ern converges to �rUðtÞ strongly in L2ðTdÞ:
Finally, we show that f is a weak solution of (1.3). Since f ðrÞ is a solution of (6.2), for

any / 2 C1
c ð½0,1Þ � T

d � R
dÞ we haveð

T
d�R

d
f0ðx, vÞ/ð0, x, vÞdxdvþ

ð1
0

ð
T
d�R

d
ð@t/þ v � rx/þ ErðxÞ � rv/Þf ðrÞdxdvdt ¼ 0:

Since @t/þ v � rx/ 2 C1
c ð½0,1Þ� T

d � R
dÞ, (6.15) implies that for all fixed t, as n

tends to infinity,ð
T
d�R

d
ð@t/þ v � rx/Þf ðrnÞdxdv !

ð
T
d�R

d
ð@t/þ v � rx/Þfdxdv:

Sinceð
T
d�R

d
ð@t/þ v � rx/Þf ðrnÞdxdv

				
				 jf0jjL1ðTd�R

dÞ

ð
T
d�R

d
@t/þ v � rx/j jdxdv 2 L1ð 0,1ÞÞ,½

				
we deduce from the dominated convergence theorem that for all / 2 C1

c ð½0,1Þ� T
d �

R
dÞ, as n tends to infinity,
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ð1
0

ð
T
d�R

d
ð@t/þ v � rx/Þf ðrnÞdxdv !

ð1
0

ð
T
d�R

d
ð@t/þ v � rx/Þf dxdv:

For the nonlinear term we have the estimateÐ1
0

Ð
T
d�R

drv/ � Erf ðrÞ þ rxUf
� 


dxdvdt
		 		 � Ð1

0

Ð
T
d�R

d Er þrxUð Þ � rv/ f ðrÞdxdvdt
		 		

þ Ð1
0

Ð
T
d�R

d �rxU � rv/ ðf ðrÞ � f Þdxdvdt		 		:
Now let T> 0 be such that supp / 
 ½0,T� � T

d � R
d: For the first term, we use the

fact that Ern converges to �rU strongly in L2ðTdÞ for each t. That is, for fixed tð
T
d�R

d
Er þrxUð Þ � rv/ f ðrÞdxdv �

ð
R

d
jjErnðtÞ þ rUðtÞjjL2ðTdÞjjrv/ð�, vÞjjL2ðRdÞdv

� C/jjErnðtÞ þ rUðtÞjjL2ðTdÞ � Cð/,T, f0Þ:
Then, using dominated convergence for the time integral, as rn ! 0 we haveð1

0

ð
T
d�R

d
Ern þrxUð Þ � rv/ f ðrnÞdxdvdt

				
				! 0:

Similarly, for the second term we use that, for each t, since
rUðtÞ � rv/ 2 L2ðTd � R

dÞ,ð
T
d�R

d
rU � rv/ ðf ðrnÞ � f Þdxdv

				
				! 0:

Combining this with the bound

rU � rv/ ðf ðrÞ � f Þ		 		 � CðT, f0Þ jrv/j 2 L1ð 0,1Þ � T
d � R

dÞ,
�

which follows from (i) and (iv), we conclude that, as n tends to infinity,ð1
0

ð
T
d�R

d
rv/ � Ern f ðrnÞdxdvdt ! �

ð1
0

ð
T
d�R

d
rv/ � rUf dxdvdt:

Hence, for all / 2 C1
c ð½0, þ1Þ � T

d � R
dÞ,ð

T
d�R

d
f0ðx, vÞ/ð0, x, vÞdxdvþ

ð1
0

ð
T
d�R

dÞ
ð@t/þ v � rx/�rUðxÞ � rv/Þf dxdvdt ¼ 0:

Thus f is a weak solution of (1.3).
We next show that the bounds on the velocity moments pass to the limit. Recall that

there exists a constant Cm0, 0 independent of r such that for all r,

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðrÞðt, x, vÞdxdv � Cm0, 0:

Then, since f ðrÞ converges to f weakly in L1ðTd � R
dÞ, for all R> 0 we haveð

T
d�R

d
jvjm01jvj�R f ðt, x, vÞdxdv ¼ lim

r!0

ð
T
d�R

d
jvjm0 f ðrÞðt, x, vÞ1jvj�R dxdv � Cm0, 0:

Therefore, letting R ! 1, ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv � Cm0, 0:
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Finally, we show that the regularised energy functionals Er½f ðrÞ� converge to the energy
functional E½f �: Since

sup
r

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðrÞðt, x, vÞdxdv � Cm0, 0,

from the weak L1 convergence of f ðrÞ to f it follows thatð
T
d�R

d
jvj2f ðt, x, vÞdxdv ¼ lim

r!0

ð
T
d�R

d
jvj2f ðrÞðt, x, vÞdxdv:

Since the convergence of Er to �rU occurs strongly in L2ðTd � R
dÞ for all t, it follows

that ð
T
d
jrxUðtÞj2dx ¼ lim

r!0

ð
T
d
jrxUrðtÞj2dx:

Lastly, since UrðtÞ converges to U(t) in CðTdÞ, we haveð
T
d
UðtÞeUðtÞdx ¼ lim

r!0

ð
T
d
UrðtÞeUrðtÞdx

We conclude that

E f ðtÞ� � ¼ lim
r!0

Er f ðrÞðtÞ
h i

¼ lim
r!0

Er f0½ � ¼ E f0½ �:

w

6.3. Global well-posedness

Lastly, we complete the proof of the main result, Theorem 2.1, showing global well-pos-
edness for the VPME system given initial data decaying sufficiently fast at infinity.

Proof . By Lemma 6.5, under the assumptions of Theorem 2.1 there exists a weak solu-
tion f of the VPME system (1.3). We will show that qf 2 L1locð½0, þ1Þ; L1ðTdÞÞ, so
that uniqueness will then follow from Theorem 4.1.
We first derive estimates on the electric field E. Since the initial datum f0 is assume

to have a finite velocity moment of order m0, the solution also has moments of this
order: for all T> 0, there exists a constant CT > 0 such that

sup
t2 0,T½ �

ð
T
d�R

d
jvjm0 f ðt, x, vÞdxdv � CT :

We apply the interpolation estimate from Lemma 5.2 to deduce an estimate on qf. Since
m0 > dðd � 1Þ, we obtain

sup
t2 0,T½ �

jjqf jjLdþaðTdÞ � CT

for some a > 0: By regularity estimates for the Poisson equation and Sobolev inequal-
ities, �E is H€older continuous with the following estimate for some c > 0 :

sup
t2 0,T½ �

jjEðt, �ÞjjC0, cðTdÞ � CT :
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We also have the uniform L
dþ2
d ðTdÞ estimate from the conservation of energy:

sup
t2 0,T½ �

jjqf ðt, �ÞjjLdþ2
d ðTd

� C0:

Proposition 3.1 then implies that

jjÊjjC0, cðTdÞ � C0:

We deduce that E 2 L1ðTdÞ with supt2½0,T� jjEðt, �ÞjjL1ðTdÞ � CT : We then propagate the
uniform decay estimate on f by using the characteristic flow. Namely,

f ðt, x, vÞ ¼ f0 Xð0; t, x, vÞ,Vð0; , t, x, vÞð Þ � C0

1þ jVð0; t, x, vÞjk0
:

Since E is bounded in L1, we obtain an estimate of the form

f ðt, x, vÞ � C0

1þ jvj � CTtð Þk0þ
Since k0 > d, this bound can be integrated with respect to v 2 R

d to obtain

qf ðt, xÞ � CðT, f0Þ,
which completes the proof. w
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