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ABSTRACT ARTICLE HISTORY
The Vlasov-Poisson system with massless electrons (VPME) is widely Received 28 October 2020
used in plasma physics to model the evolution of ions in a plasma. Accepted 28 March 2021

It differs from the Vlasov-Poisson system (VP) for electrons in that
the Poisson coupling has an exponential nonlinearity that creates
several mathematical difficulties. In particular, while global well-pos-
edness in 3D is well understood in the electron case, this problem
remained completely open for the ion model with massless elec-
trons. The aim of this paper is to fill this gap by proving uniqueness
for VPME in the class of solutions with bounded density, and global
existence of solutions with bounded density for a general class of
initial data, generalising all the previous results known for VP.
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1. Introduction

In this article, we study a kinetic model for the ions in a dilute plasma. A plasma is a ionised
gas, in which gas particles have dissociated into ions and electrons. The ions are positively
charged, while the electrons are negatively charged and have a much smaller mass than the ions.

To model a fully ionised plasma one should consider a coupled system involving
both ions and electrons. However, since the masses of the two species have very differ-
ent orders of magnitude, there is a separation between the timescales on which each
species evolves. From the point of view of the electrons, the ions are very heavy and so
slow-moving. For this reason, it is common to assume that the ions are stationary over
the interval of observation. If magnetic effects are also neglected, this leads to the well-
known Vlasov-Poisson system. This system is often considered either on the whole space
or on the flat torus, and in this paper we will focus on the latter case:

8tf+v-vxf+E-va:0,
E=-VU,
AU =1— [ouf dv=1-p, (1.1)
f|t:o :fo >0, deXRdf() dx dv=1.

(VP) :=
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Here the unknown f = f(t,x,v) is a probability density describing the distribution of
electrons at time t, position x, and velocity v, with (x,v) € T? x R?. The Vlasov-
Poisson system thus describes the evolution of the electrons under the influence of the
electrostatic potential U induced by the charge distribution of the entire plasma. This
encodes the fact that the long-range effect of the potential is dominant over the effect
of collisions between the electrons, and describes the electrostatic regime in which mag-
netic effects may be neglected.
Observe that the electric field E can be represented in the form

E=-VG+x Pr>
where G is the Green kernel of the negative Laplacian on the torus, that is
—AG =g — 1. (1.2)

The Coulomb kernel K = —VG has a strong singularity of order |x|_(d_1) at x=0, and
its derivative V2G thus has a non-integrable singularity. This is the reason why the
study of the well-posedness theory of the Vlasov-Poisson system is mathematically chal-
lenging. Global-in-time classical solutions have been constructed under various condi-
tions on the initial data (see for example [1-6]), while global-in-time weak solutions
were constructed in [7] and [8] for L? initial data (see also [9, 10]). However, unique-
ness is not known to hold in general for weak solutions. An important contribution to
the uniqueness theory was made by Loeper [11], who showed uniqueness for solutions
of (1.1) with bounded density.

1.1. The Vlasov-Poisson system with massless electrons, or Vlasov-Poisson system
for ions

In this paper, we will consider a different model for plasma where the unknown is the
repartition function of ions, instead of the one for the electrons. This model has been
introduced to take into account the dramatically different order of magnitude between
ions and electrons. Indeed, the electrons move much more quickly than the ions, and
therefore undergo collisions much more frequently. Consequently, they approach
thermodynamic equilibrium rapidly. One therefore assumes that the electrons are ther-
malised, obeying a Maxwell-Boltzmann law. Then their spatial density is given by e
and the induced electric field obeys a nonlinear Poisson equation with exponential non-
linearity. This leads to the Vlasov-Poisson system with massless electrons (VPME):

Of +v-Vif +E-V,f =0,
E=-VU,
AU =eY — [ouf dv:eU—pf,

f|t:0 :fo >0, JTdXRdfo dx dv=1.

This system can be derived, at least formally, as the limiting regime of a coupled sys-
tem of ions and electrons, in the massless electrons limit where the ratio m,/m; between
the electron and ion masses tends to zero. Bardos, Golse, Nguyen and Sentis [12]
studied this limit, considering coupled systems of the form

(VPME) := (1.3)
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Of. +v-Vof. +%E Vo f = C(me)Q(f)), (1.4)
VixE=0, €&Vi-E=qplfi] + geplfe)s

where Q denotes a collision operator such as a BGK or Boltzmann operator. Under
suitable assumptions on C(m,) and the existence of sufficiently regular solutions for the
coupled system, they derive that, in the limit as m,/m; tends to zero, the electrons
indeed take on a Maxwell-Boltzmann distribution, and the system (1.4) converges to a
system similar to (1.3), but with a time-dependent electron temperature. In a similar
vein, Bouchut and Dolbeault [13] studied the long time limit (which in this setting is
closely related to the massless electrons limit) of a single-species Vlasov-Poisson model
with a Fokker-Planck collision term. See also Herda [14] for a study of the massless
electron limit in the case where an external magnetic field is also applied, leading to a
fluid model for the electrons coupled with a kinetic model for ions.

In this paper, our focus will be on studying the VPME system (1.3). The nonlinearity
in the Poisson equation is the key difference between ion and electron Vlasov-Poisson
systems, and a source of additional mathematical richness. Due to the difficulties cre-
ated by this nonlinear coupling, the VPME system has been studied less widely than the
electron model. However, global weak solutions were constructed by Bouchut [15] in
the three dimensional case. In this paper we investigate the global well-posedness for
the VPME system in dimension d =2, 3.

More precisely, we begin by investigating the uniqueness of solutions and, in the spirit of
the work of Loeper [11] for the electron VP system, we show uniqueness for solutions of
the VPME system with bounded density. This extension is very far from trivial since the
exponential term eV in the Poisson equation creates several nonlinear effects. The key esti-
mates that allow us to achieve this result are obtained in Sec. 3. More specifically, the first
important step is to write the electric field E as the sum of the electric field in VP, that we
denote by E, and a remainder E. Then, in Proposition 3.1, we develop a series of regularity
estimates on the electric fields E and E that depend only on the L(#*2)/?-norm of the dens-
ity ps This is crucial since the latter norm on py can be controlled uniformly (in time)
thanks to our assumptions on the initial data (see Lemma 5.3).

With these estimates at our disposal, in Sec. 4 we are able to perform a delicate
Gronwall-type argument with respect to the Wasserstein distance in order to prove
uniqueness and stability of solutions with bounded density. Central for this argument
are the results from Proposition 3.7, showing quantitative stability estimates on the elec-
tric fields E and E with respect to the density p. This concludes the proof of uniqueness
for solutions of the VPME system with bounded density.

The remainder of the paper is devoted to finding sufficient conditions on the initial
data that guarantee the global existence of solutions with bounded densities. As men-
tioned before, this kind of problem has been widely investigated in the setting of the
Vlasov-Poisson system for electrons. The key point here is that, thanks to the results
obtained in Sec. 3, we are able to deal with the additional part E of the electric field. In
particular, in Secs. 5 and 6 we prove propagation of moments of sufficiently high order
to guarantee the existence of solutions with uniformly bounded density (see Theorem
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6.1). It is worth mentioning that our approach is robust. Indeed, a similar strategy could
be used to extend other known well-posedness results for the Vlasov-Poisson system to
the massless electron case; for example, in a forthcoming paper we consider the case
where the VPME system is posed on the whole space. Moreover, thanks to this well-
posedness result new advances have been made regarding quasineutral and mean-field
limits for the VPME system [16].

2. Results and outline
2.1. Main result

The main result of this paper is the global well-posedness of the VPME system (1.3),
posed on the torus T¢, d=2, 3, for large data with sufficiently rapid decay at infinity
in the velocity variable. This is stated precisely in the following theorem.

Theorem 2.1. Let d =2, 3. Consider an initial datum fy € L' N L®(T? x RY) satisfying

Co
fole,v) < ———,
1+ |V|k0

for some my > d(d—1).

for some ko > d, J V"™ fo (x, v)dxdv < +o0,
T¢ xR

Then there exists a global-in-time weak solution f € C([0,00); P(T x R?)) of the VPME
system (1.3) with initial data f,. This is the unique solution of (6.16) with initial datum
fo such that

pr € I ([0, + 00); L(T%)).

In addition, if f, has compact support, then f(t) has compact support for all times, with a
bound on the size of the support which is locally uniform in time.

Remark 2.2. The VPME system has an associated energy functional, which is formally a
conserved quantity. It is defined by

Y S R v
£ = ZJTdXRdw fdxdy + ZJWWU dx + JTdU‘”’ dx, 2.1)

where U is the solution of the nonlinear Poisson equation in (1.3). The weak solutions
provided by Theorem 2.1 conserve this energy: for all t > 0,

E[f(1)] = Elfal-

Remark 2.3. Notice that this theorem stipulates no regularity on the initial datum f,,
only that fy € L' N L®(T? x R?). The resulting solutions thus will not in general be C'
classical solutions. However, as we shall discuss later, since p; € L5 ([0, + 00); L®(T))
they have a well-defined characteristic flow. Moreover the solution may be represented as
the pushforward of the initial datum f, along this flow.

If the initial datum is additionally assumed to be C', then this characteristic flow can
be used to show that the solution f provided by Theorem 2.1 is in fact C'. Theorem 2.1

thus also provides the global existence of C' classical solutions for C' initial data.
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2.2. Strategy

2.2.1. Analysis of the electric field

An important step of the proof is a toolbox of estimates on the electric field E, which
we set out and prove in Sec. 3. Following [17], our starting observation is that we can
consider E as a sum of the electric field that appears in the electron model (1.1), plus a
more regular nonlinear term. That is, we decompose E into the form E = E + E, where

E=-VU, E=-VU,

and U and U solve respectively
AU:I—pf, AU = eU+U 1.

In general, we would expect E to be more regular than E. In Sec. 3 we prove that
this intuition is rigorously true using techniques from calculus of variations to deal with
the nonlinearity in the equation for U.

In the context of analysing the VPME system (1.3), what is crucial is to quantify this
gain of regularity carefully, in particular in terms of its dependence on p; Specifically,
we prove that if p; € L@2/4(T%), then U € C>*(T?) for some o > 0, with a quantita-
tive upper bound on the C>* norm that depends only on |0l 1@2/a. The choice of
(d+2)/d as the integrability exponent is relevant because this is a quantity that we
expect to be bounded uniformly in time, as a consequence of the conservation of the
energy functional £ defined in (2.1) (see Subsec. 5.1).

These quantitative estimates explain in part the influence of the dimension d: the
goal is to get estimates depending only on L norms of psup to order p = (d +2)/d.
This exponent decreases as d increases, while at the same time the gain of regularity
provided by the ellipticity of the equation for U also becomes weaker with increas-
ing dimension.

The proof of well-posedness is then divided into two auxiliary results. One is the
uniqueness of solutions for VPME under the condition that the mass density p; is
bounded in L°(T?). The other is the global existence of solutions satisfying this condi-
tion under the assumptions of Theorem 2.1.

2.2.2. Uniqueness

In Sec. 4 we prove that uniqueness holds for the VPME system (1.3) under the assump-
tion that the mass density psis bounded in the sense of L>(T%), locally uniformly in
time. The same property has been known for the electron Vlasov-Poisson system (1.1)
ever since the work of Loeper [11]. Our proof in the VPME setting makes use of
Loeper’s strategy to handle the electric field E. However, the extension of this strategy
to the VPME case requires nontrivial additional estimates for E regarding its stability
with respect to the inducing charge density p. These estimates are proved in Sec. 3.

2.2.3. Existence of solutions
In Secs. 5 and 6, we show that global-in-time solutions of the VPME system (1.3) exist
for any initial datum fy € L' N L°(T¢ x RY) with a finite velocity moment of order
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mgy > d—this is a wider range of data than that considered in Theorem 2.1, but there
stronger assumptions are required for uniqueness.

The strategy of proof is based on showing that the VPME system propagates
moments of sufficiently high order. This approach was used to prove well-posedness for
the electron Vlasov-Poisson system, initially by Lions and Perthame [3] in the whole
space case where x € R3. Pallard [18] (see also the previous contribution by Caglioti
and Marchioro [19]) then extended the range of moments that could be propagated in
the whole space case and showed propagation of moments on the torus T>. Chen and
Chen [20] adapted these techniques to push even further the range of moments that
could be propagated.

In Sec. 5 we extend the proof in [20] to the VPME case, proving an a priori estimate
on the velocity moments of solutions of (1.3).

Then, in Sec. 6, we use this a priori estimate to prove global existence of solutions
for the VPME system (1.3). For this we first consider a regularised version of the
VPME system. For the regularised system, solutions can be shown to exist using, for
example, an adaptation of the methods of Dobrushin [21]. Proving uniform moment
estimates with respect to the regularisation parameter, we then extract a limit point
which we show is a solution of the original VPME system (1.3). We explain the con-
struction in detail in order to emphasise that no regularity is required on the initial
datum f, and that the solutions so constructed are energy conserving.

2.2.4. Remarks on notation
From now on we will use p; to denote the density generated by f. Throughout the
paper, we use the notation C to denote an arbitrary positive constant, which may
change from line to line. Subscripts are used to denote parameters upon which C
depends, for example Cr denotes a constant depending in some way on another param-
eter T.

We identify the d-dimensional torus T¢ with the cube Qy := [—% %]d or its transla-
tions, with appropriate identifications of the boundary. The distance between points on
the torus is given by

d(x,y) = inf |x —y + k| (2.2)
z

With an abuse of notation, we will denote this distance by |x — y| for points on the
torus. Note that for all x,y € T,

1
lx =yl SE\/a

3. Properties of the electric field
3.1. Decomposition

As explained above, we will split the electric field into a singular part, which behaves
like the electric field in the Vlasov-Poisson system, and a more regular term. To be pre-
cise, we write E in the form E + E where
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E=-VU, E=-VU,
and U and U solve respectively
AU=1-p, AU=¢""V_1. (3.1)

We will assume for convenience, and without loss of generality, that U has zero mean
over the torus:

J Tdx = 0.
r]rd

Notice that in this way U := U + U solves
AU =¢Y —p.

The remainder of this section is devoted to the study of Eq. (3.1). We consider the
existence and regularity of solutions as well as their stability with respect to the density
p. We work under the assumption p € L°(T%) (hence also in Ld%z(Td)), since later we
will work with solutions of (1.3) that have this degree of integrability.

3.2. Regularity estimates on U and U

In this section we prove some a priori regularity estimates on the singular and regular
parts of the potential U = U + U. Our aim is to prove the following proposition.

Proposition 3.1 (Regularity estimates on U and U). Let d=2, 3. Let h € L°(T%). Then
there exist unique U € W"2(T¥) with zero mean and U € W"2(T9) satisfying

AU =1—h, AU = etV 1,

Moreover we have the following estimates: for some constant C, 4 > 0,

_ (0,1) if d=2
||U||C0>“(T['d) < Gy (1 + HhHLd%Z(Td))’ xe (0, é:| if d=3,
1Tlleragrey < Cua (1+ Al ) %€ (0,1)

01l < Cua exp (Cut (14 Il ) ) 2 (0.0)

X (0,1) if d =2

Ul coxra) < Cua exp exp <C%d (1 + ||h||L%(Td))>’ oE (o, é} i de3

The existence of a unique solution U € W'3(T9) for h e L*(T%) D L>(T9) is well-
known—see for example [22, Chapter 6]. In the following lemma, we recall some stand-
ard elliptic regularity estimates for this solution, that follow from Calderén-Zygmund
estimates for the Laplacian [23, Sec. 9.4], and Sobolev inequalities.

Lemma 3.2. Let U € H satisfy
AU = h.
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d+2

i. If he LT (T%), then for all « € (0,1) (if d = 2) or a € (0, 1 (if d = 3) there

exists a constant C, 4 > 0 such that

10wy < o (14 Ul )

ii. IfheL>(TY), then for any o € (0,1), there exists a constant C, 4 such that
1Ullcuxrey < Coat [IPllpoers)-

In order to prove estimates on the VPME equation (1.3), we would ideally like to have
good control of the regularity of the electric field. Unfortunately the estimates in
Lemma 3.2 are not strong enough to provide Lipschitz regularity for VU as we would
like. However, a log-Lipschitz estimate is available. This well-known result is proved for
instance in [24, Lemma 8.1] for the case where the spatial domain is R*. For complete-
ness we briefly recall the proof below for general d.

Lemma 3.3 (Log-Lipschitz regularity of E). Let U be a solution of
AU =h
for h € L®(T?). Then E := —V U satisfies

[B() = EO)| < Callhlu by (1 + log <2| fy|>>. 62)

To prove this lemma, we use the representation of E in terms of the Coulomb kernel
K = —VG, where G satisfies (1.2). We will need some information about the regularity
properties of K. The following result shows that, near the singularity, the Coulomb ker-
nel on the torus is comparable to the Coulomb kernel for the whole space. For a proof,
see [25] or [26, Lemma 2.1].

Lemma 3.4. Let G denote the Green’s function for the negative Laplacian on the torus:
—AG =0y — 1. (3.3)
Then G is a smooth function other than at zero: G € C*(T%\ {0}). Moreover, on the

ball By/4(0) of radius 1/4 and centred at zero, G can be decomposed into the following
form:

1
—%log x| + Go(x) d=2
G(x) = 1

4 Gylx) d>3,
[Sa|lx]

where Gy € C*(B,/4(0)) is a smooth function, and [Sy_.| denotes the surface area of the
unit sphere in dimension d.

Proof of Lemma 3.3. We use the representation of E using the Coulomb kernel: observe
that
E=Kxh

where K = —VG is the Coulomb kernel on the torus, with G defined by (3.3). Thus
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|E(x) — E(y)| = U d[K(x—z)—K(y—z)]h(z)dz. (3.4)
T
By Lemma 3.4, on the ball B;/4(0) the kernel K has the representation

K(x) = _C"lﬁ + Ko(x)

for some Ko € C!(T¥). In particular note that K € L'(T“) and so
E(x) = EG)] < 211K o) Pl oo ey

Therefore, it suffices to prove the estimate (3.2) for small values of |x — y|.

We evaluate the integral (3.4) by identifying the torus T? with the cube x + Q;. We
then divide the cube into a region close to the singularity of K(x —z) and region far
from the singularity. Define the regions

Al={zex+Qu:|x—z <2lx—y|}, Ay={zex+Qy:2lx—y| <|x—z|}.
Then let
L= J [K(x - 2) — K(y — 2)] h(z)de.
Z€EA;
We now assume that |x — y| < . This is chosen so that for all z € Ay,
1 1
-zl <2x—yl <. ly—2d<3x—y< .

4
Then I; can be bounded in the following way:

J x—zd_ y—zd h(z)dz
zea ||x —z|" |y —7]

For the second term, we note that, for all ¢ € [0, 1],

L <Cy

+ J Kol =2) = Kaly = 2) (2}

1
2+t —x) < @+0k—) <5,

that is, the line segment (1 — t)x + ty — z is contained in the ball B;/4(0), on which K,
is a C' function. Thus

[Ko(x = 2) = Koy = 2)| < |[VKoll (s, (001X = ¥I-
The second term is therefore bounded by

J ) [Ko(x — 2) = Koly — 2)||h(2)|dz < Ci|[] e gy [ = y-
zEA,

We bound the first term by integrating over the singularity:
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x—z y—z
— h(z)dz
LEAI [Ix—ZId Iy—zd] @

< llioer (J - ( 1)dz+LA -z 1)dz>
ZE€A, z€A,

S I Vo N
|u|<2|x—y]| [u[<3|x—y|

< C[Af[ e gy |x = 1.

On A,, we use the derivative of K. By Lemma 3.4, we have the estimate

—d
Calx| ™ + | VKol (g, 40 % € B1/a(0)

VK(x)| <
VRG] < ||VK||Loc(B;/4(o>) x & By4(0).

Consider the straight line segment [(1 —t)x + fy — 2], ;) connecting the points x-z
and y-z. Observe that, since |x — z| > 2|x — y|, on this line segment

t 1
[(1—t)x+ty—z| > |x—z| —tlx —y| > <1—5>|x—z|25|x—2|.

Thus the derivative can be bounded by
VK| < Ca(1+1x—277).
It follows that
K(x—2) ~ KOy —2)| < Ca(1+x— 2 ) lx 1.

Therefore

1 < Callbll ol =1 (1 b2l )

zZ€EA,

—d
< Cllbll el =51 1+ | /7 uf dz
> 2 |u| = 2|x —y|

2|lx — )
< Callll o311 10g 2 221),

Altogether we have proved that

|E(x) —E(y)| < Cd||hHL%(Td)|x _}" <1 — log 2|X\/—H)/|>)

which concludes the proof. O

3.3. Existence and regularity of U

In this section we will prove the existence of U and some useful regularity estimates.
We note that the proposition below holds in any dimension d.
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Proposition 3.5 (Existence and Holder regularity of U). Assume that
V0100, + 101w < M. (:5)
Then the equation
AU = U+0) on T¢ (3.6)
has a unique solution in W“2(T?). Furthermore, for any « € (0,1) this solution satisfies
101 cuagrey < C(1+€20).
If in addition, for some o € (0,1),U € C%*(TY), with
U] ox(pay < Mo,
then U € C>*(T%) with
1Ullgaapey < Cexp [C(My + (14 )] (M, + (1 4 &),

Proof. We prove existence of U by finding a minimiser for the functional

h Elh] ::J

1 _
T&th + (V" — h)dx

among all periodic functions & € W"2(T%). Indeed (3.6) is the Euler-Lagrange equation
of the above functional.

Notice that since E[h] is a strictly convex functional, solutions of the Euler-Lagrange
equation are minimisers and the minimiser is unique. Let us now prove existence of a
minimiser using the direct method of Calculus of Variations.

Consider a minimising sequence A, that is

E[h] — i%fE[h] =: 0.

We then need to prove that hy is uniformly bounded in W"2(T%) and that the func-
tional E[h| is lower semicontinuous.
Observe that, by choosing h = —U, we get

a<EPM=J

1 _ _
~ VO] + (14 U)dx
T4 2

Using the L N W2(T9) bound (3.5) for U, we deduce that
%< %Mf + (14 M;).
Thus, for sufficiently large k,
Ell] < C(1+ M?) =: C. (3.7)
We observe that
Ut —s=ele—s>eMe—5> 5| - G,

thus,
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J eV — pdx > J |he| — Cadx. (3.8)
T T
By Egs. (3.7) and (3.8),
1
J SV 4 (] — Co)dx < El] <1< G+ 1.
T

Therefore, by Poincaré inequality we obtain that /i are equibounded in W%2(T?) :
IVhill 2 pey + [Pkl 2y < Cs.

Hence, by weak compactness of W'2(T%), up to a subsequence h; converges weakly in
W2(T) to a function U :

b — U in Wh2(T9).
Since W'2(T¥) is compactly embedded in L?(T%), we also have strong convergence:
W — U in L*(TY).
Then, up to a further subsequence, we have
hy — U ae.

We claim that U is a minimiser. Indeed, by the weak convergence in W2(T%) and by
strong convergence in L>(T%) (which implies strong convergence in L'(T%)), and by the
lower semicontinuity of the norm under weak convergence we have that:

1 1,
limian = |Vhy|*dx > J ~|VUdx,
k—oo  Jd 2 T 2
lim J hpdx = J Udx.
k—oo Td Td

Also, by Fatou’s Lemma,

limian eUthedy > J liminf eV P dyx = J eV +Udx.
T T

k—o00 T k—o00
In conclusion we obtained that
o« = lim E[h] > ElU],
k—o00

which proves that U is a minimiser. We now need to check that U solves the Euler-
Lagrange equations. First, observe that

. 1 N P
G >a=EUl = J SIVOF + (eVel — U)dx,
Td
and therefore VU € L*(T9), U € L'(T9),eV € L°(T%), and eU € L'(T?). Let ¢ €
C>*(T%), 7 > 0. By minimality of U,
ElU] < E[U + 5¢].
Then,
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E|C —ElU] 1 1. 1.
o < ELO + 4] M:-(J —|VU+nV¢2——|VU|2dx>
n n\Jpd2 2

1 0 i e 1 2 2
+- (J eVeUtnd _ eUede> +— <J — (U +no) + de)
U , n\Jr
Vel

) ot
:J VU -V +1 dx+J U+ udx—J ddx.
T4 T4 n T4

In the limit as # goes to 0 we obtain

E[C — ElC . it
0 < lim (U +n¢] — ELU] = J VU - Vdx + J eV Vpdx — J ¢dx for all ¢
n—0 n T¢ T T
€ C(TY).

Since the latter inequality is valid both for ¢ and for —¢, we have that
0= J VU -V + (00 —1)pdx = J AU ¢+ (VY —1)pdx for all ¢
T T

e C>(TY). (3.9)
By the arbitrariness of ¢, (3.9) implies that
AU =e""U 1 on T¢ (3.10)

We now prove the desired estimates on U. Our goal is to control ||U||C2,1(Td). To do
that, it is enough to prove that

10| oty < C. (3.11)

Indeed, since U € C*»?%, then by Eq. (3.10) we will have AU € C** and, thanks to
Schauder’s estimates [23, Chapter 4], this implies that U € C>*. To obtain (3.11), we
will use a priori estimates on the equation satisfied by U. For this we will need suitable
LP(T9) estimates on e, which we will derive via energy estimates, that is, by using
appropriate test functions in (3.9).

In order to give a meaning to Eq. (3.9), we need ¢ to be at least in L N Wb2(T?).
We will now build a test function in L N W52(T¢) that will allow us to prove a regu-
larity estimate on U. Let us consider the truncated function

Ui := (UAk), for all k€ N.
Since eVt € L*(T¢) and VU € L*(T9),
Vels = Vv, = eU"VUX{U<k} € L*(T%);
thus eV € L N WL2(T9), and we can use it as a test function in Eq. (3.9):
0=| VU-veltdx + J (eVelU+00 _ oUr)dyx
Jrd T

=| vU- eUkVUX{U<k}dx + J (eU (U+00) _ eUk)dx (3.12)
Jrd ™

— 1712 Uk. . U (U+i]k) _ Uk
= Td|VU|e )({U<k}dx+JTde dx JTde dx.

J
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Since de|VU|Zeka{U<k}dx >0, and Cy ;= e M < eV < M, (3.12) implies that

CO eU+f]k < eUk.
T4 e

By definition of Uj we have that el s increasing and converges monotonically to el,

hence by the Monotone Convergence Theorem

COJ eU+U _ COJ eZU S J eU
T¢ T¢ T¢

and we obtain that if e’ € L'(T%), then eV € L*(T¢). In particular, since Co = e,

R N\ 1/2
(R G.13
T

Since U is a solution of (3.10), we have

Thus
Il = | P < e,
T

and hence (3.13) implies that
||eU||L2(Td) <M (3.14)
If we now use the function e2U¢ as test function in Eq. (3.9), we obtain

0= J vU - Vewkdx + J (eUeU+ZUkeZUk)dx
T d
B J 2V - UV U g dr+ J (eVeU20r — ¢201)dx
T T

= 2J d|V0|2620k1{0<k}dx + J deUeUHOkdx - J dewkdx.
T T T
Thus, as in the previous case,

COJ eU“U"deJ e?VUrdx,
Td

T4

and by Monotone Convergence as k — oo, recalling (3.14) we get
Co AU < | U <,
™

Hence

€135y < €.
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Iterating n times, with n > d, we obtain
U
Ile ||Ln(1rd) <M

and hence

A~

AU =tV — 1 e 1(TY),
with

U+ _

lle sy < 1+

By standard regularity estimates for the Poisson equation [23, Sec. 9.4],

||U||W2,n(’]1‘d) S C(l + 82M1)~

Using Sobolev embedding for n sufficiently large, we deduce that for any o € (0,1),U €
Ch*(T9), with

U] ¢oray < €14 20).

Then, if
1Ty < Mo
we have
||U||c0,x(1rd) < M, + C(1 + &),
and so

HeUHcmmrd) < Cexp [C(M; + (1 4+ &) (M, + (1 + ).
Thus by Schauder estimates [23, Chapter 4]
101l sogrty < €110 grsy + N1 = Ulcsrs)

< C exp [C(M; + (14 )] (M, + (1 4 ™).

3.4. Stability with respect to the charge density

Next we wish to study the stability of the electric field VU with respect to the charge
density p. To measure stability we shall use the 2-Wasserstein distance.

3.4.1. Wasserstein distances

To define the Wasserstein (or Monge-Kantorovich) distances, we first define a coupling
between two measures. Let (Q, F) be a measurable space, and let i, v € P(Q) be prob-
ability measures. A coupling is a measure on the product space, 7 € P(Q x Q), which
has marginals u and v. This means that for all A € F,

(A x Q) =pu(A), n(QxA)=uv(A).
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We denote the set of couplings of u and v by I1(y, ). We now give the definition of the
Wasserstein distances. For further background on optimal transport distances, see [27].
Definition 3.6 (Wasserstein distances). Let p € [1,00). Let (,d) be a Polish space and

let F be its Borel o-algebra. Let i, v be Borel measures satisfying

J (. x0) u(dx), j d(xx0)v(dx) < oo
Q Q

for some xy. The Wasserstein distance of order p between p and v is defined by

Wh(wv) = inf J d(x, y)Pn(dxdy).
mell(i,v) Jaxa

In this paper, we will use the case Q = T¢ x RY. The distance d is given by
d((x1,v1), (x2,v2)) = |x1 = x| + |[v1 — w2,

where for the x coordinate we use the distance on the torus, defined by (2.2).
The main result of Sec. 3.4 is the following proposition. Again this holds in
every dimension.

Proposition 3.7. For each i=1, 2, let U; be a solution of
AU; =h; — 1,
where h; € L N L42)/4(T%), Then
VU1 = VUa|[fo ) < max |[|l| ey W3 (1, h2). (3.15)

In addition, let U; be a solution of
AU; = Ul 1.
Then
V01 = VOl ey < exp exp [Call 4% | max [1ill ey W31, o)
(3.16)
For the Poisson part, we will use a stability estimate, with respect to the Wasserstein

distance, for Poisson’s equation on the torus. A proof may be found in [28]; see also
[11] for the case where x € R%.

Lemma 3.8. For each i=1, 2, let U; be a solution of
AU; =h; — 1,
where h; € L™(TY). Then
VU, - VUzHiZ(W) < max Hhi”Loc(Td) W3 (b1, ).

For the nonlinear part we derive a suitable energy estimate.
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Lemma 3.9. For each i=1, 2, let U; € W2 N L>(TY) be a solution of
AU; = Ut 1, (3.17)
for some given potentials U; € L°(T%). Then
||Vf]1 - VUZHiz(Td) < CHUI - Uz”izmrd)’ (3.18)

where C depends on the L norms of U; and U;. More precisely, C can be chosen such
that

C < exp [cd (mgx 104l + max ||0i||m>>}
for some sufficiently large dimensional constant C,.

Proof. For convenience, we define the constant
A= exp {miax 104l ey + max ||Ui|mw>}
which will be fixed throughout the proof.
Subtracting the two equations (3.17), we deduce that U; — U, satisfies
A(Ul o UZ) _ e(_]1+01 _ eUz+Uz — 6(71 (601 . eUZ) + eUz(eUl . eUZ). (319)

The weak form of (3.19) extends by density to test functions in L N W2(T¥). Since
U, — U, has this regularity by assumption, it is an admissible test function. Hence

_J d|VUl — V02|2dx :J degl (eUl — eUZ)(Ul — 02)dx
T T (3.20)

+J degz(eUl — eUz)(fll —Uy)dx=:I, + L.
T

Observe that (e* —¢’)(x — y) is always non-negative. Furthermore, by the Mean
Value Theorem applied to the function x— ¢*, we have a lower bound

(¢ = &) (x —y) = et (x — )2,
We use this to bound I; from below:
Lz ¢ 1ot 0w | |0y — O oy 2 A7O) = Cal . (B2D)
For I, we use the fact that, again by the Mean Value Theorem,
¥ — &| < em |y —y).

Therefore
L < ele'Lm(Tdﬁmaxx‘UJWT‘”J Uy = U,||U; — Uyldx < AJ Uy — Ua||Uy — Us|dx.
T T4
By the Cauchy-Schwarz inequality, for any choice of o > 0

> 3 2 1 F- r 2
L < A(O(HUI - U2||L2(’]1‘d) +E||U1 - U2||L2('H‘d)>~ (322)
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Substituting (3.21) and (3.22) into (3.20), we obtain
P rro2 = ) I - L)
JTd|VU1 — VU, dx < A<oc|U1 — Ua|l2 ) +E||U1 - U2||L2(Td)>
—A7Y|U, - 02||i2(Td>.

We wish to choose o as small as possible such that

A -1

—— A <0

4o
Thus the optimal choice is o = ATZ. Substituting this into (3.23) gives

~ ~ 12 1 _ _
J VU, = V0| dx < = A%||Uy = Us|[fapay-
T 4

This completes the proof of (3.18).

(3.23)

|

Proof of Proposition 3.7. Estimate (3.15) follows directly from Lemma 3.8. The only
remaining task is to prove (3.16). We want to apply Lemma 3.9, which requires L>(T%)

estimates on U; and U; (i=1, 2). By Proposition 3.1,

Ul e ey < Cd(l + ||hz‘||L%Td>)’ 1Tl (pe) < exp (Cd<1 + ||hi\|L%Td)>>~

Hence, by Lemma 3.9, we obtain

IVUy = VUa|[fapa) < ClIUL = Ua[7270)5
with

C< exp exp [Cd(l + max ||h,-||Ld%z(Td)>}.
The Poincaré inequality for zero mean functions implies that

IVU, — V@Hiz(w) <CllU, - U2||i2<w) < Cl|VU, - VUZHiZ(’Jl‘d)'
Hence by (3.15),
VT = VOB < Cmax ([ oy W31, o),

where C may be chosen to satisfy

C< exp exp (Cd<1—|—max ||h|| a2 ’Jl‘d)))

for some suitably large C,.

4. Uniqueness for solutions with bounded density

This section focuses on the uniqueness part of Theorem 2.1. The aim is to prove the
following theorem, concerning the uniqueness of solutions for the VPME system under

the condition that the mass density pis bounded in L> (T%).
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Theorem 4.1 (Uniqueness for solutions with bounded density). Let d=2, 3. Let fy €
P(T? x RY) with ps, € L>(TY). Fix a final time T>0. Then there exists at most one
solution  f € C([0, T} P(TY xRY) of (1.3) with initial datum f, such
that p; € L([0, T}; L>(T9)).

The proof of this result is based on a stability estimate on solutions of the VPME sys-
tem (1.3) with respect to the initial datum. This stability estimate is quantified using
Wasserstein distances.

4.1. Strong-strong stability

In this section, we prove a quantitative stability estimate in W, between solutions with
bounded density." To do this we will make use of the stability estimates for the electric
field that we have proved in Sec. 3. Following the decomposition (3.1), it is useful to
rewrite (1.3) in the form

of +v-Vof +(E+ ) V.f =0,
E=-VU, =-V0,
AU = 1 — pf,
VPME) :=
( ) AU = eU+U —1,
pf = defdv
fo(x,v) >0, [, gafo(x,v) dx dv=1.

The aim is to prove the following estimate between two solutions of VPME (1.3) that
have bounded density.

Proposition 4.2 (Stability for solutions with bounded density). For i=1, 2, let f; be solu-
tions of (1.3) satisfying for some constant M and all t € [0, T},

plfit)] <M. (4.1)

Then there exists a constant C, depending on M, such that, for all t € [0, T],

2
4W- 0).£2(0
%exp <log 2(f1(d2fz( )) e_Ct> if t<t

Wa(fi(0).(0)" < {4 J
aX{Z’ W (fi (0>»f2(0))2}ec(t_t°) if t>to,

where the time t, is defined by

to = to(W2(f1(0),/2(0))) :inf{t>0 de —exp (l g4Wz(f1 def2 0)) Ct> >§}

Theorem 4.1 then follows from this estimate.

'Such estimates are said to be of strong-strong-type because we are requiring that both densities belong to L.
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Proof. We will prove Proposition 4.2 by means of a Gronwall type estimate. To do this,
we will first consider the evolution of particular specially constructed couplings n; €
I1(fi(t),f2(t)). First, observe that f; can be represented as the pushforward of the initial
datum f;(0) along the characteristic flow associated to (1.3). That is, given f;, consider
for each (x,v) € TY x R? the system of ODEs

X0 = v,
v = Ex) (4.2)
)

X,V

(X4(0), Vit (0)) = ()
where E; is the electric field induced by f:
E,’ = —VU,' AU, = CUi — p[ﬁ]

We again use the decomposition E; = E; + E,. Since p[fi] € L(T?) by assumption
(4.1), Lemma 3.3 implies that E; has log-Lipschitz regularity. Since L°°(T9) C L‘7(T%),
we have p[f] € L NL7(T¥). Thus we may apply Proposition 3.1 to deduce Lipschitz
regularity of E;. Overall this implies that E; has log-Lipschitz regularity, which is suffi-
cient to guarantee the existence of a unique solution to the system (4.2). The uniqueness
of the flow implies that the linear Vlasov equation

og+v-Vyg+E - -V,g=0, gl =£i(0) (4.3)

has a unique measure-valued solution g (see for instance [29, Theorem 3.1]). This solu-
tion can be represented as the pushforward of the initial data along the characteristic
flow, which means that g, satisfies

J O (x,v)g(dxdv) = J ¢ (Xfc")w in>v) £:(0, x, v)dxdv (4.4)
T xR? T¢xR? ’ ’

for all ¢ € Cb(Td X Rd). Since f; is also a solution of (4.3), and the solution is unique,
it follows that g = f;. We deduce that f; has the representation (4.4). Note that here we
are not yet asserting any nonlinear uniqueness, because we already fixed E; to be the
electric field corresponding to f..

We use the representation above to construct 7. First, fix an arbitrary initial coupling
np € I1(f1(0),£2(0)). We then build a coupling x, for which each marginal evolves along
the appropriate characteristic flow. To be precise, we define m, to be the measure such
that, for all ¢ € C,((T9 x RY)?),

(X1, V), X2, Vyﬁzgv) dmo(x, v, 3y w).  (4.5)

J (T?xR?)?
By checking the marginals:
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LTd Rd)2¢(xi’vi)dﬂt(xl,Vl,xzyvz) = Rd)2¢(Xa(cf,>v,»Vﬁf,)v,-)d”O(xb"bxzyvz)

X X

= o(xX0, VO RO x dxdy,  (46)
deRd (g (]

= O (x,v)fi(t, x, v)dxdv,

T'xR?
we see that the representation (4.4) implies that 7, € TI(f;(¢), £(¢)) for all t € [0, T].
We now consider the quantity

D(t) = J|X§1> _XOP 4 v _ y@Pdg, 47)

We have omitted the subscripts x, v, y, w in order to lighten the notation. Since by defin-
ition (4.5) we have

D(t) = J

it follows from Definition 3.6 that

2 2
(deRd>2|x A+ by =widm,

W; (fi(1). /(1)) < CD(1). (4.8)
Moreover, since m, was arbitrary, we have
W; (f1(0),4(0)) = i%fD(O). (4.9)

We will therefore focus next on controlling the growth of D(f). This amounts to per-
forming a Gronwall estimate along the trajectories of the characteristic flow. We give
the details in Lemma 4.3 below. We obtain a bound

d 4D(0
Zeexp (log ©) eCt> if t<t

D(t) < RS
max{4,D(0)}eC(t_t°) if  t>t,
where t; is defined by
d 4D(0 d
to = to(D(0)) = inf{t >0: fexp (log # eCt) > Z} (4.10)
e

Observe that ¢, is decreasing as a function of D(0). From (4.8) it follows that

@exp (log %(0) e_C‘> it t<t
W(E(0.40) <4 4 { ‘

d
Z,D(O)}ec(“@ it t>t,

Finally, taking infimum over 7, and applying (4.9) concludes the proof. O
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Lemma 4.3 (Control of D). Let D be defined by (4.7). Then

4D(0 .
p(lg d(e) ’) if t<t

p<yt
max{Z,D(O)}eC(’t") if t>t,
where C depends on M and t, is defined by (4.10).

Proof. Differentiating with respect to t gives

b(t) - zj( P (v v B (x) - Ba(x)
TxR%)?

We split the electric field into four parts:

E(XY) - () = [B(x) - L)) + [B.(x®) - B(x?)]

Applying Holder’s inequality to (4.11), we obtain
4
D<D+2vDY 17
i=1

where

Il = J‘('Jl'dXRd)2|E1(X
I3 = J‘(deRdf'El (X

2 )| dTCOa
2 Pdn.
(4.12)

V)~ Ei (X)) Pdmy, D= [y gep B2 (X)) — Ey(X

(
t
) = B Pdno, Iy i= [ el B1(XP) — Ex(X

)
t
)
t

We estimate the above terms in Lemmas 4.4-4.7 below. Altogether we obtain

) CD( 1+ log@‘ ifD<£l
b< d 4

CD it D>

A~

Therefore

Do) < Fexp (10g 2 o)

as long as D(t) <4, which certainly holds as long as t < ty. For t > t, we have the
alternative bound

D(t) < max{g,D(O)} eCli=h),
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Lemma 4.4 (Control of I;). Let I, be defined as in (4.12). Then
I, < C4(M +1)*H(D),
where D is defined as in (4.7) and

d
x(log :2—’;)2 if x<-
H(x) := ?i

Proof. First we use the regularity estimate for E; from Lemma 3.3:

Vd ’
e
1 12 |I1 (T (deRd)2| t i g2|Xz(l) _Xt(2)| 0

(1) (2)2
_ 2 0 _ @ 1, 4K =X
= C4llp; — 1||Lx<Td)J(1rded)2 X, — X, (log ¥ dmy.

The function

ax\’
a(x) = x(log %>

is concave on the set x € [0, ). Since Xt(i) € T9, we have |X§1) - Xt(2)|2 < 4. Note that

a <§> = —logé*(2 — loge?) = 0;

hence the function H(x) defined in the statement is concave on R, and

W< Calloy = | H (XY X P

(T4 xRY)

Then, since 7, is a probability measure, we may apply Jensen’s inequality to deduce that

1 2
I < Calloy = 1o H( j(w I >|2dno> < Callpy = Ul oy H(D):

O
Lemma 4.5 (Control of I,). Let I, be defined as in (4.12). Then
L, < M*D,
where D is defined as in (4.7).
Proof. From (4.6), for all ¢ € C(T“) we have
J (X )dmy = J d(x)f:(t, x, v)dxdv = J b (x)p;(t, x)dx. (4.13)
(T?xR?)> T4 xR T

Thus
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= | i) = Ba a0 < ol oo 1Es — Bl
= ||Pz||Loc(Td)||VUl - VUZH%Z(W)'

We use the stability estimate from Lemma 3.8 to control the difference between differ-
ent electric fields:

I, < max; ||pi||i°°(’11‘d) W3 (p1, p;) < max; ||pi||ioo(']1‘d) D.

Lemma 4.6 (Control of I3). Let I be defined as in (4.12). Then
I < Cpa D,
where D is defined as in (4.7) and Cy 4 depends on M and d.

Proof. Observe that

L= j 1B, (xY) — By (x?) Pdn,
(T xR

< Bl = X P < (01l D
(T?xR?)>

for any o > 0. To this we apply the regularity estimate on U, from Proposition 3.1
with o € Ay :

101l gangrty < Coa exp exp (Ca,d(l + ||P1||L%(Td))> < Cumar
since

Thus we have

I; < Cy g D.

Lemma 4.7 (Control of I). Let 1, be defined as in (4.12). Then
Iy < Cm,a D,
where D is defined as in (4.7) and Cyy 4 depends on M and d.

Proof. Using (4.13) again, we deduce that
L= | B - Exlo)Ppa( s
T

< ||p2HL”°(Td)||E1 —EzHiZ(w) = ||p2||L°°('JI‘d)||VU1 - VUzHiz(Td)'

To control the L?(T¥) distance between the electric fields we use the stability estimate
in Proposition 3.7:
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2 o
VU1 = VUal[jqe) < exp exp [Cd(l + max ||pi||L(d+2)/d(’]I‘d)):| max ol W;(py,ps).

Therefore
I < exp exp[Ca(1+max ||pi]| wasairs)) max lp;llf< W3 (015 02)

< exp exp[Ca(l+max [Ipyllywessee)] max [l D < Caga D.

5. Propagation of moments

In this section we prove an a priori estimate on classical solutions of the VPME system,
showing that velocity moments of sufficiently high order are propagated. At this stage,
the reader may look at all the computations in this section as a priori estimates for clas-
sical solutions that decay fast enough at infinity. More precisely, we shall prove uniform
moment propagation estimates for C' compactly supported solutions, with bounds that
are independent of the smoothness of f and of the fact that f has compact support.

Then, in Sec. 6, we will perform the same estimates on a family of solutions of regu-
larised VPME systems where all the computations will be rigorous. Of course one could
have performed these estimates directly on the regularised systems. However this choice
simplifies the notation and highlights the main ideas.

Note that a posteriori, as a consequence of our main Theorem 2.1 and Remark 2.3,
C' compactly supported solutions of VPME system (1.3) exist whenever the initial
datum is C' and compactly supported.

Proposition 5.1. Let the dimension d=2 or d=3. Let 0 < fy € L' N L°(T% x R?) have
a finite energy and finite velocity moment of order my > d:

Elf] £ Gy < +o0, J [v[™fo(x, v)dxdv = My < +o0.
TIxR?

Let f be a C' compactly supported solution of the VPME system (1.3). Then, for all
T >0,

supJ W™ (6, v)dxdv < C(T, Co Mo, oy |[fo ).
[0, T] JT¢ xR
Our approach is based on adapting known methods for the Vlasov-Poisson system
(1.1) to the VPME case. The methods differ according to the dimension d. In the two
dimensional case d=2, we follow the strategy explained in [30, Sec. 4.3]. In the three
dimensional case, we adapt techniques by Pallard [18] and Chen and Chen [20].

5.1. Interpolation estimate

The following interpolation result allows quantities such as the mass density ps to be
estimated in terms of the velocity moments. We introduce the notation M, for the
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moment of order m > 0:

M, (t) == J [v|™f (£, x, v)dxdv. (5.1)
T¢xR?
Let us start with a classical Lemma 5.2, that we prove for the convenience of the reader.

Lemma 5.2. Let g >0 be a function in L®°(T? x R?). Assume that M,, as defined in
(5.1) is finite for some m > 0. For k € [0, m], consider the local velocity moments

Ik(x) == J]Rd v[fg(x, v)dv. (5.2)

There exists a constant Cq i depending on m, k and d such that
%
m—+

mk
||lk||L%i( < Cd,m,k||g||21:i(vﬂvd><Rd)||lm||Ll :

T9)

Proof. Fix x € T? and split the integral defining [ in (5.2) into a part close to zero and
a part far from zero. We obtain, for arbitrary R >0,

L(x) = JV<R|V|kg(x, v)dv + J v (x, v)dv < J

< 1180 Ml gty CaR™ + Ry (),

lv|*g(x, v)dv + kamj g(x,v)v|"dv

[v|>R [v|<R [v|>R

where C, is a dimension dependent constant. The optimal choice of R is

() 1/(d+m)
)

R(x) = Cam| o —
(ng(x,-)nma

which results in the estimate

m=k

kid m_k ktd
be(x) < Catm, k|8 (6 [ gy b ()7 < Cot, vl I8 gty P ()

Thus

ktd
m+d

m—k
1l e < Catm el g 5

)
O

In particular, if a solution of the VPME system (1.3) has bounded energy, then its
mass density satisfies a certain L” estimate.

Lemma 5.3. Let g > 0 satisfy, for some constant Cy,
g1l (1 xrty < Cos €[g) < Cos

where & is the energy functional defined in (2.1). Then,
J v[’gdxdv < Cy, (5.3)
T xR

for some constant C; depending on C, only. Moreover the mass density
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lies in L\#2)/4(T9) with

IIPgIIL%Td) < G (5.4)

for some constant C, depending on C; and d only.

Proof. Recall that

._1 2 l 2 U
Egl = 2J1rdedV| gdxdv+2JTd|VU| dx + JTdUe dx,

where U solves —AU = eV — Pyq- The moment estimate (5.3) follows from the fact that
for all x € R,xe* > —e~'. Hence the boundedness of £[f] implies that

J ) d|v\2gdxdv <2(Cy+e™M).
TxR

The estimate (5.4) on p, then follows from Lemma 5.2, upon choosing m =2 and
k=0. O

5.2. Two dimensions

In this subsection we always take the dimension d=2. The goal is to prove the follow-
ing lemma on the propagation of moments in two dimensions.

Lemma 5.4. Let f € L' N L>(T? x R?) satisfy E[f] < Co < +o0 and

My, (0) = J

i 2|v|m"ﬁ)(x, v)dxdv < +o0
T xR

for some mg > 2. Let f be a solution of the VPME system (1.3) as in Proposition 5.1.
There exists a constant Cy, o, depending only on my, M,,,(0), Cy, and ||fo||;~, such that

My, (£) < Coo(1 4+ £)™72,

Proof. Using the pushforward representation of f, we have, for all ¢ € [0, T],

M, (t) = J [v|"™f(t, x,v)dxdv
QzXRZ

= J |V (£0,x,v)["™fo(x, v)dxdv.
Q,xR?

This identity can be used to calculate the time derivative of M,,, using the definition
of the characteristic flow: for any mg > 2,
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%Mmo(t) = my E(X(£;0,%,v)) - V(£;0,%,v)|V(t; 0, x,v)| ™ *fo (x, v)dxdv
QZXRZ
= my E(x) - v|v|™ *f(t, x, v)dxdv
J o, xR?
< my |E(x)|J ™ f (¢, x, v)dvdx = mOJ |E(x)| Imy—1(x)dx.
JQ, R? [9)3

Applying Holder’s inequality in the x variable with exponent p gives

d

aMmo(t) < mol[E|| 2y o 11| o (72) -
Choose p = Zﬁﬁ and apply the moment interpolation estimate from Lemma 5.2, to
obtain

d mo+1
aMmo (t) S Cm() | |E| |Lm0+2(T2)MmO (t)"‘()*l

where the constant C,, > 0 depends only on m,. The remaining step is to estimate
||| ng+2(p2)- To do this, first use the decomposition E = E +- E:
Ellpm2(r2y < NE]lpmoar2y + [[E]|pm(r2)-

For the Poisson part E, standard regularity estimates for the Poisson equation imply
that

||E||L”’0+Z(T2) < Cmo||Pf|| 2Amy+2)
I mot+4

(T%)
Note that % < 2. Thus, due to the uniform control of the energy functional £

(defined in (2.1)) we have
El pmo-212y < Congll0fl11212) < Con,05

where Cy > 0 depends only on mo, E[fo] and [[fo|| (12 xge)- For E, we use Proposition
3.1 which provides the bound

1Bl < exp (Ca(1+ o) ) < Co

where Cy > 0 depends only on E[fo] and [[fol[;~(p2p2) (here we are using Lemma 5.3

and the fact that our solution conserves the energy). Altogether, we have the estimate
||E||Lm0+2(’]1‘2) < Cmo,Oa

and thus

d mo+1
aMmo(t) S Cmo,OMWlo(t)mO“'

It follows that there exists a constant Cy,,0 > 0 depending on mo, Elfol, [[fol |1 (12 xr2)
and M,,,(0) such that for all t € [0, T],

My, (£) < Cpo(1 4+ 8)™72,
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5.3. Three dimensions

In this subsection, we prove propagation of moments in the three dimensional case
d =3, which is stated in the lemma below.

Lemma 5.5. Let d=3. Let f be a solution of the VPME system (1.3) as in Proposition
5.1, with initial datum fy € L' N L®(T% x RY) satisfying
J [v|"™ fo(x, v)dxdv = My < 400, mg > d.
T¢xR?
Then, for all T> 0,

sup J [v|™f (£, x, v)dxdv < C(T, Mo, mo, ||fo]|~)-
tefo, T J T xR?

As in the two dimensional case, the time evolution of the moment M,, (f) can be
studied by using the pushforward representation of f:

J [v|"™f (¢, x,v)dxdv = J |V (£ 0,x,v)["™fo(x, v)dxdv.
TIxR?

T4 xRY
Observe that

t
[V(£0,x,v)| < |v| + J E(X(t;0,x,v))ds|.
0

The next step is to estimate E. As was discussed for the two dimensional case, the over-
all strategy is to use the decomposition E = E + E, and to notice that by Proposition
3.1 and the conservation of energy, E is controlled uniformly in time:

[IE(t, )l pe) < exp (C(l + pr(t")HL%(Ta))) < C(fo)-

The remaining step is to estimate E. For this we use techniques established for the elec-
tron Vlasov-Poisson system by Pallard [18] and Chen and Chen [20]; here we particu-
larly follow the method of Chen and Chen [20].
First note that, by Lemma 3.4, there exists a constant C such that for all x € T¢,
[K(x)] < C(1+ x| 7). (5.5)
It follows that

pr(t,y)
! 24+ Cllpglury,

(6] = [K + (0] < |

x—Q3

To estimate the integral term we will use a technical lemma from [20]. The estimate
therein makes use of the fact that fis the pushforward of its initial data along the char-
acteristic flow of the electron Vlasov-Poisson system. In the VPME setting, the relevant
characteristic flow has a different structure since E = E + E, and so the estimate from
[20] cannot be applied immediately as stated. However, upon examining the proof it is
possible to see that the estimate also applies to other characteristic flows, under the fol-
lowing set of assumptions.
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Assumption 5.6. Let X(t;s,x,v), V(t;s,x,v) denote a flow induced by a vector field of
the form

(v,a(t,x,v))

for some function a. That is,

d
&X(t; s, %v) = V(tsxv)

%V(t; s, x%v) =al(t,X(t;s,x,v), V(t;s,x,7))
(X(s;8,%,v), V(s;s,x,v)) = (x,v).

Assume that the following properties hold.

e (Uniform control of small increments in velocity) Define P(t,3) by

t
P(t,0) :=  sup J la(t, X(s;0,x,v), V(s;0,x,v))|ds.
(x, V)€T> xR? Jt—0

Assume that P(t,0) is finite.
e Fixfy € L' NL=(T? x R*) and let f be the pushforward of f, along the flow.
Assume that there exists a constant Cy > 0 such that for all t

Il <G| by < G
T3 xR3

By following the proof of [20, Proposition 3.3], it is possible to see that the following
estimate holds for any vector field satisfying Assumption 5.6.

Lemma 5.7. Let (X(t;s,x,v), V(t;s,x,v)) and f satisfy Assumption 5.6. Then

t s,
J J pf(—y)zdyds < C(ép(t, 0)* 4+ 612(1 4 oP(1,6))*P(t, 5)*1/2M3+S(t)1/2),
-5 Jx—0, | X(s;0,x,v) — y|

where the constant C > 0 depends on Cy, and ¢ > 0.

In particular, the flow induced by (v, E(x)), where E is the electric field for a solution
of the VPME system with finite energy, satisfies these assumptions. Henceforth we
define the quantities P(t,0) by

t
P(t,0) ;==  sup J |E(t, X(s;0,x,v)|ds.
(%, V)ET? xR? J =0

Using the same proof as for [20, Proposition 3.1], it can be shown that these quanti-
ties can be used to estimate the moments M,,,.

Lemma 5.8. Let m > 2. There exists a constant C> 0 depending on M,,(0), M,,—>(0) and
M, (t) such that



1922 M. GRIFFIN-PICKERING AND M. IACOBELLI
M(t) < C[P(t, gy m=2) 1] (5.6)

Using these results, we can now conclude the proof of Lemma 5.5.
Proof of Lemma 5.5. We use Lemma 5.7 to bound E. By (5.3), along each trajectory
X*(s) = X(s;0,x,v) we have
t T t 1
JEX*(s))|ds < C | « [ ——0/(s,y)dyds + Co .
Ji—s |EC($))lds < C [, fy-9-0, X0 5T pr(s.y)dy oflls (e .
< CS+ C<5P(t, §)'3 4+ 812(1 + 8P(1,0))/*P(1,5) " *M ﬂ(t)l/z).
We then deduce a bound on P(t,8) by using the decomposition E = E + E. First,

note that

P(t,0) = sup J |E(X(s;0,x,v))|ds

x, vET> xR? J =6
t _ t .
< swp (| EGOxuIas | BC0x ) ).

x, vET? xR? t—o t—o
By Proposition 3.1, E is bounded, uniformly in x and t. Thus there exists a constant
C > 0 depending only on ||fy||;~ and E[fy] such that

t
P(t,0) <Cé+ sup J |E(X(s;0,x,v))|ds.
%, veT*xR3 Jt—0

Then, by the bound (5.3) on E,
P(1,0) < €5 + C(SP(1.0)" + 8"2(1 + 5P(£.9))P(£:5) My (8)2)).
Multiplying by P(t,8)'/?, we deduce that
P(£,6)"? < COP(1.6)' + C(8P(1.6)/° + 6Y2(1 + 6P(1.5)) *Ms.. (1))
< C(8P(1.0)"M° + 8"2(1 + 5P(£.0)) (1 + Mo (1))

Then, as explained in [20, Proposition 3.3], it follows from the estimate above that

P(t,t) < C(1+ t)(l + sup M3+E(s)>%.

s€[0,1]
The end of the proof then follows as in [20]. First, interpolate M, between M, and
M., : by Holder’s inequality,

my—3—¢
M;o(t) = J v fdxdv < My (t) o2 My, (£)70°2
T3 xR3

Thus
P(1,t) < C(1 + )( + sup My (s )m—>> (5.8)

s€[0, t]

Substituting estimate (5.8) into (5.3), we obtain
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I4e 1+4¢

P(t,t) < C(1+ t)(l + P(t, )™ Um0 )

For sufficiently small ¢, the exponent max{!}¢, %} is strictly less than one, and so
there is a constant C> 0 depending on t, E[fol, |[fo| | r2) and My, (0) such that

P(t,t) < C.
It then follows from (5.8) that

sup My, (t) < 400,
te[0, T)

as desired. O

6. Construction of solutions

In this section, we show global existence of weak solutions for the VPME system (1.3)
for initial data with finite velocity moments of sufficiently high order.

Theorem 6.1. Let d=2, 3. Consider an initial datum fy € L' 0 L®°(T? x R?) satisfying
J [v[™fo(x, v)dxdv < +o0, for some mg > d.
T!xR?

Then there exists a global-in-time weak solution f € C([0,00); P(T¢ x RY)) of the VPME
system (1.3) with initial data fo, such that for all T >0,

sup j [v|"™f (¢, x,v)dxdv < +o0.
tef0, T] J T x R4

To prove this theorem, we first consider a regularised system for which unique global
solutions can be constructed. Then, using the a priori estimate from Sec. 5, we extract a
subsequential limit from the regularised solutions, and show that the limit is a weak
solution of VPME (1.3) with the desired moments bounded.

6.1. Regularised VPME

We introduce a regularised version of (1.3). We define a scaled mollifier y, by letting

L(x) =1 (f) re (0, ﬂ 6.1)

Here y: T¢ — R is a fixed smooth function with support contained in the unit ball.
We assume further that y is radially symmetric, non-negative and has total mass 1. We
then consider the following regularised system:

Of ) + vV f 4 E[f0] - v,f0) =0,
EV = —Ar * VUra
AU, = e — 7,5 p[f],
f(r)|t:0 :ﬁ) >0, deXRdﬁ) dx dv = 1.

(6.2)
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We regularise the ion density but not the electron density, the idea being that the
thermalisation assumption should lead to a regularising effect. This is a slightly different
approach from that of Bouchut [15], where both densities are regularised.

We introduce the decomposition

E,=E, +E,

where

E,=—y3.xVU, E, =—y xVU,
with U,, U, satisfying
AU, =1z, 5p[f0], AT, =040 -1,

Notice that we are using a technique of ‘double regularisation’; for instance, E, can
be represented in the form

E,:}gr*xr*K*p[f(r)]

This type of regularisation appeared in the work of Horst [31], and has subsequently
been used in many other contexts. An advantage of this approach is that the system
(6.2) has an associated conserved energy, defined by

— l 2 l 2 U,
Ef] == 5 JMW'V' fdxdv + 5 JTd|VUr dx + er U,e” dx. (6.3)

If f) converges to some f sufficiently strongly as r tends to zero, then we would expect
E[f")] to converge to E[f], where £ is the energy of the original VPME system, defined
in (2.1).

The methods of Dobrushin [21] may be used to construct solutions to this regular-
ised system since the force-field is sufficiently regular. Dobrushin’s results cannot be
applied directly since the force is not of convolution type, but the method can be
adapted to our case.

Lemma 6.2 (Existence of regularised solutions). For every fy € P(T¢ x R?), there exists a
unique solution ) € C([0,00); P(T¢ x RY)) of (6.2). If fy € L(T? x RY) for some
p € [1,00], then for all t

Hf(r)(t)Hu(’]I‘ded) < Vol g (pe ey -

Proof. We sketch the proof, which is a modification of the methods of [21] in order to
handle the extra term in the electric field. First consider the linear problem for fixed
€ C([0,00); P(T? x )
8" +v- Vg + Eu - Vg =o,
EW — —, * vuW
AUY) = U — 5 % plu,
g£#)|t:0 =f020, [a,gafo(dxdv) = 1,

for f € P(T¢ x RY). Observe that even when y is a singular probability measure, y, *

(6.4)
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ply is a function satisfying
7 * P[] < el e (pey-

Then by Proposition 3.1,
Ul < exp [Ca (1 1l eqr) )|
and hence EY) = 1 * VU " is of class C! (T?), with the uniform-in-time estimate

B llerae) < 1zl 19U leqaey < 1oy e [Ca (1 + Izl liwasy )| < G
(6.5)

This implies the existence of a unique global-in-time C' characteristic flow. Using this
flow we may construct a unique solution gr(” ) € C([0,00); P(T? x R%)) to the linear
problem (6.4) by the method of characteristics. Since the vector field (v,E,) is diver-
gence free, this solution conserves L’ (T x R?) norms for p € [1, oq].

To prove existence for the nonlinear equation, we use a fixed point argument via a
contraction estimate in Wasserstein sense, as in [21]. To prove the required contraction
estimate, it is enough to show that the electric field EY is Lipschitz and has a stability

property in W, with respect to
1Bl < G (6.6)

||E£#) - Eﬁ””pO T4) <C Wl(,u, V)~ (6.7)

The Lipschitz regularity (6 6) holds by (6.5). For the stability (6.7), once again we use
the decomposition E," V= EW 4 E" . First,

Ef”) = 4, % VO = 1, % K% 7, % p[p,

where K is the Coulomb kernel as defined by K = VG for G satisfying (1.2). This is a
force of convolution type, with a Lipschitz kernel since K € L'(T?) and ¥, is smooth, so
the required stability estimate is proved in [21]. It remains to verify stability of E, with
respect to p.

Consider two continuous paths of probability measures p, v € C([0, 00); P(T? x R?)).
First note that by Young’s inequality,

) (@)

£ (1) Fr (1) 2 3
IIE," — %x (VU = VU, >||Loc(1rd)§||Xr||L2(Td)||VUr VU HLZ )

By the L* stability estimate from Lemma 3.9,

~ (W) ()
196 =0 0 < esp [ ma 100 g+ s 107 )]
107 = Ty
By Proposition 3.1,

max |0}l + max 1[0, |y < exp [Ca(14 76l |

ve{mw v} ve{u v}

Hence
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~ (1) ~(v) = (v
V0, =0, |ty < Cra 10V = O]y

U,
<Ch4 ||U£'u) — Uﬁl/)”pc('[pd) =Cra ||Xr*xG*x(,0[,U] o p[VD”LO“(Td)'

Note that y,*,G is smooth and hence Lipschitz. By Kantorovich duality for the W, dis-
tance we have

Wl (pu’ pz/) = Sup {J\’[d(f)dpﬂ - JTd¢dpy}'

1611
Thus for any x € T¢
103G = )0 = || 145Gl =) d(p, = )0

< Xr*XG(x - '>||LipW1(pu>pz/) < Cr»d Wl(p;v pu)’
where C, ; is independent of x. Hence

||Xr*XG*x<pu - pV)HLO“(Td) < Cr;d wy ('0#’ pV)

We conclude that
() ~(v)
1% (VO = VU N qrsy < Croa Wilppp,) < Cra Wipv),

which shows that (6.7) holds.
Using the methods of [21], we can show that the estimates (6.6) and (6.7) imply a
Wasserstein stability estimate:

t
Wi (0.62(0) < | Walu(0.v(0) exp (Gt = ))ds,
0

Since C, is independent of time, a Picard iteration proves the existence of a unique
solution f) € C([0,00); P(T¢ x R?)) for the nonlinear regularised equation (6.1). This
solution also preserves all L?(T¢ x R?) norms, since it is the classical solution of a lin-
ear transport equation with divergence-free vector field (v, E,[f")]). O

6.2. Compactness

Next, we show that the approximate solutions (") converge to a limit as  tends to zero,
and that this limit may be identified as the unique bounded density solution of (1.3)
with data f;. In the following lemma, we collect together some useful uniform estimates
for the approximate solutions f(*).

Lemma 6.3. Let fy € L' N L®(T9 x RY) have a finite velocity moment of order my > d,
that is, M,,,(0) < +oc. For each r>0, let f) denote the solution of (6.2) with initial
datum f,. Then ") have the following properties:
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i. LP bounds: for all p € [1,00],

sup sup |[f" (1)l oty < 1ollogrs ey
rte0,T]

ii. Moment bounds:

e ”PJE P (8% v)dxdv < (T ),
] JTixR

rotelo, T

sup sup J ™ f) (¢, x, v)dxdv < C(T, fp).
rtefo, T] JTxR?

iii. Density bounds: for all r and all t € [0, T),

sup 1o ] 1 )| 2

iv.  Regularity of the electric field: for any o € (0,1),
sup sup ||Ur(t)||cm(1rd) < C(ofo),

r o tef0, T) _

sup sup [[U(£)[|co.s(pe) < C(at: o),
r tef0, T) B

sup sup ||Ur(8)|lyazipa) < C(T fo)-
r t€0,T)

<

Equicontinuity in time into W—2: for any t; < t,,

F7(82) = £ (#) 2 pemey < Cho) 162 — 1],
where W—52(T9 x R?) denotes the dual of WH2(T? x R?).

L SCE s llp 7] (6 ) ey < CCTA).

(6.8)

(6.9)

(6.10)

(6.11)

Proof. Property (i) was proved in Lemma 6.2. For Property (ii), the second moment
bound is a consequence of the conservation of the energy functional &,[f)] defined by

(6.3), once we check that &,[fy] is bounded uniformly in r.

Since fy is in L°(T x R?) and has a finite moth order moment in velocity for some
my > d, the second moment of f; is also finite. Then, by Lemma 5.2 it follows that

d+2

Py, € L7 (TY). Since |y, * pﬁ]||Ld+z < Ilpgl Ly , by Proposition 3.1 we have

1U:-(0 )I\L»o T4 S C(IlpﬁllLdfy(T%))

and so

A Ur 0 +2 d+2 .
18U O)l ) < (14l 22

By regularity estimates for the Poisson equation,
1000t g, < € (Il )
A Sobolev inequality then implies that

IVU-(O) |t ey < C<||pﬁ)”Lde2(Td)>’

where p(2) may be any p < 400, and p(3) =13. In either case it follows that
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VU (0)]] ey pey < C(||Pﬁ)||Ld—;2(Td>>~

Altogether it follows that there exists Cy such that

sup sup & lfo] < Co,
r te0, T)

therefore

sup sup &, [f(')(t)} < G. (6.12)

r telo, T)

Note that xe* > —e~!. This implies that for all r and all ¢ € [0, T,
J W20 (£)dxdv < C,
T4xR¢

which completes the proof of the first part of Property (ii).

The estimate on the moment of order m, is proven using the same arguments as
used for Proposition 5.1. For the two dimensional case, since ||E,||;, ey < [|VU|[ 1 e
and |y, * p[f(’)]||U,<Td> < ||P[f(r)]||u>(1rd) for any p € [1, + oco], the same proof follows
through. For the three dimensional case, instead of the quantities P(t,0) consider

t
QU (t,8) :== sup J |E, (X, (s;0,x,v))|ds,
%, veT*xR> Jt—0

where (X, (t;s,x,v), V,(t;5,x,v)) denotes the characteristic flow induced by the vector
field (v,E.(x)). Q") is well-defined due to estimate (6.5) which shows that E, €
L>([0, + o0) x T?), and so Q") (,6) < C,d for some constant C,. Thus observe that
the flow (X, (t;s,x,v), V,(t;s,x,v)) satisfies Assumption 5.6. Therefore, the conclusion of
Lemma 5.7 applies for this flow:

t
1
NS, d ds
Jt& ,[Q3 |X,(5;0’x’ v) _}’|2 pf()( }’) Ly

< c(5Q<f>(t,5)4/3 +8"2(1+ QW (1,6))* Q" (¢, 5)*1/2M3+8(t)1/2).

To bound E,, we use the decomposition
|Er(X(s))] < CJQ [K; # pgo (s, 7)|dy + |Ko * pyeo (X ()] + |E (X (5))],

where K, denotes the following regularisation of the singular part of the kernel:

1
Ky = 2% 2 * o
Proposition 3.1 implies that E, is uniformly bounded due to the conservation of energy.
In Lemma 6.4 below, we show that K, is controlled by the unregularised kernel |x|°.
Thus

1

|E7(Xr(s))| < CJQ |X (5'0 X V) —)’|

7 Ppo0 (s, y)dy + C,

and so
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QU (1,9) < €(5Q(1.6)"” + 82(1 4+ 6Q" (1:6)) Q7 (.0) " Myyo(1)).

By following the remainder of the proof of Lemma 5.5, we can deduce a bound on the
velocity moment of order m of f(), which completes the proof of Property (ii).

Property (iii) then follows from Property (ii) after applying Lemma 5.2 with k=0
and either m=2 or m=d.

For Property (iv), we first note that [[x, * p[f(£)]|[ 1) < [[PIf()]|] 74y for any p €
[1, + o0]. The C"* estimate on U, then follows directly from Proposition 3.1 and the
LT estimate from Property (iii). The W*? estimate on U, follows from regularity prop-
erties of the Poisson equation and the L* estimate on pse from Property (iii).

Finally, we consider the equicontinuity in time. By the transport equation

atf(f) = —div,, ((V’ E, [f(r)m] )f(ﬁ)
and the bounds (6.8) and (6.12), for any function ¢ € Wh2(T9 x RY),

%erxwd)f(r)(t) e ] = Lr"’devx’V(p' <V’Er [f(ﬁ(t)})fm(t) e dv
2) f(’)(t)dxdv>

1/2
< (J |vx,v¢|2f<’><t>dxdv) (} <v|2 +
T x R? T x R?

1/2
2 (r) 1/2
< (], Ttiases) IO

1/2

E, [f(ﬂ (t)}

E, [f(r) (t)} 2dxdv) v

X (Jd Jvﬁfm(gdxdv_F|vatﬂhwaﬂxR@Jd
T xR

T¢xR?

1/2
< (], Tmtasas) IOl
T xR
1/2
X <J v () dxdv + J |VUr|2dxdv)
T¢xR? T¢xR?

< ol ronesy (CH+ELFOD]) 1Vl
< C[ﬁ>”|vx,v¢||p(1rded)~

This estimate means that

10 () ly-r2(pipey = sup ¢ of (1) dx dv < C,

‘|‘/’\\W1,2(deRd)§l T <R

thus 9,f") € L=((0, T); W 22(T% x R?)). Thus, for any t; < t,,
5)
1F7 (1) _f(r)(t1)||w—1,2(1rdxﬂad) < J ||3J(r)<t)||w—l,2(1rdxﬂad) dt < Clty — 1],
31

which completes the proof of Property (v). O

The following lemma, used in the proof above, shows that the regularised kernel K,
can be controlled by the function |x|~ 41 near the singularity, uniformly in r.



1930 M. GRIFFIN-PICKERING AND M. IACOBELLI

Lemma 6.4 (Bounds on the regularised kernel). Let d>1 and let y, be defined by (6.1)
for some fixed y € C(T?). Then there exists a constant C(d,y) >0, independent of r,
such that, for all x € I

7, % K(x)| < Cld ) (14 x4 0).

Proof. By Lemma 3.4, there exists a constant C, such that for all x € T¢,
[K(x)] < Ca(1+[x|™"Y),
where | - | denotes the distance on the torus defined by (2.2). Therefore

Kl < Ca (1 =5 )y
d
First, observe that

—(d—
0+ K0! < Cllgll + G| =7V ,0)dy

Qu

< Calldllp e, + cdjg x— 5174V () dy
d
<Cldy) + cdjg I — 974y, ()dy.
d

We then consider the function
|x|d1J Xr()’?iil dy.
There exists a constant C; > 0 such that
el < Cal(x = ).

Thus

d-1

- I

O i A et 217 A S
Qs |x =yl Qu Qs |x — |

Note that, for r <1,
J, ity =4[ 2(E)ar= | anay=cio
Qu o, \T B:(0)

Split the second term of (6.13) as follows: for any L € (0, 5\/2],

¢! Iy
j W )iy < j W by
Qu x —y yeQuilx—yl<L |x — y|
d—1
+] )l
yE€Qu:lx—y|>L |x - }V|

The first term is estimated by
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1 -1
o (i ——dy < C4Ll|| - Al 1 oo ey -
L (T)Jyg |y|d*1 Y I - Il )

d—

d—1
J ly|
yl<t [x =y

Observe that, for x € Q; and r <1,

X d—1

X _ — _
J7(Z) < o < S0

el e ()| = !

The second term is estimated by

_ -
7 | eIy < L g g .

d—1
J ly|
yeQuilx—y|>L |x — y|

)

1] By <l et 10
Qu|X—)Y

Minimising over L, the optimal value is L = Cyr. Then

For the constant, we find that

d- - d-
- lx,\w):rdj !
Q

dx = rdlj x| y(x)dx < C(y) L
By(0)

Altogether this gives

- 1
|| IJQ |x811dy < C(d, y)-
e —

This completes the proof. O

In the next lemma, we use the above bounds to extract a convergent subsequence of
approximate solutions, and show that the limit is a weak solution of (1.3). This com-
pletes the proof of Theorem 6.1.

Lemma 6.5. Let fy € L' N L™(T¢ x RY) be compactly supported. For each r> 0, let f")
denote the solution of (6.2) with initial datum f,. Then there exists a subsequence f)
converging to a limit f € C([0,00); W 12(T? x R%)), in the sense that for each time hori-
zon T> 0 and for all ¢ € WH2(T? x RY),

ol ) )asar
TIxR?

lim sup =0.

=% telo, ]

Moreover, for each t € [0,00), for any p € [1,00] and all ¢ € LP(T¢ x R?),
(ra) (4) _
..ol ) asar

Furthermore f is a weak solution of (1.3) with initial datum f,, for which

lim =0.
n—oo

sup J [V|of(t,x,v)dxdv < +00  for all T >0
tef0, T] J T¢xR?

and
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E[f ()] = Elfo)] for all ¢ € [0, 4 00).

Proof. To extract the convergent subsequence, we need to make careful use of the equi-
continuity in time. The curves

t— (1) e Wh2(T? x RY)
are equicontinuous in the norm topology on W~52(T9 x R?) by (v). They are also uni-
formly bounded in W>2(T? x R?) since f) e L®([0, 4 00); L*(T? x R%)) by (i). By

an Arzela-Ascoli type argument we may extract a subsequence r, such that for all ¢ €
W2(T4 x R?) and all T> 0,

lim sup =0, (6.14)

=99 4o, 7]

[ (0 =110 b0

for some f € C([0, 4+ 00); W L(TY x R?)). In particular, since C*(T? x RY) C
Wh2(T? x RY),

J (F) (1) —£(0)) paxdv| = 0, for all  § € CX(T¢ x BY), T > 0.
TxR?

lim sup
=% telo, T

(6.15)

We now want to prove that the convergence also holds weakly in L?(T¢ x R%), for p €
[1,00), and in L™(T¢ x RY) in weak* sense. For each fixed t, we have the uniform
bounds

sop 17 sy < Willprosy e [ | WPFO 63 0)and < €O

I

This implies that {f")(¢)},., is relatively compact in LP(T x RY) with respect to the
weak topology for p € [1,00) and in L®(T¢ x RY) with respect to the weak* topology.
For each p € [1,00] and ¢ there is a further subsequence r,, and a limit g € L#(T% x
R?), both depending on t and p, such that for all ¢ € L' (T? x R?) (p* being the
Holder conjugate of p),

lim J () (1) — g)dxdv| = 0.

k—co | )14 xRe
In particular, this holds for ¢ € C*(T¢ x R?) C I/'(T? x R?). By (6.15), we deduce
that

J f(t) ¢ dx dv—J g ¢dxdv forall ¢eC(TxRY).
T¢xR T4 x R4

Thus f(t) = g The uniqueness of the limit implies that in fact the whole original subse-
quence fU)(t) converges to f(f) weakly in LP(T¢ x RY) for p € [l, + 00) and in
L=(T? x R?) in weak* sense.

Next we show that the convergence also holds for the mass density. Since f")(¢) con-
verges weakly in L!'(T¢ x RY), for all ¢ € L°(T“) we have
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n—o0 n—o0

lim Jpo[f(r”)(t)](f)(x)dx = lim JTdXRJf(w(t,x, v)¢p(x)dxdv
= JTdXR/(t, x,v)p(x)dxdv = Jpof(t’ x,v)(x)dx.

In other words p, () — p;(t) weakly in L' (T9). Since, by (iii), p[f")(¢)] are uniformly
bounded in L(T¢) for all p € [1,2], the convergence also holds in L*(T“) in weak sense
for p € [1,2]. In particular,

sup. 9y (6) Iy ooy < liminf [} [ (1) ]
t€[0, T n
We deduce that

sup |[p(t)

2 G sup o (Ol < Cr.
€0, T)

||L (T te(0, T)
Next, we prove convergence of the electric field. By (iv), for any « € (0, 1),

sup sup ||Un(0)l[cus(pe) < Cloo ol sup sup [[VU(0)]losre) < Cloo i)

r o tef0,T] r o tef0, T|
which implies that U,(t) and VU, (t) are equicontinuous on T¢. Moreover

sup sup HVUV(t)HWI’Z(Td) S C[T,f()]

rotel0,T]

Hence there exists a further subsequence for which (7,ﬂk(t), (A],ﬂk (1), VU,nk (t) converge
in C(T% to some U(t),U(t),VU(t) and VU,, (t) converges strongly in L3(T9)
to VU(#).

We identify the limit U(t) = U(t) + U(t), by showing that it is a solution of

AU(t) = e" — py(t). (6.16)

The elliptic equation for U,(t) in (6.16) in weak form gives that for all r and all
¢ € WhENLY(TY),

L[‘dvUr(t) Vo + (eU,(t) — I ¥ pf@(t))(bdx =0.

The first term converges since VU, (t) converges to VU(t) in L*(T). The second term
converges by dominated convergence, since U,(t) are uniformly bounded in C(T¢). For
the term involving ¥, * p[f")(t)], we split

| Gesolro@] =) gt = (150 lr0)] = p[r0] )
+ er (p [f“)(t)} - pf(t)) ¢pdx. (6.17)

For any ¢ € L%(’]I‘d), we have
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HTd(Xr*p[f()( )} _p[f ()D</5dx

[ - or0lr0] o

< It & = Bl 2 I L7 0]l 5
< Cllze ¢ = Bll 2

(T%)

The right hand side converges to zero as r tends to zero by standard results on the con-
tinuity of mollification in L? spaces. For r = r,,, the second term of (6.17) converges to
zero as k tends to infinity, for all ¢ € L2*(T%), since p[f")(t)] converges to ps(t) weakly

d42

in L7(T%). Hence, for all ¢ € Wh2 N LF(T),
J VU(t) - Vo + (") — ps(t))pdx = 0.
r]lvd

Since U(t) € CNWH2(T%) and ps(t) € L*(T9), this extends to all ¢ € WH2(T?) by
density of LZ(T%) in L2(T%). In other words U(f) is indeed a weak solution of (6.16).

Our earlier stability estimates imply that (6.16) has at most one solution in L* N
WL2(T%), which is therefore U(f) in this case. Since the limit of any convergent subse-
quence is uniquely identified, it follows that for all t we have U, (t) — U(t) in C(T%)
and W52(T%), where U(t) is the unique L N W2(T%) solution of (6.16) (that is, with-
out passing to further subsequences).

Next we consider the convergence of the regularised electric field

E, [f™(0)] = —2, % VU, ().
Since
[|E5, (8) + VU@l 2pey < |l % (VUL (8) = VU |2y + [IVU(E) = 2, % VU]
<|IVU, () = VU pe) +IVU(E) = 1% VU 24),

it follows that E, converges to —VU(t) strongly in L*(T).
Finally, we show that f is a weak solution of (1.3). Since f (" is a solution of (6.2), for
any ¢ € C2([0,00) x T x RY) we have

o0

Jolxv)(0,x,v)dxdv + (O + v - Ve + Eo(x) - V,¢)f " dxdvdt = 0.
TYxR 0 JTIxR?

Since 9yp + v - Ve € C([0,00) x T¢ x R?), (6.15) implies that for all fixed t, as n
tends to infinity,

J (0 + v Ve )f " dxdv — J (01 + v+ Vop)fdxdv.
TdXRd d d

T¢xR

Since

JW GRS V)f ") dxdv

il | |, 1000+ Vagldsdy € L' (0,00))
T xR

we deduce from the dominated convergence theorem that for all ¢ € C([0,00) x T x
R?), as n tends to infinity,
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00

[7], v agreiaa — |

0 0

J (Orp + v - Vip)fdxdv.
TxR?

For the nonlinear term we have the estimate

UOOO deXRdVV(f) ) (Effm + Vfo)dXdth| < U‘(;)O f’ﬂ‘dx]Rd (Er + va) : vvd) f(r)dXdth|
+ Uooo Jpaspi — ViU - Vi (f) —f)dxdvdt‘.

Now let T>0 be such that supp ¢ C [0, T] x T¢ x R?. For the first term, we use the
fact that E, converges to —V U strongly in L*(T*) for each t. That is, for fixed

| 90) Vi £y < [ B () T[T e
T4 xR R
< CyllEq () + VUl ooy < €L, T, )

Then, using dominated convergence for the time integral, as r, — 0 we have

— 0.

J J (E,, 4+ V.U) - V,¢ fU")dxdvdt
T4 xRY

0

Similarly, for the second term we use that, for each ¢t since
VU(t) - Vy¢ € LH(TY x RY),

VU-V,¢ (f) — f)dxdv
T4 xR?

— 0.

Combining this with the bound
VU~V (7O —f) | < C(T.) [V € L1([0,00) x T x ),

which follows from (i) and (iv), we conclude that, as n tends to infinity,

J J V,¢-E, f(’")dxdvdt—>—J
T4 xR?

0 0
Hence, for all ¢ € C([0, + 00) x T¢ x RY),

00

J V¢ - VUfdxdvdt.
TIxRY

oe]

J Jfo x,v) (0, x,v)dxdv + J J (O +v-Vip—VU(x) - V,0)fdxdvdt = 0.
TxR 0 JT9xRY)

Thus f is a weak solution of (1.3).
We next show that the bounds on the velocity moments pass to the limit. Recall that
there exists a constant C,,, ¢ independent of r such that for all 7,

sup J ™ F7) (¢, x, v)dxdv < Cpy 0.
tefo, T) J T4 xR

Then, since f(") converges to f weakly in L'(T“ x R9), for all R >0 we have

J "™ 1y<r f(tx,v)dxdv = hmj V™f (8,2, v) 1< dxdv < Cpayo-
TIxR T xR

r—0

Therefore, letting R — o0,

J ) d|v|m°f(t,x, v)dxdv < Cyy.0-
T xR
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Finally, we show that the regularised energy functionals &,[f")] converge to the energy
functional £[f]. Since

sup sup J [y D (t, x, v)dxdv < Cpy 05
r tefo, T] JTIxR?

from the weak L' convergence of f") to f it follows that

J | d|v|2f(t,x, v)dxdv = limj , d|v|2f<r)(t,x, v)dxdv.
TxR T xR

r—0
Since the convergence of E, to —V U occurs strongly in L*(T¢ x R9) for all ¢, it follows
that
J |VxU(t)|2dx:1imJ |V Ur(t)]*dx.
T r—0 Jpd

Lastly, since U,(t) converges to U(f) in C(T%), we have

r—0

J U(t)e O dx — limJ U, (£)e" O dx
T T¢
We conclude that

E[f(0)] =lm &, [0 (1)] = tim &[] = €[]

6.3. Global well-posedness

Lastly, we complete the proof of the main result, Theorem 2.1, showing global well-pos-
edness for the VPME system given initial data decaying sufficiently fast at infinity.

Proof . By Lemma 6.5, under the assumptions of Theorem 2.1 there exists a weak solu-
tion f of the VPME system (1.3). We will show that p, € L5 ([0, + 00); L2(T%)), so
that uniqueness will then follow from Theorem 4.1.

We first derive estimates on the electric field E. Since the initial datum f, is assume
to have a finite velocity moment of order my, the solution also has moments of this
order: for all T> 0, there exists a constant Cr > 0 such that

sup J [v|"™f (£, x,v)dxdv < Cr.
tefo, T) J T xR?
We apply the interpolation estimate from Lemma 5.2 to deduce an estimate on p. Since

mgy > d(d — 1), we obtain

sup ||pgl|paes(pe) < Cr
t€[0, T)

for some o > 0. By regularity estimates for the Poisson equation and Sobolev inequal-
ities, E is Holder continuous with the following estimate for some y > 0 :

sup [|E(t, )| o re) < Cr-
te[0, T)
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We also have the uniform L%(Td) estimate from the conservation of energy:

sup {loy(t)l 42,1, < Co

te(0, T)
Proposition 3.1 then implies that
Ellgn () < Co-
We deduce that E € L°(T?) with sup;cpo, 77 ||E(t: )|y () < Cr. We then propagate the

uniform decay estimate on f by using the characteristic flow. Namely,

Co
t,x,v) = fo(X(0;t,x,v), V(0;, 8, x,v)) < .
ftxv) = fo(X( ) V( ) LTIV Lx )

Since E is bounded in L*°, we obtain an estimate of the form

C
fltxr) € —2
1+ (|[v] = Crt)Y

Since ky > d, this bound can be integrated with respect to v € R? to obtain
py(t3) < C(T.fo)

which completes the proof. O

Acknowledgements

The authors wish to acknowledge Maxime Hauray, Clément Mouhot, and Claude Warnick for
useful comments on a preliminary version of this manuscript.

Funding

This work was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/L016516/1 for the University of Cambridge Centre for Doctoral Training, the
Cambridge Centre for Analysis; and partly funded by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 726386).

References

[1] Bardos, C., Degond, P. (1985). Global existence for the Vlasov-Poisson equation in 3
space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2(2):
101-118. DOI: 10.1016/S0294-1449(16)30405-X.

[2] Batt, J., Rein, G. (1991). Global classical solutions of the periodic Vlasov-Poisson system
in three dimensions. C. R. Acad. Sci. Paris Sér. I Math. 313(6):411-416.

[3] Lions, P. L., Perthame, B. (1991). Propagation of moments and regularity for the 3-dimen-
sional Vlasov-Poisson system. Invent. Math. 105(1):415-430. DOIL: 10.1007/BF01232273.

[4] Pfaffelmoser, K. (1992). Global classical solutions of the Vlasov-Poisson system in three
dimensions for general initial data. J. Differ. Equ. 95(2):281-303. DOI: 10.1016/0022-
0396(92)90033-].


https://doi.org/10.1016/S0294-1449(16)30405-X
https://doi.org/10.1007/BF01232273
https://doi.org/10.1016/0022-0396(92)90033-J
https://doi.org/10.1016/0022-0396(92)90033-J

1938 M. GRIFFIN-PICKERING AND M. IACOBELLI

(10]

(11]

(12]

(13]

(14]
(15]
(16]

(17]

(18]

(19]
(20]
(21]
(22]

(23]

(24]

(25]

Schaeffer, J. (1991). Global existence of smooth solutions to the Vlasov-Poisson system in
three dimensions. Comm. Partial Differ. Equ. 16(8-9):1313-1335. DOI: 10.1080/
03605309108820801.

Ukai, S., Okabe, T. (1978). On classical solutions in the large in time of two-dimensional
Vlasov’s equation. Osaka J. Math. 15(2):245-261.

Arsenev, A. (1975). Existence in the large of a weak solution to the Vlasov system of
equations. Zh. Vychisl. Mat. i Mat. Fiz. 15:136-147.

Horst, E., Hunze, R., Neunzert, H. (1984). Weak solutions of the initial value problem for
the unmodified non-linear Vlasov equation. Math. Meth. Appl. Sci. 6(1):262-279. DOL: 10.
1002/mma.1670060118.

Bardos, C., Degond, P. (1985). Existence globale des solutions des équations de Vlasov-
Poisson. In: Nonlinear Partial Differential Equations and Their Applications. College de
France Seminar, Vol. VII (Paris, 1983-1984), Volume 122 of Research Notes in
Mathematics. Boston, MA: Pitman, pp. 1-3, 35-58.

Bardos, C., Degond, P., Golse, F. (1986). A priori estimates and existence results for the
Vlasov and Boltzmann equations. In Nonlinear Systems of Partial Differential Equations in
Applied Mathematics, Part 2 (Santa Fe, N.M., 1984), Volume 23 of Lectures in Applied
Mathematics. Providence, RI: American Mathematical Society, pp. 189-207.

Loeper, G. (2006). Uniqueness of the solution to the Vlasov-Poisson system with bounded
density. J. Math. Pures Appl. 86(1):68-79. DOI: 10.1016/j.matpur.2006.01.005.

Bardos, C., Golse, F., Nguyen, T. T., Sentis, R. (2018). The Maxwell-Boltzmann approxi-
mation for ion kinetic modeling. Phys. D. 376-377:94-107. DOL: 10.1016/j.physd.2017.10.
014.

Bouchut, F., Dolbeault, J. (1995). On long time asymptotics of the Vlasov-Fokker-Planck
equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and
Newtonian potentials. Differ. Integral Equ. 8(3):487-514.

Herda, M. (2016). On massless electron limit for a multispecies kinetic system with exter-
nal magnetic field. J. Differ. Equ. 260(11):7861-7891. DOI: 10.1016/j.jde.2016.02.005.
Bouchut, F. (1991). Global weak solution of the Vlasov-Poisson system for small electrons
mass. Comm. Partial Differ. Equ. 16(8-9):1337-1365. DOI: 10.1080/03605309108820802.
Griffin-Pickering, M., Tacobelli, M. (2020). Singular limits for plasmas with thermalised
electrons. J. Math. Pures Appl. 135:199-255. DOI: 10.1016/j.matpur.2019.09.003.
Han-Kwan, D., Iacobelli, M. (2017). The quasineutral limit of the Vlasov-Poisson equation
in Wasserstein metric. Commun. Math. Sci. 15(2):481-509. DOI: 10.4310/CMS.2017.v15.
n2.a8.

Pallard, C. (2012). Moment propagation for weak solutions to the Vlasov-Poisson system.
Comm. Partial Differ. Equ. 37(7):1273-1285. DOI: 10.1080/03605302.2011.606863.

Caglioti, E., Marchioro, C. (2000). Bounds on the growth of the velocity support for the
solutions of the Vlasov-Poisson equation in a torus. J. Statist. Phys. 100(3/4):659-677.
DOI: 10.1023/A:1018623508809.

Chen, Z., Chen, J. (2019). Moments propagation for weak solutions of the Vlasov-Poisson
system in the three-dimensional torus. J. Math. Anal. Appl. 472(1):728-737. DOI: 10.1016/
j.jmaa.2018.11.049.

Dobrushin, R. L. (1979). Vlasov equations. Funktsional. Anal. i Prilozhen. 13(2):48-58.
Evans, L. C. (2010). Partial Differential Equations, Volume 19 of Graduate Studies in
Mathematics. American Mathematical Society.

Gilbarg, D., Trudinger, N. S. (1977). Elliptic Partial Differential Equations of Second Order,
Volume 224 of Grundlehren Der Mathematischen Wissenschaften. Berlin, Heidelberg:
Springer-Verlag.

Majda, A., Bertozzi, A. (2002). Vorticity and Incompressible Flow, Volume 27 of Cambridge
Texts in Applied Mathematics. Cambridge, MA: Cambridge University Press.

Titchmarsh, E. (1958). Eigenfunction Expansions Associated with Second-Order Differential
Equations, Part II. Oxford: Oxford University Press.


https://doi.org/10.1080/03605309108820801
https://doi.org/10.1080/03605309108820801
https://doi.org/10.1002/mma.1670060118
https://doi.org/10.1002/mma.1670060118
https://doi.org/10.1016/j.matpur.2006.01.005
https://doi.org/10.1016/j.physd.2017.10.014
https://doi.org/10.1016/j.physd.2017.10.014
https://doi.org/10.1016/j.jde.2016.02.005
https://doi.org/10.1080/03605309108820802
https://doi.org/10.1016/j.matpur.2019.09.003
https://doi.org/10.4310/CMS.2017.v15.n2.a8
https://doi.org/10.4310/CMS.2017.v15.n2.a8
https://doi.org/10.1080/03605302.2011.606863
https://doi.org/10.1023/A:1018623508809
https://doi.org/10.1016/j.jmaa.2018.11.049
https://doi.org/10.1016/j.jmaa.2018.11.049

(26]

(27]

(28]

(29]

(30]

(31]

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1939

Griffin-Pickering, M., Iacobelli, M. (2018). A mean field approach to the quasi-neutral
limit for the Vlasov-Poisson equation. SIAM J. Math. Anal. 50(5):5502-5536. DOIL: 10.
1137/17M1156277.

Villani, C. (2003). Topics in Optimal Transportation, Volume 58 of Graduate Studies in
Mathematics. Providence, RI: American Mathematical Society.

Han-Kwan, D., Tacobelli, M. (2017). Quasineutral limit for Vlasov-Poisson via Wasserstein
stability estimates in higher dimension. J. Differ. Equ. 263(1):1-25. DOI: 10.1016/j.jde.
2017.01.018.

Ambrosio, L. (2008). Transport equation and Cauchy problem for non-smooth vector
fields. In: B. Dacorogna and P. Marcellini, eds., Calculus of Variations and Nonlinear
Partial Differential Equations: Lectures Given at the C.I.M.E. Summer School Held in
Cetraro, Italy, June 27-July 2, 2005. Berlin, Heidelberg: Springer-Verlag.

Golse, F. Mean field kinetic equations. Available at: http://www.cmls.polytechnique.fr/
perso/golse.francois/M2/PolyKinetic.pdf.

Horst, E. (1990). Global solutions of the relativistic Vlasov-Maxwell system of plasma
physics. Dissertationes Math. (Rozprawy Mat.). 292. Warsaw: Mathematical Institute of the
Polish Academy of Sciences, p. 63.


https://doi.org/10.1137/17M1156277
https://doi.org/10.1137/17M1156277
https://doi.org/10.1016/j.jde.2017.01.018
https://doi.org/10.1016/j.jde.2017.01.018
http://www.cmls.polytechnique.fr/perso/golse.francois/M2/PolyKinetic.pdf
http://www.cmls.polytechnique.fr/perso/golse.francois/M2/PolyKinetic.pdf

