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Damping Identification in Buildings from Earthquake Records 

 

D.Bernal1, S. Mozaffari Kojidi1, K. Kwan1, M. Döhler1 

1Civil and Environmental Engineering Department, Northeastern University, Center for Digital Signal Processing, 
Boston, MA 

 

Abstract 

It is shown that the Fisher information on damping contained in seismic response is small 
and, as a consequence, identified damping ratios are realizations from a distribution with high 
variance. Predictive expressions with reasonable confidence intervals can be generated, however, 
if sufficient data is available. In this study 122 responses from concrete buildings, 81 from steel, 
26 for masonry and 10 from wood structures are used to identify damping ratios using a subspace 
algorithm. The regression expression derived for steel and concrete buildings is 2

0 1
−= + a Ha a eξ , 

where H is the height, and for masonry and wood structures 2 1
0 1( )− −= + Ab Sb b eξ , where SA is the 

5% damped Pseudo-Spectral acceleration. In these expressions a’s and b’s are coefficients.  

 

Introduction 

The term damping is used to refer to the collection of mechanisms by which systems 
dissipate energy. Although the inherent damping of structural systems is not viscous, velocity 
proportional dissipation is widely used because it leads to mathematical simplicity and because, 
at least for small damping, it can be calibrated to mimic the actual dissipation well. In practice it 
is customary to specify damping through modal damping ratios, defined as the quotient of the 
damping constant of the mode to the minimum value for which the response to arbitrary initial 
conditions does not have harmonic terms. The problem of extracting damping of viscously 
damped linear systems from input-output data is a standard problem in identification and exact 
results are obtained by all consistent algorithms when the data generating system satisfies the 
assumptions (Juang 1994, Verhaegen and Verdult 2007, Van Overschee and De Moor 1996, 
Heylen et al. 1997).  

Notwithstanding the availability of theory, estimation of consistent damping values from 
measured response is difficult in structures subjected broadband excitation. The reason for this 
being the fact that the information (more precisely the Fisher information) about damping 
encoded in the response data is low. Low information implies that the estimated damping is a 
random variable with high variance and thus that realizations can differ substantially, either 
because the data set changes or because, for a given data set, details of the identification 
approach vary. One early example of discrepancies in damping estimates obtained for the same 
data set is that of the 12 high rise buildings subjected to the San Fernando earthquake, considered 
initially by Hart and Vasudevan (1975) and a few years later by McVerry (1979, 1980).  



Predictors for damping ratios have been derived from the examination of data sets by 
various researchers. For example, Zhang and Cho (2009) extracted damping ratios from ambient 
vibration data for 82 buildings in Xi’an, China and proposed an expression for the first mode. 
Other studies include those by Jeary (1986), Lagomarsino (1993), Tamura et al. (1996), Sasaki et 
al. (1998) and Satake et al. (2003).  In most previous studies where large data sets have been 
considered the vibration amplitudes have been very small and, as a consequence, the damping 
values obtained can be considered a lower bound. In this study we limited examination to 
responses where the peak ground acceleration was no less than 0.05g. The cases that satisfied 
this limit were 122 responses from concrete buildings, 81 from steel, 26 from masonry and 10 
from wood structures. The theoretical base of the identification approach used to compute the 
damping values is summarized in Appendix A and the numerical values and the regressors for 
each considered case are presented in Appendix B. 

 

Background and Relations 

Equations of Motion 

Let the subscript 1 stand for coordinates that are not prescribed and 2 for those that are. 
The equations of motion of a viscously damped linear system without external excitations can 
then be written as 
 

       11 12 1 11 12 1 11 12 1

21 22 2 21 22 2 21 22 2

0⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫
+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭e

M M y C C y K K y
RM M y C C y K K y

         (1) 

 
where Re are the reactions at the prescribed coordinates. The displacements that are not 
prescribed can be expressed as a linear combination of the prescribed ones plus a residual, 
namely 
 
              1 2= +y ry u              (2) 
 
which, when substituted into the top partition of eq.1 gives 
 

          11 11 11 12 11 2 12 11 2 12 11 2( ) ( ) ( )+ + = − + − + − +M u C u K u M M r y C C r y K K r y         (3) 
 
Since the matrix r is arbitrary, it can be selected to cancel any of the terms on the rhs of eq.3, 
taking r as 
               1

11 12
−= −r K K             (4) 

neglecting the damping contribution to the rhs term, and recognizing that for lumped mass 
models one has M12 = 0, one gets 
 

                   11 11 11 11 2+ + = −M u C u K u M r y             (5) 
 
which is the conventional expression used to represent earthquake excitation. The point to note 
here is that the properties on the matrices on the lhs of eq.5 are those of the system with restraints 



at the prescribed coordinates. This means that if only horizontal motion is used to define the 
input, the properties that a system identification algorithm obtains include the flexibility and 
dissipation at the soil structure interface in all DOF other than horizontal translation. For 
familiarity in the subsequent treatment we drop the subscripts in eq.5 and replace 2y by the more 
commonly used gx , namely, we use 
 

          + + = − gM u C u K u M r x            (6) 
  
Damping Ratio 

Let the rhs of eq.6 equal zero, namely 

  0+ + =Mu Cu Ku             (7) 

the solution to eq.7 is of the form ( ) =∑ is t
i iu t eαψ and one finds, by substitution that 

2 0⎡ ⎤+ + =⎣ ⎦i i iMs Cs K ψ            (8) 

where αi’s are scalars. The values of si’s that satisfy the equation are complex and come in 
complex conjugate pairs. Writing the solution in terms of its real and its imaginary part, calling 
on Euler’s identity, and replacing s by the value at the solution, λ, one finds that 

    ( ) (cos( ) sin( ))= +∑ iRt
i i iI iIu t e t i tλαψ λ λ            (9) 

which shows that the rate of decay of the free vibration is determined by the real part of the 
eigenvalue and the vibration frequency by the imaginary. The definition of damping ratio, which 
does not require that the damping be classically distributed, is 

       −
= Rλξ

λ
           (10) 

Eq.10 allows for a simple appreciation of why it is difficult to identify damping ratios with low 
variance. Namely, let the true pole for a given mode be a point in the complex plane and let there 
be a region around the pole where, due to noise, the identification algorithm places the pole. 
Assume the region of uncertainty around the pole is a circle of radius R, where R is a fraction of 
the pole magnitude, say =R α λ . Noting that the magnitude of the pole is an estimate of the 
undamped frequency (exact for classical damping) and recognizing that α is small, one 
concludes that the variability in frequency is small. The estimation of damping, however, which 
is given by eq.10, can experience much larger variations. In fact, examination of the geometry 
shows that the percent error in the frequency is essentially equal to α while the damping ratio 
ranges from the true value to plus or minus α. Let α be 0.02, for example, in this case the 
frequency error is no more than 2% but the damping ratio can be over or under estimated by 
0.02. If the true damping is 5%, for example, one gets values as large as 7% and as low as 3%. 
To determine if the circular assumption for the uncertainty region is reasonable, we carried out a 
Monte Carlo study where a system was identified 1000 times using random realizations of the 



noise. As can be seen from fig.1, which shows results for the first and the second pole, the 
circular premise is not unreasonable.                  

 

 

 

 

 

 

 

 

Figure 1. Uncertainty of the real part vs. the imaginary part of the 1st pole and 2nd pole in a 10-
DOF system identified using white excitation and 5% additive noise. 

 

Some Proposed Damping Predictors  

Predictors for damping in buildings have been proposed through the years and some are 
summarized next: 

 
Table 1. Damping Predictors 

Expression Source 

/2
1 10.01 10 /Df x Hζ = + Jeary (1986) 

                       1 10.013= fζ  (Steel)                     1 10.014= fζ (RC) Satake et al. (2003) 
3.779

1 11.945 0.195Tζ −= + Zhang and Cho (2009) 

1 10.013 0.0029= +fζ  (Steel) Sasaki (1998) 

    
1 10.014 470 0.0018+ −=

x
H

fζ (Steel) 

1 10.013 470 0.0029+ +=
x
H

fζ (RC) 
Satake (2003) 

1 1
1

⎛ ⎞+ +
⎝

= ⎜ ⎟
⎠

xf
f H
αζ β γ

 
0.0072, 0.0070α β= = (RC) 0.0032, 0.0078α β= = (Steel) 

Lagomarsino (1993) 

For higher modes damping ratios:   1(1.3 ~ 1.4) −=n nhζ  (Steel) 

                                11.4 −=n nhζ                   (RC) 

                                       1(1.7 ~ 1.8) −=n nhζ   (SRC) 

Satake et al. (2003) 
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nonlinearity is activated. To illustrate, the identified frequencies and equivalent damping of a 
SDOF with a frequency of 1 Hz and 5% viscous damping were obtained from identification for 
three different response levels using the Whittier ground motion. The first level is linear and is 
used to confirm that the ID is able to identify the correct model. The other two correspond to 
nominal displacement ductility levels of 2 and 4. The identified damping values are {5, 5.82, and 
8.4} percent and the identified frequencies are {1, 0.99, and 0.98} hertz respectively. Plots of the 
resulting force vs. drift are depicted in fig.3. 

 

 

 

 
 
 
 
 
 

Figure 3. Force vs. drift for three response levels (a)-(c) 
 

Uncertainty in Damping Estimation 

This section presents some discussion on the estimation of damping from the perspective 
of the “information content” of a parameter in available data. It is shown that for conditions that 
are typical the coefficient of variation of damping ratios can be more than 50 times higher than 
that of frequencies. Similar results on the identification of ARMA models have been reported in 
Gersch (1974). 

 

The Cramér-Rao Lower Bound and the Fisher Information  

The accuracy with which any parameter can be estimated from noisy data is limited by 
the amount of information on the parameter that is contained in the data. For any distribution of 
the noise affecting the input and the output, the lower bound to the covariance Σ  that a parameter 
estimator can have is known as the Cramér-Rao Lower Bound (CRLB) (Casella and Berger 
2001). The CLRB depends only on the statistical distribution of the noise and on the sensitivity 
of the data to the parameter. The inverse of the CRLB is known as the Fisher Information (FI), 
which indicates “how much information” on the parameter is contained in the data set. 
Technically, the FI is defined as 

 
2

) log ( | )( f YI θ θ
θ
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

E  (11) 

where ( | )f Y θ  is the probability density function of the observed data Y  given the parameter θ . 
If the sensitivity of the likelihood to the parameter is high the derivative in eq.11 is large and so 
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is )(I θ . In practice, the likelihood function ( | )f Y θ  is in general unknown so other quantities 
derived from the data are used. For example, if the data can be used to generate a vector X that is 
normally distributed having a mean that depends on the parameters, ( )γ θ , and a covarianceΣ , the 
FI of the parameter θ  contained in X  can be obtained as (van den Bos 2007) 

 1) ( ) ( )( TI θ θ θ−= ΣJ J    where   ( ) γθ
θ

=
∂
∂

J . (12) 

Denoting λΣ  as the covariance of the real and imaginary part of a pole, the FI of the frequency 
and the damping follows from eq.12 as 

 1
, ,( , ) f f

TI f ξ λ ξξ −= ΣJ J  (13) 

where the sensitivity of the pole with respect to damping ratio and frequency is given by 
 

 1,
2 22

( ( ), ( ))
( , ) (1 ) 1

2f

f

ffξ

ξλ λ π
ξ ξ ξ ξ

−

∂ ℜ − −⎡ ⎤
⎢ ⎥= =
⎢

ℑ
∂ − − ⎥−⎣ ⎦

J

.

 (14) 

Due to the relation between the FI and the CRLB, an analytical relationship between the 
coefficients of variation of damping and frequency can be obtained from eq.14. This relation 
shows that the ratio depends only on the damping ratio. Assuming that the uncertainty region 
around the complex poles is circular, as depicted in the Monte-Carlo simulation in fig.1, the 
ratios between the coefficients of variation are shown in fig.4. As can be seen, the uncertainty on 
the damping ratios is around 50 times higher than that for the frequencies at 0.02ξ = , and the 
ratio is near 25 for 0.05ξ = .  

 

Figure 4. Range of the ratio of the coefficient of variation of damping and frequency when the 
uncertainty region around the pole is circular 



Regression Analysis 

The regressors considered here are the peak ground motion parameters (PGA, PGV and 
PGD), the spectral ordinates (SA, SV and SD), the building height, H, the frequency of the 
mode, f, and the effective duration t0.9. This last entry defined as the time interval between the 
attainment of 5% and 95% of the total integral of the acceleration squared. Examination of the 
effect of duration on the variance of identified damping showed that the standard deviation varies 
inversely with the square root of the duration normalized by the modal period. This result was 
used in the regression to normalize the residuals to equal variance. 

Goodness of Fit 

When measurements have significant variance the goodness of fit cannot be judged from 
a simple inspection of the scatter. The standard goodness of fit test is the F-test for lack of fit 
(FTLF). The test operates with residuals of equal variance, which in our case are given by  

                                     , 0.9,( )= − Ω ⋅i i p i i ir tξ ξ            (15) 

and 

                                        0.9,( )= − Ω ⋅i i i i id tξ ξ           (16) 

from where the F statistic is computed as 
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          (17) 

where n = number of bins, ni = number of samples in the ith bin, N = total number of 
observations, ξi = data point, ξp,i = predicted value and ξ = mean of the data points in a bin. Bins 
are such that the prediction varies little within the bin (5% of the average in our numerical 
results). The F statistic has a Fisher-Snedecor distribution with (n-p) and (N-n) degrees of 
freedom for the numerator and the denominator and a low value indicates a good fit. Results on 
the goodness of fit, however, are most easily interpreted in terms of the p-value of the F statistic. 
The p-value is such that if it is smaller than the acceptable Type I error rate the proposed fit is 
rejected. The Type I error, in this case, consists in rejecting the proposed fit when it is valid one. 
The typical p-value threshold is 0.05. 

 

Coefficient of Determination 

The coefficient of determination, R2, defined as 



                                      

2
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2
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−
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∑
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y y
R

y y
                                                     (18) 

is widely used in diagnosing regression results. The coefficient is essentially a measure of how 
much the regression line reduces the scatter relatively to the mean. Low values of R2, however, 
do not invalidate regression results when the intrinsic variance of the data is large.   

 

Functional Form 

We considered a number of different forms and settled on two exponential ones: one for cases 
where the damping decreases and the other for cases where the damping increases with the 
regressor, namely;    

                                            2
0 1

ˆ −= + aa a e θξ          (19a) 

and 

                                                 
2

0

1

ˆ
1 −=
+ a

a
a e θξ          (19b) 

Results 

The regression was carried out for the first mode damping ratio for steel, concrete, masonry, and 
wood buildings. When the mode considered is dominated by translation in one direction the 
ground motion in this direction was used to compute the ground motion parameters. When the 
mode is strongly coupled, or torsional, the average of the ground motion parameters for the two 
directions was used. The best results for the expected value of the first mode damping ratio are: 
 
                                               

     

0.0131.22 4.26 H
s eξ −= +    (steel)          (20) 

 
   

     

0.0182.91 3.54 H
c eξ −= +    (concrete)                                                 (21) 

                                     
8.84

1
0.11 0.23 −=

+ Am Se
ξ    (masonry)          (22) 

   
   

3.37

1
0.09 0.17 −=

+ Aw Se
ξ    (wood)                                                   (23) 

 
where H is in meters and SA is the 5% pseudo-spectral acceleration in g’s. Plots of the regression, 
the 95% confidence intervals, and the data, are presented in figs5-8.  



                     
Fig.5 Regression result (steel buildings) and 95% confidence limits, R2=0.37, F-test p-value = 0.85 

            

               
Fig.6 Regression result (concrete buildings) and 95% confidence limits, R2=0.11, F-test p-value=0.72 
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Fig.7 Regression result (masonry buildings) and 95% confidence limits, R2=0.15, F-test p-value =0.25 

 
 
 

                
Fig.8 Regression result (wood buildings) and 95% confidence limits, R2=0.64, F-test p-value =0.97 
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Discussion 
For steel buildings H provided the best correlation with damping ratio by a significant margin. In 
concrete buildings the expression based on SA produced results that are only slightly less 
correlated than those for H. For masonry and wood buildings the correlation with SA was clearly 
the superior choice. These results are along the line of what one expects from qualitative 
reasoning. Namely, in steel most of the intensity related increase in damping (in the linear range) 
is related to non-structural components while in the other structural types there is also a lateral 
load resisting mechanism dependence. For completeness, figs.9 and 10 show the correlation of 
damping ratio with SA for steel and concrete buildings. The fact that dependence on SA saturates 
very quickly in steel and less so in concrete is evident from the plots and from the coefficient in 
front of SA in the best fit expressions.  
 
A question that comes to mind is whether a multivariate regression using both H and SA could 
lead to notable improvements but the answer to this proved negative because the two parameters 
happen to be correlated. It is not difficult to see that this is so because as the height increases the 
period lengthens and the spectral accelerations, except for short buildings, decrease. For the 
buildings considered here the correlation coefficients between H and SA are -0.57 and -0.39 for 
steel and concrete, respectively.  
 

                
Fig.9 Regression with 5% damped pseudo spectral acceleration (steel buildings) and 95% confidence 

limits, R2=0.15, F-test p-value =0.25 
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Fig.10 Regression with 5% pseudo-spectral acceleration (concrete buildings) and 95% confidence limits, 

R2=0.64, F-test p-value =0.97 

 
A final item worthy of attention is whether or not there is consistency in the results of the 
regression for damping as a function of H and SA. Examination shows that the results are indeed 
consistent. To clarify consider these two situations: a) say a steel building has H = 50 m. From 
the plot in fig.5 one finds that the 95% confidence for the regression is from 2.8% to 4.05%. 
Looking at fig.9 one finds that this could be the solution for any value of SA, b) consider H = 
200 m. In this case the 95% confidence interval is from 0 to 3%. Looking at fig.9 one concludes 
that consistency requires that SA for this building be no larger than 0.047 g. The data shows that 
there are 28 records for buildings whose heights are 200 m or more and that, of all these, there 
are only two 2 cases where SA exceeded this limit. This small violation is, of course, reasonable 
since a 95% confidence interval does not provide complete certainty.   
 
Conclusions 

It is shown that damping ratios identified from earthquake records are realizations from 
distributions with high variance. The reason for the high variance is traced to the low sensitivity 
of the transient response to damping and it can be visualized from the pole location in the 
complex plane and the distribution of the uncertainty. The paper shows that the coefficient of 
variation of damping estimates are 25 to 50 times larger than the coefficient of variation of 
frequency estimates. The large variance does not preclude, however, estimation of reasonable 
values for the damping ratio when sufficient data is available. For steel and concrete buildings 
there are 122 and 81points, respectively, and, as a consequence, results for the 95% confidence 
intervals of the expectation are significantly tighter than the deviation inherent in the identified 
results. For masonry the confidence interval opens up notably since there are only 27 points and 
finally, for wood, where there are only 10 data points, the confidence interval contains 
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essentially all of the data. The expressions proposed to estimate the first mode damping ratio are 
slightly more complex than linear but offer the advantage of having asymptotic behavior so there 
is no need to impose arbitrary limits to avoid negative damping or unreasonably large values.    
The results show that damping in steel buildings is, except for very tall buildings, larger than the 
2% that is typically assigned in practice. The expected value of damping in masonry structures is 
higher than for concrete and wood structures display damping values somewhat higher than 
those of masonry.           
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Appendix A – Identification 

Time domain algorithms are typically based on an indirect approach. Namely, a model 
mapping the sampled input and the sampled output is obtained and then it is converted to 
continuous time. The postulated model in sampled time has the form  

 
    d d gx(k 1) A x(k) B x (k)+ = +                                (a.1) 

 
where the measurements are given by 
  

             y(k) Cx(k)=                                        (a.2) 
 
The procedure begins by noting that for the model in eq.a.1 the output is related to the input as 
 

      
k

j g
j 1

y(k) Y x (k j)
=

= −∑                             (a.3) 

where Yj, known as a Markov Parameter (MP) is given by 
 
                 j 1

j d dY CA B−=           (a.4) 
 
Once the MP are obtained from eq.a.3, the next task is to untangle the matrices {Ad, Bd, C} from 
the triple product. This is done by defining the Hankel matrix Hk as   
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where α and β are user defined parameters and noting that with 
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and      
              2 1[ ]d d d d d d dQ B A B A B A Bβ

β
−=          (a.7) 

 
       = k

k dH P A Qα β                          (a.8) 

so it follows that H0 

                        βαQPH =0                                          (a.9) 



one then performs a singular value decomposition of H0, namely  

     TSRH Σ=0                   (a.10) 
and after retaining only the N most important singular values, has 
 
         T

0 N N NH R S= Σ                                  (a.11) 
 
where RN contains the first N columns of R, SN the first N columns of S and ΣN is the diagonal 
matrix having the N significant singular values. Splitting the diagonal singular value matrix into 
the product of two matrices (E1 and E2) 
 
                         1 2 NE E = Σ         (a.12) 
gives 
                                                              T

0 N 1 2 NH (R E )(E S )=                              (a.13) 
 
and one can then take  
                           N 1P R Eα =                   (a.14) 
                                 T

2 NQ E Sβ =                       (a.15) 
 
from where, given the definitions in eq.’s a.6 and a.7 one has that 

• The first m rows of αP provide a realization for C. 
• The first r columns of βQ provide a realization for Bd. 

The matrix Ad can be obtained from the block Hankel matrix for k = 1, namely, given that 
 
           1 1 2= = T

d N d NH P A Q R E A E Sα β                            (a.16) 
 
and the fact that RN and SN are orthonormal one gets 
 
        1 1

1 1 2
− −= T

d N NA E R H S E                              (a.17) 
 
Discrete to Continuous Transfer 

Once the sampled time model is available its conversion to continuous time follows as 
(Bernal 2006) 

                                                                   c d
1A ln(A )
t

=
Δ

                                                        (a.18) 

       1
c d d

1B A B
t

−=
Δ

                                                          (a.19) 

            cC C=                              (a.20) 

The damping ratios are obtained as the real part of the eigenvalues of Ac divided by their 
magnitude. 
 



Appendix B - Data 

Table B.1. Data Used in the Regression Analysis 
Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

58496 LomaPrieta 3.08 4.0 7.7 0.233 11.8 0.6 0.12 7.3 1.1 11.2 

24198 Chinohills 1.46 5.1 10.4 0.077 8.3 0.9 0.07 5.8 0.6 19.3 

24198 Chinohills 1.52 5.0 10.4 0.063 6.4 0.7 0.04 3.5 0.5 21.9 

54331 MammothLakes 3.56 3.4 9.7 0.169 7.4 0.3 0.12 3.9 0.2 4.0 

54331 MammothLakes 5.85 4.5 9.7 0.190 5.1 0.1 0.12 4.2 0.2 3.9 

58506 LomaPrieta 1.41 6.0 14.1 0.282 31.2 3.5 0.11 20.3 4.7 20.9 

58506 LomaPrieta 1.59 6.0 14.1 0.234 23.0 2.3 0.08 12.9 3.2 22.0 

23516 Landers 1.65 6.2 12.6 0.236 22.3 2.2 0.08 15.1 7.6 38.6 

23516 Landers 1.83 8.1 12.6 0.286 24.3 2.1 0.11 23.8 12.6 34.3 

23516 Chinohills 1.65 2.3 12.6 0.155 14.7 1.4 0.07 4.8 0.4 38.7 

23516 Chinohills 2.07 3.1 12.6 0.164 12.4 1.0 0.07 4.8 0.4 38.7 

23516 SanBernardino 1.73 6.6 12.6 0.120 10.9 1.0 0.10 7.3 0.5 5.5 

23516 SanBernardino 1.99 4.3 12.6 0.057 4.5 0.4 0.08 2.6 0.2 7.7 

57562 LomaPrieta 1.39 2.3 15.1 0.330 37.1 4.3 0.18 17.5 5.5 10.1 

57562 LomaPrieta 1.49 6.3 15.1 0.360 37.7 4.0 0.20 15.4 3.3 10.5 

24104 Chatsworth 1.96 3.7 12.5 0.134 10.7 0.9 0.08 6.1 0.4 4.5 

24104 Chatsworth 2.26 5.1 12.5 0.157 10.9 0.8 0.07 5.1 0.4 6.8 

24370 Whittier 0.78 2.8 25.2 0.088 17.7 3.6 0.23 12.5 1.3 6.9 

24370 Whittier 0.81 4.2 25.2 0.081 15.7 3.1 0.17 9.7 1.2 7.8 

24370 SierraMadre 0.78 3.0 25.2 0.052 10.4 2.1 0.12 5.8 0.8 9.7 

24370 SierraMadre 0.81 3.3 25.2 0.033 6.3 1.2 0.11 7.9 0.8 8.0 

24609 Landers 1.32 5.1 23.9 0.138 16.2 2.0 0.08 10.4 5.1 40.2 

24609 Landers 1.47 6.5 23.9 0.092 9.8 1.1 0.05 8.6 4.9 46.9 

24609 Northridge 1.32 6.6 23.9 0.091 10.8 1.3 0.06 8.9 2.7 25.6 

24609 Northridge 1.49 1.2 23.9 0.183 19.2 2.0 0.07 8.0 2.6 27.3 

14323 Whittier 0.72 4.8 31.7 0.039 8.4 1.9 0.06 6.5 0.9 25.4 

14323 Whittier 0.88 6.0 31.7 0.076 13.5 2.4 0.04 4.4 0.5 26.6 

24652 Northridge 0.98 3.9 21.8 0.202 32.2 5.2 0.20 14.0 3.1 19.2 

24652 Northridge 1.46 3.7 21.8 0.311 33.3 3.6 0.20 14.0 3.1 19.2 

23481 Landers 0.64 5.9 28.8 0.038 9.2 2.3 0.06 5.9 2.3 27.5 

23481 Landers 0.71 5.3 28.8 0.062 13.7 3.1 0.07 6.5 2.4 26.4 

23515 Landers 0.48 4.0 35.9 0.078 25.6 8.5 0.07 14.8 5.4 41.2 

23515 Landers 0.50 3.0 35.9 0.091 28.6 9.1 0.09 15.0 7.5 40.5 

23634 BigBear 2.02 4.7 21.0 0.104 8.0 0.6 0.06 5.0 1.5 32.1 

23634 BigBear 2.40 5.2 21.0 0.126 8.2 0.5 0.06 5.0 1.5 32.1 

23634 Landers 2.00 4.0 21.0 0.176 13.8 1.1 0.08 12.4 6.5 40.4 

23634 Landers 2.07 3.4 21.0 0.172 12.9 1.0 0.08 12.4 6.5 40.4 

 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

23634 Northridge 2.04 4.6 21.0 0.104 8.0 0.6 0.05 4.3 0.7 31.0 

23634 Northridge 2.07 4.1 21.0 0.078 5.9 0.5 0.06 4.3 0.9 29.3 

24248 Chinohills 1.45 3.7 44.8 0.056 6.1 0.7 0.05 2.7 0.3 19.7 

24248 Chinohills 1.49 3.2 44.8 0.050 5.2 0.6 0.05 3.2 0.5 20.3 

24248 WhittierNarrows 1.55 3.5 44.8 0.010 1.0 0.1 0.05 1.2 0.1 5.4 

24248 WhittierNarrows 1.60 2.5 44.8 0.010 1.0 0.1 0.05 1.3 0.1 5.0 

24249 Chinohills 1.40 3.1 40.9 0.055 6.1 0.7 0.07 3.3 0.5 15.9 

24249 Chinohills 1.44 3.8 40.9 0.045 4.9 0.5 0.08 3.7 0.7 15.2 

24249 WhittierNarrows 1.47 2.2 40.9 0.010 1.1 0.1 0.05 1.5 0.1 5.9 

24249 WhittierNarrows 2.06 1.2 40.9 0.025 1.9 0.1 0.05 1.5 0.1 5.9 

24514 Whittier 2.87 3.5 29.3 0.178 9.7 0.5 0.06 3.7 0.6 14.0 

24514 Whittier 3.32 4.6 29.3 0.150 7.0 0.3 0.05 3.4 0.5 14.2 

58261 LomaPrieta 1.21 6.4 16.0 0.114 14.7 1.9 0.06 8.8 2.0 15.5 

58261 LomaPrieta 1.50 3.0 16.0 0.250 26.0 2.8 0.06 8.8 2.0 15.5 

14533 Whittier 0.29 5.0 80.8 0.010 5.2 2.9 0.04 4.3 1.3 29.2 

14533 Whittier 0.30 7.7 80.8 0.007 3.9 2.1 0.05 7.1 1.2 24.0 

14654 Northridge 0.48 1.9 57.3 0.046 14.7 4.9 0.11 10.9 2.9 43.1 

14654 Northridge 0.58 2.7 57.3 0.099 26.4 7.2 0.09 10.2 2.7 45.6 

24288 Chinohills 0.31 3.2 107.1 0.004 2.1 1.1 0.07 6.5 1.0 18.0 

24288 Chinohills 0.35 3.1 107.1 0.003 1.6 0.7 0.06 4.9 0.6 16.5 

24569 Northridge 0.31 3.2 72.0 0.025 12.7 6.4 0.14 12.6 3.1 28.8 

24569 Northridge 0.32 2.9 72.0 0.024 11.7 5.7 0.20 16.2 2.9 19.3 

24602 Chinohills 0.17 1.1 218.3 0.001 1.3 1.2 0.09 8.2 1.1 9.3 

24602 Landers 0.17 1.2 218.3 0.017 16.5 16.0 0.12 7.7 4.0 90.8 

24602 Landers 0.17 1.4 218.3 0.020 17.9 16.7 0.10 9.3 10.4 82.4 

24602 Northridge 0.16 1.3 218.3 0.012 11.1 10.8 0.13 9.2 4.2 33.4 

24602 Northridge 0.17 1.1 218.3 0.005 4.2 3.9 0.18 14.5 2.4 18.4 

24602 Sierra Madre 0.18 1.4 218.3 0.003 2.3 2.0 0.10 5.0 0.6 11.3 

24629 Northridge 0.16 1.2 211.1 0.007 6.9 6.9 0.17 10.1 2.8 28.3 

24629 Northridge 0.19 1.1 211.1 0.011 8.9 7.4 0.10 8.4 3.1 30.5 

24629 Chinohills 0.16 2.9 211.1 0.001 1.2 1.2 0.06 5.8 0.9 14.6 

24629 Chinohills 0.19 2.7 211.1 0.001 0.5 0.4 0.07 4.1 0.3 15.7 

24643 Northridge 0.26 3.0 92.7 0.047 28.4 17.5 0.52 27.8 6.2 60.7 

24643 Northridge 0.29 3.6 92.7 0.049 26.6 14.6 0.26 16.2 4.9 19.1 

57318 AlumRock 0.45 2.0 83.8 0.021 7.3 2.6 0.06 6.1 1.2 16.8 

57318 AlumRock 0.68 2.2 83.8 0.039 9.0 2.1 0.06 4.1 0.8 16.9 

57357 LomaPrieta 0.45 1.3 64.2 0.212 73.0 25.6 0.09 23.1 9.3 37.7 

57357 LomaPrieta 0.48 2.2 64.2 0.166 54.5 18.2 0.10 17.6 7.1 32.8 

58354 LomaPrieta 0.75 2.1 61.3 0.039 8.1 1.7 0.08 6.8 0.8 15.1 

58354 LomaPrieta 0.78 2.6 61.3 0.047 9.3 1.9 0.07 6.2 0.9 18.5 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

58480 LomaPrieta  0.31 5.0 69.9 0.035 17.5 8.9 0.14 16.5 4.9 11.5 

58480 LomaPrieta  0.44 3.3 69.9 0.034 11.9 4.3 0.16 15.8 2.6 11.3 

58532 LomaPrieta  0.16 1.7 172.0 0.014 13.7 13.5 0.20 26.4 7.9 13.7 

58532 LomaPrieta  0.19 1.4 172.0 0.008 6.7 5.6 0.12 15.7 3.4 15.9 

58262 LomaPrieta  3.66 3.3 7.2 0.195 8.3 0.4 0.11 12.8 2.4 12.4 

58262 LomaPrieta  4.86 6.1 7.2 0.199 6.4 0.2 0.11 18.8 5.1 10.3 

47391 MorganHill84 1.7 7 9.1 0.129 11.9 1.1 0.07 6.5 3.1 32.8 

47391 MorganHill84 1.92 5.7 9.1 0.112 9.1 0.8 0.07 6.5 3.1 32.8 

57502 LomaPrieta  4.26 8.3 9.6 0.299 10.9 0.4 0.11 28.0 19.7 34.6 

57502 LomaPrieta  4.72 6.5 9.6 0.320 10.6 0.4 0.11 28.0 19.7 34.6 

58348 LomaPrieta  2.22 8.2 12.4 0.222 15.6 1.1 0.12 20.0 5.8 16.0 

58348 LomaPrieta  3.05 8.1 12.4 0.134 6.9 0.4 0.08 12.1 2.4 18.5 

58348 Lafayette  2.4 6.7 12.4 0.063 4.1 0.3 0.06 2.1 0.2 7.6 

58348 Lafayette  3.21 8.8 12.4 0.070 3.4 0.2 0.05 1.9 0.1 6.5 

23511 Whittier 3.5 5.4 12.3 0.110 4.9 0.2 0.05 2.0 0.1 15.3 

23511 Whittier 4.47 4.3 12.3 0.091 3.2 0.1 0.05 2.3 0.2 16.6 

23511 Chinohills 2.98 6.6 12.3 0.232 12.2 0.7 0.13 11.9 2.3 8.0 

23511 Chinohills 3.42 5.3 12.3 0.173 7.9 0.4 0.13 11.9 2.4 8.2 

23495 BigBear 1.94 7.3 8.8 0.369 29.7 2.4 0.17 12.4 1.9 17.1 

23495 PalmSprings 2.5 7.1 8.8 0.137 8.5 0.5 0.04 3.6 0.5 30.0 

23495 PalmSprings 3.76 5.1 8.8 0.098 4.1 0.2 0.04 3.4 0.5 25.7 

23495 SanBernardino 2.3 8.3 8.8 0.048 3.3 0.2 0.06 2.3 0.2 13.8 

23495 SanBernardino 3.71 6.3 8.8 0.104 4.4 0.2 0.05 1.9 0.1 13.6 

58503 LomaPrieta  3.48 6 11.4 0.204 9.2 0.4 0.10 14.5 2.3 10.3 

58503 LomaPrieta  3.9 4.5 11.4 0.178 7.1 0.3 0.10 14.5 2.3 10.3 

58503 Elcerrito  3.95 5.8 11.4 0.103 4.1 0.2 0.06 2.0 0.1 2.8 

58503 Elcerrito  5.05 5.6 11.4 0.111 3.4 0.1 0.06 2.0 0.1 2.8 

23622 Landers 4.17 7.1 5.6 0.164 6.2 0.2 0.09 14.4 8.1 35.4 

23622 Landers 6.52 4.6 5.6 0.188 4.5 0.1 0.08 13.3 7.7 36.5 

25213 SantaBarbara  3.12 5.5 10.1 1.043 52.2 2.7 0.38 34.3 5.5 7.3 

58235 MorganHill84 4.07 6.1 10.1 0.201 7.7 0.3 0.06 4.2 0.9 21.9 

58235 MorganHill84 4.3 4.3 10.1 0.190 6.9 0.3 0.06 4.2 0.9 21.9 

58235 LomaPrieta  3.37 8.1 10.1 0.728 33.7 1.6 0.32 36.6 7.3 10.4 

58235 LomaPrieta  3.82 6.2 10.1 0.561 22.9 1.0 0.24 37.0 6.4 11.0 

58196 Lafayette  3 6.8 17.0 0.115 6.0 0.3 0.06 2.4 0.1 1.6 

58196 Lafayette  5.64 8.4 17.0 0.120 3.3 0.1 0.06 3.1 0.2 1.7 

58196 Piedmont  3 2.7 17.0 0.128 6.7 0.4 0.06 2.4 0.2 2.5 

58196 Piedmont  5.12 6.3 17.0 0.183 5.6 0.2 0.07 2.9 0.2 2.1 

58488 LomaPrieta  4 4.2 15.2 0.136 5.3 0.2 0.05 4.2 0.8 19.2 

58488 LomaPrieta  4.5 4.2 15.2 0.116 4.0 0.1 0.05 4.2 0.8 19.2 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

58462 LomaPrieta  1.04 5.4 25.9 0.106 15.9 2.4 0.10 10.4 2.0 25.5 

58462 LomaPrieta  1.47 5.2 25.9 0.192 20.4 2.2 0.10 10.4 2.0 25.5 

14311 Whittier 2.94 3 21.6 0.243 12.9 0.7 0.09 6.1 0.7 19.8 

14311 Whittier 5.5 6.8 21.6 0.123 3.5 0.1 0.10 11.0 1.1 17.9 

14311 Chinohills 3.02 2.3 21.6 0.087 4.5 0.2 0.07 7.7 1.4 26.3 

14311 Chinohills 5.41 6.5 21.6 0.116 3.3 0.1 0.11 9.0 1.0 24.1 

24463 Whittier 0.7 3.8 36.3 0.091 20.2 4.6 0.13 12.7 2.0 13.2 

24463 Whittier 0.75 6.2 36.3 0.110 22.8 4.8 0.17 9.0 1.6 11.5 

12284 BorregoSprings 
Jul2010 1.48 4.3 15.3 0.044 4.7 0.5 0.05 2.2 0.3 24.6 

12284 BorregoSprings 
Jul2011 1.58 4.9 15.3 0.046 4.5 0.5 0.08 3.7 0.5 15.7 

12284 Calexico 
Apr2010 1.45 4 15.3 0.104 11.2 1.2 0.05 4.3 3.2 37.0 

12284 Calexico 
Apr2011 1.55 5.2 15.3 0.083 8.3 0.9 0.04 4.0 3.3 38.8 

12284 PalmSprings 1.66 3.8 15.3 0.082 7.7 0.7 0.09 8.1 2.4 24.1 

12284 PalmSprings 1.78 5.2 15.3 0.087 7.6 0.7 0.11 8.7 2.4 24.2 

23285 SanBernardino 1.92 2.9 20.4 0.012 1.0 0.1 0.06 1.4 0.1 5.0 

23285 SanBernardino 2.35 4.3 20.4 0.019 1.3 0.1 0.06 1.4 0.1 5.0 

24468 Northridge 0.63 4 35.0 0.082 20.3 5.1 0.12 8.7 1.4 17.4 

24468 Northridge 0.65 3.9 35.0 0.086 20.6 5.0 0.12 8.7 1.4 17.4 

24468 Whittier 0.65 5.2 35.0 0.110 26.3 6.4 0.32 20.1 2.4 6.3 

24468 Whittier 0.69 2.8 35.0 0.137 31.2 7.2 0.32 20.1 2.4 6.3 

24579 Landers 0.7 5.8 39.0 0.053 11.8 2.7 0.04 6.8 4.1 65.7 

24579 Landers 0.81 5.3 39.0 0.064 12.4 2.4 0.04 6.8 4.1 65.7 

24579 Northridge 0.66 6.9 39.0 0.092 21.7 5.2 0.15 13.4 2.9 21.2 

24579 Northridge 0.76 6.8 39.0 0.116 23.8 5.0 0.15 13.4 2.9 21.2 

47459 LomaPrieta  2.83 5.5 20.2 0.953 52.6 3.0 0.36 54.9 18.2 8.8 

47459 LomaPrieta  3.93 6.7 20.2 0.453 18.0 0.7 0.27 33.3 9.0 11.8 

58479 LomaPrieta  2.96 4.2 19.8 0.164 8.7 0.5 0.07 15.1 4.2 8.9 

58479 LomaPrieta  4.81 6.3 19.8 0.130 4.2 0.1 0.08 12.8 3.0 8.0 

58490 LomaPrieta  1 4.5 23.8 0.216 33.6 5.4 0.11 16.2 2.7 14.9 

58490 LomaPrieta  1.23 7.5 23.8 0.174 22.1 2.9 0.14 14.6 3.5 15.6 

24655 Northridge 1.94 5.5 20.4 0.441 35.5 2.9 0.29 19.1 4.4 15.2 

24571 Landers 0.5 4.1 41.5 0.044 13.8 4.4 0.04 6.4 2.0 30.5 

24571 Landers 0.78 4.1 41.5 0.125 25.1 5.1 0.05 6.2 1.8 31.5 

24571 Northridge 0.47 4.1 41.5 0.024 8.1 2.7 0.16 8.9 1.3 12.0 

24571 Northridge 0.77 2.9 41.5 0.072 14.6 3.0 0.18 10.0 0.8 10.5 

24571 SierraMadre 0.51 5 41.5 0.030 9.0 2.8 0.10 7.5 0.8 7.6 

58394 LomaPrieta  0.58 4.4 31.7 0.136 36.5 10.0 0.12 15.0 3.3 14.4 

58394 LomaPrieta  0.82 4.3 31.7 0.108 20.5 4.0 0.11 15.6 2.8 12.7 

 
 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

24385 SierraMadre 1.86 5.9 26.8 0.103 8.7 0.7 0.07 4.6 0.7 11.7 

24385 SierraMadre 2.1 3.3 26.8 0.245 18.2 1.4 0.11 8.5 0.9 9.4 

24385 Whittier 1.82 9.3 26.8 0.241 20.7 1.8 0.21 11.0 1.0 6.3 

24385 Whittier 2.22 9.4 26.8 0.204 14.4 1.0 0.20 8.6 1.1 7.1 

57355 MorganHill84 1.1 3.6 37.8 0.144 20.5 3.0 0.06 12.3 3.4 23.2 

57355 MorganHill84 1.6 3.7 37.8 0.158 15.4 1.5 0.06 10.4 2.5 26.9 

57355 AlumRock 0.96 3.4 37.8 0.063 10.3 1.7 0.07 5.8 1.1 17.9 

57355 AlumRock 1.44 3.6 37.8 0.044 4.7 0.5 0.06 3.6 0.4 13.6 

57355 LomaPrieta 0.99 3.6 37.8 0.133 20.9 3.4 0.09 18.1 9.9 25.6 

57355 LomaPrieta 1.34 6.3 37.8 0.296 34.4 4.1 0.10 22.0 12.9 24.2 

57356 MorganHill84 1.65 3.8 29.3 0.139 13.2 1.3 0.05 12.1 2.8 27.0 

57356 MorganHill84 2.3 5 29.3 0.114 7.7 0.5 0.06 7.4 2.2 27.1 

57356 LomaPrieta 1.49 6 29.3 0.185 19.4 2.1 0.09 16.5 7.3 17.6 

57356 LomaPrieta 2.29 6 29.3 0.197 13.4 0.9 0.11 20.2 11.4 19.9 

57356 AlumRock 1.37 3.8 29.3 0.088 10.0 1.2 0.11 8.0 1.1 10.7 

57356 AlumRock 2.3 3.6 29.3 0.088 6.0 0.4 0.08 3.2 0.6 16.1 

24322 Northridge 0.32 3 50.0 0.064 31.4 15.6 0.83 60.7 13.5 8.6 

24322 Northridge 0.34 5.9 50.0 0.112 51.5 24.1 0.37 29.7 8.1 16.4 

24322 Whittier 0.4 3.1 50.0 0.008 3.3 1.3 0.26 8.1 0.5 11.3 

24322 Whittier 0.45 4.5 50.0 0.013 4.3 1.5 0.17 11.5 1.0 10.3 

24322 Chinohills 0.65 2.2 50.0 0.015 3.7 0.9 0.07 3.4 0.3 14.7 

24322 Chinohills 0.67 3.6 50.0 0.011 2.6 0.6 0.04 2.4 0.2 24.5 

58364 LomaPrieta 1.25 3.5 39.2 0.103 12.9 1.6 0.05 7.6 1.4 18.7 

58364 LomaPrieta 1.6 3.1 39.2 0.168 16.4 1.6 0.06 8.7 1.6 18.7 

14578 Chinohills 0.8 5.5 35.4 0.050 9.7 1.9 0.10 9.1 1.0 18.9 

14578 Chinohills 0.9 6.4 35.4 0.099 17.2 3.0 0.14 12.5 2.0 17.5 

14578 Northridge 0.84 5 35.4 0.034 6.3 1.2 0.07 5.5 1.4 42.1 

14578 Northridge 0.93 7.5 35.4 0.057 9.6 1.6 0.11 6.7 1.5 36.9 

24601 Northridge 0.86 4.2 42.3 0.029 5.2 1.0 0.02 1.7 0.6 66.7 

24601 Northridge 0.94 4 42.3 0.042 7.1 1.2 0.05 3.8 1.0 51.8 

24601 SierraMadre 0.99 2.5 42.3 0.068 10.7 1.7 0.07 5.2 0.7 13.1 

24601 SierraMadre 1.2 6.5 42.3 0.071 9.2 1.2 0.06 4.4 1.0 15.5 

24601 Landers 0.94 3.2 42.3 0.102 16.9 2.9 0.04 7.3 6.5 57.1 

24601 Landers 1.16 5.8 42.3 0.076 10.2 1.4 0.04 11.6 7.6 55.1 

24581 Chinohills 0.56 8.5 47.3 0.010 2.7 0.8 0.06 4.1 0.4 13.3 

24581 Chinohills 1.03 6.2 47.3 0.065 9.8 1.5 0.07 5.9 1.0 13.4 

24236 Whittier 0.54 7.5 42.1 0.041 12.0 3.5 0.12 9.5 1.4 13.0 

24236 Whittier 1.63 9.2 42.1 0.114 10.9 1.1 0.06 6.3 0.9 15.2 

58483 LomaPrieta 0.41 3.3 66.8 0.057 21.7 8.4 0.12 17.1 4.3 13.9 

58483 LomaPrieta 0.5 6.6 66.8 0.075 23.3 7.4 0.12 17.1 4.3 13.9 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

13589 Landers 1.22 4.5 44.8 0.124 15.9 2.1 0.04 6.3 2.8 68.6 

13589 Landers 1.41 3.7 44.8 0.118 13.1 1.5 0.05 12.3 6.8 42.1 

13589 Northridge 1.18 4.2 44.8 0.092 12.2 1.6 0.08 5.6 1.7 50.7 

13589 Northridge 1.36 3.7 44.8 0.107 12.3 1.4 0.05 5.8 1.4 58.5 

58639 Piedmont 1.24 4.1 34.8 0.012 1.5 0.2 0.03 1.5 0.1 4.6 

58639 Piedmont 1.81 2.9 34.8 0.021 1.8 0.2 0.06 2.3 0.1 4.0 

24680 Chinohills 0.68 4.6 49.1 0.011 2.6 0.6 0.03 2.0 0.3 32.6 

24680 Chinohills 0.85 3.8 49.1 0.018 3.3 0.6 0.05 2.7 0.3 25.8 

12266 Anza 3.71 12.0 7.9 0.255 10.7 0.5 0.08 2.5 0.1 9.8 

12266 Anza 5.97 3.9 7.9 0.185 4.8 0.1 0.08 2.5 0.1 9.8 

14606 Northridge 1.45 5.4 23.2 0.093 10.0 1.1 0.11 8.6 1.6 16.6 

14606 Northridge 1.58 7.0 23.2 0.225 22.3 2.2 0.16 12.0 1.5 13.5 

14606 Chinohills 1.64 5.4 23.2 0.146 13.9 1.4 0.10 6.3 0.4 9.5 

14606 Chinohills 1.85 6.0 23.2 0.276 23.3 2.0 0.13 11.9 1.8 7.6 

14606 WhittierNarrows 1.68 5.7 23.2 0.027 2.5 0.2 0.15 4.8 0.2 1.6 

14606 WhittierNarrows 2.03 4.7 23.2 0.035 2.7 0.2 0.22 6.1 0.2 0.8 

24517 Landers 1.60 7.0 12.7 0.120 11.7 1.2 0.05 7.1 3.2 41.2 

24517 Landers 2.86 5.7 12.7 0.150 8.2 0.5 0.05 7.1 3.2 41.2 

24517 Northridge 1.65 10.1 12.7 0.172 16.3 1.6 0.06 9.3 2.5 27.4 

24517 Northridge 2.25 9.8 12.7 0.174 12.1 0.9 0.06 9.3 2.5 27.4 

24517 Whittier 2.49 3.0 12.7 0.133 8.3 0.5 0.05 2.8 0.2 11.6 

24517 Whittier 3.35 6.5 12.7 0.151 7.1 0.3 0.05 2.8 0.2 11.6 

57476 LomaPrieta 0.75 8.8 7.9 0.440 92.0 19.6 0.29 6.5 0.3 8.2 

57476 LomaPrieta 1.16 9.6 7.9 0.261 35.1 4.8 0.24 0.7 0.1 12.2 

58264 LomaPrieta 3.7 9.8 7.3 0.477 20.1 0.9 0.21 33.7 14.2 27.4 

58492 LomaPrieta 1.37 6.3 22.8 0.195 22.2 2.6 0.06 7.8 2.1 18.4 

89473 Petrolia 2.72 3.2 6.7 0.211 12.1 0.7 0.13 17.8 4.4 18.8 

89473 Petrolia 3.22 2.3 6.7 0.204 9.9 0.5 0.13 17.8 4.4 18.8 

89473 Ferndale Jan2010 3.3 12.5 6.7 0.371 17.6 0.8 0.14 11.8 2.1 17.2 

89473 Ferndale Jan2011 4.2 11.2 6.7 0.314 11.7 0.4 0.14 11.8 2.1 17.2 

89473 PetroliaAftershock 2.77 2.6 6.7 0.440 24.8 1.4 0.16 12.5 2.3 13.0 

89473 PetroliaAftershock 3.08 4.6 6.7 0.490 24.8 1.3 0.16 12.5 2.3 13.0 

89494 Ferndale Jan2010 2.93 12.7 13.6 0.562 29.9 1.6 0.22 22.4 5.2 15.3 

89494 Ferndale Jan2011 3.28 8.6 13.6 0.570 27.1 1.3 0.22 22.4 5.2 15.3 

12759 Anza 4.61 5.3 3.8 0.478 16.2 0.6 0.22 10.9 0.9 8.2 

12759 Anza 5.89 9.5 3.8 0.433 11.5 0.3 0.22 10.9 0.9 8.2 

12759 BorregoSprings 
Jul2010 4.44 6.4 3.8 0.164 5.8 0.2 0.07 4.4 0.8 18.3 

12759 BorregoSprings 
Jul2011 5.09 4.3 3.8 0.156 4.8 0.1 0.07 4.4 0.8 18.3 

36695 SanSimeon 4.74 12.7 5.0 1.161 38.2 1.3 0.45 30.1 7.3 9.9 

36695 SanSimeon 4.94 8.8 5.0 1.279 40.4 1.3 0.45 30.1 7.3 9.9 



Station # Earthquake f1(Hz) ζ1(%) H(m) SA(g) SV(cm/s) SD(cm) PGA(g) PGV(cm/s) PGD(cm) t0.9(s) 

36695 Atascadero 5.50 5.9 5.0 0.090 2.5 0.1 0.06 1.4 0.0 3.8 

36695 Atascadero 5.60 2.8 5.0 0.091 2.5 0.1 0.06 1.4 0.0 3.8 

89687 Ferndale Jan2010 2.73 7.7 7.9 0.570 32.6 1.9 0.25 26.1 5.3 9.8 

89687 Ferndale Jan2011 3.28 8.7 7.9 0.528 25.1 1.2 0.25 26.1 5.3 9.8 
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