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Damping Identification in Buildings from Earthquake Records

D.Bernal, S. Mozaffari Kojidi*, K. Kwan', M. Dohler*

'Civil and Environmental Engineering Department, Northeastern University, Center for Digital Signal Processing,
Boston, MA

Abstract

It is shown that the Fisher information on damping contained in seismic response is small
and, as a consequence, identified damping ratios are realizations from a distribution with high
variance. Predictive expressions with reasonable confidence intervals can be generated, however,
if sufficient data is available. In this study 122 responses from concrete buildings, 81 from steel,
26 for masonry and 10 from wood structures are used to identify damping ratios using a subspace

algorithm. The regression expression derived for steel and concrete buildings is & = a, +ae *",

where H is the height, and for masonry and wood structures & = (b, +b,e ™)™, where Sa is the
5% damped Pseudo-Spectral acceleration. In these expressions a’s and b’s are coefficients.

Introduction

The term damping is used to refer to the collection of mechanisms by which systems
dissipate energy. Although the inherent damping of structural systems is not viscous, velocity
proportional dissipation is widely used because it leads to mathematical simplicity and because,
at least for small damping, it can be calibrated to mimic the actual dissipation well. In practice it
is customary to specify damping through modal damping ratios, defined as the quotient of the
damping constant of the mode to the minimum value for which the response to arbitrary initial
conditions does not have harmonic terms. The problem of extracting damping of viscously
damped linear systems from input-output data is a standard problem in identification and exact
results are obtained by all consistent algorithms when the data generating system satisfies the
assumptions (Juang 1994, Verhaegen and Verdult 2007, Van Overschee and De Moor 1996,
Heylen et al. 1997).

Notwithstanding the availability of theory, estimation of consistent damping values from
measured response is difficult in structures subjected broadband excitation. The reason for this
being the fact that the information (more precisely the Fisher information) about damping
encoded in the response data is low. Low information implies that the estimated damping is a
random variable with high variance and thus that realizations can differ substantially, either
because the data set changes or because, for a given data set, details of the identification
approach vary. One early example of discrepancies in damping estimates obtained for the same
data set is that of the 12 high rise buildings subjected to the San Fernando earthquake, considered
initially by Hart and Vasudevan (1975) and a few years later by McVerry (1979, 1980).



Predictors for damping ratios have been derived from the examination of data sets by
various researchers. For example, Zhang and Cho (2009) extracted damping ratios from ambient
vibration data for 82 buildings in Xi’an, China and proposed an expression for the first mode.
Other studies include those by Jeary (1986), Lagomarsino (1993), Tamura et al. (1996), Sasaki et
al. (1998) and Satake et al. (2003). In most previous studies where large data sets have been
considered the vibration amplitudes have been very small and, as a consequence, the damping
values obtained can be considered a lower bound. In this study we limited examination to
responses where the peak ground acceleration was no less than 0.05g. The cases that satisfied
this limit were 122 responses from concrete buildings, 81 from steel, 26 from masonry and 10
from wood structures. The theoretical base of the identification approach used to compute the
damping values is summarized in Appendix A and the numerical values and the regressors for
each considered case are presented in Appendix B.

Background and Relations
Equations of Motion

Let the subscript 1 stand for coordinates that are not prescribed and 2 for those that are.
The equations of motion of a viscously damped linear system without external excitations can
then be written as

|:Mll M12j|{¥l}+|:cll C12:|{):/1}+|:Kll K12:|{yl}:{0} (1)
M 21 M 22 y2 CZl C22 y2 K21 K22 y2 Re
where R, are the reactions at the prescribed coordinates. The displacements that are not

prescribed can be expressed as a linear combination of the prescribed ones plus a residual,
namely

Y, =ry,+u (2)
which, when substituted into the top partition of eq.1 gives
MU +Cu+Ku = _(M12 + Mnr)yz - (Clz +C11r)Y2 - (Klz + Kllr) Y, 3)

Since the matrix r is arbitrary, it can be selected to cancel any of the terms on the rhs of eq.3,
taking r as

r= _Kl_ll Ky, (4)
neglecting the damping contribution to the rhs term, and recognizing that for lumped mass
models one has M, = 0, one gets

M Uu+Cu+K u=-M_ry, 5)

which is the conventional expression used to represent earthquake excitation. The point to note
here is that the properties on the matrices on the lhs of eq.5 are those of the system with restraints



at the prescribed coordinates. This means that if only horizontal motion is used to define the
input, the properties that a system identification algorithm obtains include the flexibility and
dissipation at the soil structure interface in all DOF other than horizontal translation. For
familiarity in the subsequent treatment we drop the subscripts in eq.5 and replace Y, by the more

commonly used X, , namely, we use
MU+Cu+Ku=-Mr¥X, (6)

Damping Ratio
Let the rhs of eq.6 equal zero, namely
MU +Cu+Ku=0 (7)

the solution to eq.7 is of the form u(t) = Zail//iesit and one finds, by substitution that
[ Ms?+Cs, +K [y, =0 (8)

where «;’s are scalars. The values of s;’s that satisfy the equation are complex and come in
complex conjugate pairs. Writing the solution in terms of its real and its imaginary part, calling
on Euler’s identity, and replacing s by the value at the solution, A, one finds that

WD) = Y e (cos(4,) +isin(4, ) (©)

which shows that the rate of decay of the free vibration is determined by the real part of the
eigenvalue and the vibration frequency by the imaginary. The definition of damping ratio, which
does not require that the damping be classically distributed, is

_ﬂ’R

(10)
A

E=

Eq.10 allows for a simple appreciation of why it is difficult to identify damping ratios with low
variance. Namely, let the true pole for a given mode be a point in the complex plane and let there
be a region around the pole where, due to noise, the identification algorithm places the pole.
Assume the region of uncertainty around the pole is a circle of radius R, where R is a fraction of

the pole magnitude, say R =a|/1|. Noting that the magnitude of the pole is an estimate of the

undamped frequency (exact for classical damping) and recognizing that « is small, one
concludes that the variability in frequency is small. The estimation of damping, however, which
is given by eq.10, can experience much larger variations. In fact, examination of the geometry
shows that the percent error in the frequency is essentially equal to « while the damping ratio
ranges from the true value to plus or minus a. Let « be 0.02, for example, in this case the
frequency error is no more than 2% but the damping ratio can be over or under estimated by
0.02. If the true damping is 5%, for example, one gets values as large as 7% and as low as 3%.
To determine if the circular assumption for the uncertainty region is reasonable, we carried out a
Monte Carlo study where a system was identified 1000 times using random realizations of the



noise. As can be seen from fig.1, which shows results for the first and the second pole, the
circular premise is not unreasonable.
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Figure 1. Uncertainty of the real part vs. the imaginary part of the 1 pole and 2" pole in a 10-
DOF system identified using white excitation and 5% additive noise.

Some Proposed Damping Predictors

Predictors for damping in buildings have been proposed through the years and some are
summarized next:

Table 1. Damping Predictors

Expression Source
¢, =0.01f, +10"°2x/ H Jeary (1986)
¢, =0.013f, (Steel) ¢, =0.014f, (RC) Satake et al. (2003)
¢, =1.945+0.195T > Zhang and Cho (2009)
¢, =0.013f, +0.0029 (Steel) Sasaki (1998)

¢, =0.014f, + 470~ 0.0018 (Steel)
H Satake (2003)

£, =0.013f, + 470ﬁ+ 0.0029 (RC)

4/1:%"':6]:1"'7(%)
a =0.0072,  =0.0070 (RC) a =0.0032, 5 = 0.0078 (Steel)

For higher modes damping ratios: ¢, = (1.3~1.4)h , (Steel)
¢, =14h (RC) Satake et al. (2003)

¢, =@.7~1.8)h,, (SRC)

Lagomarsino (1993)




Discussion

The expressions in Table 1 show that the damping ratio tends to increase with frequency
and, although only noted in some of the expressions, also with amplitude. Justification for
correlation with amplitude is evident but the rational for the correlation with frequency is less
apparent. In this regard it is possible that the causal connection is not with frequency per se but
with some measure of the size of the interface between the structure and the ground, a possible
explanation being that the larger the interface the larger the energy dissipation that can take place
through this interface. Another item worth commenting on is the issue of how the damping ratios
in higher modes compare to that of the first mode. In particular, Satake et al., (2003) has
postulated, based on a trend observed in the first few modes, that the expected value of the
damping ratio is higher in the modes above the fundamental. Examination suggests that this
observation may derive from the effectiveness of the mode shape in activating the dissipation
mechanism. To illustrate, consider a 6-story one bay model where the damping is assumed to
come from dashpots of equal magnitude located at each of the connections between beams and
columns. The damping ratio when behavior is dominated by frame action (relatively rigid beams)
and where flexure dominates (relatively flexible beams) is depicted in fig.2. As can be seen, the
damping increases in the early modes but eventually decreases, as the joint rotations for
sufficiently high modes are small. The results for the shear type behavior are (in this case at
least) in qualitative agreement with the ratios proposed by Satake for increases from the 1% to 2"
and the 2" to 3" mode.
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Figure 2. Ratio of damping between various modes in a 6-story model with dissipation
simulated with dashpots at the beam-column joints.

Sensitivity of Identified Damping to Nonlinear Response

Although the data in this study does not include cases with large yielding it is of interest
to note that the increases in effective damping due to modest yielding are not as large as one may
anticipate at first glance, the reason being the short duration of the response over which the



nonlinearity is activated. To illustrate, the identified frequencies and equivalent damping of a
SDOF with a frequency of 1 Hz and 5% viscous damping were obtained from identification for
three different response levels using the Whittier ground motion. The first level is linear and is
used to confirm that the ID is able to identify the correct model. The other two correspond to
nominal displacement ductility levels of 2 and 4. The identified damping values are {5, 5.82, and
8.4} percent and the identified frequencies are {1, 0.99, and 0.98} hertz respectively. Plots of the
resulting force vs. drift are depicted in fig.3.
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Figure 3. Force vs. drift for three response levels (a)-(c)

Uncertainty in Damping Estimation

This section presents some discussion on the estimation of damping from the perspective
of the “information content” of a parameter in available data. It is shown that for conditions that
are typical the coefficient of variation of damping ratios can be more than 50 times higher than
that of frequencies. Similar results on the identification of ARMA models have been reported in
Gersch (1974).

The Cramér-Rao Lower Bound and the Fisher Information

The accuracy with which any parameter can be estimated from noisy data is limited by
the amount of information on the parameter that is contained in the data. For any distribution of
the noise affecting the input and the output, the lower bound to the covariance X that a parameter
estimator can have is known as the Cramér-Rao Lower Bound (CRLB) (Casella and Berger
2001). The CLRB depends only on the statistical distribution of the noise and on the sensitivity
of the data to the parameter. The inverse of the CRLB is known as the Fisher Information (FI),
which indicates “how much information” on the parameter is contained in the data set.
Technically, the FI is defined as

a 2
1(0) = E(%Iog f(Y |.9)j (11)

where f (Y |6) is the probability density function of the observed data Y given the parameter 6.
If the sensitivity of the likelihood to the parameter is high the derivative in eq.11 is large and so



is1(0) . In practice, the likelihood function f(Y |#) is in general unknown so other quantities

derived from the data are used. For example, if the data can be used to generate a vector X that is
normally distributed having a mean that depends on the parameters, () , and a covariance ¥, the

FI of the parameter & contained in X can be obtained as (van den Bos 2007)
Tv-1 oy
1(0)=T(0) 2T () where J(6) =35 (12)

Denoting =, as the covariance of the real and imaginary part of a pole, the FI of the frequency
and the damping follows from eq.12 as

I(§1f):s7;,f2;11j§,f (13)

where the sensitivity of the pole with respect to damping ratio and frequency is given by

g, fm@s@) _, T ”
ol t) ~fe-£): (1-¢

Due to the relation between the FI and the CRLB, an analytical relationship between the
coefficients of variation of damping and frequency can be obtained from eq.14. This relation
shows that the ratio depends only on the damping ratio. Assuming that the uncertainty region
around the complex poles is circular, as depicted in the Monte-Carlo simulation in fig.1, the
ratios between the coefficients of variation are shown in fig.4. As can be seen, the uncertainty on
the damping ratios is around 50 times higher than that for the frequencies at& =0.02, and the

ratio is near 25 for £ =0.05.

e(z) /e(f)

1 1 1 1 1 1 1 1
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Figure 4. Range of the ratio of the coefficient of variation of damping and frequency when the
uncertainty region around the pole is circular



Regression Analysis

The regressors considered here are the peak ground motion parameters (PGA, PGV and
PGD), the spectral ordinates (SA, SV and SD), the building height, H, the frequency of the
mode, f, and the effective duration tpg. This last entry defined as the time interval between the
attainment of 5% and 95% of the total integral of the acceleration squared. Examination of the
effect of duration on the variance of identified damping showed that the standard deviation varies
inversely with the square root of the duration normalized by the modal period. This result was
used in the regression to normalize the residuals to equal variance.

Goodness of Fit

When measurements have significant variance the goodness of fit cannot be judged from
a simple inspection of the scatter. The standard goodness of fit test is the F-test for lack of fit
(FTLF). The test operates with residuals of equal variance, which in our case are given by

Fi = (5. _ézp,i)\/Qi 'to.g,i (15)

and

di = (‘f. _‘:E.) Qi 'to.g,i (16)

(17)

n N 2 1
Z( j (N-m)

where n = number of bins, n; = number of samples in the i" bin, N = total number of
observations, & = data point, &,; = predicted value and & = mean of the data points in a bin. Bins
are such that the prediction varies little within the bin (5% of the average in our numerical
results). The F statistic has a Fisher-Snedecor distribution with (n-p) and (N-n) degrees of
freedom for the numerator and the denominator and a low value indicates a good fit. Results on
the goodness of fit, however, are most easily interpreted in terms of the p-value of the F statistic.
The p-value is such that if it is smaller than the acceptable Type | error rate the proposed fit is
rejected. The Type I error, in this case, consists in rejecting the proposed fit when it is valid one.
The typical p-value threshold is 0.05.

Coefficient of Determination

The coefficient of determination, R?, defined as



20 =Y,)’
R? =

el 18
Z(yi_y)z ( )

is widely used in diagnosing regression results. The coefficient is essentially a measure of how
much the regression line reduces the scatter relatively to the mean. Low values of R?, however,
do not invalidate regression results when the intrinsic variance of the data is large.

Functional Form

We considered a number of different forms and settled on two exponential ones: one for cases
where the damping decreases and the other for cases where the damping increases with the
regressor, namely;

E=a,+ae ™ (19a)
and
PR
S=1h ae ™ (190)
Results

The regression was carried out for the first mode damping ratio for steel, concrete, masonry, and
wood buildings. When the mode considered is dominated by translation in one direction the
ground motion in this direction was used to compute the ground motion parameters. When the
mode is strongly coupled, or torsional, the average of the ground motion parameters for the two
directions was used. The best results for the expected value of the first mode damping ratio are:

£ =1.22+4.26e7°"  (steel) (20)
£ =291+3.54e " (concrete) (21)
1
= 011r 0230 s (MAOMY) @2
Eu L (wood) (23)

T 0.09+0.176 3%

where H is in meters and Sp is the 5% pseudo-spectral acceleration in g’s. Plots of the regression,
the 95% confidence intervals, and the data, are presented in figs5-8.
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Fig.5 Regression result (steel buildings) and 95% confidence limits, R?=0.37, F-test p-value = 0.85
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Fig.6 Regression result (concrete buildings) and 95% confidence limits, R?*=0.11, F-test p-value=0.72
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Fig.7 Regression result (masonry buildings) and 95% confidence limits, R?=0.15, F-test p-value =0.25

14

&(%) —F

12 -

10 -

2 1 1 1 1 1 1 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Sa (g's)

Fig.8 Regression result (wood buildings) and 95% confidence limits, R?=0.64, F-test p-value =0.97




Discussion

For steel buildings H provided the best correlation with damping ratio by a significant margin. In
concrete buildings the expression based on Sa produced results that are only slightly less
correlated than those for H. For masonry and wood buildings the correlation with Sa was clearly
the superior choice. These results are along the line of what one expects from qualitative
reasoning. Namely, in steel most of the intensity related increase in damping (in the linear range)
is related to non-structural components while in the other structural types there is also a lateral
load resisting mechanism dependence. For completeness, figs.9 and 10 show the correlation of
damping ratio with Sa for steel and concrete buildings. The fact that dependence on Sa saturates
very quickly in steel and less so in concrete is evident from the plots and from the coefficient in
front of Sa in the best fit expressions.

A question that comes to mind is whether a multivariate regression using both H and Sa could
lead to notable improvements but the answer to this proved negative because the two parameters
happen to be correlated. It is not difficult to see that this is so because as the height increases the
period lengthens and the spectral accelerations, except for short buildings, decrease. For the
buildings considered here the correlation coefficients between H and SA are -0.57 and -0.39 for
steel and concrete, respectively.
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Fig.9 Regression with 5% damped pseudo spectral acceleration (steel buildings) and 95% confidence
limits, R=0.15, F-test p-value =0.25
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Fig.10 Regression with 5% pseudo-spectral acceleration (concrete buildings) and 95% confidence limits,
R?=0.64, F-test p-value =0.97

A final item worthy of attention is whether or not there is consistency in the results of the
regression for damping as a function of H and SA. Examination shows that the results are indeed
consistent. To clarify consider these two situations: a) say a steel building has H = 50 m. From
the plot in fig.5 one finds that the 95% confidence for the regression is from 2.8% to 4.05%.
Looking at fig.9 one finds that this could be the solution for any value of SA, b) consider H =
200 m. In this case the 95% confidence interval is from 0 to 3%. Looking at fig.9 one concludes
that consistency requires that SA for this building be no larger than 0.047 g. The data shows that
there are 28 records for buildings whose heights are 200 m or more and that, of all these, there
are only two 2 cases where SA exceeded this limit. This small violation is, of course, reasonable
since a 95% confidence interval does not provide complete certainty.

Conclusions

It is shown that damping ratios identified from earthquake records are realizations from
distributions with high variance. The reason for the high variance is traced to the low sensitivity
of the transient response to damping and it can be visualized from the pole location in the
complex plane and the distribution of the uncertainty. The paper shows that the coefficient of
variation of damping estimates are 25 to 50 times larger than the coefficient of variation of
frequency estimates. The large variance does not preclude, however, estimation of reasonable
values for the damping ratio when sufficient data is available. For steel and concrete buildings
there are 122 and 81points, respectively, and, as a consequence, results for the 95% confidence
intervals of the expectation are significantly tighter than the deviation inherent in the identified
results. For masonry the confidence interval opens up notably since there are only 27 points and
finally, for wood, where there are only 10 data points, the confidence interval contains



essentially all of the data. The expressions proposed to estimate the first mode damping ratio are
slightly more complex than linear but offer the advantage of having asymptotic behavior so there
IS no need to impose arbitrary limits to avoid negative damping or unreasonably large values.
The results show that damping in steel buildings is, except for very tall buildings, larger than the
2% that is typically assigned in practice. The expected value of damping in masonry structures is
higher than for concrete and wood structures display damping values somewhat higher than
those of masonry.
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Appendix A — Identification
Time domain algorithms are typically based on an indirect approach. Namely, a model
mapping the sampled input and the sampled output is obtained and then it is converted to
continuous time. The postulated model in sampled time has the form
x(k +1) = Agx(K) + ByX, (K) (a.1)
where the measurements are given by

(k) = Cx(K) (a.2)
The procedure begins by noting that for the model in eg.a.1 the output is related to the input as
K
y(k)= ;Y,-Xg (k=] (a.3)
where Yj, known as a Markov ParameterJ(MP) is given by
Y; =CA,/ "B, (a4)

Once the MP are obtained from eg.a.3, the next task is to untangle the matrices {Aq4, B4, C} from
the triple product. This is done by defining the Hankel matrix Hy as

Yiw Yz 0 Yip
. Yk:+2 Yk:+3 Yk?ﬁ @5)
Yeow o Viapraa
where o and 3 are user defined parameters and noting that with
Cq
P, = C“;A“’ (@.6)
C A/
and
Q=[Bs ABy ABy -+ Al'B] @.7)
H, =P,A/Q, (a.8)

so it follows that Hg
Ho =P,Qy (@.9)



one then performs a singular value decomposition of Hp, namely

H,=RXS’' (a.10)
and after retaining only the N most important singular values, has

Hy =Ry ZySy' (a.11)

where Ry contains the first N columns of R, Sy the first N columns of S and Xy is the diagonal
matrix having the N significant singular values. Splitting the diagonal singular value matrix into
the product of two matrices (E; and Ey)

EE, =3, (a12)
gives
Ho =(Ry E)(E; SL) (a.13)
and one can then take
P =R\E, (a.14)
Qs =E,Sy (a.15)

from where, given the definitions in eq.’s a.6 and a.7 one has that
e The first m rows of p_provide a realization for C.

e The firstr columns of Q , provide a realization for By.
The matrix A4 can be obtained from the block Hankel matrix for k = 1, namely, given that

H1 = Pa Ad Qﬂ = RN ElAd EZSL (a-16)
and the fact that Ry and Sy are orthonormal one gets
Ay =E'R{ H, S\ E;* (a.17)

Discrete to Continuous Transfer

Once the sampled time model is available its conversion to continuous time follows as
(Bernal 2006)

1
A, =—In(A a.18
c At n( d) ( )
1.
B, =EAdle (a.19)
C.=C (a.20)

The damping ratios are obtained as the real part of the eigenvalues of A divided by their
magnitude,



Appendix B - Data

Table B.1. Data Used in the Regression Analysis

Station # Earthquake fiHz) | (%) | Hm) | Sa(g) | Sv(em/s) | Sp(ecm) | PGA(g) | PGV(cm/s) | PGD(cm) | too(s)
58496 LomaPrieta 3.08 4.0 7.7 0.233 11.8 0.6 0.12 7.3 11 11.2
24198 Chinohills 1.46 5.1 104 | 0.077 8.3 0.9 0.07 5.8 0.6 19.3
24198 Chinohills 1.52 5.0 10.4 | 0.063 6.4 0.7 0.04 3.5 0.5 21.9
54331 MammothLakes 3.56 3.4 9.7 0.169 7.4 0.3 0.12 3.9 0.2 4.0
54331 MammothLakes 5.85 45 9.7 0.190 51 0.1 0.12 4.2 0.2 3.9
58506 LomaPrieta 141 6.0 141 | 0.282 31.2 35 0.11 20.3 4.7 20.9
58506 LomaPrieta 1.59 6.0 141 | 0.234 23.0 2.3 0.08 12.9 3.2 22.0
23516 Landers 1.65 6.2 12.6 | 0.236 22.3 2.2 0.08 15.1 7.6 38.6
23516 Landers 1.83 8.1 12.6 | 0.286 24.3 2.1 0.11 23.8 12.6 34.3
23516 Chinohills 1.65 2.3 12.6 | 0.155 14.7 14 0.07 4.8 0.4 38.7
23516 Chinohills 2.07 31 126 | 0.164 12.4 1.0 0.07 48 0.4 38.7
23516 SanBernardino 1.73 6.6 12.6 | 0.120 10.9 1.0 0.10 7.3 0.5 55
23516 SanBernardino 1.99 4.3 12.6 | 0.057 4.5 0.4 0.08 2.6 0.2 7.7
57562 LomaPrieta 1.39 2.3 151 | 0.330 37.1 4.3 0.18 175 55 10.1
57562 LomaPrieta 1.49 6.3 15.1 | 0.360 37.7 4.0 0.20 15.4 3.3 10.5
24104 Chatsworth 1.96 3.7 125 | 0.134 10.7 0.9 0.08 6.1 0.4 45
24104 Chatsworth 2.26 51 125 | 0.157 10.9 0.8 0.07 51 0.4 6.8
24370 Whittier 0.78 2.8 252 | 0.088 17.7 3.6 0.23 12,5 13 6.9
24370 Whittier 0.81 4.2 25.2 | 0.081 15.7 3.1 0.17 9.7 1.2 7.8
24370 SierraMadre 0.78 3.0 25.2 | 0.052 10.4 21 0.12 5.8 0.8 9.7
24370 SierraMadre 0.81 3.3 252 | 0.033 6.3 1.2 0.11 7.9 0.8 8.0
24609 Landers 1.32 51 239 | 0.138 16.2 2.0 0.08 10.4 5.1 40.2
24609 Landers 1.47 6.5 239 | 0.092 9.8 11 0.05 8.6 4.9 46.9
24609 Northridge 1.32 6.6 239 | 0.091 10.8 13 0.06 8.9 2.7 25.6
24609 Northridge 1.49 1.2 239 | 0.183 19.2 2.0 0.07 8.0 2.6 27.3
14323 Whittier 0.72 4.8 31.7 | 0.039 8.4 1.9 0.06 6.5 0.9 254
14323 Whittier 0.88 6.0 31.7 | 0.076 135 24 0.04 4.4 0.5 26.6
24652 Northridge 0.98 39 21.8 | 0.202 32.2 5.2 0.20 14.0 3.1 19.2
24652 Northridge 1.46 3.7 218 | 0311 33.3 3.6 0.20 14.0 3.1 19.2
23481 Landers 0.64 5.9 28.8 | 0.038 9.2 2.3 0.06 5.9 2.3 27.5
23481 Landers 0.71 5.3 28.8 | 0.062 13.7 3.1 0.07 6.5 2.4 26.4
23515 Landers 0.48 4.0 35.9 | 0.078 25.6 8.5 0.07 14.8 5.4 41.2
23515 Landers 0.50 3.0 359 | 0.091 28.6 9.1 0.09 15.0 7.5 40.5
23634 BigBear 2.02 4.7 21.0 | 0.104 8.0 0.6 0.06 5.0 15 321
23634 BigBear 2.40 5.2 210 | 0.126 8.2 0.5 0.06 5.0 15 321
23634 Landers 2.00 4.0 21.0 | 0.176 13.8 11 0.08 12.4 6.5 40.4
23634 Landers 2.07 3.4 21.0 | 0.172 12.9 1.0 0.08 12.4 6.5 40.4




Station # Earthquake fiHz) | §i(%) | H(m) | Sa(g) | Sv(cm/s) | Sp(em) | PGA(g) | PGV(ecm/s) | PGD(cm) to.o(s)
23634 Northridge 2.04 4.6 21.0 | 0.104 8.0 0.6 0.05 43 0.7 31.0
23634 Northridge 2.07 4.1 21.0 | 0.078 5.9 0.5 0.06 43 0.9 29.3
24248 Chinohills 1.45 3.7 448 | 0.056 6.1 0.7 0.05 2.7 0.3 19.7
24248 Chinohills 1.49 3.2 44.8 | 0.050 5.2 0.6 0.05 3.2 0.5 20.3
24248 WhittierNarrows | 1.55 35 44.8 | 0.010 1.0 0.1 0.05 12 0.1 5.4
24248 WhittierNarrows 1.60 2.5 448 | 0.010 1.0 0.1 0.05 13 0.1 5.0
24249 Chinohills 1.40 31 40.9 | 0.055 6.1 0.7 0.07 33 0.5 15.9
24249 Chinohills 1.44 3.8 40.9 | 0.045 4.9 0.5 0.08 3.7 0.7 15.2
24249 WhittierNarrows 1.47 2.2 40.9 | 0.010 11 0.1 0.05 15 0.1 5.9
24249 WhittierNarrows | 2.06 12 40.9 | 0.025 1.9 0.1 0.05 15 0.1 5.9
24514 Whittier 2.87 35 29.3 | 0.178 9.7 0.5 0.06 3.7 0.6 14.0
24514 Whittier 3.32 4.6 29.3 | 0.150 7.0 0.3 0.05 3.4 0.5 14.2
58261 LomaPrieta 1.21 6.4 16.0 | 0.114 147 1.9 0.06 8.8 2.0 155
58261 LomaPrieta 1.50 3.0 16.0 | 0.250 26.0 2.8 0.06 8.8 2.0 15.5
14533 Whittier 0.29 5.0 80.8 | 0.010 5.2 2.9 0.04 43 13 29.2
14533 Whittier 0.30 7.7 80.8 | 0.007 3.9 21 0.05 7.1 1.2 24.0
14654 Northridge 0.48 1.9 57.3 | 0.046 14.7 4.9 0.11 10.9 2.9 431
14654 Northridge 0.58 2.7 57.3 | 0.099 26.4 7.2 0.09 10.2 2.7 45.6
24288 Chinohills 0.31 3.2 107.1 | 0.004 2.1 11 0.07 6.5 1.0 18.0
24288 Chinohills 0.35 3.1 107.1 | 0.003 1.6 0.7 0.06 49 0.6 16.5
24569 Northridge 0.31 3.2 72.0 | 0.025 12.7 6.4 0.14 12.6 31 28.8
24569 Northridge 0.32 2.9 72.0 | 0.024 117 5.7 0.20 16.2 2.9 19.3
24602 Chinohills 0.17 11 218.3 | 0.001 1.3 1.2 0.09 8.2 11 9.3
24602 Landers 0.17 1.2 218.3 | 0.017 16.5 16.0 0.12 7.7 4.0 90.8
24602 Landers 0.17 14 218.3 | 0.020 17.9 16.7 0.10 9.3 10.4 82.4
24602 Northridge 0.16 13 218.3 | 0.012 111 10.8 0.13 9.2 4.2 334
24602 Northridge 0.17 11 218.3 | 0.005 4.2 3.9 0.18 145 2.4 18.4
24602 Sierra Madre 0.18 14 218.3 | 0.003 2.3 2.0 0.10 5.0 0.6 113
24629 Northridge 0.16 1.2 211.1 | 0.007 6.9 6.9 0.17 10.1 2.8 28.3
24629 Northridge 0.19 11 2111 | 0.011 8.9 74 0.10 8.4 31 30.5
24629 Chinohills 0.16 2.9 211.1 | 0.001 1.2 1.2 0.06 5.8 0.9 14.6
24629 Chinohills 0.19 2.7 211.1 | 0.001 0.5 0.4 0.07 4.1 0.3 15.7
24643 Northridge 0.26 3.0 92.7 | 0.047 28.4 175 0.52 27.8 6.2 60.7
24643 Northridge 0.29 3.6 92.7 | 0.049 26.6 14.6 0.26 16.2 4.9 19.1
57318 AlumRock 0.45 2.0 83.8 | 0.021 7.3 2.6 0.06 6.1 1.2 16.8
57318 AlumRock 0.68 2.2 83.8 | 0.039 9.0 2.1 0.06 4.1 0.8 16.9
57357 LomaPrieta 0.45 13 64.2 | 0.212 73.0 25.6 0.09 23.1 9.3 37.7
57357 LomaPrieta 0.48 2.2 64.2 | 0.166 54.5 18.2 0.10 17.6 7.1 32.8
58354 LomaPrieta 0.75 2.1 61.3 | 0.039 8.1 1.7 0.08 6.8 0.8 15.1
58354 LomaPrieta 0.78 2.6 61.3 | 0.047 9.3 1.9 0.07 6.2 0.9 18.5




Station # Earthquake fi(Hz) | &(%) | H(m) | Sa(g) | Sv(ecm/s) | Sp(ecm) | PGA(g) | PGV(cm/s) | PGD(cm) to.9(s)
58480 LomaPrieta 0.31 5.0 69.9 | 0.035 175 8.9 0.14 16.5 4.9 115
58480 LomaPrieta 0.44 3.3 69.9 | 0.034 11.9 43 0.16 15.8 2.6 11.3
58532 LomaPrieta 0.16 1.7 172.0 | 0.014 13.7 13.5 0.20 26.4 7.9 13.7
58532 LomaPrieta 0.19 14 172.0 | 0.008 6.7 5.6 0.12 15.7 3.4 15.9
58262 LomaPrieta 3.66 3.3 7.2 0.195 8.3 0.4 0.11 12.8 2.4 12.4
58262 LomaPrieta 4.86 6.1 7.2 0.199 6.4 0.2 0.11 18.8 5.1 10.3
47391 MorganHill84 1.7 7 9.1 0.129 11.9 11 0.07 6.5 31 32.8
47391 MorganHill84 1.92 5.7 9.1 0.112 9.1 0.8 0.07 6.5 31 32.8
57502 LomaPrieta 4.26 8.3 9.6 0.299 10.9 0.4 0.11 28.0 19.7 34.6
57502 LomaPrieta 4.72 6.5 9.6 0.320 10.6 0.4 0.11 28.0 19.7 34.6
58348 LomaPrieta 2.22 8.2 124 | 0.222 15.6 11 0.12 20.0 5.8 16.0
58348 LomaPrieta 3.05 8.1 124 | 0.134 6.9 0.4 0.08 12.1 2.4 18.5
58348 Lafayette 2.4 6.7 12.4 | 0.063 4.1 0.3 0.06 2.1 0.2 7.6
58348 Lafayette 3.21 8.8 12.4 | 0.070 3.4 0.2 0.05 1.9 0.1 6.5
23511 Whittier 35 5.4 12.3 | 0.110 4.9 0.2 0.05 2.0 0.1 15.3
23511 Whittier 4.47 4.3 12.3 | 0.091 3.2 0.1 0.05 2.3 0.2 16.6
23511 Chinohills 2.98 6.6 12.3 | 0.232 12.2 0.7 0.13 11.9 2.3 8.0
23511 Chinohills 3.42 5.3 12.3 | 0.173 7.9 0.4 0.13 11.9 2.4 8.2
23495 BigBear 1.94 7.3 8.8 0.369 29.7 24 0.17 12.4 1.9 17.1
23495 PalmSprings 2.5 7.1 8.8 0.137 8.5 0.5 0.04 3.6 0.5 30.0
23495 PalmSprings 3.76 5.1 8.8 0.098 4.1 0.2 0.04 3.4 0.5 25.7
23495 SanBernardino 2.3 8.3 8.8 0.048 3.3 0.2 0.06 2.3 0.2 13.8
23495 SanBernardino 37 6.3 8.8 0.104 4.4 0.2 0.05 19 0.1 13.6
58503 LomaPrieta 3.48 6 114 | 0.204 9.2 0.4 0.10 145 2.3 10.3
58503 LomaPrieta 3.9 4.5 114 | 0.178 7.1 0.3 0.10 14.5 2.3 10.3
58503 Elcerrito 3.95 5.8 114 | 0.103 4.1 0.2 0.06 2.0 0.1 2.8
58503 Elcerrito 5.05 5.6 114 | 0.111 3.4 0.1 0.06 2.0 0.1 2.8
23622 Landers 4.17 7.1 5.6 0.164 6.2 0.2 0.09 14.4 8.1 354
23622 Landers 6.52 4.6 5.6 0.188 4.5 0.1 0.08 133 7.7 36.5
25213 SantaBarbara 3.12 5.5 10.1 | 1.043 52.2 2.7 0.38 34.3 55 7.3
58235 MorganHill84 4.07 6.1 101 | 0.201 7.7 0.3 0.06 42 0.9 21.9
58235 MorganHill84 43 4.3 10.1 | 0.190 6.9 0.3 0.06 4.2 0.9 21.9
58235 LomaPrieta 3.37 8.1 10.1 | 0.728 33.7 1.6 0.32 36.6 7.3 10.4
58235 LomaPrieta 3.82 6.2 10.1 | 0.561 229 1.0 0.24 37.0 6.4 11.0
58196 Lafayette 3 6.8 17.0 | 0.115 6.0 0.3 0.06 2.4 0.1 1.6
58196 Lafayette 5.64 8.4 17.0 | 0.120 3.3 0.1 0.06 3.1 0.2 1.7
58196 Piedmont 3 2.7 17.0 | 0.128 6.7 0.4 0.06 2.4 0.2 25
58196 Piedmont 5.12 6.3 17.0 | 0.183 5.6 0.2 0.07 2.9 0.2 2.1
58488 LomaPrieta 4 4.2 15.2 | 0.136 5.3 0.2 0.05 4.2 0.8 19.2
58488 LomaPrieta 4.5 4.2 15.2 | 0.116 4.0 0.1 0.05 4.2 0.8 19.2




Station # Earthquake fi(Hz) | &(%) | H(m) | Sa(g) | Sv(ecm/s) | Sp(ecm) | PGA(g) | PGV(cm/s) | PGD(cm) to.9(s)
58462 LomaPrieta 104 | 54 | 259 | 0106 | 159 2.4 0.10 10.4 2.0 255
58462 LomaPrieta 147 | 52 | 259 | 0192 | 204 2.2 0.10 10.4 2.0 255
14311 Whittier 2.94 3 | 216 | 0243 | 129 0.7 0.09 6.1 07 19.8
14311 Whittier 55 | 68 | 216 | 0123 35 01 0.10 11.0 11 17.9
14311 Chinohills 302 | 23 | 216 | 0.087 45 0.2 0.07 7.7 14 26.3
14311 Chinohills 541 | 65 | 216 | 0116 33 0.1 0.11 9.0 1.0 24.1
24463 Whittier 07 | 38 | 363 | 0001 | 202 46 0.13 127 2.0 132
24463 Whittier 075 | 62 | 363 | 0110 | 228 4.8 0.17 9.0 16 115
12084 | BOMEUOSPiNGs | 4 | 43 | 153 | 0044 | 47 05 0.05 2.2 03 24.6

Jul2010
12284 Borﬁggﬂings 158 | 49 | 153 | 0.046 45 05 0.08 3.7 05 15.7
12284 2:'28;8 1.45 4 153 | 0104 | 112 1.2 0.05 43 32 37.0
12284 i:'gg;‘; 155 | 52 | 153 | 0.083 8.3 0.9 0.04 4.0 33 38.8
12284 PalmSprings 166 | 38 | 153 | 0.082 7.7 0.7 0.09 8.1 2.4 241
12284 PalmSprings 178 | 52 | 153 | 0.087 7.6 0.7 011 8.7 2.4 24.2
23285 SanBernardino 1.92 29 20.4 | 0.012 1.0 0.1 0.06 1.4 0.1 5.0
23285 | SanBermardino | 235 | 43 | 204 | 0.019 13 01 0.06 14 01 5.0
24468 Northridge 0.63 4 | 350 | 0082 | 203 51 0.12 8.7 1.4 174
24468 Northridge 065 | 39 | 350 | 0086 | 206 5.0 0.12 8.7 14 174
24468 Whittier 065 | 52 | 350 | 0110 | 263 6.4 0.32 20.1 2.4 6.3
24468 Whittier 069 | 28 | 350 | 0137 | 312 7.2 0.32 20.1 2.4 6.3
24579 Landers 07 | 58 | 390 | 0053 | 118 2.7 0.04 6.8 41 65.7
24579 Landers 081 | 53 | 390 | 0064 | 124 2.4 0.04 6.8 41 65.7
24579 Northridge 066 | 69 | 390 | 0092 | 217 5.2 0.15 134 2.9 21.2
24579 Northridge 076 | 68 | 39.0 | 0116 | 238 5.0 0.15 134 2.9 21.2
47459 LomaPrieta 283 | 55 | 202 | 0953 | 526 3.0 0.36 54.9 182 8.8
47459 LomaPrieta 393 | 67 | 202 | 0453 | 180 0.7 0.27 333 9.0 118
58479 LomaPrieta 296 | 42 | 198 | 0.164 8.7 05 0.07 15.1 4.2 8.9
58479 LomaPrieta 481 | 63 | 198 | 0130 4.2 01 0.08 12.8 3.0 8.0
58490 LomaPrieta 1 45 | 238 | 0216 | 336 5.4 0.11 16.2 2.7 14.9
58490 LomaPrieta 123 | 75 | 238 | 0174 | 221 2.9 0.14 14.6 35 15.6
24655 Northridge 194 | 55 | 204 | 0441 | 355 2.9 0.29 19.1 4.4 15.2
24571 Landers 05 | 41 | 415 | 0044 | 138 4.4 0.04 6.4 2.0 305
24571 Landers 078 | 41 | 415 | 0125 | 251 5.1 0.05 6.2 18 315
24571 Northridge 047 | 41 | 415 | 0.024 8.1 2.7 0.16 8.9 13 12.0
24571 Northridge 077 | 29 | 415 | 0072 | 146 3.0 0.18 10.0 0.8 105
24571 SierraMadre 0.51 5 | 415 | 0.030 9.0 2.8 0.10 75 0.8 7.6
58394 LomaPrieta 058 | 44 | 317 | 0136 | 365 10.0 0.12 15.0 33 14.4
58394 LomaPrieta 08 | 43 | 317 | 0108 | 205 4.0 011 15.6 2.8 12.7




Station # Earthquake fiHz) | &i(%) | H(m) | Sa(g) | Sv(cm/s) | Sp(cm) PGA(g) PGV(cm/s) | PGD(cm) | too(s)
24385 SierraMadre 1.86 59 26.8 | 0.103 8.7 0.7 0.07 4.6 0.7 11.7
24385 SierraMadre 2.1 33 26.8 | 0.245 18.2 1.4 0.11 8.5 0.9 9.4
24385 Whittier 1.82 9.3 26.8 | 0.241 20.7 1.8 0.21 11.0 1.0 6.3
24385 Whittier 2.22 9.4 26.8 | 0.204 14.4 1.0 0.20 8.6 11 7.1
57355 MorganHill84 11 3.6 37.8 | 0.144 20.5 3.0 0.06 12.3 3.4 23.2
57355 MorganHill84 1.6 3.7 37.8 | 0.158 15.4 15 0.06 10.4 25 26.9
57355 AlumRock 0.96 3.4 37.8 | 0.063 10.3 1.7 0.07 5.8 11 17.9
57355 AlumRock 1.44 3.6 37.8 | 0.044 4.7 0.5 0.06 3.6 0.4 13.6
57355 LomaPrieta 0.99 3.6 37.8 | 0.133 20.9 3.4 0.09 18.1 9.9 25.6
57355 LomaPrieta 1.34 6.3 37.8 | 0.296 344 4.1 0.10 22.0 12.9 24.2
57356 MorganHill84 1.65 3.8 29.3 | 0.139 13.2 13 0.05 12.1 2.8 27.0
57356 MorganHill84 2.3 5 293 | 0.114 7.7 0.5 0.06 7.4 2.2 27.1
57356 LomaPrieta 1.49 6 29.3 | 0.185 19.4 2.1 0.09 16.5 7.3 17.6
57356 LomaPrieta 2.29 6 29.3 | 0.197 13.4 0.9 0.11 20.2 11.4 19.9
57356 AlumRock 1.37 3.8 29.3 | 0.088 10.0 1.2 0.11 8.0 11 10.7
57356 AlumRock 2.3 3.6 29.3 | 0.088 6.0 0.4 0.08 3.2 0.6 16.1
24322 Northridge 0.32 3 50.0 | 0.064 31.4 15.6 0.83 60.7 135 8.6
24322 Northridge 0.34 5.9 50.0 | 0.112 51.5 24.1 0.37 29.7 8.1 16.4
24322 Whittier 0.4 31 50.0 | 0.008 3.3 13 0.26 8.1 0.5 11.3
24322 Whittier 0.45 4.5 50.0 | 0.013 4.3 15 0.17 115 1.0 10.3
24322 Chinohills 0.65 2.2 50.0 | 0.015 3.7 0.9 0.07 3.4 0.3 14.7
24322 Chinohills 0.67 3.6 50.0 | 0.011 2.6 0.6 0.04 2.4 0.2 24.5
58364 LomaPrieta 1.25 35 39.2 | 0.103 12.9 1.6 0.05 7.6 14 18.7
58364 LomaPrieta 1.6 3.1 39.2 | 0.168 16.4 1.6 0.06 8.7 1.6 18.7
14578 Chinohills 0.8 5.5 354 | 0.050 9.7 1.9 0.10 9.1 1.0 18.9
14578 Chinohills 0.9 6.4 35.4 | 0.099 17.2 3.0 0.14 12.5 2.0 175
14578 Northridge 0.84 5 354 | 0.034 6.3 1.2 0.07 5.5 14 421
14578 Northridge 0.93 7.5 354 | 0.057 9.6 1.6 0.11 6.7 15 36.9
24601 Northridge 0.86 4.2 42.3 | 0.029 5.2 1.0 0.02 1.7 0.6 66.7
24601 Northridge 0.94 4 423 | 0.042 7.1 1.2 0.05 3.8 1.0 51.8
24601 SierraMadre 0.99 25 42.3 | 0.068 10.7 1.7 0.07 5.2 0.7 13.1
24601 SierraMadre 1.2 6.5 423 | 0.071 9.2 1.2 0.06 44 1.0 155
24601 Landers 0.94 3.2 42.3 | 0.102 16.9 2.9 0.04 7.3 6.5 57.1
24601 Landers 1.16 5.8 423 | 0.076 10.2 14 0.04 11.6 7.6 55.1
24581 Chinohills 0.56 8.5 47.3 | 0.010 2.7 0.8 0.06 4.1 0.4 13.3
24581 Chinohills 1.03 6.2 47.3 | 0.065 9.8 15 0.07 5.9 1.0 13.4
24236 Whittier 0.54 7.5 42.1 | 0.041 12.0 3.5 0.12 9.5 14 13.0
24236 Whittier 1.63 9.2 42.1 | 0.114 10.9 11 0.06 6.3 0.9 15.2
58483 LomaPrieta 0.41 3.3 66.8 | 0.057 21.7 8.4 0.12 17.1 4.3 13.9
58483 LomaPrieta 0.5 6.6 66.8 | 0.075 23.3 7.4 0.12 17.1 4.3 13.9




Station # Earthquake fi(Hz) | &i(%) | H(m) | SA(g) | SV(cm/s) | SD(cm) | PGA(g) | PGV(cm/s) PGD(cm) to.o(S)
13589 Landers 122 | 45 | 448 | 0124 | 159 2.1 0.04 6.3 2.8 68.6
13589 Landers 141 | 37 | 448 | 0118 | 131 15 0.05 12.3 6.8 421
13589 Northridge 118 | 42 | 448 | 0092 | 122 16 0.08 5.6 1.7 50.7
13589 Northridge 136 | 37 | 448 | 0107 | 123 1.4 0.05 5.8 14 58.5
58639 Piedmont 124 | 41 | 348 | 0.012 15 0.2 0.03 15 01 46
58639 Piedmont 181 | 29 | 348 | 0021 18 0.2 0.06 23 0.1 4.0
24680 Chinohills 068 | 46 | 491 | 0.011 2.6 0.6 0.03 2.0 0.3 326
24680 Chinohills 085 | 38 | 491 | 0.018 33 0.6 0.05 2.7 03 25.8
12266 Anza 371 | 120 | 79 | 0255 | 107 05 0.08 25 0.1 9.8
12266 Anza 597 | 39 | 79 | 0185 48 0.1 0.08 25 01 9.8
14606 Northridge 145 | 54 | 232 | 0093 | 100 11 0.11 8.6 16 16.6
14606 Northridge 158 | 70 | 232 | 0225 | 223 2.2 0.16 12.0 15 135
14606 Chinohills 164 | 54 | 232 | 0146 | 139 1.4 0.10 6.3 0.4 95
14606 Chinohills 185 | 60 | 232 | 0276 | 233 2.0 0.13 11.9 18 7.6
14606 WhittierNarrows | 1.68 | 57 | 232 | 0.027 25 0.2 015 48 0.2 16
14606 WhittierNarrows | 2.03 | 47 | 232 | 0.035 2.7 0.2 0.22 6.1 0.2 0.8
24517 Landers 160 | 70 | 127 | 0120 | 117 1.2 0.05 71 3.2 41.2
24517 Landers 286 | 57 | 127 | 0.150 8.2 05 0.05 7.1 3.2 41.2
24517 Northridge 165 | 101 | 127 | 0172 | 163 16 0.06 9.3 25 27.4
24517 Northridge 225 | 98 | 127 | 0174 | 121 0.9 0.06 9.3 25 27.4
24517 Whittier 249 | 30 | 127 | 0133 8.3 05 0.05 2.8 0.2 116
24517 Whittier 335 | 65 | 127 | 0151 7.1 03 0.05 2.8 0.2 11.6
57476 LomaPrieta 075 | 88 | 79 | 0440 | 920 19.6 0.29 6.5 0.3 8.2
57476 LomaPrieta 116 | 96 | 79 | 0261 | 351 48 0.24 0.7 01 12.2
58264 LomaPrieta 37 | 98 | 73 | o477 | 201 0.9 0.21 33.7 14.2 27.4
58492 LomaPrieta 137 | 63 | 228 | 0195 | 222 2.6 0.06 7.8 21 18.4
89473 Petrolia 272 | 32 | 67 |o0211| 121 07 013 17.8 44 18.8
89473 Petrolia 322 | 23 | 67 | 0204 9.9 05 0.13 17.8 44 18.8
89473 Ferndale Jan2010 | 33 | 125 | 67 | 0371 | 176 08 0.14 118 21 17.2
89473 Ferndale Jan2011 | 42 | 112 | 67 | 0314 | 117 0.4 0.14 118 21 17.2
89473 PetroliaAftershock | 2.77 2.6 6.7 0.440 24.8 1.4 0.16 125 2.3 13.0
89473 PetroliaAftershock | 3.08 | 46 | 67 | 0490 | 248 13 0.16 125 2.3 13.0
89494 Ferndale Jan2010 | 2.93 | 127 | 136 | 0562 | 29.9 16 0.22 22.4 5.2 15.3
89494 Ferndale Jan2011 | 328 | 86 | 136 | 0570 | 271 13 0.22 224 5.2 15.3
12759 Anza 461 | 53 | 38 | 0478 | 162 0.6 0.22 10.9 0.9 8.2
12759 Anza 589 | 95 | 38 | 0433 | 115 03 0.22 10.9 0.9 8.2
12759 BorregoSprings |, 44 | g4 | 38 | 0.164 58 02 0.07 44 0.8 18.3

Jul2010
12759 Bo"fuglggﬂmgs 509 | 43 | 38 | 0.156 48 0.1 0.07 4.4 0.8 18.3
36695 SanSimeon 474 | 127 | 50 | 1161 | 382 13 0.45 30.1 7.3 9.9
36695 SanSimeon 494 | 88 | 50 | 1279 | 404 13 0.45 30.1 7.3 9.9




Station # Earthquake fiHz) | &i(%) H(m) Sa(@) | Sv(em/s) | Sp(cm) | PGA(g) | PGV(ecm/s) | PGD(cm) to.o(s)
36695 Atascadero 5.50 5.9 5.0 0.090 2.5 0.1 0.06 14 0.0 3.8
36695 Atascadero 5.60 2.8 5.0 0.091 2.5 0.1 0.06 14 0.0 3.8
89687 Ferndale Jan2010 2.73 7.7 7.9 0.570 32.6 1.9 0.25 26.1 53 9.8
89687 Ferndale Jan2011 3.28 8.7 7.9 0.528 251 1.2 0.25 26.1 53 9.8
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