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Abstract

Large-scale convex optimization problems arise in various practical applications. Even though
there exist many e�cient methods for solving these problems, such as the alternating direction
method of multipliers (ADMM), they may take minutes or even hours to compute solutions
of very large problem instances. In this thesis we explore the possibilities of using a graphics
processing unit (GPU) to accelerate ADMM. We use OSQP as a state-of-the-art implementation
of ADMM to analyze the potential to parallelize the algorithm. We identify several parts of the
implementation that could be accelerated by using a GPU, such as the direct linear system solver,
which we replace with an iterative conjugate gradient (CG) method implemented on a GPU. Our
implementation written in CUDA C has been tested on many medium- to large-scale problems in
applications ranging from engineering to statistics and �nance. The GPU-accelerated algorithm
outperforms OSQP by up to 2 orders of magnitude for problems that take more than 15 minutes
to solve by the standard OSQP implementation.
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Chapter 1

Introduction

1.1 Convex Optimization

An optimization problem is a mathematical problem of the following form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,

(1.1)

where x ∈ Rn is called the optimization variable and the function f0 the objective or cost function.
The functions f1, . . . , fm are the inequality constraint functions and h1, . . . , hp are the equality
constraint functions. A point x is called feasible if it satis�es all the constraints de�ned by
the constraint functions. Problem (1.1) is called convex if the objective function f0 and all the
inequality constraint functions fi are convex and the equality constraint functions hj are a�ne.

Many optimization problems that arise in practice can be formulated or approximated by a
convex program (1.1). There are several important subclasses of convex problems that are rele-
vant in practice, including linear programs (LPs), quadratic programs (QPs), second-order cone
programs (SOCPs), and semi de�nite programs (SDPs). Furthermore, convex programs arise
as subproblems in non-convex optimization methods, such as sequential quadratic programming
(SQP) and mixed integer programming (MIP).

Of particular interest to us is the QP, de�ned as

minimize 1
2x

TPx+ qTx

subject to Fx ≤ b
Hx = d,

(1.2)

where P ∈ Sn+, F ∈ Rm×n, and H ∈ Rp×n. In case P = 0 (1.2) reduces to an LP. The
applications of QPs range from engineering, control system, signal processing, data analysis to
�nance. Applications in control system engineering include model predictive control (MPC)
[12] and moving horizon estimation (MHE) [1]. In machine learning, many problems can be
formulated as QPs including lasso [29], Huber �tting [21] and support vector machines (SVM)
[7]. The �eld of �nance uses portfolio optimization [6, 22], to maximize expected return while
reducing risk.
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There exists an almost complete theory for convex optimization, which for instance can guarantee
that a given solution is indeed the optimal solution. Moreover, there are many reliable and
e�cient algorithms to solve problems of the form (1.1) including (1.2).

1.2 Solution Methods

Active set methods Active set methods for solving QPs select a working set from the set
of inequality constraints and pretend that they are binding (i.e. hold with equality). A new
decent direction is then determined by minimizing the objective constrained to the set of active
constraints. Depending on the decent direction, constraints are then added or removed from the
working set in each iteration. These methods can easily make use of an approximate solution to
reduce the number of working set updates. However, active set methods su�er from a combina-
torial explosion in the number of possible working sets that have to be visited in the worst case.
This makes them less attractive for large-scale problems. Practical implementations are part of
the commercial solvers, such as MOSEK and GUROBI.

Interior-point methods Interior-point methods transform a constrained problem into an
unconstrained problem by penalizing constraint violations with the help of a parameterized
barrier function ϕ, i.e.

minimize f0(x) + κkϕ(x), (1.3)

where κk is the barrier parameter that determines the relative weighting between objective and
barrier. In each iteration the method solves the unconstrained problem (1.3) using Newton
method to obtain x?(κk). The parameter κ is reduced after each iteration and x?(κ) converges
to the optimal solution x? as κ approaches zero. Typically, the obtained solution has a very high
accuracy within a few tens of iterations. Most solvers, such as GUROBI, MOSEK, and ECOS use
a variant called primal-dual interior-point method, such as the Mehrotra's predictor-corrector
method [25]. It became the de facto standard for practical implementations because of its
good performance across many problems. However, interior-point methods do not scale well for
really large problems because the Newton update requires the solution of a large linear system
with a high accuracy. Thus, their main application lies in small- to medium-scale problems.
Furthermore, they are not easily warm started, i.e. they cannot take advantage of an x0 close to
x? to reduce the number of iterations.

First-order methods First-order methods are a class of optimization methods that use only
�rst-order information of the cost function, i.e. gradients or sub-gradients. The restriction to
�rst-order information allows them to scale to very large problem instances. One of the simplest
methods is the projected gradient method. In each iteration a step in the steepest descent
direction, i.e. negative gradient, is taken followed by a projection onto the feasible set. Operator
splitting methods are a class of �rst-order methods including the alternating direction method of
multipliers (ADMM) that reformulate (1.1) as a minimization over a sum of two convex functions,

minimize f(x) + g(x).

A common splitting is to use g to represent the constraints via the indicator function [5], which
is de�ned as

IC(x) :=

{
0 x ∈ C
+∞ otherwise.
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ADMM performs alternating minimization steps which allows for a large �exibility to exploit the
structure of the two functions f and g separately. ADMM has been shown to provide modest
accuracy solutions for a relatively small number of steps. The iterations are typically very cheap
and easy to implement. This makes it ideal for large-scale optimization problems, where high
accuracy is not needed due to noisy data and arbitrary objective functions [27]. Furthermore,
ADMM can be easily warm started and does not require a high accuracy solution of the arising
subproblems in order to converge [5].

1.3 GPU Acceleration

Graphics processing units (GPUs) o�er an unmatched amount of parallel computation power
for their relatively low price. Moreover, they provide far greater memory bandwidths than
conventional CPU based systems. This is especially bene�cial for applications that process large
amounts of data. It is thus no surprise that usage of GPUs has seen a large spike in the �eld
of machine learning in recent years. Applications range from training deep neural networks [16,
18] to autonomous driving [20]. By reducing training times, GPUs have e�ectively increased the
upper limit on the problem size that is still tractable. Furthermore, many machine learning tools,
such as PyTorch, TensorFlow, Theano, and CNTK, have native support for GPU acceleration.

Motivated by these success stories, our goal is to explore the possibilities o�ered by the massive
parallelism of GPUs to solve very large QPs with ADMM. Applications that would bene�t most
from this include portfolio back-testing [6], evaluation of the regularization path in lasso and
other regularization problems. The goal is to reduce runtimes from the order of minutes down
to seconds.

We are using the open-source implementation OSQP, which is a robust general-purpose QP solver
based on ADMM [27] as a starting point. To improve upon OSQP we propose to replace the
direct linear system solver with an indirect (iterative) which is better suited for massive parallel
platforms, such as GPUs. Furthermore, we explore the bene�ts of accelerating other steps of
OSQP, such as the problem setup and evaluation of stopping criteria.

1.4 Related Work

SCS SCS is an open-source implementation of a convex cone solver that uses ADMM [26]. SCS
has demonstrated that GPUs can be used to accelerate the linear system solver used to solve the
arising subproblems.

OSQP OSQP is the open-source QP solver that this work is based on. It has been shown to be
up to ten times faster than competing state-of-the-art interior-point solvers, such as GUROBI,
MOSEK, ECOS, and qpOASES. The implementation provides a single-threaded linear system
solver to solve the arising subproblems and can be easily interfaced with the multi-threaded MKL
solver Pardiso.
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Chapter 2

Graphics Processing Units

GPUs come in many di�erent variations and architectures. In the following sections we will
restrict the discussion to the latest Nvidia GPU generation (codename Turing) for simplicity.
Most of the concepts that will be discussed also apply to older Nvidia GPUs. For further details
see the Nvidia CUDA C Programming Guide [9].

2.1 GPU Architecture

Even though their name contains the word graphics, GPUs can do much more than comput-
ing and rendering computer graphics. GPUs have a many-core architecture with thousands of
processing cores. The challenge is to leverage the increasing number of cores and develop appli-
cations that scale their parallelism. The answer from Nvidia to overcome this challenge is called
CUDA, a general-purpose parallel computing platform and programming model.

2.1.1 Hardware Architecture

A GPU consists of an array of several streaming multiprocessors (SMs). SMs are the basic
building block of an Nvidia GPU. Each SM contains several integer and �oating-point arithmetic
units, local caches, shared memory, and several schedulers. The SMs of di�erent hardware
generations are not identical, but are backward compatible. The SM of the Turing generation
has the following components [9, Appendix H.6]

� 64 FP32 units for single precision arithmetic
� 2 FP64 units for double precision arithmetic
� 64 INT32 units for 32-bit integer arithmetic
� 8 mixed precision Tensor cores for Deep Learning matrix arithmetic
� 8 special functions units for single precision �oating-point transcendental functions
� 4 warp schedulers
� 96 KB of shared memory
� a read-only cache

The on-board RAM of the GPU is called global memory (in contrast to the shared memory that
is local to each SM). The global memory space is much larger than the local shared memory.
It is typically in the order of several GB. Some professional cards have up to 24 GB of global
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memory. Compared to the shared memory it has a much larger latency and lower bandwidth.
Though, compared to system RAM it is still much faster. Bandwidths of 500 GB/s and more
are not uncommon, whereas system RAM is limited to 40-50 GB/s.

2.1.2 CUDA Architecture

The main idea of CUDA is to have a large number of threads cooperatively solving one problem.
This section explains how threads are organized into cooperative groups, how CUDA is embedded
into C, and how CUDA achieves scalability.

Kernels

Kernels are special C functions that are executed on the GPU and are de�ned by the __global__
keyword. In contrast to regular functions, kernels get executed N times in parallel by N di�erent
threads when called. Each thread is executing the same code, the kernel code, but on di�erent
data. The data on which a thread is working is determined by the thread ID. The call of a kernel
from C is called a kernel launch. At launch the number of threads has to be speci�ed in the
launch con�guration, by using the <<< . . . >>> launch con�guration syntax.

Thread hierarchy

Whereas the kernel speci�es the code that is executed by each thread, the thread hierarchy
dictates how the individual threads are organized. CUDA has a two-level hierarchy to organize
the threads. The top level is called grid and the second level is called thread blocks. A grid
contains multiple blocks and a block contains multiple threads. The launch con�guration of a
kernel consists out of the grid size (number of blocks) and the block size (number of threads
per block). Figure 2.1 illustrates an example of a 2D grid of size 3-by-2 with a 2D block of size
4-by-3.

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid
Block (2,0)

Thread(0,0)
Thread(3,1)

__global__ axpy_gpu(fl* y, fl* x, fl a, int n) {
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if(idx < n) {

d_y[idx] += a * d_x[idx];
}

}

Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1)

Thread(0,2)

Thread(0,0)

Thread(1,1)

Thread(1,2)

Thread(2,1)

Thread(2,2)

Thread(3,1)

Thread(3,2)

Figure 2.1: Illustration of the CUDA Thread Hierarchy, showing a 3x2 grid of blocks with a
block size of 4x3 threads.

The threads within one thread block can cooperate to solve a subproblem. The problem has to
be partitioned into independent subproblems by the programmer so that a grid of thread blocks
can solve it in parallel. This decomposition of the problem enables automatic scaling of the
problem. Each block will be scheduled on one of the available SMs. This can happen concurrently
or sequentially, depending on the number of blocks and available hardware as illustrated by
Figure 2.2. Note that several blocks can be scheduled on the same SM if there are enough
resources available.
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Threads within a block have a unique thread index that is accessible through the built-in variable
threadIdx. It is de�ned as a 3-dimensional vector, so that threads can be indexed in one-
dimension, on a grid, or in 3D space and forming a one-dimensional, two-dimensional, or three-
dimensional block of threads. This allows for a natural indexing in the problem domain.

Similarly, thread blocks within the grid have a unique block index that is accessible through
the variable blockIdx. It is also de�ned as a 3-dimensional vector and allows for one-, two-, or
three-dimensional indexing of the blocks within the grid.

Block 0 Block 1 Block 2

Block 3 Block 4 Block 5

SM 0 SM 1 SM 0 SM 1 SM 2

SM 0 SM 1 SM 0 SM 1 SM 1

SM 0 SM 1 SM 0 SM 1 SM 1

SM 0 SM 1 

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 1 Block 2

Block 4 Block 5 Block 6

Block 3

GPU with 2 SMs GPU with 3 SMs

CUDA program with 6 blocks

Figure 2.2: The CUDA Thread Blocks are scheduled on the available SMs of the given GPU.

Scheduling

As explained above, thread blocks are scheduled on available SMs during run-time which allows
for automatic scaling. This does not mean that all threads of a block can run concurrently on
the SM. Given a block to execute, the SM �rst partitions it into several groups called warps
which then are scheduled by a warp scheduler for execution. A warp always has the same size,
called the warp size. It is currently �xed at 32 threads per warp.

There are no guarantees on the order of block and warp execution. This enables applications
to automatically scale from Desktop to High-Performance Compute GPUs. On the other hand,
this introduces a non-deterministic element into the computations. In case of integer arithmetic
the result is always deterministic, however for �oating-point operations this is no longer true.
Since �oating point arithmetic is not associative, results may slightly di�er from execution to
execution.

Memory hierarchy

CUDA threads have access to multiple memory spaces during their execution. There is thread
local memory that can only be accessed by one thread. Its lifetime is equal to the lifetime of the
thread to which it belongs. Then, there is shared memory that can be accessed by all threads of
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the same block. Its lifetime is equal to the lifetime of the thread block. Finally, there is global
memory which can be accessed by any thread. Moreover, global memory is persistent across
kernel launches.

The CPU can indirectly access global memory by initiating a memory transaction from system
RAM to GPU memory or vice versa. Note that such memory transactions are very slow compared
to global memory accesses.

Global memory access

Global memory is always accessed via memory transactions of size 32, 64, or 128 bytes. Further-
more, all these transactions have to be aligned to their size, i.e. a 32-byte memory transaction
has to be aligned to 32-byte.

Threads can request data of word size 1-, 2-, 4-, 8-, or 16-byte from global memory. These
memory requests are then coalesced into one or more of the above transactions on a per-warp
basis (32 threads).

As an example, consider Figure 2.3 which shows a warp of 32 threads accessing memory from
address 128 through 256 whereas each thread requests a di�erent 4-byte word. These requests
can be served with a single 128-byte transaction. Note that the 128-byte memory block does
not need to be accessed sequentially by the threads in order to achieve full coalescing, i.e. one
memory transaction per warp.

4
-B

yt
e

128 256
Address

Thread ID
0 31

Figure 2.3: An example of a coalesced memory access of a warp to a 128-byte memory block.
The green arrows represent non-sequential accesses.

Figure 2.4 shows the �rst quarter of a warp of 32 threads accessing the addresses 128, 144,
160, . . ., i.e. with a stride of 16 bytes. Only the �rst 8 threads can be served by a single 128-byte
transaction as shown in the plot. Thus three more transactions are needed to serve all requests.
In the worst case the stride is larger than 128-byte and 32 separate memory transactions have to
be issued. Strided memory access does not only increase the memory latency due to more trans-
actions, but also reduces the e�ective bandwidth since only a fraction of the transmitted bytes
are actually used. In the example above only 8 out of 32 4-bytes words that were transmitted
was useful. Note that the same applies for random memory accesses to global memory.
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4
-B

yt
e

128 256
Address

Thread ID
0 7

…

Figure 2.4: Example of a strided memory access with a stride of 4 elements or 16 bytes.

Naming conventions

To avoid confusion between CPU and GPU resources, CUDA introduces the terms host to refer
to the CPU and device to refer to the GPU. For pointers referring to host memory the pre�x h_

is used and for pointers referring to device memory d_ is used.

2.1.3 Accelerating Numerical Methods

Numerical methods make extensive use of �oating-point operations, but their performance is
not solely determined by the system's �oating-point performance. Even though GPUs o�er
magnitudes larger raw �oating-point power than CPUs, it is the memory bandwidth that limits
the performance of many numerical operations [30]. Fortunately, GPUs also o�er an order of
magnitude larger memory bandwidth. However, utilizing the full potential is not an easy task.
The parallel nature of the GPU requires di�erent strategies and algorithms.

A simple example: axpy

The following code snippets implement the simple Basic Linear Algebra Subprograms (BLAS)
routine axpy (y = y + αx). Listing 2.1 implements the CPU version of axpy. It uses a simple
for loop to iterate through all the elements in x and y.

1 void axpy_cpu(float* h_y , float* h_x , float alpha , int n) {

2 for(ind idx = 0; idx < n; ++idx) {

3 h_y[idx] += alpha * h_x[idx];

4 }

5 }

Listing 2.1: CPU implementation of axpy.

The GPU version of axpy is shown in Listing 2.2. It looks very similar to the CPU version, but
with two important di�erences. The �rst and most important distinction is that the for loop has
been replaced by a simple if statement. Instead of one thread iterating through a loop element
by element, there is a thread for each element to be processed. This is a common pattern in GPU
computing. The second di�erence is the usage of the thread ID to determine the data element
which the given thread is operating on. The global thread ID is calculated from the local thread
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index and the block index as shown in line 2. The if statement disables threads with a thread
ID higher than the number of elements. This is necessary since threads are launched in blocks
and the total number of threads usually does not match the number of elements. The cost of
the few idle threads is negligible.

Figure 2.5 compares the achieved memory throughput of the CPU and the GPU implementation
of the axpy operation. For large vector sizes, the simple GPU implementation is about 15 times
faster. It also illustrates the fact that small problems cannot be accelerated well with GPUs.
This is generally the case for numerical operations, not just for the given example. There are
several reasons for this. First, small problems cannot fully utilize the GPU since there is simply
not enough work to keep the GPU busy. Second, launching a kernel comes with a constant
overhead that cannot be amortized for small problems.

The GPU reaches a maximal memory throughput of 522 GB/s (See Figure 2.5), which is 85%
of its theoretical peak of 616 GB/s. Whereas, the peak number of �oating point operations per
second (FLOPS) is approximately 100 GFLOPS (not shown in Figure), which is less than 1% of
its theoretical peak of 13500 GFLOPS. Thus, the performance is clearly limited by the memory
bandwidth.

1 __global__ void axpy_gpu(float* d_y , float* d_x , float alpha , int n) {

2 int idx = threadIdx.x + blockDim.x * blockIdx.x;

3 if(idx < n) {

4 d_y[idx] += alpha * d_x[idx];

5 }

6 }

Listing 2.2: GPU implementation of axpy.
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Figure 2.5: Average memory throughput as a function of vector size for axpy . blue: simple GPU
implementation, red: simple CPU version, brown: CPU version with compiler optimization level
O3.
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Segmented reduction

A reduction is an operation that takes as inputs a vector x and an associative binary operator ⊕
and returns a scalar y [17]. The operator ⊕ is used to recursively reduce the number of elements
until only one element remains, hence the name reduction operator. More formally, it performs
the following calculation:

y = (I ⊕ (x1 ⊕ (x2 ⊕ (. . .)))),

where I is the identity element of the binary operator. This general formulation allows for many
di�erent problems to be reformulated as a reduction, e.g.

• x⊕ y := x+ y implements the sum over the elements of a vector.

• x⊕ y := max(x, y) implements the maximum over the elements of a vector.

• x⊕ y := |x|+ |y| implements the `1-norm of a vector.

• x⊕ y := max(|x|, |y|) implements the `∞-norm of a vector.

The only di�erence between a reduction and a segmented reduction is that the latter reduces
individual segments of the input vector and outputs a vector that contains the reduction results
of the segments. Consider the following example,

x =
[

1 −2 3 2 −4 8 9 2
]

y =
[
−1 3 6 11

]
where x is the input and y is the output and the scalar addition was used as the reduction
operation. There exist very e�cient parallel implementations for both versions of the reduc-
tion operation. Therefore, any problem that can be reformulated as one of them can be easily
accelerated by a GPU.

2.2 CUDA Libraries

Fortunately, there are many libraries shipped with the CUDA toolkit that implement a wide
range of functions on the GPU. This saves a huge amount of development time since one does
not need to worry about the GPU implementation details. This section introduces the libraries
and the functions used in this thesis.

2.2.1 cuBLAS

cuBLAS is the CUDA implementation of BLAS from Nvidia [8]. It enables easy GPU acceleration
for applications that make use of BLAS. There are three di�erent versions of the application
programming interface (API): cuBLAS API, the standard API; cuBLASXT API, extends the
functionality to multiple GPUs; and cuBLASLt API, a light weight library for general matrix-
matrix products. Only the standard API is used in this thesis.

C-functions used

We use only level-1 functions, i.e. vector-vector operations.
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• cublasIsamax

� Used to calculate the `∞-norm of a vector

• cublasSdot

� Calculates the inner product of two vectors

• cublasSscal

� Scales a given vector by a scalar

• cublasSaxpy

� Performs the axpy operation (y = y + αx)

2.2.2 cuSPARSE

cuSPARSE is a CUDA library [10] that contains a set of linear algebra subroutines for handling
sparse vectors and matrices. Only the sparse matrix subroutines are of interest to us. The
cuSPARSE library requires the matrices to be in one of the following sparse matrix formats:

COO format

The coordinate (COO) format is one of the simplest sparse matrix formats. It is mainly used as
an intermediate format to perform matrix operations, such as transpose, concatenation, or the
extension of an upper triangular matrix to a full symmetric matrix.

The COO format consists of three arrays of size nnz, where nnz refers to the number of non-zero
elements in the matrix.

Value Array that holds the numerical values of the non-zero elements

RowIndex Array that holds the row indices of the non-zero elements

ColumnIndex Array that holds the column indices of the non-zero elements

The number of rows m and columns n has to be stored as well in order to have a complete
description. The cuSPARSE API assumes that the indices are sorted by row indices �rst and
ordered by column indices within one row. This makes the representation unique. For example,
consider the 4× 5 matrix

A =


1 0 0 0 4
0 5 1 0 0
0 2 0 0 1
7 0 1 0 0


with 8 non-zero elements. Then A has the following representation in the COO format:

Value =
[
1 4 5 1 2 1 7 1

]
RowIndex =

[
0 0 1 1 2 2 3 3

]
ColumnIndex =

[
0 4 1 2 1 4 0 2

]
This example uses zero-based indexing, which is also used in the rest of the thesis.
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CSR format

The compressed sparse row (CSR) format only di�ers from the COO format in the row indices
array, which is compressed in the CSR format. The compression can be understood conceptually
as a two-step process. First, the number of non-zero elements in each row is determined from
the row indices. This results in an array of length m. Secondly, the cumulative sum of this array
is calculated and a zero is inserted at the beginning, resulting in an array of length m+1. The
compressed array of row indices is called row pointer, since it points to the beginning of a row
in the other two arrays. The row pointer has two important properties. First,

RowPointer[m] = nnz,

and secondly, the di�erence between two consecutive elements

RowPointer[k+1] - RowPointer[k]

is equal to the number of non-zeros elements in row k.

Consider the same 4× 5 matrix A again. It has the following representation in CSR format:

Value =
[
1 4 1 2 1 1

]
RowPointer =

[
0 2 4 6 8

]
ColumnIndex =

[
0 4 1 2 1 4 0 2

]
The CSR format is the format used for the computation of sparse matrix-vector multiplication
(SpMV) in cuSPARSE. It provides good performance on average for generic sparse matrices.
There are other sparse matrix formats suited for computation [11]. However, there is no native
support by cuSPARSE for these formats.

CSC format

The compressed sparse column (CSC) format di�ers from the CSR format in two ways: the values
are stored in column major format and the column indices are compressed. The compressed array
of column indices is called column pointer since it points to the start of a column in the other
two arrays. It contains n+1 elements.

Consider the same 4×5 matrix A once again. It has the following representation in CSC format:

Value =
[
1 7 5 2 1 1 4 1

]
RowIndex =

[
0 3 1 2 1 3 0 2

]
ColumnPointer =

[
0 2 4 6 6 8

]
.

The two consecutive 6s in the column pointer indicate an empty column in A. The CSC format
is not directly used for computations on the GPU. Though, it is useful because the CSC repre-
sentation can be reinterpreted in the CSR format yielding the CSR representation of AT . This
reinterpretation is done as follows:

mCSC → nCSR

nCSC → mCSR

ColumnPointer→ RowPointer

RowIndex→ ColumnIndex

ValueCSC → ValueCSR
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C-functions used

• cusparseCsrmvEx

� Used for the SpMV in CSR format

� O�ers two implementations: naive row-based algorithm [4] and a merge-based ap-
proach [23]

• cusparseXcoo2csr

� Performs the conversion from COO format to CSR format, i.e. compresses the row
indices

• cusparseXcsr2coo

� Performs the conversion from CSR format to COO format, i.e. expands the row pointer

• cusparseCsr2cscEx2

� Transforms the CSR representation to a CSC representation, i.e. transposes the matrix

• cusparseXcoosortByRow

� Sorts an unsorted COO format by row for conversion to the CSR format.

2.2.3 Thrust

Thrust is the CUDA C++ template library [28] based on the C++ standard template library
(STL). It provides a high level interface for high-performance parallel applications. It provides
all essential data parallel primitives, such as scan, sort, transform, and reduce.

C-functions used

• reduce_by_key

� Implementation of a segmented reduction. A key has to be supplied for each value in
the input vector. A segment is de�ned by consecutive identical keys.

2.3 GPU Speci�cations

2.3.1 Memory

Memory refers to the on-board RAM of the GPU. The most important metrics are the amount
of memory and its bandwidth. The amount of memory limits the problem size that can be
processed at once. The memory bandwidth limits the performance of kernels that are memory
bound. Examples of memory bound kernels include: SpMV, reduction, axpy [30], [19].

Other in�uencing factors are the memory technology, the memory bus width, and the memory
clock frequency. The memory bandwidth is related to the bus width and the memory frequency
as:

bandwidth = 2fclkwbus,

where fclk is the e�ective memory clock and wbus is the bus width. The factor of 2 arises from
the fact that the memory operates in double data rate (DDR) mode.
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2.3.2 SM and CUDA Cores

The number of CUDA cores is determined by the number of SMs and the GPU generation. The
Turing architecture features 64 CUDA cores per SM. This corresponds to 64 INT32 and 64 FP32
units on the Turing SM.

The number of SMs determines the number of thread blocks that can be executed concurrently.
Assuming full utilization of the GPU, performance can scale with the number of SMs.

2.3.3 Nvidia GeForce RTX 2080 Ti

The GeForce RTX 2080Ti is Nvidia's latest high-end consumer GPU released in 2018. It will be
used to perform the numerical tests in Chapter 5. Its technical speci�cations are shown in Table
2.1. Most notably, the double precision performance is a factor of 32 smaller than the single
precision performance. This is due to the fact that each SM only has 2 FP64 units compared to
the 64 FP32 units. As we will see in Section 5.2.6, this does not signi�cantly hamper performance
of memory bound kernels.

Memory 11 GB GDDR6
Memory Bandwidth 616 GB/s
Memory technology GDDR6
Memory bus width 352 bits
Memory clock frequency 7000 MHz
Number of SMs 68
Number of CUDA Cores 4352
FP32 (�oat) performance 13.45 TFlops
FP64 (double) performance 0.420 TFlops

Table 2.1: Speci�cation of the Nvidia RTX 2080Ti GPU.
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Chapter 3

OSQP Solver

3.1 Algorithmic Description

3.1.1 Problem

OSQP [27] solves problems of the form

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u,
(3.1)

where x ∈ Rn is the optimization variable. The Hessian of the objective function is a positive
semide�nite matrix P ∈ Sn+. The linear cost part of the objective function is de�ned by the
vector q ∈ Rn. The constraints are given by the matrix A ∈ Rm×n, the lower bound l : {li ∈
R ∪ {−∞}, i = 0, . . . ,m}, and the upper bound u : {ui ∈ R ∪ {∞}, i = 0, . . . ,m}. An equality
constraint can be de�ned by setting li = ui. For a feasible problem l ≤ u has to hold. This
formulation is equivalent to problem (1.2).

The size of problem (3.1) is characterized by the tuple (m,n,N), where N is the sum of the
non-zeros in A and P , i.e. N = nnz(A) + nnz(P ).

3.1.2 Optimality Conditions

OSQP introduces an auxiliary variable z ∈ Rm, to obtain the following problem which is equiv-
alent to (3.1):

minimize 1
2x

TPx+ qTx

subject to Ax = z

l ≤ z ≤ u.
(3.2)

The optimality conditions can then be written as

Ax− z = 0 (3.3)

Px+ q +AT y = 0 (3.4)

l ≤ z ≤ u, yT+(z − u) = 0, yT−(z − l) = 0, (3.5)
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where y ∈ Rm is the Lagrange multiplier associated with the equality constraint Ax = z and
y+ := max(y, 0) and y− := min(y, 0). The primal and dual residuals are de�ned as

rprim := Ax− z (3.6)

rdual := Px+ q +AT y. (3.7)

Certi�cates of primal and dual infeasibility

It can be shown that certifying primal infeasibility of problem (3.1) is equivalent to �nding a
vector ȳ ∈ Rm such that

AT ȳ = 0, uT ȳ+ + lT ȳ− < 0, (3.8)

holds [3].

Similar to (3.8) it can be shown that �nding an x̄ ∈ Rn that satis�es

Px̄ = 0, qT x̄ < 0, (Ax̄)i


= 0 li, ui ∈ R
≥ 0 ui = +∞, li ∈ R
≤ 0 li = −∞, ui ∈ R

(3.9)

certi�es the dual infeasibility of the problem. For more details we refer the reader to [3].

3.1.3 Algorithm

OSQP uses ADMM [5] to solve (3.2), which results in Algorithm 1. A derivation can be found
in [27].

Algorithm 1 OSQP

given initial values x0, y0, z0 and parameters σ > 0, ρ > 0, α ∈ (0, 2)
1: repeat
2: (x̃k+1, z̃k+1)← argmin

(x̃,z̃):Ax̃=z̃

1
2 x̃

TPx̃+ qT x̃+ σ
2 ‖x̃− x

k‖22 + ρ
2‖z̃ − z

k + ρ−1yk‖22

3: xk+1 ← αx̃k+1 + (1− α)xk

4: zk+1 ← Π[l,u]

(
αz̃k+1 + (1− α)zk + ρ−1yk

)
. Π[l,u] denotes the projection onto [l, u]

5: yk+1 ← yk + ρ(αz̃k+1 + (1− α)zk − zk+1)
6: until termination condition is satis�ed

The projection Π[l,u] onto the box [l, u] := {z ∈ Rm | l ≤ z ≤ u} is de�ned as

Π[l,u](x) := argmin
y∈[l,u]

‖y − x‖22

and can be easily computed as

Π[l,u](x) = min (max(x, l), u) ,

where the min and max functions are evaluated element-wise.

The solution (x̃k+1, z̃k+1) of the equality-constrained problem in line 2 can be computed by
solving the following linear system[

P + σI AT

A −ρ−1I

] [
x̃k+1

νk+1

]
=

[
σxk − q

zk − ρ−1yk
]
, (3.10)
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with z̃k+1 recoverable as
z̃k+1 = zk + ρ−1(νk+1 − yk).

The coe�cient matrix in (3.10) is referred to as the KKT matrix. This matrix is symmetric
quasi-de�nite (SQD) for all ρ > 0 and σ > 0, i.e. it has the form

K =

[
E AT

A −F

]
,

where E and F are positive de�nite. This property ensures that (3.10) is non-singular and has
a well-de�ned LDLT factorization [13]. Thus, (3.10) has a unique solution for all P ∈ Sn+ and
A ∈ Rm×n. The LDLT factorization is de�ned as

K = LDLT

where D is a diagonal matrix and L is a lower triangular matrix with a unit diagonal. This
factorization can then be used to solve

Kx = b

in a three-step process by introducing auxiliary variables y and ŷ. The �rst step is called forward
solve and solves

Ly = b,

the second computes the solution of the diagonal system

Dŷ = y,

and the last step is called backward solve and solves

LTx = ŷ.

The second step amounts to a simple element-wise multiplication of y with reciprocal of the
diagonal elements of D, while the �rst and third steps require solutions of triangular systems,
which is straightforward to compute.

Alternatively, (3.10) can be reformulated as(
P + σI +ATρA

)
x̃k+1 = σxk − q +AT (ρzk − yk) (3.11)

by eliminating νk+1. The iterate z̃k+1 can then be computed as z̃k+1 = Ax̃k+1. Note that the
coe�cient matrix in (3.11) is positive de�nite for all P ∈ Sn+ and A ∈ Rm×n. Therefore, the
conjugate gradient (CG) method can be used to solve the linear system in an iterative fashion
(See Section 4.1).

Note that the algorithm can easily be adapted to work with ρ being a positive de�nite diagonal
matrix, in which case it is denoted by R. The scalar multiplications have to be replaced by
matrix-vector products and the 2-norm has to replaced by the weighted 2-norm

√
xTRx.

Warm starting

We can provide (x̂, ẑ, ŷ) as an initial iterate to Algorithm 1 that is close to the actual solution
(x?, z?, y?) of (3.2). This is called warm starting and can drastically reduce the number of
iterations. Typically, this is used when solving a sequence of similar problems where the solution
of one problem is close to the one of the previous problem. Prominent applications are MPC,
lasso regularization path, and portfolio back testing [6]. If no approximate solution is provided,
all values are initialized to zero. This is called cold starting.
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3.1.4 Convergence

The main convergence result of OSQP [27] shows that the sequence of iterates (xk, zk, yk) gen-
erated by Algorithm 1 satis�es the optimality conditions (3.3)�(3.4) in the limit as k →∞ and
condition (3.5) is satis�ed by construction. This result only holds when problem (3.1) is solvable.
Otherwise, it can be shown that the sequence

(δxk, δyk, δzk) := (xk − xk−1, yk − yk−1, zk − zk−1)

always converges, and δy = limk→∞δy
k satis�es (3.8) if the problem is primal infeasible, and

δx = limk→∞δx
k satis�es (3.9) if it is dual infeasible. For a more detailed discussion on the

convergence of OSQP we refer the reader to [3].

Note that the convergence result holds for all ρ > 0 and σ > 0. This fact is used in OSQP to
adapt the parameter ρ based on heuristics to reduce the total number of iterations needed.

3.1.5 Termination Criteria

The termination criteria of Algorithm 1 ensures that the algorithm stops when either a solution
or an infeasibility certi�cate is found up to some tolerance. The proposed criterion for a solvable
problem compares the norms of rkprim and rkdual against some tolerance levels, i.e.

‖rkprim‖∞ ≤ εprim, ‖rkdual‖∞ ≤ εdual,

where the tolerance is set to

εprim := εabs + εrel max{‖Axk‖∞, ‖zk‖∞},
εdual := εabs + εrel max{‖Pxk‖∞, ‖AT yk‖∞, ‖q‖∞},

for some εabs, εrel > 0. In OSQP the default tolerance levels are set to εabs = εrel = 10−3.

The following criterion is used to check for primal infeasibility

uT (δyk)+ + lT (δyk)− ≤ εpinf‖δyk‖∞
‖AT δyk‖∞ ≤ εpinf‖δyk‖∞,

where εpinf > 0 is some tolerance level. The criterion for dual infeasibility is de�ned similarly as

qT δxk ≤ εdinf‖δxk‖∞,

‖Pδxk‖∞ ≤ εdinf‖δxk‖∞,

(Aδxk)i


∈ [−εdinf , εdinf ] ‖δxk‖∞ li, ui ∈ R
≥ −εdinf‖δxk‖∞ ui = +∞
≤ εdinf‖δxk‖∞ li = +∞

where εdinf > 0 is the dual infeasibility tolerance level. OSQP sets the default infeasibility
tolerance levels to εdinf = εpinf = 10−4.
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3.2 Implementation Details

3.2.1 Preconditioning

First-order methods are known to be sensitive to the problem scaling, i.e. their convergence rate
can vary signi�cantly for ill-conditioned problems. To reduce the sensitivity to ill-conditioned
problems, a technique called preconditioning is often used. Preconditioning improves the conver-
gence rate by reducing the condition number of the problem. For example, the optimal diagonal
preconditioner minimizes the condition number of a matrix. However, to �nd the optimal diago-
nal preconditioner, we need to solve an SDP which is typically harder to solve than the original
QP. Thus, it is seldom worth to calculate it.

To circumvent this issue, OSQP uses a simple heuristic to compute the preconditioner called
matrix equilibration. The goal is to �nd a diagonal scaling S ∈ Sm+n

++ of the problem data such
that the columns of SMS have the same `∞ norms, where M is de�ned as

M :=

[
P AT

A 0

]
, (3.12)

and the scaling S is de�ned as

S :=

[
D 0
0 E

]
,

where D ∈ Sn++ and E ∈ Sm++ are both diagonal and positive de�nite matrices.

The matrix equilibration heuristic used by OSQP is based on the Ruiz equilibration.

Algorithm 2 Modi�ed Ruiz equilibration

given A, P , q, l, u
1: initialize c = 1, E = I, D = I, δ = 0, P̄ = P , Ā = A, l̄ = l, ū = u
2: for iter = 1,. . . ,#iterations do
3: for i = 1, . . . , n+m do
4: δi ← 1/

√
‖Mi‖∞ . Mi is the i-th column of M

5: end for
6: D̄ ← diag(δ1, . . . , δn), Ē ← diag(δn+1, . . . , δn+m)
7: P̄ ← D̄P̄ D̄, Ā← ĒP̄ D̄, q̄ ← D̄q̄, l̄← Ēl̄ , ū← Ēū
8: λ← 1/max{mean(‖P̄i‖∞), ‖q̄‖∞} . P̄i is the i-th column of P̄
9: P̄ ← λP̄ , q̄ ← λq̄

10: D ← D̄D, E ← ĒE, c← λc
11: end for
12: S ← diag(D,E)
13: return S, c

The modi�ed Ruiz procedure is described in Algorithm 2. It performs a �xed number of equi-
libration iterations. Each iteration performs the following steps: First the column norms of M
are calculated and problem data is scaled by the inverse square root of the norms accordingly.
The second step normalizes the cost function by scaling it by the inverse of the maximum of the
average column norm of P̄ and the norm of q̄.

Scaling the matrices P and A e�ectively results in a transformed problem given by

minimize 1
2 x̄

T P̄ x̄+ q̄T x̄

subject to l̄ ≤ Āx̄ ≤ ū,
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where x̄ = D−1x, P̄ = cDPD, q̄ = cDq, Ā = EAD, l̄ = El and ū = Eu. The scaled dual
variable is given by ȳ = cE−1y and the scaled residuals are

r̄prim := Erprim, r̄dual := cDrdual.

The Ruiz equilibration is usually stopped when diag(δ1, . . . , δn+m) is close to the identity ma-
trix by some measure, i.e. ‖diag(δ1, . . . , δn+m) − I‖ ≤ ε. However, OSQP always performs 10
iterations by default, which is su�cient in most cases.

3.2.2 Step-Size Parameter Update

As already mentioned in Section 3.1.4, OSQP uses a heuristic to update the step-size parameter
ρ or R. Moreover, R ∈ Sm++ is chosen to be a positive de�nite diagonal matrix with di�erent
elements Ri depending on the constraint type. The diagonal elements are de�ned by

Ri =

{
ρ̄, li 6= ui

103ρ̄, li = ui,

where ρ̄ > 0 is a scalar parameter, i.e. the step-size related to an equality constraint is assigned
a larger value. The value of ρ̄ is not �xed, but is updated based on the ratio of the dual and
primal residuals. The following rule

ρ̄k+1 ← ρ̄k

√
‖r̄kprim‖∞/max{‖Āx̄k‖∞, ‖z̄k‖∞}

‖r̄kdual‖∞/max{‖P̄ x̄k‖∞, ‖ĀT ȳk‖∞, ‖q̄‖∞}

is used to adapt ρ̄. The initial value is set as ρ̄0 = 0.1. Note that this rule uses the scaled version
of the residuals.

The update of ρ changes the KKT matrix in (3.10) and requires a numerical re-factorization.
To save on computation cost, this is only done if it is really necessary. OSQP requires the
accumulated iteration time to be greater than a certain percentage of the initial factorization
time and the new value to be larger or smaller than the old one by a certain threshold.

3.3 Bottlenecks

This section identi�es and analyzes the computational hot spots in OSQP and evaluates to what
extent they can be accelerated by parallelization. Pro�ling the runtime shows that all routines
and operations whose execution time scales with the total number of non-zeros N represent a
potential bottleneck.

3.3.1 Linear System Solver

The most severe bottleneck is the linear system solver used to calculate the solution to the KKT
system (3.10). To see why, we will look into the LDLT factorization a bit closer. Consider the
following linear system

Qx = b, (3.13)
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where Q and b are an SQD matrix and a vector given by

Q =

 2 2 0
2 4 1

0 1 −1

 , b =

1
0
1

 .
The LDLT factorization of Q is

Q = LDLT =

1 0 0
1 1 0
0 0.5 1

2 0 0
0 2 0
0 0 −1.5

1 1 0
0 1 0.5
0 0 1

 . (3.14)

To solve (3.13) with the help of LDLT factorization (3.14) we �rst perform the forward solve

Ly = b, (3.15)

i.e.
y1 = b1 = 1

y2 = b2 − y1 = −1

y3 = b3 − 0.5y2 = 1.5.

Then, we perform the backward solve

LTx = ŷ = D−1y, (3.16)

i.e.
x3 = ŷ3 = −1

x2 = ŷ2 − 0.5x3 = 0

x1 = ŷ1 − x2 = 0.5.

There are two bottlenecks in (3.15) and (3.16). First, to compute yi we need to have computed
y1, . . . , yi−1 in advance. This dependency on the previous elements makes the forward solve hard
to parallelize. The same argument holds for the backward solve, where we need to compute xi+1

before computing xi. The second bottleneck is that the backward solve can only start after the
forward solve has been performed since the backward solve starts with yn which is calculated
last in the forward solve. This bottleneck is not pronounced for small to medium sized problems,
but hinders the scaling to large-scale problems.

3.3.2 Termination Criteria Evaluation

The evaluation of termination criteria described in Section 3.1.5 requires the computation of three
matrix products Pxk, Axk, AT yk. The computation cost of each of the products scales with the
number of non-zeros in the respective matrices. OSQP reduces this cost by only checking the
termination every k iterations (k = 25 by default).

The evaluation of the primal and dual infeasibility criterion requires additional three matrix-
vector products Pδxk, Aδxk, AT δyk. However, OSQP uses the fact that all the conditions of the
criterion have to be met and checks computationally cheaper conditions �rst. Thus, some of the
matrix products do not have to be calculated every time.
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3.3.3 Scaling

Pro�ling reveals that the matrix equilibration procedure requires a substantial amount of time
for larger problems. Speci�cally, the column norm calculations in line 4 and the scaling of the
matrices A and P in line 7 of Algorithm 2 determine the runtime. The matrix scaling requires two
matrix-matrix multiplication, one pre-multiplication and one post-multiplication. Fortunately,
the scaling matrices are diagonal and the matrix-matrix multiplications are equivalent to scaling
the rows or columns of A and P . Nevertheless, each matrix-matrix multiplication requires nnz(G)
multiplications, where G is the sparse matrix to be scaled.

3.3.4 Potential for Acceleration

Since the direct solver approach with the LDLT factorization is not suited to be parallelized, an
iterative solution strategy, i.e. an indirect solver, sounds as a more promising approach. Indirect
methods do not posses any dependencies between the solution components that restrict direct
methods, such as LDLT factorization, from being parallelized. Furthermore, iterative methods
can more easily make use of the sparsity of a problem than direct solvers. Since direct solvers
typically have to perform a matrix permutation before the factorization to exploit sparsity, while
indirect methods only need to perform SpMV. This makes them well suited for sparse large-scale
problems.

An additional bene�t of an indirect solver is that updating (3.10) does not require a new factor-
ization. This is especially helpful for adapting the step-size parameter ρ which has been shown
to help reduce the number of iterations.

The main operation of an indirect solver is the SpMV which can be e�ciently implemented on a
GPU. Thus, indirect solvers are best suited to accelerate the linear system solver on the GPUs.

In the second step all the sparse matrix-vector products used in the evaluation of the termination
criterion can be replaced by GPU routines. The speedup of the termination check can then be
used to check the termination conditions more often and thus potentially stop the algorithm
earlier.

The column norms of the matrix M that is used in the matrix equilibration can be calculated in
parallel with a segmented reduction. Furthermore, the pre- and post-multiplication of a diagonal
matrix with a sparse matrix can also be parallelized.
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Chapter 4

GPU Acceleration

4.1 Linear System Solver and Conjugate Gradient Method

Throughout this chapter we consider linear systems of equations of the following form

Kx = b (4.1)

where K ∈ Ss++ is a symmetric positive de�nite matrix, x ∈ Rs is the solution and b ∈ Rs is
referred to as the right-hand side.

4.1.1 The Conjugate Gradient Method

The CG method is an iterative method for solving linear systems of equations of the form
(4.1). Theoretically, it can compute an exact solution in s iterations [25, Chap. 5]. However, in
practice one aims to terminate the method long before s. This yields an approximate solution to
the system (4.1). The CG method is especially well suited to solve sparse large-scale problems,
such as those arising in OSQP, since its iterations can be easily parallelized.

Problem (4.1) can be reformulated as an unconstrained optimization problem:

minimize ϕ(x) := 1
2x

TKx− bTx,

which can be easily seen by looking at the gradient of ϕ

∇ϕ(x) = Kx− b =: r(x).

Rewriting ϕ(xk) as

ϕ(xk) = 1
2‖x

k − x?‖2K + ϕ(x?),

where the K-norm is de�ned by

‖v‖K =
√
vTKv

and x? is the minimizer of ϕ(x), shows that an iterative minimization of ϕ(x) yields a sequence
of ever-better approximations to (4.1) as measured in the K-norm [14, �11.3].
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Conjugate directions

A corner stone of the CG method is its ability to cheaply generate a set of minimization directions
with property called conjugacy. A set of non-zero vectors {p0, p1, . . . , ps} is conjugate with respect
to the symmetric positive de�nite matrix K if

(pi)TKpj = 0, ∀i 6= j.

Successively minimizing along the conjugate directions pk, i.e.

αk = argmin
α

ϕ(xk + αpk)

xk+1 = xk + αkpk
(4.2)

produces approximations xk to x? that minimize ϕ over the expanding subspace Sk which is
spanned by the previous conjugate directions {p0, p1, . . . , pk}. From the expanding subspace we
have that ϕ(xk) ≤ ϕ(xk−1) and thus xk is a better approximation of the solution to (4.1) [25,
Thm. 5.2]. The minimization step in (4.2) can be evaluated analytically as

αk = −(Kxk − b)T pk

(pk)TKpk
.

which is very easy to compute.

The residual at step k is de�ned as rk := Kxk − b.

Conjugate gradient

There are many choices for the conjugate direction set {p0, p1, . . . , ps−1}. For example, the
eigenvectors of K form a conjugate set of vectors with respect to K. However, it is impractical
to compute the eigenvectors for large-scale systems.

The conjugate gradient method is conjugate direction method that can compute a new direction
pk based on the previous vector pk−1 only. This property allows CG to have a very low memory
and computation requirement for generating the conjugate set, since pk+1 can be generated on
the �y. The new direction pk is calculated as a linear combination of the negative gradient −rk
and the previous direction pk−1.

pk = −rk + βkpk−1.

The scalar βk is determined by the conjugate requirement (pk)TKpk−1 = 0 as

βk =
(rk)TKpk−1

(pk−1)kKpk−1
. (4.3)

The �rst conjugate direction p0 is set to be in the negative gradient direction i.e. p0 = −r0.
Combining the successive minimization along the conjugate directions (4.2) and the computation
of new conjugate directions (4.3) results in the CG method.

Preconditioning

The CG method is a �rst-order method and thus its convergence rate is sensitive to the problem
scaling. To improve the convergence of the CG method, the linear system can be preconditioned
with a coordinate transformation

x̂ = Cx
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where C is a non-singular matrix. Applying the CG method to the transformed variable x̂ and
then inverting the transformation to express all equations in terms of x results in the precondi-
tioned conjugate gradient (PCG) method described in Algorithm 3 [25, Alg. 5.3]. It turns out
that C is not explicitly needed, but rather acts through M = CTC. Setting the preconditioner
M = I to the identity recovers the regular CG method.

Algorithm 3 PCG method

given x0, preconditioner M
1: initialize r0 ← Kx0, y0 ←M−1r0, p0 ← −y0, k ← 0
2: while ‖rk‖ ≤ ε‖b‖ do
3: αk ← − (rk)T yk

(pk)TKpk

4: xk+1 ← xk + αkpk

5: rk+1 ← rk + αkKpk

6: yk+1 ←M−1rk+1

7: βk ← (rk+1)T yk+1

(rk)T yk

8: pk+1 ← −yk+1 + βk+1pk

9: k ← k + 1
10: end while

Generally, a good preconditioner should capture the essence of the original matrix, i.e. M ≈ K
and it should be easy to solve the linear system My = r [14, �11.5]. There are many strategies
for choosing the preconditioner M , the simplest being the Jacobi preconditioner, also known
as the diagonal preconditioner. It simply contains the diagonal elements of K, which makes it
extremely cheap to compute.

Other more powerful preconditioner include the incomplete Cholesky, the incomplete LU and
the polynomial preconditioners. The incomplete preconditioner produce an approximate decom-
position of K with a high sparsity, such that solving My = r is cheap. The family of polynomial
preconditioners include the Chebyshev and least square polynomial preconditioner [2]. Both of
them require bounds on the spectrum of K, i.e. the smallest and largest eigenvalue.

4.2 Solving the KKT System

We are interested in solving the KKT system de�ned in (3.10). Since the conjugate gradient
method requires a positive de�nite system, the reduced form of the KKT matrix (3.11) is used.
Note that we use the general diagonal matrix formulation of ρ, i.e. R, throughout this chapter.

4.2.1 Implementation Details

Note that the reduced KKT matrix (3.11) is not explicitly needed. It is su�cient to be able to
apply the e�ect of a matrix multiplication to a vector. This can be achieved by the following
steps

z ← RAx

y ← Px+ σx+AT z,
(4.4)

where z ∈ Rm is a temporary variable.
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Matrix storage The preferred way of storing the matrices P and A on the GPU is the CSR
format since it has a superior SpMV performance on the GPU. However, in order to implement
(4.4) a matrix-vector multiplication with AT is required. Using the CSR format to perform this
operation is about 10x slower than the multiplication with A [10, �4.6]. This can be mitigated
by using the CSC format to store A, which can be interpreted as the CSR representation of AT .
Though, this means that we store the matrix A once as CSR and once as CSC. In other words,
A and AT are stored in CSR.

The matrix P is symmetric by de�nition and thus only the upper triangular part needs to be
stored. However, on the GPU a performance penalty has to be paid during the matrix-vector
product operation when using upper triangular matrices [10, �4.6]. Thus, the matrix is stored in
its full representation, i.e. upper and lower triangular parts and the diagonal. Furthermore, σI
is stored together with P , i.e. we store P + σI in CSR. This step is not done for performance
reason, but to keep the PCG solver agnostic to the problem structure.

Preconditioner The incomplete preconditioners require the explicit matrix representation and
thus are not a viable option. Thus, the Jacobi (diagonal) preconditioner seems as a better option.
The solution to the system My = r amounts to a simple diagonal matrix-vector product. The
diagonal of the Jacobi preconditioner of the reduced KKT system can be written as

diag(M) = diag(P + σI) + ρratio diag(ATR0A), ρratio ∈ R++

The calculation of the preconditioner is split into two parts. First, the diagonal of the matrix
P + σI is stored. Then the diagonal of the product ATR0A has to be calculated for some initial
value R0 such that R = R0ρratio holds. This allows the preconditioner to be updated quickly
without re-evaluating the diagonal of the product again in case R is updated. Note that the
product only has to be evaluated on the diagonal, and thus the full product is not required. The
diagonal entries aii of A

TR0A can be calculated from the weighted 2-norm of the columns of A
as

aii = ‖Ai‖2R, where ‖v‖2R = vTRv.

This can be implemented with a segmented reduction with the addition operator(i.e. segmented
sum) on the GPU. A temporary array of size nnz(A) is allocated for this purpose and used to
store the result of the pre-multiplication of R and A followed by an element-wise multiplication
with the values of A. Then a segmented sum, with segments de�ned as the rows of A, is used to
sum up the scaled square term in each row.

Termination criteria and warm starting The minimization step, i.e. the solution of the
KKT system (3.10), does not need to be carried out exactly for ADMM to converge [5]. This
fact is used to motivate an early termination of PCG. This means that the PCG algorithm only
performs a small number of iterations (typically less than 10) in each ADMM iteration to get
a rough approximation at �rst. In successive ADMM iterations the PCG solver is then warm
started, i.e. x0 is initialized to the previous solution x̃k−1 of the PCG-solver. This allows the
solver to improve the approximate solution further. As ADMM progresses and the right-hand
side of the KKT system does not change signi�cantly, the PCG algorithm obtains more and more
accurate solutions.

Finding a good termination criterion for the PCG algorithm is a trade-o� between the number of
ADMM iterations and the number of PCG iterations per ADMM iteration. Since PCG iterations
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are still expensive compared to the rest of the ADMM algorithm, minimizing the total number
of PCG iterations is the goal. The following strategies are based on checking the norm of the
PCG residual rk against some tolerance ε > 0, that is adapted as ADMM progresses.

SCS strategy This strategy has been adopted from the SCS [26] solver implementation. It
features a monotonic decrease of the tolerance as ADMM progresses. It exploits the fact that
ADMM does not require very accurate solutions at the beginning and can save a lot of PCG
iterations at the start. The termination condition is de�ned as

‖rk‖2 ≤ ε, with ε = max{‖b‖2
εstart
kr

, εmin},

where k is the ADMM iteration counter, r > 0 is a decrease parameter, b is the right-hand
side of the reduce KKT system (3.11), and εmin/εstart are the minimum and starting tolerances
respectively. The following parameters have been found to work well for a variety of problems:

εstart = 50

εmin = 10−7

r = 2.75.

These parameters have been determined by running the OSQP benchmarks (See Appendix A).

Residual strategy This strategy chooses the tolerance, as the name suggests, according to
the current ADMM residuals. The termination condition is de�ned very similarly to the previous
strategy. Instead of the 2-norm, the ∞-norm is used to match the norm used for the ADMM
residuals. The termination condition is then given as

‖rk‖∞ ≤ ε,
and ε is calculated as

ε←min{λ
√
‖r̄prim‖∞‖r̄dual‖∞, ε}

ε←max{ε, εmin},

where r̄prim and r̄dual are the scaled primal and dual ADMM residuals respectively. The param-
eter λ > 0 ensures that the accuracy of the iterative solver is always higher than the geometric
mean of the primal and dual residuals. In case the new tolerance value is larger than the old one,
the old value is used again. The result is a monotonically decreasing tolerance over the progress
of ADMM. Additionally, λ is reduced by λreduction after the number of ADMM iterations with
zero PCG iterations exceeds the threshold kthreshold ∈ N. Successive ADMM iterations with zero
PCG iterations suggest that the solution has already been found or that the chosen tolerance
is too large. As before, the following parameters have been found to work well for a variety of
problems:

λ = 0.17

εmin = 10−7

kthreshold = 10

λreduction = 2.

The parameters have been determined by running the OSQP benchmarks (See Appendix A).

Furthermore, the number of PCG iterations is restricted to nmax = 25 iterations for both strate-
gies.
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4.3 Further Acceleration

4.3.1 ADMM Residual Calculation

The calculation of the primal and dual residuals (3.6) and (3.7) requires several SpMVs, which are
very expensive operations compared to the rest of ADMM (steps 3-5 of Algorithm 1). O�oading
these calculation to the GPU has several bene�ts. First, it reduces the time to calculate the
residuals. Second, it allows to check the termination criterion more often and thus allows an
earlier termination. Another bene�t is the opportunity to adapt ρ̄ more often (See Section 4.3.3).

The GPU implementation of the residual calculation is invoked from the check termination
subroutine and performs the following steps:

1. Copy the current iteration (x̄k, ȳk, z̄k) to the GPU.

2. Calculate the scaled primal residual r̄kprim = Āx̄k − z̄k and its norm ‖r̄kprim‖∞

(a) In case scaled termination is disabled, calculate the unscaled primal residual
rkprim = E−1r̄kprim and its norm ‖rkprim‖∞.

3. Calculate the scaled dual residual r̄kdual = P̄ x̄k + q̄ + ĀT ȳk and its norm ‖r̄kdual‖∞

(a) In case scaled termination is disabled, calculate the unscaled primal residual
rkdual = c−1D−1r̄kdual and its norm ‖rkdual‖∞.

4. Copy the results of the matrix-vector products (Āx̄k, P̄ x̄k, ĀT ȳk) back to the CPU.

The last step is necessary since other subroutines of OSQP require the results of matrix-vector
products to work properly.

The diagonal inverse scaling matrices E−1 and D−1 and the linear cost vector q̄ are copied to
the GPU during the initialization phase. The two matrices and the vector are updated on the
GPU in case the scaling changes.

4.3.2 Scaling / Ruiz Equilibration

The runtime of the modi�ed Ruiz equilibration (Algorithm 2) is determined by the column-norm
calculation and the post/pre matrix multiplication as described in Section 3.3. It is thus essential
to accelerate these three operations on the GPU to reduce the total runtime considerably.

Accelerating the column norm calculation

The CSC format allows for an e�cient way of calculating the column norms of a sparse matrix.
The column pointer directly de�nes segments of the value array that correspond to individual
columns. Conversely the CSR format allows for an e�cient way of calculating row norms for the
same reasons. Since the matrix M de�ned in (3.12) is symmetric, calculating the row norms is
equivalent to calculating column norms. This allows us to use the CSR format to calculate the
column norms.

The naive approach would be to have one thread per row calculating the norm of its row. This
approach su�ers from several ine�ciencies. First the work load is poorly distributed among
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the threads since one thread can have zero elements in its row and another thread can have
n. Secondly, the memory is accessed almost randomly as each thread iterates through its row.
Thus, a more systematic solution has to be used.

The problem of calculating the row norms of a CSR matrix can be stated in the form of a
segmented reduction, with the segments de�ned by the row pointer. In the case of the `∞ norm,
the reduction operator ⊕ has to be the maximum of the absolute values, i.e.

x1 ⊕ x2 := max(|x1|, |x2|).

Special care has to be taken for segments with only one element. Since there is only one element
to reduce, the reduction returns that element without invoking the reduction operator depending
on the implementation. Therefore, the absolute value operator has to be applied to each element
resulting from the segmented reduction to ensure that each element corresponds to the desired
row `∞ norms.

There are several CUDA implementations of the segmented reduction operation available.

Thrust Thrust [28] o�ers a reduce-by-key operation, which essentially performs a segmented
reduction. It requires one key per value element, and a segment is de�ned by consecutive identical
keys.

value =
[

0 4 1 2 1 4 0 2
]

key =
[

0 0 1 1 1 3 3 3
]
.

The row index of a matrix stored in coordinate format de�nes one segment per row using the
above de�nition. Thus, the row index is identical for each element within one row and all
elements of one row are stored consecutively. This assumes that the matrix is sorted by row.
Unfortunately, the CSR format does not store the row index. Therefore, the row index has to be
calculated from the row pointer in advance of the segmented reduction. This is one drawback of
the reduce-by-key method o�ered by Thrust. Another drawback is that empty segments, which
correspond to empty rows, cannot be de�ned. This issue is overcome by inserting a zero into the
result vector of reduce-by-key at the place of empty rows.

Modern GPU Modern GPU [24] o�ers a segmented reduction operation that works on CSR-
de�ned segments, where a segment is de�ned by its start index in the value array and the start
index of the next segment. This allows the segmented reduction operation to work directly with
matrices de�ned in CSR. Furthermore, no extra steps are necessary to deal with empty rows
since empty segments can be de�ned easily.

The only downside is that the project is no longer maintained and that the latest code-base is
not compatible with Visual Studio 2017 on Windows.

A comparison of the two implementations shows that they perform similarly, but Modern GPU
is much more memory-e�cient since it does not require an additional key array. This saves
nnz(A) · sizeof(float) bytes of memory per matrix A. Though, the modern GPU implementations
is not used at the moment since it is no longer maintained.

Accelerating the pre/post matrix multiplication

The post-multiplication routine can be adopted from the CPU implementation but the pre-
multiplication requires some more e�ort.
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Post-multiplication For the post-multiplication, the column index of each element is used to
determine the scaling element in the diagonal matrix.

1 ...

2 int column = col_ind[i];

3 CSR_value[i] *= post_matrix[column ];

4 ...

The instructions listed above can be performed by many threads concurrently and independently.
The memory read and write access to the array CSR_value is fully coalesced, i.e. all memory
accesses can be combined into a larger transaction. The read access to post_matrix however
can only be partly coalesced, but this does not impact performance too much since it is constant
and thus can be cached.

Pre-multiplication The pre-multiplication seems to be conceptually easier to implement,
since it multiplies each element in a row with the same scaling value.

1 ...

2 CSR_value[i] *= pre_matrix[row];

3 ...

The di�culty lies in the fact that it is not obvious how to determine the row index from the
index i of the value array. One solution is to compute the row index of the matrix from the row
pointer in advance, but there is a more elegant solution that does not require any extra memory.
The idea is to calculate the row index from the row pointer on the �y. This can be done with
a modi�ed binary search as described in Algorithm 4. The goal of the algorithm is to �nd the
index k of the segment/row containing the index i that is used to index the value array.

row_ptr[k] < i < row_ptr[k+1] (4.5)

Algorithm 4 Binary search

given m, row_ptr, i
1: initialize l = 0, u = m, row = bl + u

2
c

2: while u - l != 1 do
3: if i >= row_ptr[row] then
4: l = row . Update lower bound
5: else
6: u = row . Update upper bound
7: end if
8: row = bl + u

2
c . Choose mid point of new bounds

9: end while
10: return row

The idea is to to start with an interval [l, u) that contains k and then half the interval in each
iteration until the interval only contains k. The algorithm starts with interval [0, m) which is
guaranteed to contain k.

Assuming k ∈ [l, u), then from condition (4.5) and the fact that row_ptr is monotonically
increasing, it follows that

row_ptr[l] <= i < row_ptr[u]. (4.6)
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In each iteration of Algorithm 4, the index i is compared against the value of the row pointer
in the middle of the current interval. If i is larger or equal, the lower bound is updated to the
midpoint. Otherwise, the upper bound is updated to the midpoint. This ensures that condition
(4.6) is also true for the reduced interval. The size of the interval is halved in each iteration,
thus ful�lling the condition u - l = 1 in at most dlog2(m)e steps.

4.3.3 Choice of Parameters

This section discusses the choice of several ADMM/OSQP related parameters with an indirect
linear system solver in mind.

Choice of ρ

The choice of the step-size ρ/R has a large in�uence on the performance of ADMM. By default,
OSQP chooses a larger step-size for the dual variables associated with equality than with in-
equality constraints (See Section 3.2.2). However, numerical testing with the PCG method as
an indirect solver suggests that the convergence of the PCG can be improved by using the same
step-size ρ for all constraints, i.e. replacing the diagonal matrix R with a scalar ρ.

This observation can further be motivated by looking at the e�ect of R on reduced KKT matrix
(3.11). The diagonal matrix R appears in the term ATRA, where it has the e�ect of scaling the
rows of A by di�erent amounts. This e�ectively increases the condition number of the linear
system and slows down the convergence of PCG.

Adapting ρ

OSQP has demonstrated that adapting the step-size ρ can substantially increase the rate of
convergence of ADMM. In OSQP, updating ρ is a trade-o� between the convergence speed-up
and the re-factorization cost. This constraint is inherent to all direct solution procedures of the
KKT system (3.10). However, this does not apply for indirect solution methods, such as the
PCG method, where updating ρ amounts to a simple update of a vector.

Thus, ρ can be updated more frequently with virtually no additional cost when using the PCG
solver. The only costs are copying the new value of ρ to the GPU and updating the Jacobi
preconditioner. Both of these operations take much less time than a single PCG iteration.

Numerical benchmarks suggest that the convergence of ADMM bene�ts by updating ρ as often
as possible. However, they also show that updating ρ more often than every 5 iterations can lead
to much worse convergence rates for some problem instances. The following parameters have
been found to work well across the benchmark set (See Appendix A).

rho_eq_over_rho_ineq 1

check_termination 5

adaptive_rho_interval 10

adaptive_rho_tolerance 1

Table 4.1: OSPQ parameters that are di�erent from their default values for the indirect solver.
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Chapter 5

Numerical Results

5.1 The Benchmark

We use a benchmark to compare the performance of the GPU-accelerated OSQP variant (OSQP-
GPU) with nominal OSQP. In a �rst step we compare the performance of OSQP to the indirect
PCG solver on the GPU. We refer to this case as OSQP-GPU-PCG. In a second step we incor-
porate the GPU implementation of the matrix equilibration and residual evaluation into OSQP-
GPU-PCG and compare it to OSQP. We call this �nal version OSQP-GPU. Finally we put the
performance of OSQP-GPU into perspective by also comparing it to OSQP's multi-core perfor-
mance by using the Pardiso solver from Intel Math Kernel Library (MKL). The OSQP solver's
single core performance in the benchmark (i.e. using QDLDL as the linear system solver) is used
as a reference value throughout this chapter if not stated otherwise.

We also evaluate the performance of the matrix equilibration and the residual evaluation on the
GPU. Furthermore, we also look at the in�uence of the �oating-point precision on the perfor-
mance.

All benchmarks are performed with the default parameters of the respective solver. In the case
of OSQP, we use the parameters proposed in [27]. For the OSQP-GPU solver we use the values
given in Table 4.1. Furthermore, the default absolute and relative tolerances levels of OSQP (i.e.
ε = 10−3) are used for all solver variants.

All the numerical results were computed on a Linux-based system with an i9-9900K @ 5Ghz (8
cores) processor and 64 GB of DDR4 3200Mhz RAM. As a GPU the RTX 2080Ti with 11 GB
of VRAM was used.

5.1.1 Benchmark Problems

The benchmark includes 7 di�erent problem classes which range from random QPs to applications
in optimal control, linear regression, and machine learning. For each problem class, 10 di�erent
instances for 15 problem dimensions are generated giving a total of 1050 instances. Each problem
instance is run 5 times and the median runtime is then reported. The generation of problem
instances is described in Appendix A. The problem dimension n ranges from 102 to 105 and m
ranges from 103 to 106. The number of non-zeros N ranges from 104 to 109.
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5.1.2 Evaluation Criteria

As a performance metric, the benchmark uses the total runtime reported by OSQP. This time
includes the setup time of the solver, the time used for scaling, the update time of ρ, and the
solve time. The results in this chapter all show average runtime, i.e. the average runtime across
the 10 di�erent problem instances of the same size. As a reminder, the problem size is de�ned
as

N = nnz(A) + nnz(P ).

5.2 Results

5.2.1 Replacing the Linear System Solver

In a �rst step we have replaced the direct solver of OSQP with the indirect PCG solver imple-
mented on the GPU. Figure 5.1 compares the total computation times for OSQP and OSQP-
GPU-PCG for the problem classes Lasso and Huber. It clearly shows that QDLDL is superior
over the CG linear system solver for small problem sizes. However, for large problem instances
the GPU solver is signi�cantly faster. Furthermore, the slope of the runtime vs problem size of
OSQP is approximately constant, whereas the slope of the GPU solver is �atter at the begin-
ning and starts to increase towards larger problems. This behaviour is expected since smaller
problems cannot fully utilize the GPU and data transfer latency is predominant.

104 105 106 107 108
10−3

10−2

10−1

100

101

102

103

N

R
u
n
ti
m
e
[s
]

OSQP-GPU-CG
OSQP

104 105 106 107 108

10−2

10−1

100

101

102

N

R
u
n
ti
m
e
[s
]

OSQP-GPU-CG
OSQP

Figure 5.1: Average runtime vs the problem size N for OSQP and OSQP-GPU-PCG for problem
class: (left) Lasso, (right) Huber

This can also be seen from Figure 5.2 which shows the achieved speedup in runtime vs problem
size of the GPU solver over OSQP for all problem classes. The general trend is that the larger
the problem size the larger the speedup. Already 5 out of 7 problem classes achieve a speedup
of more than one order of magnitude for at least one problem size.
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Figure 5.2: Achieved total runtime speedup by replacing the direct solver with the PCG method
on the GPU.

5.2.2 Performance of the Residual Evaluation on GPU

Figure 5.3 (left) shows the average computation time of the residuals including the three Sp-
MVs Px, Ax, and AT y and the data transfer from and to the GPU for the Lasso class. The
computation time on the GPU is almost constant for small problem sizes showing the constant
communication overhead. The computation times are very similar across all problem classes,
hence only one is shown.

Figure 5.3 (right) shows a clear trend for the speedup, the larger the problem the larger the
speedup. This trend continues until the very large problems, where the speedup starts to level
o� at approximately 44x.
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Figure 5.3: (left) Comparison of the average time for checking termination criteria on the CPU
or GPU vs problem size N , (right) achieved speedup on the GPU.
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5.2.3 Performance of the GPU Matrix Equilibration

Figure 5.3 (left) compares the computation times of the GPU matrix equilibration implementa-
tion described in Section 4.3 and the OSQP implementation. The computation time is propor-
tional to the problem size for the OSQP implementation.

Figure 5.4 (right) shows a very similar trend than Figure 5.3 (right) for the residual evaluation.
There is very little speedup for small problems followed by a steep increase. However, the speedup
starts to level o� earlier, at around 20 million non-zeros with a speedup of 45x.
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Figure 5.4: (left) Comparison of the matrix equilibration runtime as a function of the problem size
N for the CPU and the GPU implementation, (right) achieved speedup on the GPU compared
to the CPU version.

5.2.4 Total Runtime with Scaling and Residuals on the GPU

In Section 5.2.1 we have presented the obtained speedups of the PCG-solver on the GPU com-
pared to the direct solver in OSQP. In this section we present the achieved speedup of the GPU
solver that includes the GPU implementation of the matrix equilibration and residual calculation
(i.e. OSQP-GPU).

Figures 5.5�5.11 compare the average runtime vs problem size for each problem class between
OSQP and OSQP-GPU. The absolute runtimes are shown on the left subplot and the achieved
speedups on the right.

The maximum speedups for each problem class range from 13x up to 160x. The largest reduction
in absolute runtime is achieved for the SVM class shown in Figure 5.5. For the largest problem
instance OSQP-GPU reduces the runtime from 14 min 30 sec down to mere 8.6 sec. The second
largest reduction in runtime is achieved for the Random class with a reduction from 4 min 45
sec down to 1.85 sec shown in Figure 5.10.

The hardest problem class for OSQP-GPU to accelerate is the Huber �tting with the maximum
speedup of 13x shown in Figure 5.7. One of the reasons is that OSQP achieves relatively short
runtimes compared to other problem classes of the same size. Moreover, the Huber problem
class does not bene�t from updating ρ more often. In fact, the shortest runtimes are achieved
by never updating ρ.
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Figure 5.5: Problem class: SVM (left) Comparison of the average runtime of OSQP and OSQP-
GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the CPU.
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Figure 5.6: Problem class: Lasso (left) Comparison of the average runtime of OSQP and OSQP-
GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the CPU.
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104 105 106 107 108

10−2

10−1

100

101

102

N

R
u
n
ti
m
e
[s
]

OSQP-GPU
OSQP

104 105 106 107 108

0

2

4

6

8

10

12

14

N

S
p
ee
d
u
p

Figure 5.7: Problem class: Huber (left) Comparison of the average runtime of OSQP and OSQP-
GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the CPU.
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Figure 5.8: Problem class: Control (left) Comparison of the average runtime of OSQP and
OSQP-GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the
CPU.
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Figure 5.9: Problem class: Portfolio (left) Comparison of the average runtime of OSQP and
OSQP-GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the
CPU.
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Figure 5.10: Problem class: Random (left) Comparison of the average runtime of OSQP and
OSQP-GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the
CPU.
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Figure 5.11: Problem class: Equality (left) Comparison of the average runtime of OSQP and
OSQP-GPU per problem size N . (right) Achieved speedup in total runtime on the GPU vs the
CPU.

5.2.5 Parallelizing OSQP with MKL

This section presents the results of parallelizing OSQP by using the parallel direct solver Pardiso
from MKL. Figure 5.12 shows that OSQP with the Pardiso solver is actually slower than the
single-threaded OSQP for most problems of the Huber class. Only for the very large problem
instances it manages to achieve a speedup larger than 1x. OSQP-GPU is clearly much faster for
most of the problem sizes. For the Portfolio class shown in Figure 5.13 though, the Pardiso solver
is faster than OSQP for most problem sizes and achieves a maximal speedup of 4.5x. However,
there is still a gap of almost 6x between the OSQP-GPU and OSQP-MKL.

The two problem classes, Huber and Portfolio are chosen to present the worst and best perfor-
mance of OSQP-MKL respectively. The runtime speedups with respect to OSQP of the rest of
the problem classes lies between the two extrema presented above.
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Figure 5.12: Problem class: Huber (left) Comparison of the average runtime of OSQP, MKL and
OSQP-GPU per problem size N . (right) Achieved speedup in total runtime of MKL and GPU
vs OSQP singe threaded.
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Figure 5.13: Problem class: Portfolio (left) Comparison of the average runtime of OSQP, MKL
and OSQP-GPU per problem size N . (right) Achieved speedup in total runtime of MKL and
GPU vs OSQP singe threaded.

5.2.6 Single vs Double Precision

Figure 5.14 shows the average runtime of the SVM class vs the problem size for single- and double-
precision �oating-point values. The penalty in runtime of using double over single precision is
less than 1.6x over all problem sizes. This is counter-intuitive at �rst, since the GPU used
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in the benchmark has a 32x higher single precision �oating point performance than in double
precision. However, most of the GPU routines, especially the SpMV operation, is a memory
bound operation. Thus, computation times are limited by the memory bandwidth.
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Figure 5.14: Problem class: SVM. (left) Comparison of the average runtime vs problem size N
for single and double precision. (right) Achieved speedup in total runtime by using single instead
of double precision.

5.2.7 Pro�ling

Figure 5.15 compares the fraction of the solve time that runs on the GPU for 7 di�erent problem
classes. It shows that roughly 75% - 95% of the time is spent on the GPU during the solve phase.
This means that implementing the rest of the CPU routines on the GPU would yield a speed up
of at most 5 % to 30 % by Amdahl's Law [15]

SN =
1

p+ (1− p)/N
,

where p is the fraction of the time spent on the serial part of the program, N is the number
of parallel processors, and SN is the speedup. An upper limit of the speedup is given by the
inverse of the serial fraction p. Comparing the total time with the time of the solve phase shows
a similar picture. Figure 5.16 illustrates this further, more than 90 % of the total runtime is
spent during the solve phase. Except for the two problem classes Random and Equality, where
the setup phase takes longer due to the rather dense structure of P and A.
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Figure 5.15: Distribution of the relative time spent on the GPU with respect to the total solve
time for di�erent problem classes. The distribution for each class is generated from problem
instances with N ranging from 105 to 107.
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Figure 5.16: Distribution of the solve time compared to total runtime for di�erent problem
classes. The distribution for each class is generated from problem instances with N ranging from
105 to 107.
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Chapter 6

Conclusion

We have demonstrated the huge potential of GPUs for solving large-scale QPs with hundreds
of millions non-zeros in less than 10 seconds. First, we showed that replacing a direct linear
system solver of OSQP with a PCG method implemented on the GPU can achieve a speedup
of one order of magnitude in total runtime. Moreover, we investigated other ways to parallelize
OSQP to reduce the runtime even further by replacing serial CPU routines with parallel GPU
implementations.

Combined with the tweaked parameters of the OSQP algorithm, we were able to reduce the
runtime by up to two orders of magnitude. We also established that GPUs are not suited for
small-scale problems for which CPU implementations are generally much faster.

We have implemented the PCG solver on the GPU, written in CUDA C, that is interfaced with
the open-source solver OSQP. Furthermore, we have also implemented the matrix equilibration
and residual calculation of OSQP in CUDA C on the GPU. The complete implementation of the
OSQP-GPU solver is cross-platform, and has been tested on both Linux and Windows.

6.1 Future Work

There are several ways to improve upon our results.

An obvious next step is to extend the implementation of the PCG to a multi-GPU setup. This
opens up the potential to solve problems beyond one billion non-zero elements. There are many
things to consider, such as how to split up the work-load across multiple GPUs, how to ensure
synchronization, etc. Other factors to investigate is the communication and latency between the
GPUs.

It would be interesting to investigate the merits of a concept called uni�ed memory space, which
merges the system memory with the GPU memory and automatically transfers data on demand
between the two memory spaces. This increases the available memory to the amount of system
memory. Furthermore, a compariosn to the multi-GPU setup could be made.

We assumed that the matrix equilibration performed by OSQP for the KKT system is also a
good heuristic for the reduced KKT system solved by the indirect solver. It would be interest-
ing to investigate other heuristic approaches to scale the problem data such that it is a good
preconditioner for the reduced system.

Using a di�erent iterative method instead of PCG, such as the minimum residual (MINRES)
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method, could make use of the KKT system directly. This would eliminate the need to form
the reduced system and would open up possibilities to use di�erent preconditioners, such as the
incomplete Cholesky or incomplete LU preconditioner.
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Appendix A

Benchmark Problems

This chapter describes the problem classes used in the OSQP benchmark. The formulations of
the problem instances are adopted from [27], if not stated otherwise. To distinguish between the
dimensions of the original problem and the reformulated one, we introduce the new variables ñ
and m̃ to refer to dimensions of a QP in the form (3.1).

If not stated otherwise, n is the parameter that is adapted to change the dimension and size of
the problem instance.

A.1 Random QP

The Random QP problem class is of the form

minimize 1
2x

TPx+ qTx

subject to l ≤ Ax ≤ u.

Problem structure The number of variables is n and the number of constraints is �xed
as m = 10n. P is generated as P = MTM , where M ∈ Rn×n with 50% non-zero elements
mij ∼ N (0, 1). A is generated similarly with 50 % non-zero elements aij ∼ N (0, 1), q is also
normally distributed, i.e. qi ∼ N (0, 1). The upper and lower bounds are generated from a
uniform distribution as li ∼ U(−1, 0) and ui ∼ U(0, 1)

The resulting QP has the following dimensions

ñ = n

m̃ = m

A.2 Equality Constrained QP

Equality constrained QP problem class is of the form

minimize 1
2x

TPx+ qTx

subject to Ax = b.
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Problem structure The number of variables is n and the number of constraints is �xed as
m = bn/2c. P is generated as P = MTM , where M ∈ Rn×n with 50% non-zero elements
mij ∼ N (0, 1). A is generated similarly with 50 % non-zero elements aij ∼ N (0, 1). The vectors
q and b are normally distributed, i.e. qi, bi ∼ N (0, 1).

The resulting QP has the following dimensions

ñ = n

m̃ = m

A.3 Optimal Control

The optimal control problem class is of the form

minimize xTTPxT +

T−1∑
t=0

xTt Qxt + uTt Rut

subject to x0 = xinit

xt+1 = Axt +But

− x̄ ≤ xt ≤ x̄
− ū ≤ ut ≤ ū,

where xt ∈ Rnx and ut ∈ Rnu are the state and input to the system at time t, which are
constrained to boxes bounded by x̄ ∈ Rnx and ū ∈ Rnu . The prediction horizon is T and xinit is
the initial state.

Problem structure The dimensions of the dynamical system are de�ned as nx = n states
and nu = 0.5n inputs and the prediction horizon is set to T = 10. The bounds of the boxes
are generated as x̄i ∼ U(1, 2) and ūi ∼ U(0, 0.1). The initial state xinit is drawn from a uniform
distribution, i.e. xinit ∼ U(−0.5x̄, 0.5x̄). The system dynamics are generated as A = I + ∆ with
∆ij ∼ N (0, 0.1) and Bij ∼ N (0, 1). Only stable systems are considered, thus the eigenvalues of
A are forced to be less than 1.

The state cost Q = diag(q) is uniformly generated with 70% none-zero elements as qi ∼ U(0, 10).
The input cost R is chosen to be the scaled identity R = 0.1I. Finally, the terminal cost P is
chosen as the in�nite horizon cost of the LQR problem de�ned by A, B, Q, R.

The resulting QP has the following dimensions

ñ = (T + 1)nx + Tnu

m̃ = 2(T + 1)nx + Tnu

A.4 Portfolio Optimization

The Portfolio optimization problem class can be formulated as a QP of the form

minimize xTDx+ yT y − 1
γµ

Tx

subject to y = F Tx

1Tx = 1

x ≥ 0,
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where x ∈ Rn represents the choice of assets and y ∈ Rk is an auxiliary variable.

Problem structure The number of assets n is determined by the number of factors k as
n = 100k. The factor loading matrix F ∈ Rn×k is generated from a normal distribution,
Fij ∼ N (0, 1) with 50% non-zero elements. The diagonal matrix D ∈ Rn×n is chosen from
dii ∼ U(0,

√
k). The mean return vector µ ∈ Rn is given by µi ∼ N (0, 1) and γ is set to 1.

The resulting QP has the following dimensions

ñ = n+ k = 101k

m̃ = n+ 1 + k = 101k + 1

Note that the parameter k is used instead of n to adapt the instance size.

A.5 Lasso

The Lasso problem class formulated as a QP has the following form

minimize yT y + λ1T t

subject to y = Ax− b
− t ≤ x ≤ t,

where x ∈ Rn is the vector of parameters and y ∈ Rm and t ∈ Rn are auxiliary variables.

Problem structure The number of data points is chosen as m = 100n, where n is the number
of features. The data matrix A ∈ Rm×n has 50% non-zero elements and is drawn as aij ∼ N (0, 1).
Vector b is constructed from a true vector v and additive noise ε as b = Av + ε. The vector v
has 50% non-zero elements and is generated as vi ∼ N (0, 1/n), and the noise is generated from
a normal distribution εi ∼ N (0, 1). The relaxation parameter λ is set to 1

5‖A
T b‖∞.

The resulting QP has the following dimensions

ñ = 2n+m

m̃ = 2n+m

A.6 Huber

The Huber �tting problem's QP formulation is adopted from [21, Eq. 24] and is de�ned as

minimize 1
2z
T z + 1T (r + s)

subject to Ax− b− z = r − s
r, s ≥ 0,

where z ∈ Rn, s ∈ Rm, and t ∈ Rm are auxiliary variables and x ∈ Rn is the feature vector.
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Problem structure The number of data points is chosen to be m = 100n, where n is the
number of features. The problem data A ∈ Rm×n is generated with 50% non-zero elements as
Aij ∼ N (0, 1). The vector b ∈ Rm is generated from a vector v ∈ Rn as vi ∼ N (0, 1/n) and a
noise vector ε ∈ Rm whose elements are de�ned as

ε ∼

{
N (0, 1) with probability p = 0.95

U(0, 10) else

Then b is set to Av + ε.

The resulting QP has the following dimensions

ñ = 3m+ n

m̃ = 3m

A.7 Support Vector Machine

The Support Vector Machine problem class can be formulated as a QP of the following form

minimize xTx+ λ1T t

subject to t ≥ diag(b)Ax+ 1

t ≥ 0,

where t ∈ Rm is an auxiliary variable and x ∈ Rn is the normal vector of the separating
hyperplane.

Problem structure The number of data points is chosen as m = 100n, where n is the number
of features. The vector b is chosen according to

bi =

{
+1 i ≤ m/2
−1 otherwise,

and the problem data A ∈ Rm×n with 50% non-zero elements as

Aij ∼

{
N (1/n, 1/n) i ≤ m/2
N (−1/n, 1/n) otherwise,

and λ = 1.

The resulting QP has the following dimensions

ñ = n+m

m̃ = 2m
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Notation

Sets

N the set of natural numbers
R the set of real numbers
R++ the set of positive real numbers
Rn the set of real valued vectors of dimension n
Rm×n the set of m-by-n real matrices
Sn the set of n-by-n symmetric matrices
Sn+ the set of n-by-n symmetric positive semi-de�nite matrices
Sn++ the set of n-by-n symmetric positive de�nite matrices
[a, b) the set of integers between a and b excluding b, with a, b ∈ N

Matrices and Vectors

1 the vector of ones of appropriate dimension
x+(x−) the vector obtained by setting negative (positive) elements of x to zero
I the identity matrix of appropriate dimension
AT the transpose of the matrix A
Ai the i-th column of the matrix A
(Ax)i the i-th value of the matrix-vector product Ax
diag(x) maps a vector to a diagonal matrix
diag(A) maps the diagonal of a matrix to a vector
nnz(A) the number of non-zero elements of the sparse matrix A

Norms

‖·‖ a vector norm
‖x‖∞ the in�nity-norm of x: ‖x‖∞ = maxi(|xi|)
‖x‖2 the 2-norm of x: ‖x‖2 =

√
xTx

‖x‖K the K-norm of x: ‖x‖K =
√
xTKx, K ∈ Sn++
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Other notation

a ≤ b element-wise inequality between a and b
bxc the largest integer less than or equal to x ∈ R
dxe the smallest integer larger than or equal to x ∈ R

Acronyms

ADMM Alternating Direction Method Of Multipliers

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CG Conjugate Gradient

COO Coordinate

CSC Compressed Sparse Column

CSR Compressed Sparse Row

DDR Double Data Rate

FLOPS Floating Point Operations Per Second

GPU Graphics Processing Unit

LP Linear Program

MHE Moving Horizon Estimation

MINRES Minimum Residual

MIP Mixed Integer Programming

MKL Math Kernel Library

MPC Model Predictive Control

PCG Preconditioned Conjugate Gradient

QP Quadratic Program

SDP Semi De�nite Program

SM Streaming Multiprocessor

SOCP Second-order Cone Program

SpMV Sparse Matrix-vector Multiplication

SQD Symmetric Quasi-de�nite

SQP Sequential Quadratic Programming

STL Standard Template Library

SVM Support Vector Machines
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