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Abstract

Hydrogen-fueled cars are a promising technology for reducing CO2 emissions in the mo-
bility sector. This thesis develops a stochastic receding horizon controller for a hydrogen
refueling station that operates the electrolyzer and compressors such that the usage of
renewable energies, in this case photovoltaic (PV) energy, is maximized and the usage
of grid power is minimized. For this, a model of the electrolyzer and the compressors is
derived and identified from data. Historical hydrogen demand data is fitted to a stochas-
tic model such that samples for a scenario-based stochastic MPC can be generated. The
available PV power is predicted by a neural network using weather forecast data. These
models and predictions are combined into a mixed-integer linear program, which is solved
in real-time every 10 minutes. To allow for better scalability of the problem with respect
to the number of scenarios, a heuristics to decouple the scenarios in the optimization
problem is introduced. The resulting optimization problem is converging within approx-
imately 10 seconds with a prediction horizon length of 24 hours and 96 timesteps. An
evaluation of the stochastic MPC and different deterministic controllers shows that the
stochastic MPC performs equally well to its deterministic counterpart as long as the stor-
age tanks are not close to their lower limit. In the case of almost empty storage tanks,
the stochastic MPC provides an input sequence which leads to a probabilistic satisfaction
of the system constraints. Adjustments to the terminal weights in the MPC are proposed
in order to increase the performance of the MPC in such situations.
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Chapter 1

Introduction

With the recent medial coverage of the climate change, actions against it are on the up-
rise. One of these actions aims at reduction of CO2 coming from the mobility sector, for
example by a phased-out of fossil fuelled vehicles [1]. Apart from electric cars which take
their electricity from a battery, fuel cell cars are also on the upcoming [2]. They utilize
compressed hydrogen in a fuel cell in order to convert it to electricity which can then be
used to drive an electric motor. Compared to battery driven cars, this has the advantage
that the energy-to-weight ratio of hydrogen is much higher than that of batteries or even
of gasoline [3] [4]. However, they present the main disadvantage that the production of
the required hydrogen is quite inefficient. This is due to the inefficient conversion of elec-
tricity into hydrogen [5] and the required compression of the hydrogen in order to get it
to a higher pressure level, such that its energy density is high enough to be used on-board.

The goal of this thesis is to optimize the production of compressed hydrogen in a hydrogen
refuelling station by incorporating available renewable energy, in this case a photovoltaic
(PV) system installed on the roof of the refuelling station. This case study mirrors the
move demonstrator [6] at Empa, Dübendorf (CH).

A simplified setup of the system is shown in Figure 1.1. The main component for hy-
drogen production is the electrolyzer, which converts electricity and water into hydrogen
and oxygen. Next to this, storage tanks are necessary as the electrolyzer is not able
to produce hydrogen fast enough to guarantee fast refuelling. Additionally, compressors
stages are necessary to bring the hydrogen to high enough pressure such that it can be
used to refuel vehicles, where usual fuel-cell cars are charged up to a pressure of 700bar [7].

The optimization is done by a receding horizon controller, which incorporates prediction of
available PV power, the hydrogen demand and the system itself, e.g. the storage tanks.
By optimizing over forward integrated system states, the optimal input sequence over
the prediction horizon is found. This problem is then re-solved after each timestep, in
order to incorporate new state information. In a first step we generate predictions which
can be used in the setting of an optimization problem. The end-goal is to get control
inputs for the electrolyzer and the compressor stages such that the production of the
compressed hydrogen is optimal in the sense of using as little grid electricity as possible,
while satisfying a stochastic hydrogen demand and incorporating available PV power.
In order to capture the stochasticity of the hydrogen demand the optimization problem
takes several different hydrogen demand samples into account resulting in a scenario-based
MPC.
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Figure 1.1: A general overview of the hydrogen refuelling facility. The black lines correspond to
hydrogen flow, while the brownish lines show an electric current. It consists of the electrolyzer
and storage tanks at different pressure levels with compressors between them, where the amount
of differently pressured tanks can also be larger than two.

The thesis is split into 6 parts. In the remainder of Chapter 1, the state of the art for
the different subsystems and our contribution to them is summarized. In Chapter 2, the
electrolyzer, compressors and storage tanks are modelled. The unknown model parts are
fitted with experimental data from the real system at Empa. Chapter 3 considers how
the available PV power is predicted by using weather forecast data which is available
from MeteoSwiss [8]. To this end, different models are fitted to historical data and the
results are compared to each other. In Chapter 4, the hydrogen demand is modelled as
a stochastic quantity which enter the system as a disturbance. In order to incorporate
it into the optimization problem, a hydrogen demand model is derived and samples are
generated from it. Chapter 5 shows how by using a scenario-based stochastic optimization
approach, the hydrogen demand is taken into account by performing the optimization over
various hydrogen demand samples. This is done by incorporating all previously derived
predictions and models into the optimization problem which computes the optimal con-
trol inputs for the overall system by using a mixed-integer linear program (MILP) solver.
Lastly, Chapter 6 concludes the results of this thesis and and gives an outlook to future
work that can be done.

1.1 State of the art

Previous research on electrolyzer modelling [9], [10] show the possibility of modelling
electrolyzers in an accurate and precise manner by including pressure and temperature
dynamics and by directly controlling the power usage of the electrolyzer. However, as
they consider much shorter prediction horizons or only a deterministic setting, they can
use more detailed models in the optimization problem without running into limitations
regarding the convergence time of the optimization problem. This thesis aims at devel-
oping a stochastic one-day ahead MPC scheme which needs to run in real-time, therefore
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the electrolyzer model necessarily needs to be simplified in order for the optimization
problem to be solved in real-time. Furthermore, the electrolyzer available for this thesis is
different from the electrolyzer used in [9] and [10], in the aspect that it does not provide
direct control of the power usage of the electrolyzer. The details of this are discussed in
Section 2.2.
Additionally, we developed a model predictive controller which optimizes the operation
of a whole refuelling station. This means that not only the electrolyzer, but also relevant
compressor stages are included in the problem formulation, leading to an overall better
performance of the whole system. To the best of our knowledge, a combined control
scheme for both electrolyzer and compressor stages in a stochastic setting has not been
proposed in the literature yet.
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Chapter 2

Modelling

As the the name would suggest, a model predictive control scheme requires a model of
the system. The model is used to predict future states of the system and can be used in
an optimization problem to find optimal input values for the system given some objective
function. On a first glance, it might be appealing to find an extremely detailed model
in order to minimize the prediction error of the model. However, each added detail has
to be traded off against an increase in the convergence time of the optimization problem
that it induces.

In a first step, the general construction of the whole system is introduced and then the
different subsystems are considered.

2.1 Introduction to the system

The main components of the move demonstrator at Empa are the electrolyzer, the different
storage tank stages, the refuelling station and the PV system installed on the roof. An
overview can be seen in Figure 2.1. The storage tank stages consist of 30bar, 390bar and
900bar storage tanks: the electrolyzer is connected to the 30bar tank and the refuelling
station to the 900bar tanks. The various storage tanks are connected through compressors:
one is placed at the input of the 390bar tank and one is placed at the input of the 900bar
tank. The 390bar compressor only takes hydrogen from the 30bar tanks, while the 900bar
compressor has the possibility to take hydrogen from both the 30bar or the 390bar tank,
depending which one has the higher pressure.

2.2 Electrolyzer low-level control loop

The electrolyzer itself does not allow for a direct control of the stack currents or even
the overall power consumption as it might be the case for other electrolyzers [9], [10].
The low-level controller implemented within the electrolyzer is controlling the pressure
at the output of the electrolyzer to a certain set-point value as displayed in Figure 2.2.
In order to control the electrolyzer, this pressure is manipulated. A mass-flow controller
is installed at the output of the electrolyzer enabling the control of the mass flow and
therefore the indirect control of the output pressure of the electrolyzer. Assuming that
we want the electrolyzer to produce more hydrogen, we have to increase the set-point of
the mass-flow controller allowing more hydrogen to flow through it. This will decrease the
pressure at the output of the electrolyzer, which will then trigger the low-level controller

5



Electrolyzer

30bar 

tank

390bar 

compressor

390bar 

tank

900bar 

compressor

900bar 

tank

PV Power

Grid Power

Figure 2.1: An overview of the system without the refuelling station. The black lines correspond
to hydrogen flow, while the brownish lines correspond to electric currents.

of the electrolyzer to increase its production rate, i.e. increase the stack currents. Note
that no detailed information about the underlying low-level controller of the electrolyzer
is available apart from the fact that it controls the output pressure to a set-point. Both
the mass flow controller and the low-level controller of the electrolyzer are not perfect and
take a certain time to converge to the desired set-point.

In order to get an accurate model of the whole system over all timescales, these low-level
controllers would need to be identified and included in the model. However, there are
multiple reasons why this is not the best approach for deriving a useful model which can
be used in a receding horizon controller.
Firstly, the pressure dynamics at the output of the electrolyzer are extremely fast com-
pared to the timescale of the MPC. Including them in the model would require small
discretization steps and therefore small timesteps of the MPC in general. This will in-
evitably lead to an extreme increase in the convergence time of the optimization problem,
such that the MPC cannot be run in real-time, given the desired prediction horizon length
of one or two days. Additionally to that, these fast dynamics do not have any major influ-
ence on the performance once the system is in steady-state, making them only a burden
during such times.
Secondly, the identification of the low-level controllers and especially the dynamics behind
them is extremely difficult. This is due to the fact that no temperature or pressure mea-
surements inside the electrolyzer are available to us. As the relationship between stack
current and hydrogen production is dependent on the stack temperature and the pressure
inside the electrolyzer, this requires the estimation of the dynamics without having direct
measurement of all state variables and without being able to directly control the inputs,
i.e. the stack currents. Even though this is theoretically possible, it would be enormously
time consuming.
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Figure 2.2: The low-level controller of the electrolyzer is measuring the pressure at the output
of the electrolyzer and is adjusting the stack currents of the electrolyzer in order to keep this
pressure at a reference set-point value.

Therefore, in this thesis, the low-level controllers will be handled as a part of a cascaded
control structure, where it is assumed for the construction of the MPC that they provide
perfect tracking. This is a reasonable assumption as long as the timescales of the low-level
controller and the mass-flow controller are much smaller than the timescale of the MPC,
which is true as long as the timesteps of the MPC are not too small. In the following,
certain aspects of the non-perfect tracking are discussed and steps to minimizing the error
arising from it are discussed.

2.2.1 Non-perfect tracking of low-level controllers

In practice, the assumption of a perfect tracking for the low-level controllers is never
fulfilled, however, for most times it is accurate enough such that it is reasonable to use
it. In the next few paragraphs we are going to look at situations where the assumption is
heavily violated and which, when they occur often enough, would lead to a non-negligible
error.

Electrolyzer Start-Up

The start-up procedure of the electrolyzer takes around 5-6 minutes during which the
electrolyzer does not produce the full amount of hydrogen anticipated. The mass flow at
the output of the electrolyzer during a start-up procedure can be seen in Figure 2.3. By
not modelling the transient, the model expects full hydrogen production as soon as it is
turned on.
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Figure 2.3: The convergence of the mass flow at the output of the electrolyzer during a start-up
sequence. The left picture provides a general overview of it, while the right picture provides a
close-up look at the mass flow right after giving the start-up command to the electrolyzer. There
is a gap of around 3 minutes until the electrolyzer has started up and after which it takes another
3 minutes until the system has reached the peak value for the mass flow.

An almost full 30bar tank

The fact that the electrolyzer is controlled by the pressure at its output leads to a compli-
cated behaviour if the pressure in the 30bar tank gets close to the pressure at the output
of the electrolyzer, which is around 30bar. In this case the mass-flow controller has no
possibility to generate a large enough mass flow, as the pressure gradient is too small.
This will lead to an increase in the pressure at the output of the electrolyzer and therefore
an decrease in the hydrogen production. This phenomena is shown in Figure 2.4.
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Figure 2.4: The mass flow (blue), 30bar tank pressure (green) and the electrolyzer status (orange)
for a situation where the 30bar tank is almost full. Once the pressure in tank reaches 27 bar,
the hydrogen production decreases.
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2.3 Electrolyzer modelling

The electrolyzer model should capture the relationship between the control input of the
mass-flow controller u and the rate of hydrogen production of the electrolyzer ṁprod.
Assuming a perfect tracking of both low-level controllers, this can be split up into de-
termining the relationship between the control input u and the power consumption of
the electrolyzer pel as well as the relationship between the power consumption of the
electrolyzer pel and the hydrogen production ṁprod:

ṁprod = f(u) = f1(p
el) = f1(f2(u)), (2.1)

where p = f2(u) and f , f1 and f2 are continuous scalar functions.

2.3.1 Model identification and piecewise affine approximation

In order to find the function f , the relationship between control input u and the hydro-
gen production rate ṁprod, the electrolyzer is run at different control input values and
the mass flow for each of them is measured. This is done until the system has con-
verged to a steady-state value and has remained there for a certain amount of time. The
values over the time interval are then averaged, as the quantities are generally strongly
oscillating. Strictly speaking the signal would not have reached a steady-state value if
it oscillates. In this thesis the term steady-state is used to describe a state to which a
signal has converged on average. As reference, the oscillations of the mass flow are shown
in Figure 2.3, while figure 2.5 shows oscillations in the power consumption of the elec-
trolyzer. As the functions f , f1 and f2 are required to be used in a mixed-integer linear
problem, they need to be approximated by piecewise affine functions. The breakpoints
are chosen such that the global minimum of the specific power plot is conserved. The
breakpoints are chosen for u as [10%, 58%, 100%] and the corresponding breakpoints for
p are [18.9966 kW, 92.7341 kW, 184.4097 kW]. The PWA fit is done in a least squares
fashion. The minimum of the specific power specifies the operation point at which the
electrolyzer is the most efficient. By choosing the breakpoints in this way, the MPC will
see an incentive to run the electrolyzer at this operation point over any other point. The
resulting experimental values and the corresponding piece-wise affine approximations are
shown in Figure 2.6.
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Figure 2.5: The power consumption of the electrolyzer with changing control input to the mass
flow controller. The power consumption shows a fast oscillations with a period of around 2
minutes and a slower oscillation with a period of around 20 minutes. This oscillation is not
influenced by changes of the control input.
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Figure 2.6: Experimental data and piecewise affine approximation of it on the relationships
between u and p (top left), u and ṁprod (bottom left), p and ṁprod (top right) and the specific
power and p (bottom right). The specific power is the amount of energy which is required to
produce one kilogram of hydrogen.

2.4 Compressor modelling

Both compressors, the 390bar and 900bar compressor, are high pressure piston com-
pressors. Unfortunately, there is little to no available information regarding the exact
operation of the compressors, except that both compressors have some kind of underlying
low-level controller implemented. On top of that a simple high-level control scheme in
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the form of a bang-bang controller with hysteresis band is currently used. Within this
framework we have the possibility to turn the compressors on or off, but we do not have
direct control of their power consumption or any other aspect of the compressors. In the
following we will take a look at the 390bar compressor and the 900bar compressor, discuss
their currently implemented high-level control scheme and introduce models which can
be used in the MPC formulation.

2.4.1 390 bar compressor

In a first step, the existing high-level control scheme of this compressor stage is introduced.
This part of the system can be changed and can be replaced by the MPC. Afterwards,
the underlying dynamics and implemented low-level control schemes are discussed, which
cannot be replaced and have to be included in the MPC model.

High-level controller

Based on the pressure in the 30 bar and 390bar tanks and on whether the compressor is
currently running, it will either change states or remain turned on or off. A state transi-
tion diagram is shown in Figure 2.7.

390 bar 
compressor

ON

𝑃390𝑏𝑎𝑟 ≥ 393 𝑏𝑎𝑟 ∧ (𝑃30𝑏𝑎𝑟 ≤ 7 𝑏𝑎𝑟 )

𝑃390𝑏𝑎𝑟 ≤ 350 𝑏𝑎𝑟 ∨ (𝑃30𝑏𝑎𝑟 ≥ 15 𝑏𝑎𝑟 )

390 bar 
compressor

OFF

Figure 2.7: The state transition diagram of the 390bar compressor. If none of the transition
occurs, the compressor will remain in its current state.

Low-level controller

The low-level controller of the compressor operates it at two different distinct speed levels.
It will switch from one compressor speed to another when the pressure in the 30bar tank
passes a threshold of 15 bar. This is displayed in Figure 2.8. The desired relationship that
we would like to find is between the power consumption of the compressor and the mass
flow through it, i.e. how much hydrogen it can compress per time unit. Starting from a
physical perspective it is obvious that the compressor will work differently depending on
what the input and output pressures are. If they are further apart, the compressor has to
put in more work, i.e. more power to generate a mass flow. If the two pressure values are
closer to each other, it requires less power to generate a certain mass flow. This means
that in order to have an accurate model for the compressors we would need to include
the input and output pressures of the compressor in the model. This is problematic in
multiple aspects.
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Figure 2.8: The compressor speed for the 390bar compressor with corresponding pressure in the
30bar tank. Once the pressure drops below 15 bar, the compressor speed decreases.

Firstly, as we will see later on, pressure values are not optimal to model the state of a
storage tank and we will be using mass units in order to quantify how much hydrogen is
inside a tank. Even if the relationship between the pressure gradients and the mass flow
is somewhat linear, it will be turned nonlinear by converting the pressure gradient into
a mass gradient. As we require a linear model (except integer constraints) for the MPC
model this would require piecewise-affine approximations, similar to the ones adopted for
the electrolyzer model. This would need to be done for both the input and the output
pressure resulting in an increase in optimization variables, which if the approximated
functions are not simply linear, also include binary variables. Given the combinatorial
nature of mixed-integer programs with respect to the binary variables, this would lead to
a non-neglectable increase in solver convergence time.
Secondly, the input of the compressor is not directly connected to the 30bar tanks but
rather to smaller, so called, blow down tanks, which act as a buffer between the 30bar
tank and the 390bar compressor. The input pressure will be taken from this tank, which
is different from the pressure in the 30bar tank. Therefore, we would need to include
this tank in the model if we want to capture the influence of the pressure gradient in the
compressor model.

All in all, including any kind of pressure dependent dynamics in the compressor model
leads to an unreasonable increase in model size and therefore increase in convergence
time later on in the optimization problem. Therefore, we will ignore the dependence of
the mass flow on the pressure gradient and will simply assume that the compressor will
provide a constant mass flow for a given power consumption. The power consumption
depends on the compressor speed, which we know depends on the mass inside the 30bar
tank. By modelling it in this way we have the possibility to optimize the compressor
actuation by controlling the pressure inside the 30bar tank. The model used for the MPC
is
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ṁcomp,390 = f c(pcomp,390) =

{
a1 · pcomp,390 m30 ≥ m̄30,15bar

a2 · pcomp,390 m30 < m̄30,15bar
, (2.2)

where ṁcomp,390 and pcomp,390 correspond to the mass flow and the power consumption of
the compressor average over a timestep, respectively. This is done by running the compres-
sor with a certain duty cycle, such that it is only turned on for a fraction of the timestep
size. This is less conservative than fixing the compressor status for a whole timestep and
more importantly it requires less binary variables for its implementation. a1 and a2 are
real values that describe the relationship between mass flow and power consumption for
the respective configuration in which the compressor is running. m̄30,15bar denotes the
mass inside the 30bar tank when the pressure is at 15 bar. The precise relationship used
for this transformation is described in Section 2.5.3. For correct operation we constraint
pcomp,390 to

pcomp,390 ∈

{
[0, pcomp,390,max,1] m30 ≥ m̄30,15bar

[0, pcomp,390,max,2] m30 < m̄30,15bar
, (2.3)

where pcomp,390,max,1 and pcomp,390,max,2 are the respective power consumption of the two
modi of compressor speeds at which the compressor can run.

2.4.2 900 bar compressor

Similarly to the 390bar compressor, the currently implemented high-level control scheme
is investigated and a possible model for the dynamics is proposed which can be used in
the MPC. The currently implemented high-level controller works based on a hysteresis
band for the pressure inside the 900bar tank, the corresponding state transition diagram
can be seen in Figure 2.9.

𝑃900𝑏𝑎𝑟,ℎ𝑖𝑔ℎ ≤ 850 𝑏𝑎𝑟

𝑃900𝑏𝑎𝑟,ℎ𝑖𝑔ℎ ≥ 890 𝑏𝑎𝑟

900 bar 
compressor 

ON

900 bar 
compressor 

OFF

Figure 2.9: The state transition diagram of the 900bar compressor. If none of the transition
occurs, the compressor will remain in its current state. P 900bar,high denotes the pressure inside
the high bank of the 900bar tank.

The 900bar tank consist of a low, middle and high bank. The differentiation between
the different banks of the 900bar tanks is important here as, the banks are consecutively
used during refuelling, e.g. the high bank is always used first and therefore it reaches the
lower bound of 850 bar before the other banks do. Even though we distinguish between
the different storage tank banks here, it is possible to model the hysteresis band without
considering separate banks as the high bank is the first to cross the lower threshold from
above and the last one to cross the upper threshold from below. This is due to the way
how the banks are used for refuelling and the way how the compressed mass is distributed
over the different banks, which is displayed in Figure 2.10. Therefore, we can assume

13



that the other two banks are full when P 900bar,high crosses the thresholds, allowing us to
convert the respective pressure thresholds into mass thresholds that can be represented
by the total amount of mass inside the 900bar tanks. This conversion is described in more
detail in Section 2.5.3.
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Figure 2.10: The discharging and charging behaviour of the 900bar tank. The 900bar tanks
consists of a high, middle and low bank, which are used in this order to refuel vehicles. In a first
step, the high bank is used until its pressure is not high enough anymore in order to have a mass
flow between tank and vehicle.

Low-level controller

The power consumption of the low-level controller does not show any kind of partic-
ular level at which it runs, but rather oscillates quite a bit. Therefore, a distinction
between different compressor speeds is not done here. Due to similar reasons as already
explained for the 390bar compressor, the pressure gradient’s influence on the mass flow is
not considered here and a simple relationship between mass flow and power consumption
is proposed:

ṁcomp,900 = a3 · pcomp,900, (2.4)
pcomp,900 ∈ [0, pcomp,900,max], (2.5)

where we use the same PWM scheme as for the 390bar compressor. Therefore, ṁcomp,390

denotes the mass flow through the compressor and pcomp,900 the corresponding power
consumption.

2.4.3 Compressor Identification

In order to approximate the unknown variables in the compressor models (2.2), (2.3),
(2.4) and (2.5) we approximate the mass flow through the compressor ṁcomp by taking
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the difference in mass estimations, see Section 2.5.3, inside the storage tanks over a given
time period1, while calculating the average power consumption during this time. The
average over all data points is taken, resulting in

pcomp,390,max,1 = 20.6350 kW (2.6)
ṁcomp,390,max,1 = 4.2323 kW (2.7)

a1 =
pcomp,390,max,1

ṁcomp,390,max,1
= 4.8756

kWh

kg
(2.8)

pcomp,390,max,2 = 13.5400 kW (2.9)
ṁcomp,390,max,2 = 2.0720 kW (2.10)

a2 =
pcomp,390,max,2

ṁcomp,390,max,2
= 6.5348

kWh

kg
(2.11)

pcomp,900,max = 12.5768 kW (2.12)
ṁcomp,900,max = 4.9379 kW (2.13)

a3 =
pcomp,900,max

ṁcomp,900,max
= 2.5470

kWh

kg
(2.14)

By simply taking the average over the whole dataset, we are biasing the estimates towards
pressure regions which occurred most often in the dataset. This might not be optimal,
however, as there is no obvious better approximation, it is used nonetheless. Note that
this kind of formulation for the compressor model is robust against certain model uncer-
tainties which might lead to constraint violation. For example, if the storage mass in the
390bar tank is close to the lower bound, the mass flow through the 390bar compressor
will be larger than the modelled one, as the pressure gradient will be quite small, leading
to a situation where the mass is further away from the constraints. The same goes for
the upper bound, where the compressor will transfer less hydrogen than the model would
anticipate and therefore prevent overfilling the storage tanks.

Concluding, the most important factor which can be optimized by including the com-
pressor model is the switching between the different compressor speeds for the 390bar
compressor. By keeping the mass in the 30bar tanks high enough, the 390bar compressor
will operate at higher compressor speeds which are generally more efficient than lower
compressor speeds.

2.5 Storage tank modelling

In the following, different possible models for the storage tanks are constructed and their
advantages and disadvantages are listed. Thereafter, the physical limits of the storage
tanks are determined and calculated in a way such that they can be used in a receding
horizon scheme.

1There are no direct mass-flow measurements available.
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2.5.1 One-stage model

The simplest possible model for the storage tanks is to group all of them together into
one unit and disregard the different storage tank stages and the compressors in between.
The corresponding mass dynamics are

mn+1 = mn + ∆mprod
n −∆mdem

n ,

∆mprod
n = f1(p

el
n ),

(2.15)

where mn denoted the total mass, ∆mprod
n the discretized mass-flow which comes from

the electrolyzer and ∆mdem
n the hydrogen demand in the timestep n. For this approach

to work correctly, new high-level controllers need to be implemented in the compressor
stages, making sure that the hydrogen gets correctly distributed in the tanks. The high-
level controllers have to make sure that the 30bar tank is never full, unless all other tanks
are also full, and the 900bar tank should always have enough hydrogen left, such that it
can refuel a car.

The currently implemented controllers on the compressors partially already work in this
way. One refuel of a car is usually enough to bring the pressure in the high bank of the
900bar tank below 850bar, therefore turning the compressor on. Therefore, this com-
pressor effectively turns on every time a car comes to refuel. The hysteresis bands of the
390bar compressor would need to be adjusted, as it can easily happen that the 30bar tank
is full while the 390bar tank is not completely full but still above 350bar, which is the
threshold at which the compressor turns on.

This approach has the major disadvantage that it does not take the power consumption
of the compressors into account, which could be optimized by the MPC. Moreover, it
does not allow to optimize the compressors input in a way such that the compressors
work more efficiently. However, the approach comes with the advantage that it contains
fewer continuous and especially binary variables, allowing for a faster convergence of the
optimization problem.

2.5.2 Multi-stage model

As just mentioned, it might be desirable to include the compressors in the model, in order
to optimize their power consumption in the optimization problem. In the following, two
approaches are proposed, one modelling both compressors and one only modelling the
390bar compressor.

Three-stage model

The most detailed model for the storage tanks contains all three pressure stages and both
the 390bar and the 900bar compressor as separate variables in the model. This way the
optimization problem has information on the power consumption of both compressors and
can optimize them. The resulting mass dynamics are described by
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m30
n+1 = m30

n + ∆mprod
n −∆mcomp,390

n ,

m390
n+1 = m390

n + ∆mcomp,390
n −∆mcomp,900

n ,

m900
n+1 = m900

n + ∆mcomp,900
n −∆mdem

n ,

∆mprod
n = f1(p

el
n ),

∆mcomp,390
n = h1(p

comp,390
n ),

∆mcomp,900
n = h2(p

comp,900
n ),

(2.16)

where m30
n , m390

n , m900
n denote the storage mass in the 30bar, 390bar and 900bar storage

tanks respectively. Between the storage tanks the compressors operate mass flows given
by ∆mcomp,390

n and ∆mcomp,900
n . While the model is accurate and provides the most room

for optimization, it has the major disadvantage that the number of optimization variables
drastically increases. In order to accurately model the compressor stages multiple binary
variables are necessary such that the resulting optimization problem is not converging in a
reasonable amount of time unless the timesteps are significantly increased, the prediction
horizon is shortened and the number of scenarios is decreased. All these steps themselves
lead to a worse end result, such that the introduction of this additional model complexity
brings more problems than it resolves. In the following paragraph a middle way between
modelling all compressors and no compressors at all is presented.

Two-stage model

Due to the structure of the storage tanks and the limited available capacity of the 900bar
tanks, the 900bar compressor does not have much room for optimization, as it usually has
to turn on immediately after a car has been refuelled. Therefore, it is a good trade-off
to leave it out of the problem in order to improve convergence time of the solver. The
storage tanks can be split up into tanks with low pressure, i.e. 30bar tanks, and high
pressure tanks, i.e. 390bar and 900bar tanks. This structure is shown in Figure 2.11 and
the mass dynamics are described in Equation (2.17).

Electrolyzer

30bar 

tank
390bar 

compressor

390bar
&

900bar 

tank

Figure 2.11: A simplified model structure where the 390bar and 900bar tanks are grouped
together and the 900bar compressor is excluded. Note that we are neglecting the connection
between the 30bar tank and the 900bar tank, which is denoted by the dotted line in Figure 2.1,
as it is rarely active.
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mlow
n+1 = mlow

n + ∆mprod
n −∆mcomp

n

mhigh
n+1 = mhigh

n + ∆mcomp
n −∆mdem

n

∆mprod
n = f1(p

el
n )

∆mcomp
n = h2(p

comp
n )

(2.17)

Concluding, the two-stage model gives a reasonable trade-off between reasonable runtime
and accurate modelling compared to the three-stage model. Therefore, the three-stage
model is not tested as a model for MPC.

2.5.3 Pressure to mass relationship for compressed hydrogen

All storage tank models described above contain the mass inside the storage tanks as the
variable to describe the state of the tanks. This is because it allows for simple dynamics,
where the hydrogen produced by the electrolyzer is given by a mass flow and the hydrogen
demand is also given by a certain mass that gets refuelled. However, the mass inside the
tanks cannot be directly measured, whereas pressure and temperature measurements for
the storage tanks are available. Therefore, the goal of this Section is to discuss how a
mass estimate can be calculated from pressure and temperature measurements.
The simplest law to give a relationship between pressure, density and temperature of
a gas is the ideal gas law. From the density and the fixed volume of the storage tank
one can easily calculate the mass contained in it. However, as the name suggests, it is
an idealization. It assumes no interaction between the gas molecules, something that is
definitely not the case for hydrogen stored at 900bar. The Van der Waals equation for
real gases is a bit better as it includes two additional parameters, capturing interactions
between gas molecules. However, both of them are not estimating the mass for the highly
compressed 900bar tank correctly. Therefore, the relationship of pressure, density and
temperature is determined solely based on experimental data, i.e. from data tables [11].
In order to test the accuracy of the relationship based on experimental data, the mass
dynamics shown in Equation (2.15) are calculated by estimating the initial value and then
it is forward integrating it by using the measured mass flow from the electrolyzer and the
measured mass flow at the refuelling station. Next to this, the mass over the same time
interval is estimated purely based on the pressure and temperature measurements. If the
two quantities match closely with each other, the relationship used for the estimation of
the mass is assumed to be usable for the storage mass estimation. The resulting curves
are shown in Figure 2.12.
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Figure 2.12: The forward integrated total storage mass (orange) and the estimated mass based
on pressure and temperature measurements (blue).

2.5.4 Evaluation of electrolyzer and compressor model

In the following the accuracy of the electrolyzer model is tested by applying a control
input sequence to the system, considering the one-stage model (2.15), in order to see how
the forward integrated states deviate from the mass estimate that we get if we apply
the same control input sequence on the real system. The results can be seen in Figure
2.13. For the fact that the model has various instances where it actually fails to predict
the hydrogen production accurately as described in Section 2.2.1, the results are definitely
within an acceptable range, especially considering the long prediction horizon of two days.
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Figure 2.13: The control input and the corresponding mass estimates and mass predictions. The
mass estimates are calculated based on pressure and temperature measurements collected from
the real system when the shown control input sequence is applied. There are multiple recharging
events which lead to sharp drops of the storage mass. The mass prediction is initialized in the
first timestep to the same value as the mass estimate and then forward integrated, based on the
MPC model and the corresponding control input.

Next, we are going to evaluate the compressor models that we have derived in Section
2.4. For this the three-stage-model (2.16) is used in order to forward integrate the same
state as for the evaluation of the electrolyzer. The results are shown in Figure 2.14.
Unfortunately, the results are a lot worse compared to the previous case where only the
electrolyzer model was considered. However, this result should not be a major surprise,
as large and especially fundamental parts of the compressor dynamics were left out in
the model. A small offset in the mass flow prediction can already lead to a constantly
increasing error in the predicted mass values. As a more complicated compressor model
is not possible due to reasons explained in Section 2.4, this mismatch cannot be improved
in a simple way.
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Figure 2.14: The forward-integrated states for the separate storage tanks with the same under-
lying data as in Figure 2.13. It uses the model (2.16) in order to forward integrate the states
with knowledge on the electrolyzer control input, and the status of both compressors.

Concluding, the electrolyzer model delivers a reasonable prediction over a horizon of two
days, while the compressor model performs worse. Nonetheless, as the electrolyzer is the
main power consumer of the overall system an accurate model is especially important for
it. While modelling errors for the compressors are certainly not desirable, in this case
they are not preventable and therefore we let the feedback loop handle them.

2.6 Storage tank constraint prediction

The storage tanks limits are not given by mass constraints but rather by pressure con-
straints. As the chosen model uses mass dynamics in the storage tanks, a pressure-to-mass
conversion has to be done. Similarly to the way how the storage mass is estimated from
the current temperature and pressure measurements in the tanks, the tank constraints
for the prediction horizon are calculated by tank temperature prediction and the fixed
pressure limits. Therefore, tank temperature predictions are calculated as described in
the following paragraph.

2.6.1 Input/Feature selection

In a first step, the variables that have a physical influence on the storage tank tempera-
ture are summarized. As the temperature of the tank depends on the temperature inside
the building, we are first quickly going to summarize the variables having an influence on
the building temperature. Ambient temperature and solar irradiation are the two most
prominent variables for building temperature. Therefore, we are going to consider those
two variables for further analysis on their correlation with the storage tank temperature.
Additionally to the variables that have an influence on the building temperature, pres-
sure changes in the tank itself should also have some influence on the temperature inside
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the tanks. In the following we are going to consider the ambient temperature, the solar
irradiation, the pressure and pressure changes as possible variables which are tested on
whether they are correlated strongly enough to the temperature inside the storage tank.
In order to gain an inside into the correlation of the variables to the storage tank tem-
perature, the Person correlation coefficient (PCC) is calculated which is a measure for
linear correlation between two variables. The resulting scores are displayed in the Table
2.1, where the score is always between -1 and 1, where a score close to zero indicated no
linear correlation and a score close to 1 or -1 indicate a strong linear correlation between
the two variables.

Variable Pearson correlation coefficient (PCC)
Ambient temperature 0.9743

Solar irradiation 0.4821
Pressure changes 0.0316

Pressure -0.1141

Table 2.1: The Pearson correlation coefficient for the four variables and their correlation to the
storage tank temperature.

The results in Table 2.1 have to be taken with a grain of salt. The Pearson correlation
coefficient only gives information about the linear correlation between two variables. If
the two variables are connected through a nonlinear function, this kind of relationship is
not well captured through the Pearson correlation coefficient. However, the overall trend
should still be captured well enough as long as the underlying function connecting the two
variables is monotonically increasing or decreasing. Another issue that arises is possible
time delays between the variables, as they have an influence on the covariance of the two
variables. This can potentially lead to a lower score than the non-delayed variables would
have. In the following the scores in Table 2.1 are discussed.
The ambient temperature is strongly linearly correlated with the temperature in the stor-
age tank with a PCC of around 0.96. The solar irradiation seems to have some linear
correlation with the storage tank temperature. However, if we calculate the the PCC be-
tween ambient temperature and solar irradiation, it is around 0.53, which means that the
correlation between solar irradiation and storage tank temperature can result from the
correlation between solar irradiation and ambient temperature and the strong correlation
between ambient temperature and storage tank temperature. In this scenario it would
not make sense to include the solar irradiation in a prediction model, as all information
should be contained in the ambient temperature. Therefore, the solar irradiation is not
included as a feature of the model, as it seems to not have a significant impact on the
desired prediction. This hypothesis is further validated later on by including it in the
neural network approach and showing that it leads to an increase in the overfitting of
the model. Lastly, pressure and pressure changes do not seem to have any kind of major
impact on the storage tank temperature. Therefore, they are not going to be considered
as inputs to the prediction model.

Concluding, we have one definite input to the prediction model, the ambient temperature.
Solar irradiation, pressure and pressure changes are not included in the model, as their
PCC is too low to justify an inclusion. In the following two different models are introduced
that can be used to predict the tank temperature.
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Auto-regressive approach

Due to the laws of thermodynamics we know that the temperature inside the tanks are
not changing arbitrarily fast and it is clear that temperature values at a certain timestep
depend on temperature values in the previous timesteps. Therefore, an auto-regressive
approach is introduced in order to predict the storage tank temperature values.
The auto-regressive approach takes the last q measurements (including the current one)
of the storage tank temperature and the last p prediction values for the ambient temper-
ature and the next ambient temperature into account and estimates from these the next
value for the storage tank temperature. This can be thought of as a simple discrete-time
system with a transfer function G(z), where the degree of the numerator is q and the
degree of the denominator is p, with the storage tank temperature as an output and the
ambient temperature as an input. In practice, there is always noise from some kind of
source acting on this system. In this approach, the noise is assumed to be i.i.d. with
zero mean, acting on the output of the system resulting in the well known ARX model.
A generalization of the approach would be to include error dynamics, i.e. to introduce
a transfer function H(z), which acts on the noise, before it enters the system. As an
example, in the case where we assume that the denominator of H(z) is the same as the
one of G(z), the resulting approach is the well known ARMAX model, which stands for
auto-regressive moving average with exogenous inputs. In this thesis we restrict ourselves
to the simpler ARX approach, as the usage of a ARMAX model for multi-step ahead
predictions is non-trivial and is not the main focus of the thesis.

The main structure of the ARX prediction scheme is

y[n] = −a1 · y[n− 1]− a2 · y[n− 2]− ...− aq · y[n− q]
+ b0 ·T [n] + b1 ·T [n− 1] + b2 ·T [n− 2] + ...+ bp ·T [n− p], (2.18)

where y[n] is predicted based on past measurements of itself and past and current ambient
temperature forecasts T . The results of this predictions are then fed into the prediction
for the value of y[n+ 1]. This way a prediction of arbitrary length can be generated. The
values for q and p are determined by performing parameter sweeps and optimizing the
mean-squared error calculated by k-fold cross-validation for predictions of length 24, i.e.
1-day ahead predictions. The resulting values for p and q are both 12.

Neural network predictions

The auto-regressive approach has the major disadvantage that in its default form it only
captures linear relationships. This can be solved by mapping the regressors of the linear
model through a non-linear function, e.g. instead of taking u[n−1] in Equation (2.18) the
squared variables u[n− 1]2 can be inputted into the model. However, this requires knowl-
edge about what kind of non-linear relationship exists between u and y which is difficult
to determine. Therefore, a neural network scheme is implemented which is supposed to
learn the non-linear relationship by itself [12]. The prediction is done in a single-shot
manner, i.e. a whole day is predicted in one piece. This is a bit less flexible compared
to the recursive structure of the ARX approach, however, it is much easier to train and
implement than an autoregressive neural network model. If multi-day ahead predictions
are required, previously calculated estimates can be fed into the model.
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The neural network is implemented in Python with the help of Keras [13] as a multi-layer
perceptron and its parameters, i.e. number of hidden layers, number of neurons per layer
and the batch size are determined by choosing an initial search area, then performing
parameter-sweeps on it and optimizing over the mean square error calculated by k-fold
cross-validation with 10 folds. The resulting network consists of two hidden layers, an
input and output layer with the following dimensions:

• Input layer: 28 neurons

• Hidden layer 1: 28 neurons, ReLU activation function

• Hidden layer 2: 106 neurons, ReLU activation function

• Output layer: 24 neurons, linear activation function

• Batch Size: 16

The number of epochs is set to 500 epochs, however, this number of epochs was never
reached during training as early stopping was used to prevent overfitting of the model.
Additionally, as the second hidden layer contains a large number of neurons which means
it is susceptible to overfitting it has kernel and bias regularizers and a Dropout layer at
the output.

Including the solar irradiation as a feature in the neural network and re-optimizing the
whole network architecture leads to a generally better score on the training set compared
to the case where we do not include it, but it degrades the performance on the validation
set, a clear sign of over-fitting due to non-informative features. This happens even though
we are using regularization, dropout layers and early stopping. This further validates the
decision to not include the solar irradiation predictions in the models.

Results of the two approaches

In this section, the two approaches are compared against each other and the better method
is chosen as the prediction model for the MPC. Table 2.2 shows the scores for a one-day
ahead prediction calculated by averaging the results from a k-fold cross-validation. The
neural network performs considerably better than the ARX model.

Method MSE
NN 1.9215
ARX 2.6524

Table 2.2: The mean-square-error (MSE) of the prediction for a one-day ahead prediction cal-
culated. The ARX approach integrates the temperature forward, i.e. for later timesteps in the
prediction horizon it uses previously calculated estimates. The neural network predicts a whole
day by construction. The errors are calculated through k-fold cross-validation.

In order to use the prediction for the MPC, not only the one-day ahead prediction is
important, but also the two- and three-day ahead predictions. Therefore, the two models
are also tested on a independent test-set and 1-, 2- and 3-day ahead predictions are
calculated. The results are shown in Table 2.3. The neural network not only performs
better for the 1-day ahead prediction, but it also manages to reduce the error propagation
better than the ARX approach. The most likely reason is that the ARX model cannot
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capture any nonlinear relationships between the storage tank temperature and the ambient
temperature, which leads to a slight overfitting of the ARX model to the auto-regressive
part of the model, introducing larger errors if the auto-regressive part contains errors,
which is the case for multi-step ahead predictions.

Prediction Length MSE - NN MSE - ARX
1 d.a.p. 1.5806 2.3163
2 d.a.p. 2.2075 3.5285
3 d.a.p. 2.3669 3.9948
Overall 2.0517 3.2799

Table 2.3: The mean-square-error (MSE) on a test set for a three day ahead prediction (d.a.p.)
for both the neural network and ARX model.

Concluding, the neural network approach for the storage tank temperature predictions
are used. Figure 2.15 shows an exemplary temperature prediction during summer. Based
on these temperature predictions, storage mass constraint predictions can be calculated.
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Figure 2.15: The tank temperature prediction (blue) and the tank temperature measurements
(orange) during the summer 2020.
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Chapter 3

PV Power Prediction

In order to incorporate available PV power in the MPC, predictions of it are necessary.
We propose and test two different models, one based on linear regression and one based on
a neural network. Both models use solar irradiation and ambient temperature prediction
data that is available from MeteoSwiss in order to predict the PV power. Additionally,
different models for sunny and cloudy days are constructed. This is done under the premise
that for sunny days the model can be pretty accurate while not necessarily robust against
prediction errors in the weather forecast, but the cloudy model needs to be most of all
robust against such prediction errors, as weather forecasts for cloudy days usually contain
a larger prediction error. In order to split up the problem into a sunny and cloudy model,
each day needs to be classified as sunny or cloudy. Note that this needs to be automated,
as it is part of the control pipeline.

3.1 Weather classification

The weather classification is done in a similar fashion to [14]. The solar irradiation data
x is compared to a global horizontal clear sky model xghi, which predicts the perfect solar
irradiation for a certain location and a certain time. The shape of the curve of the solar
irradiation prediction is compared to the clear-sky model predictions and if the curves
differ by too much the day is classified as not being sunny. The whole procedure is done
for x and xghi of length 24 with 60 minutes between the values, i.e. for hourly values
during one whole day. The criteria and the hand-tuned threshold values used to define
’closeness’ of the two curves are listed below.

• Criteria 1: Absolute difference between mean value

|mean(xghi)−mean(x)| < λ1

• Criteria 2: Absolute difference between maximum values

|max(xghi)−max(x)| < λ2

• Criteria 3: Difference in line length

λ3 < L(xghi)− L(x) < λ4,
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where
L(x) =

∑
i

√
x2i + ∆t2i =

∑
i

√
x2i + 602

• Criteria 4: Standard deviation of irradiation slope

σ(x) < λ5,

where
σ(x) =

1

mean(x)

√
mean((s(x)−mean(s(x)))2)

and

si(x) =
xi+1 − xi

∆ti
=
xi+1 − xi

60

• Criteria 5: Maximum value difference in slope of irradiation

max(|s(xghi)− s(x)|) < λ6

If any of the criteria above is violated, the day is classified as not sunny. The thresholds
are hand-tuned to

• λ1 = 55

• λ2 = 69

• λ3 = −73

• λ4 = 100

• λ5 = 0.015

• λ6 = 1.25

The algorithm1 is also able to detect general clear sky periods in time-series data, e.g. it
is able to classify sunny and cloudy parts within a day. Here we only use it on full days,
i.e. as soon as a day shows slight signs of cloudy behaviour, it is classified as such.

3.2 Data preprocessing

The predictions are made in one hour timesteps, as the weather predictions are available
at that frequency. The PV power measurements are available at much higher frequency
and have to be averaged or sub-sampled. For sunny days it does not really make large
of a difference whether a specific value is taken or not. It might be even beneficial to
subsample the PV power data, i.e. simply take the PV power measurements at one par-
ticular point in the data without averaging it. This is because averaging over a certain
time window always biases the measurements. However, if we are not sure whether a cer-
tain sample also represents the surrounding samples well enough, i.e. as it would be the
case for a short drop in PV power production due to a cloud moving in front of the sun,

1We are use the detect_clearsky algorithm from the pvlib python library
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sub-sampling might perform worse than averaging. This becomes especially problematic
for cloudy days, where frequent drops in PV power occur. As there is no way of predict-
ing these with the available weather forecasts, this thesis focuses on trying to predict the
average power during the 1-hour intervals. Therefore, the PV power measurements are
averaged over a 1-hour window.

3.3 Linear regression on PVUSA model

The PVUSA model is a often used model to perform regression on for PV power pre-
dictions [15]. It assumes the following nonlinear relationship between solar irradiation I,
ambient temperature T and the PV power production pPV :

pPV = θ1 · I + θ2 · I2 + θ3 · I ·T (3.1)

The usual PVUSA model also includes the wind speed, however, there is no strong cor-
relation for it as described in [16] and we do not have any prediction data for it. θ1, θ2
and θ3 denote the unknown parameters which have to be determined through regression.
The parameters that we get by using a least squares approach are θ1 = −5.1195× 10−2,
θ2 = −2.2385 × 10−5 and θ3 = 6.8615 × 10−4 for sunny days and θ1 = −4.9277 × 10−2,
θ2 = 5.1174 × 10−7 and θ3 = 1.1195 × 10−4 for cloudy days with a root mean squared
error of 3.6643 and 4.6113, respectively.

3.4 Neural network predictions

As already seen before, multilayer perceptron networks have the capability of modelling
arbitrary continuous functions [12]. In the following, two networks are introduced, one
for sunny days and one for cloudy days and afterwards their performance compared to
the PVUSA model is calculated.

3.4.1 Neural network architecture

Both neural network models are implemented in Python with the help of Keras [13] and
consist of a total of 3 hidden layers with a variable amount of neurons in them. Similarly
to the network constructed for storage tank temperature prediction in Section 2.6, the
network parameters here are partially identified through parameter sweeps over a pre-
selected set of parameters by choosing the parameters resulting in a minimal root mean
squared error calculated by k-fold cross-validation. All relevant information for the sunny
and the cloudy model are summarized in the following paragraph.
The model for sunny days has the following parameters:

• Input layer: 34 neurons

• Hidden layer 1: 34 neurons, ReLU activation function

• Hidden layer 2: 64 neurons, ReLU activation function

• Hidden layer 3: 48 neurons, ReLU activation function

• Output layer: 17 neurons, ReLU activation function
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• Batch Size: 32

Additionally, there are dropout layers at the output of the second and third hidden layers
with a drop-rate of 0.1 for the second hidden layer and 0.2 for the third hidden layer.
Moreover, both of these layers contain kernel and bias regularizers with a value of 0.1 for
both regularizers and both layers.

The model for cloudy days has the following parameters:

• Input layer: 34 neurons

• Hidden layer 1: 34 neurons, ReLU activation function

• Hidden layer 2: 96 neurons, ReLU activation function

• Hidden layer 3: 64 neurons, ReLU activation function

• Output layer: 17 neurons, ReLU activation function

• Batch Size: 64

Similarly to the sunny model, there are dropout layers at the output of second and third
hidden layers with a drop-rate of 0.1 for the first hidden layer and 0.2 for the second
hidden layer and kernel and bias regularizers with a value of 0.1 and 0.0001 for both
regularizers and the second and third hidden layer respectively.
Both models train for a maximum of 1250 epochs, while early stopping is used leading to
a lower number of actual epochs which is usually around 200-300.

3.5 Results of linear regression and neural network approach

In order to compare the two approaches, the root mean squared error and the mean
absolute error are calculated by performing k-fold cross-validation with 10 folds. The
resulting errors are then averaged over all folds and are shown in Table 3.1.

Method RMSE MAE
NN - sunny 2.7800 1.6565

PVUSA - sunny 3.6601 2.5597
NN - cloudy 4.4488 2.5750

PVUSA - cloudy 4.9885 3.0591

Table 3.1: The root-mean-square-error (RMSE) and the mean-absolute-error (MAE) for the
one-day ahead prediction calculated by k-fold cross-validation.

It is directly obvious that the neural network approach is performing better than the
linear regression based model. Therefore, the neural network models are used for the PV
power predictions. In the following a simple scheme is introduced to further improve the
performance of the neural network approach.

3.6 Rolling window approach

In order to adapt to seasonal differences and varying external factors which we do not
measure, a rolling time window approach is implemented. We pre-train the neural net-
work offline on the whole dataset. This model is then retrained each time we make a
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new prediction based on the data contained in the time window. This means we are only
incorporating recent data into the training which results in a small temporal distance
between the prediction- and the training data. In order to exclude outliers from entering
the training phase of the time window, a list of previous days is constructed that contain
useful and good-quality training data. This list is updated at the end of each day by
evaluating whether the day was an outlier or not and including the day in the list if it was
no outlier. This is done by comparing the predicted PV power against the measured PV
power averaged over the whole day. If the averages differ by too much, the day is labelled
as an outlier.

In order to validate the performance of the rolling time window approach, the data is split
up into a training set and a test set. First, the simple neural network described above
is trained on the training set. Thereafter, the rolling time window approach is tested on
the test set with the pre-trained model as a base model. As the training and test set
are completely independent of each other, we have no influence on the score during the
evaluation of the rolling window approach.

3.6.1 Results of rolling window approach

Even though, the approach has a multitude of hyper-parameters, we are going to concen-
trate on only two of them: the learning rate and the window size. The rest is fixed to
either the default values given by TensorFlow and/or Keras or are fixed to some custom
selected value. Note that the selection of learning rate here is especially important as the
training set is incredibly small and the main idea of the rolling window approach is to
only slightly change the weights of the network, such that the prediction is biased towards
data from the time window, without actually overfitting to it.
The learning rate and the window size are optimized in order to minimize the root mean
square error on the test set. This is done in an iterating fashion, i.e. the optimization
variable is switched between learning rate and window size. This iterative approach is
stopped once the optimal values for both variables have not changed during one whole
iteration. The function between the hyper-parameters and the error are non-convex, such
that we get multiple local minima. The minima for the learning rate was clearly the best
for 0.0001 (independent for the window size), where the default value (also used for the
offline training) is equal to 0.001. The lowest of these local minima with respect to the
window size are shown in the Tables 3.2 and 3.3 for sunny and cloudy days respectively:

Method RMSE
NN - No retraining 2.7865

NN - WS: 15 2.4694
NN - WS: 17 2.4510
NN - WS: 25 2.4496

Table 3.2: The root-mean-square-error (RMSE) for the one-day ahead prediction of sunny days
with the rolling time window scheme for different window sizes (WS). The first entry corresponds
to the case where no retraining is done before the fitting, which would correspond to a window
size of zero. The optimal learning rate is equal to 0.0001 for all of the window sizes above.

Table 3.2 shows a clear improvement of the PV power prediction for sunny days. For
cloudy days, however, a large improvement fails to appear. The data in Table 3.3 still
shows a slight improvement such that it is still useful to use the new approach. The dif-
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ference between the sunny and cloudy day models is most likely due the fact that in the
sunny model we can assume little to no prediction error in the weather forecasts. That
way the model can fit the data accurately to the most recent data in the time window.
For cloudy days on the other hand, the error in the weather forecast can be considerably
higher such that the network has difficulties to accurately fit the data and it remains in a
state where it is robust against most forecasting errors, but fails to provide an extremely
accurate prediction. However, this issue cannot be solved by further tuning the network,
but has to be solved by improving the weather forecasts in some way. In the end we
choose a window size of 25 for the sunny model and 28 for the cloudy model2.

Method RMSE
NN - No retraining 4.1788

NN - WS: 15 4.1090
NN - WS: 28 4.1131

Table 3.3: The root-mean-square-error (RMSE) for the one-day ahead prediction of cloudy days
with the rolling time window scheme for different window sizes (WS). The optimal learning rate
is equal to 0.0001 for all of the window sizes above.

Concluding, the PV power of a particular day is estimated by classifying that day as
being either sunny or cloudy, retraining a previously trained model on recent data and
then predicting the PV power based on this retrained model. In this way the model is able
to adapt to changing parameters automatically. This approach is made robust against
outliers by keeping track of recent high-quality data which can be used for the retraining
phase. Figure 3.1 shows some predictions during April 2020.
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Figure 3.1: The actual PV power (orange) and the predicted PV power (blue) during April 2020.

2A WS of 15 results in a lower value in this case according to Table 3.3, however the difference compared to a
WS of 28 is less than 0.005 and a larger window size is generally less problematic from the aspect of overfitting.
Therefore, the larger window size value is chosen here.

32



Chapter 4

Hydrogen Demand

Car refuelling cannot be precisely predicted and is most accurately modelled by a stochas-
tic variable. In this sense, the major goal of this section is to determine statistical in-
formation about the hydrogen demand and to construct a statistical model in order to
generate artificial samples which can be used in the MPC.

The modelling of the hydrogen demand is split up into three sub-problems. Firstly, how
many cars arrive within a day, secondly, what is the arrival time distribution within the
day and lastly, how much hydrogen gets refuelled.
In a first step we split the data into two parts: weekdays and weekends. This is done
under the consideration that noticeably fewer cars refuel during weekends. Therefore, the
assumptions listed below only have to hold separately within weekdays and weekends.

Assumptions:

• The cars behave independently from each other, i.e. the arrival of one car does not
have an influence on the arrival of other cars.

• The probability that a car arrives within a day is constant over all days (apart from
the distinction of weekdays and weekends).

With these two assumptions it is possible to model the number of cars per day through a
Poisson distribution. The Poisson distribution is given by the following probability mass
distribution:

Pr(X = k) =
λk · e−λ

k!
. (4.1)

It contains one free parameter which is fitted through a maximum likelihood estimate:

λ̂MLE =
1

n
·

n∑
l=1

kl, (4.2)

where kl describes all observed number of cars per day, i.e.

kl ∈ {0, 1, 2, ..., n− 1}.

In essence this simply means that the mean value of the samples and of the fitted dis-
tribution is equal and therefore we have an unbiased estimator. Before performing the
actual fit, the data has to be preprocessed.
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4.1 Data Preprocessing

For the Poisson distribution the average arrival rate for each day has to be equal. In
the available data this is not inherently given over the whole dataset as the number of
customers has increased in recent years. This can be seen in Figure 4.1. There are
different possibilities to cope with the problem of increasing number of customers. We
can take the data and actively remove customers from it until we have a constant number
of customers at each timestep over the whole dataset. Another possibility is to make use
of the somewhat constant number of customers at the beginning of the data-set and only
perform the fit on this part. The first approach is flawed if the data do not have enough
regular customers as the amount of data we need to remove is too large. Furthermore, the
less customers we have the more the assumptions of the Poisson distribution are violated,
as unique decisions of customers have a greater impact in practice and do not get averaged
out by a large number of other customers. As the estimated number of active customers
is already quite small and therefore the number of regular customers is even smaller, the
second approach for preprocessing the data is chosen.
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Figure 4.1: The estimated number of active customers which is calculated for each day by taking
the sum of all customers that were recharging within the last 4 week.

4.2 Poisson distribution fitting

The interval which is used for the fit starts at the start of April 2017 and goes until the end
of September 2018. The fitted parameters are λweekday = 1.29745 and λweekend = 0.3544.
The resulting Poisson distributions can be seen in Figure 4.2 and 4.3 for weekdays and
weekends respectively.
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Figure 4.2: Comparison of the fitted Poisson distribution (orange) to the collected data for the
weekday model.

0.0 0.5 1.0 1.5 2.0
Number of cars

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

Probability for N cars on a weekends
Empirical data
Fitted Poisson distribution

Figure 4.3: Comparison of the fitted Poisson distribution (orange) to the collected data for the
weekend model.

4.3 Evaluation

In a first step a Pearson’s chi-squared test is performed in order to validate the fit of
the Poisson distribution to the samples [17]. Under the null hypothesis that the sample
come from the fitted Poisson distribution we get a p-value of 0.7536. Therefore, for normal
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significant levels, e.g. 5%, there is no reason to reject the null hypothesis. In the Table 4.2
the results of a Pearson’s chi-squared test performed on the samples of different weekdays,
i.e. Monday, Tuesday, etc., is shown. Similar to the general case, there is no statistical
reason to reject the null hypothesis, e.g. the number of cars on a Monday are drawn from
the fitted Poisson distribution, under a reasonable significance level. The same holds true
for weekends, see Table 2.1.

Weekday p-value
Overall 0.7536
Monday 0.2487
Tuesday 0.7717

Wednesday 0.7867
Thursday 0.5367
Friday 0.7037

Table 4.1: The p-value obtained through a Pearson’s chi-squared test under the null hypothesis
that the samples are drawn from the fitted Poisson distribution for weekdays. The scores for
Monday, Wednesday and Friday have to be taken with caution as they include in more than 20%
of their bins less than 5 bin counts which is often a minimal criteria for the Pearson’s chi-squared
test. This problem cannot be avoided with the current amount of data available.

Weekend p-value
Overall 0.7906
Saturday 0.8484
Sunday 0.8178

Table 4.2: The p-value obtained through a Pearson’s chi-squared test under the null hypothesis
that the samples are drawn from the fitted Poisson distribution for weekends and holidays.

In order to use the Poisson distribution later on to generate samples for the stochastic
MPC, the mean arrival rate has to be changed according to the number of active cus-
tomers. This can be done by multiplying λ with the ratio ntest

ntrain
, where ntrain is the number

of customers in the data set that we use to fit the Poisson distribution and ntest is the
number of customer at the time when the sample should be generated.

4.4 Arrival rate within a day

In order to get useful hydrogen demand data for the stochastic MPC the number of cars
alone is not enough as we also need to estimate their arrival time. The most straight
forward approach is to take the empirical arrival distribution in order to approximate
the probability distribution of the arrival time. Due to the finite amount of samples the
empirical probability distribution has to be split up into bins. Due to the low number of
samples that are available, the bins are chosen rather large with a size of half an hour
for the weekends and holidays and a quarter hour for the weekdays. This is done under
the consideration that if a bin does not contain a sufficient amount of samples it does
not represent the underlying probability distribution well enough. Furthermore, bins that
still only contain a small number of samples are assigned a probability of zero, under the
argumentation that they represent outliers that are not worth to be considered. In order
to use this discrete probability distribution for the MPC, assumptions about the arrival
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times within each bin have to be done, as the MPC has variable sized timesteps. As there
is no indication that cars always arrive within a certain part of one hour more often than
in others, an uniform distribution is assumed within each bin. This way we can generate
samples with minute precision and allocate them to the correct timesteps in the MPC.
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Figure 4.4: The empirical distribution for the arrival time of cars during a weekday. The bin
size is chosen as 15 minutes. Within each bin, an uniform distribution is assumed.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Arrival hour

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

Arrival time during a weekend

Figure 4.5: The empirical distribution for the arrival time of cars during a weekend day. The
bin size is chosen as 30 minutes due to a lack of data for weekends. Within each bin, an uniform
distribution is assumed.
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4.5 Amount of hydrogen refuel

Similarly to the arrival rate distribution introduced above, the amount of hydrogen is
also determined from the empirical probability distribution. The empirical distributions
for weekdays and weekends can be seen in Figures 4.6 and 4.7. Here we have made the
assumption that the amount of hydrogen that gets refuelled is independent on the arrival
time of the car. It is thinkable that there is a dependence between the arrival time and
the amount that gets refuelled, however due to a lack of data this kind of a dependence
would be difficult to capture. If more data is available in the future, this point of the
hydrogen demand model can be reconsidered.
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Figure 4.6: The empirical distribution for the amount of hydrogen a car refuels if it arrives during
a weekday. The bin size is chosen as 0.1 kg. Within each bin, an uniform distribution is assumed.
Note that there are sometimes cars coming that do only charge very little hydrogen. Therefore,
there are even bins close to 0kg.
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Figure 4.7: The empirical distribution for the amount of hydrogen a car refuels if it arrives during
a weekend day. The bin size is chosen as 0.2 kg due to a lack of data for weekends. Within each
bin, an uniform distribution is assumed.

4.6 Sample Generation

In order to generate samples for the MPC, we first determine whether the day for which
the samples should be generated for is a weekday or not. Then, the number of active
customers is estimated and the mean arrival rate in the Poisson distribution is scaled
accordingly. Afterwards, a sample from the Poisson distribution is taken, giving the
number of cars for the particular day. For each of the cars arriving within the day, a
sample from the arrival time distribution and the refuel amount distribution is taken and
allocated to the corresponding car. This results in a set of events which contains all
relevant information for the MPC. Each event within the set is then allocated to the right
timestep within the prediction horizon of the optimization problem. This procedure can
be repeated multiple times in order to generate samples for multiple days.
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Chapter 5

Controller Design

In this chapter the previously developed models and predictions are combined into an op-
timization framework which is repeatedly solved by taking the latest state measurements
into account. In a first step a simple deterministic problem, based on the one-storage-
stage model, is constructed. Thereafter, the problem is extended to include the 390bar
compressor according to the two-storage-stage model and the two models are compared to
the existing bang-bang controller. Following this, the deterministic problem structure is
adjusted to a stochastic setting to capture the stochasticity of the hydrogen demand. As
the stochastic approach scales poorly with increasing problem size, it is relaxed and dif-
ferent relaxing heuristics are compared to the original stochastic problem in a downsized
problem formulation. The resulting relaxed stochastic problem performance is compared
to the deterministic controllers. Afterwards, the scalability of the MPC with respect to
prediction horizon length and the available PV power is tested. Lastly, the MPC be-
haviours for realistic varying electricity prices is tested which shows the flexibility of the
derived MPC formulation.

5.1 Simple MPC controller

The simplest possible problem formulation for the system is introduced in this section.
It uses the one-stage storage model and therefore does not include the compressors and
their power consumption.

5.1.1 Problem structure

Before stating the problem, some notation is introduced. ∆ti denotes the timestep size
of the i-th time step in the prediction horizon, which is used in combination with peli and
ṁprod
i , the power consumption and mass flow of the electrolyzer, respectively. The energy

consumption and the mass production during one timestep can be simply calculated by
multiplying peli and ṁprod

i with ∆ti. This allows for a problem formulation with variable
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timestep size in the prediction horizon.

min
N−1∑
i=0

(cgridi · pgridi · ∆ti + cPVi · (peli − p
grid
i ) · ∆ti + cswitch · |δeli − δeli−1|)

+ cterm ·mN (5.1)

s.t. mi+1 = mi + ∆mprod
i −∆mdem

i (5.2)
mmin
i ≤ mi ≤ mmax

i (5.3)
mend ≤ mN (5.4)

∆mprod
i = f 1(peli ) · ∆ti (5.5)

pel,min · δeli ≤ peli ≤ pel,max · δeli (5.6)

ṁprod,min · ∆ti · δeli ≤ ∆mprod
i ≤ ṁprod,max · ∆ti · δeli (5.7)

peli ≤ pgridi + pPVi (5.8)
δeli ∈ {0, 1} (5.9)
m0, δ

el
−1 given.

Once this problem is solved, we take pel0 , the power consumption of the electrolyzer, and
δel0 , the electrolyzer status, and apply those inputs to the system. pel0 is first mapped
through the inverse function of f 2, see Section 2.3.1, in order to get the control input
which can be directly applied to the system.
In the following we quickly go through all important parts of the optimization problem,
describe their use and how they are effectively implemented.

• Objective function (5.1): In each timestep we have a cost term for power that we
take from the grid and for PV power that we use. The reason why the used PV
power is also weighted is in order to prevent the controller from using PV power in
an inefficient manner. This can be thought of as a term that represents the cost at
which we could sell the PV power instead of using it ourselves.
Additionally, we weight the switching of the electrolyzer state δel in order to give
the controller an incentive for not switching the electrolyzer status too often, as it
contains transient dynamics that we have not modelled. The 1-norm used for this
can be easily implemented by using epigraph variables.
Last but not least, in order to prevent the optimization problem from converging
towards the lower bound of the mass in the storage tanks, we give the controller an
incentive of having hydrogen in the tank at the end of the horizon. Section 5.2.1
discusses the precise choice of this weight in more detail.

• Storage mass dynamics (5.2) and limits (5.3), (5.4): The dynamics of the one-stage
storage tank model with the corresponding constraints. The limits for the mass are
assumed to be deterministic and come from the storage tank constraint prediction
that is performed in Section 2.6. The hydrogen demand ∆mdem

i in this case is also
assumed to be known, and is drawn from the probability distribution derived in
Chapter 4. In order to improve the performance of the MPC for lower storage mass
values a terminal constraint is introduced which requires the storage mass at the
end of the prediction horizon to be slightly higher than the usual lower storage mass
constraint.
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• Relationship between power consumption and hydrogen production of the elec-
trolyzer (5.5): Here the piecewise affine approximation derived in Section 2.3.1 is
used. As the approximation is a concave function, which can be modelled through
a min-function and the function value is indirectly minimized (it is upper bounded
by the variable that is actively minimized), the equality constraint can be modelled
by using inequality constraints. This approach is valid as long as these inequality
constraints are tight.
Lets consider the case where the bounds are not tight. This corresponds to a situ-
ation where the optimization problem actively decides that the electrolyzer should
run with a higher power consumption while producing less hydrogen than it could
with this level of power consumption. There are two situations where this can oc-
cur. Firstly, if the desired hydrogen production is below the lower bound of what is
physically possible with the given discretization step-size. By actively constraining
the hydrogen production as it is done in Equation (5.7), this scenario will never
occur. Secondly, if the available PV power is available in abundance and we do not
weight the use of it, the optimization problem might converge to a solution where
the inequality constraints are not tight. In this case, however, we also know that the
same optimal solution is also attained at the constraints, as the underlying problem
with fixed binary variables is a linear program. In this case we can simply map the
input to the border of the feasible space, which will not change the optimal objective
value. Note that this is a highly artificially created situation and is not happening
with the available PV power of the system.

• Power constraints (5.8): The power used for powering the electrolyzer peli has to be
taken from the grid and/or the available PV power. An inequality constraint is used
in order to allow the possibility of not using all available PV power, for example
in order to prevent inefficient use of it by running the electrolyzer at low efficiency
levels, i.e. at low power consumption levels.

Note that for some of the constraints it is assumed that the power from the grid is
minimized, which means that we require cgridi > 0. This makes sense in the context that
we want to use as little power from the grid as possible.
Before evaluating the performance of this MPC formulation, we are going to introduce
the two-storage-stage MPC formulation such that a direct comparison between the two
can be made.

5.2 Complex Problem Structure

The previous problem structure has the major disadvantage that it does not take the power
consumption of the compressor stages into account. As already discussed in Section 2.5.2,
from a practical point of view, the two-stage storage tank model has the best trade-offs
between accurate modelling and reasonable runtime, by only modelling the compressor
stages that have actually the flexibility to be optimized. In the following the adjusted
optimization problem structure is presented.
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min
N−1∑
i=0

(cgridi · pgridi · ∆ti + cPVi · (peli + pcompi − pgridi ) · ∆ti + cswitch · |δeli − δeli−1|)

+ cterm · (mlow
N +mhigh

N ) + cterm,high ·mhigh
N (5.10)

s.t. mlow
i+1 = mlow

i + ∆mprod
i −∆mcomp

i (5.11)

mhigh
i+1 = mhigh

i + ∆mcomp
i −∆mdem

i (5.12)

mlow,min
i ≤ mlow

i ≤ mlow,max
i (5.13)

mhigh,min
i ≤ mhigh

i ≤ mhigh,max
i (5.14)

mlow,end ≤ mlow
N , mhigh,end ≤ mhigh

N (5.15)

∆mprod
i = f 1(peli ) · ∆ti (5.16)

∆mcomp
i = f c(pcompi ) · ∆ti (5.17)

pel,min · δeli ≤ peli ≤ pel,max · δeli (5.18)
0 ≤ pcompi ≤ pcomp,maxi (5.19)
pcomp,maxi = hc(mlow

i , m̄30,15bar) (5.20)

peli + pcompi ≤ pgridi + pPVi (5.21)
δeli ∈ {0, 1} (5.22)

mlow
0 , mhigh

0 , δel−1 given.

After finding the optimal solution, pel0 , δel0 and pcomp0 are applied to the system. The
electrolyzer inputs pel0 and δel0 are applied in the same fashion as in the simpler model
described above. From the compressor power consumption the ratio of it to the maximum
possible compressor power consumption is calculated and the compressor is run for that
fraction of the time during the timestep. This follows the procedure described in Section
2.4. In the following, the aspects of the problem formulation which differ from the simpler
problem described above are summarized:

• Objective function (5.10): Different from (5.1), we include here different terminal
state weights. The weight on the total mass that remains inside the tanks at the
end of the prediction horizon is the same as in the simpler case. Additionally, a
weight term for mass in the higher pressure tanks is included in order to incentives
the controller to move hydrogen into it. The details of how the weight term cterm,high

is calculated is described in Section 5.2.1.

• Storage mass dynamics (5.11), (5.12) and limits (5.13), (5.14), (5.15): In contrast
to the simpler model, the storage tanks are split up into two stages as described in
Section 2.5.2. They are coupled by the discretized mass flow through the compressor
given by ∆mcomp

i

• Relationship between mass flow through the compressor and its power consumption
(5.17): As described in Section 2.4, the compressor can operate in two different op-
eration points where it is assumed that it compresses a constant amount of hydrogen
per time unit. The upper limit of pcompi is therefore different depending on the mass
in the 30bar tank, which is modelled in (5.19) and (5.20). This requires the introduc-
tion of an additional binary variables which is 0 or 1 depending on whether mlow

i is
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below or above the threshold of 15 bar. The precise implementation of (5.19), (5.20)
and (5.17) and this additional binary variable is quite tedious as multiple additional
continuous variables have to be introduced in order to model it in a linear fashion.
For interested reader, the implementation can be found in the Appendix A.

Before performing the evaluations of the two model predictive controllers and the currently
implemented bang-bang controller, the terminal state weight is discussed in more detail.

5.2.1 Terminal state cost

The goal of the terminal state cost is to give an incentive to having mass inside the storage
tanks at the end of the prediction horizon. This way, the optimization problem is not
just producing the bare minimum it has to in order to remain inside the constraints. The
choice of this weighting term has a large influence on the behaviour of the controller.
Choosing it too high leads to the electrolyzer running all the time as long as the storage
tanks are not full. Choosing it too small does not solve the problem at hands. The goal
is to have a weight which keeps the storage tanks approximately at a constant level. The
general idea is to approximate the amount of energy necessary to charge the storage tanks
to that level and the cost associated to doing that. Assuming that the electrolyzer can
be run at its optimal operation point, the energy necessary can be easily calculated. The
cost associated with this energy, however, is non-trivial to calculate as the system has
access to both grid and PV power, where the cost for PV power is lower than the cost for
grid power. In a first step we assume that no PV power is available which results in

cterm = − ĉ
grid,avg · pel,nom

f 1(pel,nom)
, (5.23)

with ĉgrid,avg being the estimated average cost for power taken from the grid and pel,nom is
the nominal operation point of the electrolyzer. Looking at the units of the weight cterm
we get

CHf
kWh · kW

kg
h

=
CHf
kg

, (5.24)

as we would expect it to be. Choosing this terminal weight will lead to the situation where
the electrolyzer is running all the time until the storage tanks are full. This is due to the
fact that the electrolyzer essentially can run for free, as the power used to produce the
hydrogen gets compensated by the terminal cost. As there is a small weight on turning the
electrolyzer on or off, there is no incentive to turn the electrolyzer off before the storage
tanks are full. This kind of a behaviour is non-optimal for the goal we are trying to
achieve. As long as the hydrogen demand is not unreasonably high, it is valid to assume
that a certain amount of PV power is available to use after the prediction horizon in order
to produce excess hydrogen. Taking this into account in Equation (5.23) results in a lower
terminal weight, such that running the electrolyzer without enough available PV power
does not get fully compensated by the terminal cost. Therefore, a better alternative for
the cost is

cterm = −γ ·
ĉgrid,avg · pel,nom

f 1(pel,nom)
, (5.25)
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with γ ∈ [0, 1] being a tuning variable. For all of the following experiments, unless
otherwise stated, γ = 0.9 is chosen, as it prevents the electrolyzer from running all the
time while still giving the electrolyzer an incentive to run if enough PV power is available.
An intuitive understanding for this factor can be gained by rewriting (5.23) into the form

cterm = − ĉ
grid,avg · (pel,nom − p̂PV ) + ĉPV,avg · p̂PV

f 1(pel,nom)
, (5.26)

where p̂PV is the estimated available PV power which can be used to produce excess
hydrogen and ĉPV,avg is the estimated cost for using PV power. For interested readers a
possible way to estimate p̂PV based on the hydrogen demand and PV power predictions
is introduced in Appendix B. Because of its sensitivity to the hydrogen demand and the
high influence the terminal weight has on the controller behaviour, it is not considered
here, as it would significantly influence other experiments.

Additionally, the mass in the high pressure storage tanks, i.e. the 390bar and 900bar
storage tanks, should be weighted in order to give the controller an incentive to move hy-
drogen from the low pressure to the high pressure tanks. The weight for this is calculated
in a similar fashion as the weight for the whole storage mass, with the slight difference
that we do not take PV power into account, making the calculation much easier resulting
in

cterm,high = −ĉgrid,avg ·
pcomp,max,1

ṁcomp,max,1
, (5.27)

where we assume that the compressor can be run at high compressor speeds after the
prediction horizon has ended.

Concluding, we introduce one cost function term that weights the overall mass in the stor-
age tanks and one cost function term that weights the mass in the high pressure storage
tanks. In order to avoid large numeric values of the objective function, the initial mass
in the storage can also be also incorporated into the objective function as a fixed offset.
This way only deviations from the initial mass are incentivized or penalized.

5.2.2 Evaluation of the deterministic controller formulations

In order to evaluate the performance of the different problem formulations, their perfor-
mance is compared to each other and to the simple bang-bang controller which is currently
used in the move demonstrator in a deterministic setting. This is done for different initial
state values, e.g. different initial storage tank levels. In a first experiment, the initial
storage levels are chosen in the middle of the lower and upper bounds, such that the
mass in the high pressure tanks is not actively constraint by the bounds. In a second
experiment, the initial storage levels are chosen close to the lower bound, such that the
optimization itself cannot be done without considering the lower bounds of the system.
This leads to a situation where the electrolyzer is forced to work in sub-optimal operation
points and has to turn on even though no PV power is available.
For both experiments, a constant cost for grid and PV power is assumed, equal to cgrid = 1
and cPV = 0.5. The weight for electrolyzer state switching is chosen as cswitch = 1. Fur-
thermore, all experiments are done with the same hydrogen demand realization. The
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performance is calculated based on the electrolyzer and 390bar compressor’s power con-
sumption. In order to factor in different storage mass levels at the end of the simulation,
weight terms similarly to the ones introduced in Equations (5.23) and (5.27), resulting in

C =
S−1∑
k=0

(pgridk · cgridk · ∆tk + (pelk + pcompk − pgridk ) · cPVk ) · ∆tk

+ cend · (mlow
S −mlow

0 ) + cend,high · (mhigh
S −mhigh

0 ), (5.28)

where M is the total number of timesteps during the simulation and

cend = −cgrid ·
pel,nom

f 1(pel,nom)
(5.29)

cend,high = −cgrid ·
pcomp,high

∆mcomp,high
. (5.30)

Note that we are subtracting the initial hydrogen inside the tanks in an effort to keep the
performance score in a reasonable numerical range. Due to the same reason as mentioned
in Section 5.2.1, weighting the mass inside the storage tanks at the end of the simula-
tion should be done while incorporating some available PV power. Simply running the
electrolyzer during times when no PV power is available should only be done if necessary
and should therefore not be incentivized in the performance score. This leads to a slight
adjustment of cend, resulting in

c̃end = −cgrid ·
pel,nom

f 1(pel,nom)
· 0.9. (5.31)

Nonetheless, the scores for both cend and c̃end are calculated in order to show which
controller works best depending on how the stored hydrogen is weighted at the end of the
simulation.
Table 5.1 shows the results of the two different experiments for the deterministic one-
storage-stage MPC model, the deterministic two-storage-stage MPC model and the cur-
rently implemented bang-bang controller. Figure 5.1 shows the states of the system for
all three controllers for the first experiment.

Controller Exp. 1 - cend Exp. 1 - c̃end Exp. 2 - cend Exp. 2 - c̃end

Bang-Bang Controller 1457.4196 1539.7449 1460.8001 1543.1253
One Storage-Stage Model 1441.1081 1359.6032 1446.5334 1464.1899
Two Storage-Stage Model 1406.5500 1335.8640 1400.2189 1433.2631

Table 5.1: The performance score C for two different experiments with two different terminal
weights.
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Figure 5.1: The behaviour of the bang-bang controller (blue, solid), the one-storage-stage MPC
controller (orange, dashed) and the two-storage-stage MPC controller (green, dash-dotted) for
the experiment 1 in a 1-day simulation. Additionally, in red all deterministic values are displayed,
including the storage mass constraints, the hydrogen demand and the available PV power. In
the case of the one-storage-stage MPC controller, the compressor actuation is based on a similar
hysteresis controller which is also used for the bang-bang controller.
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Figure 5.2: The electrolyzer actuation during a full week of the bang-bang controller. As the
controller does not take PV power predictions into account, the electrolyzer sometimes runs
during the night will remaining turned off during day, even if there is available PV power which
could be used.
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As it would be expected, the two-storage-stage MPC comes with the lowest score, there-
fore performing better than the other controllers according to the introduced metric.
This is no surprise, as it optimizes both the electrolyzer and the compressor, such that
the compressor uses available PV power at times when the electrolyzer is not running.
Furthermore, it keeps the pressure in the 30bar tank high enough such that the 390bar
compressor can be operated at higher compressor speeds. While with this score the per-
formance of the bang-bang controller does not seem too bad, this is rather by chance, as
the performance score was calculated over a single day. Figure 5.2 shows the electrolyzer
power consumption for the bang-bang controller over a whole week, where the first day
corresponds to the day on which the performance score for all controllers was determined.
Because the bang-bang controller does not take any knowledge about available PV power
into account, its performance highly depends on the available PV power and the hydrogen
demand.
Concluding, the inclusion of the 390bar compressor into the MPC model brings an in-
crease in performance as the MPC as it is able to allocate the PV power usage optimally
between electrolyzer and compressor. In the following, the two-storage stage deterministic
controller is extended to a stochastic setting.
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5.3 Stochastic setting

In practice it is impossible to know how many cars will come to recharge at a particular
day and when they will arrive within that day. In order to cope with this problem, the
hydrogen demand model, developed in Chapter 4, is used to generate various samples for
possible hydrogen demands which result in different scenarios. The optimization problem
is then constructed in a way such that the average value over all scenarios is optimized.

min
1

M

M∑
l=1

[N−1∑
i=0

(
cgridi · lp

grid
i · ∆ti + cPVi · (lp

el
i + lp

comp
i − lp

grid
i ) · ∆ti

+ cswitch · | lδeli − lδ
el
i−1|
)

+ cterm · (lm
low
N + lm

high
N ) + cterm,high · lm

high
N

]
(5.32)

s.t. lm
low
i+1 = lm

low
i + l∆m

prod
i − l∆m

comp
i (5.33)

lm
high
i+1 = lm

high
i + l∆m

comp
i − l∆m

dem
i (5.34)

mlow,min
i ≤ lm

low
i ≤ mlow,max

i (5.35)

mhigh,min
i ≤ lm

high
i ≤ mhigh,max

i (5.36)

mlow,end
i ≤ lm

low
N , mhigh,end

i ≤ lm
high
N (5.37)

l∆m
prod
i = f 1(lp

el
i ) · ∆ti (5.38)

l∆m
comp
i = f c(lp

comp
i ) · ∆ti (5.39)

pel,min · lδ
el
i ≤ lp

el
i ≤ pel,max · lδ

el
i (5.40)

0 ≤ lp
comp
i ≤ lp

comp,max
i (5.41)

lp
comp,max
i = hc(lm

low
i , m̄30,15bar) (5.42)

lp
el
i + lp

comp
i ≤ lp

grid
i + pPVi (5.43)

lm
low
0 = mlow

0 , lm
high
0 = mhigh

0 , lδ
el
−1 = δel−1 (5.44)

lp
el
0 = pel0 , lδ

el
0 = δel0 , lp

comp
0 = pcomp0 (5.45)

lδ
el
i ∈ {0, 1} (5.46)

mlow
0 , mhigh

0 , δel−1 given.

The only schematic differences to the problem introduced before are the additional sum
in the objective function (5.32) which implements the expected value of the scenarios and
the coupling constraints (5.44) and (5.45). The coupling constraints are necessary as all
scenarios have to agree on a joint input value for the first timestep which can then be
applied to the system.

Unfortunately, this problem formulation comes with an issue. By introducing M scenar-
ios, the number of optimization variables is essentially multiplied by M. While this might
not be problematic for linear programs, it is highly problematic for mixed-integer linear
programs due to the combinatorial nature. The convergence time of the problem scales
poorly with the number of scenarios such that the controller cannot be run in real-time
anymore, if a reasonable amount of scenarios, e.g. M = 10, and a reasonable length of
the prediction horizon, e.g. 1 or 2 days, is required.
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An usual approach to prevent the problem of an unreasonable increase in the number of
optimization variables is the introduction of a control law which allows for the removal
of scenario-specific input values. In the case of a mixed-integer problem, however, this is
not a feasible solution as there is no obvious way of designing a control law which fixes
the binary variables.

In the following paragraphs different possible heuristics are proposed which can approxi-
mately solve the optimization problem much more efficiently than the problem stated in
(5.32)-(5.46).

5.3.1 Complete decoupling of the scenarios

The major difficulty that leads to an increase in the convergence time is not necessarily
the number of binary decision variables but the fact that all of them are coupled with each
other. Fixing a binary variable in one scenario will have an impact on all other scenarios.
A simple approach is to remove the coupling constraints and solve the optimization prob-
lem independently for each scenario. While solving the problem in this case is somewhat
efficient, the question is, how do we choose the inputs? What are we doing if different
scenarios have different binary decision variables in the first timestep, e.g. different inputs
for whether to turn on the electrolyzer or not. In a first step, we are determining how the
binary inputs, i.e. the electrolyzer status is fixed. For this we simply solve two almost
identical sub-problems, one where the first electrolyzer status is equal to zero and another
one where it is equal to one. The problem resulting in a lower objective function value
is chosen as a first electrolyzer input. This procedure can be efficiently implemented in
parallel, as these problems can be solved independently from each other.

The question on how the continuous input values of the system, i.e. pel0 and pcomp0 are
fixed remains. Regarding this, two different approach are introduced in the following
paragraphs.

Averaging of the input

Probably the simplest solution is to take the average of all initial inputs. For a linear
problem this will lead to a solution which remains inside all possible realizations. For
the linear as well as the mixed-integer case, there is no reason why this kind of a solu-
tion should be optimal in any sense. Nevertheless, it is simple and straight-forward to
implement and will therefore be tested.

Relative majority voting of the input

In most cases, a majority of the scenarios is choosing the same input for the electrolyzer
and the compressor. Therefore, it is a reasonable approach to choose the inputs which a
relative majority of the scenarios deem to be optimal, while hoping that the input will
also be close to optimal for the rest of the scenarios.

Both of these approaches might end up with a solution which is not feasible for each
scenario, which takes away a large part of the robustness when simply applied to the
system. Therefore, before applying the inputs to the system, it is checked whether they
are feasible for all scenarios. If this is not the case, the averaging approach tries out
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whether the relative majority input is feasible. If this is not the case, the inputs from
each scenario are iterated and checked for feasibility for all scenarios. Once a feasible input
is found, it is applied to the system. If none of the inputs is feasible for all scenarios, the
electrolyzer and the compressor are fully actuated. The last case never happened during
simulation and should only happen in specific constellations when the high pressure tanks
are extremely close to the lower bounds. In these cases, it is usually a good idea to
produce as much hydrogen as possible and move it to the higher pressure tanks.

5.3.2 Progressive Hedging

Progressive Hedging is a popular algorithm in stochastic programming and uses the prin-
ciples of the augmented Lagrangian method, where a combination of penalty term and
Lagrangian multipliers are used in order to relax an equality constraint. [18] demonstrates
the use of progressive hedging for a mixed-integer linear program by using a L1 norm for
the penalty function and an adjusted Lagrangian multiplier update step. A similar algo-
rithm is implemented for our system in order to relax the coupling constraints which has
the form:

Algorithm 1: Progressive Hedging
1 Set k=0

2 Let x(k)
l contain the input values to the system in the first timestep

3 Solve the relaxed problem with no coupling constraints

4 Compute x̄(0) = 1
M

∑M
l=1 x

(0)
l and λ(0)

l = ρ · (x
(0)
l − x̄(0)), ∀l = 0, 1, 2, ...,M

5 while
∑M

l=0 |x
(k)
l − x̄(k)|1 > ε or k < kmax do

6 Solve the augmented relaxed problem with additional cost function term:∑M
l=1 ...+ (λ

(k)
l )Txl + ρ · |x(k)

l − x̄(k)|1

7 Update x̄(k+1) = 1
M

∑M
l=1 x

(k+1)
l and

8 λ
(k+1)
l = ρ · sign(x

(k+1)
l − x̄(k+1)), ∀l = 0, 1, 2, ...,M

9 Set k = k + 1
10 end

where the variable xl contains the input values within the coupling horizon, i.e. the
power consumption of the electrolyzer and the 390bar compressor for the first timestep.
The algorithm is iteratively solving relaxed problems until the solutions of all scenarios
are sufficiently close together or until a maximum number of iterations is reached. The
algorithm has the tuning factor ρ included which has a large impact on the convergence
of the algorithm. Choosing it too small leads to an unreasonably long convergence time,
choosing it too large leads to oscillations of the solution and generally cyclic behaviour.
While ρ could be chosen as a scalar value, better convergence is achieved when different
values of ρ are used for different elements in xl. Therefore, ρ is also chosen as a vector
and multiplications with it should be interpreted as element-wise multiplications.

It can happen that the algorithm is not converging, such that the maximum number of
iterations is reached. In this case, the solution is similar to the one where no coupling
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constraint at all are used. If this is the case, the input is calculated based on the relative
majority voting system, i.e. the input that occurs most often is chosen if it is feasible.

5.3.3 Comparison of the approaches

In order to compare the approaches, the prediction horizon length is chosen as 24 hours,
the number of scenarios is fixed to M = 10 and the timestep size is chosen as 60 minutes,
i.e. ∆t = 1. In this way the problem with coupling constraints is converging within a
reasonable amount of time, as the total number of timesteps is only 24. The different
models are run independently from each other with the same deterministic PV power,
same hydrogen demand realization, which is unknown to the MPC, and the same hydrogen
samples, which are available to the MPC, for a simulation time duration of 24 hours. The
initial storage mass values are set to 4 and 80 kilograms for the low pressure and high
pressure tanks respectively. The objective function of the resulting trajectory is calculated,
which should be somewhat close for all approaches as they have the exact same data
available to them. As this comparison is sensitive to the hydrogen demand realization,
i.e. the actual hydrogen demand affecting the system, and the hydrogen samples used, i.e.
the hydrogen demand samples produced by our hydrogen demand model, the experiment
is repeated multiple times for different hydrogen realization and samples and the results
over all experiments are averaged. The performance of each trial is calculated similarly
to the deterministic case with

C =
M−1∑
k=0

(pgridi · cgridk + (peli + pcompi − pgridi ) · cPVk )

+ cend · (mlow
M −mlow

0 ) + cend,high · (mhigh
M −mhigh

0 ), (5.47)

where

cend = −cgrid ·
pel,nom

f 1(pel,nom)
(5.48)

cend,high = −cgrid ·
pcomp,high

∆mcomp,high
. (5.49)

The averaged results of 50 independent experiments can be seen in Table 5.2.

Approach Averaged performance score Avg. Convergence Time [s]
Coupled 401.5974 83.8498

Decoupled - Relative majority 410.1493 0.8549
Decoupled - Averaging 485.0009 0.8940
Progressive Hedging 411.7554 3.0617

Table 5.2: The performance score C and the average convergence time for the optimization
problem in one timestep.

As it would be expected, the coupled approach provides the best objective function value,
but also has the highest convergence time. An upper time limit of 300 seconds is used
for all optimization problems, which is reached multiple times by the coupled approach.
This makes it not usable for real-time applications. The averaging approach provides
the worst results, which is expected as it tends to almost never operate at optimal op-
eration unless all scenarios jointly decide on it. The relative majority approach and the
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progressive hedging are somewhat similar for the objective function value, however, the
progressive hedging algorithm has difficulties to converge, if the initial input values of the
scenarios differ to much from each other. This leads to reaching the maximum number of
iterations for the algorithm, leading to the increase runtime in this case. Furthermore, if
the algorithm does not converge, the input is most likely not optimal either.

Concluding, the relative majority voting system provides the best trade-offs between
convergence time and objective function value and will be used for further evaluations
of the stochastic MPC formulation. In the following, the performance of the stochastic
MPC is tested with the decoupling majority voting input selection implemented.

5.3.4 Evaluation of the stochastic controller formulation

In order to evaluate the overall performance of the stochastic MPC controller, the stochas-
tic MPC formulation is compared to the deterministic MPC formulations with the same
experiments and the same performance metric as already conducted in Section 5.2.2. The
same hydrogen realization is used, however the MPC has no knowledge about it and is
only using samples drawn from the same distribution as the hydrogen realization. The
results are shown in Table 5.3, while Figure 5.3 shows the system states and inputs for
the deterministic and stochastic two-storage-stage controller for second experiment.
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Figure 5.3: The behaviour of the deterministic two-storage-stage MPC (green, dash-dotted)
and the corresponding stochastic two-storage-stage MPC controller (violet, solid) for the second
experiment. Additionally, in red all deterministic values are displayed, including the storage
mass constraints, the hydrogen demand and the available PV power. The stochastic controller
does not have any concrete information about the hydrogen demand, apart from its probability
distribution. The PV power is assumed to be exactly known for both controllers.

The stochastic approach performs incredibly well for the first experiment. This should
be expected as in the case where the constraints in the high pressure tanks are not
active, all scenarios have a similar objective and therefore similar inputs as they would
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Controller Exp. 1 - cend Exp. 1 - c̃end Exp. 2 - cend Exp. 2 - c̃end

Bang-Bang Controller 1457.4196 1539.7449 1460.8001 1543.1253
Det. 1-Storage-Stage MPC 1441.1081 1359.6032 1446.5334 1464.1899
Det. 2-Storage-Stage MPC 1406.5500 1335.8640 1400.2189 1433.2631
Stoch. 2-Storage-Stage MPC 1404.4507 1335.3103 1486.6310 1508.6563

Table 5.3: The performance score C of the bang-bang controller, the deterministic one-storage-
stage MPC, the deterministic two-storage stage MPC and the stochastic two-storage-stage MPC
for two different experiments and two different terminal weights.

have in a deterministic setting. The more interesting case is the second experiment. As
the stochastic setting has no precise knowledge about the exact hydrogen demand, it
results in a sub-optimal behaviour compared to the deterministic case. Moreover, if the
hydrogen available at the last timestep is weighted with cend, it performs worse than the
bang-bang controller in this situation. However, this is only the case in this particular
setting. Choosing c̃end shows that it still performs better than the bang-bang controller
on our actual performance metric. Nonetheless, the stochastic MPC shows sub-optimal
behaviour if it gets close to the lower bounds. This is because the MPC still tries to turn
on the electrolyzer only when there is PV power available. In such critical situations it
might be more beneficial to slightly adjust the terminal cost in the MPC. By adjusting
the terminal weight, the MPC is penalized less for running the electrolyzer with no PV
power available. Running the stochastic MPC for experiment 2 with adjusted terminal
weight equal to cend = −cgrid · pel,nom

f1(pel,nom)
, results in no penalty to run the electrolyzer at

nominal power. The states and inputs for this configuration are shown in Figure 5.4 and
the resulting performance score is summarized in Table 5.4.
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Figure 5.4: The behaviour of the deterministic two-storage-stage MPC (green, dash-dotted)
and the corresponding stochastic two-storage-stage MPC controller (violet, solid) for the second
experiment. Additionally, in red all deterministic values are displayed, including the storage
mass constraints, the hydrogen demand and the available PV power. The stochastic controller
does not have any concrete information about the hydrogen demand, apart from its probability
distribution. The PV power is assumed to be exactly known for both controllers.

Controller Exp. 2 - cend Exp. 2 - c̃end

Bang-Bang Controller 1460.8001 1543.1253
Det. 1-Storage-Stage MPC 1446.5334 1464.1899
Det. 2-Storage-Stage MPC 1400.2189 1433.2631
Stoch. 2-Storage-Stage MPC 1486.6310 1508.6563

Adjusted stoch. 2-Storage-Stage MPC 1407.8921 1495.5351

Table 5.4: The performance score C for the adjusted stochastic two-storage-stage MPC and
the second experiment. For the terminal weight cend it performs much better, which is no
surprise as the electrolyzer is running all the time. For the more relevant terminal weight c̃end

the performance score also shows improvements of the adjusted MPC compared to the original
stochastic two-storage-stage MPC.

This clearly shows that a better performance can be achieved if the terminal weight is
adjusted to the situation. Obviously this would need to be automatically adjusted, which
raises the need for a higher-level controller, which influences the behaviour of the MPC by
adjusting the terminal weight. Further research into this direction is left as future work.
Concluding, if the system is not close to the lower bounds, the stochastic MPC performs
similarly to its deterministic counterpart. In the case where the system is close to the
lower bounds, it is reasonably robust against constraint violations, however the inputs are
generally not optimal anymore. This can be mitigated by adjusting the terminal weight
of the MPC.
This concludes the performance evaluation of the developed controllers. In the rest of
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this chapter, it is examined how the MPC performs for up-scaled versions of the original
problem structure.

5.4 Scalability of the MPC

In the following, the advantages of prolonging the prediction horizon to a length of 2 days
instead of 1 day is presented and the behaviour of the MPC in the presence of a significant
increase in available PV power is examined.

5.4.1 Extending the prediction horizon length

The extension of the prediction horizon to a length of two days comes with an increase
in the number of optimization variables, which itself will increase the convergence time of
the optimization problem. Figure 5.5 shows the system states and inputs for a prediction
horizon of two days used in a deterministic two-storage-stage MPC and a simulation
length of two days.
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Figure 5.5: Simulation results for a deterministic two-storage stage MPC with a prediction
horizon length of two days and a total simulation duration of two days.

The first day provides less available PV power than the second day, which is why the MPC
is running the electrolyzer for a longer time during the second day. Overall, including a
second day into the prediction horizon allows for certain adjustments compared to the one
day ahead prediction, if either the available PV power or the hydrogen demand differs.
A two-day ahead prediction can definitely improve the long-term performance of the
controller, however it highly depends on the overall configuration how big the difference
will be.
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5.4.2 PV power upscaling

Up to this point the considered PV power was always smaller than the nominal power
of the electrolyzer, i.e. the available PV power was not able to completely power the
electrolyzer itself. In the following, we consider an upscaled version of the PV power
system, such that the whole system can be powered by PV power itself. For this the
available PV power is scaled up by a factor of 4. The results of the deterministic one
day-ahead MPC is shown in Figure 5.6.
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Figure 5.6: Simulation results for a deterministic two-storage stage MPC with a prediction
horizon length of one day and a total simulation duration of one day. The PV power is scaled up
by a factor of 4, resulting in peak power production of around 140kW. This enables the system
to power the electrolyzer solely on PV power during peak hours.

Note that the MPC decides to run the electrolyzer at a power consumption higher than
the nominal one. Grid power is mostly used to provide power during the the late morning
and early afternoon.

5.5 Economically driven MPC

Up to this point only a constant cost term for the power taken from the grid is taken
into account in the MPC. In a realistic setting, it is not only desired to maximize the use
of PV power for the system but also minimize the overall cost, given an electricity price
prediction for the grid power. By including a varying cost term in the MPC, the controller
has the possibility to run the electrolyzer when either enough PV power is available or
when the electricity price is lower than usual. In order to test the behaviour of the MPC
in such situation, a realistic electricity price is used as a cost for cgridi taken from the Swiss
spot market price in January 2017 [19]. The cost for used PV power is still assumed to
be constant over the prediction horizon, however, it is calculated from the average value
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for the grid electricity cost by

cPVi =
1

2 ·N

N−1∑
k=0

cgridk ,

i.e. half of the average electricity cost over the prediction horizon. The upscaled version
for PV power from the previous section is also used here. In this case the MPC uses the
average grid electricity prices in order to calculate the terminal weights cend and cend,high.
Simulation results for the deterministic one day ahead MPC can be seen in Figure 5.7.
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Figure 5.7: Simulation results for a deterministic two-storage-stage MPC with varying cost terms
on the used grid power. It leads to the electrolyzer working at sub-optimal operation points
during times when the prices for grid power are low, as for example it is the case at around
15:00.

The MPC has multiple incentives to turn the electrolyzer on at a particular moment
in time. Either if the PV power is high enough or if the electricity prices are below the
average. Moreover, the MPC makes the decision of running the electrolyzer at sub-optimal
operation points during times when electricity is cheap.
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Chapter 6

Conclusion

In the following we summarize the overall work done as a part of this thesis and give an
outlook to possible future work that can be done.

The thesis presented a model-based control framework for the optimal management of a
recharge station for fuel-cell vehicles, based on the real system which is placed at Empa.
In comparison to the state of art, it investigated the impact of including compressor stages
into the optimization problem and solved the induced increased complexity of the problem
by evaluating different problem relaxation approaches against each other and choosing the
one that performs the best.

The major parts of the work consisted of creating suitable models for different parts of
the system. Firstly, the electrolyzer and compressor stages were modelled in a simplified
fashion. If not enough quality data was available to fit the models, additional experiments
were done on the real system. The models were evaluated by forward integrating them
and comparing them to measurement data. The results show a really good tracking for
the electrolyzer model and a reasonable tracking performance for the compressors.

Next to this, different pressure-temperature-density relationships for gases were examined
in order to find one which can be used to calculate the mass contained in a storage tank
with known pressure and temperature. By using experimental data from tables excel-
lent results in performance were observed which were examined by comparing the mass
changes inside the tank according to the pressure differences calculated through the re-
spective relationship to the mass in- and outflow.

As the storage tanks are physically limited by pressures values and the relationship be-
tween pressure and mass depends on the temperature, temperature predictions for the
storage tanks were necessary. As there was no research work done in a similar setting to
ours, in a first step a detailed evaluations of relevant input features for possible models
was conducted. Afterwards, inspired by building temperature predictions, two different
models were implemented and tested against each other. The neural network was better
suited in capturing the nonlinear relationship between input variables and the storage
tank temperature.

Parallel to this, the predictions for the PV power were done where two different approaches
were implemented and tested. The end-result consisted of a neural network which is pre-
trained on over 3 years worth of data and is consistently retrained based on recent data
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with a rolling window approach in order to account for slowly varying external factors.

Next, the available hydrogen demand data was analyzed for its stochastic properties, the
problem structure was broken down to simpler variables and suitable models were fitted
to the data. The derived models were verified by performing a chi-squared test on them.

All the previously identified models were combined into an deterministic control structure
where we, in a first step, compared the difference in performance that we gain by including
a compressor stage into the optimization problem, which were considerable and justified
the added complexity to the model. This model was transformed into a stochastic one,
by introducing multiple hydrogen demand scenarios and optimizing over all of them. As
this problem scales increasingly poorly in its original form, different heuristics to relax the
problem were examined in a downsized problem configuration. The best approach was
determined to be a heuristic that chooses the input that a relative majority of scenarios
deem to be optimal and then checking the feasibility of it. This resulting heuristic was
applied to the original stochastic problem making it easily run in real-time for a prediction
horizon length of one day and 10 scenarios. The performance of the resulting stochastic
MPC is tested against the deterministic models, which shows that in cases where the
storage tanks are not almost empty, the solution of the stochastic problem is essentially
as good as the solution for the deterministic problem. In cases where we are close to the
lower storage tank constraints, the stochastic MPC still shows a reasonable performance.
Possible methods to improve the performance of the MPC in such situations were shortly
mentioned and are going to be discussed in a little bit more detail in Section 6.1.4. Lastly,
the MPC was tested for various different configurations in order to show its flexibility to
being able to achieve different objectives.

6.1 Outlook

In the following an outlook on possible future work for the different sub-parts is given.

6.1.1 System modelling

The biggest weakness of the current model are the compressors. As they do not take
pressure gradients into account, there will almost always be an offset in the predicted
mass flow through them. A detailed identification of the compressors based on input and
output pressures can be done, which might give more insight into the process of how the
compressor work in detail.

The storage tank predictions can be done with an autoregressive neural network approach
instead of the single-shot model which is only able to predict 24 hour prediction in one
piece. This would allow for better online-correction of the prediction as it could be up-
dated whenever new measurements for the storage tank temperature or new ambient
temperature forecast data is available.

Lastly, the power taken from the grid needs to be rectified which involves certain losses.
If the precise amount of power taken from the grid plays a large roll this effect should be
included in the model. The relationship between input and output of a common rectifier
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usually shows a linear behaviour such that the inclusion of it in the optimization problem
should not be difficult.

6.1.2 PV Power Prediction

The current PV power prediction is currently split into two different models, one model
to predict sunny days and one model to predict all other days. Instead of classifying days
into 2 categories a better approach could be to assign a score between 0 and 1 to each day,
1 corresponding to perfectly sunny and 0 to completely cloudy. This classification could
be done with a neural network instead of the currently implemented weather classification.
The resulting score can then be used as an input to the PV power prediction model, such
that only one model is necessary for all weather conditions. In a next step, the model
structure should be changed to an autoregressive one, similarly to the one proposed for the
storage tank temperature predictions. This can be combined with a weather classification
which predicts sub-intervals during a day, such that a day can have times when it is cloudy
and other times when it is sunny. The learning of these models would need to handle
the forecasting errors contained in the forecasts in some way, as these errors substantially
influence the training of such a model.

6.1.3 Hydrogen Demand

The main disadvantage of the current hydrogen model is the needed estimate of the
number of active customers. As long as there are not too many customers, the modelling
of the hydrogen demand through a probabilistic model can be problematic. In order to
cope with this problem, a model can be constructed which takes the last time a customer
refuelled their car and outputs a probability function of when they will come to refuel the
car for the next time. This approach was already partially tested in this thesis, however,
with the current amount of data such a model is incredibly hard to train and is generally
problematic from a privacy point of view. Furthermore, there is no automated way to
transfer refuelling data into the database, such that such an approach would not even be
implementable in the real system at the moment.

6.1.4 Control Design

In a first step, detailed testing of the current MPC on the real system should be done.
After this, one might want to go into more detail about the choice for the terminal weight
in the MPC. As we have seen, the MPC behaviour highly depends on the choice of the
terminal weight. A higher-level controller can be developed which provides a suitable ter-
minal weight. The higher-level controller can either work on long-term predictions, e.g.
over a week and adjust the weight according to the estimated PV power and estimated
hydrogen demand. Another approach would be to solely look at the current storage mass
level and adjust the terminal weight in such a way that the MPC results in more conser-
vative action if we are close to the bounds and a more risk-taking actions if it is away
from the constraints.

Additionally, depending on the objective that one wants to achieve with the controller,
the objective function can be easily changed to incorporate more general settings. First
steps of possible configurations were already introduced in Section 5.4.
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Appendix A

Compressor model in a mixed-integer
linear program

In the following the constraints used to model the compressor dynamics are introduced.
In a first step we are going to introduce

αi :=

{
1 if mlow

i ≥ mlow,15bar
i

0 otherwise
, (A.1)

where mlow,15bar
i indicates the mass inside the low pressure tanks corresponding to a pres-

sure value of 15bar. αi is used to indicate at which compressor speed the 390bar com-
pressor works. (A.1) can be implemented by using the ’big-M’ trick as described in [20]:

mlow
i ≤ mlow,15bar

i + αi · 1.2 ·mlow,max
i , (A.2)

mlow
i ≥ mlow,15bar

i − (1− αi) · 1.2 ·mlow,max
i , (A.3)

where 1.2 ·mlow,max
i has to be sufficiently large such that the inequality constraints can

always be satisfied with either αi being zero or one. Due to the construction of mlow,max
i

this is always guaranteed. αi can then be used in order to assign the right values to pcompi

and ∆mcomp
i :

pcomp,1i ≤ pcomp,max,1 · (1− αi) (A.4)

pcomp,2i ≤ pcomp,max,2 ·αi (A.5)

pcompi = pcomp,1i + pcomp,2i (A.6)

ṁcomp
i =

ṁcomp,max,1

pcomp,max,1
· pcomp,1i +

ṁcomp,max,2

pcomp,max,2
· pcomp,2i (A.7)

∆mcomp
i = ṁcomp

i · ∆ti, (A.8)

where pcomp,max,1 and pcomp,max,2 are the corresponding power consumption for the two
different compressor speeds and ṁcomp,max,1 and ṁcomp,max,2 the corresponding mass-flows,
respectively.
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Appendix B

Terminal weight heuristic

As previously discussed for the calculation of the terminal weight it makes sense to in-
corporate a certain amount of PV power that can be used to generate excess hydrogen
after the end of the prediction horizon. In order to estimate this amount, we are first
going to estimate the amount of PV power that will be used to generate the necessary
hydrogen to compensate the hydrogen demand. For this we are going to approximate the
time duration ∆t̂runday during which the electrolyzer will be turned on during one day in
order to produce as much hydrogen as there is demand. This can be done by

∆t̂runday =
∆m̂dem

day

∆m̂prod
day

, (B.1)

where

∆m̂dem
day =

N−1∑
i=0

∆mdem
i ·

1

24

N−1∑
i=0

∆ti, (B.2)

and

∆m̂prod
day = f 1(pel,nom) · 24, (B.3)

where ∆m̂dem
day denotes the hydrogen demand during a day and ∆m̂prod

day the amount of
hydrogen the electrolyzer can produce during one day. Assuming that the time during
which the electrolyzer is run is split up to the maximum values of the available PV power
in the prediction horizon, we can estimate the amount of PV power that is left over to
produce excess hydrogen. Depending on how long one wants to run the electrolyzer there
will be less or more PV power available. In the case where one wants to fill up the tank
as fast as possible, it would run the whole day, resulting in the average being taken over
the whole remaining day. In the case where one does not need to fill up the tank as fast,
the time duration can be chosen shorter, and therefore the average will be taken over a
smaller time-interval resulting in assuming that there is more available PV for excess PV
production. All of this does not take into account that the PV power that is not used by
the electrolyzer can be used by the compressor. In the end, this whole calculation remains
a heuristic which can be developed further in order to also include the compressor in the
calculation. Either way, once the excess PV power p̂PV is approximated the terminal
weight can be calculated by
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cend = − ĉ
grid,avg · (pel,nom − p̂PV ) + p̂PV,avg · ĉPV

f 1(pel,nom)
. (B.4)

The whole approach can be easily extended to the stochastic setting by taking the mean
value of the hydrogen demand over all scenarios.
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