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Abstract

Estimating 3D hand pose from a monocular RGB image is a challenging task. This is largely
due to the limited amount of available labeled data, as annotating images for 3D hand pose
requires a complex multi-camera setup and a controlled lab-like setting. This in turn introduces
a domain gap between the different hand pose datasets and the unconstrained settings of the
real world. In this thesis, we develop a self-supervised method to use unlabeled data from dif-
ferent hand pose datasets to improve the accuracy of 3D hand pose estimation, and to bridge
the domain gap. We propose a novel contrastive learning framework for pose estimation, in-
spired by the recent success of contrastive learning on image classification tasks. In a standard
contrastive learning framework, a model tries to learn a feature representation that is invariant
under any image augmentation. This can be beneficial, as the pose is invariant to appearance
based image augmentations. However, geometric augmentations (like rotation) change the pose
equivariantly. However using geometric augmentations with contrastive self-supervision leads
to invariance. This can be detrimental to the pose estimation. We empirically show that the
features learned with our equivariant contrastive framework lead to more improvement when
compared to standard contrastive frameworks. Furthermore, we attain an improvement of 7.6%
in PA MKP-3D on FreiHAND with a standard ResNet-152, trained with additional unlabeled
data when compared to a fully supervised baseline. This enables us to achieve state-of-the-art
performance in a purely data driven way, without any task-specific specialized architecture.
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Introduction

The advancements in computing power, image capturing and machine learning have made a
plethora of tasks possible. One of these tasks is reliably estimating the 3D hand pose from
images. This has several applications in the field of robotics, virtual reality, augmented reality
and mixed reality. Early approaches make use of RGB images combined with depth map to
estimate the pose. In recent years the research community shifted its focus to the estimation
of hand pose from solely monocular RGB images, as cameras without depth sensors/stereo are
far more ubiquitous, cheaper and have lower power requirements. In this work we focus on
estimating the hand pose from monocular RGB images.

The estimation of 3D pose from RGB image is a challenging task. Amongst others, condi-
tions that significantly contribute to its difficulty are a large diversity in backgrounds, lighting
conditions, hand appearances and self-occlusion arising from high degrees of freedom of the
human hand. There are several ways to deal with it. The most straight forward way is to use
more labeled data that spans a large diversity of lightning conditions, environments and poses.
However, acquiring 3D labeled data is laborious and expensive, as it requires a large lab-like
setting. The labeled data hence collected often does not translate well to in-the-wild imagery
[20, 42]. The hand pose community has been relying increasingly more on methods that can
efficiently use supplementary data with 2D joint annotations or no annotations. Such annota-
tions are generally cheaper to acquire. Research has shown that the inclusion of such auxiliary
data [4, 14, 31] leads to a better prediction accuracy. [31] shows that one can outperform many
supervised approaches by using weakly-supervised data more effectively via kinematic pri-
ors, [14] exploits temporal information to improve accuracy and [4] uses weak supervision with
depth maps. Other works has also explored using an off-the-shelf joint detector to automatically
generate the 2D joint labels, like in [20] where the authors use OpenPose [5] to automatically
generate 2D annotations. However, there is no guarantee that these poses are indeed correct
and the accuracy one can achieve with such an approach is bounded by the performance of the
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OpenPose model.

Alternatively, one could resort to using unlabeled data directly with the help of self-supervision.
In a nutshell, these methods train for a pretext task that does not require labels. This means self-
supervised methods do not suffer from the uncertainty introduced by noisy labels in the auxiliary
data. Contrastive learning is one such self-supervised approach. In contrastive learning, data is
encoded to a latent space with the help of a neural network. Its main objective is to minimize
the similarity between dissimilar inputs while maximize it between similar inputs in the latent
space representation. In this method, similar images are generated by applying image augmen-
tations to an image and dissimilar inputs are generated by applying similar augmentations to a
separate image.
Recently, works like [6, 7] have shown that with contrastive learning one can reach parity or
even outperform supervised baseline models on an image classification task. This raises an
interesting question: Does the contrastive self-supervised approach extend to structured regres-
sion tasks as well? We hypothesize that features learned during standard contrastive training
may not readily transfer to regression-based tasks, as optimizing the standard contrastive objec-
tive will result in features being invariant to any augmentation used during training. This also
leads to invariance in the feature representation where equivariance is desired. For example,
rotating an image rotates the underlying pose equivariantly. However, the objective function of
a standard contrastive learning framework will encourage invariance to this rotation and will not
encode the desired equivariance. In this work, we propose a pose equivariant contrastive learn-
ing (PeCLR) framework that tackles this issue. PeCLR learns a feature representation that is
equivariant to geometric augmentations but maintains invariance to appearance based augmen-
tations. Therefore, PeCLR enables the use of a large amount of unlabeled data to learn a general
feature representation that can be used for hand pose estimation with supervised fine-tuning.

In this work, we employ a two stage training. In the first stage, we learn a general feature
representation from a large amount of unlabeled data with contrastive learning. In this stage, we
apply geometric and appearance based augmentations to generate similar and dissimilar input
images. These images are used to train an encoder via our proposed equivariant contrastive
loss, where we revert the geometric augmentations in the feature space. In the second stage, the
trained encoder from the first stage is fine-tuned on the task of 3D hand pose estimation using
labeled data. We investigate this setup in a variety of experiments. We demonstrate an increased
label efficiency and show that using more unlabeled data improves the 3D performance by
43% (PA MKP-3D), when only 10% of the labeled data is used for supervised training(cf.
5.5b). Furthermore, we show that our approach reaches the state-of-the-art performance with
a standard ResNet-152, outperforming several specialized architectures. Lastly, we show that
the benefits of pretraining with our approach also extend to cross-domain generalization, where
we observe an improvement of 4.8% (PA MKP-3D) on a dataset not included in the supervised
training.

In summary our contribution is as follows:

• To the best of our knowledge, we perform the first investigation of contrastive learning to
efficiently leverage unlabeled data for hand pose estimation.

• We propose a novel contrastive learning objective that encourages equivariance to geo-
metric augmentations and invariance to appearance based augmentations.

2



• We conduct controlled experiments to evaluate the quality of learned representation for
several augmentations, compare it with SimCLR and empirically derive the best perform-
ing augmentations.

• We show that representations learned with our contrastive objective leads to a higher label
efficiency and that adding more unlabeled data is beneficial.

• We demonstrate that our proposed method outperforms more specialized state-of-the-art
methods, using a simple ResNet architecture.

The thesis is structured as follows. Chapter 2 touches on the prior work. Chapter 3 defines
the task and sets up the theory. Chapter 4 delineates the methodology. Chapter 5 presents the
experiment protocol and results. Chapter 6 summarizes the findings and avenues for further
research and improvements.

3
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2

Related work

2.1. Hand pose estimation

3D hand pose estimation involves predicting 3D joint skeletons or the MANO [30] mesh.1

Works like [4, 11, 18, 26, 27, 31–33, 37, 41] predict the 3D keypoints, whereas some works
[1–3, 14, 15, 40] predict the parameters of the parametric hand model to obtain the MANO
mesh. Alternatively, works like [13, 21, 25] directly predict the full MANO mesh of the hand.

3D labeled data is scarce, therefore the research community has worked on ways to avoid over-
fitting and to improve the prediction accuracy. A staged approach, where the 3D keypoints are
lifted from the 2D predictions is discussed in [41]. Mueller et al. [27] use General Adversar-
ial Network and synthetic datasets to reduce synthetic/real discrepancy. Cai et al. [4] include
supplementary depth supervision to augment the training set. Yang et al. [37] use disentangled
latent space for hand pose estimation and image synthesis. Iqbal et al. [18] propose a more
efficient 2.5D representation that can be used to predict the 3D pose. Weak supervision with the
help of bio mechanical constraints is used to refine the pose prediction on 2D supervised data
by [31], whereas [11] learns these constraints by using a graph based neural network in final
layers to refine the predicted hand pose. Moon et al. [26] take the hand interaction into account
to predict the pose of both hands. In the work of [33], action recognition as well as hand pose
estimation is performed.

The use of MANO introduces a prior of hand poses and a mesh surface. Works like [1, 3, 40]
estimate the MANO parameters directly from RGB images. [3, 40] use in-the-wild 2D anno-
tations, whereas [1, 40] make use of hand masks for weak supervision to predict the MANO
parameters. [15] predicts the object and MANO parameters jointly in a unified approach. [14]

1Section 3.2 discusses these representations in further detail.
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further develops on the framework and employs a photometric loss on the partially labeled se-
quences. In contrast to regressing the parameters of the MANO model, some works directly
regress the entire MANO mesh [13, 21, 25]. Spiral convolutions are used to predict the hand
mesh in [21]. That being said, predicting MANO mesh/parameters suffers from the same prob-
lem the 3D keypoints face, i.e. scarcity of labeled data. Ge et al. [13] tackle this by introducing
a fully mesh annotated synthetic dataset and perform noisy supervision for real data. An alter-
native to MANO is proposed in [25] by using a base hand model and predicting the pose and
the subject dependent correctives.

Most of the work in recent years has been dedicated to custom, sometimes highly specialized,
architectures. However, in this work we explore purely data driven approaches, utilizing un-
labeled data and an equivariance inducing contrastive formulation to achieve a state-of-the-art
performance with a standard ResNet model.

2.2. Self-supervised learning

Self-supervised learning is a paradigm that aims to learn the representation of data without any
annotations, by optimizing a cost function that encodes a pre-text task. A pre-text task is a
pre-designed task for a model to solve in order to learn meaningful features in a self-supervised
way. A pre-text task could be: predicting the position of a second patch relative to the first [10],
colorizing a gray scale image [39], solving a jigsaw puzzle [28], estimating the motion flow
of pixels in a scene [35], predicting positive future samples in audio signals [29] or completing
the next sentence based on the relation between two sentences [9]. The representations learned
by solving a pretext task are usually used to help solve a main downstream task. For instance,
the pretext task of colorizing a gray scale image could be used for object recognition as the
image color is important for the object classification [12]. Not all pretext tasks are the same and
solving one might not lead to any improvements in the downstream performance. For instance,
intuitively speaking, colorizing a gray scale image may not help with the hand pose estimation
as the color of the image is not an important feature for pose estimation. The selection of ap-
propriate pre-text tasks is important because an optimal pre-text task can lead to improvements
in terms of performance and generalizability.

In this work, we use a contrastive learning objective as a pretext task for self-supervision. This
pre-text has shown a lot of promise in downstream tasks such as image classification, video
classification, object detection and speech classification. However, contrastive learning has not
yet been investigated for the task of hand pose estimation. Recent works in contrastive learning
that are closest to the work presented in this thesis are Contrastive Predictive Coding (CPC)
[17, 29], Contrastive Multiview Coding (CMC) [34], and SimCLR [6, 7]. CPC learns to extract
representations by predicting the future in latent space with auto-regressive models. In CPC,
authors show that the feature representations learned this way achieve strong performances on
four distinct domains: speech, images, text and reinforcement learning in 3D environments.
CMC learns view-agnostic representations by maximizing mutual information among different
views of the same scene and shows that contrastive loss outperforms a loss based on cross-view
prediction. SimCLR extends the contrastive loss used in CMC to a more simplified contrastive
learning framework. SimCLR uses strong image augmentations to generate views of a scene

6
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and shows that the representations learned this way are on par with supervised models on the
image classification task. In this approach a latent space representation is generated for each
data. The core idea being, if the data points are connected in a meaningful way, then the
corresponding latent space representations should lie “close" to each other, whereas latent space
representations of unrelated data are further apart. The “close"(ness) is measured by a suitable
distance metric measured in the latent space. Not all augmentations described in SimCLR are
suitable for structured regression tasks such as hand pose estimation. Hand pose estimation is
equivariant to geometric augmentations and invariant to appearance based augmentations. For
instance, rotating the input image rotates the underlying hand pose by the same amount whereas
changing the color of the image doesn’t alter the underlying pose. We address this issue and
extend contrastive learning to structured regression tasks by differentiating between appearance
based and geometric augmentations. More specifically, while we keep the invariant contrastive
objective, we require equivariance for any geometric transformations. This results in the feature
representation learned by our approach to be more suited for pose estimation tasks.

7
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3

Background

In this chapter, we introduce the necessary background knowledge and explain terms and con-
cepts used throughout this thesis. We start by establishing the general notation used in this work
in section 3.1. In section 3.2, we give a brief introduction of two common ways to represent a
3D hand pose. We then discuss the steps for converting the 3D representation used in this work
to the target labels for supervised training. This is done with the help of a pinhole camera model
and hence relies on the knowledge of the camera parameters. The camera parameters are not
available for some of the data used in this work. Therefore, in section 3.4, we discuss a method
to enable 3D pose estimation in this scenario. We follow it up with section 3.5, which discusses
the metrics used to quantify the quality of the predicted pose. Lastly, in section 3.6, we describe
the datasets used in this work.

3.1. Notation

We follow the notation most commonly used by the computer vision community. We use bold
capital font for matrices “X”, bold lower case for vectors “x” and roman font for scalars “x”.
Additionally, we assume the image to be monocular RGB that corresponds to a right hand.1

3.2. Pose representation

There are two commonly followed ways of representing a hand pose in the 3D space, i.e. with
a skeleton based keypoint approach or through a mesh-based parametric hand shape model.

1An image of left hand can be horizontally flipped to make it image of right hand.
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Figure 3.1.: Pose representation. We illustrate the MANO[30] (left) representation of a right
hand with 21 joints of keypoint based approach overlapped. We show a monocular
RGB image(right) from YouTube 3D Hands [20] overlapped with 2D projection of
keypoint based pose representation in image plain.

The skeleton-based keypoint representation is the most straightforward way to represent the
hand pose. It defines the structure of the hand with the location of a predetermined set of joints in
3D space. On the other hand, a parametric hand shape model usually defines a volumetric hand
with the help of pose and shape parameters. In recent years, the most popular way of predicting
hand pose has been using MANO [30]. Figure 3.1 (left) shows the MANO representation of a
hand. The figure also shows the joints used in the keypoint based approach.

In this work, we focus on the keypoint based approach to represent a hand in the 3D space.
During supervised training, 3D keypoints are mapped to a 2.5D representation introduced in
[18]. The first two dimensions in the 2.5D representation are the 2D projections of the 3D pose
on the image plane. The "half" dimension corresponds to the scale-normalized root relative
depths. The normalization is achieved by scaling 3D keypoints with a hand-specific scalar s. In
this work, we use the length of the bone between the index metacarpophalangeal joint and the
palm as scale i.e. the euclidean distance between keypoint 2 and keypoint 0 in figure 3.1(left).

We explain the steps involved in converting the 3D pose from and to the 2.5D pose. We define
pi as the ith joint in 3D space and K as the camera matrix. Then we can write the 2D projection
on the image plane using the pinhole camera model as follows:

ziqi = Kpi. (3.1)

Where,

qi =


ui

vi

1

 ;pi =


xi

yi

zi

 ;K =


f 0 tu

0 f tv

0 0 1

 [Rc|tc]. (3.2)

10
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In equation 3.2, f is the focal length of the camera, (tu, tv) is the shift in the image center,
Rc ∈ R is the rotation of the camera frame with respect to the world coordinate frame and tc is
the translation of the camera frame with respect to the world camera frame.

The normalized root relative depth is calculated with respect to a reference keypoint. Here we
use palm as the reference. The depth of the reference keypoint is called the root depth zo. The
depths calculated with respect to the reference keypoint are then normalized with the scale to
obtain the normalized root relative depth as follows:

z̃ri =
1

s
(zi − z0). (3.3)

Where,
s = ||p2 − p0||2. (3.4)

The scaling of the 3D joints with the scalar s does not affect the 2D camera projection because,

ziqi = Kpi =⇒ zi
s
qi =

1

s
Kpi. (3.5)

In summary, the 2.5D representation p2.5D
i of a point pi is,

p2.5D
i =


ui

vi

z̃ri

 . (3.6)

The 2.5D representation is an efficient way to represent a 3D hand pose. This representation
can be directly used as training labels for supervised training. On the other hand, 3D repre-
sentation by itself is an inefficient way to train the model directly, as estimating the 3D pose
from a monocular image is a severely ill posed problem. This is due to the scale and the depth
ambiguity in a 2D image projection. Estimating the 3D pose directly from a monocular image
leads at best to over-fitting on a specific environment and subject.

Obtaining the 3D pose from the 2.5D pose is also very straightforward. It is obtained by first
determining the depth of the palm as follows:

z0 =
s(−b+

√
b2 − 4ac)

2a
. (3.7)

Where,
a = (u2 − u0)2 + (v2 − v0)2, (3.8)

b = 2(z̃r2(u
2
2 + v22 − u2u0 − v2v0) + z̃r0(u

2
0 + v20 − u2u0 − v2v0)), (3.9)

and
c = (u2z̃

r
2 − u0z̃r0)2 + (v2z̃

r
2 − v0z̃r0)2 − (z̃r2 − z̃r0)2 − 1. (3.10)

After the palm depth is known, the xi, yi are calculated from equation 3.1.

11
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3.3. Depth refinement

Calculating the depth from the 2.5D representation involves the calculation of the root relative
depth z0. However, the calculation of z0 is very sensitive to errors in 2.5D projections. There-
fore, we refine the predicted root depth to increase the accuracy and improve the stability in the
presence of outliers. This post process step is first introduced in [31]. Similar to [31], we use a
MLPMref to refine the predicted root depth ẑ0.Mref refines the ẑ0 as follows:

ẑrefined0 = ẑ0 +Mref (ẑr,K
−1Ĵ2D, ẑ0). (3.11)

Here K is the camera matrix and ẑr is the vector of root relative depths of all coordinates.
Mref is trained by minimizing the following loss

Lref = |ẑrefined0 − z0|. (3.12)

3.4. Procrustes alignment

In the section 3.2, we showed that one can obtain 3D pose, J3D ∈ R21×3 from 2.5D pose, J2.5D.
However, it relies on the knowledge of the scale s and the camera matrix K. What if we don’t
know K and s? In this case, we assume K as identity, scale as 1 and calculate the 3D pose J̃3D

with these assumptions. The pose estimated with these assumptions is related to the original 3D
pose J3D. The relation between the two can be written as follows:

J3D = kJ̃3DRT +L. (3.13)

Where R ∈ R3×3 is a 3D rotation matrix, L ∈ R21×3 is a translation matrix and k ∈ R is a
scalar. All 21 rows of L correspond to the same 3D translation vector (x y z)T . We can find

R, L and k by minimizing the frobenius norm between J3D and J̃3D,

min
R,L,k

||J̃3D − J3D||F . (3.14)

This process of aligning two point clouds in a N dimensional space by adjusting the scale, the
rotation and the translation is called Procrustes alignment. The research community uses this
method to estimate the quality of 3D predictions in scenarios where the camera matrix and the
scale are either unreliable or unknown.

The relation in equation 3.13 comes from the assumptions of perspective projection in a pinhole
camera model. In the following analysis we support this claim. We rewrite the equation 3.1
but expand2 the camera matrix K in terms of the focal length f , the shift of the principal
point(image center) from the origin tu, tv.

zi


ui

vi

1

 =


f 0 tu

0 f tv

0 0 1



xi

yi

zi

 . (3.15)

2We assume the 3D pose is measured with respect to the camera frame, i.e. the extrinsic camera matrix is identity.
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The above relation can be decomposed as follows:

xi = f
xi
xi

+ tu =⇒ xi = ui
zi
f
− tu

zi
f
, (3.16)

and
vi = f

yi
zi

+ tv =⇒ yi = vi
zi
f
− tu

zi
f
. (3.17)

One can observe that scale normalizing the 3D coordinates does not change the camera projec-
tion ui and vi as

ui = f
xi
zi

+ tu = f
xi

s
zi
s

+ tu, (3.18)

and

vi = f
yi
zi

+ tv = f
yi
s
zi
s

+ tv. (3.19)

We can further write the above expression as

x̂i =
xi
s

= uiŝ− t̂u, (3.20)

and
ŷi =

yi
s
= viŝ− t̂v. (3.21)

Where

ŝ =
zi
s

f
, t̂u = tu

zi
s

f
and t̂v = tv

zi
s

f
. (3.22)

It is immediate from equation 3.20 and 3.22 that, provided we know ui, vi and zi/s, we can
obtain a scaled and shifted version of the original 3D pose. The 2.5D pose gives exactly those
parameters. The scale and shift are adjusted with Procrustes alignment.

3.5. Metrics

In this section, we define the metrics that we use for quantitatively evaluating the performance
of a model on the hand pose estimation task. We represent J3D ∈ R21×3 as the ground truth and
Ĵ3D ∈ R21×3 as the predictions. The 2.5D and 2D joints are represented by superscript 2.5D
and 3D. Additionally, J3D(t)

i represents the ith keypoint for tth ground truth sample.

Mean keypoint error 3D (MKP-3D) is the most common metric used to evaluate the 3D hand
pose. It is the average euclidean distance between the predicted and the ground truth hand pose.

EMKP-3D =
1

21N

N∑
t=1

21∑
i=1

||J3D(t)
i − Ĵ

3D(t)
i ||2, (3.23)

where N is the size of the evaluation set. This metric sometimes suffers from outliers, as
conversion from a 2.5D to a 3D pose can introduce some errors, especially when a in equation
3.7 approaches zero. This usually happens when the 2D projections of keypoints used for scale
normalization lie very close to each other or overlap. This makes calculated z0 very large and
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3. Background

it affects the metric disproportionately. The research community uses AUC to deal with such
outliers.

Area under the curve (AUC) is used to get a better estimate of the performance by being less
sensitive to outliers. In the case of the former, it represents the area under the Receiver Oper-
ating Characteristics (ROC), whereas in the latter it represents the area under the Percentage of
Correct Keypoints (PCK) curve. PCK measures the mean percentage of predicted joint loca-
tions that fall under an error threshold. The error is measured in terms of euclidean distance. In
our analysis we plot the PCK curve for the threshold, ranging from 0mm to 500mm in steps of
5mm.

In our analysis, we also evaluate the 2D performance of our models i.e. performance in terms
of the 2D camera projections of the 3D pose. We use Mean keypoint Error 2D (MKP-2D)
to quantify the 2D performance. Since the 2D predictions are not affected by the numerical
instability arising from 2.5D to 3D conversion, we do not rely on other metrics for the 2D
performance.

EMKP-2D =
1

21N

N∑
t=1

21∑
i=1

||J2D(t)
i − Ĵ

2D(t)
i ||2. (3.24)

Lastly, we also measure the 3D metrics on the Procrustes aligned predictions and call those
metrics PA MKP-3D and PA-AUC. These metrics are useful while evaluating datasets where
the camera matrix K and normalizing scale s is not known.

3.6. Datasets

There are several hand pose datasets available. We focused on the most recent datasets for our
analysis, namely FreiHAND (FH) [42] and Youtube 3D Hands (YT3D) [20].

FreiHAND consists of 32′560 frames captured with a green screen background in the train set.
Each sample in the train set is post processed in four different ways to remove the background.
This inflates the training set to 4 ∗ 32′560 = 130′240 samples. The dataset doesn’t contain
a separate validation set. Therefore, we randomly sample 10% of the 32′560 unique training
samples and their corresponding augmented counterparts as our validation set. The test set
contains 3′960 samples. The 3D labels for the train set are not released publicly by the authors.
Instead, to evaluate the performance on the test set, a competition is hosted by the authors on
codaLab3.

YouTube 3D Hands consists of in-the-wild images gathered from several youtube videos. It
contains 47′125, 1262 and 1262 samples in the train, validation and test set respectively. The
3D labels for each sample are automatically acquired via keypoint detection from OpenPose [5]
and MANO [30] fitting. We use this data exclusively for self-supervision and evaluation, i.e.
we don’t use the 3D labels during training. In the context of the evaluation, the dataset doesn’t
contain the camera intrinsic matrix, therefore we report PA MKP-3D and MKP-2D.

3https://competitions.codalab.org/competitions/21238
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4

Methods

In this chapter, we introduce the methods used for self-supervision with unlabeled data, fol-
lowed by methods used for supervised training on the hand pose estimation task. In self-
supervised methods, we first introduce the simplified contrastive learning framework from [6].
We identify an issue with this approach for structured regression tasks like hand pose estima-
tion. We use the key issue as motivation to introduce our novel pose equivariant contrastive
learning framework. In supervised methods, we describe the model used for pose estimation
and describe the refinement steps detailed in [31], used to reduce the effect of outliers

4.1. Self-supervised contrastive learning

We use contrastive learning as a pre-training step in order to improve the downstream perfor-
mance of hand pose estimation. It is a self-supervised learning method, hence does not use
labels for training.

In a nutshell, a model trained with this approach generates an embedding for an input which
satisfies two properties. Firstly, the embedding has a high similarity with the embeddings from
similar inputs. Secondly, the embedding has a low similarity with the embeddings from dissim-
ilar inputs. The end goal is that pre-training with this objective will result in the model learning
generic visual representations that can further help improve the downstream performance upon
task-specific finetuning. This approach has gained some traction in the computer vision com-
munity after the success of SimCLR [6] on image classification. The authors in [6] showed that
the features learned by contrastive approaches achieve better performance than fully supervised
approaches in classification. In our work we propose that this can be extended to structured re-
gression based tasks as well, albeit with a few geometric modifications. We call our contrastive
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framework pose equivariant contrastive learning or PeCLR. It builds upon SimCLR. In the fol-
lowing text, we describe the general setup and input processing shared by SimCLR and PeCLR.
Next, we describe the loss formulation for SimCLR, followed by our proposed modifications.
Further, we justify our modifications theoretically. In the end we summarize by describing the
training algorithm of PeCLR.

4.1.1. Input

The input processing is the same for both SimCLR and PeCLR. We define In as the nth raw
image sampled from the training data. Let T be the set of random image augmentations such
that the augmentation t sampled from this set can be decomposed into the appearance based
augmentation ta and the geometric augmentation tg respectively. If In is the input to the model
then positive samples are defined as,

t(In),∀t ∈ T, (4.1)

whereas negative samples to xi are,

t(Im),∀t ∈ T ;m 6= n. (4.2)

The model gets the augmented views of the raw input image I as the input. In each iteration,
the model samples both positive and negative pairs. For a given batch ofN images, two random
augmentations are applied to each raw image, resulting in 2N augmented images. Hence, for
every augmented image In

i , there is one positive sample In
j and 2(N − 1) negative samples

{Im
k }m 6=n.

4.1.2. Model

The contrastive model consists of an encoder E and a projection head g. The similarity is
measured for the 2D embedding z ∈ Rm×2 and generated by the projection head. The projection
head in turn generates the embeddings from features z, generated by the encoder from input
t(I). We represent the whole model as f . The relationships described can be expressed as
follows:

zn
i = f(ti(I

n)) = g(E(ti(I
n))) = g(zn

i ). (4.3)

4.1.3. SimCLR loss function

The contrastive loss used by SimCLR ensures that negative samples are far apart and positive
samples are close to each other in the latent space. The loss was termed as normalized tem-
perature scaled cross entropy (NT-Xent) in [6]. Here we follow the same nomenclature. This
loss function is also used in [17]. The (NT-Xent) loss for a input pair {In

i , I
n
j } is,

Li,j = − log
exp (sim(zi, zj)/τ)∑2N

k=1 1[k 6=i] exp (sim(zi, zk)/τ)
. (4.4)
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4.2. Inverting transformations in latent space

Where τ is the temperature parameter, sim(u,v) = uTv/||u||||v|| is the cosine similarity
between zn

i , zn
j and 1[k 6=i] is the indicator function. In the loss formulation, we abuse the

notation a bit by not including the superscript in the notation for the projection z . We assume
that zi and zj are projections from augmented views of raw samples In and all other projections
{zk}2Nk=1,k 6=i 6=j are obtained from augmented views of raw images {Im}Nm=1,m 6=n .

4.1.4. Equivariant contrastive representation

Upon inspecting equation 4.4, we observe that SimCLR promotes invariance under all transfor-
mations. This can be explained from the following analysis. Given a sample In

j = tj(I
n) and

its positive sample In
i = ti(I

n) = ti(t
−1
j (In

j )) = t̃i(I
n
j ), the numerator in Eq. 4.4 is minimized

if f(In
j ) = zn

j = zn
i = f(t̃i(I

n
j )). Hence, a model that satisfies Eq. 4.4 needs to be invariant

to all transformations in T . However, hand pose estimation requires equivariance with respect
to geometric transformations, as these change the displayed pose and at the same time retain
invariance with respect to appearance based transformations. These two requirements can be
expressed as follows:

tgf(In) = f(tg(In)) (4.5)

and
f(In) = f(ta(In)). (4.6)

4.1.5. PeCLR loss function

Geometric equivariance can be ensured with the following modification to equation 4.5:

f(In) = (tg)−1f(tg(In)). (4.7)

This implies that if the projections are transformed with the inverse of the input geometric
augmentation, followed by the NT-Xent loss optimization, equations 4.5 and 4.6 are satisfied.
We define the transformed projection as follows:

z̃i = (tgi )
−1zi (4.8)

and the modified equivariant loss as:

Li,j = − log
exp (sim((z̃i, z̃j)/τ)∑2N

k=1 1[k 6=i] exp (sim(z̃i, z̃k)/τ)
. (4.9)

The loss is minimized if the numerator is maximized, i.e. maximizing sim(z̃i, z̃j). This leads to
the desired geometric equivariance.

4.2. Inverting transformations in latent space

We use affine transformation to augment the input image geometrically. Therefore, the calcula-
tion of (tg)−1 is straightforward. Scale and rotation augmentations are performed relatively to
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the magnitude. However, the translation is performed in an absolute quantity, i.e. if we translate
an image In by x pixels, we need to translate its latent space representation zn by a proportional
quantity. Following this intuition, we translate zn by a quantity proportional to its magnitude.
This is achieved by scaling the absolute translation by the ratio of the range spanned by the
projections with respect to the image size. The normalized translation v̂ can be expressed as
follows:

v̂ =
v

L
Lz. (4.10)

Here v is the absolute translation, Lz = max(zi) − min(zi) is the range spanned by projection
zi and L is the image size. We emphasize that due to cosine similarity being used in equation
4.9, the effect of scaling is removed (i.e. sim(azi, bzj) = sim(zi, zj), for a, b ∈ R). Algorithm
1 describes the pose equivariant contrastive learning. We further describe it visually in figure
4.1

Algorithm 1: Equivariant contrastive learning
Input: batch size N , constant τ , f and T
for sampled batch {xk}Nk=1 ∼ Training Data do

// Generate embeddings
for k ∈ {1, ..., N} do

Sample t and t′ from T ;
z2k−1 = f ◦ t ◦ xk;
z2k = f ◦ t′ ◦ xk;
// Revert geometric transforms
z̃2k−1 = t−1g ◦ z2k−1;
z̃2k = t−1g ◦ z2k;

// Compute similarity
for i, j ∈ {1, ..., 2N} do

si,j = z̃Ti z̃j/(||z̃i||||z̃j||)
// Calculate loss
for i, j ∈ {1, ..., 2N} do

li,j = (si,j/τ)− log (
∑2N

k=1 1[k 6=i] exp (si,j/τ))

Loss = 1
2N

∑N
k=1[l2k−1,2k + l2k,2k−1];

Update f to minimize Loss
Return trained model f

4.3. Supervised learning

In this section, we describe the input, output labels, model and loss used for supervised training
on the 3D hand pose estimation task. We start by defining the input and output labels used to
train the model. Next, we describe the model used and the loss function. Lastly, we describe a
refinement step to improve the 3D predictions of the final model. The model is visually depicted
in figure 4.2
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Maximize 
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Figure 4.1.: Method overview. An augmentation t = tg ◦ ta is applied to input image In. Here
tg and ta denote the geometric and appearance components of the augmentation t ∈
T , respectively. The model then generates the projections zn for each augmented
input. Geometric augmentations are reversed in projection space before optimizing
the contrastive objective. The agreement between projections from the same input
image is maximized (top) and agreements amongst projections from different input
images are minimized (bottom).
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Figure 4.2.: Supervised model. We use an encoder and a linear layer to regress the 2.5D pose.

4.3.1. Input

Monocular RGB image I is used as the input to the model. The 2.5D representation J2.5D

of the 3D pose J3D is used as the target. The conversion between the two representations is
discussed in section 3.2.

4.3.2. Model

We use the encoder E appended with linear layer h as the supervised model. The architecture
of the encoder is the same as that of the contrastive model’s encoder. This is to ensure that
the trained weights of the contrastive model’s encoder can be used as initial weights for the
supervised model. The model predicts the 2.5D pose from the RGB input image as follows:

Ĵ2.5D = h ◦ E(I). (4.11)

4.3.3. Loss

We minimize the mean absolute error of the camera projections of the pose in the image plane
and the root relative depth. The two losses can be expressed as follows:

LJ2D =
1

21

21∑
i=1

|Ĵi

2D
− J2D

i | (4.12)

and

Lzr =
1

21

21∑
i=1

|ẑri − zri |. (4.13)

Here, the subscript i denotes the keypoint index of the 21 key points in a hand pose. The overall
loss is expressed as follows:

Lsup = LJ2D + αLzr . (4.14)

Here α is a scalar factor to balance the two components of the Lsup. We set it to 5 in our
experiments. We further refine the 3D prediction by performing the depth refinement described
in section 3.3.
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4.4. Pre-training to fine-tuning

4.4. Pre-training to fine-tuning

The contrastive learning is performed first and is called pre-training in this work. After the pre-
training step, we fine-tune the encoder in the supervised manner. This is done after removing
the projection layer g and replacing it with the linear layer h, similar to [6]. The entire model
is trained end-to-end, using the supervised loss described in section 4.3.3. The overall setup is
described in figure 4.3

Tied weights

Encoder

P
ro

je
ct
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n

he
ad

Li
ne

ar
he

adEncoder

Self-supervised representation learning

Supervised hand pose estimation

Contrastive 
loss

Supervised 
loss

Figure 4.3.: Overall setup. In the first stage, we train the encoder in a self-supervised manner
on a large unlabeled dataset. We follow it by the second stage, i.e. fine-tuning the
hence trained encoder with a small amount of labeled data.
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5

Experiments

This chapter details the experiments conducted to evaluate the effectiveness of the pose equiv-
ariant contrastive learning framework (PeCLR) for Hand pose estimation. The augmentations
used during contrastive training is crucial and has an impact on the pose estimation. There-
fore, we start by evaluating the quality and effectiveness of the features learned by contrastive
learning on hand pose estimation in presence of one augmentation at a time. This experiment is
followed by an exhaustive search for an optimal augmentation composition for the contrastive
training, which leads to the optimal performance for hand pose estimation. The optimal con-
trastive training parameters are then compared with state of the art supervised methods on the
FreiHAND dataset. Lastly, we conduct a cross data set evaluation to show the improvement
offered by contrastive learning across different domain distributions.

5.1. Implementation

We compare two contrastive learning strategies, namely SimCLR[6] that uses NT-Xent, de-
scribed in equation 4.4, and our proposed PeCLR that uses an equivariant contrastive loss, as
described in equation 4.9 . The contrastive training is also referred as pre-training. We use
ResNet [16] as the encoder. It takes RGB images of the size 128× 128 as the input. A training
batch spans 2048 samples. LARS [38] wrapped ADAM [19] with a learning rate of 4.5e-3 is
used as a pre-training optimizer. The pre-training consists of 100 epochs.

The supervised training with 3D hand pose labels is referred to as the fine-tuning step. During
this step we use RGB images of size 128× 128 and 256× 256. We use ADAM with a learning
rate of 5e-4. Appendix A.1 contains the training parameters in more detail.
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5.2. Evaluation of augmentation strategies

We study the performance of feature representations learned during pre-training. The pre-
training is done with the different augmentations. The feature representation is then evaluated
on the hand pose estimation task. The augmentations studied are classified into two categories,
namely appearance based and geometric. Appearance based augmentations include color jitter,
cut out, sobel filter, color drop, Gaussian blur and Gaussian noise. Whereas geometric augmen-
tations include scale, rotate and translate. These augmentations are visually depicted in figure
5.1 . In this experiment, we train the encoder with the PeCLR and the SimCLR framework fol-
lowed by supervised finetuning on the hand pose estimation task. The encoder is frozen during
finetuning, instead an appended MLP is trained. This ensures that the features learned during
pre-training are not changed during finetuning. We start by studying the effect of one augmenta-
tion at a time and follow up with an exhaustive search to find the best augmentation composition
for SimCLR and PeCLR. We use ResNet-50 as the encoder and FreiHAND as the dataset for
this study. We create our own train-val split where 90% of the data is used for the pre-training
and 10% of the data is used for the evaluation. Same splits are used during the pre-training and
the finetuning step to prevent information leakage between them. The pre-training spans 100
epochs and finetuning spans 50 epochs. The models are restored based on the contrastive loss
and 3D loss measured on the validation split during pre-training and finetuning, respectively.

Original 

Translate

Color jitter

Noise

Cut out

Sobel filter

Scale

Color drop

Rotate

Blur

Figure 5.1.: Augmentations. Appearance(green) and geometric(blue) augmentations used dur-
ing contrastive learning.

5.2.1. Performance of individual augmentation

The impact of each augmentation when trained with SimCLR and PeCLR is shown in figure 5.2.
We observe that irrespective of the chosen augmentation, the encoders trained with contrastive
objective perform better than the encoders which are randomly initialized. Additionally, we ob-
serve that for geometric transformations like rotation and translation PeCLR shows a significant
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5.2. Evaluation of augmentation strategies

improvement of 34% and 56.7% with respect to SimCLR , respectively. We hypothesize that the
poor performance stems from the fact that SimCLR promotes invariance under all augmenta-
tions where as PeCLR promotes equivariance under geometric and invariance under appearance
based augmentations. Scale is also a geometric augmentation but no difference is observed be-
tween PeCLR and SimCLR. This observation is explained by the fact that the effect of scale
is eliminated in cosine similarity. However, one observation is clear from figure 5.2 that scale,
translate and rotations are far more important than the appearance based augmentations for the
structured regression task like hand pose estimation. We emphasize here that since PeCLR as
well as SimCLR promote invariance under appearance based augmentations, there is no dif-
ference in the performance of color jitter, cut out, sobel filter, color drop, Gaussian blur and
Gaussian noise.
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(b) PeCLR

Figure 5.2.: Performance of individual augmentation. The performance of SimCLR(left) and
PeCLR(right) on the hand pose estimation task. The encoders are pre-trained in
the presence of one augmentation at a time, shown along the x-axis, followed by
supervised finetuning of an additional MLP layer. Translate and emphrotate’s per-
formance improve by 34% and 56%, respectively with PeCLR.

5.2.2. Performance of composite augmentations

The quality of the features learned with contrastive pre-training improve significantly by using
multiple augmentations. However, not every augmentation composition leads to an improve-
ment for the hand pose estimation task. Therefore we perform an exhaustive study to find the
best augmentation composition for SimCLR and PeCLR respectively. We narrow our search
space to the top-4 performing augmentations from figure 5.2. For the exhaustive search for
PeCLR, sobel filter is replaced with color jitter as the former didn’t improve the performance in
presence of other augmentations. We observe that for PeCLR scale, rotate, translate and color
jitter perform the best, whereas for SimCLR scale and color jitter perform the best. In table 5.1,
we compare the encoder pre-trained with SimCLR and the one pre-trained with PeCLR with
their respective optimal augmentation composition. PeCLR improves MKP-3D by 3.4% and
MKP-2D by 12.8% with respect to SimCLR. This demonstrates that the proposed equivariant
contrastive loss leads to an effective representation learning approach for hand pose estimation.
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Model
MKP-3D ↓

AUC ↑
MKP-2D ↓

(cm) (px)

SimCLR 16.62 0.72 12.05

PeCLR (ours) 16.05 0.74 10.51

Table 5.1.: Comparison with SimCLR. PeCLR is compared wih SimCLR on the hand pose
estimation task. The encoders are pre-trained with SimCLR or PeCLR, and are
frozen during fine-tuning. Both methods use their optimal set of augmentations, as
explained in section 5.2.2.

5.3. Inspecting equivariance of PeCLR and SimCLR

We investigate the equivariance of fine-tuned SimCLR and PeCLR models. The models are
pre-trained on FreiHAND and YouTube 3D Hands combined with the optimal augmentation
compositions and fine-tuned only on FreiHAND. We quantify the equivariance of a model by
measuring deviations from predictions made on geometrically unaugmented inputs. Specifi-
cally, we report:

Lequiv(I
n) = ||tgi f(In)− f(tgi (In))||2. (5.1)

We do the analysis for both rotation and translation augmentations, since PeCLR reverts these
augmentations in feature space. To quantify the difference in performance between PeCLR and
SimCLR, we visualize the following measure of improvement:

Limprov(I
n) =

LSimCLR
equiv (In)− LPeCLR

equiv (In)

LSimCLR
equiv (In)

. (5.2)

This measure allows quantifying the improvement relative to the scale of the error. For a given
augmentation, we sample points equidistantly on their respective parameter ranges. For rotation
we sample points at the steps of 10◦ in the range [−90◦, 90◦]. For translation, we set the ranges at
[−20, 20]2. Each augmentation is evaluated on the entire evaluation split of YouTube 3D Hands
and FreiHAND. We first visualize the results for the rotation augmentation as shown in Figure
5.3. For both datasets, we see that Limprov is positive for the entire range tested, indicating that
PeCLR performs better on equivariance tasks. The amount of improvement declines as we enter
more extreme ranges. The same trend can be observed for both datasets. Figure 5.4 shows the
effect of translation on equivariance for both models. Similar to rotation, we observe an overall
improvement of PeCLR over SimCLR across all ranges sampled.

This experiment demonstrates that the equivariance property holds, even after fine-tuning the
network.
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Figure 5.3.: Quantitative analysis of rotational equivariance. Each point denotes the im-
provement of PeCLR over SimCLR for rotational equivariance, as measured by
MKP-2D. We see that across all sampled rotations, PeCLR leads to increased equiv-
ariance on both datasets. The models are fine-tuned on FreiHAND (FH) and pre-
trained on YouTube 3D Hands (YT3D) and FreiHAND.
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(b) YouTube 3D Hands

Figure 5.4.: Quantitative analysis of translational equivariance. Each point denotes the im-
provement of PeCLR over SimCLR for translational equivariance, as measured by
MKP-2D. We see that across all sampled translation on the grid, PeCLR leads to in-
creased equivariance on both the datasets. The models are fine-tuned on FreiHAND
and pre-trained on YouTube 3D Hands.
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5. Experiments

5.4. Label efficiency in semi-supervised learning

We study the label efficiency of an encoder pre-trained with PeCLR in a semi-supervised set-
ting. We use the optimal data augmentation composition described in section 5.2.2 to pre-train
the encoder. The pre-trained encoder appended with a final linear layer is then fine-tuned on
10%, 20%, 40%, 80% of FreiHAND’s labeled data. For this study, we consider three encoders,
the first two are pre-trained on FreiHAND and FreiHAND and YouTube 3D Hands combined.
The third encoder is randomly initialized. We refer to the models using these encoders as
MFH+Y T3D, MFH and Mb, respectively. ResNet-152 is used as the encoder because deeper
neural networks benefit more from large amounts of training data [6]. We confirm the same
with experiments on the smaller ResNet-50 encoder (Figure 5.5a).

In figure 5.5, we show the performance of MFH+Y T3D, MFH and Mb with the ResNet-150
encoder on the hand pose estimation task. Figure 5.5 shows the same for the ResNet-50 style
encoder. We observe that MFH , MFH+Y T3D outperform the baseline Mb regardless of the
amount of used labels and of the encoder size. This result is in agreement with [6], confirm-
ing that pre-trained models can increase the label efficiency for the hand pose estimation task.
Additionally, we observe that MFH+Y T3D and Mb when fine-tuned with 20% of labeled data
MFH+Y T3D performs almost on par with Mb using 40% of the labeled data (PA MKP-3D of
1.21 cm vs 1.23 cm for ResNet-152 and 1.25 cm vs 1.24 cm for ResNet-50).

We further observe that for a bigger and deeper encoder like that of ResNet-152, increasing
the training data during the pre-training phase further improves the performance. This trend is
weaker for the smaller ResNet-50 encoder.
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Figure 5.5.: PeCLR in a semi-supervised setting. ResNet-50(left) and ResNet-152(right) are
used as the encoder. We observe that pre-training with PeCLR (green and blue),
we achieve a higher training accuracy when compared to the supervised baseline
(yellow).
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5.5. Comparison with the state of the art

5.5. Comparison with the state of the art

In this section, we use the PeCLR ResNet-152 encoder pre-trained on FreiHAND and YouTube
3D Hands with the optimal augmentation composition from section 5.2.2. We fine-tune the
encoder with a linear layer on 100% of the FreiHAND training dataset and compare it with the
state of the art methods. We also increase the image resolution during finetuning from 128×128
to 256 × 256. In addition to the state of the art methods, we also compare our model with a
supervised baseline model trained on FreiHAND.
We report our results in table 5.2. We observe that a ResNet-152 model trained only on Frei-
HAND does not outperform the state of the art, despite its large model capacity. We hypothesize
that this is due to the comparably small size of FreiHAND. However, by including YouTube 3D
Hands during self supervised pre-training, we are able to close the gap. We observe an improve-
ment of 7.6% in terms of PA MKP-3D with respect to our supervised baseline. This also results
in our method achieving state of the art performance in a purely data driven way. We further
emphasize that in contrast to our approach all other methods mentioned in table 5.2 use highly
specialized architectures.

Method
PA MKP-3D ↓

PA-AUC ↑
(cm)

Spurr et al[31] 0.90 0.82

Kulon et al[22] 0.84 0.83

Li et al[23] 0.80 0.84

Pose2Mesh[8] 0.77 -

I2L-MeshNet[24] 0.74 -

RN152 0.79 0.84

+ PeCLR (ours) 0.73 0.86

Table 5.2.: Comparison with SotA. A standard RN152 model is unable to outperform state-
of-the-art methods. By pre-training using PeCLR, we yield a 7.6% performance
increase, resulting in state-of-the-art performance.

Fairness in comparison: The self-supervised-fine-tuned (SSFT) models often have more train-
ing time compared to the fully supervised baseline for a given data set. For instance, let us
assume a SSFT model is pre-trained with a self-supervised objective with x iterations on a data
set A. It is then fine-tuned for y iterations on the same data set. Now it is not fair to compare
this SSFT model with a fully supervised model trained for y iterations on A. The comparison
is only fair if the supervised model is trained for x + y iterations on A. In our experiments
protocol we ensure that the total number of iterations on a labeled data set remains the same.
To put it in exact numbers we pre-train our self-supervised model for 139.6K iterations com-
bined on YTB[20] and FH [42]. The samples from each dataset are sampled randomly and with
replacement. This ensures that each data set has an equal number of training iterations, 69.8K
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each. The trained self supervised model is then fine-tuned on FH for 101.8K iterations. The
supervised model used for comparison is trained for 69.8K + 101.8K iterations on FH. We
assume that other state of the art methods are trained to optimality.

5.6. Cross-dataset analysis

In this section, we investigate the predictive power of a pre-trained encoder on the dataset that
is not used for finetuning. We pre-train a ResNet-152 encoder on FreiHAND and YouTube
3D Hands. We fine-tune the trained encoder on FreiHAND. We then evaluate the performance
on both FreiHAND and YouTube 3D Hands. A model trained only on FreiHAND in a super-
vised manner is used as a baseline. The results from this experiment setup shed light on how
pre-trained models perform under a domain shift in comparison to their fully supervised coun-
terparts. Generally speaking this is assumed to be a very challenging task for most existing
methods in the hand pose community. However, it is important for real-world applications.

Table 5.3 shows that PeCLR outperforms the baseline with improvements of 4.8% in MKP-3D
and 9.8% in MKP-2D when evaluated on YouTube 3D Hands. This improvement indicates that
our approach is a promising way forward in using unlabeled data for representation learning
and training a model that can be adapted to other data distributions.

FreiHAND YouTube 3D Hands

Method
MKP-3D ↓

AUC ↑
PA MKP-3D ↓ MKP-2D ↓

(cm) (cm) (px)

Supervised 5.40 0.32 3.08 20.59

PeCLR (Ours) 5.09 0.34 2.93 18.70

Improvement 5.74 % 6.25 % 4.84 % 9.18 %

Table 5.3.: Cross-dataset analysis. PeCLR model with the ResNet-152 architecture is pre-
trained on YouTube 3D Hands (YT3D) and FreiHAND (FH) and then fine-tuned on
FH. The model is then evaluated on both FH (top) and YT3D (bottom) test sets. We
observe that similar improvements are gained across both datasets.
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5.6. Cross-dataset analysis

Target Baseline BaselinePeCLR PeCLR

Figure 5.6.: Qualitative keypoint predictions are shown for YouTube 3D Hands (left) and
FreiHAND (right) test sets. Results from RN152 (Baseline) and RN152 + PeCLR
are shown in each column. The ground truth data is not publicly available for Frei-
HAND, therefore, only the predictions are shown on the right.
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6

Conclusion and Outlook

The task of 3D hand pose estimation from monocular RGB images is a challenging task, due to
large diversity in environmental conditions and hand appearances. Over the years, the research
community has developed specialized architectures, artificial data synthesis and much more
to address this challenge. In this work we propose a novel contrastive framework that uses
unlabeled data efficiently to improve the prediction accuracy of 3D hand pose.

We approach the problem by using the state-of-the-art contrastive framework [6], which has
shown promise for classification. We then identify a key issue in the approach, i.e. augmenta-
tion agnostic invariance. We show that this is detrimental in the presence of geometric augmen-
tations with standard contrastive loss formulation, i.e. invariance to geometric augmentations
learned during contrastive learning is detrimental to the hand pose estimation task. We fur-
ther propose modifications to make the contrastive learning objective equivariant to geometric
augmentations and invariant to appearance based augmentations. This modification leads to an
improvement over the state-of-the-art contrastive framework. Later, we perform an exhaustive
search for the best augmentation composition for the pose related downstream task. This is es-
pecially useful to the pose community, as the knowledge of augmentations that lead to improve-
ment on downstream tasks is not immediate. Additionally, we show that the proposed novel
contrastive learning framework with an optimal augmentation composition can help achieve the
state-of-the-art performance without any special architecture. We repeat this experiment with
a cross-dataset setup, i.e. we pre-train with a contrastive objective on data from two modal-
ities (FreiHAND and YouTube 3D Hands) without labels, followed by finetuning on labeled
data from one of the modality(FreiHAND) . We evaluate the performance on the modality used
during pre-training but not during fine-tuning (YouTube 3D Hands). This setup leads to im-
provement in the YouTube 3D Hands predictions with respect to a baseline trained only on
FreiHAND. With this, we show that our approach to contrastive learning (PeCLR) provides a
feasible solution to improve generalizabilty across datasets.



6. Conclusion and Outlook

6.1. Future work

Distilling from larger models. This work shows the promise of PeCLR on smaller models
with a relatively small amount of unlabeled data 1. However, contrastive learning’s prowess is
best utilized with larger models and a large amount of pre-training data. To put it in numbers,
the largest model used in this work has 50 million parameters, compared to a model with 400
million parameters in [6]. Similarly, the data used by us is also relatively small, i.e. approx
0.2 million training samples from FreiHAND and YouTube 3D Hands, compared to 14 million
ImageNet samples used in [6]. We believe that when used to its full potential, PeCLR can
achieve an even better performance. In [7] authors use large pretrained SimCLR models to
transfer knowledge to smaller models. This is indeed a promising direction for reducing the
inference time. This direction is not explored in the scope of this work and is a promising
direction with large application based consequences.

3D geometric augmentations. In this work, we discussed the improvement in the 3D hand pose
estimation task by using 2D affine transformations as geometric augmentations during PeCLR
pre-training. This hints that 3D transformations might improve the performance even more.
However, applying 3D transformations on monocular RGB images is not straightforward. A
possible way around this is using RGB images of a hand pose from different views by using a
multi-camera setup or synthesizing a hand pose dataset from a MANO model. The exact effect
and implementation of 3D geometric augmentations is a valid avenue for future work.

Catastrophic forgetting. There is a risk of forgetting features learned during pre-training while
fine-tuning on a smaller dataset. One possible solution is using bigger models which take longer
to unlearn the features learned during pre-training. Another solution is freezing the pre-trained
weights. These two solution come with their own challenges. For instance, larger models take
significantly more time and data2 to train. On the other hand, freezing the pre-trained weights
removes the possibility of learning new features altogether during fine-tuning. Simultaneous
pre-training and fine-tuning could also be a promising solution to catastrophic forgetting. These
solutions for catastrophic forgetting in the context of this work are yet to be explored.

Extension to heatmap based approaches. Heatmap-based approaches introduced in [36] of-
fer state of the art performances across all pose related tasks with higher parameter efficiency.
Pre-training heatmap based models with a contrastive objective is not straightforward. One of
the challenges is that the use of cosine similarity in the heatmap space is not very intuitive when
compared to a vector. Additionally, measuring the similarity between heatmaps is computa-
tionally intensive and requires large GPU memory. This further limits the batch size that can
be used for one iteration3 One possible solution is using spatial-softargmax to obtain keypoints
from the output heatmaps and computing the similarity on these keypoints. However, this re-
sults in sacrificing the rich information encoded by the heatmaps. Future work in this direction
could be very beneficial to all of the pose estimation community.

1This is an intentional choice because of limited computational resources.
2This protects against over-fitting.
3Large batch sizes are important if random negative sampling is used.
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Appendix

A.1. Training details

Here, we describe the training details of our pre-training and finetuning steps in more detail.

Self-supervised pre-training. We train our model with 100 epochs with contrastive objective
as empirically it performed the best. We use ADAM wrapped LARS as the optimizer, inspired
by [6]. It indeed resulted in a better downstream performance compared to a ADAM optimizer
alone. We use an effective batch size of 2048 samples consisting of 16 mini-batches of 128
samples each. This was done to train a batch on a Nvidia RTX 2080 Ti GPU. We accumulate
the gradients across these 16 mini-batches before updating the model weights. The learning
rate is linearly increased until 1e− 4×

√
batch for 10 epochs, followed by cosine annealing for

the rest of the training. When using FreiHAND and YouTube 3D Hands together to pre-train
the model, we ensure that a batch contains an equal amount of samples from both datasets,
by using weighted sampling. The geometric augmentation parameters are randomly sampled
from a sensible range, determined empirically. The rotation r ∈ [−45◦, 45◦], translation t ∈
[−15, 15]2 and scaling s ∈ [0.6, 2.0]. The color jitter augmentation involves adjusting the hue,
the saturation and the brightness of an image. Hue and saturation are changed by scaling them
randomly with a scale in the range [0.01, 1.0], whereas the brightness is adjusted by scaling
original the value randomly in the range [0.5, 1.0] and adding a random bias from the range
[5, 20].

Supervised fine-tuning. We train the supervised model with a learning rate of 5e − 4 in con-
junction with cosine annealing. We use ADAM as the optimizer and the batch size is set to
128.The input images are augmented using rotations in the range [−90◦, 90◦], translation in the
range [−20, 20]2 and scaling in the range [0.7, 1.3]. These ranges empirically performed the
best.
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