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We prove the equidistribution of subsets of (R/Z)n defined 
by fractional parts of subsets of (Z/qZ)n that are constructed 
using the Chinese Remainder Theorem.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given an irreducible quadratic polynomial f ∈ Z[X], the celebrated work of Duke, 
Friedlander, and Iwaniec [4] (see also Toth [16]) shows that the roots of the congruence 
f(x) ≡ 0 (mod p) become equidistributed when taken over all primes p � P . Precisely, 
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their results establish the equidistribution in R/Z of the points xp/p taken over all p � P

and roots xp of f(xp) ≡ 0 (mod p). A similar result is expected for roots of polynomials of 
higher degree, but this remains an outstanding open problem. In [10], Hooley established 
that if one considers instead the roots of a polynomial congruence (modn) over all 
integer moduli n, then a suitable equidistribution result holds. In this paper we show 
that Hooley’s result may be recast as a general fact concerning the equidistribution of 
sets arising from the Chinese Remainder Theorem. Our work was partly motivated by 
the paper [7] of Granville and Kurlberg (who consider the spacing between elements of 
“large” sets defined by the Chinese Remainder Theorem). Some applications were also 
suggested by recent work of Hrushovski [11].

For simplicity, we begin by considering equidistribution in R/Z; later we shall discuss 
the higher dimensional case of points in (R/Z)n. Suppose that for each prime power pv
we are given a set Apv of residue classes modulo pv (where throughout we include primes 
among the prime powers, and exclude 1). Let �(pv) = |Apv |. We allow for the possibility 
that �(pv) = 0, so that Apv is empty, for some prime powers pv, and no assumptions 
are made concerning the relations between the sets Apv1 and Apv2 corresponding to 
different powers of the prime p. For a positive integer q, let Aq ⊂ Z/qZ denote the set 
of residue classes x (mod q) such that x (mod pv) ∈ Apv for all prime powers pv exactly 
dividing q (that is, pv|q but pv+1 � q; we denote this by pv‖q from now on). These are the 
“sets defined using the Chinese Remainder Theorem.” Let �(q) = |Aq|, so that (setting 
�(1) = 1) the function �(q) is multiplicative:

�(q) =
∏
pv‖q

�(pv).

Let Q denote the set of all q with �(q) � 1, and for any integer k � 1, let Qk denote 
the elements of Q with exactly k distinct prime factors. Further, for x � 1, let Q(x) (resp. 
Qk(x)) denote the subset of elements of Q (resp. of Qk) that are � x. In order to ensure 
that the sets Q and Qk are well behaved and have plenty of elements we shall make the 
following assumption.

Assumption 1.1. There exist constants α > 0 and x0 � 2 such that for all x � x0∑
p�x

�(p)�1

log p � αx.

Throughout we operate under Assumption 1.1, and the parameter x will be considered 
to be large in terms of α and x0, so that for example we would have α log log x �√

log log x.
Given q ∈ Q, we define a probability measure Δq on R/Z by

Δq = 1
�(q)

∑
δ{a

q }

a∈Aq
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where δt denotes a Dirac mass at the point t, and {·} denotes the fractional part of a real 
number. The limiting behavior of such measures is the object of our study. For example, 
we are interested in knowing whether Δq tends to the uniform measure for most q ∈ Q. 
To quantify whether Δq is close to uniform, we use the discrepancy

disc(Δq) = sup
I⊂R/Z

|Δq(I) − |I||,

where the supremum is taken over all closed intervals I in R/Z, and |I| denotes the 
length of the interval I. By a (closed) interval in R/Z we mean the image in R/Z of a 
(closed) interval in R of length at most 1. One has 0 � disc(Δq) � 1 for all q, and a 
small value of disc(Δq) indicates that Δq is close to uniform.

Theorem 1.2. Suppose that Assumption 1.1 holds, and that x is large in terms of α and 
x0. Then, there is an absolute constant C such that

1
|Q(x)|

∑
q∈Q(x)

disc(Δq) �
C

α
exp

(
− 1

6
∑
p�x

�(p)�2

1
p

)
.

Remark 1.3. (1) If we write

∑
p�x

�(p)�2

1
p

= P,

then Theorem 1.2 guarantees that apart from at most Cα−1|Q(x)|e−P/12 values of q, one 
has disc(Δq) � e−P/12. Thus if P is large then for almost all q � x with q ∈ Q one has 
equidistribution of the sets Aq (by which we mean the equidistribution of the measures 
Δq). Apart from constants, this result is best possible, for we should expect that about 
e−P |Q(x)| squarefree elements q ∈ Q(x) would be divisible by no prime p with �(p) � 2, 
and for such q we would have |Aq| = 1 and disc(Δq) = 1.

(2) In particular, for almost all q ∈ Q, the discrepancy bound implies that the smallest 
element of Aq is � qe−P/12 (if we identify Z/qZ with {0, . . . , q−1}). In the case of roots 
of polynomial congruences, such a result was recently proved by Crişan and Pollack [1].

Theorem 1.2 applies to Hooley’s result on roots of a polynomial modulo all integers. 
By the Chebotarev Density Theorem, any irreducible polynomial of degree d � 2 has 
d roots modulo p for a positive density of primes, so that Assumption 1.1 holds, and 
further ∑

p�x

1
p
� c(d) log log x
�(p)�2
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for some constant c(d) � 1
d! (so that the right-hand side of the estimate in Theorem 1.2

is of size (log x)−c for some c > 0). We shall give further applications along these lines 
in Section 2. Our version is somewhat different from Hooley’s, and we shall compare 
and contrast these in Section 2.2. The generality of Theorem 1.2 indicates that Hooley’s 
equidistribution [10] is a manifestation of the mixing properties of the Chinese Remainder 
Theorem rather than the arithmetic structure of roots of polynomial congruences.

We shall generalize and strengthen Theorem 1.2 in a few different ways. Firstly, we 
consider subsets of (Z/pvZ)n for fixed n � 1. Here a key issue is to find the correct 
generalization of the condition that �(p) � 2 for many primes that arose naturally in 
the one-dimensional case. Secondly, we shall consider equidistribution of the measures 
Δq when q is restricted to integers in Q with exactly k distinct prime factors. Under 
mild hypotheses on �(p), we shall show that in a wide range of k, the discrepancy of the 
measures Δq is typically small. Under more restrictive hypotheses (when �(p) is large 
for p ∈ Q) we show that disc(Δq) is typically small already for numbers with two prime 
factors.

We begin by introducing the higher dimensional setting, and formulating an analogue 
of Theorem 1.2. Throughout, the dimension n will be considered fixed, so that implicit 
constants will be allowed to depend on n, but we shall display the dependencies on all 
other parameters. For each prime power pv, let Apv ⊂ (Z/pvZ)n be a set of n-tuples 
of residue classes modulo pv. As before, we put �(pv) = |Apv | and allow Apv to be 
the empty set (so that �(pv) = 0) for some prime powers. For a positive integer q, we 
let Aq ⊂ (Z/qZ)n be the set of residue classes x (mod q) such that x (mod pv) ∈ Apv for 
all prime powers pv‖q. Let �(q) denote the size of Aq, which again is a multiplicative 
function. We let Q, Q(x), Qk, and Qk(x) have their earlier meanings, and will be working 
as before under Assumption 1.1.

For a = (a1, . . . , an) ∈ Rn, we write

{a} = ({a1}, . . . , {an}) ∈ (R/Z)n.

We define a probability measure Δq on (R/Z)n by

Δq = 1
�(q)

∑
a∈Aq

δ{a
q }.

The closeness of Δq to the uniform measure is quantified by means of the box discrepancy

disc(Δq) = sup
B⊂(R/Z)n

|Δq(B) − Vol(B)|

where the supremum is taken over all boxes B in (R/Z)n, and Vol(B) denotes the usual 
volume (Lebesgue measure) of the box. Here, by a box in (R/Z)n, we mean the projection 
modulo Zn of a closed box (that is, a product of closed intervals) in Rn with all side 
lengths � 1.
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Suppose there is a fixed affine hyperplane H defined over Z such that the elements in 
Apv all lie in the reduction of H modulo pv for all p ∈ Q. Then for q ∈ Q, the elements 
in Aq would also lie in this hyperplane, so that the measures Δq will be supported in 
a translate of a proper subtorus of (R/Z)n. This situation prevents equidistribution; it 
generalizes the case n = 1, where an affine hyperplane is a single point, so that concen-
tration in a single hyperplane corresponds to the case when �(p) � 1 for most primes p. 
Our generalization of Theorem 1.2 establishes that if the sets Ap do not concentrate on 
hyperplanes for a positive density of primes p, then Δq is close to the uniform measure 
(i.e., has small discrepancy) for most moduli q.

To state this precisely, we need one further definition. Given a prime p in Q, define

λ(p) = max
H⊂(Z/pZ)n

H affine hyperplane

|H ∩Ap|,

where an affine hyperplane H ⊂ (Z/pZ)n is a subset of the form

H = {x ∈ (Z/pZ)n | h1x1 + · · · + hnxn = a}

for some a ∈ Z/pZ and (hi) ∈ (Z/hZ)n \ {(0, . . . , 0)}.

Theorem 1.4. Suppose that Assumption 1.1 holds, and that x is large in terms of α and 
x0. Then, there is a constant C(n) depending only on n such that

1
|Q(x)|

∑
q∈Q(x)

disc(Δq) �
C(n)
α

exp
(
− 1

3
∑
p�x

�(p)�1

(
1 − λ(p)

�(p)

)1
p

)
.

Remark 1.5. Consider the case n = 1. Then we have λ(p) = 1 whenever �(p) � 1, and 
thus

∑
p�x

�(p)�1

(
1 − λ(p)

�(p)

)1
p
� 1

2
∑
p�x

�(p)�2

1
p
,

and Theorem 1.2 is seen to be a special case of Theorem 1.4.

For any n, given at most n points in (Z/pZ)n, we may always find an affine hyperplane 
containing all of them. But given n + 1 points we may expect that they are “in general 
position”, in the sense that there is no affine hyperplane that contains all of them. Thus, 
roughly speaking, Theorem 1.4 says that if there are many primes p with Ap in general 
position, and containing at least n + 1 elements, then for almost all q ∈ Q, the measures 
Δq are close to equidistribution.

By imposing a stronger (but still mild) hypothesis, we can obtain equidistribution of 
Δq on average, when q is restricted to integers with a given number of prime factors.



6 E. Kowalski, K. Soundararajan / Advances in Mathematics 385 (2021) 107776
Theorem 1.6. Suppose that Assumption 1.1 holds, and that x is large in terms of x0 and 
α. Suppose that 0 < δ � 1 is such that

∑
p�x
p∈Q

(
1 − λ(p)

�(p)

)1
p
� δ log log x. (1)

Then uniformly in the range

20(7 + n)
δ

log
(20(7 + n)

δ

)
� k � exp

(√αδ log log x
20(6 + n)

)
we have

1
|Qk(x)|

∑
q�x
q∈Qk

disc(Δq) �
1
α

(
e−δk/18 + (log x)−αδ/18

)
.

Remark 1.7. (1) If we think of δ as a fixed positive constant, then Theorem 1.6 shows that 
for most q ∈ Qk(x) one has equidistribution of Δq so long as k → ∞ (arbitrarily slowly 
with x) and provided k � exp(c

√
log log x) for some c > 0. A condition like k → ∞ is 

necessary to guarantee that Aq has many points, which is essential for equidistribution.
(2) Although “typical” integers in Q have on the order of log log x prime factors, and 

larger values of k occur very rarely, it would be interesting to extend the result to larger 
values of k, especially up to k � (log x)c for some c > 0.

Our last result provides equidistribution for Δq for most q in Qk, for any fixed k � 2, 
provided the sets Ap are known to be large for most p ∈ Q.

Theorem 1.8. Suppose that Assumption 1.1 holds, and that x is large in terms of x0 and 
α. Let δ > 0 be such that 1/ log log x � δ � 1/e and

∑
p∈Q(x)

1
p

λ(p)
�(p) � δ

∑
p∈Q(x)

1
p
. (2)

Then, uniformly in the range 2 � k � αδ log log x,

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
1
α
δ(k−1)/10.

The interest in Theorem 1.8 is really for small values of k, since when k is large one 
may simply use the bounds in Theorem 1.6. If δ in Theorem 1.8 is close to 0, then we get 
equidistribution for most Δq already for integers q with 2 prime factors. For example, 
this applies, in the case n = 1, whenever �(p) tends to infinity for p ∈ Q.
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The final remark before closing the introduction section is that Assumption 1.1, as 
well as all the estimates in Theorems 1.2, 1.4, 1.6 and 1.8 only involve the sets Ap and 
their sizes. In other words, there is no restriction whatsoever on the choice of the sets Apv

for v � 2. This should not be surprising because most natural numbers are not divisible 
by many prime powers pv with v � 2.

1.1. Outline of the paper

The next section provides a selection of applications of Theorem 1.4, and compares 
the results with those of [10]. Section 3 discusses some preliminaries, and the proof of 
Theorem 1.4 (which contains Theorem 1.2 as a special case) is concluded in Section 4. 
In Section 5 we develop a technical estimate (Proposition 5.1) which is more precise 
(but more complicated to state) than Theorems 1.6 and 1.8, and in Section 6 we prove 
them starting from that technical result. Finally, Section 7 discusses briefly another 
possible generalization of our method, which will be the subject of a later work [13], 
and an Appendix considers briefly a function field analogue of conjectures about roots 
of polynomials congruences modulo primes.

2. Examples and counterexamples

In this section, we present some examples of applications of Theorem 1.4, and we 
discuss the relation of our work with [10].

Applications of Theorem 1.4 are perhaps most interesting when the sets Aq can be 
described globally without reference to the Chinese Remainder Theorem or the prime 
factorization of q. For example, Aq could be the set of solutions of certain equations (e.g., 
roots of a fixed polynomial with integral coefficients), or the set of parameters where a 
family of equations has a solution (e.g., the set of squares modulo q), or combinations of 
these. Or, for example, one may restrict the values q to be the norms of ideals in a given 
number field K.

2.1. Variations on roots of polynomial congruences

We begin with an application of Theorem 1.4 to roots of polynomials. This gives 
a higher dimensional version of Hooley’s result, and is motivated by a question of 
Hrushovski [11, Conjecture 4.1].

Theorem 2.1. Let d � 1. Let f ∈ Z[X] be a polynomial with d distinct complex roots. 
For each prime power pv, let Apv denote the subset of (Z/pvZ)d−1 consisting of points 
(a, a2, . . . , ad−1) where a runs over the roots of f(x) ≡ 0 (mod pv). Then, with the corre-
sponding definitions of Q and Δq, for large x we have

1
|Q(x)|

∑
disc(Δq) �d (log x)−

1
(4d)d! .
q∈Q(x)
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Proof. Let Kf denote the splitting field of f over Q, which has degree [Kf : Q] � d!. If a 
large prime p splits completely in Kf , then there are d distinct solutions to the congruence 
f(x) ≡ 0 (mod p), so that �(p) = d for such primes. Further, by the Chebotarev density 
theorem the proportion of primes that split completely in Kf is 1/[Kf : Q] � 1/d!, so 
that Assumption 1.1 holds. Finally, any affine hyperplane in (Z/pZ)d−1 can intersect the 
curve (t, t2, . . . , td−1) in at most d − 1 points. Thus λ(p) � d − 1, and we conclude that

∑
p�x

�(p)�1

(
1 − λ(p)

�(p)

)1
p
�

∑
p�x

�(p)=d

(
1 − d− 1

d

)1
p
� 1

d

( 1
d! + o(1)

)
log log x.

The result now follows from Theorem 1.4. �
Stated qualitatively, Theorem 2.1 implies that the measures

1
|Q(x)|

∑
q∈Q(x)

1
�(q)

∑
a (mod q)

f(a)≡0 (mod q)

δ{ a
q ,

a2
q ,..., a

d−1
q }

converge to the uniform measure as x → ∞. Indeed Theorem 2.1 implies a quantitative 
“mod q” version of [11, Conjecture 4.1]; this conjecture is related to the axiomatization 
(in the setting of continuous first-order logic) of the theory of finite prime fields with an 
additive character. In the remarks below we mention a few other related applications that 
may be either deduced qualitatively from Theorem 2.1, or established in a quantitative 
form by adapting the same argument.

Example 1. If d � 2, then by ignoring all but the first coordinate, the equidistribution of 
{a
q , 

a2

q , . . . , a
d−1

q } implies the equidistribution of the first coordinate {a
q }. Let f ∈ Z[X]

be a polynomial with d � 2 distinct complex roots, and let Apv denote the subset of 
Z/pvZ consisting of the points a with f(a) ≡ 0 (mod pv). In this 1-dimensional case we 
may take λ(p) = 1. Then, with the usual meanings of Q, Δq, we have for large x

1
|Q(x)|

∑
q∈Q(x)

disc(Δq) �d (log x)−
1

8(d!) .

This is a version of Hooley’s result, and we shall discuss the differences from his formu-
lation in the next subsection. Note that f does not have to be irreducible, but should 
merely have at least two distinct complex roots. The case of reducible quadratic poly-
nomials was discussed earlier by Martin and Sitar [15], and has been studied further by 
Dartyge and Martin [2].

Example 2. Let f ∈ Z[X] have d � 2 distinct complex roots, and let g ∈ Z[X] be a 
non-constant polynomial of degree < d. For each prime power pv, let Apv denote the set 
of residue classes g(a) (mod pv) where a is a root of f(x) ≡ 0 (mod pv). Let Aq, Q, Δq
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have their usual meanings. As we saw in the proof of Theorem 2.1 for a density of primes 
at least 1/d!, the congruence f(x) ≡ 0 (mod p) has d roots. Since g is non-constant and 
has degree � d − 1, for such primes p we see that Ap has at least 2 elements. Therefore, 
we obtain using Theorem 1.2 that

1
|Q(x)|

∑
q∈Q(x)

disc(Δq) �d (log x)−
1

7(d!) .

In other words, for most q ∈ Q, the points g(a) (mod q) get equidistributed.
To give another variant, suppose now that g ∈ Z[X] has degree at least 2 but at 

most d − 1, and let now Apv denote the set of points (a, g(a)) ∈ (Z/pvZ)2 where f(a) ≡
0 (mod pv). The intersection of Ap with any affine hyperplane has at most d − 1 points, 
and so an application of Theorem 1.4 shows that

1
|Q(x)|

∑
q∈Q(x)

disc(Δq) �d (log x)−
1

4d(d!) .

Example 3. Here is (essentially) a reformulation of the previous example. Let f and g be 
two polynomials in Z[X] with degrees d1 and d2 respectively. Assume that f ◦ g has d
distinct complex roots with d > d2. Take Apv to be the set of residue classes a (mod pv)
such that f(a) ≡ 0 (mod pv), and such that a ≡ g(b) (mod pv) is a value of the polynomial 
g. This fits the framework of Example 2, by noting that b is a root of f ◦ g (mod pv) and 
then a is just the value g(b). Thus, we obtain the equidistribution of {a/q} for those 
roots a of a polynomial f that are constrained to be in the image of a polynomial g.

Example 4. We now consider extensions of Theorem 2.1, where the moduli q are restricted 
to the integers all of whose prime factors lie in a prescribed set P. That is, given f ∈ Z[X]
with at least 2 distinct complex roots, we take Apv = ∅ if p /∈ P and when p ∈ P take 
Apv to be the points (a, a2, . . . , ad−1) ∈ (Z/pvZ)d−1 where a is a root of f (mod pv). 
Or, as in Example 1, we could consider the one dimensional situation of Apv being the 
roots of f (mod pv) for p ∈ P. We now give a couple of examples of such analogues of 
Theorem 2.1.

Let K/Q be a Galois extension, and let P denote the set of primes that are the norm 
of a principal ideal in K. This means that the primes in P are those that are completely 
split in HK , the Hilbert class field of K. The set P′ of primes that are completely split 
in the compositum HKKf (with Kf the splitting field of f) form a subset of P and if 
p ∈ P′ then f ≡ 0 (mod p) has d roots. The Chebotarev density theorem shows that P′

has positive density. Thus

∑
p∈P

�(p)�1

(
1 − λ(p)

�(p)

)1
p
�

∑
p∈P′

p�x

(
1 − d− 1

d

)1
p
� δ(K, f) log log x,
p�x
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for some constant δ(K, f) > 0 and all large x. Theorem 1.4 now gives the equidistribution 
of Aq for most moduli q for which f ≡ 0 (mod q) has a root, and when the prime factors 
of q are constrained to the set P. For example, if m � 1 is a fixed integer, this applies to 
P being the set of primes of the form x2 + my2.

To give a complementary example, suppose K/Q is a Galois extension, with K = Q, 
that is linearly disjoint from Kf , and take P to be the set of primes that are not norms 
of ideals in K. Since K and Kf are linearly disjoint, the Galois group of the compositum 
KKf is isomorphic to G × Gf . There is a positive density of primes p such that the 
Frobenius at p is trivial in Gf , so that �f (p) = d � 2 (if p � D), but non-trivial in G

(since |G| � 2). Then p is not the norm of an ideal of ZK , so p ∈ P. Now we may apply 
Theorem 1.4 as usual.

Remark 2.2. D.R. Heath-Brown has informed us of another possible variant of these 
results. If F (x, y) is an irreducible integral form of degree > 1, then one can obtain the 
equidistribution (for the relevant moduli q) of the fractional parts of solutions (x, y) to 
F (x, y) ≡ 0 (mod q). Such a result might potentially be used to count the number of 
points of bounded height on the Châtelet surfaces Z2 + W 2 = F (X, Y ) where F is a 
quartic polynomial (see [3]).

2.2. Hooley’s measures

We now compare our results with the precise statement of [10]. If f is a fixed primitive 
irreducible polynomial in Z[X] with degree at least 2, then Hooley [10] showed that the 
probability measures

μx = 1
Mx

∑
q∈Q(x)

�f (q)Δq = 1
Mx

∑
q∈Q(x)

∑
a∈Zq

δ{a
q }

converge, as x → +∞, to the uniform measure on R/Z. Here

Mx =
∑
q�x

�f (q)

denotes a normalizing factor, which is asymptotically Cfx for a positive constant Cf . 
Hooley’s measures are not the same as the measures

1
|Q(x)|

∑
q∈Q(x)

Δq = 1
|Q(x)|

∑
q∈Q(x)

1
�f (q)

∑
a∈Zq

δ{a
q }

that occur implicitly in Theorem 1.2. In the context of equidistribution arising from the 
Chinese Remainder Theorem, the measures we introduce seem more natural, and an 
analogue of Theorem 1.2 for the measures μx is false in general.
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Proposition 2.3. There exist sets Ap ⊂ Z/pZ defined for all primes p, with |Ap| � 2 for 
all p large enough, such that the measures

μx = 1
Mx

∑
q∈Q(x)

�(q)Δq = 1
Mx

∑
q∈Q(x)

∑
a∈Zq

δ{a
q }, with Mx =

∑
q�x

�(q),

do not converge to the uniform measure as x → +∞. Here we take Apv = ∅ for all v � 2.

Lemma 2.4. Let g denote the multiplicative function defined on squarefree integers q by 
setting g(p) = 0 for p � e2, and g(p) = �p/ log p� for p > e2. Then there is an absolute 
constant C such that for all large x∑

q�x

g(q) � C
∑
p�x

g(p). (3)

Proof. Since 
∑

p�x g(p) � x2/(log x)2, the lemma amounts to proving the bound

∑
q�x

g(q) � x2

(log x)2 . (4)

If q is a squarefree integer only divisible by primes > e2, then a simple induction on 
the number of prime factors of q shows that∏

p|q
log p � log q.

Consequently, if q can be factored q = q1q2 with qi > q1/10, then

∏
p|q

log p =
∏
p|q1

log p
∏
p|q2

log p � (log q1)(log q2) �
1

100(log q)2.

Thus the contributions of such integers q � x to the left-hand side of (4) is

� 100
∑
q�x

q

(log q)2 � x2

(log x)2 .

The contribution of q with q � x9/10 is also of smaller order of magnitude.
It remains to consider the contribution of integers x9/10 � q � x that cannot be 

factored as q1q2 with x1/5 � qi � x4/5. Note that such q must have largest prime factor 
at least x1/20, else a greedy procedure would produce a factorization of q with both 
factors large. Thus the remaining integers x9/10 � q � x may be written as pq1 with 
p > x1/20 and their contribution is
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�
∑

q1�x19/20

g(q1)
∑

x1/20�p�x/q1

p

log p �
∑

q1�x19/20

g(q1)
x2

q2
1(log x)2

� x2

log x2

∏
p�x19/20

(
1 + g(p)

p2

)
� x2

(log x)2 ,

since the Euler product over all primes converges. This concludes the proof of (4), and 
the lemma. �
Proof of Proposition 2.3. For p > e2 take Ap to be the set of residue classes k (mod p)
with 1 � k � g(p), with g as in Lemma 2.4. Take Apv = ∅ for all v � 2. Here Mx =∑

q�x g(q), and note that for any ε > 0 if p > e1/ε then all the g(p) points k/p with 
k ∈ Ap land in the interval [0, ε]. Therefore, using Lemma 2.4, for large x

μx([0, ε]) �
1
Mx

∑
e1/ε<p�x

g(p) � 1
2C .

Choosing ε = 1/(4C) we see that μx does not converge to the uniform measure. �
Remark 2.5. (1) One can prove generalizations of the result of [10] to arbitrary sets 
defined by the Chinese Remainder Theorem by assuming in addition that the sets Apv

are not too large. For instance, we can show that if the estimates∑
p�x

�(p)�2

log p � x,
∑
pv�x

�(pv)2 log pv � x

hold for x large enough, then the measures

μx = 1
Mx

∑
q∈Q(x)

�(q)Δq, Mx =
∑

q∈Q(x)

�(q),

converge to the uniform measure on R/Z.
Since these conditions hold for the set of roots modulo p of a fixed monic polynomial f

(where �f (q) � deg(f)), this would recover [10, Th. 2].
(2) For some precise computations of Weyl sums (relative to Hooley’s measures) for 

some reducible polynomials, see the work of Dartyge and Martin [2].

2.3. Equidistribution of Bezout points

Let n � 2 be fixed, and let X1 and X2 be two reduced closed subschemes of An/Z. As-
sume that the generic fiber of X1 is a geometrically connected curve over Q, of degree d1, 
and that the generic fiber of X2 is a geometrically connected hypersurface of degree d2. 
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(Concretely, X2 is the zero set of an absolutely irreducible integral polynomial with n

variables, and X1 could be given by n − 1 “generically transverse” such equations.)
Assume that the closures of the generic fibers of X1 and X2 in Pn/Q intersect trans-

versely. The intersection is then finite by Bezout’s Theorem, and has d1d2 geometric 
points (note that we assume transverse intersection also at infinity). Let k � d1d2 be the 
number of geometric intersection points belonging to the hyperplane at infinity.

For any prime power pv, let Apv = (X1 ∩ X2)(Z/pvZ) be the set of Z/pvZ-rational 
intersection points of the curve and the hypersurface. Then, for any q, the set Aq is the 
set of intersection points with coordinates in Z/qZ.

The generic fiber of the intersection variety X1∩X2 is defined over Q, and has finitely 
many geometric points. Let γ be the Galois action of the Galois group of Q on X1 ∩X2. 
The fixed field K of the kernel of this action is a finite Galois extension K/Q. If p is 
totally split in K, then all intersection points are fixed by the Frobenius conjugacy class 
of K at p, which means that their coordinates belong to Z/pZ. Combining this with 
Bezout’s Theorem, it follows that there exists a set of primes p of positive density such 
that |Ap| = d1d2 − k.

We assume next that d2 � 2 and that the curve X1 is not contained in an affine 
hyperplane H (this implies that d1 � 2, but is a stronger assumption if n � 3). Then for 
any affine hyperplane H ⊂ (Z/pZ)n, we have

|Ap ∩H| � min(d1, d2)

so that λ(p) � min(d1, d2). Hence we conclude from Theorem 1.4 that for most q the 
fractional parts of the intersection points modulo q become equidistributed in (R/Z)n, 
provided min(d1, d2) < d1d2 − k. As in the case of polynomial congruences, it is natural 
to ask whether the equidistribution of fractional parts of intersection points holds for 
prime moduli.

As a concrete example, suppose that X1 and X2 are the plane curves given by the 
equations

X1 : X3 + Y 3 = 1, X2 : Y 2 = X3 − 2.

These curves intersect transversally (including on the line at infinity in P2, since they 
have no common point there), and hence the condition holds since 3 < 9.

2.4. Pseudo-polynomials

A pseudo-polynomial, in the sense of Hall [9], is an arithmetic function f : Z → Z
such that m − n divides f(m) − f(n) for all integers m = n. In other words, for each 
q � 1, the reduction of f modulo q is q-periodic. Examples of such functions are given 
by polynomials f ∈ Z[X], but there are uncountably many pseudo-polynomials that are 
not polynomials (see [9, Th. 1]). Among the simplest explicit examples are f1(n) = �en!�
([9, Cor. 2]), and
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f2(n) = 1 − n + n(n− 1)
2 + · · · + (−1)nn!

2 = (−1)nD(n),

where D(n) is the number of derangements (permutations without fixed points) in the 
symmetric group on n letters. The formula for D(n) is a classical application of inclusion–
exclusion, and that f2 is a pseudo-polynomial follows then from [9, Th. 1]).

For a pseudo-polynomial f , and a positive integer q, take Aq to be the zeros of 
f (mod q); that is, Aq is the set of residue classes n (mod q) with f(n) ≡ 0 (mod q). These 
sets Aq are built out of the sets Apv for prime powers pv using the Chinese Remainder 
Theorem. As we have discussed, the sets Aq get equidistributed for most q, when f is 
a genuine polynomial. Does Theorem 1.2 also apply generally to pseudo-polynomials? 
Vivian Kuperberg [14] pointed out to us that there are pseudo-polynomials whose val-
ues are only divisible by a very sparse sequence of primes (indeed, one may make this 
sequence increase arbitrarily rapidly). Thus there is no hope of applying Theorem 1.2
to a general pseudo-polynomial, but the examples f1 and f2 seem well behaved, and we 
present some numerical experiments concerning these examples. For computations with 
f1 and f2, it is efficient to use the recursive definitions

f1(1) = 2, f1(n + 1) = 1 + (n + 1)f1(n),

f2(0) = 1, f2(n + 1) = 1 − (n + 1)f2(n).

Numerical experiments suggest that the values f1(n) = �en!� (mod p) for 1 � n � p

behave like p independent random residue classes drawn uniformly from Z/pZ. If so, this 
suggests that there are k solutions to f1(n) ≡ 0 (mod p) for a proportion e−1/k! of the 
primes p below x: that is, for any k � 0

lim
x→+∞

1
π(x) |{p � x | �(p) = k}| = 1

e

1
k! .

In other words, the quantity �(p) is distributed like a Poisson random variable with 
parameter 1. If true, this would imply that Theorem 1.2 applies to the zeros of f1

modulo primes. However, we do not know how to prove that �(p) � 2 for an infinite set 
of primes.

The following tables give the empirical and theoretical Poisson distribution for the 
78498 primes p � x = 106 (normalized by multiplying the Poisson probabilities by π(x); 
no empirical value is larger than 8 in that range), as well as the empirical and theoretical 
moments of order 1 � n � 4.

Empirical and theoretical probability distribution
k 0 1 2 3 4 5 6 7 8
Empirical 29054 28822 14314 4777 1250 236 38 5 2
Poisson 28877.8 28877.8 14438.9 4813 1203.2 240.6 40.17 5.7 0.7



E. Kowalski, K. Soundararajan / Advances in Mathematics 385 (2021) 107776 15
Empirical and theoretical moments
n 1 2 3 4
Empirical 0.99671 1.9964 5.0034 15.054
Poisson 1 2 5 15

Note that if g ∈ Z[X] is an irreducible polynomial of degree n with Galois group Sn

(the generic case), then the Chebotarev density theorem implies that

lim
x→+∞

1
π(x) |{p � x | �g(p) = k}| = 1

n! |{π ∈ Sn with k fixed points}|.

Now for large n, the number of fixed points of a permutation drawn uniformly at random 
from Sn is distributed approximately like a Poisson random variable with parameter 1. 
Thus our guess above on the number of zeros of the pseudo-polynomial f1 (mod p) is 
akin to what holds for a generic irreducible polynomial of large degree.

For the function f2(n) = (−1)nD(n), numerical experiments also suggest that there 
is a positive density of primes with �(p) � 2, so that Theorem 1.2 should apply. Once 
again we are unable to establish such a claim.

But, if we put f3(n) = f2(n) − 1, then from the recurrence for f2 given above we may 
recognize that f3(0) = 0, and f3(p − 1) ≡ 0 (mod p) for each prime p. Thus in this case 
�(p) � 2 for each prime p, and Theorem 1.2 applies. Note that |f3(n)| has a combinatorial 
meaning: it equals the number of permutations in Sn with exactly one fixed point. Since 
|f3| and f3 have the same zeros (mod q) for any q, we see that Theorem 1.2 applies to 
the combinatorial sequence |f3(n)|.

3. Preliminaries

Throughout we work in the higher dimensional framework of Theorems 1.4, 1.6, 1.8, 
so that Aq is a subset of (Z/qZ)n, and �(q) is its cardinality. We keep in place Assump-
tion 1.1, and have in mind that x is large in comparison to α and x0.

3.1. The sets Q and Qk

We begin by gaining an understanding of the size of the sets Q(x) and Qk(x) (of 
elements in Q with exactly k distinct prime factors).

Lemma 3.1. For x large enough in terms of α and x0

|Q(x)| � αx

log x
∏
p�x
p∈Q

(
1 + 1

p

)
.

Proof. Observe that

|Q(x)| � 1
log x

∑
q∈Q(x)

log q � 1
log x

∑
q∈Q(x)

∑
pd=q

log p � 1
log x

∑
d<x1/3

d∈Q

∑
x1/3<p�x/d

log p.
p∈Q
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Using Assumption 1.1, it follows for large x that

|Q(x)| � αx

2 log x
∑

d<x1/3

d∈Q

1
d
.

Now put z = x1/9 and τ = 1/ log z, and note that (restricting attention to squarefree 
d)

∑
d<x1/3

d∈Q

1
d
�

∑
d<x1/3

d∈Q
p|d =⇒ p�z

μ(d)2

d
=

∏
p�z
p∈Q

(
1 + 1

p

)
−

∑
d>x1/3

d∈Q
p|d =⇒ p�z

μ(d)2

d
,

and further ∑
d>x1/3

d∈Q
p|d =⇒ p�z

μ(d)2

d
�

∑
d∈Q

p|d =⇒ p�z

μ(d)2

d

( d

x1/3

)τ

= e−3
∏
p�z
p∈Q

(
1 + pτ

p

)
.

Therefore ∑
d<x1/3

d∈Q

1
d
�

∏
p�z
p∈Q

(
1 + 1

p

)(
1 − e−3

∏
p�z
p∈Q

1 + pτ/p

1 + 1/p

)
.

Now, for large x (and so large z),

∏
p�z
p∈Q

1 + pτ/p

1 + 1/p �
∏
p�z

(
1 + pτ − 1

p

)
� exp

(∑
p�z

pτ − 1
p

)

� exp
(∑

p�z

(e− 1)τ log p
p

)
� e2.

Assembling the above observations together we conclude that

|Q(x)| � αx

2 log x

(
1 − 1

e

) ∏
p�z
p∈Q

(
1 + 1

p

)
.

The lemma follows since ∏
x1/9<p�x

(1 + 1/p) � 1. �

We can also prove a matching upper bound for |Q(x)|, and in fact will need a such a 
bound for the smooth (or friable) elements in Q(x).
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Lemma 3.2. Let x be large, and z be a parameter with log x � z � x. Then

∑
q∈Q(x)

p|q =⇒ p�z

1 � x

log x exp
(
− log x

log z

) ∏
p�z
p∈Q

(
1 + 1

p

)
.

Proof. We start by noting that

∑
q∈Q(x)

p|q =⇒ p�z

1 �
√
x + 2

log x
∑

√
x<q�x
q∈Q

p|q =⇒ p�z

log q �
√
x + 2

log x
∑

q∈Q(x)
p|q =⇒ p�z

∑
q=d�

(d,�)=1

log 
,

where 
 denotes a prime power. The term 
√
x is much smaller than the estimate we 

desire, and so we may ignore it and focus on the second term above.
To estimate the second sum, we shall first sum over d (which must be in Q), and then 

over 
. Note that 
 must be � x/d, and if 
 is a prime then it is also constrained to be 
� z. Thus, for a given d, the sum over 
 is

�
∑

pv�x/d
v�2

log(pv) +
∑

p�min(x/d,z)

log p �
√
x√
d

+ min
(x
d
, z
)
�

(x
d

)1−τ

zτ ,

for any τ ∈ [0, 12 ]. Using this observation with τ = 1/ log z, we obtain

∑
q∈Q(x)

p|q =⇒ p�z

∑
q=d�

(d,�)=1

log 
 �
∑

d∈Q(x)
p|d =⇒ p�z

(x
d

)1−τ

zτ = x exp
(
− log x

log z

) ∑
d∈Q(x)

p|d =⇒ p�z

1
d1−1/ log z

� x exp
(
− log x

log z

) ∏
p�z
p∈Q

(
1 − p1/ log z

p

)−1

� x exp
(
− log x

log z

) ∏
p�z
p∈Q

(
1 + p1/ log z

p

)
.

The lemma follows upon noting that

∏
p�z
p∈Q

(
1 + p1/ log z

p

)
�

∏
p�z
p∈Q

(
1 + 1

p

) ∏
p�z

(1 + p1/ log z/p

1 + 1/p

)

�
∏
p�z

(
1 + 1

p

)
exp

(∑
p�z

p1/ log z − 1
p

)
�

∏
p�z

(
1 + 1

p

)
. �
p∈Q p∈Q
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The next two lemmas will be analogues of the above for the sets Qk(x) for a given 
integer k � 1. Readers who are mostly interested in Theorems 1.2 and 1.4 may skip at 
this point to Section 3.2

Define

P(x) =
∑
p�x
p∈Q

1
p

+ 3, (5)

so that for large x, Assumption 1.1 gives

α log log x + O(1) � P(x) � log log x + O(1). (6)

The added constant 3 in (5) is unimportant, but will be convenient later.

Lemma 3.3. Let x be large, and let k be an integer with 1 � k � exp(P(x)/4). Then

|Qk(x)| � αx

log x
P(x)k−1

(k − 1)! exp
(
− 4k log k

P(x)

)
,

where the implied constant is absolute.

Proof. We obtain a lower bound by counting only those elements of Qk(x) that are of 
the form p1 · · · pk, where the primes pj are in strictly increasing order and satisfy p1, 
. . . , pk−1 � x1/(2k). Fixing these primes p1, . . . , pk−1, we see using Assumption 1.1 that 
there are at least

� αx

4p1 · · · pk−1 log x

possible choices for the large prime pk. Therefore

|Qk(x)| � αx

4 log x
∑

p1<···<pk−1�x1/(2k)

pj∈Q

1
p1 · · · pk−1

= αx

4 log x
1

(k − 1)!
∑

p1,...,pk−1�x1/(2k)

pj∈Q
pj distinct

1
p1 · · · pk−1

.

Let p1, . . . , pk−2 be distinct primes in Q all below x1/(2k). Then

∑
pk−1�x1/(2k)

pk−1 �=p1,...,pk−2

1
pk−1

=
(
P(x 1

2k ) − 3
)
− 1

p1
− · · · − 1

pk−2
.

pk−1∈Q
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The quantity 1/p1 + . . . + 1/pk−2 is at most equal to the corresponding sum when the 
primes pi are equal to the first k−2 primes, and hence is � log log(k+1) +O(1), so that

∑
pk−1�x1/(2k)

pk−1 �=p1,...,pk−2
pk−1∈Q

1
pk−1

� P(x 1
2k ) − log log(k + 1) − C

for some absolute constant C � 0. Repeating this argument, we find the same lower 
bound for each of the sums over pk−2, . . ., p1, and therefore we obtain the lower bound

|Qk(x)| � αx

log x
(P(x 1

2k ) − log log(k + 1) − C)k−1

(k − 1)!

for x � x0, where the implied constant is absolute. Since

P(x 1
2k ) � P(x) −

∑
x

1
2k <p�x

1
p

= P(x) − log k + O(1),

and log k � P(x)/4, the lemma follows. �
Lemma 3.4. Let x be large. Let k � (log x) 1

2 be a positive integer, and κ a non-negative 
integer with κ � k. The number of integers in Qk(x) having at least κ distinct prime 
factors that are larger than x1/(4k) is

� kx

log x
P(x)k−1

(k − 1)! exp
(2k log k

P(x) − κ
)
,

where the implied constant is absolute.

Proof. Let N denote this number. Write q ∈ Qk as q = pv1
1 · · · pvkk with the primes pj in 

strictly ascending order.
First, if pk < x1/(4k), then p1 · · · pk � x1/4, and the number of choices for the expo-

nents (v1, . . . , vk) is � (log x)k � xε for any ε > 0. Therefore in this case (which is only 
relevant for κ = 0), we have

N � x1/4+ε � x1/3

since x is large.
Suppose now that pk > x1/(4k). Let pv1

1 , . . . , pvk−1
k−1 be fixed. Note that pv1

1 · · · pvk−1
k−1 �

x1−1/(4k), so by the Brun–Titchmarsh inequality, the number of possible choices for pvkk
is

� 3x
pv1 · · · pvk−1 log(x/pv1 · · · pvk−1)

� 12kx
pv1 · · · pvk−1 log x

.

1 k−1 1 k−1 1 k−1
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Therefore

N � x
1
3 + 12kx

log x
∑

p1<···<pk−1�x

p
vj
j ∈Q

pk−κ+1>x1/(4k)

1
pv1
1 · · · pvk−1

k−1

� x
1
3 + 12kx

log x
∑

κ−1�j�k−1

1
j!

( ∑
x�p>x1/(4k)

pv∈Q

1
pv

)j 1
(k − 1 − j)!

( ∑
p�x1/(4k)

pv∈Q

1
pv

)k−1−j

,

where the variable j represents the number of primes among p1, . . ., pk−1 that are larger 
than x1/(4k), and for each p we sum over all v such that pv ∈ Q. Now the sum over j
above may be bounded by

e−(κ−1)
∑

0�j�k−1

1
j!

( ∑
x�p>x1/(4k)

pv∈Q

e

pv

)j 1
(k − 1 − j)!

( ∑
p�x1/(4k)

pv∈Q

1
pv

)k−1−j

= e−(κ−1)

(k − 1)!

( ∑
x�p>x1/(4k)

pv∈Q

e

pv
+

∑
p�x1/(4k)

pv∈Q

1
pv

)k−1

� e−(κ−1)

(k − 1)! (P(x) + (e− 1) log k + O(1))k−1,

which establishes the lemma. �
3.2. Weyl sums

For a modulus q ∈ Q and h ∈ Zn, define the normalized Weyl sum

W (h; q) = 1
�(q)

∑
x∈Aq

e
(h · x

q

)
(7)

where

h · x = h1x1 + · · · + hnxn.

We extend the definition of λ(p) (given just before Theorem 1.4) to all positive inte-
gers. Given a prime power pv in Q, we let

λ(pv) = max
H⊂(Z/pvZ)n

H affine hyperplane

|H ∩Apv |,

and extend λ to Q by multiplicativity. By the Chinese Remainder Theorem, we have
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λ(q) = max
H⊂(Z/qZ)n

H affine hyperplane

|H ∩Aq|

for q ∈ Q, where an affine hyperplane H ⊂ (Z/qZ)n is a subset of the form

H = {x ∈ (Z/qZ)n | h1x1 + · · · + hnxn = a}

for some a ∈ Z/qZ and (hi) ∈ (Z/qZ)n \ {(0, . . . , 0)}.
For a given non-zero h ∈ Zn and a prime power pv, we put

{h, pv} =
{

1 if h ≡ 0 (mod pv)
pv otherwise,

and then extend this definition multiplicatively to define {h, q}.

Lemma 3.5. (1) If q1 and q2 are coprime elements of Q, then

W (h; q1q2) = W (q̄1h; q2)W (q̄2h; q1),

where q1q̄1 ≡ 1 (mod q2) and q2q̄2 ≡ 1 (mod q1).
(2) Let h ∈ Zn, with h = (0, . . . , 0). For q ∈ Q, we have

1
q

∑
a (mod q)

|W (ah; q)|2 � λ({h, q})
�({h, q}) . (8)

Proof. These are elementary statements (see [10, Lemmas 1 and 3] for n = 1).
(1) For x1 ∈ Zn and x2 ∈ Zn, the element of (Z/q1q2Z)n which is congruent to xi

modulo qi is the residue class of the vector

x = q1q̄1x2 + q2q̄2x1 ∈ Zn.

Therefore

W (h; q1q2) = 1
�(q1q2)

∑
x∈Aq1q2

e
(h · x
q1q2

)

= 1
�(q1)�(q2)

∑
x1∈Aq1

∑
x2∈Aq2

e
(h · (q1q̄1x2 + q2q̄2x2)

q1q2

)
= W (q̄1h; q2)W (q̄2h; q1).

(2) Opening the square and interchanging the order of the summations, we find that

∑
|W (ah; q)|2 = 1

�(q)2
∑ ∑

e
(ah · (x− y)

q

)
.

a (mod q) x,y∈Aq a (mod q)



22 E. Kowalski, K. Soundararajan / Advances in Mathematics 385 (2021) 107776
By orthogonality of characters modulo q, this implies

∑
a (mod q)

|W (ah; q)|2 = q

�(q)2
∑

x,y∈Aq

h·(x−y)=0 (mod q)

1.

Summing over x first, this gives

∑
a (mod q)

|W (ah; q)|2 � q

�(q)2
∑
x∈Aq

α(x)

where α(x) is the number of y ∈ Aq such that h · y = h · x (mod q). By the Chinese 
Remainder Theorem α(x) is bounded by the product over pv‖q of the number of solutions 
to h · x = h · y (mod pv), and this may be bounded by �(pv) if h ≡ 0 (mod pv) and the 
resulting hyperplane is degenerate, or by λ(pv) otherwise. Thus

α(x) � �(q/{h, q})λ({h, q})

for all x, and the result follows. �
Remark 3.6. Part (1) is the crucial place where we use the fact that Aq is defined by the 
Chinese Remainder Theorem, while (2) is the only point where we detect any cancellation 
in the Weyl sums W (h; q).

3.3. The Erdős–Turán inequality

We recall the n-dimensional Erdős–Turán inequality for the discrepancy of Δq (see, 
e.g., [8, Lemma 2] for references): for any integer H � 1, we have

disc(Δq) �
1
H

+
∑

0<‖h‖�H

1
M(h) |W (h; q)|, (9)

where ‖h‖ = max(|hi|) and M(h) =
∏

i max(1, |hi|) and where the implied constant 
depends only on n. We now record a consequence of Lemma 3.5 for terms appearing in 
(9), and then use it to bound certain useful averages of disc(Δq).

Lemma 3.7. Let q ∈ Q and H � 2 be given. Then

1
q

∑
a (mod q)

∑
0<‖h‖�H

1
M(h) |W (ah; q)| � (logH)n

∏
pv‖q

(√λ(pv)√
�(pv)

+ 1
pv

)
,

where the implied constant depends only on n.
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Proof. Applying the Cauchy–Schwarz inequality and (8), we have

1
q

∑
a (mod q)

∑
0<‖h‖�H

1
M(h) |W (ah; q)| �

∑
0<‖h‖�H

1
M(h)

(λ({h, q})
�({h, q})

) 1
2

=
∑
d|q

(d,q/d)=1

(λ(d)
�(d)

) 1
2 ∑

0<‖h‖�H
{q,h}=d

1
M(h) ,

since {h, q} = d is possible only for those divisors of d that are coprime to q/d. Observe 
that if 1 � ‖h‖ � H and {h, q} = d, then at least one of the coordinates hi is a non-zero 
multiple of q/d. Therefore

∑
0<‖h‖�H
{q,h}=d

1
M(h) � d

q

∑
0<‖h‖�H

1
M(h) � d

q
(logH)n,

and the lemma follows by multiplicativity. �
Lemma 3.8. Let x be large, and z be a real number in the range e � z � x1/3. Let s � x

1
3

be an integer with s ∈ Q and such that all prime factors of s are below z. Then, for any 
H � 2, we have

∑
r�x/s
rs∈Q

p|r =⇒ p>z

disc(Δrs) �
x

ϕ(s) log z

( 1
H

+ (logH)n
∏
pv‖s

(√λ(pv)√
�(pv)

+ 1
pv

))
.

Proof. We apply the Erdős-Turán inequality (9). Using the twisted multiplicativity from 
Lemma 3.5, (1), which applies since r and s are coprime, we obtain

∑
r�x/s
rs∈Q

p|r =⇒ p>z

disc(Δrs) �
∑

r�x/s
rs∈Q

p|r =⇒ p>z

( 1
H

+
∑

0<‖h‖�H

1
M(h) |W (rh; s)W (sh; r)|

)
.

We bound |W (sh; r)| trivially by 1, and split the sum over r into (reduced) residue 
classes r ≡ ā (mod s). If r ≡ ā (mod s) then W (r̄h; s) = W (ah; s), so that

∑
r�x/s
rs∈Q

p|r =⇒ p>z

disc(Δrs) �
∑

a (mod s)
(a,s)=1

( 1
H

+
∑

0<‖h‖�H

1
M(h) |W (ah; s)|

) ∑
r�x/s
rs∈Q

p|r =⇒ p>z
r≡a (mod s)

1.

Since s � x
1
3 , it follows that x/s � x

2
3 . Ignoring the condition that rs ∈ Q, and using 

the sieve, we find that
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∑
r�x/s
rs∈Q

p|r =⇒ p>z
r≡a (mod s)

1 �
∑

r�x/s
p|r =⇒ p>z
r≡a (mod s)

1 � x/s

ϕ(s) log z

with an absolute implied constant. Therefore

∑
r�x/s
rs∈Q

p|r =⇒ p>z

disc(Δrs) �
x

ϕ(s) log z
1
s

∑
a (mod s)
(a,s)=1

( 1
H

+
∑

0<‖h‖�H

1
M(h) |W (ah; s)|

)
.

Extend the sum over a to all a (mod s), and invoke Lemma 3.7 to conclude the proof. �
4. Proof of Theorem 1.4

Our goal is to estimate the sum ∑
q∈Q(x)

disc(Δq),

in terms of the quantity

P :=
∑
p�x

�(p)�1

(
1 − λ(p)

�(p)

)1
p
.

We may assume that P � 10, else there is nothing to prove, and put z = x1/P . Below, 
we will factor any q ∈ Q(x) as q = rs where all the prime factors of s are below z, and 
all the prime factors of r are above z. Here the letters r and s are meant to suggest the 
“rough” and “smooth” parts of q.1

Consider first the contribution of terms with s � x1/3. Applying Lemma 3.8 with 
H = eP we obtain

∑
q=rs∈Q(x)

s�x1/3

disc(Δrs) �
∑

s�x1/3

s∈Q

Px

ϕ(s) log x

(
e−P + Pn

∏
pv‖s

(√λ(pv)√
�(pv)

+ 1
pv

))
.

Note that∑
s�x1/3

s∈Q

1
ϕ(s) �

∏
p�z

(
1 +

∑
v�1
pv∈Q

1
pv−1(p− 1)

)
�

∏
p�z
p∈Q

(
1 + 1

p− 1

)
�

∏
p�x
p∈Q

(
1 + 1

p

)
.

1 French readers are invited to substitute f for s (“friable”) and c for r (“criblé”) throughout.
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Further note that

∑
s�x1/3

s∈Q

1
ϕ(s)

∏
pv‖s

(√λ(pv)√
�(pv)

+ 1
pv

)
�

∏
p�z

(
1 +

∑
v�1
pv∈Q

1
pv−1(p− 1)

(√λ(pv)√
�(pv)

+ 1
pv

))

�
∏
p�z
p∈Q

(
1 + 1

p− 1

(√λ(p)√
�(p)

+ 1
p

))
�

∏
p�x
p∈Q

(
1 + 1

p

√
λ(p)√
�(p)

)

�
∏
p�x
p∈Q

(
1 + 1

p

)
exp

(
−

∑
p�x
p∈Q

(
1 −

√
λ(p)√
�(p)

)1
p

)
,

and that, since 1 −
√
t � (1 − t)/2 for 0 � t � 1,

∑
p�x
p∈Q

(
1 −

√
λ(p)√
�(p)

)1
p
� 1

2
∑
p�x
p∈Q

(
1 − λ(p)

�(p)

)1
p

= P

2 .

We conclude that

∑
q=rs∈Q(x)

s�x1/3

disc(Δrs) �
x

log x
∏
p�x
p∈Q

(
1 + 1

p

)(
Pe−P + Pn+1e−P/2

)
� |Q(x)|e

−P/3

α
, (10)

upon using Lemma 3.1 and recalling that implied constants are allowed to depend on n.
Now consider the contribution of terms q = rs where s > x1/3, so that r � x2/3. 

Using the trivial bound disc(Δq) � 1, we see that such terms contribute∑
q=rs∈Q(x)

s>x1/3

disc(Δq) �
∑

r�x2/3

r∈Q

∑
x1/3<s�x/r

s∈Q

1.

Applying Lemma 3.2, this quantity is

�
∑

r�x2/3

r∈Q

x/r

log x exp
(
− log(x/r)

log z

) ∏
p�z
p∈Q

(
1 + 1

p

)
� x

log xe
−P/3

∏
p�z
p∈Q

(
1 + 1

p

) ∑
r�x2/3

r∈Q

1
r

� x

log xe
−P/3

∏
p�x
p∈Q

(
1 + 1

p

)
� |Q(x)|e

−P/3

α
,

where we used Lemma 3.1 in the last step. Combining this bound with (10), we obtain 
Theorem 1.4, hence also Theorem 1.2.
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5. The main technical result

In this section, we establish a general technical estimate, from which the simpler (but 
less precise) Theorems 1.6 and 1.8 will be deduced in the next section. In addition to 
P(x) (defined in (5)), we will use the quantity

P̃(x) =
∑
p�x
p∈Q

1
p

(λ(p)
�(p)

)1/2
+ 3. (11)

Since λ(p) � �(p), note that P̃(x) � P(x).

Proposition 5.1. Suppose that Assumption 1.1 holds, and let x be large in terms of α
and x0.

(1) In the range k � P(x)

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
k7+n

α

(( P̃(x)
P(x)

) k−1
3 + e−k/2

( k

P(x)

) k−1
2
)
. (12)

(2) In the range P(x) < k � exp(
√

log log x)

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
1
α

exp
( (6 + n)k log k

P(x)

)(
e−k/3 +

( P̃(x)
P(x)

) k
3(1+log(k/P(x)))

)
.

(13)

Put z = x1/(4k) and factor q ∈ Qk(x) uniquely in the form q = rs, where all prime 
factors of s are � z and all prime factors of r are > z. Below, r and s will always be 
assumed to have this meaning.

We first dispense with a technical case, when s > x
1
3 . Since s has at most k prime 

factors which are all below x1/(4k) it follows that if we write s = s1s
2
2 with s1 squarefree, 

then s1 � x1/4 and s2 > x1/12. Since disc(Δq) � 1 for all q, it follows that∑
q∈Qk(x)
s>x1/3

disc(Δq) �
∑

s>x1/3

x

s
� x

11
12+ε (14)

for any ε > 0. Thus the contribution of such terms is negligible compared to the bounds 
we seek, and may be discarded. Henceforth, we restrict attention to terms with s � x1/3.

5.1. When k is small: proof of part (1)

In this case k � P(x), so that k log k/P(x) � log k, and Lemma 3.3, together with 
Stirling’s formula, yields
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|Qk(x)| � k−4 αx

log x
P(x)k−1

(k − 1)! � k−5 αx

log x

(eP(x)
k

)k−1
. (15)

Recall the factorization q = rs, that q has exactly k prime factors, and s is assumed 
to be � x1/3. If ω(s) = k then r must be 1, and q = s � x

1
3 . Since disc(Δq) � 1 always, 

such terms contribute at most x 1
3 . For the remaining terms when ω(s) < k, we apply for 

each s the bound arising from Lemma 3.8. Thus, using also (14), for any H � 2,

∑
q∈Qk(x)

disc(Δq) � x
11
12+ε + kx

log x
∑

s∈Q(x1/3)
ω(s)�k−1

1
ϕ(s)

( 1
H

+ (logH)n
∏
pv‖s

(√λ(pv)√
�(pv)

+ 1
pv

))
.

(16)
Observe that

∑
s∈Q(x1/3)
ω(s)�k−1

1
ϕ(s) �

k−1∑
j=0

1
j!

(∑
p∈Q
p�z

1
p− 1 +

∑
p�z
v�2

1
pv−1(p− 1)

)j

�
k−1∑
j=0

1
j!P(x)j ,

by summing according to the number j of prime factors of s. Similarly

∑
s∈Q(x1/3)
ω(s)�k−1

1
ϕ(s)

∏
pv‖s

(√λ(pv)√
�(pv)

+ 1
pv

)
�

k−1∑
j=0

1
j!

(∑
p∈Q
p�z

1
p− 1

(√λ(p)√
�(p)

+ 1
p

)

+
∑
p�z
v�2

1
ϕ(pv)

(
1 + 1

pv

))j

�
k−1∑
j=0

1
j! P̃(x)j .

Therefore, from (16) it follows that

∑
q∈Qk(x)

disc(Δq) � x
11
12+ε + kx

log x

k−1∑
j=0

( 1
H

P(x)j

j! + (logH)n P̃(x)j

j!

)

for any ε > 0. We choose here H = (1 + P(x)/P̃(x))k so that for all 0 � j � k − 1 one 
has P(x)j/H � P̃(x)j . Noting that

(logH)n =
(
k log

(
1 + P(x)

P̃(x)

))n

� kn
(P(x)
P̃(x)

) 1
10
,

we conclude that
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∑
q∈Qk(x)

disc(Δq) �
k1+nx

log x

(P(x)
P̃(x)

) 1
10

k−1∑
j=0

P̃(x)j

j! , (17)

where the term x
11
12+ε has been absorbed into the much larger quantity displayed above 

(for ε small enough).
Suppose first that k � 2P̃(x) − 1. In the range 0 � j � k − 1, the quantity P̃(x)j/j!

attains its maximum at some j0 which lies in the range k − 1 � j0 � (k − 1)/2. Note 
that, since k � P(x)

P̃(x)j0
j0!

(k − 1)!
P(x)k−1 � P̃(x)j0

j0!
j0!

P(x)j0 �
( P̃(x)
P(x)

) k−1
2
.

Combining this with (15) and (17), we conclude that in this range of k,

∑
q∈Qk(x)

disc(Δq) � |Qk(x)|k
7+n

α

(P(x)
P̃(x)

) 1
10
( P̃(x)
P(x)

) k−1
2 � |Qk(x)|k

7+n

α

( P̃(x)
P(x)

) k−1
3
.

(18)
Suppose now that P(x) � k � 2P̃(x) − 1. Here we note that the sum over j in (17) is 

� exp(P̃(x)) � e(k−1)/2. Moreover, since P̃(x) � 2,

e(k−1)/2
(P(x)
P̃(x)

) 1
10
( k

eP(x)

)k−1
� k

1
10 e−(k−1)/2

( k

P(x)

)k−1− 1
10
.

Combining these observations with (15) and (17), we find that in this range of k,

∑
q∈Qk(x)

disc(Δq) � |Qk(x)|k
6+n

α
e−k/2

( k

P(x)

) k−1
2
. (19)

The estimates (18) and (19) establish part (1) of Proposition 5.1.

5.2. When k is large: proof of part (2)

Assume that P(x) < k � exp(
√

log log x). Let κ � k/3 be a parameter to be fixed 
later. For terms q = rs with ω(r) � κ, note that disc(Δq) � 1 trivially, and Lemma 3.4
gives a bound on the number of such terms. Thus

∑
q∈Qk(x)
ω(r)�κ

disc(Δq) �
∑

q∈Qk(x)
ω(r)�κ

1 � kx

log x
P(x)k−1

(k − 1)! exp
(2k log k

P(x) − κ
)

� |Qk(x)| 1
α

exp
(7k log k

P(x) − κ
)
,
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where we used the lower bound for |Qk(x)| arising from Lemma 3.3, and the fact that 
k � P(x).

On the other hand, we estimate the contributions of those q for which ω(r) < κ using 
Lemma 3.8 exactly as in the argument leading up to (17), with the same choice of H as 
before. Thus

∑
q∈Qk(x)
ω(r)<κ

disc(Δq) �
k1+nx

log x

(P(x)
P̃(x)

) 1
10

k−1∑
j=k−κ

P̃(x)j

j! .

Now for each k − κ � j � k − 1 note that, since κ � k/3,

P̃(x)j

j!
(k − 1)!
P(x)k−1 �

( P̃(x)
P(x)

)j( k

P(x)

)k−1−j

�
( P̃(x)
P(x)

) 2k
3
( k

P(x)

)κ

.

It follows that

∑
q∈Qk(x)
ω(r)<κ

disc(Δq) �
k2+nx

log x
P(x)k−1

(k − 1)!

( P̃(x)
P(x)

) k
2
( k

P(x)

)κ

� |Qk(x)|k
2+n

α
exp

(4k log k
P(x)

)( P̃(x)
P(x)

) k
2
( k

P(x)

)κ

.

Gathering together the bounds in the two cases ω(r) � κ and ω(r) < κ, we conclude 
that

∑
q∈Qk(x)

disc(Δq) �
|Qk(x)|

α
exp

( (6 + n)k log k
P(x)

)(
exp(−κ)+

( P̃(x)
P(x)

) k
2
( k

P(x)

)κ)
. (20)

Choose

κ = min
(k

3 ,
k

3(1 + log(k/P(x))) log P(x)
P̃(x)

)
.

A small calculation then allows us to bound the right side of (20) by

� |Qk(x)|
α

exp
( (6 + n)k log k

P(x)

)(
e−k/3 +

( P̃(x)
P(x)

) k
3(1+log(k/P(x)))

)
.

This completes the proof of (13), hence that of Proposition 5.1.
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6. Proof of Theorems 1.6 and 1.8

6.1. Proof of Theorem 1.6

From the assumption (1) of Theorem 1.6, and since 1 −
√
t � (1 − t)/2 for 0 � t � 1, 

it follows that

P(x) − P̃(x) =
∑
p�x
p∈Q

(
1 −

√
λ(p)√
�(p)

)1
p
� 1

2
∑
p�x
p∈Q

(
1 − λ(p)

�(p)

)1
p
� δ

2 log log x.

Since P(x) � log log x + O(1), we conclude that

P̃(x)
P(x) � 1 − δ log log x

2P(x) � 1 − δ

3 � e−δ/3.

In the range k � P(x), part (1) of Proposition 5.1 now gives

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
k7+n

α
e−kδ/9 � 1

α
e−kδ/18,

where the last step follows because k � 20δ−1(7 + n) log(20δ−1(7 + n)).
In the range

P(x) < k � exp
((αδ log log x

20(6 + n)

)1/2)
,

we use part (2) of Proposition 5.1. Since P(x) � α log log x + O(1), the upper bound on 
k yields

exp
( (6 + n)k log k

P(x)

)
� exp

( δ

18
k

(1 + log(k/P(x)))

)
,

and so part (2) gives

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
1
α

exp
( (6 + n)k log k

P(x)

)(
e−k/3 +

(
e−δ/3) k

3(1+log(k/P(x)))
)

� 1
α

exp
(
− δk

18(1 + log(k/P(x)))

)
� 1

α
(log x)−αδ/18,

where the last step follows because k/(1 +log(k/P(x))) � P(x) � α log log x +O(1). This 
completes the proof of Theorem 1.6.
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6.2. Proof of Theorem 1.8

By the Cauchy-Schwarz inequality and the assumption (2) in Theorem 1.8, we see 
that

∑
p�x
p∈Q

1
p

√
λ(p)√
�(p)

�
(∑

p�x
p∈Q

1
p

) 1
2
(∑

p�x
p∈Q

1
p

λ(p)
�(p)

) 1
2 �

√
δ
∑
p�x
p∈Q

1
p
.

Therefore, with the notation of Proposition 5.1

P̃(x)
P(x) �

√
δ + O

( 1
α log log x

)
� δ1/3,

upon using that P(x) � α log log x + O(1) and that x is large in terms of α, while 
δ � 1/ log log x (by assumption again). Now part (1) of Proposition 5.1 implies that for 
k � αδ log log x + O(1) one has

1
|Qk(x)|

∑
q∈Qk(x)

disc(Δq) �
k7+n

α

(
δ(k−1)/9 + e−k/2δ(k−1)/2

)
� 1

α
δ(k−1)/10,

which establishes Theorem 1.8.

7. Remarks on exponential sums

The method described above may be placed in a more general context as follows. Sup-
pose we are given a function V that associates to each prime p and each reduced residue 
class a (mod p) a complex number V (a; p). Extend this to a function V (a; q) where q is 
square-free and a (mod q) is a reduced residue class by “twisted multiplicativity”: that 
is, if q = q1q2 with (q1, q2) = 1 then

V (a; q1q2) = V (aq̄1; q2)V (aq̄2; q1). (21)

Set V (a; q) = 0 if q is not square-free, or if (a, q) > 1. For each prime p let G(p) � 0 be 
such that

max
(a,p)=1

|V (a, p)| � G(p). (22)

Extend G to all square-free integers using multiplicativity. The problem is then to obtain 
a bound for ∑

|V (a; q)|

q�x
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(for a fixed integer a � 1) which is better than the trivial bound∑
q�x

|V (a; q)| �
∑
q�x

G(q).

Remark 7.1. Our work in Theorem 1.4 fits into this framework by taking V (a, p) to be the 
normalized Weyl sums W (ah; p) for some fixed non-zero h. The twisted multiplicativity 
(21) was established in part (1) of Lemma 3.5.

Another very natural class of examples fitting this generalized framework arises from 
exponential sums. Let f1 and f2 be monic integral polynomials, with f2 non-zero. For 
any squarefree number q, we put

V (a; q) = 1
√
q

∑
n (mod q)

(f2(n),q)=1

e
(af1(n)f2(n)

q

)
.

Note that if for some p|q the function f2 (mod p) reduces to the zero function, then 
there are no values n with (f(n), q) = 1 so that the sum in our definition is empty and 
V (a; q) = 0. These sums V (a; q) satisfy the relation (21). Using the Weil estimates for 
additive exponential sums modulo primes, one can take G(p) = cf1,f2 for some integer 
constant depending only on the degree and number of zeros of f1 and f2 (in particular 
independent of p).

The problem of obtaining non-trivial estimates for∑
q�x

|V (1; q)|

in this case has already been addressed in depth by Fouvry and Michel [6], and the special 
case of Kloosterman sums (namely, f1 = X2 + 1 and f2 = X) is briefly mentioned by 
Hooley [10, §3]. One can extend some aspects of the work of Fouvry and Michel, but 
as this is of a different nature from the present paper, we defer further consideration to 
another note [13].
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Appendix A. Conjectures modulo prime moduli and a function field analogue

As discussed in the introduction, one of the motivating problems is that of the distri-
bution of the roots of polynomial congruences to prime moduli. This can be interpreted in 
(at least) two ways, depending whether one uses the same measures as in Theorem 1.2, 
or Hooley’s measures as in Section 2.2. For completeness, we state formally the two 
potential conjectures (which are most likely both correct), and discuss a function field 
analogue that tends to indicate that, in this case, Hooley’s measures are in some sense 
more natural.

Let f ∈ Z[X] be a monic irreducible polynomial of degree � 2, and let Πf (x) be the 
set of primes p � x such that the number �f (p) of roots of f modulo p is at least 1. 
Let Δp be the usual probability measure on the set of roots of f modulo p.

The first conjecture, analogue of the qualitative form of Theorem 1.2, is:

Conjecture A.1. Let f ∈ Z[X] be a monic irreducible polynomial of degree � 2. Then the 
measures

1
|Πf (x)|

∑
p�x
p∈Q

Δp

converge to the uniform measure as x → +∞.

Note that |Πf (x)| ∼ cπ(x) for some constant c > 0, namely the proportion of elements 
of the Galois group of the splitting field of f which have a fixed point, when viewed as 
permutations of the n roots of f .

Using Hooley’s measures, the natural conjecture (which is stated in [4] for instance) 
is:

Conjecture A.2. Let f ∈ Z[X] be a monic irreducible polynomial of degree � 2. Then the 
measures

1
π(x)

∑
p�x
p∈Q

�f (p)Δp

converge to the uniform measure.

Here the normalization by π(x) is asymptotically correct, and corresponds to the fact 
that the average number of fixed points of a transitive permutation group is 1.

Remark A.3. Hrushovski also asked [11, §4.4] if the fractional parts of roots of polynomial 
congruences are equidistributed modulo primes p restricted to have �f (p) equal to a fixed 
integer r � 2, in the case where the Galois group of the splitting field of f is cyclic. The 
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version modulo all squarefree q follows easily from Theorem 1.4, for all f and all r � 2
such that the Galois group of the splitting contains at least one permutation which has r
fixed points when acting on the complex roots of f .

In order to determine which of the two conjectures is more natural, we look at a 
function field analogue.

Let f ∈ Z[X, Y ] be a polynomial which is irreducible in C[X, Y ], of degree � 2 with 
respect to Y and � 1 with respect to X.

For any prime p large enough, the reduction of f modulo p will be absolutely irre-
ducible in Fp[X, Y ]; below we only consider such primes.

One analogue of looking at primes � x is to consider irreducible polynomials π

in Fp[X] of bounded degree. The roots of a polynomial congruence modulo a given 
prime correspond then to the roots in k = Fp[X]/πFp[X] of the polynomial f (modπ), 
viewed as an element of k[Y ].

To simplify the discussion, we will look at polynomials π of degree 1, i.e., π = X−x for 
x ∈ Fp, but we will then let p → +∞ (this is possible since we started with a polynomial 
f ∈ Z[X, Y ]). Then, for a given π = X − x, we look at the roots y of f (modπ) that 
belong to Fp[X]/(X −x)Fp[X] � Fp, i.e., we look at y ∈ Fp such that f(x, y) = 0 ∈ Fp.

Now the Weyl sums to consider for the analogue of Conjecture A.1 are

1
Zp

∑
x∈Fp

Cx �=∅

1
|Cx|

∑
y∈Fp

f(x,y)=0

e
(hy

p

)
, (23)

where

Cx = {y ∈ Fp | f(x, y) = 0},
Zp = |{x ∈ Fp | Cx = ∅}|,

and those for the analogue of Conjecture A.2 are

1
p

∑
x∈Fp

∑
y∈Fp

f(x,y)=0

e
(hy

p

)
, (24)

both for h ∈ Z non-zero (it is a consequence of the Riemann Hypothesis for curves over 
finite fields that p is asymptotically the correct normalization here; this depends on the 
fact that f is absolutely irreducible).

As it turns out, the sums in (24) converge to 0 as p → +∞ essentially without further 
conditions, and those in (23) do so at least in considerable generality, but the argument 
is less straightforward in that case.

Convergence of (24). It is a standard fact (see e.g. [8]) that if f has degree � 2 with 
respect to Y , then as p → +∞, the fractional parts ({x/p}, {y, p}) ∈ (R/Z)2 of the 
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points (x, y) ∈ C(Fp) of the plane algebraic curve defined by the equation f(x, y) = 0
become equidistributed with respect to the uniform measure, and moreover, the Riemann 
Hypothesis for curves implies that

|C(Fp)| = p + O(p1/2)

as p → +∞. This implies (more than) the convergence to 0 of the Weyl sums in (24).

Convergence of (23). We split the sum according to the value of |Cx|, which is an 
integer � d = degY (f). We get

1
Zp

∑
x∈Fp

Cx �=∅

1
|Cx|

∑
y∈Fp

f(x,y)=0

e
(hy

p

)
= 1

Zp

∑
1�k�d

1
k

∑
x∈Fp

|Cx|=k

∑
y∈Fp

f(x,y)=0

e
(hy

p

)
.

Fix k. The characteristic function ϕk of the set of x ∈ Fp such that |Cx| = k can be 
represented in the form

ϕk(x) =
∑
j∈J

α(k, j)tj(x; p)

where J is a finite set and α(k, j) are complex coefficients, both of which are independent 
of p, and where tj(x; p) is a trace function modulo p of conductor bounded in terms 
of f only (more precisely, this formula holds for all x except possibly boundedly many 
exceptional values where the covering π : C → A1 given by (x, y) → x is ramified, and it 
is obtained from Galois theory, the set J being the set of irreducible representations of 
the Galois group Gπ ⊂ Sd of π, and α(k, j) the Fourier coefficients of the characteristic 
function of those σ ∈ Gπ with precisely k fixed points; see, e.g., [5, §10.2] for similar 
computations). Hence

∑
x∈Fp

|Cx|=k

∑
y∈Fp

f(x,y)=0

e
(hy

p

)
=

∑
j∈J

α(k, j)
∑
x∈Fp

tj(x; p)
∑
y∈Fp

f(x,y)=0

e
(hy

p

)
+ O(1).

But the function

g(x) =
∑
y∈Fp

f(x,y)=0

e
(hy

p

)

is itself a trace function with conductor bounded in terms of f only, and moreover it is 
lisse and pure of weight 1 on an open dense subset of A1.

Now, note that for p large enough, all the trace functions tj are associated to sheaves 
that are everywhere tamely ramified (see again [5, §10.2]). On the other hand, if we 
assume that f is monic with respect to X, then one can check2 that for p large enough, the 

2 We thank W. Sawin for clarifying this argument.
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monodromy representation at infinity of the sheaf underlying g is totally wildly ramified. 
Consequently, no geometrically irreducible component of g can then be geometrically 
isomorphic to any of the trace functions tj . Applying then the Riemann Hypothesis over 
finite fields (in a form like [12, Prop. 1.8]), we have∑

x∈Fp

tj(x; p)g(x) � p1/2,

where the implied constant depends only on f (because the conductors of tj and g are 
bounded in terms of f).

A similar argument using the Riemann Hypothesis shows that Zp � p as p → +∞, 
and hence we deduce (generically at least) that the sums (23) tend to 0 as p → +∞.

Remark A.4. The condition that f is monic with respect to X is somewhat restrictive, 
and the convergence of (23) to 0 can be generalized to various other classes of polyno-
mials. Since our goal is to illustrate the difference between the two types of sums, we do 
not attempt to discuss more general situations here.
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