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Abstract

Due to recent advances in image guided surgery, the availability of ef¬

ficient algorithms for the fusion of pre- and intra-operative image data

is of increasing importance. Because of the unavoidable deformations

in the anatomy the classical rigid registration techniques can only be

used for very limited special cases. Hierarchical subdivision techniques

allow, however, to decompose non-rigid matching problems into rigidly

registering numerous sub-images of decreasing size. While Mutual Infor¬

mation has proven to be a very robust and reliable similarity measure for

intensity-based registration of multi-modal images, numerous problems
have to be faced if it is applied to small-sized images, compromising its

usefulness for such subdivision schemes.

Within this dissertation, we examine and explain the rather unexpected
behavior of Mutual Information when applied to structureless image re¬

gions or regions covering only a limited number of image pixels. Methods

to overcome these limitations are presented and their performance tested

using the hierarchical subdivision registration scheme.

A new method inspired from point pattern analysis is introduced to iden¬

tify problematic regions not containing enough structural information to

reliably find the proper correspondence between the images using Mu¬

tual Information. The proposed method not only improves the accuracy

and robustness of the registration, but can also be used as a very efficient

stopping criterion for the further subdivision of nodes in the hierarchy

improving the computational complexity by a factor of 5 for 2D images.

To overcome the statistical consistency problem when estimating Mutual

Information for small image regions, an intensity mapping technique is

presented. This mapping transforms the initial multi-modal images into

a common pseudo-modality and therefore allows to switch the similar¬

ity measure to the more robust Cross-Correlation. The integration of
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this mapping technique brought about an additional reduction of the

computational complexity by a factor of about 2 for 3D images.



Zusammenfassung

Aufgrund der aktuellen Fortschritte in der Bildgeführten Chirurgie ist die

Verfügbarkeit von effizienten Algorithmen für die Registrierung von prä-

und intraoperativen Bilddaten von grosser Wichtigkeit. Die klassischen

rigiden Registrierungstechniken sind aber aufgrund der unausweichli¬

chen Deformationen im Gewebe nur beschränkt einsetzbar. Im Gegen¬
satz dazu erlaubt die hierarchische Subdivisionstechnik eine Zerlegung
eines nicht-rigiden Matching Problems in mehrere rigide Registrationen

von kleineren Unterbildern. Während sich Mutual Information als ein

robustes und verlässliches Ähnlichkeitsmass für die intensitätsbasierte

Registrierung multimodaler Bilder erwiesen hat, ergeben sich verschie¬

dene Probleme bei der Verarbeitung von kleinen Unterbildern, was die

Anwendbarkeit dieser Methoden kompromittiert.

In dieser Dissertation untersuchen wir das zum Teil unerwartete Verhal¬

ten von Mutual Information wenn es auf Bilder mit wenig strukturellem

Inhalt oder auf Regionen mit wenigen Bildpixeln angewendet wird. Im

weiteren werden Methoden vorgestellt, welche diese limitierenden Fakto¬

ren umgehen und ihre Leistungsfähigkeit anhand einer Implementation

in einem hierarchischen Subdivisionsregistrierungssystem geprüft.

Eine neue auf der Punktmusteranalyse basierende Methode wird ein¬

geführt um problematische Regionen zu identifizieren, welche nicht genü¬

gend Struktur für eine Registrierung mit Mutual Information enthalten.

Die Methode verbessert aber nicht nur die Genauigkeit der Registration,
sondern bildet auch ein sehr effizientes Stoppkriterum um weitere hier¬

archische Unterteilungen zu verhindern. Die benötigte Rechenzeit sinkt

durch deren Einsatz um einen Faktor 5 für 2D Bilder.

Im weiteren wird noch eine Intensitätstransformation für kleine Unter¬

bilder vorgestellt. Diese Methode erlaubt es durch transformieren der

beiden Bilder in eine Pseudomodalität auch für multi-modale Bilder die
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robustere Crosscorrelation als Aehnlichkeitsmass zu verwenden. Die In¬

tegration dieser Transformationstechnik hat eine weitere Reduktion der

Rechenzeit um einen Faktor 2 erbracht.



Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Image registration 1

1.2 Classification of the registration methods 5

1.3 Organization of the thesis 8

2 Related Work and Background Theory 11

2.1 Notation and terminology 11

2.1.1 The discrete nature of the images 12

2.1.2 Registration transformation 13

2.1.3 Image coordinate system 14

2.1.4 World coordinate system 15

2.2 Rigid and affine registration algorithms 16

2.2.1 Rigid and affine spatial transformations 19

2.2.2 Similarity measures 23

2.2.3 Voxel interpolation procedures 32

2.2.4 Optimization procedures 35

2.3 Non-rigid registration algorithms 36

2.3.1 Model-based approaches to non-rigid registration .
37

2.3.2 Hierarchical non-rigid registration approaches ...
40

2.4 The hierarchical image subdivision strategy 42

2.4.1 Algorithmic implementation 44

2.4.2 Incorporating prior information 45

2.4.3 Consistency of the local registrations 46

2.4.4 Elastic interpolation 46

2.5 Discussions 48



vi Contents

Mutual Information and the Hierarchical Image Split¬

ting 49

3.1 Limitations of Mutual Information 50

3.1.1 Interpolation artifacts 50

3.1.2 Mutual Information of small sub-images 55

3.1.3 The effect of noise on Mutual Information 55

3.1.4 Including the prior global information 60

3.2 Spatial autocorrelation coefficient 63

3.2.1 Introduction in Point Pattern Analysis 63

3.2.2 Moran's I coefficient of spatial autocorrelation
. .

64

3.2.3 Image information consistency test 66

3.3 Hierarchical image splitting strategies 68

3.3.1 Binary splitting 69

3.3.2 Overlapping sub-images 69

3.3.3 Adaptive image splitting strategy 70

3.4 Intensity mapping 72

3.4.1 Cross-Correlation versus Mutual Information
...

74

3.4.2 Local intensity mapping 75

3.4.3 Preliminary results and conclusions 80

3.5 3D registration 82

3.5.1 Mutual Information behavior for 3D data 83

3.5.2 Extending Moran's consistency test to 3D 83

3.5.3 Image splitting strategy in 3D 84

Deformation Field Regularization 87

4.1 An overview of the existing methods 88

4.2 The proposed deformation field regularization 88

4.2.1 Test for local maxima the similarity function
...

89

4.2.2 Outlier detection 90

4.2.3 Parameter inheritance and outlier correction
...

91

4.2.4 The final dense deformation field 93

The Enhanced Hierarchical Registration Algorithm 95

5.1 Description of the registration algorithm 95

5.2 Registration algorithm using both MI and CC 100

Results and Validation 103

6.1 Experiments in 2D 103



Contents vii

6.2 Experiments in 3D Ill

6.3 Results validation 115

7 Conclusions and Outlook 125

Bibliography 131





List of Figures

1.1 Example of different image modalities 2

2.1 A general scheme of an image registration algorithm ...
17

2.2 Flow chart of a rigid registration algorithm 18

2.3 Three fast voxel interpolation techniques 34

2.4 The hierarchical subdivision strategy 43

3.1 Typical MI interpolation artifacts 52

3.2 The Shannon entropy term as a function of p 54

3.3 Increasing PVI artifacts along the hierarchical image split¬

ting 56

3.4 Registration details where structureless sub-images may

perturb seriously the registration 58

3.5 MI behavior in the presence of noise 58

3.6 The influence of the number of samples on MI 60

3.7 Experiments showing the advantages of including prior

information in MI 62

3.8 Classification of image regions into consistent and incon¬

sistent structures when using the Moran's I consistency

test 68

3.9 An overlapping windows scheme for the image partitioning 70

3.10 The evolution of the adaptive hierarchical image splitting 73

3.11 Comparative behavior of MI and CC for mono-modal reg¬

istration 76

3.12 Examples of CT and MR images used for testing the in¬

tensity mapping 77

3.13 A schematic example of joint intensity histogram delin¬

eating three distinctive regions used for intensity mapping 79



x List of Figures

3.14 The responses of MI and CC for CT/MR patches showing
rich structural details 81

3.15 The responses of MI and CC for CT/MR patches showing

major differences of tissue contrast 81

4.1 A schematic example showing the performance of the ge¬

ometrical test 92

5.1 The flow-chart of the enhanced hierarchical non-rigid reg¬

istration algorithm 98

6.1 2D CT slices through a leg used for the mono-modal ex¬

periment 104

6.2 Comparison of registration results when using MI and CC

for mono-modal images with contrast agent 105

6.3 Difference images after rigid and non-rigid registration of

2D mono-modal images 106

6.4 Intermediate results along the hierarchical non-rigid reg¬

istration procedure 107

6.5 Evolution of the adaptive splitting along the non-rigid reg¬

istration procedure of 2D CT transversal slices of the leg .
108

6.6 2D CT/MR registration details where flying sub-images

may perturb seriously the registration 110

6.7 2D CT/MR registration results 112

6.8 Rigid and non-rigid registration results for 3D CT scans

of a leg 114

6.9 Sections through the initial rigidly registered CT and MR

scans of the head 115

6.10 Details of a CT/MR registration result 116

6.11 CT/MR registration results 117

6.12 The scheme of the validation setup 120

6.13 CT and MR images used for validation 120



List of Tables

2.1 The orientation matrix 20

2.2 Properties of Mutual Information 31

6.1 Mono-modal registration error 121

6.2 Multi-modal registration error 123





1

Introduction

1.1 Image registration

The discovery of the X-rays in 1895 by Wilhelm Conrad Röntgen marked

the beginning of a new era in medicine, because for the first time it was

possible to see and analyze organs and tissues inside the human body
without a surgical operation. The X-ray images were opening the way to

better understand the human body's anatomy and functionality. Soon,
the X-ray images became a useful tool for medical diagnosis, and even

now, after more than one century this film-based medical images are still

broadly used in radiological applications.

In the computer era, the film-based X-ray images are replaced by digital

images, providing the spatial information about both anatomical and

functionality of the human body in high resolution. The last decades of

immense scientific research and technological progress resulted in the de¬

velopment of numerous new and performant imaging techniques. These

techniques can be differentiated by their underlying imaging principles,

such as the physical properties of radiation field and of the sensors. Each

imaging technique leads to a different image modality, which is charac¬

terized by its capability of picturing in a particular manner the details

of the different tissues. Depending on the characteristics of the irradi¬

ating field and the sensitivity of the acquiring sensor, the same material

may appear differently in images of different modalities. For example,

X-ray computed tomography (CT) images are sensitive to tissue density
and atomic composition according to their X-ray attenuation coefficient,
while magnetic resonance (MR) images are responsive to proton density,
relaxation times, flow, and other parameters. Ultrasound (US) images,
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(a) (b) (c) (d)

Figure 1.1: Example of images acquired with different modalities. (a,b)
CT and MR transversal scans of the head. (c,d) CT and MR transversal

scans of the abdominal region

detect subtle changes in acoustic impedance at tissue boundaries and

discriminate the tissues by their different diffraction patterns. Also, en¬

doscopy and surgical microscopy provides images of visible surfaces deep
inside the body. Figure 1.1 shows how the same tissues are pictured in

a different manner by the different acquiring image modality.

Even more, the two-dimensional (2D) X-ray images are now replaced
with three-dimensional data (3D) or time series images which increase

the possibility of spatially locate and analyze the human anatomy and

physiology. These advances of the imaging technology and the ever im¬

proving quality of the generated images, has enormously increased the

potential of medical imaging in the clinical practice.

Nowadays, medical imaging became a vital component of a large num¬

ber of clinical applications. Developing extremely fast during the last

decades, medical imaging is bringing new techniques to improve exist¬

ing clinical procedures or to facilitate the establishment of completely

new approaches. The most important component of this process is the

quickly growing role of medical imaging in supporting therapy by deliver¬

ing essential information for pre-operative planning and intra-operative

navigation. All the related procedures are using a large number of digital

images on a routine basis. Taken at different times or by different radi¬

ological modalities, these images are usually containing complementary

information. Therefore, most of the clinical procedures are requiring a

proper integration (fusion) of the information contained in the images

of different modalities. The crucial step in this fusion process is the

registration procedure which ensures that the images of interest are in
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a sufficiently good spatial alignment by establishing the correspondence
of anatomical structures within the patient. The process of image fusion

helps the physician to monitor the evolution of diseases or the effect of

the different treatments applied by looking at the pathological changes
in the shape or internal structure of the organs. Prior knowledge can also

be integrated in the process of diagnosis by fusing the medical images

acquired with an anatomical atlas.

The process of accurate quantitative analysis of the structural and phys¬

iological parameters from medical images is usually a difficult problem.
The complexity comes not only from the 3-D nature of the problem,

but also because of intrinsic limitations of the image acquisition pro¬

cess itself. Often, the medical images present a poor contrast, a limited

resolution and artifacts generated by partial volume effects, noise, or in-

homogeneities. The ambiguity in the images results in intra- and inter-

observer variability in the measurements that may be of the same order

of magnitude as the signal to be quantified itself. Therefore, this may

deteriorate the reproducibility of the measurements and weaken the sig¬

nificance of the clinical observations derived from the images. Improving
the reliability of image measurements requires robust and well-validated

strategies for automated, computer-based image analysis. However, the

robustness of these automated approaches often suffers from limiting as¬

sumptions imposed on the data that are not always made explicit, from

reliance on object or image specific parameters, and from the use of

too simple models, such that a manual intervention is usually required.

Moreover, the validation and the experimental evaluation is often lacking

or insufficient to support reliable application on real-world problems.

In the same time, the clinical requirements for medical image analysis

have grown considerably, imposing new and more challenging demands

on the medical image processing algorithms involved, and consequently

on the accuracy of the image registration procedures. Often encountered

as image matching or alignment, image registration is the process of

aligning two or more images of the same scene from different viewpoints

and/or time such as the corresponding structural features are in the same

physical position. This term is also used for the alignment of images with

a computer model, or aligning image features with locations in physical

space. Basically, there is no restriction regarding the modality used to

acquire the images, and also regarding the time point of their acquisition.
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Image registration is a crucial step in all image analysis tasks in which the

final information is gained from the combination of various data sources

like in image fusion, change detection and multichannel image restora¬

tion. Therefore, image registration has applicability in many fields, like

remote sensing (multispectral classification, environmental monitoring,

change detection, image mosaicing, weather forecasting, creating super-

resolution images, integrating information into geographic information

systems (GIS)), in cartography (map updating), computer vision (target
localization or tracking, model based segmentation, automatic quality

control) but this thesis only addresses the field of radiological imaging.

The main goal of the research presented in this thesis is the develop¬
ment of an automatic method for non-rigid registration of mono- and

multi-modal medical images. While in the early phase of development

the distance between image features has been dominantly used for char¬

acterizing the goodness of fit between the structures to be matched, the

importance of purely intensity-based measures has grown very quickly

during the past decade. This is due to the fact, that these approaches

are not dependent on feature detection, which is not only preventing

the influence of errors caused by a pre-processing step, but also making

these methods more suitable for automatic processing. The introduc¬

tion of Mutual Information (MI) as a similarity measure by Viola and

Wells [Viola and W. M. Wells 1995] and Collignon et al. [Maes et al.

1996] has especially influenced the development of intensity-based image

registration due to its inherent ability to deal with multi-modal match¬

ing problems. The decisive property in this respect is that MI does not

depend on any linear relation between the different image intensities but

it relies only on statistical properties of the two-dimensional histogram.
The following years of intensive research were proving the advantages
and the robustness of this approach, and MI started to be extensively

used even in the field of mono-modal registration.

New robust and accurate non-rigid registrations algorithms are heavily

required by the increasing importance of the medical imaging in sup¬

porting therapy, by delivering essential information for pre-operative

planning and intra-operative navigation. Every medical application that

necessitates an image registration procedure is imposing specific require¬

ments concerning the accuracy, robustness, multi-modal capability and

speed. In order to be as general as possible, we propose a new algorithm
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that can be further used as a modular framework and that can be easily

adapted to a wide area of applications. The new algorithm is developed

such that it overcomes the limitations and problems noticed for many

other registration algorithms already presented in the literature. Based

on the idea presented in [Likar and Permis 2001], we developed an en¬

hanced hierarchical image splitting strategy for non-rigid registration of

mono- and multi-modal images. The hierarchical strategy covers a big

variety of possible deformations by decomposing the non-rigid matching

problem into rigidly registering numerous sub-images of decreasing size.

The final continuous deformation field is calculated by regularization and

interpolation of the local transformations. Problem specific constraints

can be easily integrated into the algorithm. This thesis contributes to the

development of more reliable automated non-rigid medical image regis¬

tration tools for multi-modal images with broad applicability in clinical

practice.

1.2 Classification of the registration meth¬

ods

The big variety of applications with specific requirements and available

technologies led to an impressive number of methods that have been

proposed and developed during the past decades. Several surveys and

even textbooks have been already published presenting a broad and com¬

plete overview of the techniques proposed in the literature [Brown 1992,

van der Elsen et al. 1993, Hajnal et al. 2001, Hill et al. 2001, Zitova

and Flusser 2003]. Therefore, in this section we present only a brief

overview of the classification of the proposed methods and their under¬

lying principles. The mathematics and the implementation details of

those methods related to the subject of the present thesis are discussed

in the next chapter.

The most complete set of classifications criteria was proposed by Maintz

and Viergever in 1998. Following the terminology proposed in [Maintz
and Viergever 1998], the registration procedures were classified according
to the problem statement, the registration paradigm and the optimiza¬

tion procedure. The problem statement includes criteria such as the

object or the region of interest, the modality and dimensionality of the
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images involved, the source of the images (eg. the same or different pa¬

tients) and also the nature of the transformation to be recovered. The

registration paradigm involves the image features and the correspon¬

dence criterion used to compute the registration while the optimization

procedure criterion regards the search strategy for determining the ac¬

tual registration parameters and also the degree of the required user

interaction.

According to the registration paradigm, the registration procedures can

be classified as being extrinsic or intrinsic. The extrinsic registration

procedures are based on foreign markers introduced into the image space.

These methods rely on artificial objects (e.g. stereotactic frame, fidu¬

cial screw or skin markers, dental adapter, mold, etc.), usually attached

to the patient and that are designed to be well visible and accurately

detectable in all the imaging modalities. As such, the registration of

the acquired images is fast and easily performed in an automatic man¬

ner. The main drawbacks of these methods are the prospective and

the usually invasive character of marker placement. While, non-invasive

markers can also be used, but they lead to less accurate results. Usu¬

ally, the extrinsic methods are limited to rigid transformations (used
in orthopedics and neurosurgery) and very few methods were proposed
for non-rigid applications (only if a big number of markers can provide
sufficient information about the local deformation).

The intrinsic registration methods are developed such that only the im¬

age information is used as it is acquired from the patient. In this case,

the registration can be based on a limited set of identified salient points

(landmarks), on the alignment of segmented binary structures (segmen¬
tation based), or directly onto measures computed from the image grey

values (voxelproperty based). The landmarks are usually well identifiable

points of the morphology of the visible anatomy, located automatically or

interactively by the user. Similar to the extrinsic methods, the landmark

based methods are also usually restricted to rigid or affine transforma¬

tions, and the performance is heavily dependent on the accuracy of the

landmarks extraction. Basically, a landmark identification procedure is

similar to segmentation, only extracting simple points instead of lines,
surfaces or volumes. Therefore, the accuracy of these methods is usually

highly data and application dependent, and is limited by the segmenta¬

tion error of the landmarks and the precision of their localization.
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The voxel property based approaches represent a special class of the

intrinsic methods because they operate directly on the image grey values

without any prior data reduction by a segmentation procedure. There

are two main approaches: on one hand to represent the information by

a set of scalars and orientations (the principal axes and moments based

methods), on the other hand to use the full image content. The latter

approach is currently in the focus of research because it proves to be

the most flexible and potentially the most accurate, as it uses all the

information available in the image throughout the entire registration

process. The main drawback of the full image content approach is the

computational cost, but this is not necessarily an issue due to the steadily
increase of available computational resources. Because this approach is

also in the focus of the present thesis, more details about the voxel

property based methods will be presented in the following chapter.

Another important criterion for classification of the registration proce¬

dures concerns the nature of the geometrical transformation to be recov¬

ered. The appropriate type of the transformation needed to correct the

spatial misalignment is imposed by different factors, either related to the

image content or to the scanning procedure. For example, the stiffness

of the tissues to be registered or other physical properties of the anatom¬

ical structures contained in the images are imposing constraints to the

choice for the transformation model. One can assume that a simple rigid

body assumption can be appropriate for registering the skull in 3D scans

of the head. This means that the appropriate spatial transformation is

a combination of only three translations and three rotations. However,
this rigid assumption holds only if the user can neglect the scanner mis-

calibration or geometric distortions in the images. More elaborate affine
transformations can further compensate for image scaling and skew dif¬

ferences. Projective transformations are sometimes useful to register 2D

X-rays to 3D scans.

As in most of the cases the anatomy shows unavoidable deformations

between consecutive imaging processes or during the surgical procedure,

non-rigid or curved transformations capable of dealing with more local¬

ized spatial changes are nowadays in the focus of research and develop¬
ment. The non-rigid transformations are also suitable to compensate for

the anatomical differences existing either when the images are coming

from different subjects or when an atlas registration is performed.
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In contrast to the previous types of transformations that can be described

only by a small set of parameters, the non-rigid transformations are

usually described in terms of a vector displacement field (disparity) or

as polynomial transformations. All these transformations can be applied

globally to the entire image space, or locally to certain regions within the

images. The local transformations are not very common because they

may violate the continuity and the bijectiveness of the transformations.

However, if more such local transformations are covering the entire image

space, they can be integrated into a global curved transformation.

There are other important criteria of the classification of the registration

methods that have to be mentioned. One of them concerns the imaging

technology used to acquire the images. If the images to be registered
result from the same or different scanning technology, the registration is

called to be mono-modal or multi-modal, respectively. In preoperative

procedures, the physician might be interested in a modality to model reg¬

istration, such that he can compare the pathology of the patient with a

standard computer model. There are different imaging devices available

in the OR like endoscopes, echographs, microscopes or even video cam¬

eras which can provide images of the scene in real time. These real world

images, displayed on a screen can be fused with a preoperative scan of

an internal organ to provide guidance to the surgeon. These patient

to modality registration methods are usually integrated into minimally
invasive surgery procedures.

1.3 Organization of the thesis

In the following chapter we present the related work and the basic theory
behind a rigid registration procedure, followed by an overview of the

existing methods for non-rigid image registration. The chapter concludes

by presenting the hierarchical image splitting strategy proposed by Likar

and Permis which constitutes the starting point of our research.

Chapter 3 presents our investigation of the behavior of Mutual Infor¬

mation. It firstly describes the results of our research that revealed a

disturbing peculiar behavior of MI. This drawback, together with the

already known limitations can seriously perturb the accuracy of any hi¬

erarchical registration procedure that uses the matching capability of
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MI. Consequently, this chapter presents several solutions we developed
and proposed to overcome the limitations of MI.

After an overview of the existing methods for deformation field regu¬

larization, Chapter 4 describes our proposed method to approach this

problem.

In Chapter 5 we present the entire enhanced hierarchical algorithm com¬

posed of the different methods and solutions presented in the previous

chapters. In this chapter we provide details of the algorithm imple¬
mentation and its modular architecture, and we discuss several possible
extensions of the different modules.

Chapter 6 presents and analyzes the results of our non-rigid registration

algorithm for mono- and multi-modal images.

The last chapter draws the conclusions and presents several directions

for further research.





2

Related Work and

Background Theory

The previous chapter introduced the general concepts and the classi¬

fication of the proposed methods for image registration. This chapter

presents the underlying theory and algorithms behind the main exist¬

ing voxel-based methods for both rigid and non-rigid approaches. After

establishing notation and terminology used in this thesis, this chapter

continues by presenting the concepts behind a general 3D voxel-based

rigid-body registration algorithm in detail. This algorithm is considered

as an exemple, from which general rules and concepts can be extended

for all the other registration applications, including 2D and 3D images,

image referencing with physical space, and non-rigid intra- and inter-

subject registration. The chapter will continue with an overview of these

main approaches, especially for non-rigid registration, and conclude with

a detailed description of the hierarchical image splitting strategy that

represents the starting point of the research presented in this thesis.

2.1 Notation and terminology

A registration algorithm, as stated in the definition, has to find the

proper spatial transformation that relates the information conveyed in

an image to the another image or to the physical space. Therefore,

a registration algorithm requires as input at least two images of the

same scene, or an image and a computer model or the parameters of the

physical space. The main goal of this work is to present a new algorithm
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for multi-modal image registration. For simplicity reasons, the entire

thesis considers only the case of two input medical images.

2.1.1 The discrete nature of the images

Medical images undergoing the registration process are in a digital for¬

mat. They are formed by sampling and quantizing the real world scene

in their field of view into a limited number of samples. For an image A,
this field of view forms the image domain Ha and it can be expressed

as a discretization of the finite continuous space of the imaged patient

volume Ùa with an infinite sampling grid Tf. This sampling grid defines

the spatial resolution of the medical image and it is characterized by the

sample spacing £A = (ß£, &, ^) given by the properties of the scanning

device. This sampling process is likely to be different for two different

images and while the sampling is commonly uniform in a given direc¬

tion, it may be anisotropic for the different directions within the image.

In case of 2D images, its samples are called pixels (an abbreviation of

"picture elements" ) and for 3D images the samples are called generally
voxels (an abbreviation of"volume elements").

Within an image A, each voxel is associated with a spatial location

sa = (s%, sA, sf) and an image intensity value A(sa). The images are

not only discretized in space, but also in intensity values (or levels). Very
often in practice, the intensity values are quantized into n bit levels, (with
n often 8, 16, 24 or 32). The entire domain of the possible intensity levels

of an image is denoted with Ha:

Sla = {a = A(8A),V8AenA}. (2.1)

It is important to notice that a pair of images to be registered are de¬

rived from a real scene or object, i.e. the patient. These images have

a limited field of view, that normally does not cover the entire patient.

Furthermore, this field of view is likely to be different for the two im¬

ages. As the images A and B represent the same object, taken with the

same or a different modality, their image domains ilA and Hb might be

different, but there is a relation between the spatial locations in A and
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B. Sometimes it is useful to define the images within their field of view

as a mapping of points in the patient to intensity values:

A : sa G HA >— A(sA)

B:sbGHb^B(sb).
[ '

Therefore, within the common space covered by both image fields of view,

any spatial location s of the imaged object will have a corresponding

position sa within the image A and s# within the image B.

2.1.2 Registration transformation

The final goal of image registration is to recover the transformation that

relates the spatial position of the features in one image with the position

of the corresponding features in the other image. In geometrical terms,

this transformation represents a mapping of every position sb from Hb

into the corresponding position sa from Ha over the entire domain of

interest. Denoted with Tba, this spatial relation is called the registration

transformation, and can be defined as:

Tba : sb G Hb '—> sA G HA <^> TBa (sb) = sa- (2.3)

This registration transformation is valid only within the domain of inter¬

est represented by the overlapping part of the two image fields of view,

denoted with H\B:

Mab = {sa G Ha\sa = TBA(sB), sB eHB}. (2.4)

In any registration procedure, one of the images is considered as the ref¬

erence image (or target image) while the other image is considered as the

floating image (or source image). The reference image is spatially fixed

and its image domain represents the mapping target of the registration

transformation. As such, the floating image is undergoing the registra¬

tion transformation, from its own image domain into the reference image

domain. During the entire thesis, image B will always be considered as

the floating image that has to be registered with the reference image A.

Therefore, the subscript from Tba will also be omitted from the notation

of the registration transformation (Tba = T). However, it is sometimes

useful to define the inverse transformation Tab = T^1 from the image
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A to the image B, but care has to be taken because not all the geo¬

metrical transformations are invertible. The floating image B which is

transformed into the reference image domain is denoted as BT = T(B)
and mathematically it can be expressed as a mapping of all the points

sb from Hb into the overlapping domain H\B:

BT :T(sb)gHIb- (2.5)

Because dAB is only a subset of the image domain Ha, the correspond¬

ing domain of intensity levels, denoted Hj, will also be a subset of Ha.

Similarly, the transformed floating image BT will have a corresponding

domain of intensity levels Hj. However, because the transformation from

one image domain into the other is likely to involve an intensity interpo¬

lation of the voxels that are falling in between the grid of the reference

image domain, the transformed intensity domain Hj is not necessarily a

subset of the initial intensities. The aspects involving intensity interpo¬

lation will be discussed later.

2.1.3 Image coordinate system

Due to the digital nature of the images, a two-dimensional (2D) image

can be represented as a rectangular array whose elements are the image

samples. Similarly, a 3D image is obtained by stacking together 2D

images and can be represented as a 3D array. A spatial location sa =

(s%, sA, sf) of a voxel within the image A is given by the natural indexing
within the image array. This array defines a Cartesian coordinate system

for the image, known as the image coordinate system. This coordinate

system is associated to the image domain Ha, and conventionally is

defined such that the x and y axes are chosen to be in the slice plane, and

the z axis along the slice stack. The origin of the image coordinate system

is considered as the first voxel of the image, the x and y coordinates

denoting the column and row number, respectively, and the z coordinate

denoting the slice number, assuming that the data is stored row by row

and slice by slice.
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2.1.4 World coordinate system

Due to the possible different orientation of the patient relative to the

scanning device, a more general coordinate system needs to be defined

with respect to the imaged scene. This is the so called world coordinate

system conventionally defined such that the orientation of its axes is

relative to the patient's body and its units are expressed in real-world

units (millimeters). The world coordinate system is related to the image

coordinate system by the origin of its axes that is defined in the center

of the image volume. The convention is as follows: the x axis is running

from the patient's right side to his left side (R—>L), the y axis from

the patient's anterior to his posterior (A—>P), and the z axis form the

patient's inferior towards his superior (I—>S).

According to the properties of the image A, such as voxel size, orienta¬

tion, and dimension, a mapping TtA can be defined such that the entire

image domain Ha can be transposed into the world coordinate system,

and vice versa. This is similar to the process of mapping the digital im¬

age back into the continuous space of the originally scanned volume of

the patient Ha- The sampling quantization makes the process of recov¬

ering the original volume practically impossible, so Ha will denote the

discrete image domain transformed into the world coordinate system:

HA=Tti(HA) (2.6)

where TJ^ represents the transformation from the image coordinates to

the world coordinates. Accordingly, by denoting the location of a point

in image coordinates with sa G Ha, its corresponding position in world

coordinates is denoted with wa = (wx> wy~, wz~) G &A and defined as:

wa = T%t (sA) (2.7)

The transformation TtA represents the mapping from N3 to R3 and the

inverse transformation from world to image coordinates is T^t:

Twl = (Tlwy . (2.8)

It is important to note, that this world to image coordinates transfor¬

mation 7^ represents a mapping from R3 to N3, and it will take into

consideration the discrete nature of the image domain. Therefore, this
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transformation involves a voxel interpolation of those points falling in

between the natural grid of the digital image, as it will be discussed

later.

In order to differentiate between the registration transformation T that is

mapping a point from the floating image domain into the reference image

domain, in this world coordinate system we will denote the transforma¬

tion with T. The difference is the support of the two spatial mapping

functions: T : N3 - N3 and T : R3 - R3.

2.2 Rigid and affine registration algorithms

This section addresses both the rigid and the affine registration pro¬

cedures with the generic name of rigid registration, because the only
difference is the number of degrees of freedom allowed for the spatial
transformation. Figure 2.1 delineates the four key elements of a stan¬

dard voxel-based registration algorithm: the transformation model, the

similarity metric, the voxel interpolation method and the optimization

procedure. Firstly, an assumption has to be made on the appropriate

transformation model that can reasonably compensate for the spatial

misalignment between the different images of the scene of interest. At

the same time, a suitable similarity metric has to be defined in order to

numerically quantify the goodness of fit between the images, according to

the scanning technology used to acquire the images to be registered. For

the voxel-based registration algorithms the similarity metric is estimated

directly from the image intensities and therefore its choice depends on the

scanning modalities of the input images. The interpolation is required
to estimate the intensity of the voxels which are falling in between the

sampling grid points of the reference (target) image. During the entire

registration procedure, the optimization algorithm is used to iteratively

search for the correct spatial transformation, by making a series of suc¬

cessive trials and guesses in order to maximize the predefined similarity
metric.

The rigid registration algorithm is one of the simplest registration proce¬

dures because it operates with the simple transformation model of a rigid

body, which can only translate and rotate in 3D physical space. An affine

registration procedure allows in addition scaling and skew, thus making
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Transformation model Voxel Interpolation

Image registration

Optimization procedure Similarity measure

Figure 2.1: The general scheme of an image registration algorithm

a step towards the non-rigid models. More details about these transfor¬

mation models will be given in the next subsection. A general flow chart

of a rigid registration procedure is depicted in Fig. 2.2. It is tailored to

follow the previous description of a rigid registration procedure.

To summarize, a rigid registration procedure starts with an initial es¬

timate of the spatial transformation Ta, for which the corresponding

similarity measure is calculated. The subscript a marks the dependency

of the registration transformation on a set of parameters which are reg¬

ularly expressed in the common world coordinates of the images. This

a is a set of six parameters, as will be described later, representing the

six degrees of freedom of a rigid body: three translation and three rota¬

tions. If there are no other means of initializing the set of transformation

parameters a, then the best initial estimate is the simple alignment of

the centers and the axes of the world coordinate systems associated to

the images to be registered. In this case, the initial set of parameters a

is set to zero and the corresponding spatial transformation is the iden¬

tity matrix. Usually, this is a good initialization estimate, assuming

that the images are focused on the objects to be registered. This align¬
ment of the images in the world coordinate system is ensured by the

individual associated image to world transformation matrixes Tlw' that

have to be calculated once at the beginning of the registration proce¬

dure. These image to world transformations compensate for different

orientation, voxel anisotropy or differences in voxel size between images.

Therefore, by combining all these transformations, the spatial transfor¬

mation Ta = Tba(o) is estimated from the floating image domain Hb

into the reference image domain Ha- Using this transformation matrix

Ta, the floating image B is transposed into the reference image domain.
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Figure 2.2' The flow chart of a rigid registration algorithm
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This mapping includes the voxel interpolation method which ensures the

correct reconstruction of the floating image on the new reference image

sampling grid. Once both images, the reference image A and the trans¬

formed floating image BTa, are in the same image domain, then the sim¬

ilarity metric S(A, BTa) between the images can be estimated over the

entire volume of overlap H\B. Then, the optimization algorithm starts

searching a new set of parameters a —> a0ptim that would optimize the

similarity metric. The algorithm repeats the sequences described above

until the similarity measure reaches its optimum. Finally, according to

this optimal set of parameters, the floating image B is transformed into

the reference image domain. However, sometimes it is of interest to

know only the corresponding transformation into the image coordinates

Ta
.

or the world coordinate frame Ta
. .

These transformations
^optim "optim

can be directly used by subsequent image processing procedures, e.g.

segmentation procedure, or image referencing with the physical space.

The following subsections present in detail the four main elements of the

rigid registration algorithm, (1) the descrition of the spatial transforma¬

tions, (2) the different choices of the most common similarity metrics,

(3) a summary of three fast voxel interpolation methods, and (4) an

overview of the optimization procedures.

2.2.1 Rigid and affine spatial transformations

In many practical applications, local non-rigid tissue deformations are

negligible or irrelevant, so the geometrical relationship between the im¬

ages to be registered can be modeled by a rigid or an affine linear trans¬

formation. The spatial transformation can be defined either between

the image domains or directly in the world coordinate frame. The latter

transformation, denoted with T is compensating for the spatial misalign¬
ment induced by the change of shape or pose of the imaged object in

the real physical space. Apart from the real world transformation T, the

image to image transformation T includes the image to world individual

transformations Tlw' that are compensating for the possible different

image characteristics induced by the scanning device. Therefore, the

image to world coordinates mapping will be characterized first, followed

by the description of the rigid and affine transformations in the world

coordinate system.
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Image to world transformation

Given an image A, the transformation TtA that maps any location sa of

the image domain Ha into the corresponding location wa in the world

domain Ha is the image to world coordinate transformation. This trans¬

formation TtA can be expressed as a 4 x 4 matrix using homogeneous

coordinates that is a composition between the image orientation Oa (or
the relative position of the patient to the scanning device), the image

voxel size £A and the positioning of the origin of the world coordinate

system (in the center of the image volume) expressed in image coordi¬

nates ca = (ce,

(2.9)

A A\.

y i0z /
•

Sa;
0 0 -cA

^x

Ta = Oa-
%W

0

0

ÇA

0

0

fA
Sä

-cA
-y

-cA

0 0 0 1

Some of the most common image orientation matrixes Oa are given in

Table 2.1.

Image orientation

transversal sagittal coronal

"10 0 0"
"

0 0 10"
"

1 0 0 0"

o
0 10 0 1 0 0 0 0 0-10

0 0 10 0-100 0 -1 0 0

_

0 0 0 1
_ .

o 0 0 1
_ _

0 0 0 1
_

Table 2.1: The standard orientation matrix O relating the image coor¬

dinates to the world coordinates for different image orientations

In order to reduce the effects of radiation, some CT scanners have a

non-zero gantry tilt angle, leading to the non-orthogonality of the z axis

to the slice plane. This 7A angle has also to be taken into account when

calculating the image to world coordinates transformation:

T1 O1

ÇA
Sa;

0 0 -eAcA
Sœ ^x

0 e^cos(7A) 0 -£^cos(7)A
0 ^sin(7A) ÇA

Sä -£M-£^sin(7A
0 0 0 1

(2.10)
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It is very useful to define the inverse transformation, from world to image

coordinates TAt. This transformation is given by the simple inversion of

the 7^2 matrix:

T1 {%A)
ZW J (2.11)

Having defined both image to world transformations, the mapping of an

image point sa = (sA, sA sA) G Ha into the world coordinate wa =

(wA,wAwA) G Ha can be expressed as:

(wA, 1)T = Ta (sA,lf ,

and vice versa, from the world to image coordinates:

\T
(sA, I)1

= TA (wA, 1)

where we used the following notations:

,„A

(wa, 1
>T y

„A ,
and (sA,l) y

r.A

(2.12)

(2.13)

(2.14)

Rigid transformation

The simplest registration transformation T is described in terms of a

rigid body transformation which allows only translations and rotations.

This transformation can be completely described in 3D space by six

parameters (also called as degrees of freedom): three translations t =

(tx,ty,tz)T along the x, y and z directions, and three Euler rotations

r = (rx,ry,rz) around the x, y and z axes respectively.

The rigid transformation of a point at the location w = (wx,wy,wz)
can be represented by a rotation matrix 72. and a translation vector

TIlgld(w)=TZ-w + t (2.15)

where the 3x3 rotation matrix 72. is constructed from the Euler rotation

angles as follows:

7^:

cosx cosz cosx smz + siiix siiiy cosz siiix smz — cosx sin9 cosz

coSj, sinz cosx cosz + sinx snij, sinz sinx cosz — cosx smy sinz

smy
— sinx coSj, COSx COSj,

(2.16)
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with the notation snij = sin(rj), V« G {x, y, z).

This rigid transformation is usually applied to the continuous common

world coordinate system and can be expressed as a 4 x 4 matrix using

homogeneous coordinates:

/

Tngid (w)
K

tx \ ( Wx \
ty W.

V 0 0 0 1 /

(2.17)

V i /

With this representation, a rigid transformation of a location wb =

(wx, wy, wz)T from Hb into the corresponding location TIlgl<i(wB) = »a

of the continuous domain Ha is:

(wa, 1) = Tngld • (wB,l) (2.18)

By putting together all the translational and rotational parameters we

can form a six element vector a which is called the registration param¬

eters set a = (tx,ty,tz,rx,ry,rz).

Affine transformation

The rigid transformation can only be used in a limited number of cases,

so an extension of the number of degrees of freedom for the spatial map¬

ping is required. The affine transformation is able to compensate not

only for spatial displacements between images, but also for differences

in their voxel size or scale. The affine transformation consists of three-

dimensional translations t = (tx,ty,tz), rotations r = (rx,ry,rz), scal-

ings s = (sx,Sy,sz), and skews g = (gx,gy,gz), preserving the paral¬
lelism of the lines but breaking their orthogonality. Denoting the skew

matrix with Q and the scale matrix with S, the expression of an affine

transformation T&f^ne is:

^rigid y
' *-> ^rigid

1 9x 9z 9x 0 sJOO

9y 1 0 0 0 Sy 0 0

0 9z 1 0 0 0 sz 0

0 0 0 1
_

0001.

(2.1 3)
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where 7^lgld represents the previously discussed rigid transformation con¬

taining the translations and the rotations parameters. A set of 12 param¬

eters a = (t, r, g, s) is used in this thesis todescribe the affine transfor¬

mation. These are the 6 parameters specific to the rigid transformation,
the 3 parameters of the skew and 3 of the scaling factors. Note that the

expression of the affine transformation can be reduced to the trivial rigid

body transformation by setting sx = sy = sz = 1 and gx = gy = gz = 0.

Image to image transformation

Given two images, the reference image A and the floating image B, which

are related by the registration transformation Tba, and having defined

the transformations between the image and the world coordinates, then

the entire registration transformation Tba from the floating image coor¬

dinates to the reference image coordinates can be expressed as a simple
matrix multiplication:

Tba = Ta-TBa-T1bw. (2.20)

Accordingly, the corresponding location sa G Ha of a transformed loca¬

tion sb G Hb is:

(sa, if = Tba (sB, if = TA TBA T* (sB, if . (2.21)

2.2.2 Similarity measures

In order to be able to register two images, a measure has to be defined

to numerically quantify the goodness of fit between the images, namely

the similarity measure. For all the voxel-based registration algorithms,
this similarity measure is extracted directly from the voxel properties

(the image intensities) either from the entire image volumes or from a

region within. This is why these methods are referred to as voxel-based

registrations. As already presented in the description of the rigid regis¬

tration algorithm, the similarity measure is used as the objective function

when searching for the optimal registration transformation. Usually, the

voxel-based registration procedures ignore the geometrical features of

the anatomical structures contained in the images. However, as will be

presented later in Sec. 2.3.2, there are several approaches for voxel-based
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non-rigid registration procedures which combine the similarity measure

defined by the image intensities with a penalty term used to regularize

the deformation field (e.g. in [Maintz et al. 1998, Rueckert et al. 1999,

Guimond et al. 2001, Hellier et al. 2001], etc.).

The choice of the appropriate similarity measure is crucial for a success¬

ful image registration procedure, so the decisive criterion is the type of

images to be registered. Therefore, depending on the type of the modal¬

ities used to acquire the images, the user can choose between several

similarity measures. For example, in the case of a mono-modal applica¬

tion, the images are likely to render the corresponding structures with

very similar intensities. Therefore, the sum of the absolute difference

values or the sum of the squared intensity differences can be used for

comparison. More elaborate similarity measures have been proposed be¬

cause, beside the image noise, some additional variation of the intensities

may appear between images or even within an image itself. These sim¬

ilarity measures are derived from the Cross-Correlation coefficient, and

are intended to be insensitive to intensity changes generated by different

physical factors during the scanning procedure.

In a multi-modal registration no direct relationship between the image

intensities can be assumed in general. Therefore, a completely differ¬

ent approach is required in order to quantify the similarity between the

registered images. While some attempts have been made to prepro-

cess an image so that the images appear to be from the same modality,

e.g. [van den Elsen et al. 1994], more recent approaches have been in¬

spired by information theory ([Hajnal et al. 2001]). These similarity

measures are relying on the probabilistic relations and the distributions

of the intensities in the images.

In this section will be presented only a brief overview of the major sim¬

ilarity measures proposed in literature. For more details, the reader

should refer to [Hajnal et al. 2001] and the references therein.

Similarity measures derived from intensity differences

One of the simplest voxel similarity measure is the sum of squared inten¬

sity difference (SSD) between the images to be registered. During the

registration process the proper transformation T is estimated by itera¬

tively minimizing the SSD calculated from the overlapping domain H\B
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of the reference image A and the transformed image BT. If N is the

total number of voxels from H\B, then SSD can be expressed as:

SSD = jf E (A(sa)-Bt(sa))2. (2.22)

sAen^B

The normalizing factor -^ makes the similarity measure invariant with

the number of voxels N from the overlapping domain that may change

during the registration.

It has been shown in [Viola 1995] that SSD is the best similarity measure

for a registration procedure if the images involved differ only by Gaussian

noise. However, this is not always the case and in practice the images

may contain an intensity bias even if they come from the same scanning

device. In this case, the SSD will fail to compare the images properly

and therefore cannot lead to a correct registration. In such cases the

sum of absolute differences (SAD):

SAD = jj Y, \A(sA)-BT(sA)\ (2.23)

saEQ^b

could be used as an alternative similarity measure. However, the problem
connected to the intensity bias cannot be completely solved and therefore

more robust similarity measures have been derived.

Similarity measures based on Cross-Correlation

A very robust similarity measure for mono-modal images is the Cross-

Correlation coefficient (CC):

J2sAen- (ä(sa) - A) (BT(sA) - B)
CC=

A AB
— —

m (2.24)
2
^ /„,_ s TT\2'

£*a60t (A(sa) - A) £*a60t (BT(gA) - B

1/2

where A and B are the mean values of the voxel intensities within the

overlapping domain H\B of the images A and BT. CC is a very good

similarity measure for all the registration applications in which there is

a linear relationship between the image intensities, especially because it

overcomes the aforementioned intensity bias problem.
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Variance of intensity ratios

[Woods et al. 1992] proposed a similarity measure based on the ratio

image derived from the images to be registered. Initially proposed for

registering PET and later on for MR images, the method consists of

iteratively optimizing the transformation T which maximizes the unifor¬

mity of the ratio image. This uniformity is quantified as a normalized

standard deviation of the voxels in the ratio image, thus the name of the

measure is variance of intensity ratios (VIR). VIR is mathematically

expressed, for the N voxels within the overlapping volume H\B, as:

VIR = L
R
\

ji £ (R(SA)-Bf (2.25)

where R is the mean value of the intensity ratios R(sa) over the entire

LABvolume of overlap. An intensity ratio at the spatial position sa G if
is defined as:

R(sa) = ^g^y ysA G HTAB. (2.26)

Later on, [Woods et al. 1993] used this measure after minor modifica¬

tions for the first multi-modality registration of MR/PET image pairs.

The multi-modality registration capability comes from the presumption

that all the voxels which have a particular intensity value in the MR

image represent the same tissue type and therefore the values of the cor¬

responding PET voxels should be similar to each other. The algorithm

partitions the MR image into 256 separate intensity levels and finds the

spatially corresponding intensity values in the PET image. Therefore,

a set of 256 bins (pairs of one MR intensity and the corresponding set

of PET intensity levels) is constructed and the algorithm tries to maxi¬

mize the uniformity of the PET voxel values within each bin by locally

minimizing the normalized standard deviation. If A is the MR and B

the PET image, then the algorithm minimizes the sum of the normal¬

ized standard deviations for all those intensity values b G if that are

transformed over each of the intensities a G HT:

^ N fiB(a)
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where:

na = z2qt I

Mb = £ ÊnT ST(^a) (2.28)

ffß(a) = ^Eqt (Bt(sa) -Rb(«)) •

The algorithm was used for registering images of the head. Its perfor¬

mance heavily depends on the binning procedure and it might fail if this

intensity binning is not uni-modal. To avoid this situation, the scalp

firstly had to be removed from both the PET and MR image before the

registration procedure. The method was not very successful with other

multi-modal registration cases, but it considerably inspired the research

towards the development of other multi-modal similarity measures.

Joint histogram and joint probability distribution

The VIR method proposed by Woods opened the way towards analyzing
the behavior of the joint intensity histogram during registration. By

partitioning the image intensities into a predefined number of levels,

one could build the A and BT joint histogram. The joint histogram is

built in a deterministic manner by counting over the entire volume of

overlap ifB the number of the intensity pairs of the voxels falling in the

same spatial position in both images. However, [Viola and W. M. Wells

1995] proposed an alternative probabilistic approach to estimate the joint

histogram. Denoting the number of intensity levels within Hj and Hj
with La and Lb, the joint intensity histogram HfB is a La x Lb matrix

whose elements can be expressed as:

nTAB(a,b)= J2 <^ßT(sA),VaG^andV5G^ (2.29)

saEQ^b

where SAbB represents the sampling function defined as:

abt / 1, if A(sA) = a and BT(sA) = b

S°» {SA) =
\ 0, otherwise.

(2'30)

As for all other measures, the transformed image BT usually has to be

resampled according to the discrete reference image domain Ha, there¬

fore an interpolation of the voxel intensities is implicitly involved.
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By normalizing the T~(ab t° the number of voxels N within the volume

of overlap ifB, the joint histogram approximates the joint probability

distribution function (PDF) of the image intensities p^B(a, b):

Pab (a, b) « -j^nls (a, 6), Va G HTa and V6 G Hj. (2.31)

It is obvious that p\B (a, b) depends on the transformation T. This prop¬

erty inspired several research groups to investigate similarity measures

derived from the joint PDF of the images. By visualizing the 2D joint

PDF for different transformations, one can notice a clustering of the

distribution as the images become more aligned. In the special case of

mono-modal registration, the joint PDF will be spread along the main

diagonal of the Na x Nb matrix. In the ideal case of registered images

the joint histogram will be reduced to a single line, with some small

deviations coming from the imaging noise. The first approaches derived

from the joint histogram were attempting to minimize the variance of the

intensity clusters, but the most successful similarity measures calculated

from the joint PDF are rooted in the information theory.

Joint entropy

Introduced by [Shannon 1948], the concept of entropy as a measure of

information revolutionized the theory of communication and data trans¬

mission. Described as the average information supplied by a set of sym¬

bols {s} whose probabilities are given by {p(s)}, the Shannon entropy

is defined as:

H = -Y,P(s)logp(s). (2.32)

The entropy can also be considered as a measure of randomness of a

signal because it reaches its maximum if all symbols have equal prob¬

abilities, and its minimum when all symbols have probability 0 ex¬

cept one. This property of the entropy, together with the properties

of the joint intensity PDF inspired the use of entropy as a similarity

measure for image registration. For example, [Studholme et al. 1995,

Collignon et al. 1995] proposed to minimize the joint entropy calculated

from histogram. This would lead to a minimization of the dispersion in

the histogram while approaching the optimal registration position.
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For two images A and B, the joint entropy H(A, BT) is given by:

H(A, BT) = -J2 E Pab («, b) \ogplB (a, b) (2.33)

where a and b represent the discrete intensity values of the two images,

and therefore the bins of the joint PDF. It is also possible to reduce

the number of bins by merging neighboring intensity values, leading to a

reduction of the sparsity of the histogram. For example, a very common

practice for MR and CT images is to use between 32 and 256 bins to

calculate the joint histogram.

The method looks very similar to VIR, but it proved to be more stable

and robust as it does not rely on the uni-modal nature of the distribution

as the VIR algorithm. Nevertheless, strong limitations of this approach
have also been noticed, especially in connection with the sensitivity of

the joint entropy to changes in the volume of overlap.

Mutual Information

In 1995 two research groups were working independently on another sim¬

ilarity measure inspired by information theory, namely the Mutual In¬

formation (MI). In [Viola and W. M. Wells 1995, Maes et al. 1996], both

groups presented basically the same strategy of maximizing the MI, but

with different ideas of implementing the rigid registration procedures.

Maes proposed to calculate the registration transformation by maximiz¬

ing the MI using the Powell's direction-set method. In addition, the MI

is calculated from the deterministic joint histogram of the images. On

the other hand, Viola used a gradient search to maximize the MI. Their

solution presents a stochastic Parzen windowing method to estimate the

joint histogram and therefore they could express mathematically the MI

gradient which is directly used by the optimization procedure.

The MI approach represents an extension of the joint entropy minimiza¬

tion algorithm, overcoming the limitations caused by the dependency on

the actual image overlap. The idea was to extend the joint entropy with

the individual information carried by the overlap ifB of the two images

A and B. Expressing this information in terms of the marginal entropies

H(A) and H(BT), the MI becomes:

I(A, BT) = H(A) + H(BT) - H(A, BT). (2.34)
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The marginal image entropies can be calculated as:

H(A) = - Y^aenT PTA(a) log^M
,„ „^

H(BT) = -Y,benlPTB(b)logPTB(b)
{2^>

with pTA and p1^ representing the marginal intensity distributions of A

and B, within ifB. They can either be calculated directly from the

images by normalizing their individual histograms or from the two di¬

mensional joint PDF, calculated as described previously.

It is important to remember that the marginal entropies and the joint

entropy of the images are not constant during the registration process.

Even though the information comprised in both images remains the

same, their volume of overlap H\B changes with the estimated trans¬

formation T. In addition, the voxel interpolation also affects the joint

and the marginal PDFs of the images and therefore the histograms, too.

Other limitations, related to the statistical consistency of the estimated

PDFs are also to be considered, and will be discussed in the next chapter.

By considering the properties of the logarithm function, the definition

of MI from Eq. 2.34 can be reformulated in terms of marginal and joint

probability distributions as:

MI between two images can also be considered as the amount of informa¬

tion that one image contains about the other, and reaches its maximum

when the images are aligned. This can be seen easier if we consider the

conditional probabilities p(b\a). The conditional entropy is:

H(BT\A)=J2 Y.PTABiaMlogpT(b\a) (2.37)

aefÇ beQ-l

and using the conditional entropies, MI becomes:

I(A, BT) = H(A) - H(BT\A) = H(BT) - H(A\BT). (2.38)

If the conditional entropy in Eq. 2.38 is zero, it means that knowing
the intensities A(sa) enables the perfect prediction of the corresponding
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intensity value in B Therefore, the registration by maximization of

MI involves finding the transformation that makes the image A the best

possible predictor of the image BT within their region of overlap

The MI was widely studied and a series of properties were proved in the

literature [Vajda 1989] Some of the most important ones are listed in

Table 2 2

Non-negativity I(A,B ) >o

Independence I(A,B = 0 & pab (a, b) =PA(a)Pß(b)
Symmetry I(A,B = I(B,A)

Self information I(A,A) = H(A)
Data processing I(A,B <I(A,BT)

Boundedness I(A,B <mm(H(A),H(B))

I(A,B <(H(A)+H(B))/2

I(A,B <rrmx(H(A),H(B))

I(A,B <H(A,B)

I(A,B < H(A) + H(B)

Table 2.2 Properties of Mutual Information

MI is more robust than the joint entropy regarding the overlap prob¬

lem, but it is not completely immune The volume of overlap of the

two images influences MI m two ways Firstly, a decrease m overlap
reduces the number of samples, which decreases the statistical power of

the probability density estimation Secondly, m [Studholme et al 1997,

Studholme et al 1999] it is shown that with the increase of misregistra¬

tion (usually coinciding with a decrease of the overlap volume) the MI

measure may actually increase This can occur when the relative areas

of object and background even out and the sum of the marginal en¬

tropies increases faster than the joint entropy Therefore, they proposed

a normalized version of the MI which is less sensitive to the volume of

overlap

NMI(A,B-) = ^§±^1 (239)
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Maes have suggested in [Maes et al. 1997] another form of normalization

of MI, the entropy correlation coefficient (ECC) that is related to the

NMI as:

ECC(A,BT) = 2-m£wry (2.40)

The introduction of MI as a similarity measure has revolutionized im¬

age registration and has especially influenced the development of the

intensity-based image registration techniques. The following years of re¬

search have proven the advantages and the robustness of this approach,
and MI started to be extensively used, even in the field of mono-modal

registration. MI assumes that there is a functional relationship between

the intensities at the same location in different images. The decisive

property of MI is that it does not depend on any linear relation between

the image intensities, but it relies only on statistical properties of the

two-dimensional histogram. An excellent overview of the methods de¬

veloped using the MI concept is presented by Maes et al. in [Maes et al.

2003].

2.2.3 Voxel interpolation procedures

During the registration procedure, the floating image is transformed from

its initial image domain Hb into the reference domain Ha, more precisely,
into the overlapping volume H\B Ç Ha'-

B:sBenB^BT: T(sb) G HTAB (2.41)

This image transformation is always required for optimizing the similar¬

ity metric between the images while searching for the best registration

transformation. For a given transformation T, the intersection of the

discrete domains Ha and Hb is likely to be an empty set because no

sample point will exactly overlap. Therefore it is necessary to make

an estimation of the image intensities in between the sample positions,

also compensating for differences in image samplings £A and £B. This

intensity estimation is called voxel interpolation. In contrast to the fi¬

nal reconstruction of the registered floating image, which requires highly
accurate voxel interpolation, the estimation of the similarity measure

during the optimization procedure needs a fast method in order to re¬

duce the computational costs. Such computationally efficient algorithms
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may, however, introduce blurring, ringing or other aliasing artifacts. An¬

other important difference between these two cases is the target domain

of the interpolation. In the case of the final transformation the inter¬

polation is performed onto the intensity domain Hb while for estimating

the similarity measure, the voxel interpolation is performed onto Ha.

In order to assess and to further use the result of the registration proce¬

dure, a final transformation of the registered floating image is usually re¬

quired. This final transformation of the floating image into the reference

image domain (also called floating image reconstruction) necessitates an

accurate voxel interpolation method to calculate the intensities of the

spatially transformed floating image. As the anatomical scans are not

band limited, a perfect interpolation is not possible. The interpolation

function proposed in [Hajnal et al. 1995] implies a sine function trun¬

cated with a suitable Hamming window. Care has to be taken to ensure

that the sum of the weights of the truncated kernel is 1, otherwise ar¬

tifacts may result. Various modifications of the sine interpolation have

been proposed, either regarding the Hamming windowing function, or by

approximating the windowed sine function with B-spline interpolators.
For more details about accurate voxel interpolation methods please refer

to [Hajnal et al. 2001].

For fast voxel interpolation methods computationally less expensive meth¬

ods are needed. Even if lacking of accuracy, they can be sufficient to

calculate the similarity measure between the images undergoing the reg¬

istration. While numerous interpolation methods have been proposed in

the literature [Hajnal et al. 2001], three methods are dominantly used.

Schematically depicted in Fig. 2.3 for 2D space, these three methods

are: the nearest neighbor interpolation (NNI), the trilinear interpolation

(TRI) and the partial volume interpolation (PVI). While the first two

methods can be used to approximate the transformed voxel intensities

needed to estimate any of the aforementioned similarity measures, the

PVI was especially designed in [Collignon et al. 1995] to create the joint

intensity histogram.

For a transformed position sa = T(sb), the simple NNI technique

(Fig. 2.3(a)) considers the intensity of the closest (nearest) voxel:

A(sA) « A(s^x)), where s}x) = min(|s'A(a:) - sA\). (2.42)
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Figure 2.3 Fast voxel interpolation techniques for 2D and the corre¬

sponding expressions used to update the joint image histogram, (a) near¬

est neighbor interpolation, (b) trihnear interpolation and (c) partial vol¬

ume interpolation
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The NNI usually leads to significant errors, and therefore TRI is used

more often, defining the intensity in a point sa = T(sb) as a weighted

combination of the intensities of its neighbors:

a(sA) « J2w* • A(gAx))> with Ew* = L (2-43)
X X

Depicted in Fig. 2.3(b), the TRI considers the weights as linearly depen¬
dent from the distance between the current point sa = T(sb) and its

-> (x)
neighbors sA '. In order to calculate the MI between two images, a more

elaborate technique has been proposed, namely the PVI. Using weights
which are similarly defined in the case of TRI, the PVI simultaneously

updates all the histogram entries corresponding to the transformed point

and each of its neighbors. Depicted in Fig. 2.3(c), the PVI technique cre¬

ates smoother changes of the joint histogram for varying transformations

and hence the goal function of the optimization then becomes smoother.

Further, PVI does not artificially create new entries in the histogram

which is very likely in the case of TRI and that would lead to unpre¬

dictable changes in the marginal distributions.

A serious problem related to all fast voxel interpolation methods is that

they lead to artifacts in the similarity function. These interpolation

induced artifacts may affect the accuracy and even the success of the

registration procedure. These aspects will be described in more detail in

the next chapter.

2.2.4 Optimization procedures

All voxel-based registration procedures involve the use of a similarity
function defined on image intensities. Because no analytical solution

exists, a numerical optimization has to be used in an iterative fashion to

determine the optimal registration transformation.

As seen in Sec. 2.2.1, the spatial transformation is usually characterized

by a certain number of degrees of freedom which correspond to a set

of parameters a. This set fully describes the transformation and will

be called the parameter space. This space is explored by the optimiza¬

tion algorithm such that the similarity measure as a function of a is

optimized. Each point corresponds to a different estimate of the spatial
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transformation and implicitly an individual estimate of the image sim¬

ilarity measure. The goal of the optimization algorithm is therefore to

find the optimum location within this parameter space, given an initial

estimate.

All the optimization procedures are based on an iterative approach in

which the transformation is gradually refined by trial and error. For

each iteration, the current estimate of the transformation is used to cal¬

culate the similarity measure. Then, the optimization algorithm searches

a better estimate which increases the similarity measure. The stopping

criterion of the optimization algorithm is given by predefining a mini¬

mum tolerance value for the changes of the similarity measure between

consecutive iterations. Optimum search algorithms can be classified ac¬

cording to their dependency on the availability of derivative information.

The derivatives of the similarity measure should be easily and efficiently

computable in order to limit the computations lower needed by opti¬

mization. A detailed description of diverse optimization algorithms can

be found in [Press et al. 1988].

The most important limitation of all the optimization procedures is the

danger to converge to a local optimum of the similarity function. These

local optima usually mask the global optimum of the function, and can

seriously compromise the accuracy of the entire registration procedure.

They are usually produced either by interpolation artifacts or by a good
local match between the image intensities. Different techniques have

been proposed to increase the robustness of the optimization against

local optima. For example, in a hierarchical multi-resolution approach,
the images are registered with a progressively increasing resolution while

converging to the correct estimate of the transformation. A detailed

overview of the proposed methods can be found in [Maintz and Viergever

1998, Hill et al. 2001, Hajnal et al. 2001]. In order to avoid problems
with local optima, we also propose a method which will be described in

detail in Chap. 4

2.3 Non-rigid registration algorithms

The development of the non-rigid registration algorithms was imposed

by the need to compensate for the inherent deformation of the human
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anatomy due to different physiological or physical factors. Even though

many have tried to develop fixation devices to immobilize the human

body in a certain position for successive scanning procedures, the non-

rigid nature of the soft tissues cannot be completely overcame. The non-

rigid registration procedures can compensate for the local deformations

by finding the appropriate deformation field that properly registers the

images.

While the rigid registration procedures consist of finding a spatial trans¬

formation that remains unchanged over the entire floating image volume,
the non-rigid registration procedures are designed to find a dense field

of deformation vectors covering the entire image domain, but which are

locally adapted to compensate for both spatial displacement and shape
differences. Basically, this field of deformation vectors maps each point

from the floating image into the corresponding position in the reference

image such that all objects in the warped image ideally will coincide pre¬

cisely with the corresponding objects in the target image. Care has to be

given to the pathologically induced changes that can produce a lack of

correspondence in the images, such as a tumor growth, or cuttings of a

surgical procedure. These changes are an important issue in a non-rigid

registration as they can be handled in an inappropriate fashion resulting

in big errors during the registration.

A classical voxel-based non-rigid registration procedure follows closely
the algorithmic flow presented in Fig. 2.2 for a rigid registration pro¬

cedure. The differences in implementation are mainly related to the

strategy used to build the deformation field. The remaining of this sec¬

tion provides a brief overview of the most important methods proposed,

emphasizing hierarchical approaches which are in the focus of this thesis.

2.3.1 Model-based approaches to non-rigid registra¬
tion

The main difference between the methods proposed for non-rigid reg¬

istration comes from the representation of the deformation field. The

earliest approaches described very accurately the deformation field as a

physical phenomena. The partial differential equations (PDE) describing
the corresponding processes have been solved by numerical integration
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techniques like the finite element method (FEM). Unfortunately, these

procedures are computationally very expensive leading to the exploration

of less accurate but computationally more efficient alternatives by simpli¬

fying the physical phenomena. Like many other problems, the non-rigid

registration is often a tradeoff between the accuracy of approximating

real behavior of the tissues and computational complexity.

Elastic registration techniques

The first elastic registration technique was proposed by Bajcsy et al. for

matching a brain atlas with a CT image of a human patient. Presented

in [Bajcsy and Kovacic 1989], the idea is to model the deformation of the

source image into the target image as a physical process which resem¬

bles the stretching of an elastic material such as rubber. This process

is governed by two forces, one internal and one external. The internal

force is generated by the deformation of the elastic material and opposes

the external force that deforms the elastic body from its equilibrium

shape. As a consequence, the deformation of the elastic body stops if

both forces are in equilibrium. The behavior of the body is described

as a linear elastic deformation. The external forces applied are usu¬

ally extracted from the gradient of the similarity measure that can be a

local correlation coefficient based on intensities, intensity differences, or

structural features such as edges or curvatures. An alternative choice for

the similarity measure is the distance between the curves or surfaces of

the corresponding anatomical structures. Many extensions of this elas¬

tic registration framework have been proposed, such as in [Davatzikos

1996] allowing for spatially varying elasticity parameters, enabling cer¬

tain anatomical structures to deform more freely than others.

Fluid registration

The internal forces of an elastic transformation limit the registration by

excluding large deformations or discontinuities (e.g. produced by a cut).
In fluid registration techniques based on Navier-Stokes equations these

constraints are relaxed over time. This property makes them especially
attractive for inter-subject and atlas registration tasks which have to

accommodate large deformations and large shape variability. However,
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the probability of misregistrations increases because of the weaker reg¬

ularization effects. The first algorithm was proposed by [Christensen et

al. 1995] and later on was computationally improved by [Bro-Nielsen
and Gramkow 1996].

FEM based approaches

The finite element method (FEM) is a classical engineering analysis tech¬

nique for the solutions of PDEs. Basically, the FEM subdivides the do¬

main of interest into an interconnected set of subregions or elements and

approximates the solution by a locally continuous function. In the con¬

text of image registration, the FEM method was applied in [Bro-Nielsen

1998] and in a simplified version in [Edwards et al. 1998] to calculate

tissue deformations for image-guided surgery. Later, they proposed a

three component model to simulate the properties of rigid, elastic, and

fluid structures. For this purpose, the floating image has to be divided

into a triangular mesh with n connected nodes <f>t. Each node is labeled

according to its physical properties of the underlying anatomical struc¬

tures. While the nodes labeled as rigid are kept fixed, the nodes labeled

as elastic or fluid are deformed by minimizing an energy function, which

is composed of a number of different energy terms that constrain the

deformation.

Optical flow methods

Another very well known registration technique is the so called optical
flow method. Introduced in [Horn and Schunck 1981], the concept of

optical flow was originally used in computer vision to recover the relative

motion of an object and the viewer between two successive frames of

a temporal image sequence. Its fundamental assumption is that the

brightness of a particular point is constant in time, therefore the motion

field can be extracted from the temporal image difference. Smoothness

constraints are imposed on the extracted motion field in order to enforce

a unique solution to the problem.



40 2. Related Work and Background Theory

2.3.2 Hierarchical non-rigid registration approaches

As previously presented in Sec. 2.3.1, several methods have been pro¬

posed to accurately solve the registration problem. These approaches

are estimating the underlying mapping based on a physical analogy like

deformations or flow. In the case that this physical phenomenon is the

underlying cause of the difference between the images and the necessary

parameters are available, these methods represent the ideal approach to

the non-rigid registration problem. However, in many practical cases,

one or both of these conditions are not fulfilled. Therefore, alternative

methods have been proposed for the description of a dense non-rigid

mapping between images. After introducing the basic concepts of piece-

wise image registration techniques, this section presents the most impor¬

tant hierarchical strategies which decompose the non-rigid registration

into numerous local matching problems.

Piecewise image registration

The simplest approach proposed for non-rigid registration of the images

is to decompose it into numerous rigid matchings problems which are fi¬

nally interpolated to preserve the continuity of the image content. [Little
et al. 1997] uses this strategy for the registration of the spine which is a

flexible structure to a certain extent. By decomposing the spine into indi¬

vidual vertebrae which can be rigidly matched, a good approximation of

the deformation of the spine and its surrounding tissue can be obtained

by smoothly interpolating the spatial displacements between the rigid

bony structures. There are also other similar situations, where rigid ar¬

ticulated structures are connected together into a deformable structure.

The piecewise approach seems to be the most appropriate and the most

simple method for such cases, when interested only in the vicinity of the

rigid structures.

Based on a similar approach, [Maintz et al. 1998] presented a technique
which can achieve a higher degree of deformation by progressively par¬

titioning the initial volumes into smaller pieces that are locally rigidly

registered. The deformation can be estimated by interpolating these

local matchings into a dense deformation field. This basic approach
is extended and used in both multi-grid and hierarchical strategies for
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non-rigid registrations. These methods are described in the following
subsections.

Registration using free-form deformations

The classical voxel-based method using free-form deformations (FFD),
presented in [Rueckert et al. 1999], was developed for the non-rigid

registration of contrast-enhanced breast MR images. Apart from possi¬

ble pathological factors (as tumor growth or surgery), the deformation

of the breast can be induced either by possible changes in patient po¬

sitioning or by physiological factors, such as respiration or heartbeat.

Similar to [Lee et al. 1997], Rueckert et al. proposed a multi-resolution

approach of coarse to fine refinement of the non-rigid motion Tnon-ngid
of the breast. Furthermore, the global non-rigid deformation is modeled

by an overall affine component combined with local non-rigid transfor¬

mations, which are described in terms of a FFD based on B-splines [Lee
et al. 1996]:

^non-rigid ^affine ~T~ -*B —splines- v^*^^1/

The global affine transformation T^frme compensates for the overall mo¬

tion of the subject and follows the classical model with 12 degrees of

freedom. The local transformations Tß-spimes model the local changes
of the breast. The FFD proved to be a powerful tool for modeling 3D de¬

formable objects and they have been previously also applied to tracking

and motion analysis in cardiac images [Bardinet et al. 1996]. The basic

idea of a FFD is to deform an object by manipulating an underlying
mesh of control points. The resulting deformation changes the shape of

the 3D object and produces a smooth and continuous transformation.

Rueckert et al. proposed the multi-resolution approach to achieve max¬

imal flexibility with reasonable computational cost. At every level / of

the hierarchy, the resolution of the control mesh is increased, along with

the image resolution, in a coarse to fine fashion. Consequently, along the

hierarchy an entire series of local transformations are estimated which

will finally define the non-rigid component of the deformation:

ÎB-splmes = E ^B-splmes • (2-45)
I

The cost function underlying the entire registration process is a com¬

bination of a classical voxel similarity measure with a smoothness term
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resulting from the transformation model. The image similarity is given

by the classical normalized MI (Eq. 2.39), because it is more robust to

changes in the volume of overlap as shown in [Studholme et al. 1999].

Unfortunately, an empirical smoothness term is used having an increas¬

ing importance with the increasing resolution of the control point mesh.

The adaptive bases algorithm

In order to reduce the computational complexity of the existing methods

for non-rigid registration based on maximization of MI over a regular grid
of splines, [Rohde et al. 2003] proposed a method that spatially adapts

the transformation. This spatial adaptation allows the reduction of the

number of degrees of freedom in the overall transformation, thus speeding

up the process and improving its convergence properties. Their method

is also relying on a hierarchical strategy in which the global nonrigid

registration problem is partitioned into several smaller ones. In order to

ensure the physical consistency of the deformation field, they developed

several constraining schemes derived from the Jacobian matrix. Finally,
the deformation field is expressed as a combination of symmetric basis

functions. Beside this deformation model, they introduced another key
element which is a method to identify regions that are poorly registered,

and whose transformation needs to be improved. This way they avoid

useless computation for those regions that are already correctly regis¬

tered. The hierarchical approach they propose is basically similar to

the previous FFD method, except for the function used to express the

deformation. They also used a coarse to fine strategy to refine the defor¬

mation field, which is again a sum of the intermediate transformations

obtained at each level of the hierarchy.

2.4 The hierarchical image subdivision

strategy

Extending the approach of [Maintz et al. 1998], Likar and Permis pre¬

sented a fully functional algorithm for registration of microscope images

of muscle fibres. Their approach named the hierarchical image subdivi¬

sion strategy consists of decomposing the non-rigid registration problem
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Figure 2.4: The hierarchical subdivision scheme

into numerous local rigid registrations of small sub-images. Figure 2.4

depicts the hierarchical strategy as presented in [Likar and Permis 2001].

Likar and Permis' idea was to reduce the complexity of the existing

non-rigid registration methods that use complicated functions to model

the spatial transformation. In all the aforementioned approaches (see
Sec. 2.3), the deformation field is described in terms of a high num¬

ber of parameters, allowing numerous degrees of freedom for the spatial

transformation. Furthermore, the optimization procedure may get easily

trapped into local optima of the similarity function. To overcome these

problems, Likar and Permis proposed a local approach in which the im¬

ages to be registered are progressively subdivided into smaller sub-images

which are locally registered, by maximizing MI. While the local registra¬

tions are following the affine transformation model, the global continuous

and smooth deformation field is finally estimated using thin plate splines

interpolation (TPS). The hierarchical image subdivision they proposed
creates successive resolution levels. Each level / consists of the image

partitioning phase, the local registration of all sub-images, and a TPS

interpolation which maps the floating image into the reference image

domain. The partitioning phase is simultaneously done on both the ref¬

erence and the floating images, resulting in 22('~1) sub-image pairs. In

order to avoid the problems of MI related to changes in the volume of
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overlap, Likar and Permis proposed the normalized MI as a similarity

measure, as it has been proven to have more robust behavior according

to [Studholme et al. 1999].

The basic idea is simple and elegant, but additional constraints and con¬

trol mechanisms had to be integrated at each hierarchical stage to ensure

the physical consistency and the accuracy of the final deformation field.

The performance of the entire procedure heavily depends on accuracy

of the local registration of the sub-images as a local misregistration of

a sub-image pair at a certain level can propagate further to successive

levels due to the TPS interpolation. Moreover, the probability of local

misregistrations is increasing along the hierarchy, as the matching ca¬

pability of the NMI is decreasing with the size of the sub-image pairs

([Pluim et al. 2000]). The matching power of NMI relies on the statis¬

tical consistency of the local joint intensity histogram which, calculated

in the deterministic manner presented in [Maes et al. 1996], will contain

less and less image samples with the decreasing size of a sub-image pair.

Consequently, the estimate of NMI for small sub-image pairs will dete¬

riorate, due to both the imperfection of the voxel interpolation and the

reduced number of samples used to estimate the joint histogram. The

solution Likar and Permis proposed to overcome this problem was to

combine the locally estimated distribution of the joint intensity proba¬

bilities with prior information. This increases the statistical consistency

of the NMI, and therefore enables the correct registration of finer details.

However, the use of prior information does not entirely ensure the accu¬

racy of the local registration, and spurious local misregistrations are still

possible. Therefore, to increase the overall registration accuracy, they

propose a threefold local registration consistency test and a correction

of the pixel intensity at every level of the hierarchy before performing

the TPS image reconstruction.

2.4.1 Algorithmic implementation

The algorithm designed by Likar and Permis' was implemented and

tested on 2D images. The local registration of all sub-images is done

using the affine transformation maximizing NMI. The first level of the

hierarchical strategy consists of a global registration of the floating image
B = ß(°) with the reference image A. After finding the optimal global
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affine registration transformation T, the floating image is warped into

the reference image coordinates. At the second level of the hierarchy,

the reference image A and the floating image T(-1-)(B(-1-)) are divided into

four equal sub-image pairs {A\ ', T^\B\ )}, i = 1..4 that are individu-

(2)
ally registered. The individual affine transformations T4 obtained after

registering each sub-image pair is then used to warp the centers of the

floating sub-images T^ (B\ ), and to construct a set of control points

for the following TPS interpolation which is used to build a dense defor¬

mation field T^2). This deformation field is finally applied on the floating

image to reconstruct the second level registered image T^2\B^). The

hierarchical algorithm continues similarly for the subsequent levels, each

stage starting with the image partitioning followed by local registrations

and finalizing with the image reconstruction. The image partitioning of

an individual level / of the hierarchy results in 22('~1) sub-images. The

entire hierarchical splitting is finished as reported in [Likar and Permis

2001] at the fourth level, where for input images of size 760 x 512 pixels

are divided into 64 sub-images of 95 x 64 pixels.

The local joint and marginal entropies of every sub-image pair are calcu¬

lated based on the normalized local joint histogram, which is calculated

using 64 bins and the partial volume voxel interpolation within the over¬

lapping region of the sub-image pair {A\ ,T4 (B\ )}, i G {1..22"-1)}.

2.4.2 Incorporating prior information

In order to overcome the loss of statistical consistency and the increas¬

ing artifacts during the hierarchical splitting, Likar and Permis proposed
several adjustments of the local registration algorithm. The voxel inter¬

polation induced artifacts can be minimized by using random resampling

of one of the images in order to decorrelate the grid of the two images,

which are the same because of the image reconstruction phase at each

hierarchical stage. They also proposed to increase the statistical consis¬

tency of the MI by incorporating the prior information p*(A,B*) into

the local intensity probability distribution po (A\ ,B\ ) :

pf(A[l),Bf) = X-p0(A[l),Bf) + (1 - A) -p*(A,B*) (2.46)

where A G [0,1] is a weighting parameter defining the tradeoff between

the floating and the prior probability. For A = 1 the joint probability is



46 2. Related Work and Background Theory

defined in the classical manner with no prior information. For A = 0 the

joint probability is not anymore a function of the transformation TJj,

and the optimization of the MI is no longer possible. Therefore, a trade¬

off is proposed, including an adaptation of A according to the size of the

sub-image. The prior information p*(A, B*) can be obtained once from

a pre-registered training set of images if the intensity distributions of the

training set is similar to the images undergoing the actual registration.

However, this is not always the case, so they also proposed an alter¬

native solution that estimates the prior information from the coarsely

pre-registered images at the previous level.

2.4.3 Consistency of the local registrations

If no constraints are imposed on the local registrations, the consistency

between nearby displacements could be enlarged. As the accuracy of the

registration at each level of the hierarchy is crucial for the success of the

local registrations at the subsequent level and consequently for the pre¬

cision of the entire registration procedure, local misregistrations should

be detected and eliminated prior to the elastic interpolation. Likar and

Permis proposed a triple consistency test for the local registrations. In

addition to the classical geometrical consistency test that can detect big

spatial mismatches, they use a similarity and an optimum distinctive¬

ness test. These tests detect sub-images whose similarity function is

small and inconsistent, and analyze the graph of the similarity measure

around the optimal position found.

2.4.4 Elastic interpolation

At every level of the hierarchical algorithm, TPS are used to define the

overall transformation using the centers of those sub-images passing all

the three consistency tests as control points.

Thin-plate splines represent a special family of splines based on radial

basis functions [Bookstein 1989]. They approximate the physical bending
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of a thin metal plate, given a set of control points. The spline is a linear

combination of n radial basis functions 6(s):

t(w) = Pl+ P2Wx + P3U>y + PAWz + J3 eß(\<f>i ~ ^1) (2.47)
l=\

where <f>t denotes the location of the n control points in the floating

image. The most common selection of the basis function 9(s) is:

f j.j'MI.1) '»2D
(2.48)

s in 3D.

The Eq. 2.47 defines a mapping of a 3D point w into a ID coordi¬

nate t(w). By introducing three separate thin plate spline functions

T = (tx,ty,tz)T, a mapping between 3D images can be defined in which

the coefficients pt characterize the affine part of the transformation.

These coefficients can be calculated by using the set of 3n linear equa¬

tions given by the initial interpolation conditions, which impose that

the control points <f>t in the source image are mapped onto their cor¬

responding counterpart <f>[ = T(<f>t) in the target image. To determine

the 3(n + 4) coefficients uniquely, 12 additional equations are required.
These 12 equations guarantee that the sum of the non-afline coefficients

êj and their cross-product with <f>t are zero. In matrix form this can be

expresses as:

<&T 0 { p ) { 0

T n M * I \ n I (2-49)

where p is a 4 x 3 vector of the affine coefficients pt, and e is a n x 3

vector of the non-afline coefficients et, 0 is the kernel matrix comprising

the basis functions with §tJ = ô(\<f>t — cf>31). Solving the system for p and

e results in a thin-plate spline transformation allowing to interpolate the

displacements of the control points.

Modeling the deformation by thin-plate splines has several advantages.
For example, they can be used to incorporate additional constraints into

the transformation model such as rigid bodies [Little et al. 1997]. It

is also possible to use an approximation solution, where the degree of

approximation at the landmark position depends on the confidence of

the landmark localization [Rohr et al. 1996].
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2.5 Discussions

The algorithm introduced by Likar and Permis offered a starting point

for our development which builds on a few key elements of their method.

Firstly, the hierarchical image subdivision strategy represents a good
idea for decomposing the curved transformation, but certain disadvan¬

tages still need to be addressed. The statistical consistency of the joint

histogram diminishes along the hierarchical splitting because of the re¬

duction of the number of samples available in the sub-images. This

problem, simultaneous with the increasing effects of the interpolation

artifacts is only partially solved by including the prior information and

by random resampling one of the images. This thesis will investigate pos¬

sible methods for further improvement of the algorithms performance.

Moreover, our investigation of the MI as a similarity measure has re¬

vealed a peculiar behavior that can seriously deteriorate the accuracy of

any MI based registration procedure.



3

Mutual Information and the

Hierarchical Image Splitting

This chapter presents an analysis of the difficulties with MI which emerge

when using the hierarchical image subdivision scheme for non-rigid reg¬

istration of multi-modal images. Several limitations have already been

recognized in the literature in connection to either interpolation artifacts

or the statistical consistency of MI. Our investigation of the MI behavior

revealed additional problems when using it as a similarity measure for

registering noisy patches showing no clear image structure. The study of

the MI properties was done using a framework similar to the hierarchi¬

cal image subdivision scheme proposed by Likar and Permis which was

presented in the previous chapter. In this context, the drawbacks of the

MI behavior become increasingly serious during the image subdivision

process due to the decreasing number of samples used to compute the

two-dimensional joint intensity histogram. We also propose solutions to

overcome these limitations, solutions which lead to a considerable in¬

crease in the robustness and accuracy of the entire non-rigid registration

procedure. Firstly, we propose a new method to detect noisy patches

or regions of homogeneous intensity within an image. Based on this

method, we developed a reliable stopping criterion for the entire hierar¬

chical subdivision procedure. Secondly, we propose to switch from MI

to the CC as a similarity measure at higher levels of hierarchy, when

the MI becomes unstable and statistically unreliable. This change of

the similarity measure is made possible by a new method for mapping

the intensities of the initial multi-modal images into a common pseudo-

modality that the CC can successfully register. Moreover, incorporating
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these solutions in the hierarchical strategy for image registration can

drastically reduce and simplify its computational complexity.

3.1 Limitations of Mutual Information

Even though many studies have proven the robustness and the advan¬

tages of the maximization of the MI criterion, problems have been iden¬

tified in connection with either interpolation artifacts or inherent limita¬

tions of the Mi's statistical consistency. After presenting an overview of

those limitations that are already reported in the literature, this section

describes the results of our study of the Mi's properties in connection

to the calculation of parameters for the discrete intensity probability
distribution estimated by histograms.

3.1.1 Interpolation artifacts

A major accuracy limitation of an image registration procedure stems

from the fact that images are not exact replicas of the real world, but

discretely sampled versions. In the context of a voxel based registration

procedure, the series of successive spatial transformations applied on the

floating image to calculate the similarity measure requires an estimation

of the reference image intensities in the continuous space. For this, a

voxel interpolation method is used to calculate intensities of the reference

image between the sampling grid. This leads to inaccuracies when esti¬

mating MI called interpolation artifacts and they appear as a pattern of

successive local maxima and minima in the registration function, as can

be seen in Fig. 3.1. As already broadly recognized and described in the

literature by many authors (eg. in [Maes et al. 1997, Pluim et al. 1999,

Pluim et al. 2003, Tsao 2003, Ji et al. 2003]), the interpolation arti¬

facts prohibit sub-voxel accuracy of the registration procedure. Many
researchers have tried to overcome this problem which affects the clas¬

sical MI as in its normalized version in a similar fashion. Accordingly,
in this chapter we will discuss only the case of the classical definition

(Eq. 2.34) of MI.

In order to visualize the effects of the interpolation artifacts on MI, we

consider the following simple registration scenario of a pair 2D transver-
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sal slices from CT scans of the leg imaged in a perfectly identical position.

Figure 3.1 depicts the test images, acquired before and after injecting

contrast agent in order to better visualize pathologies of the blood ves¬

sels. The two CT images are of 512 x 512 pixels with 256 grey value

levels. Figure 3.1(a) depicts the reference CT image A, and Fig. 3.1(b)
depicts the floating image B. To visualize the interpolation artifacts,

the experiment consists of calculating the MI from the entire overlap¬

ping region of the floating image B that is translated along the x and

y direction over the reference image A. Figure 3.1(c) and 3.1(d) clearly

show the interpolation artifacts of MI when using the trihnear and par¬

tial volume interpolation, respectively. These artifacts appear between

the sampling grid positions as a local extrema (maxima or minima) of

the similarity measure and they may disturb the optimization procedure

compromising the entire registration accuracy.

These artifacts are due to the computation of the joint and marginal

intensity probability distributions that are estimated from the joint in¬

tensity histogram of the images. Initially, when the images are aligned,
the grid points of A and B also coincide. Therefore, no interpolation

is needed when estimating the joint intensity histogram. At the same

time, the dispersion of the histogram is minimal when the images are

registered and therefore the joint entropy is minimal. By translating the

floating image B with an integer number of the voxel dimension, the

grid points of the two images will be again aligned avoiding the need

for interpolation, but the dispersion of the joint histogram is increas¬

ing due to misregistration, reducing the MI accordingly. For all other

translations, corresponding to some fraction of voxel dimension, the grid

points of the images do not coincide anymore and therefore interpola¬
tion is required to estimate intensity values between grid positions of

the reference image. For example, when PVI is used to create the joint

histogram, several entries have to be updated each time a pair of grid

points is not aligned. Consequently, the joint histogram is not only dis¬

persed because of the image content and a possible misregistration, but

it also contains an additional dispersion induced by the interpolation
method. More dispersion implies a higher joint entropy value, which in

turn decreases the MI. This is illustrated in Figure 3.1(d), where the

floating image was translated up to 3 voxels in the image plane from the

registered position. By repeating the same experiment using the TRI,

an opposite behavior of the interpolation artifacts can be noticed on the
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Figure 3.1: (a) Reference CT image of the leg. (b) The floating per¬

fectly aligned angiographic image. Interpolation artifacts in the MI es¬

timated from the volume of image overlap when translating the floating

image along the x and y axis over the reference image, (c) using trihnear

interpolation and (d) using partial volume interpolation. The x and y

displacements are given in voxel dimensions
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response of MI. It means that when the grid points of the two images

coincide, the joint entropy is minimal, while for all other translations it

increases. This effect is induced by the trihnear nature of the interpo¬

lation process which leads to spurious intensity values, or may produce

an artificial blurring of the reference image which tends to equalize the

joint probability distribution and therefore increases the joint entropy.

The cause of these phenomena lies in the definition of the MI in Eq.2.34.
This mathematical expression is based on the marginal and joint im¬

age entropies. The Shannon entropy is a nonlinear function that mea¬

sures the disorder of a signal. Figure 3.2 shows the plot of a simple
term in Eq. 2.32 as a function f(p) = —p log(p) together with the

identity function ft(p) = p. Due to the sharp fall of f(p) near to

p = 0, the entropy term f(p) becomes smaller than the sum of the

entropy terms obtained by dividing p into a multitude of probabilities

p = 5^-P«- Accordingly, the entropy of a probability distribution will

increase as the dispersion of the distribution increases. Having this in

mind, and considering that in case of computing the Mutual Informa¬

tion as MI(A, B) = H(A) + H(B) - H(A, B), the source of the artifacts

can be easily explained. The entropy of the floating image H(B) varies

only because of changes in the volume of image overlap, no voxel in¬

terpolation is needed. Meanwhile, the entropy of the reference image

H(A) changes due to both interpolation effects and modifications in the

volume of overlap. At the same time, these effects have an even greater

influence on the joint entropy H(AB), because it is calculated from a

much more fragmented probability distribution then its marginal distri¬

butions. Therefore, the behavior of MI is dominated by the behavior of

the joint entropy.

In a similar fashion, it has been shown in [Pluim et al. 2003, Tsao

2003, Ji et al. 2003] that the interpolation artifacts are also present in

more complex voxel interpolation functions. The effect of the number of

bins used for calculating the joint histogram is of big importance, as a

reduction of the number of intensity levels used by the joint histogram

may reduce these interpolation artifacts. However, the accuracy of the

registration is also proportionally decreasing and therefore a compromise

is needed depending on the nature of the images to be registered.

A very common solution proposed to minimize the interpolation arti¬

facts is the random resampling of one of the images. In this way, the
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Figure 3.2: The Shannon entropy term f(p) = —p log(p) as function

ofp and the identity function fi(p) =p

grid points of the images are not correlated anymore and according to

the aforementioned observations the joint intensity histogram is always
calculated by using voxel interpolation. Likar and Permis also adopted

this solution for their hierarchical subdivision scheme. Further, because

the size of the sub-images to be registered become smaller with each level

of the hierarchical splitting, these interpolation artifacts are increasingly

disturbing. Therefore, beside the random resampling strategy, they ar¬

tificially increase the number of samples by incorporating prior informa¬

tion. However, our experiments showed that this prior information leads

only to a scaling of both, the MI value and the interpolation artifacts.

In addition, the use of the prior information is likely to affect even more

seriously the accuracy of the local registrations because it may introduce

false maxima in the MI function.
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3.1.2 Mutual Information of small sub-images

As a consequence of the successive image splitting, patches of low struc¬

tural content may appear. These structureless patches often lead to

morphologically inconsistent local registrations due to a low MI response.

Likar and Permis suggested to identify such patches by applying a thresh¬

old on the MI value and to exclude them from the local adjustment

process. However, two problems are likely to arise when using this ap¬

proach. Firstly, in this way structured sub-images with low MI values,
that nevertheless have a clear optimum and can be registered in a mor¬

phologically consistent way will be prevented from becoming properly

adjusted. Secondly, we have observed that MI significantly increases

when structureless patches start to overlap a structure in the reference

image. Therefore, these patches may not be eliminated by the simple
threshold criterion and will deteriorate the registration performance.

Another consequence of the hierarchical image splitting is that the in¬

terpolation artifacts present in the MI function are also increasing. Fig¬

ure 3.3 illustrates this effect on a simple CT/MR registration experi¬

ment. Figure 3.3(a) shows the initial reference CT and Fig. 3.3(b) the

floating MR image. By translating the floating image horizontally over

the reference image, the response of the MI is calculated and plotted in

Fig. 3.3(c). The remainder of Fig. 3.3 depicts the same experiment by

successively splitting the floating MR image (the central column) and

calculating the response of the MI (the right column) as a function of

horizontal translation over the reference CT region (the left column).

3.1.3 The effect of noise on Mutual Information

It is well known from information theory [Cover and Thomas 1991], that

if two signals are statistically independent then their MI is reaching its

minimum possible value, namely zero. Therefore, one would expect that

by shifting a structureless sub-image around its initial position, the sim¬

ilarity measure has a small response. Surprisingly, experiments clearly
demonstrated that even though MI is small, it starts to increase as soon

as the structureless sub-image overlaps a region of higher structural con¬

tent. This is a serious problem as these structureless sub-images are very
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Figure 3.3: Experiment showing the increasing PVI artifacts along
the hierarchical image splitting, (a) The reference CT. (b) The floating
MR image, (c) The response of MI when the floating MR image is

horizontally translated over the reference CT image. The remainder

of the ßgure shows the same experiment by successively splitting the

floating MR image (the central column) and calculating the response of

the MI (the right column) as a function of horizontal translation over

the reference CT region (the left column)
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likely to appear at higher levels of the hierarchy when either the back¬

ground or large tissue regions are partitioned into homogeneous patches.

Therefore, wrong local registrations may be introduced that would com¬

promise the accuracy of the non-rigid registration result. These local

misregistrations are likely not to be detected and corrected by a de¬

formation field regularization procedure based on simple tests as it is

proposed in [Likar and Permis 2001]. This problem is even more pro¬

nounced in the context of multi-modal image registration when not all

tissue details can be seen in all modalities. For example, in the case

of CT/MR registration this problem is quite likely to appear, because

the MR image shows structural details in soft tissue regions, while the

corresponding area in the CT acquisition can be nearly or completely

homogeneous due to minimal differences in X-ray absorption. The ex¬

ample shown in Fig. 3.4 illustrates how such structureless sub-images can

induce important local misregistrations at the 6th level of the hierarchy.
The experiment was performed on one selected region of interest of the

CT/MR matching example shown in Fig. 3.3(a,b). Figures 3.4(a,b) show

the region of interest around the sphenoid sinus in the left temporal bone

in the reference CT and floating MR images, respectively. Figure 3.4(c)
shows the result when all sub-images are undergoing the local registra¬

tion. Figure 3.4(d) shows the result when only those sub-images having a

clear structure are locally registered, while the structureless sub-images

remain in their initial position.

In order to understand and explain this behavior of MI for structureless

image patches, further experiments have been performed for ID signals,

as the observation on them can be easily extended for 2D or 3D images.

The following experiment shows the behavior of MI in the presence of

noise. Let us consider two signals A and B as depicted in Fig. 3.5.

We generated the reference signal A by adding white noise to a step

function. The floating signal B consists of white noise, and is statistically

independent of A. Using Equation 2.34, we can calculate the MI between

the two signals as a function of the displacement when the floating signal
is translated along the reference signal.

The none-zero baseline of the MI, clearly identifiable in Fig. 3.5(b), can

be explained by a combination of two different effects. One is rooted in

the difficulty to achieve full independence between signals represented by

a finite number of discrete samples. In the ideal case of statistically inde-
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Figure 3.4: Registration details of the sphenoid sinus in the left tem¬

poral bone at the 6th level of the hierarchy where the original floating

image is divided in 32 x 32 sub-images of 16 x 16 pixels, (a) The ex¬

amined region on the reference CT. (b) The examined region consisting

of 3 x 3 sub-images of the floating MR image, (c) The final position of

each sub-image after the local rigid registration, (d) The result after ap¬

plying the local rigid registration only to those MR sub-images having

a clear structure, keeping the position of the structureless sub-images

unchanged. The structure consistency check clearly prevented the two

middle patches from being pulled towards structures in the reference CT
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Figure 3.5: One-dimensional experiment showing the behavior ofMI in

the presence of noise (a) Original test signals: the reference signal A and

the floating signal B. (b) The response of MI when the floating signal
B is shifted over the reference signal A
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pendent signals A and B the entropies would cancel out resulting in zero

MI. This is, however, very unlikely for a real case scenario. On the other

hand it is well known in information theory [Cover and Thomas 1991]
that at the transition from a continuous differential entropy to a discrete

entropy there is systematic bias by an error term log2(A) depending on

the size of the quantization bins used for histogram generation:

lim(H(xA)+log2(A))=h(x) (3.1)

where H(xA) is the discrete entropy, h(x) the differential entropy, and

A the size of the quantization bins used for histogram generation. This

theorem only applies to the marginal entropies H(A) and H(B). We

are not aware of any results on deriving a similar relation for the joint

entropy H(A, B). Clearly for strictly independent signals A and B the

quantization error of the discrete entropy would cancel out. This is,

however, not the case if the independency condition is perturbed.

To further investigate the problem, numerical experiments have been

performed showing the dependency of the entropies on the sample size.

The results are shown in Fig. 3.6. The Cross-Correlation (CC) graph

clearly shows, as expected, that the statistical independence between the

two finite, discrete random signals improves with their sample length. On

the other hand, the graph on the left shows a very interesting property

of the entropies. While the sum of the marginal entropies H(A) + H(B)
is only slightly influenced by the sample length and very quickly reaches

the theoretically predicted value for discrete entropy, the joint entropy

H(A, B) requires substantially more samples to show a similarly stable

behavior. In other words, the mutual entropy is much more sensitive to

deviations from independency between the signals to be matched.

Relating this observation to the test signals from Fig. 3.5 it is obvious,

that once the floating signal B starts to overlap the step in A, we get a

bi-modal distribution for both H(A) and H(A, B), while H(B) remains

constant. The number of available samples then needs to be distributed

among two separate intensity clusters for the marginal entropy H(A) and

the joint entropy H(A, B). As can be clearly seen from the above graph,
the joint entropy H(A, B) decreases much faster than the marginal en¬

tropy H(A), thus leading to the observed strong increase of the MI.
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Figure 3.6' (a) The dependency of the entropies H(A) + H(B) and

H(A, B) on the number of samples in the signal The corresponding

dependency of (b) MI and (c) CC on the number of samples in the

signal

3.1.4 Including the prior global information

The previously described negative effects on MI depend on both the num¬

ber of image samples and the image content and can be considerably
reduced by including prior information in the actual joint probability

distribution, as proposed by Likar and Permis. This method artificially
increases the number of samples used to estimate the joint intensity his¬

togram and consequently increases the statistical power of MI. However,

care has to be taken when choosing the weighting parameter, because

fake maxima can be created in the response of MI by suppressing the

local statistics. Accordingly, they proposed an adaptive scheme for the

weighting parameter, such that it equals the ratio between the current

sub-image area and the entire image surface. Figure 3.7 shows in detail

two representative cases for the local registration of CT/MR images of

the head. Marked with a square on both the reference CT and the float¬

ing MR image, the selected sub-images are of 32 x 32 pixels and they

correspond to the 5th hierarchical level. The first experiment consists of
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registering sub-images containing clear anatomical structures, as can be

seen in Fig. 3.7(c,d). The second experiment, depicted in Fig. 3.7(e,f),

represents a difficult registration case where the sub-images have homo¬

geneous intensities. While the first example should be an easy case of

registration using MI because of the well defined structures present in

the sub-images, the second example is one of the aforementioned diffi¬

cult cases that revealed the peculiar behavior of MI. Both experiments

consist of calculating the response of MI to horizontal translations of the

selected floating sub-images over the reference image. The MI is esti¬

mated for both cases with and without including the prior information

extracted from the images.

A comparison between Fig. 3.7(g) and Fig. 3.7(h) shows two advantages
of including the prior information in the estimation of the joint inten¬

sity distribution. The first obvious advantage is that the interpolation

artifacts are drastically reduced. At the same time, the MI statisti¬

cal consistency has considerably increased. This second observation is

less obvious in the two responses of the MI but is clearly visible in the

colored images that show the final local registrations results overlayed.

Depicted in Fig. 3.7(i,j), the colored images show the reference image in

red, overlayed with the floating sub-image in green, translated according
to the optimal MI value estimated without and with prior information,

respectively.

The second experiment is similar to the previous one and the results are

depicted in Fig. 3.7(k-n). Even though the previous experiment showed

increased statistical consistency of MI when it includes the prior informa¬

tion, the approach is not completely solving the related problems. With

or without prior information, the responses of MI depicted in Fig. 3.7(k,l)
show statistical inconsistency when is estimated for signals with homoge¬

neous intensity values. In the context of the hierarchical image splitting

strategy, this disturbing inconsistency of the MI is likely to introduce

local misregistrations which can seriously affect the performance of the

final result. Therefore, we continued our investigation to find alternative

solutions to overcome these drawbacks of MI.
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Figure 3.7: Experiment showing the advantages of including the prior

information when estimating the MI. (a,b) The reference CT and the

floating MR image, respectively. (c,d) The regions of interest having
clear structures and (e,f) with homogeneous intensities, cropped from

the CT and MR images, respectively, (g) The response of MI estimated

only from the local information and (h) including the prior information to

horizontal translations up to ±5 pixels of the floating sub-image over the

reference CT. (i,j) The colored overlayed images of the reference image

(red) with the floating sub-image (green) transformed according to the

optimal value of the MI depicted in (g,h), respectively, (k-n) Similar to

(g,j), the experiment is performed with the sub-images from (e,f)
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3.2 Spatial autocorrelation coefficient

As already presented in the previous section, the interpolation artifacts

and the statistical inconsistency of the MI can be reduced to a certain

extent by using one of the various solutions proposed, such as random

resampling, or including prior information. However, these methods will

not overcome the peculiar behavior of MI for image patches contain¬

ing no clear anatomical structure. In the context of the hierarchical

strategy, this problem of MI is increasingly disturbing during subdivi¬

sion leading often to regions of homogeneous intensities, showing mostly

imaging noise. Therefore, we focused our research towards alternative

solutions that can completely eliminate such problematic image regions.

Inspired by point pattern analysis, the solution we propose is based on a

new method to detect noisy patches or regions of homogeneous intensity

within an image. We adapted and integrated this structure detection

method into the hierarchical image splitting strategy, considerably in¬

creasing the registration robustness. Moreover, this method can also be

used as a reliable stopping criterion for the entire hierarchical subdivision

procedure.

3.2.1 Introduction in Point Pattern Analysis

In the field of geography and ecology one of the basic goals is to gain

information about the spatial variation pattern in their data at different

geographical locations within a region of interest. This research area is

called point pattern analysis (PPA) and is focusing on detecting specific
events and on answering questions about the distribution of their loca¬

tions. Of particular interest is if these events are randomly or regularly

distributed or clustered in the analyzed region. Most of the statistical

tests describing such spatial characteristics are relying on spatial auto¬

correlation. A detailed overview of these methods can be found in [Cliff
and Ord 1973]. Two spatial autocorrelation coefficients are especially in¬

tensively used due to their robustness ([Lee and Wong 2001]) Moran's I

and Geary's C coefficient. They share common characteristics, but their

statistical properties are different. However, both coefficients are based
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on the comparison of the neighboring units which will lead to a strong

positive spatial autocorrelation if they have similar values. Otherwise,

if the neighboring units are very dissimilar, then the spatial autocor¬

relation will become strongly negative. The analysis of the statistical

properties of the two aforementioned spatial autocorrelation coefficients

concluded that the Moran's I coefficient is favored by most of the ana¬

lysts because it has highly desirable statistical properties ( [Lee and Wong

2001]). More specifically, the variance of the I coefficient is less affected

by the distribution of the sample data than that of Geary's C coefficient.

3.2.2 Moran's / coefficient of spatial autocorrelation

According to [Cliff and Ord 1973], for a data set X = {xt} of mean value

E(X) = x, the Moran's / coefficient is defined as:

T
_

N S^=i«\? '<>» -x)-(x3 -x)

where W = {wtJ } is called the contiguity matrix, representing the con¬

nectivity weights, or the amount of interaction between the locations

i and j, and N stands for the number of observations in the analyzed
data. Note, that I is similar to the classical form of an autocorrelation

coefficient: the numerator term is a measure of covariance among the

{xj} and the denominator term describes the signal variance. It is also

obvious that Moran's I is based upon the cross-products of deviations of

the xt from the mean value x. It varies in the interval [—1,1], the values

close to the extremity of this interval indicating the presence of structure

in the spatial distribution while random patterns are characterized by
values close to zero.

As already mentioned, the contiguity matrix W = {wtJ} represents the

amount of interaction between the data elements and has a big impact in

determining the desired spatial autocorrelation coefficient. The W allows

the investigator to choose a set of weights which he finds most appro¬

priate based on prior considerations. Further more, if different models

are proposed regarding the degree of conectivity between neighboring

1The neighboring units are called counties in point pattern analysis. For our

application they will represent the image pixels.
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elements, alternative sets of weights might be used to investigate these

hypotheses. It is important to stress that the weights must be chosen

carefully in order to avoid spurious correlations. The factors which are

most important will depend upon the study at hand. For more details

regarding the choice of the connectivity weights please refer to [Cliff and

Ord 1973] and [Lee and Wong 2001]. For image processing application,

the most usual practice is to build the contiguity matrix with coeffi¬

cients that are inversely proportional to the Euclidean distance between

the centers of the corresponding image pixels.

In order to test the significance of Moran's I, Cliff and Ord proposed to

evaluate its first two statistical moments under either of the following
two assumptions:

(n) - normality (n) - the {xt} are the result of N independent drawings
from a normal distribution;

(r) - randomization (r) - independently of the underlying distribution

of the population, the variation of I over the set of all possible

permutations of the elements of {xt} (there are N\ such combina¬

tions).

Using the subscripts n and r to distinguish between the normalization

and randomization assumption respectively, the first order moment of I

(its mean value) is:

En(I) = Er(I) = ^ry (3-3)

while the second order moment (its variance) is:

^
_

N2S1 - NS2 + 3Sg

fpp^Tjsl
End2) = Lf ff

°
(3-4)

Er (I2 N[(N2-3N+3)S1-NS2+3S2]
(N-1)(N-2)(N-3)S2

k[(N2-2)S1-2NS2+6Sg]
(N-1)(N-2)(N-3)S2

(3.5)
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where:

So

s\
1 v^W ( i \2

s2 = 2^=i ( 2^=i wu + 2^=i «W

h
£^,(*.-*)4

(3.6)

(££i(*»-302)

It has been shown in [Cliff and Ord 1973] that the standard Znr value

associated to the Moran's I coefficient:

_

I-En>r(I)
Zn'r~

En,(P)
(3J)

is asymptotically normally distributed as the number of data elements N

increases and therefore its significance can be tested against the Gaussian

distribution.

3.2.3 Image information consistency test

In order to use Moran's I as an indicator of the structural content for 2D

sub-images, it has to be adapted regarding to the choice of the contigu¬

ity matrix and to the test for significance of the I value. It is logical to

build the contiguity matrix using a weighting scheme inversely propor¬

tional to the Euclidean distance d(-, ) between the currently inspected

pixels and its neighbors. Furthermore, a maximum interaction distance

T> = (T>x,T>y) has to be selected according to the minimum size of the

structures to be detected in the image.

Denoting the spatial location of a pixel within a 2D image (i.e. image

patch) A* of size Nx x Ny with s = (sx, sy) G Ha*, we can define the

vicinity of size T> around s as:

Vf = {p= (px,Py) G Ha*,y I sx - Px | < T>x and | sy
-

py |< Vy} .

(3.8)
By changing the linearized index notation from Eq. 3.2 to image coordi¬

nates, then the contiguity matrix W can be expressed as:

W={ Wgp = W) ' W& Vs?Us}
(3.9)

I 0, otherwise.
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Denoting the intensity value of the image pixel located at the spatial

position s G Ha* with ag = A*(s) and the mean value of the image

intensities with a, the Moran I becomes:

1=^ ^ ? =T2 • (3-10)

Similarly with the original formulation, Moran's I applied to images

varies in the interval [—1,1], where the random patterns are characterized

by values close to zero. Before testing the significance of I, its first

and second order moments can be estimated under the randomization

assumption, using Eq. 3.3 and Eq. 3.5. Note, that for an image patch
A* of size Nx x Ny, the number of data elements is the number of image

pixels N = Nx Ny. The associated k and St,i = 1..3 factors are also

computed similarly to Eq. 3.6:

-So = Ep-eV| W-Dp

Si =2Ep-eVg«^
(3.11)

S2 Y.peV1> [ Es-eV? W°P + Es-eV? WPs

77\2

k

The test for the significance of the Moran's / applied for images is per¬

formed by Student's t-test on the significance level of 95% using the

randomization assumption.

Figure 3.8 shows the classification result of a 2D neuroradiological MR

slice into regions having consistent structures and regions without struc¬

tures when using the aforementioned test for significance of Moran's /

coefficient. The initial MR image depicted in Fig. 3.8(a) is partitioned

in 32 x 32 sub-images of 16 x 16 pixels. Figure 3.8(d) shows the spatial
autocorrelation coefficient / evaluated for all the partitioned sub-images.

By using the threshold of 1.96 on the corresponding standard Z values

depicted in Fig. 3.8(e), the classification is shown in Fig. 3.8(b,c).
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(a) (b) (c)

Moran I Z value

Figure 3.8: Classißcation of image regions into consistent and inconsis¬

tent structures when using the Moran's I consistency test, (a) The orig¬

inal MR slice, splitted into 32 x 32 sub-images of16 x 16 pixels, (b) Sub-

images classified as showing consistent anatomical structures, (c) Sub-

images classified as having inconsistent structures (noisy or structure¬

less), (d) The Moran's I coefficient evaluated for all sub-images, (e) The

standard Z values associated to Moran's I values

3.3 Further analysis of the hierarchical im¬

age splitting strategy

This section discusses the disadvantages of the binary splitting scheme of

the images, as originally proposed by Likar and Permis. Two alternative

image partitioning schemes are presented to increase the robustness of

the final deformation field resulted from the hierarchical strategy.
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3.3.1 Binary splitting

The binary image splitting scheme proposed by Likar and Permis, divides

the images to be registered into sub-image pairs with borders at fixed po¬

sitions. The positioning of the borders is determined exclusively by the

image geometry and completely ignores the image content. In addition to

the problems raised by the loss of statistical consistency of the MI, this

partitioning scheme may lead to additional problems like distributing

single structures between neighboring sub-images. If in the remainder

of one of these sub-images there is another well defined structure, then

this may dominate the entire local rigid registration. An example can

be seen in Fig. 3.4, where the temporal bone around the sphenoid sinus

is partitioned into numerous sub-images. A possibly undetectable local

misregistration of any of the sub-images may induce deformations to the

nearby structure, which is not in agreement with the underlying physical

phenomena. Therefore, several schemes to overcome the aforementioned

problem of the binary splitting have been explored such as an overlap¬

ping windows strategy or adaptive splitting. We propose to use the later

method, as to our experience in combination with the Moran consistency

test, this will lead to an increased robustness of the entire hierarchical

procedure for non-rigid registration.

3.3.2 Overlapping sub-images

An alternative solution to the binary image subdivision is the overlapping

sub-image splitting scheme proposed by [Xu and Dony 2004]. By defin¬

ing additional splitting borders through the centers of the sub-images

resulted from the binary splitting, this scheme creates overlapping sub-

images. They claim that their method helps to overcome the problem
of the edge splitting, and that the registration results are improved to

some limited extent leading to much better visual result. Of course,

the computational complexity increases due to both the registration of

the new sub-images introduced and the computation of TPS using an in¬

creased number of control points. An example of overlapping sub-images
is sketched in Fig. 3.9. An overlapping image division at the /th level

of the hierarchy generates (2 • 2l~1 — l)2 sub-images, instead of 22('~1)

sub-images resulting from a binary splitting.
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(a) (b)

Figure 3.9 Schematic examples of image partitioning schemes (a) the

binary splitting and (b) the overlapping sub-images scheme

Basically, the overlapping windows method is close to the binary split¬

ting, being susceptible to similar limitations, by the fixed position of the

sub-images within the original image However, possible distortions are

reduced by the proximity of the TPS control points

3.3.3 Adaptive image splitting strategy

Following any of the aforementioned image splitting schemes, one can

reach the limit case of sub-images containing one single pixel For this

extreme case obviously no image similarity measure can give a consis¬

tent response The usual procedure that many have adopted is to limit

the possible size of the sub-images to a minimum predefined value This

leads of course to limitations on the accuracy and performance of the

non-rigid image matching These limitations concern mainly the regis¬

tration of those structured details that are smaller than the minimum

predefined sub-image size In addition, the original hierarchical strat¬

egy partitions both images after a TPS reconstruction of the floating

image This interpolation is likely to induce significant changes on both

the structures and the intensities of the floating image Furthermore,
this image reconstruction may lead to a possible decrease of contrast

and details within the floating image, and therefore the accuracy of the

registration may decrease Even if visual inspection of the registered

image may be satisfactory, this may only be caused by the lack of image

details due to the repetitive TPS interpolations
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In order to overcome the aforementioned limitations, we propose an

adaptive scheme for the hierarchical image splitting, which is fully auto¬

matic and permits the registration of fine details present in both images.

Using the image information consistency test presented in Sec. 3.2, the

adaptive subdivision scheme allows the registration of sub-images with

the size of the contiguity matrix defined to compute the Moran's I co¬

efficient. Moreover, in contrast to the original hierarchical image subdi¬

vision scheme, we propose to partition only the floating image without

any reconstruction between consecutive hierarchical levels. As such, the

newly partitioned sub-images will inherit the registration parameters

from their parents registered at the previous hierarchical level. This pa¬

rameter inheritance is done using a method that will be presented in

the next chapter. In this way, the details of the floating image are kept

according to their original resolution and consequently, the accuracy of

the local registration is considerably increased.

The underlying principle of our image subdivision scheme is to locally de¬

cide whether a new partitioned sub-image contains significant structures

and therefore if it is possible to perform a consistent local registration.

This decision regarding the sub-image structural content is done using

the Moran's I coefficient by testing both the current floating sub-image
and its corresponding area on the reference image. This double test

done on both images ensures that the local registration is done between

significant structures simultaneously present in both images. As such,

at every level of the hierarchical image splitting, the Moran / can test

for the presence of structures in all the newly formed sub-images. All

those sub-images passing the Moran test, can be further registered and

subdivided at the next level of the hierarchy. Those sub-images failing
the Moran test are omitted from both the local registration procedure
and also from further subdivisions. In this way, the entire subdivision

scheme is locally adaptive and increases the robustness of the registration

procedure by not only eliminating possible inconsistent local matches

of structureless image patches, but also by registering only those sub-

images which have consistent structured information. The same principle

makes the Moran's / an important part of the final stopping criterion of

the hierarchical image splitting, which is discussed later in Chapter 5.

In order to visualize the evolution of the adaptive image subdivision

along the hierarchical non-rigid registration, we performed the non-rigid
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registration experiment between the CT images of the leg presented in

Fig. 3.1. Figure 3.10 shows the evolution of the floating image splitting

grid projected undistorted onto the reference CT image without contrast

agent. Figure 3.10(a) depicts the splitting grid corresponding to the 2nd

hierarchical level and the subsequent images show the following levels up

to the 7th (Fig. 3.10(f)) level. At this final stage, the size of the smallest

sub-image is 8 x 8 pixels and all those sub-images with a bigger size have

previously failed the Moran's consistency test. Note, that in the original
hierarchical registration procedure as proposed by Likar and Permis, the

maximum reported hierarchical level is 4, having sub-images of 64 x 64

pixels.

3.4 Intensity mapping

The hierarchical image splitting strategy for non-rigidly registering med¬

ical images can be applied successfully not only for multi-modal images

but also for mono-modal cases. As already presented in the first subsec¬

tion of this chapter, the statistical consistency of MI is decreasing along
the hierarchy, weakening the performance of the entire registration and

limiting the maximum level of the hierarchical subdivision. However, for

mono-modal image registration there are alternative similarity measures

and CC is favored by most researchers as it was proven to be robust

and insensitive to possible changes of illumination or image shadings.

Cross-correlation based similarity measures showed an increased consis¬

tency and robustness also compared to MI, especially in those situations

where small sub-images were to be registered. We therefore investigated

the possibility to extend the usability of CC as a similarity measure to

multi-modal cases. Such a method could enable to replace MI with a

more robust CC for higher levels in the hierarchy.

In the past few years, several researchers have investigated the usability
of CC in multi-modal registration cases. However, CC assumes a linear

relationship between the image intensities. The approach commonly pro¬

posed in the literature tries to find a functional relationship between the

intensities of the different modalities such that one modality is trans¬

formed into the contrast space of the second image. As such, several

methods have been proposed either for estimating a functional relation-
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Figure 3.10: The evolution of the adaptive floating image splitting

grid along the hierarchical non-rigid registration procedure. The grid is

projected undistorted on the reference image, from the 2nd (a) up to the

7th (f) hierarchical level
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ship between the intensities of images from different modalities or for

the direct estimation of similarity measures which integrate this func¬

tionality in their definition. For example, the VIR criterion presented

by Woods in [Woods et al. 1993] proved to be efficient for matching
PET with MR images. In [Nikou et al. 1998] an extension was pre¬

sented that removed the need for manual segmentation and extended

the method's applicability to other modality combinations. Another

extension of Woods' VIR criterion called correlation ratio is described

in [Roche et al. 1998]. Later on, in [Guimond et al. 2001], an adaptive

intensity correction was proposed that combines the correlation ratio

with the demons algorithm [Thirion 1996]. A completely different ap¬

proach for CT-MR cross-registration described in [van den Elsen et al.

1994] bases on a simple intensity mapping of the original CT image such

that bone and air have identical appearance as in an MR image. All the

proposed methods, however, lead to the appearance of fake structures

within the mapped image, which strongly limits their usability. These

ghost features caused by imaging details which are not visible in both

modalities can lead to ambiguities that result in misregistrations.

This section presents a local intensity mapping that allows to switch

from MI to the more robust CC at higher hierarchical levels. In con¬

trast to the already existing approaches that estimate the functional

relationship from one image modality to the other, we propose to build

a common intermediate pseudo-modality. The intensities in both images

are mapped simultaneously onto a common contrast space, which is not

necessarily one of the two source intensities, but rather a combination

of them. Although the transformed images may locally resemble one

of the modalities, on an overall scale this is not true. The proposed

mapping algorithm is demonstrated on CT/MR image registration but

is generally applicable for any combination of modalities.

3.4.1 Cross-Correlation versus Mutual Information

in mono-modal registration

Figure 3.11 depicts two relevant examples demonstrating the advantages
of using the CC instead of MI as a similarity measure in a realistic mono-

modal registration scenario. The results of these experiments are in

complete accordance with with the previous observations from Sec. 3.1.3,



3.4. Intensity mapping 75

where Fig. 3.6 shows that the CC gives a more consistent response than

MI when it is estimated for signals having a small number of samples.

The two examples are taken from a registration experiment between a

contrast enhanced and a native CT image of the leg, both images of

size 512 x 512 pixels with 256 intensity levels. Figure 3.11(a) depicts

the reference image without contrast agent, and Fig. 3.11(b) shows the

floating CT image with contrast agent. For the experiments, two repre¬

sentative image patches were manually selected from the floating image

and horizontally translated from their initial position over the reference

image. The selected image patches are of size 32 x 32 pixels, equivalent to

sub-images of the 5th level of the hierarchy. In the first experiment, the

floating image patch shows a clear structure due to muscle boundaries.

By using Eq. 2.36 and Eq. 2.24, the responses of MI (Fig. 3.11(d)) and

CC (Fig. 3.11(f)) are calculated for a horizontal displacement of up to 10

pixels. The second experiment is done for an image patch with almost

uniform intensities, containing no relevant structure. The corresponding

responses of MI and CC for a horizontal shift for up to 10 pixels are

depicted in Fig. 3.11(c) and Fig. 3.11(e) respectively.

These experiments demonstrates the superior performance of CC over

MI. Firstly, the interpolation artifacts are drastically reduced. Secondly,
for the image patch having almost homogeneous intensity values with no

visible structure, the CC shows more robust response than MI. The CC

decreases when translating the structureless image patch from its initial

position because on both sides of the reference image there are more pro¬

nounced structures uncorrelated with the floating image patch. Mean¬

while, in complete accordance with the discussion presented in Sec. 3.1.3,

MI increases as the structureless sub-image starts to overlap the bone,

pretending a better fit between the two image regions when the struc¬

ture represented by the bone-muscle interface lies somewhere in the noisy

patch. Note, that MI shows significant responses in both experiments

and a simple threshold based approach of the MI responses, as proposed

in [Likar and Permis 2001], might fail in detecting this obvious outlier.

3.4.2 Local intensity mapping

The proposed mapping strategy bases on the observation that the per¬

formance of a registration algorithm will not increase if one of the images
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Figure 3.11: (a) The reference CT. (b) The floating CT of the leg. The

right mask covers an image patch having clear structures, the left one is

over a structureless image patch. The MI response when the structureless

image patch (c) and the structured region (d) are horizontally translated

up to 10 pixels from their initial position. (e,f) The CC response for the

same horizontal translations of the aforementioned image patches
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Figure 3.12: Transversal slices of rigidly registered (a) CT and (b) MR

acquisitions of the head

contains more structural details than the other. On the contrary, details

visible in only one of the images can lead to ambiguities by inducing

misleading optima in the similarity measure. The performance of the

registration procedure thus only depends on those image features which

exist simultaneously in both modalities. The proposed mapping proce¬

dure builds an intermediate pseudo-modality of the images that will show

only the common image features and drop additional details prominent

in only one of the modalities.

Figure 3.12 depicts two corresponding transversal slices from rigidly reg¬

istered 3D volumes of 512 x 512 x 50 voxels of size 0.39 x0.39 x0.6 mm3.

Obvious differences can be noticed not only in the intensities of most of

the structures but also in the visibility of details of the tissues. These dif¬

ferences make that the mapping between the intensities is neither linear,

nor invertible.

We propose to estimate the functional relationship between the inten¬

sities of the different modalities by using the information contained in

the joint histogram of the coarsely registered images. In a first step, the

mean values and the variances of all MR image (B) voxels are calculated,
which correspond to the normalized intensity values a G Ha Ç 0..255 in

the CT image (A) using the joint histogram TLab '
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and likewise for the MR image voxels b G Hb Ç 0..255:
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For each of the histogram bins of the CT and MR, a flag fa, fb and a

counter ca,Cb is defined. The flag encodes whether an intensity value

should be mapped by the corresponding p function or should be kept

unchanged:

{1
map to the other modality

0 undefined in the joint histogram (3.16)
— 1 keep the value unchanged.

The counters are increased by one, whenever an intensity from one

modality is mapped onto its bin. As it is our aim to suppress structures

in a patch which are not visible in the other modality, the flags select

intensities according to the image with smaller variance. The counters

are also updated according to this decision:

Va
/ if aA^ < aB(pA(a)) - fa = I, inc. counter cma(o)

=

cma(o) + 1

' \ if aA(a) > o-b(pa(o)) —> fa = -1, inc. counter ca = ca + 1

(3.17)
and likewise for the MR image:

V6
{ if aB<yb"> < aA^B(b">"> -> fb = l, inc. counter cmb(6) = cmb(6) + 1

' \ if aB(b) > o~A(pB(b)) —> fb = -I, inc. counter cb = cb + 1.

(3.18)

As can be seen in the schematic joint histogram in Fig. 3.13(a+b) three

different regions can be distinguished according their variance. For the
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regions where fa > fb and fa < fb the mapping direction is unambiguous
and indicated with an arrow. In Fig. 3.13(b) the same regions are labeled

according to the flag notation. If aa « ob no clear decision can be made.

For the intensities in this ambiguous region (see Fig. 3.13(c)) it is very

likely that the value 6; will be mapped to at and at which in turn is

associated with &&. Accordingly, the mapping function va(o) for A can

be written as:

Va = 0..255, b = VA(a)

if fa > fßA{a)
if fa < /MA(a)
n Ja JuA(a)

Pa(o)
a

ambiguity.

(3.19)

fa = fb

Figure 3.13: Schematic joint histogram with (a) three regions defined

by their variances, (b) the three regions labeled with the flag notation,

and (c) illustration of ambiguities

Two different ambiguous cases can be distinguished: (1) fa = f.
MA (a) 1,

i.e. the intensities in both modalities are to be changed and (2) fa =

fuA(a) = ~l i-e- both of them should be kept. The mapping counters

ca, cUA(a) are used to resolve such situations:

V/a = fuA{a), b= vA(a)
if ca > cMA(a) —> a

if ca < cma(o) —> pA(a)
(3.20)

Corresponding formulas for Eq. 3.19/3.20 are used for vb(1)). As such,
the mapping function vb (b) for B can be written as:
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if A > i"MB(6) - Pß(b)
Vb = 0..255,a=vB(b)={ if fb < /mb(5) -+ 6 (3.21)

if fb = fuB(b) -> ambiguity

and the ambiguities are solved similarly by using the counters c&, c
ub (6)-

V/6 = /MB(6), a = Mb) =

6
^ MB(6)

„, (3.22)
if Cb > cu„(b\ —> 6

^ I if cb < cMB(6) -^
pB(b).

These ambiguities have to be resolved iteratively until no further changes
in the resulting mappings are detected. Figure 3.14 and 3.15 show ex¬

amples of CT/MR mappings using the proposed method.

3.4.3 Preliminary results and conclusions

Two representative examples were chosen to demonstrate the advantages
of integrating this intensity mapping procedure into the hierarchical reg¬

istration, such that CC can be used as the similarity measure instead of

MI after a certain level of the hierarchy has been reached. Two regions

of interest have been selected for illustration, marked with white squares

on Fig. 3.12. All patches are of 64 x 64 x 17 voxels, equivalent to the 4th

level of the subdivision.

The first experiment was performed with an image pair (upper white

squares in Fig. 3.12) containing rich structural details. Figure 3.14 shows

the original patches, their intensity mapped versions and the behavior

of MI (on the original) and CC (on the intensity mapped images) for

horizontal displacements up to ±10 pixels. It can be seen that for regions

having sufficient structural information, both similarity measures are

sufficiently stable for finding the correct registration position.

A different region of interest (lower white squares in Fig. 3.12) has been

used for the same experiment. While the corresponding CT patch is

almost uniform, the MR image shows significant contrast within the

brain tissue covered. This is a classical case in which MI generally fails

to find the correct registration position, see [Andronache et al. 2005].

Figure 3.15 shows the original and intensity mapped patches together
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Figure 3.14: (a,b) Initial patches showing rich structural details and

(d,e) their intensity mapped versions, (c) The response of MI on the

original and (f) CC on the intensity mapped images to horizontal trans¬

lations
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Figure 3.15: (a,b) Patches with major differences of tissue contrast in

CT and MR. (d,e) Intensity mapped versions of the images, (c) The

response of MI on the original and (f) CC on the intensity mapped

images to horizontal translations



82 3. Mutual Information and the Hierarchical Image Splitting

with the comparison between the MI and the CC responses to horizontal

translations. While CC remains robust for this region, too, MI shows

highly unreliable behavior.

As has been previously discussed, MI shows unsatisfactory behavior for

the matching of structureless or small image patches due to the lack

of statistical consistency caused by the small number of available image

samples. CC proved to be more robust, but it can not be directly used for

cases, where the intensity relation between the modalities is non-linear.

The mapping strategy presented in this section enables the combina¬

tion of both similarity measures for multi-modal registration procedures

relying on a hierarchical subdivision strategy. At the first levels of the hi¬

erarchy, where the partitions are still relatively large, MI can be used to

coarsely register the corresponding patches. After this stage, the images

can be transformed to a pseudo-modality using the presented mapping

technique and the similarity measure can be switched to the more robust

CC.

With the proposed hybrid approach that uses MI for the first levels and

CC for the last few levels, two important properties of these similar¬

ity measures can be seamlessly combined in a unique manner, namely
the multi-modal capabilities of MI with the robustness of CC without

increasing the computational complexity of the underlying algorithm.

3.5 3D registration

Many clinical procedures today involve the usage of 3D images. The

original hierarchical non-rigid registration, developed for the registration

of 2D microscopic images will therefore have to be generalized to 3D.

It is, however, very straightforward to extend the hierarchical image

splitting strategy from 2D images to 3D volumes. Fundamentally, the

principle is the same in 3D as in 2D, but there are some minor modifi¬

cations and adaptations to be made. These modifications are imposed

by the additional dimensionality and also by the usual anisotropy of the

voxels. While similarity measures such as MI benefit from the increase in

structural information and in the number of image samples, the higher

computational complexity due to the increase of the number of degrees
of freedom will have to be handled.
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3.5.1 Mutual Information behavior for 3D data

In Sec. 3.1, a series of limitations of MI as a similarity measure were pre¬

sented, especially for sub-images of small size. Although the discussions

were based on 2D images, most of the problems can also be observed in

3D volumes. These problems are strongly related to either the limited

number of available image samples or the lack of structural context of

the sub-images. Due to the inherent increase of the available informa¬

tion due to the 3D nature of the images, MI has higher reliability at the

corresponding hierarchical levels. In this case, the hierarchical image

splitting will lead to sub-volumes and the chance of local misregistra¬

tions is smaller as the number of image samples increases. However,
the same negative tendencies in the behavior of MI can be noticed, like

increasing interpolation artifacts or diminishing statistical consistency

when dealing with structureless sub-images.

3.5.2 Extending Moran's consistency test to 3D

In order to avoid the spurious local mis-registrations due to a lack of

structural content within the partitioned sub-images, the same spatial

autocorrelation coefficient can be used to determine the nature of the

partitioned image regions. A few adaptations have to be made to the

2D version of the consistency test as presented in Sec. 3.2. These concern

mainly the definition of the contiguity matrix and the computation of

the standard Z value.

According to the definition, the contiguity matrix contains information

regarding the amount of interaction between the neighboring image vox¬

els. Following the same concept as in 2D, the W matrix will be deter¬

mined according to a maximum distance interaction T> = (T>x,T>y,T>z)
between two image voxels, equivalent to the minimum size of the image

structure to be detected. For 3D images, the contiguity matrix will also

be selected inversely proportional to the Euclidean distance between the

inspected voxels. The anisotropy of the voxel dimension has to be taken

into consideration when calculating the voxel distance.
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For a 3D image patch A*, a spatial location of a voxel is denoted with

s = (sx, sy, sz) within the image domain Ha*. The vicinity of size T>

around s*is therefore defined accordingly as:

Vf = {p= (px,Py,Pz) G HA*,V | st -pt |< Vt with i G {x,y, z}}.

(3.23)
Having expressed the vicinity of a voxel, the contiguity matrix can be

calculated using Eq. 3.9 and the Moran / coefficient is calculated using

Eq. 3.10. Note, that now in Eq. 3.9 and Eq. 3.10 3D image coordinates

have to be used. Once the autocorrelation coefficient is calculated, the

estimation of the first two moments E(I) and E(I2) can be done using

the equations 3.3 - 3.5. Once more, the structural content of the image

is establish by testing the significance of the Moran's / coefficient by the

Student's t-test.

3.5.3 Image splitting strategy in 3D

Another modification imposed by the 3D nature of the image concerns

the partitioning procedure. If in 2D cases, the images are very likely to

present an unitary or close to 1 aspect ratio on the x and y axes, for

3D images the situation is different in most of the cases as usually the

slice distance is significantly higher than the pixel size. This results in

an image volume with strongly imbalanced aspect ratio along the 3D

directions.

For 3D images we use a splitting strategy which does not necessary en¬

force a simultaneous partitioning in the three directions of the image

volume. Instead, we try to achieve cube shaped sub-images in the world

coordinate system. Sub-images partitioned along one direction are di¬

vided in the corresponding dimension in two equal parts. The difference

lies in the adaptive selection of the directions on which the splitting will

be applied. This decision is based on a simple test of the aspect ratio

of the edge lengths of the sub-volume. To achieve the cube shaped sub-

volumes, the division is performed only in those directions that have a

ratio > 1.5 compared to the smaller ones. If all dimensions are com¬

parable (all possible ratio combinations are < 1.5), the splitting is done

simultaneously on all directions. In this way, the image splitting strategy

may result in a variable number of partitioned sub-volumes at each level
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of the hierarchy. Note, that no sub-voxel partitioning is applied during
the subdivision process.

This adaptation of the splitting strategy for 3D images is applicable

to image volumes consisting of a small number of slices. In this case,

the initial volume is divided into sub-volumes composed of single slices

having a decreasingly imbalanced aspect ratio along the 3D directions

after a few hierarchical levels.





4

Deformation Field

Regularization

All the non-rigid image registration algorithms determine a dense de¬

formation field which is supposed to be sufficiently flexible to correctly

match the images everywhere in their image domain. As already pre¬

sented in Sec. 2.3, the research is currently focused on approaches which

usually derive the deformation field from a series of local transformations

that are found according to different strategies. These local transforma¬

tions are often independently found and constraints must be imposed
to ensure their continuity over the whole warped domain. As these

constraints are very likely to be insufficient to ensure physically real¬

istic deformations, an additional regularization procedure is typically

applied. At the same time, the deformations can eventually be extrap¬

olated to those image regions that are without salient image features.

The regularization procedure usually enforces the deformation field to

be a homeomorphism (continuous, one-to-one, and topology preserving).
However, this assumption may be violated in the case of pathologically

induced changes that can produce a lack of dense correspondence in the

images (e.g. tumor growth) or discontinuities (like surgical procedures).

This chapter gives a brief overview of the state-of-the-art for deformation

field regularization, followed by the description of a deformation field

regularization adapted to our proposed adaptive hierarchical strategy.
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4.1 An overview of the existing methods

Various regularization methods have been proposed in the literature

(see [Hajnal et al. 2001, Maes et al. 2003, Stefanescu et al. 2004]
and the references therein), staring with the representation of the defor¬

mation field as a weighted sum of smooth basis functions, or free-form

approaches incorporating diverse smoothness constraints, to parameter¬

ized deformation models physical-based inspired or constructed using

statistical analysis.

In the context of the hierarchical image splitting strategy, the local rigid

registrations of the partitioned sub-images are optimized completely in¬

dependently of the neighboring sub-images, without enforcing any con¬

straints. In its original version ([Likar and Pernus 2001]), every level of

the hierarchy uses TPS to reconstruct the complete floating image. In

order to avoid the propagation of possible local misregistrations at sub¬

sequent levels, they proposed a threefold local registration consistency

test and a correction of the pixel intensity at every level of the hierar¬

chy before performing the TPS image reconstruction. In a first stage, a

geometrical test is used to detect and correct possible large mismatches.

Additionally, to detect and eliminate mismatches with only small geo¬

metrical displacement, they used two additional tests on the similarity

measure. Firstly, they detect the sub-images whose similarity function is

small and inconsistent with the other sub-images. Secondly, they detect

possible errors of the optimization due to local maxima by analyzing the

graph of the similarity measure around the identified optima.

4.2 The proposed deformation field regu¬

larization

Even though our proposed algorithm uses a hierarchical strategy similar

to [Likar and Pernus 2001], important differences stem from our adap¬

tive image splitting scheme. In contrast to their method in which at

each level both the reference and the TPS reconstructed floating image

are partitioned simultaneously, our splitting strategy is applied only on

the floating image, more precisely on the sub-images registered at the
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previous level. The biggest advantage of this approach is due to the com¬

bination of the Moran's information consistency test with a scheme for

inheriting registration parameters to the newly partitioned sub-images.
This combination eliminates most of the problems in the original hi¬

erarchical strategy and also allows simpler heuristics to regularize the

deformation field. Even though Moran's test removes all possible local

misregistrations produced by structureless sub-images, some spurious lo¬

cal mismatches may still appear due to additional factors. For example,
the optimization procedure might get trapped in a local maximum of

the similarity function, caused by either voxel interpolation artifacts or

a locally good match induced by repetitive patterns present in the image

scene. In both cases the similarity measure presents multiple maxima

that are locally consistent but globally incorrect, leading to erroneous

overlap of neighboring sub-images.

In order to achieve robust and accurate registration, the accuracy of the

individual local matches has to be ensured. For this, we propose a couple
of tests to regularize the deformation field. Firstly, we test the similar¬

ity function for the presence of local maxima induced by interpolation

artifacts. Secondly, we perform an outlier detection to remove possible
mismatches induced by similar structures in the neighborhood.

4.2.1 Test for local maxima the similarity function

As already presented in Subsect. 3.1.1, MI is highly sensitive to voxel

interpolation artifacts. The results of various experiments reported by

numerous researchers (e.g. [Pluim et al. 2003, Tsao 2003, Ji et al. 2003,

Hajnal et al. 2001]) in connection with rigid transformations showed

that the sensitivity of MI is larger for image translations than for ro¬

tations. Therefore, we propose to sample the MI response on a regular

grid of size A^est around the currently found optimal position. If a higher

maximum is found, the registration parameters are changed according to

this position and the optimization procedure is restarted. We selected

the MI sampling grid of size A^est equal to the size of the contiguity

matrix defined in the Moran test.
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4.2.2 Outlier detection

It is possible that sub-images have rich structural information in the

form of a repetitive pattern. This can induce a series of local maxima

in the the similarity function, which locally seem to be consistent but

may lead to globally inconsistent matches. To such cases we use a two

stage outlier detection. Firstly, the test detects sub-images that moved

too far away from their initial inherited positions, followed by checking
the position of every sub-image relative to its neighbors. All those sub-

images failing in any of these two stages are marked as outliers and their

associated registration parameters are corrected as will be described in

the following section.

The elimination of the large geometrical mismatches is performed sim¬

ilar manner as by [Likar and Pernus 2001]. The translation dt of each

sub-image B\ resulting from the local registration is compared with a

predefined maximum allowed distance R\. Denoting the center of the

sub-image in world coordinates with <f>\ ,
then the distance a\ between

the spatial positions before and after the local registration at the /th

hierarchical level is defined by the Euclidean distance as:

d, = iro,(Vm(0)ii (4.i)

where % is the transformation corresponding to the initially inherited

set of parameters a\ and % corresponds to the currently optimized pa¬

rameter set a\ .
In contrast to the original method proposed by Likar

and Pernus, we allow more flexibility for the local displacement of a sub-

image, by setting this maximum distance R\ to be up to 50% of the

currently tested sub-image diagonal. All the sub-images with a distance

dt > R\ are declared outliers and their associated registration parame¬

ters are corrected using the interpolation method described in the next

section.

Up to this stage all sub-images were handled independently of their

neighboring sub-images. Therefore, the second stage iteratively checks

the consistency of the position of every sub-image B\ relative to its

direct neighbors Bk .
More precisely, this test verifies that the cen¬

ter of the currently tested sub-image lies within a region of confidence

defined by all its adjacent sub-images. This region of confidence rep¬

resents an ellipsoid with main axes (D2) equal to 50% of the size of
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the currently tested sub-image. The center of this ellipsoid is the cen-

troid of the set of masses inversely proportional with the area/volume
of the adjacent sub-images and placed at their corresponding centers. A

sub-image whose center lies outside the region of confidence is labeled

as temporal outlier. This second stage of the geometrical test is per¬

formed iteratively because undetected outliers might be included in the

evaluation of the region of confidence. At every iteration, all the pre¬

viously marked temporal outliers are eliminated from the calculation of

the region of confidence, but tested again for their geometrical consis¬

tency. The procedure iterates until the list of temporal outliers remains

unchanged. Once no new temporal outliers are being added or elimi¬

nated from the list, all the sub-images in the list are marked as outliers.

Note, that the sub-images located at the border of the floating image

lack certain neighboring sub-images. To virtually create these missing

neighbors, the existing neighbors are mirrored relative to the horizontal

and vertical axes across the center of the bordering sub-image.

Fig. 4.1 depicts a 2D schematic example of the two stage geometric

test. As the center of the sub-image marked with the square with thick

continuous borders (C[) is outside the circle of confidence with radius

R\ around its initial position C\, the sub-image is marked as an out¬

lier. Consequently, its position is corrected resulting in the thick dotted

square, with the center C'{. Note, that C'{ lies right to its initial position

C\, due to the influence of the adjacent sub-image marked with the thin

dotted square which was taken into account while correcting the regis¬

tration parameters. In this schematic example no more outliers will be

detected by the second stage of the geometrical test, as the sub-image
marked with the thin dotted square has its center C2 inside the region of

confidence. This region of confidence with diagonal D2 and center Cm is

derived from all adjacent sub-images, including the previously detected

and corrected outlier.

4.2.3 Parameter inheritance and outlier correction

All the outliers detected by the aforementioned tests require a new set

of interpolated registration parameters. This correction of the registra¬

tion parameters is done using the inverse distance weighted interpolation
method presented in [Shepard 1968]. This method estimates an interpo-
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Figure 4.1: A schematic example showing the performance of the two

stage geometrical test. The sub-image marked with the square with

thick continuous borders is detected as outlier by the first stage of the

geometrical test and consequently its position is corrected in the square

with thick dotted borders. The second stage of the geometrical test finds

no more outliers (see text for more details)

lated rigid transformation at a desired spatial position, given the set of

rigid transformations at a series of control points.

Adapted to the hierarchical notation, the new set of parameters a\ '

of a detected outlier B\ can be extracted from the newly estimated

transformation matrix %, interpolated at the spatial position sb = %

which represents the center of the outlier. Assuming that the outlier has
(i'

no adjacent sub-images that are not marked as outliers with centers <f>k

and associated transformations Tj., then:

(0

%(s) = ^wfc(s) -Tk (4.2)
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The interpolation weights wj. are defined as:

where:

wk(s) = ^n-0—p-
4.3

qk(s) = —^ (4.4)

such that:
n0

X>fc00 = l. (4.5)
fc

The same interpolation strategy is used for calculating the inherited

registration parameters of the partitioned sub-images at the transition

from one level to another of the hierarchical algorithm. At any level

/ > 2 the set of control points is formed by the parents (at the level

/ — 1) of all the neighboring sub-images.

4.2.4 The final dense deformation field

Similar to Likar and Pernus, we use TPS to estimate the final dense

deformation field. Having defined an automatic stopping criterion for the

subdivision procedure as described in the next chapter, TPS interpolates
the centers of all the sub-images at the last hierarchical level. Following

the description presented in Sec. 2.4.4, we estimate the 3(n('flnal) + 4)
TPS interpolation parameters pt and tt using the non-linear radial basis

function given in Eq. 2.48 and solving the system of Eq. 2.49. The

necessary set of control points are the centers <f>t of all the n^1"1^ <

22('finai-i) sub-images of the final hierarchical level, after performing the

regularization of the deformation field. Hence, using Eq. 2.47, the dense

smooth deformation field can be estimated at any point sb of the floating

image.





5

The Enhanced Hierarchical

Multi-modal Non-rigid

Registration Algorithm

This chapter presents the entire enhanced hierarchical algorithm we de¬

veloped for non-rigid registration of multi-modal images. By integrating

the previously discussed methods in a single framework, we overcome

several limitations of the original version of Likar and Pernus. In ad¬

dition, we extended the algorithm to handle volumetric images. This

chapter presents the algorithmic flow in detail and continues with the

description of an alternative approach changing the similarity measure

from MI to CC at higher levels of the hierarchy.

5.1 Description of the registration

algorithm

The hierarchical algorithm follows a coarse-to-fine gradual approxima¬

tion of the non-rigid deformation field to compensate spatial misalign¬

ment between two mono- or multi-modal medical images. By progres¬

sively subdividing the floating image (see Fig. 2.4), an image pyramid
is constructed, comprising at every level of an exponentially growing

number of sub-images whose centers and their related transformation

parameters constitute the control points of the deformation field. The

initial registration parameters of every sub-image are inherited from the

previous hierarchical level. The new partitioned sub-images are then
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checked by Moran's information consistency test and only sufficiently
structured image patches are passed to the registration stage. For all

the sub-images that fail this consistency test, the hierarchical splitting
is stopped. The maximization of MI is then used to find the best in¬

dividual registration parameters that locally match every sub-image to

the reference image. The optimization procedure uses the classical Pow¬

ell multi-dimensional direction set method and Brent's one-dimensional

optimization algorithm described in [Press et al. 1988]. To further in¬

crease the robustness of MI, a prior distribution is combined with the

local joint intensity histogram, using a weighting parameter equal to

the ratio of the areas of the actual sub-image and the remaining of the

floating image. Possible outliers due to local maxima of the goal func¬

tion are detected by performing an exhaustive search for the global MI

maximum in a small vicinity around the estimated optimal position. If

this check confirms that the optimization converged to a local maxima,

the registration procedure is reinitialized and restarted. The following

regularization of the deformation field is ensuring the geometrical con¬

sistency between neighboring sub-images. Therefore, spatial constraints

are imposed on the centroids of the sub-images by defining a region of

confidence according to their neighbors. The registration parameters

of the identified outliers are then corrected by interpolation. The stop¬

ping criterion checks whether any sub-images are left that can be further

subdivided according to Moran's test. Otherwise, the dense deformation

field of the final result is calculated using TPS, densely interpolating the

local transformations of the sub-images over the whole image domain.

During the detailed description of the individual stages, we will use the

following notation. The current level of the hierarchy is denoted with

/ > 1, and the initial input images are d dimensional, with d = {2,3}.
The reference image is denoted with A and the floating image with B.

The adaptive splitting strategy partitions only the floating image in n'1'

sub-images B\ . Every sub-image has an associated set of rigid transfor¬

mation parameters a\ = (t, r) and an information consistency flag F^ ',

specifying whether a sub-image passed (F^ '
= 1) or failed (F^ '

= 0)
the Moran test.

Following the flow-chart depicted in Fig. 5.1, our hierarchical algorithm
starts with a global rigid registration of the input images. As such,
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the global misalignment between the reference and the floating image is

compensated, providing a good initialization for the subsequent levels.

All the succeeding / > 2 hierarchical levels are iteratively following the

same procedure which is composed of six major stages SI - S6. Once the

stopping criterion (S6) is fulfilled, the hierarchical iterations are stopped
and the algorithm finalizes with the estimation of the dense deformation

field (S7) and the reconstruction of the registered floating image (S8).

SI: The image partitioning (Sec. 3.3.3) is performed at the current

hierarchical level / on all the sub-images Bk of level / — 1 that

successfully passed Moran's consistency test. Each of these Bk
are partitioned into 2, 4 or 8 equally sized new sub-images B^ ,

such that the aspect ratios along the x, y and z directions are as

close to 1 as possible (Sec. 3.5.3). Apart from the newly partitioned

sub-images B\ ,
the current level / directly inherits all the struc¬

tureless sub-images (F^ = 0) from the previous level, i.e. the

union of all the sub-images at the current level / reconstructs the

entire floating image.

S2: The inheritance of the registration parameters follows the

strategy for inverse distance weighted interpolation, described in

Sec. 4.2.3. These inherited registration parameters a\ '
are esti¬

mated in the current sub-image center </>4 by interpolating the

set of parameters {ak } placed in the centers <f>k of the par¬

ents Bk of all the neighboring sub-images.

S3: Moran's information consistency test (Sec. 3.2.3) is performed

on all newly partitioned sub-images B\ defining their associated

consistency flags F^ '. It checks the information content of both

the floating sub-image B\ and its corresponding region in the ref¬

erence image A*. If any of these fails the information consistency

test, then the floating sub-image B\ is marked as structureless by

setting its associated information consistency flag Ff =0. Once

detected, a structureless sub-image is automatically excluded from

all subsequent registrations and subdivisions.

S4: The local rigid registration follows the procedure described in

Sec. 2.2 and is performed on all newly partitioned sub-images with



98 5. The Enhanced Hierarchical Registration Algorithm

Figure 5.1 The flow-chart of the enhanced hierarchical non-rigid reg¬

istration algorithm (see text for more details)
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Ft = 1. Starting with the inherited set of transformation param¬

eters a\ ,
the Powell's optimization algorithm estimates a new set

a\ which maximizes MI estimated from the local joint intensity

histogram incorporating prior information. The local histogram

is built in a deterministic manner from the overlapping region of

%(B\ ) with the reference image A. The prior information is esti¬

mated from all the sub-images except the current one, using their

initial registration parameters as estimated in step S2. For com¬

bining local and prior information, we use a weighting parameter A

equal to the ratio between the number of image samples contained

in the current sub-image B\ and the remainder of the floating

image.

S5: The deformation field regularization (Sec. 4.2) is composed

of two consecutive tests:

(a) The test for local maxima in the similarity function

(Sec. 4.2.1) decides that during the previous local rigid regis¬

tration stage S4, the optimization algorithm was not trapped
in a local maximum of the similarity function, induced by in¬

terpolation artifacts. This test is performed on all sub-images
that were undergoing the local rigid registration phase. For

each of these sub-images, the response of the similarity func¬

tion is analyzed on a regular grid centered around the opti¬

mized position. If another local maximum higher than the

original one is found, the registration parameters are changed

accordingly and used for re-optimizing the registration in step

S4.

(b) Outlier detection (Sec. 4.2.2) is a two stage geometrical
test which ensures the consistency of the deformation field at

the current hierarchical level /. In the first stage, each sub-

image is tested whether its center has spatially displaced by

more than half of its diagonal compared to the previous local

registration. If necessary, the set of registration parameters

of a detected outlier is corrected using the method described

in Sec. 4.2.3. The second stage of the outlier detection iter¬

atively checks the consistency of the spatial position of each

sub-image relative to its neighbors. The center of the cur-
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rently inspected sub-image is tested whether it lies within a

region of confidence, represented by an ellipsoid whose diag¬

onals are equal to 50% of the size of the currently inspected

sub-image and which is centered in the centroid defined by
its neighboring sub-images. The method mentioned above

is used to correct the registration parameters of a detected

outlier.

S6: The stopping criterion decides whether the hierarchical sub¬

division can be finished. This decision is taken at each level by

testing the consistency flags of all the sub-images. If any of them

has a consistency flag Ft(l) = 1, a new hierarchical level with all its

phases is performed. Otherwise, the entire registration algorithm
continues with stage S7 and calculates the final dense deforma¬

tion field. This decision will implicitly enforce a minimum possible
size of the partitioned sub-images corresponding to the size of the

contiguity matrix used in the Moran test.

S7: The final dense deformation field is estimated (Sec. 4.2.4)

using the TPS technique for spatial interpolation of the centers of

all the sub-images at the last hierarchical level. The corresponding
transformations between the floating and the reference image are

defined by the last optimized registration parameters.

S8: The reconstruction of the final registered image is per¬

formed by warping the floating image into the domain of the ref¬

erence image by using the previously estimated deformation field.

5.2 Registration algorithm using both Mu¬

tual Information and Cross-Correlation

In Sec. 3.4 we presented an alternative solution to overcome the statis¬

tical instability of MI for small sub-images. We proposed an intensity

mapping strategy which enables the combination of both MI and CC as

similarity measures for achieving the local registration. The basic idea

is to use MI at the first levels of the hierarchy, where the partitioned

sub-images are relatively large and MI is statistically consistent. As the
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images are coarsely registered, the proposed intensity mapping can be

used to robustly transform the multi-modal registration into a pseudo-

mono-modal registration scenario, and thus allowing to use CC to per¬

form the local matchings for subsequent hierarchical levels, increasing

the robustness of the registration algorithm.

The implementation of this strategy requires minor changes in the pre¬

viously described algorithmic flow. Basically, the changes affect only

stage S4. Currently we enable the switch from MI to CC at a predefined
hierarchical level 4witch- From this level on, the intensity mapping pro¬

cedure is applied for each sub-image passing the Moran test. Once the

pseudo-modality images are estimated, the local registration becomes

a standard rigid registration procedure which uses CC as the similar¬

ity function. All the other stages of the hierarchical algorithm remain

unchanged with the exception that the deformation field regularization

procedure S5(a) will test CC for the presence of local maxima.
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Results and Validation

In this chapter we investigate the performance of our proposed enhanced

hierarchical non-rigid registration algorithm (shortly called ENRA) which

was developed and implemented in C++ according to the description

given in Chapter 5. The implementation was done within a general

framework capable to handle with 2D and 3D images from any input

modality. Also, the implementation allows to choose the similarity func¬

tion used to perform the local rigid registration of the partitioned sub-

images. This chapter presents first the results of 2D registration ex¬

periments with of mono- and multi-modal images and continues with

results of a 3D data. If nothing else specified, the experiments are per¬

formed using MI as the similarity function. The chapter concludes with

a discussion regarding the validation of the previously presented results.

6.1 Experiments in 2D

This section presents 2D registration experiments on pairs of mono-

modal and multi-modal images. All images used were transversal slices

extracted from a volumetric data set. In order to ensure that the two

selected slices are in correspondence, the initial volumetric data were

rigidly registered before extracting the 2D images. The algorithm used

to pre-register the volumetric data was a classical implementation of a

rigid registration procedure as described in Sec 2.2.

For all the experiments, the ENRA was using the following general setup:

(a) The MI was estimated from the joint intensity histogram which

was generated using 256 bins;
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Figure 6.1 2D CT slices through a leg used for the mono-modal experi¬

ment (a) The reference native data (b) The floating contrast enhanced

image

(b) The weighting factor A for the incorporation of the prior into the MI

estimation was selected as the ratio between the area of the current

sub-image undergoing the local registration and the remainder of

the area of the floating image,

(c) The Moran test was performed with a contiguity matrix with max¬

imum interaction distance D = (3, 3) pixels,

(d) The threshold for the magnitude of the standard Z value of Moran's

I coefficient used in the information consistency test was set to

1 96

The first experiment was performed with a pair of corresponding transver¬

sal slices extracted from volumetric CT scans of a leg which were acquired
for an angiographic study Figure 6 l(a,b) depicts the initial 2D images

undergoing this registration experiment The reference image is a native

CT which has 512 x 512 pixels of size 0 3144 x 0 3144 mm2 The floating

image is a contrast enhanced CT and has the same dimensions as the

reference image

Even if the selected data are mono-modal, the presence of the contrast

agent in the floating image locally induces a multi-modal aspect in this

registration experiment Therefore, we compared the performance of
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Figure 6.2: Details of two non-rigid registration results of a pair of

transversal CT slices of a leg when using CC and MI as similarity func¬

tions, (a) The region of interest on the reference CT. The corresponding

sub-image in the reference native CT (b) and the floating contrast en¬

hanced CT (c). Difference image after registration with ENRA when

using CC (d) and MI (e)

MI and CC for local rigid registrations. Globally, the two registration

results were very similar, except a few image details that were locally

misregistered when using CC. These image details are the blood vessels,
such as the one marked with the white square on the floating image

in Fig. 6.2(a). Figure 6.2(b,c) show this region as it appears in both

the reference and the floating images. The contrast agent changed the

appearance of the blood vessels significantly between the two acquisitions

and therefore CC fails to correctly register those sub-images containing

such a non-linear intensity change. This problem only appears at higher
levels of the hierarchy, when the blood vessels cover a significant surface

of a sub-image. In the same time, MI can find the correct registration

position, due to robust statistical features in the presence of structures.

Fig. 6.2(d,e) show in detail the final registration results when using CC

and MI, respectively.

The previous results were illustrating that MI can perform better than

CC in case of complex intensity relationship between the images to be

registered. Therefore, we further describe the performance of the ENRA

when using MI as the similarity measure to perform local rigid regis-
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(b)

Figure 6.3: Difference images after rigid (a) and non-rigid (b) regis¬

tration of the 2D mono-modal images. The remaining dark dots in the

difference image are caused by the presence of the contrast agent in the

blood vessels of the floating image

trations. Figure 6.3(a) shows the difference image between the initial

CTs (Fig. 6.1), as they were extracted from the rigidly pre-registered
volumes. In this initial difference image, large misalignments due to

different contraction status of the muscles are clearly visible. However,

these deformations were successfully compensated by the ENRA as can

be seen in the final difference image depicted in Fig. 6.3(b).

In this experiment the entire non-rigid registration procedure has been

stopped after the 7th hierarchical level, where the floating image was

partitioned into sub-images of at least 8x8 pixels. Figure 6.4 shows the

evolution of ENRA by interpolating the individual sparse deformation

grid after each level of the hierarchy and then reconstructing the floating
CT. The difference images are calculated after each of the 2nd up to the

last (7th) hierarchical level.

In order to better visualize the evolution of the adaptive hierarchical

splitting strategy using Moran's information consistency test, Fig. 6.5

depicts the partitioning grid of the floating image schematically projected

onto the aforementioned set of difference images. Figure 6.5(a) depicts
the 2nd hierarchical level, consisting of four partitioned sub-images. The

following images show the evolution of the partitioning grid, up to the

7th hierarchical level, which concluded the entire procedure. This figure
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(a) (b) (c)

Figure 6.4: Difference images of the intermediate results obtained after

the 2nd (a) up to the 7th (f) hierarchical level

clearly shows how the image splitting omits those sub-images failing

Moran's test, and therefore each level of the hierarchy contains sub-

images of variable size.

For this mono-modal experiment, we compared the performance of ENRA

to the original method proposed in [Likar and Pernus 2001]. The original

algorithm was stopped after the 5th hierarchical level, because spurious

local misregistrations were appearing, without being detected by their

proposed triple consistency test as described in Sec. 4.1. Their algorithm

not only performed less accurately, but was also 5 times slower as our

method. On a Sun Blade 2000 machine, our algorithm needed 10 min¬

utes to complete all the 7 hierarchical levels compared to 52 minutes for

only 5 hierarchial levels used by the original method. This big difference

is only partially explained by the obviously increased number of sub-

images to register at each level of the hierarchy. Another reason lies in

the similarity consistency test which enforces the re-optimization of an
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Figure 6.5: Evolution of the adaptive hierarchical splitting along the

non-rigid registration procedure of 2D CT transversal slices of the leg.

The partitioning grid was schematically projected onto the difference

images between the reference and the partially registered floating CT

image after each of the hierarchical levels, from the 2nd (a) up to the

7th (f)
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increased number of structureless sub-images, whose similarity measures

are inconsistent and show spurious maxima.

Further experiments have been performed for non-rigidly register multi¬

modal images. Figure 6.6 shows the performance ofENRA in comparison

to the original method for a 2D experiment of a CT/MR cross registra¬

tion of the head. Similar to the previously presented experiment, the

2D sample images are corresponding slices extracted from the rigidly

pre-registered 3D initial volumes. Figure 6.6(a) depicts the reference

CT and Fig. 6.6(b) the floating MR slice. Both images have 512 x 512

pixels of the size 0.5 x 0.5 mm2. A comparison between Fig. 6.6(e) and

(f) clearly shows the favorable effect of using Moran's test when the

local registration is dealing with structureless sub-images. In addition,
the Moran's consistency test incorporated into the enhanced algorithm

allows us to go further with the hierarchical subdivision down to sub-

images of 16 x 16 pixels, while Likar and Pernus reported a minimum

sub-image size of 64 x 64 pixels. Further, depending on the number

of detected structureless sub-images, our proposed algorithm performed
five times faster than the original method (9 minutes for ENRA and 50

minutes for the original algorithm, on a Sun Blade 2000 machine).

The reason for choosing the CT as reference and the MR as floating

image lies in the fact that geometric distortions are minimal for a CT

scan while the MR will show susceptibility artifacts in the vicinity of

air filled cavities of the skull. Consequently the spatial accuracy of the

MR scan is expected to be worse. This limited accuracy is an additional

important reason that, beside the possible tissue deformations, a non-

rigid registration procedure is required for a CT/MR registration.

Figure 6.7 shows the result of the previous experiment as a colored over¬

lay image. The red channel corresponds to the CT and the green to

the MR image. The non-rigid registration has been stopped at the 6th

hierarchical level, where the initial floating image was partitioned into

sub-images of at least 16 x 16 pixels. Figure 6.7(a) shows the overlay
after the rigid registration and Fig. 6.7(b) shows the final result of the

ENRA. A simple visual inspection shows the ability of our method to

compensate for large elastic deformations. For example, the algorithm

was successfully recovering the strong deformations of the left ear pro¬

duced by the fixation device used during the CT acquisition. However,
the method worked less satisfactory for the right ear which still shows a
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(a) (b)

Figure 6.6: Registration details of the sphenoid sinus in the left tem¬

poral bone at the 6th level of the hierarchy, where the floating image is

divided into 32 x 32 sub-images of 16 x 16 pixels, (a) The reference CT.

(b) The floating MR image. The examined region, ((c) on the CT and

(d) on the MR) consists of 3 x 3 sub-images, (e) Depicts the final posi¬

tion of each image patch after the local rigid registration, while (f) shows

the result after applying the local rigid registration only to those MR

patches which passed the Moran test. The consistency check clearly pre¬
vented the two middle patches from being pulled towards structures in

the reference CT
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spatial misalignment. The investigation of this remaining misalignment
revealed that the problem was caused by an unfortunate combination

of two factors. On one hand, the fix positioning of the partitioned sub-

images was not compatible with the image structure in this region. On

the other hand, the regularization constraints were too restrictive for

reconstructing the actual deformation. Therefore, beside more relaxed

geometrical constraints for the deformation field, further improvement

allowing adaptive splitting conforming to the structural content of the

images will be necessary to improve the performance of the method.

6.2 Experiments in 3D

This section presents the performance of ENRA for registering mono-

and multi-modal 3D images. MI was used as the similarity measure for

all the experiments presented in this section, even though some of the

registration examples are mono-modal.

The parameter setting was basically the same as for the 2D experiments,

except for the definition of the contiguity matrix used by Moran's test.

In order to use a contiguity matrix with balanced aspect ratio between

the three directions, the anisotropy of the acquisitions has to be cor¬

rected. For images with voxel dimension £ = (Çx,îy,îz), the maxi¬

mum interaction distance becomes therefore D = (3, 3, dz) voxels, where

dz = max(l, L3£X/£ZJ, [3£j,/£zJ), with |_-J being the usual rounding op¬

erator.

One of the 3D experiments was performed on the previously mentioned

pair of angiographic CT scans of a leg. Figure 6.8(a,b) shows orthogonal

sections through the initial volumes. Both data set have 512 x 512 x 100

voxels of the size of 0.3144 xO.3144 xl mm3. For this registration exper¬

iment, the native CT was considered as the reference and the contrast

enhanced one was the floating image. In order to accurately detect the

calcified plaques on the walls of the blood vessels, a precise registration

between these two volumes was required, such that the vessels from the

two data sets correspond. Even though the patient's legs were immobi¬

lized on the scanner table, the global rigid registration of the two CT vol¬

umes shows significant misalignments that only a non-rigid registration

can compensate. Figure 6.8(c) illustrates the remaining misalignments
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(a)

(b)

Figure 6.7: Rigid (a) and elastic (b) registration results of a neuroradi-

ological CT and MR slices. The reference CT is shown in red while the

floating MR image is shown in green
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on orthogonal slices through the difference image after the global rigid

registration. These originate from deformations due to differences in leg

muscles stresses between the two acquisitions. By applying ENRA, the

corresponding elastic deformations have been successfully compensated.

Figure 6.8(d) shows the difference image between the native CT scan

and the final non-rigidly registered contrast enhanced data. The only

visible structures are dark regions, caused by the contrast agent which

changed the intensities of the blood vessels between the two volumes.

As discussed in the previous section, this mono-modal registration ex¬

periment was performed using MI as the similarity measure in order to

correctly deal with the local intensity changes induced by the contrast

agent.

Additional registration experiments were performed with multi-modal

images using the neuroradiological CT/MR image pair mentioned be¬

fore. A global registration was performed to compensate for the initial

big misalignment between the two scans. Figure 6.9 depicts orthogonal

sections through the globally rigidly registered images. The initial CT

scan is of 512 x 512 x 133 voxels of size 0.309 x 0.309 x 0.6 mm3 and the

MR scan is of512x512xlll voxels of size of 0.5x0.5 x 1 mm3. After the

rigid registration, in order to use the data set for further experiments,

the floating MR image was reconstructed on both the floating and the

reference image domains. Therefore, in the last case, the registered MR

image became of the same dimension as the reference CT.

The first multi-modal experiment shows the capability of ENRA to cor¬

rectly perform the non-rigid registration in difficult situations were both

small image distortions and big elastic deformations are present in close

proximity within an image. The test CT and MR images are cropped

from the aforementioned rigidly pre-registered data set. The reference

CT has 512 x 512 x 46 voxels of 0.39 x 0.39 x 0.6 mm3 dimension. The

floating MR image is of 512x512x28 voxels of the size 0.5x0.5x1.0 mm3.

Figure 6.10 visualizes details of our non-rigid registration method in a

region where elastic deformation is needed to correct for both MR sus¬

ceptibility artifacts (i.e. within the left sphenoid sinus) and tissue defor¬

mation (i.e. the left ear). In order to better compare the results between

the global rigid registration and after applying the enhanced hierarchi¬

cal process, Fig. 6.10(b,c) show the outline of the head and of the left

sphenoid sinus extracted from the MR volume overlaid on the CT. The
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(a) (b)

(c) (d)

Figure 6.8: Rigid and non-rigid registration results for 3D CT scans

of a leg. (a) Orthogonal sections through the reference native CT and

(b) through the floating contrast enhanced CT. Difference image after

their global rigid (c) and hierarchical non-rigid (d) registration. The

white marks placed on the borders of the images denote the correspond¬

ing cutting planes through the 3D volumes
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(a) (b)

Figure 6.9: Orthogonal sections through (a) the reference CT scan

and (b) the floating MR scan after rigid registration. The white marks

placed on the borders of the images denote the corresponding cutting

planes through the 3D volumes

remaining deviations of the two contours are caused by both the spatial
constraints imposed by the regularization of the deformation field and

the size of the smallest sub-image (16 x 16 x 8 voxels) which was still

successfully passing the Moran test.

The following experiment represents the registration of another region of

interest extracted from the aforementioned rigidly pre-registered images

(Fig. 6.9). The cropping was performed to exclude the lower part of the

head, which is not fully covered by the MR image. In this experiment,

the reference CT, shown in Fig. 6.11(a), contains 50 slices of 512 x 512

pixels. The floating MR image is illustrated by Fig. 6.11(b). By using

the same colore overlap scheme as described before, the performance of

our non-rigid registration algorithm can be seen on Fig. 6.11. The initial

overlay of the rigidly registered 3D images is shown on Fig. 6.11(c) while

the overlay of the final non-rigidly registered images is demonstrated by

Fig. 6.11(d).

6.3 Results validation

Before an image registration algorithm can be used in practice for a

clinical procedure, a thorough evaluation has to be performed to assess
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(a) (b) (c)

Figure 6.10: Result of a CT/MR cross-registration, (a) Transversal

and coronal sections through the region of interest in the initial floating

MR volume. (b,c) Corresponding sections in the reference CT volume,

overlaid with the contours of the head and of the sphenoid sinus after

a global rigid (b) and after the full hierarchical (c) registration. The

dashed lines mark the position of the cutting planes

its performance. Firstly, a technical validation phase has to estimate

the algorithm's robustness and the accuracy of its results. Secondly, the

physicians have to clinically validate the new algorithm, by evaluating

its usefulness and contribution to improving clinical diagnosis and plan¬

ning procedures. However, the validation of a registration algorithm is

very often a problematic issue, because the ground truth for the spatial

correspondences is unknown.

The robustness of a registration algorithm can be characterized by its

behavior when external factors affect the input images. The algorithm
should handle artificial perturbations induced either in the form of a

known amount of misregistration, noise or simulated artifacts in the

images. In addition, a robust algorithm should be able to handle data

acquired with a wide range of different imaging modalities of different

subjects.



6.3. Results validation 117

Figure 6.11: Orthogonal sections through (a) the reference CT and

(b) the floating MR image. Orthogonal sections through the colored

overlayed images after (c) rigid and (d) non-rigid registration. The CT

is colored in red and the MR image in green. Note: The white and yellow
lines on the borders of the images mark the corresponding cutting planes

through the initial 3D volumes
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The assessment of the accuracy of the registration results is a widely
debated issue Often, the lack of ground truth of the actual spatial

misalignment between the images to be registered makes an accurate

evaluation of the registration results impossible1 The most widely used

method for validating the registration result is the visual inspection of

the registered images However, this method is subjective, strongly de¬

pendent on the perception and interpretation of the researcher or physi¬

cian Clearly, if the images look wrong then the result is most probably

wrong However, if the images look right, the result might still be wrong

because very small and localized misregistrations are usually difficult to

see Therefore, to eliminate the subjectiveness of the visual inspection, a

mathematical framework to numerically evaluate the correctness of the

registration result is required Many research groups have developed dif¬

ferent validation methods to assess the registration accuracy The most

important approaches are based on phantom images, physical markers,

segmentation and labeling of different regions or comparison with calcu¬

lated tissue deformations provided e g by the finite element method

In order to validate our registration algorithm we rely on phantom im¬

ages The validation setup consists of an artificial registration scenario

to recover a predefined deformation field To circumvent the problem

of the missing ground truth, we chose a triplet of two CT and one MR

dataset of a cadaver The two CT were scanned successively using differ¬

ent radiation energies and we assume them to be perfectly aligned The

third dataset was acquired using a MR scanner and it was registered
with the CT data using the hierarchical algorithm The pre-registered

CT/MR datasets have a size of 512 x 512 x 60 voxels of dimension

0 47 x 0 47 x 1 25 mm3, see Fig 6 13(a,b) The scheme of the entire

validation setup is described in Fig 6 12 A predefined deformation field

1J Michael Fitzpatrick was initiating an international project which aims to eval¬

uate the accuracy of non-invasive, retrospective, rigid, inter-modality image registra¬

tion techniques for images of the human head, particularly with regard to CT/MR
and PET/MR registration Entitled "Evaluation of Retrospective Image Registra¬

tion" [West et al 1997], this project was accessible by research groups from all over

the world and offered a database of test images for which the correct rigid registra¬

tion parameters were known, and considered as gold standard The researchers could

download the test images and send back their registration parameters obtained with

their own method Then, a testing protocol for blind evaluation of the results' accu¬

racy was performed by comparing to the gold standard registrations Unfortunately,

the project was closed before we could use its facilities
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T>o was applied on one of the two CT dataset. For this, the initial volume

(CT\) was split in 4 equally sized blocks of size 256 x 256 x 60 voxels.

Two of these blocks were rigidly rotated as shown in Fig. 6.13(c) and

then the deformed volume was reconstructed using TPS and partial vol¬

ume interpolation. The deformed volume CTX
°
was then considered as

the reference image for the following validation experiments. The second

CT volume (CT2) and the MR image were then successively registered
to CTX

°

using the following two approaches:

1. MI as the similarity function during the entire hierarchical regis¬

tration procedure (Sec 5.1);

2. The intensity mapping algorithm described in Sec. 3.4 and switch¬

ing MI to CC at the 4th hierarchical level (Sec 5.2).

The recovered deformation fields were then compared to the known ar¬

tificial deformation field T>q •

Table 6.1 summarizes the average (mean), the standard deviation (std)
and the maximum deviation (max) of the registration error between

CTX
° and CT2. The registration error was calculated for the entire

volume and for a region of interest marked with a white square in

Fig. 6.13(a). The region of interest is of size 64 x 64 x 40 voxels. As

the gain of switching from MI to CC only applies to a small number

of sub-images, the average registration error over the entire volume re¬

mains basically in the same range for the two strategies. However, for

the selected region of interest, where MI generally tends to fail, the reg¬

istration error improved considerably when switching from MI to CC.

The algorithm using both MI and CC shows a more stable result than

in the case of using only MI. However, it can be seen that the out of

plane error is smaller in the case of using only MI. This can be explained

by the influence of the interpolation artifacts, which in case of partial
volume interpolation appear as local maxima in the similarity measure

when the voxels perfectly overlap. However, the registration error is in

both cases considerably smaller than a voxel dimension, justifying our

assumption that the two initial CT dataset are aligned.

Similarly, Table 6.2 summarizes the multi-modal registration errors be¬

tween the CTX
° and the pre-registered MR image. The increased value
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Figure 6.12: The scheme of the validation setup. The initial CT\,

CT2 and MR images are pre-registered. A known deformation field T>q

is applied onto CT\. The resulting CTX
° is considered as reference

image for the subsequent registration experiments: CTX
°

<-> CT2 and

CTX
°

<-> MR. The resulting deformation fields are then compared to

the initial, known deformation field T>q

Figure 6.13: (a) CT and (b) MR sample slice of the spine volume

used for the validation tests (c) schematic visualization of the artificial

deformation field T>q
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CT^0 <- CT2

Global Results MI [mm] MI+CC [mm]

Level Direction mean ± sid max mean ± std max

4

in plane (xy)
out of plane (z)
overall (xyz)

0 14 + 0 12

0 04 + 0 11

0 15 + 0 15

1 36

1 56

1 65

0 18 + 0 15

0 16 + 0 21

0 27 ± 0 23

1 56

1 56

1 96

5

in plane (xy)
out of plane (z)
overall (xyz)

0 12 + 0 10

0 03 + 0 10

0 13 + 0 13

1 22

1 56

1 64

0 13 + 0 13

0 11+0 15

0 18 + 0 19

1 88

1 88

2 20

6

in plane (xy)
out of plane (z)
overall (xyz)

0 12 + 0 10

0 03 + 0 10

0 13 + 0 14

1 22

1 56

1 65

0 12 + 0 12

0 09 + 0 13

0 17 + 0 16

1 53

1 56

1 64

Local Results

4

in plane (xy)
out of plane (z)
overall (xyz)

0 05 ± 0 04

0 01 + 001

0 06 ± 0 04

0 38

0 14

0 41

0 10 + 0 06

0 05 ± 0 04

0 11+0 07

0 33

0 25

0 39

5

in plane (xy)
out of plane (z)
overall (xyz)

0 13 + 0 08

0 01 + 001

0 13 + 0 08

0 39

0 10

0 41

0 06 ± 0 05

0 03 ± 0 05

0 08 ± 0 06

0 34

0 46

0 46

6

in plane (xy)
out of plane (z)
overall (xyz)

0 12 + 0 06

0 01 + 001

0 12 + 0 06

0 35

0 08

0 35

0 06 ± 0 04

0 03 ± 0 04

0 08 ± 0 05

0 38

0 44

0 52

Table 6.1 Evolution along the hierarchy of the CT/CT registration

error calculated for the entire volume as well as for the local region

marked with a white square m Fig 6 13(a)
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of the registration error compared to the previous mono-modal CT/CT
case can be expected. Firstly, one has to consider that these results

include the registration errors of the pre-registration (CTi/MR). Sec¬

ondly, multi-modal registration cases are normally more difficult and less

accurate than mono-modal registrations. This reduced accuracy is often

induced by the lack of correspondence between the imaged structures.

Additionally, the registration accuracy is reduced by interpolation ar¬

tifacts while compensating for the differences in the spatial resolution

of the images. However, the results look promising, as the registration

error is within voxel dimension.

Another advantage of the hybrid algorithm that switches the similarity

measure from MI to CC is a considerable increase of the computational

efficiency. Using a 3GHz Intel Pentium PC for the previous mono-modal

registration example, the algorithm execution time was 3h49' when using

only MI and 3h03' when switching to CC. For the multi-modal registra¬

tion example, the execution time was 7h22' in case of using MI and 4h30'

when switching to CC. The difference in the execution time between the

two versions of the algorithm comes from two factors: (1) the calculation

of CC is faster than of MI and (2) more sub-images need to be reopti-

mized when MI is used as a similarity measure. At the same time, more

reoptimizations were required for the multi-modal example compared to

the mono-modal one, explaining the difference in execution time between

the two registration experiments.
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CT"0 <- MR

Global Results MI [mm] MI+CC [mm]

Level Direction mean ± sid max mean ± std max

4

in plane (xy)
out of plane (z)
overall (xyz)

0 43 ± 0 39

0 39 ± 0 58

0 63 ± 0 66

4 68

6 08

7 59

0 54 ± 0 50

0 35 ± 0 44

0 71 ± 0 60

6 93

4 01

6 93

5

in plane (xy)
out of plane (z)
overall (xyz)

0 48 ± 0 40

0 41 + 055

0 70 ± 0 62

4 70

7 31

8 64

0 46 ± 0 47

0 38 ± 0 43

0 65 ± 0 58

5 16

4 37

5 23

6

in plane (xy)
out of plane (z)
overall (xyz)

0 51 + 041

0 42 ± 0 56

0 73 ± 0 62

4 44

7 18

8 35

0 47 ± 0 46

0 39 ± 0 44

0 67 ± 0 58

4 95

4 14

4 98

Local Results

4

in plane (xy)
out of plane (z)
overall (xyz)

0 18 + 0 10

0 29 ± 0 27

0 36 ± 0 26

101

1 86

2 12

0 17 + 0 09

0 13 + 0 10

0 24 ± 0 10

0 95

0 61

0 96

5

in plane (xy)
out of plane (z)
overall (xyz)

0 23 + 0 10

0 30 ± 0 25

0 41 + 023

0 95

1 65

1 89

0 17 + 0 09

0 29 + 021

0 36 + 0 19

0 94

1 76

1 76

6

in plane (xy)
out of plane (z)
overall (xyz)

0 36 ± 0 22

0 27 + 027

0 49 ± 0 29

1 94

145

2 02

0 23 + 0 17

0 23 ± 0 20

0 36 ± 0 23

2 00

1 20

2 06

Table 6.2 Evolution along the hierarchy of the CT/MR registration

error calculated for the entire volume as well as for the local region

marked with a white square m Fig 6 13(a,b)
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Conclusions and Outlook

Modern clinical care increasingly depends on efficient algorithms of high

accuracy for the fusion of temporal and multi-modal image datasets.

These fused images are indispensable for pre-operative planning and

intra-operative navigation. In this dissertation we developed a new al¬

gorithm for automatic non-rigid registration of multi-modal images.

The introduction of MI as a measure of similarity revolutionized image

registration, as it extended the applicability of intensity based methods

to multi-modal registrations. The considerable research conducted dur¬

ing the last decade on the properties of MI revealed, however, several

limitations in connection with interpolation artifacts and its statistical

consistency. Our investigation disclosed two additional problems which

have not been addressed in the literature before but nevertheless can

seriously deteriorate registration accuracy. One the one hand, MI shows

a peculiar behavior for image patches having no clear structural content,

and on the other hand MI proved to be statistically inconsistent when

is estimated for a limited number of image samples. As we relied on

a previously proposed approach using hierarchical image splitting strat¬

egy to decompose the global non-rigid registration into numerous local

rigid registrations of sub-images of decreasing size, these effects become

increasingly serious along the hierarchical splitting. The image subdivi¬

sion process inherently reduces the available number of image samples
within the sub-images and at the same time increases the probability

of structureless sub-images to appear. This thesis presents several new

methods we developed to overcome these limitations. Integrated into a

new, enhanced, non-rigid registration algorithm, the proposed solutions

try to identify the problematic structureless regions and, on the other
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hand, try to replace MI with a more robust similarity measure for small

sub-images.

The first improvement we proposed was the adaptive subdivision scheme,

where local decision is taken whether registration and further subdivi¬

sion are needed. Inspired by point pattern analysis, we used Moran's

I spatial autocorrelation coefficient to quantify the structural content

within an image region. Based on this measure we developed a test for

the structural consistency of an image patch. The Moran test eliminates

all those image regions that lack structural content from any further local

registrations and subdivisions as these are very likely to lead to incorrect

results. This has not only led to a considerable increase of the reliabil¬

ity and accuracy of the entire registration, but also enabled to match

smaller details by reaching higher levels of the hierarchical splitting.

Moreover, depending on the structural content of the images, it consid¬

erably decreased the computational load of the registration compared to

the original approach proposed by Likar and Pernus. In addition, this

strategy does not necessitate complex heuristics for the deformation field

regularization procedure, but can rely on simple geometrical tests.

The second improvement we proposed was to switch to a more robust

similarity measure when the statistical consistency of MI reaches its

limit due to the restricted number of available image samples. As CC

proved to be more robust for such cases, our research was directed to¬

wards an intensity mapping allowing to transfer multi-modal registration

to a mono-modal problem, which can be handled by cross correlation.

The newly proposed method uses the joint intensity histogram of the

coarsely registered images to estimate an intensity mapping that trans¬

forms the images from different modalities into a common intermediate

pseudo-modality. This method was used at later hierarchical levels of the

proposed non-rigid registration algorithm. This strategy offers several

distinct advantages. By using MI at the first levels of the hierarchy we

retain the multi-modal capability of the registration algorithm. At the

same time, by coarsely registering the images, we increase the reliability
of the estimated intensity mapping functions. At the same time, the

robustness of the registration is increased by avoiding the spurious local

misregistrations induced by MI at later stages of the hierarchy.

There are several directions for further research to improve the robust¬

ness of the non-rigid registration algorithm for multi-modal images. One
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possible extension addresses the adaptive image splitting strategy. Cur¬

rently, the positioning of the splitting boundaries is purely driven by

the image lattice, completely ignoring the image content. Adjustment of

splitting boundaries according to the anatomical structures would, how¬

ever, not only reduce the computational load but also improve image

registration quality.

Other issues that should be further investigated are related to the esti¬

mation of the deformation field. Firstly, constraints could be imposed

on the registration parameter correction by determining the reliability
of the local registrations along the different directions using the gradient

of the similarity measure. Secondly, prior knowledge about the physi¬
cal properties of the tissue (e.g. stiffness) could be integrated into the

matching process if available. This would require a preprocessing phase

for the segmentation of the different tissues. As an example, bony struc¬

tures could impose rigid transformation constraints to the deformation

field.

Finally, the computational speed of the algorithm can further be im¬

proved by using a distributed computing strategy. Since at every level of

the hierarchy there are multiple local registrations which are completely

independent, the hierarchical algorithm can be easily parallelized. This

would considerably decrease calculation time.
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