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Abstract

C++ has substantially grown during the last ten years and features such as move
semantics, parameter packs, and keywords such as constexpr have been added. Along
with that come guidelines to write correct and maintainable C++ code. While there
has been work describing the adoption of features in C++ code, they seem to typically
employ a specialized tool to analyze source code, making them inadequate to analyze
new language features in the future.
This thesis overcomes that limitation by building a framework that can be used to
write analyses on top of, be it to study new keywords or the adoption of programming
guidelines. We achieve this by leveraging Clang to provide us with the abstract syntax
tree (AST) of the input code. Our tool has the advantage that it is fit to analyze
upcoming features since future versions of Clang will parse the source code for us.
This simplifies research about the adoption of features by avoiding the technicalities
of parsing source code and should be accurate thanks to the rich representation of
C/C++ in the AST. We demonstrate the results of the tool by showing insights gained
about – among other features – the adoption of range-based loops, parameter packs,
and C++ Standard Library containers and algorithms.

Keywords: C++, language features, library usage, static code analysis, abstract
syntax trees, Clang
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Chapter 1

Introduction

1.1 Goal and motivation

C++ is a very rich language with many paradigms and features, and there have been
many papers discussing how features of it are adopted and used, see e.g. [18] on how
C++ templates are used for generic programming and [16] on the adoption of lambdas.
This thesis describes a new approach that tries to simplify such research about features
in C/C++ by proposing a general framework that supports adding new analyses easily,
allowing to focus on the analysis of the language features instead of the infrastructure. We
achieve this by building the framework around Clang, the frontend of the LLVM compiler.
We can leverage Clang by using it as a library to lex and parse source code for us, giving
us directly the abstract syntax tree of a piece for source for further analysis. Furthermore,
Clang also provides us with so-called AST matchers, which greatly aid in finding relevant
locations in the AST and thus in source code.

1.2 Research questions

The aim of the thesis is to build a framework that serves as a basis for implementing
analyses that detect and measure language and code features in C/C++. These analyses
may address questions such as:

RQ1. Which new language features are easily and quickly adopted: range-based loops,
move semantics, new keywords? Are there new standard components that are rarely
seen in codes?

RQ2. What is the usage rate of new standard modules and libraries, such as smart pointers
and new containers?

RQ3. C++ comes with a large library of standard algorithms, but they are rarely taught
and the common perception is that they’re not commonly used. Which algorithms
are the most popular, which are not used at all? The usage of algorithmic skeletons
can help with automatic parallelization and porting of code to GPUs.

RQ4. Which non-standard libraries are most commonly spotted in projects? Can we
deduce recommendations for new directions of standard development, based on the
most commonly needed features, such as JSON support or serialization?

RQ5. How many projects involve any form of parallel processing? Which parallel frame-
works are commonly spotted? std::thread, OpenMP, TBB, others?

RQ6. There are many unsafe and deprecated language features, as well as bad program-
ming patterns. Many of them can be detected by code linters and static analyzers,
but these tools might not be commonly used. In how many projects can we de-
tect the presence of such features? How often do projects adapt override, final or
noexcept keywords; how many functions should use them, but don’t? Might it be
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1. Introduction

a common problem, recommending further actions to improve the quality of C++

codebases?
RQ7. Which types of new features have the highest impact on new codebases and which

are frequently adopted by projects that have been in development for a long time?

The main question this thesis investigates is whether it is possible to build a general
framework that we can use to implement analyses that analyze different features of C/C++

code. I will try to answer this question by proposing a framework that can address the
above questions.

1.3 Organization of the thesis
For an easy entry, we start with a small motivational example describing the process of
using this framework to gain knowledge about the prevalence of features. Chapter 2 makes
a not-so-brief introduction into a variety of features and our motivation for analyzing
them. Chapter 3 details the inner workings of the framework and how it interacts with
the analyses that it supports. Chapter 4 lists a selection of analyses implemented on top
of the framework. Chapter 5 details results gathered on a real-world project, namely the
core libraries of the LLVM project, and discusses them to address the research questions
from the previous section.

1.4 Example
Conceptually, these are the steps needed to create an analysis on top of this framework:

1. Identify the language property of interest, for example, structured bindings. The
aim is to learn about its adoption by analyzing what percentage of variables declared
come from structured bindings.

2. Extraction: in order to answer that question, extract data describing two features:
• variables declared by structured bindings
• variables not declared by structured bindings

It is possible to extract more information here, e.g. the types of the variables in the
structured bindings, which can help to understand why structured bindings were
used.

3. Counting: now that raw data is available, it is possible to implement a function
that counts the two kinds of variables to get the relative popularity of structured
bindings.

4. Register the analysis with the framework.
5. Choose one or more C++ projects and run the tool on them. For example, one can

analyze multiple versions of the codebases to see if structured bindings get more
popular the longer they are a part of C++.

4



Chapter 2

Features

When we say that a language gains a new feature, we usually mean that the language
designers have added a new language construct or library function that makes program-
ming easier or more elegant. Looking at a piece of code that employs that new language
feature, one can usually discern the locations where it is used.

We generalize a feature to be a predicate that describes a set of code locations with some
property. Such a predicate can describe a myriad of patterns in code.

Definition 2.1 (Feature) A feature is a predicate that describes

• a language construct, e.g. function declaration or loop statement,
• a language keyword,
• an idiom,
• a best practice,
• an anti-pattern, i.e., a bad programming practice,
• a particular usage of a programming library.

To get statistics on language usage we extract features from code, meaning that we get
all locations that use that feature, i.e., satisfy its predicate. Each single code location in
that extracted data is an instance or occurrence of that feature.

In this background chapter, I want to introduce a variety of features that are interesting
and have the potential to be analyzed. I briefly describe a selection of features ranging
from C++ language features, programming idioms, software metrics to C++ libraries and
best practices.
For all details about the C++ language and its Standard Library (sections 2.1, 2.2), see
[4] and www.cppreference.com.

How these features are extracted from real-world code and what insights we gain from
them will be discussed in subsequent chapters.

2.1 C++ language features
We start with what first comes to mind when one talks about features in the context of
programming languages, namely the core language constructs of C++.

C++ encompasses multiple paradigms like procedural, object-oriented, and even functional
programming for example through template metaprogramming.

We first describe some core C++ language features that were added since C++11 and
continue by discussing C++ templates (arguably, these are also part of the core of C++,
but important enough to deserve their own section).

5
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2. Features

2.1.1 Core language features

References, value categories and move semantics
A reference declares an alias to an object or function. References, unlike pointers, cannot
be “null”, they always have to refer to something. It is, however, possible to write code
s.t. the reference becomes invalid, e.g., by having a reference to a local variable that goes
out of scope. A reference, once declared, cannot be reseated, i.e. it has to refer to the
same thing throughout its lifetime. References aren’t objects, there thus are no references
to references [24]. When a function takes in a parameter by reference, it means that the
parameter refers to the argument given at the call site. This is where the trivial pattern-
matching I always used to perform in my head breaks: the type of the argument does not
have to exactly match the type of the function parameter:

void f(int& i){
i++;

}
int x = 0;
f(x);
// x has type int, but i has type reference-to-int

References are, depending on whether they refer to an lvalue or rvalue, indicated at the
type with a single or double ampersand, respectively, e.g., int& (lvalue reference to int) or
float&& (rvalue reference to float). Forwarding references (sometimes also called universal
references) are also written with a double ampersand, but we’ll defer those to a later
section.

Lvalues and rvalues An expression can be split up into two value categories. Omitting
details to get the intuition across, those are the two following: An lvalue is a value that
can be referred to by name and that can be assigned to, such as an expression on the
left-hand side of the assignment operator “=”. An expression on the right-hand side of “=”
can be either lvalue or rvalue. Rvalues often indicate temporaries or literals, and cannot
be referred to by name. An intuition to dinstinguish the two is that one can take the
address of lvalues, but not of rvalues.
The type and the value category of an expression are two orthogonal concepts, exemplified
using an example similar to [41] (p. 2, 3).

void g(int&& i);
// i is an lvalue (it has a name, you can refer to it),
// but its type is rvalue reference (i.e. reference to rvalue)

For a more in-depth explanation, see1 and see2 for a more forgiving explanation about
value categories and move semantics.

Lvalue references When calling a function in C++, the arguments are passed by copy,
i.e., in the callee’s scope a new variable will be created, thus any operations will leave the
value of the caller unchanged:

void f(int i){
i++;

}
int x = 0;
f(x);
// x is still 0

1https://en.cppreference.com/w/cpp/language/value_category
2https://stackoverflow.com/questions/3106110/what-is-move-semantics
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2.1. C++ language features

However, when using lvalue references, the callee receives a reference to the argument the
caller called with, thus the caller will modify the original value:

void f2(int& i){
i++;

}
int x = 0;
f2(x);
// x is now 1

Rvalue references Since rvalues are temporaries, they allow for an interesting optimiza-
tion: move semantics. Calling a function that has an rvalue reference parameter means
that the function is allowed to alter the object the reference refers to in any way it likes -
without having to worry about anybody else needing the corresponding data later. This
is especially handy in two situations:

Avoiding copies using move constructors As we know from the previous paragraph, passing
by value causes a new object to be created. Prior to C++11, we were always required to
use the copy constructor, incurring a penalty due to having to copy the object.

When the object manages memory through a pointer, that probably means performing
a deep copy of that managed memory instead of only copying the pointer, making it
expensive due to additional memory allocations.

With rvalue references we know that the reference refers to a temporary object, enabling
us to initialize the parameters of a function using the move constructor. This means
that the parameter can take over the argument’s externally managed resources by setting
the pointers of the parameter to point to the memory pointed to by the pointers of the
argument.

Notice that resources that are not externally managed – like integral fields and the like –
still have to be copied over. The advantage of the approach is that – without having to
resort to reference function parameters – the object will be copied when necessary, but can
be moved when not. To give a better idea, I will go through an example (see listing 2.1)
step-by-step:

1. Notice how C() on line 26 calls the default constructor of C from line 4 – its result
is unnamed, and thus an rvalue.

2. The call of func on line 26 causes the compiler to figure it has to construct c on
line 22 from the argument C().

3. Realizing C() is an rvalue, it invokes C’s move constructor from line 10 to construct
c from C().

4. Using the move constructor, c’s b is set to the value of C()’s b (line 11) and C()’s b
is set to nullptr (line 12).
The second step is necessary because when C() goes out of scope and its destructor
gets called (line 14), the b that used to belong to it must not get destroyed with it
since c now needs that data.

(Admittedly, I’m simplifying a bit here: until C++17 the call of move constructor is often
optimized out by directly constructing C() into c’s storage. Since C++17 that so-called
copy elision is mandated by the language [23, 21].)
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2. Features

1 class C {
2 public:
3 // default constructor
4 C() {}
5 // copy constructor
6 C(const C& c) {
7 // Perform deep copy of Big, assumed to be expensive
8 }
9 // move constructor

10 C(C&& c) {
11 b = c.b;
12 c.b = nullptr;
13 }
14 ~C() {
15 delete b;
16 }
17 // move doesn't help
18 int x;
19 // move helps
20 Big* b = new Big();
21 };
22 void func(C c){
23 // do something with c
24 }
25 //
26 func(C());

Listing 2.1: Class with move support

To explicitly instruct the compiler to move from an lvalue, one can use std::move:

C c;
func(std::move(c));

Since c is an lvalue, the copy constructor would be invoked to create the function pa-
rameter. Using std::move will cast it to an rvalue reference, enabling to use the move
constructor.

Move-only types Thanks to C++11’s introduction of a sharp boundary between copying
and moving, a possibility for a new kind of type appears: move-only types. Move-only
types, as the name suggests, cannot be copied, only moved. The prototypical example of
that is std::unique_ptr. Its semantics dictate that it should be the only smart pointer
to point to and manage an object, making it the owner. When a std::unique_ptr object
it destroyed, the object it manages will be deallocated with it, liberating the user from
having to call delete, as well as ensuring that the memory will be reclaimed in case of
an exception. Given that double-frees lead to undefined behavior, it is important that
only one std::unique_ptr to a region of memory exists, thus making the smart pointer
uncopyable.

const lvalue references Usually, lvalue references will only bind to lvalues, rvalue refer-
ences will only bind to rvalues. The exception are const lvalue references, which will bind
to both lvalues and rvalues. Imagine C++ const lvalue references couldn’t bind to rvalues.
That would require one to write two overloads for the copy constructor, even though they
should not modify the object that is to be copied:

8



2.1. C++ language features

class C {
public:

// copy constructors
C(const C& c) { ... }
C(C& c) { ... }
...

};

const rvalue references are rarely useful: being unable to take over their resources, you
wouldn’t be able to properly move from them.

In conclusion, the C++ language has spawned four useful ways of passing data:

• by value/“copy”
• by non-const lvalue reference
• by const lvalue reference
• by rvalue reference

Forwarding references
Forwarding references (sometimes called universal references) were, like rvalue references,
added to C++11. Syntactically, they look the same as rvalue references, and can occur in
function template parameter lists or as variable declarations with auto type deduction [24].

template<typename T>
void f(T&& t);

auto&& w = Widget();

Their goal is to enable perfect forwarding, which aims to “forward” a function argument by
preserving their value category using the std::forward function template [24]. Example
from [25]:

1 template<typename T>
2 void wrapper(T&& arg){
3 foo(std::forward<T>(arg));
4 }

If arg (line 2) refers to an lvalue, then foo should be called with an lvalue, not with an
rvalue, which can be dangerous (e.g., foo might try to move from arg, which is problematic
if what arg’s bound to is still needed later). If arg refers to an rvalue, then we want to
call foo with an rvalue s.t. foo may move from it.
For example, when wrapper is called with the literal 10, then t binds to an rvalue and T is
deduced to int. If we first define a variable int a = 10 and call wrapper(a), then t binds
to an lvalue and T is deduced to int&.
Whereas std::move unconditionally casts to rvalue reference, std::forward is used to pre-
serve the value category of the argument.

To distinguish rvalue and forwarding references at the parameter list of a function tem-
plate, one can check the following two conditions of T&& as stated in [40], [41] (p. 168).

• T&& must be exactly type&&, not std::vector<type>&& or similar; no qualifiers such
as const type&&

• T must be deduced when the function template is called

Function templates include member function templates: One has to be careful not to
misread the references here (listing 2.2), t (line 3) is not a forwarding reference, but an
rvalue reference. The reason for that is that f1 is part of a class template. When f1 is
called, it has to be part of some class specialization, meaning that T has been deduced

9



2. Features

1 template<typename T>
2 class C {
3 f1(T&& t){
4 }
5 template<typename U>
6 f2(U&& u){
7 }
8 };

Listing 2.2: && references in member functions

during the instantiation of the class, not during the call.
By contrast, u on line 6) is a forwarding reference because U is deduced during the call to
f2.

Variable declarations that employ forwarding references can mostly be easily discerned
thanks to auto&& [24].

(We’re simplifying here, to see how in reality forwarding references are rvalue references
where reference collapsing occurs, see [41] (p. 197).)

Type definitions and type aliases
C++ inherited type definitions (typedef) from C, which is one of two ways to create names
that abbreviate complex types. This is useful in C++ because types can become very long
and frustrating. Because C++ never added any means to parameterize type definitions,
the so-called “typedef template” idiom [41] (p. 63) emerged, a workaround to template
type definitions. It exploits the fact that when the definition of a class member is needed,
the compiler will create an instantiation of it, which in our case is a type definition:

// typedef
typedef std::vector<int> MyIntVector;

// "typedef template" idiom
template<typename T>
struct MyVector {

typedef std::vector<T> type; // doesn't have to be named "type"
};
// Use it like so:
MyVector<int>::type v = {1,2,3};

We had to wait until C++11 to get a neat solution: type aliases. Not only did they make
declaring synonyms more intuitive by introducing new syntax, but also allowed them
to be templated, finally making the old idiom obsolete. Non-templated type aliases are
semantically equivalent to type definitions [35].

// alias
using MyIntVector = std::vector<int>;

// alias template
template<typename T>
using MyVector = std::vector<T>;
// Use it like so:
MyVector<int> v = {1,2,3};

It is interesting to note that Herb Sutter proposed to add real typedef templates to C++

[42], which unfortunately were rejected.
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2.1. C++ language features

Range-based for loops
C++11 added next to the already existing for, while and do-while loops the so-called
range-based for loop (also called for-each loop or range-for). It allows the programmer
to intuitively iterate a range from beginning to end without the hassle of having explicit
indices or pointers, e.g. when iterating over a container:

std::vector<int> v = {1,2,3};
for(auto i : v){

// do something with i
}

According to [19], it is syntactic sugar for using iterators and dereferencing the pointer.
Not all old-style loops can be converted to range-based loops though, such as:

• infinite loops
• loops that invalidate iterators midway, e.g. loops that modify containers through

push_back or erase

This should be kept in mind when assessing the adoption of range-based for loops.

constexpr

constexpr is a C++11 keyword that variables, (member) functions, constructors and, more
recently since C++20, even destructors can be ameliorated with. It has an interesting,
albeit a tad complicated meaning:

• for variables a constexpr specifier means that it is possible to compute its value at
compile-time. constexpr variables are implicitly const [30].

• when a constexpr function is called with only compile-time arguments, the result
of the function will be computed at compile-time. If, however, any argument is not
known at compile-time, the computation will be executed at runtime, like a regular
function.

This blurring of the compile-time-runtime boundary allows calculations that were tradi-
tionally executed during runtime to be performed when compiling, which may lead to
faster running code [41] (p. 101).

C++14 pushed the envelope by allowing constexpr functions to be more intuitive, e.g., by
allowing them to contain loops and multiple return statements [41] (p. 100).

C++17 added if constexpr, which requires that the condition is a value known at compile-
time. This can be leveraged to discard either branch of the if statement. An example
taken from [22]:

template <typename T>
auto get_value(T t) {

if constexpr (std::is_pointer_v<T>)
return *t; // deduces return type to int for T = int*

else
return t; // deduces return type to int for T = int

}

Knowing the relevant branch at compile-time means that not all branches need to be
compiled, leading to shorter compilation times and smaller executables.

11



2. Features

2.1.2 Templates

In this section I will describe the basics of C++ templates (which were added in C++98),
but also touch on more recent additions to templates like parameter packs and variable
templates, which were only introduced in C++11 and C++14, respectively.

Templates describe a family [27]:

• class templates describe a family of types,
• function templates describe a family of functions,
• variable templates describe a family of variables,
• alias templates describe names that refer to a family of types [28].

Templates reduce programming burden and increase maintainability by allowing program-
mers to write a piece of logic only once and then to “fill it in”.

Template parameters

A template is parameterized by template parameters, which can be one of three [33]:

• non-type template parameter,
• type template parameter,
• template template parameter.

One of each is show below:

// Template
template<int N, typename T, template<int> typename C>
class V {

C<N> c;
};

Template parameters don’t have to be named, see the int in template template parameter
C for example. This is useful when the parameter is not relevant, as for example with
forward declarations.

Parameter packs A parameter pack is a special kind of parameter that accepts zero or
more arguments. A pack can be a pack of non-types, types, or templates.

template<typename... Ts> // Ts is a template parameter pack of types
void f();

There are two kinds of parameter packs, namely template parameter packs and function
parameter packs [26]. Template parameter packs occur in a template parameter list, i.e.
between the “< >” of a template declaration. By contrast, a function parameter pack
occurs in the parameter list of a function signature, which is neat to write functions that
accepts multiple arguments – like so:

template<typename... Ts> // Ts is template parameter pack
void f1(Ts... ts); // ts is function parameter pack

A template is called variadic if it contains at least one parameter pack in the template
parameter list.

Pack expansion When a template that has a parameter pack is used, the pieces of code
using the pack in the template body undergo pack expansion, resulting in a specialization
of the template. An example altered from [26]:

12



2.1. C++ language features

template<typename... Us>
void g(Us... us);

template<typename... Ts>
void f1(Ts... ts){

g(ts...); // "ts..." is a pack expansion, where "ts" is its pattern
}

f1(3, 3.0);
// Ts... ts is expanded to int E1, double E2
// ts... is expanded to E1, E2
// Us... us is expanded to int E1, double E2

Template instantiation
C++ code containing only templates doesn’t generate any executable code. In order for
that to happen, the template needs to be instantiated, meaning that the template param-
eters are replaced with template arguments to create an actual class, function, or variable.
An instantiation results in a so-called specialization of the template, which holds the class,
function, or variable. Specializing an alias template has the same effect as substituting
the template parameters of the class template that it aliases [28].

template<typename T>
class V {

void func(T t);
};
// Explicit specialization for T = int
template<>
class V<int> {

void func(int t);
};

Such a specialization can either be explicitly performed by the programmer (allowing to
adapt the definition if needed) or by the compiler if the programmer asks for an instanti-
ation.

A template specialization is a specialized form of a template with some or all template
parameters replaced by arguments. A template specialization is the class, function, or
variable the user or the compiler generates, whereas the instantiation is the process of
creating that specialization [3].

Explicit instantiation Explicit instantiation refers to explicitly asking the compiler to
create such a specialization, e.g., like so in the case of class templates:

template<typename T>
class V {};
// Explicit instantiation
template class V<int>;

Any explicit instantiation can only be requested once, else you will get compiler errors.
Only class, function, and variable templates can be explicitly instantiated.

Implicit instantiation When at some point in code the definition of a specialization of
a class, function, or variable is needed, and it has until that point not yet been explicitly
instantiated or explicitly specialized, the compiler will perform an implicit instantiation [1].
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template<typename T>
class V {};

// Code requiring an instantiation of V
V<int> v;

// Specialization of V generated by the compiler
// (compiler-generated, so not visible in the source code)
template<>
class V<int> {};

Variable templates
Variable templates are – despite the name – a means to create parameterized constants [34],
and can only be declared at namespace scope or static at class scope [29].

template<typename T>
T data;

Before C++14 introduced variable templates, two idioms were typically used [29]:

• static data member of class template
• constexpr function template returning the desired value

template<typename T>
class Widget {
public:

static T data;
};

Listing 2.3: static data member of class template

template<typename T>
constexpr T f1(){

T data;
return data;

}

Listing 2.4: constexpr function template

Variable templates can be used, for example, to create a function that does computations
with varying precision (example slightly altered from [34]).

template<typename T>
T pi = T(3.1415926535897932385);

template<typename T>
T area_of_circle(T r){

return pi<T> * r * r;
}

The idioms have a couple of drawbacks compared to variable templates, namely more
confusing syntax and worse constexpr support. For more details, see [34].

2.2 C++ Standard Library
Apart from the fact that the C++ core language is not small by itself, it also boasts a huge
Standard Library, not to speak of third-party libraries.

Containers The C++ Containers Library brings us data structures with many different
flavors: sequence containers (arrays, lists, and the like), unordered and ordered associative
containers (maps indexed by keys), and container adaptors (provide stack- or queue-like
access to sequential data structures) [31]. The most important properties of a container
are probably the type of container (is it a std::vector, is it a std::unordered_multimap?)
and the type of contents of the container. Another property of interest could be the
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“depth”, i.e., the degree of nesting used at a container, such as a degree of 2 in
std::vector<std::map<std::string,int>> for example.

Utilities The C++ Standard Library also comprises various utilities, including

• std::pair and std::tuple: data structures for pairing up two or a variable amount
of different-type values,

• smart pointers like std::unique_ptr, std::shared_ptr and std::weak_ptr to ease
memory management by defining ownership semantics.

Algorithm The Algorithms Library provides a wide range of function templates to per-
form computations on ranges of elements, like searching for an object, counting, sorting, or
modifying the range. It seems that its function templates are rarely used, a presumption
we would like to underpin or undermine with real-world data.

2.3 Deprecated and unsafe constructs, best practices and anti-
patterns

LLVM’s clang-tidy is a modular linter to help programmers write better code “by fixing
typical programming errors, like style violations, interface misuse, or bugs that can be
deduced via static analsis” [11]. Unlike clang-tidy, this framework’s goal is not to fix
errors immediately, but to collect data to be able to assess why errors are made, enabling to
take action at the teaching and language design levels to improve the quality of codebases.

In the following, we give a couple of examples of programming practices.

override, final override and final are both keywords occurring when programming in
an object-oriented fashion in C++. Virtual functions are the mechanism that enables to
call methods from a derived class through a pointer of base class type:

struct Base {
virtual void f();

};
struct Derived : public Base {

virtual void f();
}
Base d = new Derived();
d->f(); // Will call Derived::f

The derived class’s method will be called because its f overrides the one from the base class.
Derived::f overrides Base::f because the functions have the same signature. override is
used to explicitly tell the compiler that the function declaration of a derived class is
supposed to override the base class declaration. This helps to catch errors because the
compiler will complain if the signatures are incompatible. If you erroneously mistype a
function and omit the override, the compiler cannot mark that as an error because it has
to assume that the derived class declares a new function.

The final keyword, in some sense, has the opposite meaning, namely that a class cannot
be derived from or that a virtual member function cannot be overridden. Firstly, it can
help to make the design of the program clearer. Secondly, by declaring things final you
can help the compiler with devirtualization, possibly gaining performance increases by
allowing the compiler to figure out which function to call at compile-time rather than at
runtime [17].
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The rule of three/five/zero Without going into too much detail, the rules of three,
five and zero all stem from the fragility of C++ classes that handle heap memory, e.g.,
through a raw pointer. The compiler is your friend and tries to help by implicitly defining
copy/move constructors and assignment operators for your classes if you don’t do it or
explicitly tell the compiler not to. However, if your classes manage external memory,
the compiler-generated functions are usually incorrect, e.g., because the generated copy
operations result in shallow copies of the managed memory. The rule of three/five/zero
provides good hints as to when to define which member functions. The potential for
analysis that I see is that we could check whether programmers leave performance on the
table by suppressing the generation of move operations [32].

2.4 General-purpose features
Loop depth Another feature we can look for in code is loops. Loops have a big per-
formance impact, making them interesting to investigate. I define the depth of a loop
statement recursively as 1 + the maximal depth of all contained loop statements. The
goal of this feature is to get a rough performance estimate by analyzing the prevalence
of loop depths. Not distinguishing the different kinds of loop statements (for, while,
do-while, range-based for), the example below has a depth of three:

for(int i=0; i<n; i++){
while(b1)

if(b2){
foo();

} else {
bar();
for(auto i : arr){

baz();
}

}
}

2.5 Software metrics
Cyclomatic complexity The cyclomatic complexity computes the number of linearly
independent paths through a procedure, or in C++ parlance, a function. In the control
flow graph of a function, a node designates a block of code without any branches and an
edge designates a branch as experienced at for example an if-statement or a loop condition.
The cyclomatic complexity describes the number of paths through that graph s.t. each
path has at least one edge that is not contained in any other path. Thomas J. McCabe
criticized the practice of measuring code complexity by its physical size and developed
this measure to find pieces of code with high complexity that need extra attention when
testing software [39].
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Chapter 3

Framework

cxx-langstat is a flexible framework based on Clang that allows arbitrary analyses to be
run. I will now present how it works, what it consists of, and what its dependencies are.

3.1 Tool

The thesis aimed to create a tool for the analysis of C and C++ code. Given a C/C++

project, the tool should analyze that project by computing statistics about the adoption
of language features or the prevalence of certain constructs and idioms. The tool is a
basis for future analyses that we want to perform. This leads to a design where the tool
consists of a framework and the analyses built on top of it. cxx-langstat already contains
multiple analyses and is modular s.t. it can be easily extended with new analyses. Using
a flag that accepts a comma-separated list of analyses we can specify what statistics to
gather from a project.

project/

cxx-langstat

analyses

framework

statistics

Currently, the analyses are compiled into a single static library and then linked together
with the framework to build cxx-langstat.

LibTooling To build a tool on top of Clang, I had to choose how to interface with the
LLVM frontend. I finally settled on LibTooling, because it was advertised by LLVM as
a support to build standalone tools based on Clang [8] and allows to use so-called AST
matchers to match interesting nodes in the AST [9] (more information about ASTs and
matchers in later sections).

In the following sections, I will explain the roles of the framework and the requirements
it poses to analyses s.t. they can be run by it.
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3.2 Framework
The framework is the basis of the tool where new analyses can be registered. It is an API
that performs the gathering of statistics in two stages, in each of which it calls a function
from an analysis:

1. Emitting features from code
2. Computing statistics from features

To give some intuition about the stages I will explain them using a hypothetical analysis
whose functions will be called. Its goal is to get data about the distribution of the return
types of functions in C++ code. Although this is a bit of a contrived example, this data
could be useful for example to study the effectiveness of C++’s return value optimization
(RVO). In the first stage, the objective would be to extract all function declarations along
with their return types. Then, to compute statistics, the analysis would count for each
return type how often it occurred, yielding us the desired data.

When we want to add a new analysis, we have to implement two functions that the
framework relies on in the respective stages. Every analysis looks roughly as follows:
class Analysis {

std::string Name;
// input: C/C++ code
// output: features
getFeatures(){

// implementation-dependent
}
// input: features
// output: statistics
getStatistics(){

// implementation-dependent
}

};

In the following, we give an overview of the stages of the tool and how they rely on
the functions of the registered analyses. Details about computations performed by the
analyses in each stage are deferred to later sections.

3.2.1 Stages of the framework
In this section, I will explain how the framework executes the two stages and how it relies
on the analyses to succeed.

Emitting features from code When the tool is requested to emit features, the tool will
recursively search the project directory for all source files (.c, .cpp, .h, etc.) and AST files
(.ast) generated from source files. As we will describe in more detail later, this stage acts
on the abstract syntax tree, or AST for short, of the code. For each input file, depending
on whether it is a source file or an AST file, the tool will invoke the compiler frontend to
either parse the source file to AST or load the AST from disk into memory. It might be
necessary to provide so-called compile commands, either directly on the command line or
via a compilation database, for the frontend to parse the input correctly [15]. The AST
is now stored in memory as an ASTContext and can be passed to any analysis for further
inspection. We call the getFeatures function of each analysis with the ASTContext as the
argument, yielding for each input file a plethora of extracted features. These features
are then, grouped by their input file, written to disk in .json files. Using a shorthand
notation, we indicate the name of the analysis that created a feature. We chose the
JSON (JavaScript Object Notation) format to store and write our features because of the
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heterogeneity of the extracted features and the good readability of JSON. Also, using a
JSON library1 it is easy to create and parse .json files.

file1.cpp

fileN.cpp

compiler
frontend

AST

AST

analysis1.getFeatures()

analysisM.getFeatures()

analysis1.getFeatures()

analysisM.getFeatures()

file1.cpp.json

fileN.cpp.json

It should be noted that one should store the files containing the extracted in a separate
directory s.t. we can be sure that in the next stage we don’t accidentally try to compute
statistics from non-features files otherwise lingering around. Because each input file is
parsed and analyzed independently from all other inputs, this stage lends itself to be triv-
ially parallelized (admittedly, the command line output is garbled, but that can be easily
fixed once the standard library implementations implement C++20’s basic_osyncstream –
until then, we would have to resort to third-party libraries). A runner wrapped around
this stage will, when asked to, create multiple batches of input files, which can then be
analyzed in parallel. The parsing from source to AST and getting features from the AST
are the most expensive routines of the program, thus parallelization is beneficial.

Emitting statistics from features In the second stage, the tool will instead look for
.json files, given a directory. We pass each file containing features to the getStatistics
function of every enabled analysis. Since the features are tagged with the name of the
analysis that created them, we can ensure that each analysis only ever computes statistics
from features that it created itself. This way, we have statistics for each source/AST file
that we created features for. Finally, because often it is interesting to compute statistics
about a whole project instead of a single file, we condense all of them into a summary
statistic.

file1.cpp.json

fileN.cpp.json

analysis1.getStatistics()

analysisM.getStatistics()

analysis1.getStatistics()

analysisM.getStatistics()

stats of file 1

stats of file N

stats per file
&

summary stats stats.json

We store features in multiple files but statistics in a single file because the files containing
the features tend to be larger.

The reason that we perform this two-step process and do not directly compute statistics
from source code is that features are more human-readable, which aids in debugging. From
statistics, it would be difficult to verify the correctness of the extracted data. Features can
be directly compared to the source code they were extracted from because they can indicate
their locations. Second, if we enhance our features with some extra data (e.g., for each
extracted item also store other relevant information about it), it enables us to compute
new statistics later, avoiding expensive reparsing of the source code and reextraction of
features.

1https://github.com/nlohmann/json
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3.3 Analysis internals
Now that we’ve seen how the framework executes in two stages the functions provided by
the analyses, I want to detail the kind of computations the analyses perform.

3.3.1 Emitting features from code
In the first stage, the tool’s job is to orchestrate the analyses to emit features from the
input code. In order to better understand how an analysis extracts features, recall its
definition is from 2.1.

Abstract syntax trees To get a grip on the code we want to analyze, we leverage Clang’s
power and use it as a library to retrieve the so-called abstract syntax tree representing the
code. An abstract syntax tree, or AST, is the result of the parser: after lexing, when all
tokens of the source code have been determined, the parser’s job is to traverse the token
stream and to build a tree representing the abstract syntax of the code [44].

int func(double arg){
arg = arg + 1.0;
return 0;

}

The C++ code intuitively corre-
sponds to the tree on the right rep-
resenting its syntax.

TranslationUnitDecl

FunctionDecl

ParmVarDecl

arg

CompoundStmt

=

arg +

arg 1.0

ReturnStmt

0

The top node, the TranslationUnitDecl, can be thought of as storing all relevant syn-
tactical information about a single source file of which all C/C++ preprocessor actions
have already been performed, like the inclusion of headers [4] (p. 10). The FunctionDecl,
together with the ParmVarDecl, stores the signature of the function, i.e., the parameter
and return types of the function. The CompoundStmt should intuitively be thought of as its
body or the definition [7].

In more detail, the Clang library stores the tree as the aforementioned ASTContext, see
listing 3.1. Let us call it the Clang AST for short from now on. The Clang AST contains
apart from declarations, statements, and expressions also the types, the line- and column
numbers, and the memory addresses of the AST nodes.

Extracting relevant code locations In order to be able to extract useful locations from
the AST, we use LibASTMatchers [9, 10], a Clang library to “match” nodes in the AST
which helps us to retrieve pointers to nodes in the AST that satisfy a certain property.
LibASTMatchers provides a domain-specific language that we use to build predicates. An
example of a matcher would be

functionDecl(
has(CompoundStmt().bind("body")))

.bind("function")

The matcher above will match function declarations that have a body. Given a match, the
bind commands can be used to retrieve pointers to the respective nodes that they bind to.
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TranslationUnitDecl 0x7fd4c2026c08 <<invalid sloc>> <invalid sloc>
-FunctionDecl 0x7fd4c2055098 <ast1.cpp:1:1, line:4:1> line:1:5 func 'int (double

)'
|-ParmVarDecl 0x7fd4c2054fc0 <col:10, col:17> col:17 used arg 'double'
`-CompoundStmt 0x7fd4c2055270 <col:21, line:4:1>
|-BinaryOperator 0x7fd4c2055220 <line:2:5, col:15> 'double' lvalue '='
| |-DeclRefExpr 0x7fd4c2055188 <col:5> 'double' lvalue ParmVar 0x7fd4c2054fc

0 'arg' 'double'
| `-BinaryOperator 0x7fd4c2055200 <col:11, col:15> 'double' '+'
| |-ImplicitCastExpr 0x7fd4c20551e8 <col:11> 'double' <LValueToRValue>
| | `-DeclRefExpr 0x7fd4c20551a8 <col:11> 'double' lvalue ParmVar 0x7fd4c

2054fc0 'arg' 'double'
| `-FloatingLiteral 0x7fd4c20551c8 <col:15> 'double' 1.000000e+00
`-ReturnStmt 0x7fd4c2055260 <line:3:5, col:12>
`-IntegerLiteral 0x7fd4c2055240 <col:12> 'int' 0

Listing 3.1: Clang AST as seen using clang++ -XClang -ast-dump

Even though nodes are often related in the AST, having multiple binds is often useful if
you need pointers to multiple nodes which are otherwise more laborious to get, e.g., when
the tree is very deep.

Because most C/C++ files include headers, the isExpansionInMainFile matcher was vir-
tually present in every matcher that I built. It ensures that nodes matched are written in
the currently analyzed file and do not come from an included header file.

Clang provides a tool called clang-query for prototyping matchers, which can later be
embedded into your C++ source code [38, 10]. For an extensive list of available matchers,
see [5].

Extracting relevant data from code locations Note that according to the definition,
we’ve already extracted features. Having the relevant code locations can be enough –
some analyses that only do simple counting would fare great with only knowing the code
locations, e.g., reporting just the function declarations’ existence would suffice for an
analysis that wants to count how many function declarations there are.

{
"function1": {

"location" : 6
},
"function2": {

"location" : 13
}

}

Listing 3.2: Features containing only information about functions’ locations

Imagine however a hypothetical analysis that additionally would want to gain insights
about the return types of functions and report the most popular ones. In order to do that,
we again leverage the Clang library: for each FunctionDecl we can call getReturnType().
The JSON file containing the features would then look like this:
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{
"function1": {

"location": 6,
"ReturnType": "int"

},
"function2": {

"location": 13,
"ReturnType": "double"

}
}

Listing 3.3: Features also holding data about return type of functions

Analyzing code on this high, almost source-like, AST level and using Clang as a library
means that we know as much about the code as the compiler – at the cost of having to
get familiar with interfacing with Clang and being dependent on its development. We also
conclude that how much we depend on the Clang library can differ a lot from analysis
to analysis, depending on what features that we need to extract and what other data we
need to get to be able to compute the desired statistics.

3.3.2 Emitting statistics from features
From features to statistics In abstract terms, computing statistics from features is
applying a function to features. That function could compute for example:

• the absolute prevalance of a feature,
• the relative prevalence of features by comparing their commonness, e.g. to assess

their popularities,
• the distribution of a variable contained in the features.

Recall our hypothetical analysis computing statistics about return types used and the
features returned by it, see listing 3.3.

The analysis would then hold a map indexed by return type containing a value describing
how often a return type occurred. By iterating over the JSON features, we can then
easily compute for the file that these features were generated from the distribution of
return types and write the results to a new JSON file like so:

{
"Return Type Distribution": {

"int": 1,
"double": 1,

}
}

Summarizing statistics Intuitively, if statistic X and statistic Y both contain data about
some property a, then we take the “sum” of the statistics. If only X contains data about
a, then it is assumed that Y’s data about a is 0, thus the statistics from X are simply
copied over to the summary. This is achieved using a simple recursive piece of code, which
can be best laid out as follows:
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Algorithm 1: Summarizes two statistics into one
Input: JSON objects X, Y both containing statistics;
Output: summary statistics S;
foreach key pair (kx, ky), kx ∈ X, ky ∈ Y do

vx, vy are the JSON values belonging to kx, ky, respectively;
if kx == ky then

if vx, vy are both JSON objects then
call this algorithm on vx, vy;
store the result in S under key kx;

if vx, vy are numbers then
store vx + vy in S under key kx;

else
store vx in S under key kx;
store vy in S under key ky;

3.4 Interfacing with Clang
In this section, I will briefly describe the components/classes used to interface with Clang
to get the Clang AST as required in the stage where we emit features. The three most
important components are the ASTFrontendAction, ASTConsumer and MatchCallback. Peter
Goldsborough presents an example in [36]. Also see [6] for information about frontend
actions and consumers. When computing statistics from features we don’t interface with
Clang at all.

ASTFrontendAction This component can be subclassed to create your own actions that
should be run by the frontend. We need the frontend only to generate the Clang AST
from a source code file or read the AST from a .ast file and to create the ASTConsumer.

ASTConsumer Execution is then continued in the ASTConsumer, which contains a method
that is entered as soon as the AST is ready. Its job is to create cxx-langstat’s analyses
and run them s.t. they extract features from code for us. When for the current AST every
enabled analysis has computed its features, it stores them to disk.

MatchCallback When you register a matcher to match nodes in the Clang AST, the so-
called MatchCallback is called on a match. I have abstracted this callback to a functional
interface – the framework provides to the analyses a function that accepts a matcher as
an argument and returns the nodes in the Clang AST.

Using a ClangTool we tell the frontend to run our frontend action over our input files,
possibly with a set of compilation commands for the frontend to be able to correctly parse
our source code.
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Analyses

Definition 4.1 (Analysis) The goal of an analysis is to extract one or more features
and apply a function to them to compute statistics.

4.1 Implemented analyses
In the following, I will describe the analyses that the tool already contains by showing for
each analysis how it extracts features and what statistics it computes from them. Also, I
will explain their limitations and propose improvements.

4.1.1 Cyclomatic Complexity Analysis (CCA)
Features The Cyclomatic Complexity Analysis first uses the functionDecl matcher to
extract all the function and member function declarations. This includes function tem-
plates as well as their specializations and specializations caused by instantiations. All
declarations that don’t have a body are ignored since the cyclomatic complexity of a func-
tion is the number of linearly independent paths through its body. For each function, the
control flow graph (CFG) is computed from which we calculate its number of nodes and
edges. To get the cyclomatic complexity of a function, we compute CYC = E − N + 2,
where E and N indicate the number of edges and nodes, respectively (see [39] for details).
The intraprocedural CFG we can compute using Clang is suitable to apply McCabe’s
method to since it has a distinct entry and exit node. Finally, we store a list of names of
function declarations paired with their cyclomatic complexities.

[36] provided an example implementation that was helpful.

Statistics By iterating over the previously created list, we get an indication of the com-
monness of the cyclomatic complexities in the source code.

Limitations If a function template contains a templated class type that is iterated over
with a range-based for loop, CCA fails due to not being able to compute the CFG. In
that case, the function template will be skipped and not reported.
template<typename T>
void foo(std::vector<T> vec){

for(auto el : vec){ }
}

4.1.2 constexpr Analysis (CEA)
To analyze the adoption of the constexpr keyword, this analysis measures the percentage
of constructs like variables, functions and if-statements declared constexpr.
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Features CEA extracts four features:

Variable declarations After extracting all variable declarations, the analysis creates a list
containing them and stores for each one whether it was declared constexpr or not. Ad-
ditionally, it registers the identifier, type, and location of the variable. Some conditions
that trivially make a variable not eligible to be constexpr are checked, meaning it is not
reported if any of the following hold (see [30]):

• variable is a function parameter
• variable occurs in a structured binding
• variable that has no initializer

However, there are more necessary conditions for constexpr which are not checked, like
whether the initialization of the variable can be determined at compile-time [30]. Also,
another important limitation is that loop variables are reported as not constexpr. Loop
variables should, however, never be reported in this analysis since those are typically in-
cremented or changed, requiring them to be non-const and thus non-constexpr. Detecting
this would require checking if a variable is a loop variable.

Function and method declarations Similarly to variables, it extracts all function and
method declarations and stores whether they were constexpr, together with their identi-
fiers, signatures, and locations. Again, there are many requirements for a function to be
able to be constexpr which are not checked, even separate ones for class constructors and
destructors [30].

if-statements For each if-statement we report its location and constexpr-ness. Here we
should also check its eligibility for constexpr by looking if the value of the condition can
be established at compile-time [22]. This is, as of now, not implemented.

Statistics For each of the four constructs that can be constexpr we report how many are
constexpr and how many are not.

Limitations As is clear by now, this analysis has a big potential for improvements. Right
now, it will indicate a low usage of constexpr due to it reporting constructs that cannot
be constepxr anyway, therefore underestimating the real popularity of the keyword. The
conditions for constexpr have changed significantly in C++14 and C++20 [30], making
checking them more difficult to implement. To conclude, CEA currently gives us only
insights into how often this keyword was used and not used, respectively; what we really
want to know instead is how frequently it is used compared to how often it could have
been.

4.1.3 Loop Depth Analysis (LDA)
This is the first and simplest analysis that I wrote which helped me to gain familiarity
with C++ and Clang as a library. Given a maximal depth, LDA creates statistics on the
commonness of different loop depths by reporting for each loop depth the locations of
the loops with that depth, allowing us to get a very rough estimate of the complexity of
the program. for, while, do-while as well as range-based for loops are considered, either
when inside of a function or a class method.

Features The matcher to find a loop of depth d is conceptually very simple:

1. First, find all loops of depth at least d by nesting the matchers loopStmt and
hasDescendant d − 1 times:
loopStmt(hasDescendant(loopStmt(...hasDescendant(loopStmt()))))
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The hasDescendant(p) matcher is a Clang-provided matcher that matches if the cur-
rent node has some node in its subtree that satisfies p. Furthermore, loopStmt is a
custom matcher that matches any of the four kinds of loop statements.

2. Second, find all loops that are no deeper than d.
3. Take all loops satisfiying both of the properties above.

By applying this for every depth until the maximal depth, we can compute features con-
taining for each depth the locations of the loop statements having that depth.

Statistics We count for each loop depth in the features how often it occurred.

Limitations

Exponential implementation Currently, the matchers grow exponentially in size with the
maximal depth given due to the exponential number of combinations that the different
loop statements can be nested. Even though in practice when analyzing real-world code
this shouldn’t be too much of a problem because loop depth will rarely be bigger than five
or ten, it would still be reassuring to reimplement this for example using dominator trees.
These are common in compilers and thus a means we could use to reimplement this.

Loop depths across function calls Imagine the following scenario:

void foo(){
for(int i=0; i<n; i++){
}

}
for(int i=0; i<n; i++){

foo();
}

Are the two loops of depth one or one loop of depth two? If one wanted to use LDA to
have a very rough approximation of program complexity, I think it could be a sensible
addition to change the analysis to also look for loops that are “hidden” behind function
calls.

4.1.4 Loop Kind Analysis (LKA)
To investigate whether programmers switched from the traditional loops to the new
syntactic-sugar range-based for loop by counting the prevalence of each kind of loop.
Naturally, this analysis thus extracts the uses of all the range-based for loops, but also
the uses of the other kinds of loops to be able to compare them.

Features LKA extracts four features, namely for each of the four loop kinds, it ex-
tracts all locations of that loop kind. Luckily, LibASTMatchers provides for each loop
statement kind a matcher, namely forStmt(), whileStmt(), doStmt() (do-while loops) and
cxxForRangeStmt().

Statistics Similar to other analyses, we can establish their commonness in the code by
counting the number of locations that they occur at.

Limitations I alluded in chapter 2 to the fact that not all “traditional” loop statements
can be converted to use the new syntax, like infinite loops and those that invalidate it-
erators during the iteration. This entails that the above usage statistics will not give us
perfect insights into the adoption of the range-based for loop. We could build more com-
plicated matchers and perform checks to filter out ineligible loops to get more indicative
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data. This would allow us to find out how many range-for weren’t used because it wasn’t
possible and how many weren’t used because the programmer didn’t adopt it.

4.1.5 Function Parameter Analysis (FPA)
The addition of rvalue references and move semantics motivate another analysis, namely
the Function Parameter Analysis. To get first insights whether rvalue references and
the move semantics it enables are used, we can analyze the parameters of functions and
function templates.
I would like to first write down the notion of parameter kind: it describes how one can
pass data to functions, namely by

• value,
• non-const lvalue reference,
• const lvalue reference,
• rvalue reference,
• forwarding reference.

Features FPA emits two features, one describing the functions, and a second describing
their parameters.

• For each function, function template, or function template specialization (can be
caused by instantiation), report function identifier, signature, and line number for
debugging and for each parameter kind how often it occurred in the function pa-
rameter list.

• For each parameter, report its identifier and line number for debugging as well as
its kind, its type, and if the type is dependent on the instantiation (meaning that
the encompassing function is a template).

To get the features described, FPA proceeds as follows: First, it collects all functions and
function templates; this includes member functions/methods but excludes constructors
and assignment operators. I deemed it was a better idea to analyze those separately,
e.g., in a future analysis that checks for compliance with the rule of three/five/zero [32].
Second, we iterate over those collected items and get their function parameters. For each
parameter, we try to determine its kind by looking at its type. If its type is a pack
we “unpack” it and look at the type that is being packed. In case that it is an rvalue
reference type and the encompassing function is a template we additionally check if it
could be a forwarding reference. If it isn’t a reference at all, we determine it to be a
by-value parameter. During this process, we also keep track of the parameters found so
far and store them coupled with type and instantiation-dependency info.

Statistics FPA has two functions to compute statistics:
• FunctionsCount: For each parameter kind, it counts how many functions use them.

We report this separately for functions and function templates because forwarding
references can only occur in templates.

• ParamsCount: Count for each parameter kind how often it occurred. This is not
just the sum of the above statistics, because a certain kind of parameter can occur
multiple times in a single function’s parameter list.

Limitations

Function parameter packs For function parameters that are parameter packs, TPA cur-
rently doesn’t report the fact that they are parameter packs. Although it is reported that
they are instantiation-dependent (as parameter packs inherently are), we thus miss out
on the opportunity of analyzing if function parameter packs are common or not.
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Separate functions and parameters Currently, functions and parameters are reported sep-
arately, thus making it hard to backtrack which parameter belonged to which function.
As of now, I don’t have any striking ideas that would necessitate that, but it might inhibit
the computation of interesting statistics in the future.

4.1.6 Template Instantiation Analysis (TIA)

This is the most complicated analysis so far. The Template Instantiation Analysis, or TIA
for short, analyzes which template specializations are used how often. Its name comes
from the fact that it analyzes the usage of template specializations that were caused by
an instantiation of a template. Chen et al. [18] point out that templates can be used by
instantiation or derivation – in this analysis, I however only study template usage through
their instantiations and the arguments used to create the instantiations.

TIA regards three flavors of templates, namely classes, functions, and variables. Alias
templates are indirectly studied by reporting their instantiations as instantiations of the
class that they alias. Because we don’t want to use TIA directly, but instead use it as a
basis for more specialized analyses s.t. we can analyze different templates separately, TIA
has three parameters that can be used to control its execution:

• TemplateKind: this parameter determines which kind of template instantiations we
want to analyze, i.e. whether class, function, variable, or all three kinds of templates
should be respected.

• Names: a list of names s.t. a template’s instantiation is only reported if the name of
the template comes from Names.

• HeaderRegex: this regex is to be used in conjunction with the Names parameter: be-
cause the name of a template (even when fully qualified) does not uniquely determine
the template itself, we can additionally constrain which instantiations are interest-
ing to us by using HeaderRegex to condition on the header where the template was
defined. The initial motivation was because of the std::move function template in
the C++ Standard Library, which occurs twice in different contexts. It is crucial
to note, when using this regex, that it has to specify the header where the defini-
tion of the template lives and not the header which was used to get access/include
the template. A notable example is again std::move, which according to the C++

Standard is accessible once you include utility, but which is implemented in a dif-
ferent headers (e.g. in type_traits in LLVM’s libc++1 and in bits/move.h in GNU’s
libstdc++2).

Features

TIA can report features in two ways, depending on the feature:

• Binary: report an instantiation only once if and only if it exists
• Countable: report every use of an instantiation, allowing to count them and thus

compare commonness and assess the popularity

For the three kinds of templates that TIA regards, it extracts instantiations or uses of
specializations created by instantiation and stores the template arguments that were used
to create those specializations.

Class templates

1https://github.com/llvm/llvm-project/blob/release/11.x/libcxx/include/type_traits#L2613
2https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-api-4.5/a00936.html
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Explicit class template instantiations Explicit class template instantiations are the easiest
to describe:

template class V<int>;

Explicit instantiations are used to explicitly request a specialization from the compiler.
We match them by looking for class template specializations that have been created as
part of an instantiation. I’ve noticed that in the Clang AST a specialization that was
explicitly instantiated is not stored in the subtree of the class template, but just next of
it as a “sibling” subtree – this was the criterion used to distinguish explicitly instantiated
from implicitly instantiated specializations. TIA reports them too just because this feature
was added early on, and only later I realized it wasn’t that important – but why remove
it? This is a binary feature; it cannot be counted because any explicit instantiation can
only be issued once. For each explicit instantiation detected, it will report the template
arguments used to create the specialization.

Implicit class template instantiations In this paragraph, I will describe how I analyze code
that either

• causes an implicit class template instantiation (because it is the first time the defi-
nition of the specialization is needed),

• uses a type that was earlier implicitly instantiated (an earlier piece of code implicitly
instantiated it) or

• uses a type that was earlier explicitly instantiated (the programmer explicitly in-
stantiated it earlier).

Illustration:

// Template
template<typename T>
class V {};

V<int> v; // Causes implicit instantiation, definition of V<int> first needed
V<int> v2; // Uses type that was implicitly instantiated earlier

template class V<double>; // Explicit instantiation (not analyzed in this
paragraph)

V<double> v3; // Uses type that was explicitly instantiated earlier

I realize that this is a broad range, but I just need some term to distinguish these cases
from explicit instantiation as in the previous paragraph. Calling all those cases “implicit
instantiation” is a stretch of the terminology, but it makes sense to bundle these cases
since they are syntactically similar. The goal really is to study which specializations of a
template are more popular and which are less popular.

As a rule of thumb, let us consider in this part all instantiations “implicit”, if they occur
in C++ code through “natural” usage, i.e. anything that is not an explicit instantiation
request to the compiler.

• Variable and member variable declarations:
The first scenario that comes to mind when you want to study the use of class template
instantiations is (member) variable declarations. Not every variable declaration of
template specialization type causes an implicit instantiation, namely because it can
have already previously explicit instantiated, implicit instantiated by another variable,
or explicitly specialized. Our goal here is to study variable declarations that have a
type that is a specialization of a class template, because it gives us insights into how
class templates are used.
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class Widget {
V<int> mv; // member variable

};
V<int> v; // variable

Listing 4.1: Variables requiring an instantiation

The matcher to extract such code is the following: it looks for all (member) variables
whose canonical type is a specialization of a class template, where the specialization
has to be a result of an instantiation.
The canonical type requirement is important because it allows us to look through all
the type definitions and aliases and enables us to report variables that use type syn-
onyms to be reported as a use of the class specialization their type aliases.
As we look at each variable having a suitable type dictated by the matcher, we can use
this to generate statistics on how popular the different specializations are. This is useful
e.g. to assess the contents of STL containers, like how often std::vector<int> is used
compared to std::vector<unsigned>. These reported specializations are interesting be-
cause they allow us to gain extensive insights into how library types and user-generated
types are used in code.
Since function parameter declarations are also variable declarations, function parame-
ters will also be reported.
Am improvement would be to also report variables that are references or pointers to a
class template specialization (e.g. instances of std::vector<int>* or std::vector<int>&).
I was unsure whether to include those variables: first, because a pointer to a class
specialization does not cause an instantiation because the complete type might not
required [20]. Second, if we match references to class specialization, are we then also
interested in parameter variables that would match from the copy and move construc-
tor?
To conclude, we report each variable/member variable/function parameter declaration
including its line number in the code and the arguments that were to instantiate the
specialization of the template. Because every use in a variable declaration is reported
and multiple variables can use the same specialization, this is a countable feature.

• Template specialization type template type arguments:
I know this is a mouth full. Let me explain: as we’re talking about about template
instantiations, “template specialization type” means “type that is a template special-
ization”, e.g. std::vector<int> is a type that is a specialization of std::vector. A
“template type argument” is a template argument that happens to be a type, thus the
int in std::vector<int>. A limitation of TIA is that it will not report template type
arguments that are template specialization types. Here’s an example to illustrate why:
template<typename T>
class Widget {};
Widget<Widget<int>> w;

Listing 4.2: Nested instantiation

Variable w’s type is a specialization of Widget. Great, so it will be reported and added
to the features. However, the inner Widget<int> specialization will never be reported
because it is neither explicit nor is it the type of a variable declaration. There are more
cases of uses of implicit class instantiations that are not detected because they don’t
fit into the variable declaration category, e.g. literals or return types of functions.

Function templates Similar to class templates, you can either explicitly instantiate func-
tion templates with a similar syntax to the one for class templates, or you have implicit
instantiations and pieces of code using them.
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Explicit function template instantiations TIA does not report any explicit function spe-
cializations due to time constraints.

Implicit function template instantiations Similar to class templates, I report pieces of code
that cause implicit instantiations, use a function that was implicitly instantiated earlier,
or use a function that was explicitly instantiated earlier. This was motivated by the
Algorithm Library Analysis, which I will lay out later.

• Call expressions:
This part of TIA reports every function call to an instantiated specialization of a
function template. Because we report every call to a function template, we can again
assess which function instantiations are the most popular. A limitation of this is that
we only analyze function templates’ here through call expressions, i.e., we don’t know
how function templates are used in function pointers. I deemed this however to be
acceptable, since I expected function calls to outnumber function pointers, hoping it
to skew the final features and statistics not too much.

Finally, we report each call expression to an instantiated specialization of a function
template together with the line number of the call in the code and the template argu-
ments of the specialization. This is also a countable feature.

Member call expressions:
TIA analyzes both functions and member functions. Member functions of class tem-
plates are a bit of a quirk: although they are templated, there aren’t actually any
template arguments to report, as they are completely dependent on how the class tem-
plate encompassing them is instantiated. For that reason, I’ve decided to not report
them as function template instantiations [27] (see templated entities).

template<typename T>
class C {

void f(){}
};

Listing 4.3: Member function of class template

Of course, if the member function is a template (i.e., it has the template keyword) I
will report it including the template arguments.

Variable templates In contrast, this part of TIA is binary. Instead, it goes through all
variable template specializations that result from an instantiation, no matter if explicit
or implicit. It simply reports the fact that a certain instantiation of a variable template
exists, but does not report every use of that instantiation if it were multiple. Variable
templates are already a rather obscure construct, so I decided to keep it simple. We
report thus for each variable template every instantiated specialization once incl. the
instantiation arguments.

Statistics
TIA provides two functions for computing statistics from features:

• templatePrevalence: Given features describing instantiations, this function will com-
pute numbers on which templates were used how often. It does not make sense to
apply this to binary features since in that case, the result will be 1 for every template
instantiation that occurred.

• templateTypeArgPrevalence: Given features describing instantiations, this function
will compute numbers on how often a template instantiation was used. It will do
that by counting for each set of template type arguments how often it occurred. One
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could certainly also do this for template non-type and template template arguments.
Again, as above, it doesn’t make sense to apply this function to binary features.

For example, from the features extracted from below code, by applying above functions
we would get the following statistics:

std::vector<int> v1;
std::vector<int> v2;
std::array<42, unsigned> a1;

// From templatePrevalence:
"container type prevalence": {

"std::vector": 2,
"std::array": 1,

},
// From templateTypeArgPrevalence
"container instantiation type arguments": {

"std::vector": {
"int": 2

},
"std::array": {

"unsigned": 1
}

}

These kinds of statistics can help us identify which containers or algorithms are popular
and what they frequently contain.

Limitations
Implicit class template instantiations We see that there are still many cases left where we
don’t detect instantiations because they don’t fit into any of the categories. If I were to
implement this part now, I would rather use the typeLoc matcher, which allows extracting
locations where a certain type is used. Instead of having to come up with cases where an
interesting type can crop up beforehand, using typeLoc has the advantage that it yields
directly those locations and we then can decide whether those interest us or not. A quickly
prototyped matcher that I think is useful:

typeLoc(isExpansionInMainFile(), loc(hasDeclaration(
classTemplateSpecializationDecl())))

After all, our primary interest is the usage of a type, so it makes sense to start with that
and only then to zoom in. These limitations also apply to function and variable templates,
but I think for class templates they are the most glaring.

TIA is not so much an analysis to be used directly because its results can be somewhat
overwhelming due to the large number of instantiations reported. The main motivation
for TIA is to instrument it to build more specialized analyses that I hinted at earlier.

Container Library Analysis (CLA)
This analysis aims to analyze the use C++ Standard Library containers. Since those
containers are types, CLA instruments TIA to only study class templates. Moreover, as
the argument to Names, we pass the names of all the containers we’re interested in. In our
case, that are all sequence containers, (unordered) associative containers, and container
adaptors. For a full list of all containers, see the appendix.
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Features To get the relevant features about containers, CLA subclasses TIA to cre-
ate a constrained version that only analyzes instantiations of class templates using the
TemplateKind parameter. Example:

#include<vector>

template<typename T>
class C {

std::vector<int> mv;
};
int f(std::vector<double> dv);

int a =
f(std::vector<double>{});

Notice that CLA detects the
std::vector<double> parameter
variable in the declaration of f
and the std::vector<int> even
though the encompassing template
C is not instantiated, but not the
std::vector<double> literal since
it is not a variable declaration.

"cla": {
"explicit class insts": null,
"implicit class insts": {

"std::vector": [
{

"location": 5,
"arguments": {

"non-type": [],
"type": [

"int",
"std::allocator<int>"

],
"template": []

}
},
{

"location": 7,
"arguments": {

"non-type": [],
"type": [

"double",
"std::allocator<double>"

],
"template": []

}
}

]
}

}

Statistics To assess container popularity and prevalence of container contents, CLA can
just call TIA’s templatePrevalence and templateTypeArgPrevalence, respectively.

Utility Library Analysis (ULA)
ULA goes about it just like CLA, with the only difference that it analyzes a different set
of class templates’ usage:

• std::pair
• std::tuple
• std::bitset

• std::unique_ptr
• std::shared_ptr
• std::weak_ptr

Notice how these are not all of the C++ General utilities library provides, but (probably,
upon further analysis) the most important ones. One should be able to easily extend this
to encompass more utilities.

Algorithm Library Analysis (ALA)
Features Currently, ALA subclasses TIA to analyze calls to function templates. Exam-
ple:
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#include <algorithm>

int main(int argc, char** argv){
int a = std::min(3.0, 4.0);
return 0;

}

The compiler automatically deduces from the
arguments the type to instantiate std::min.

"ala": {
"func insts": {

"std::min": [
{

"location": 4,
"arguments": {

"non-type": [],
"type": [

"double"
],
"template": []

}
}

]
}

}

ALA does not analyze all C++ Standard Library Algorithms, see the appendix for a full
list.

Statistics ALA, right now, uses only templatePrevalence to assess the popularity of the
different function templates.

4.1.7 Move Semantics Analysis (MSA)
FPA already gives some insights into the adoption of move semantics by analyzing the
prevalence of rvalue and forwarding references, but since pass-by-value function parame-
ters can also trigger move semantics, I decided to add an analysis that checks two things:

• Finds all calls of std::move, std::forward (Part 1).
• For functions that take a parameter by value, we check calls to those functions and

try to analyze if those parameters are being copy- or move-constructed (Part 2).

Part 1 is fairly simple since we can instrument TIA to solve this problem. Part 2 needs
some more attention: it achieves its goal via the following matcher: the matcher looks
for all call expressions to functions with by-value parameters where the corresponding
argument is a CXXConstructExpr, which is the node in the AST corresponding to the call
of a constructor3. We can then leverage the Clang library to check if that construction is
a copy or move construction.

Features

std::move, std::forward prevalence To get a first idea about the adoption of move seman-
tics, we analyze whether the to move semantics two integral function templates are used:
std::move and std::forward. Here again, TIA comes into play: as expected, I constrain
it to look for calls to specializations of the above templates, keeping in mind to specify
the correct HeaderRegex to not report the wrong moves (unfortunately, the C++ Standard
Library contains two templates with the name std::move).

Construction of pass-by-value function parameters To balance out FPA’s weakness with
regards to pass-by-value parameters (from a pass-by-value function parameter we cannot
determine whether a copy or a move occurs), I analyze at the call site whether the pa-
rameter will be copy- or move-constructed. To do that, conceptually, I match the call

3https://clang.llvm.org/doxygen/classclang_1_1CXXConstructExpr.html
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expressions that, for each by-value parameter of the function that they call, have an ex-
pression that constructs the parameter. Note that functions include member functions
and call expressions include calls to member functions. In this example, c on the last line
is an expression (a CXXConstructExpr) that constructs the parameter c_prime.

class C {
...

};
void func(C c_prime){

...
}
...
C c;
func(c);

Using the Clang library, we can find out what constructor was used to initialize that
parameter, allowing us to determine if a copy or a move took place. Also, we can check if
the constructor used was written by the programmer or generated by the compiler, which
can be useful to find out if the move was due to increased awareness of programmers about
move semantics.

Subtleties:

• Copy elision: When a construction is elidable the question is whether to report those
cases as copy/move or not. Currently, if we can determine from the CXXConstructExpr
the constructor that was used to initialize the parameter, we report the copy/move,
no matter if it might be elided in the end. If we cannot determine which constructor
was used, this usually hints at the construction having been elided. We then report
the construction as “unknown”, ensuring that in any final statistic it will not be
counted as a copy or move.
The results can vary depending on the version of C++ due to changes in the speci-
fication of copy elision in C++17 [21].

• CXXBindTemporaryExpr: When the CXXConstructExpr constructs a class with a non-
trivial destructor (i.e. it is user-defined, most likely because the class manages
external memory which needs to be delete’d), the CXXConstructExpr has a
CXXBindTemporaryExpr parent node in the Clang AST. The Clang documentation
specifies that a CXXBindTemporaryExpr ensures that the destructor for some tempo-
rary is called4. I’m not sure why this is needed – it confuses me since that node is
even part of the AST when a by-value function is called with an lvalue argument,
meaning there is no temporary to be destructed. I have, however, changed the
matcher to account for this because there are many classes with nontrivial destruc-
tors whose copy/move behavior we don’t want to miss to analyze.

To conclude, this part of MSA will report the call expression together with information
about whether the function will receive the parameter by copy or move, whether the
copy/move constructor leveraged was compiler-generated or not, and the type of the
argument.

Statistics We currently compute the following statistics:

• Number of uses of std::move, std::forward
• Number of copy/move constructions of by-value function parameters at call sites:

– per type
– in total

4https://clang.llvm.org/doxygen/classclang_1_1CXXBindTemporaryExpr.html#details
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Limitations

Copy elision It might be advisable to explicitly state when copy/move is elidable or elided.
Also, we need to be able to detect if the copy/move is guaranteed to be elided, which can
be achieved by checking if the CXXConstructExpr is a CXXTemporaryObjectExpr.

Returning by value The same analysis of the construction could (should) also be per-
formed when returning by value, possibly in liaison with an analysis measuring how many
functions return by value.

4.1.8 Template Parameter Analysis (TPA)
The Template Parameter Analysis, or TPA, analyzes for each template (classes, functions,
variables, and aliases) properties about their template parameters. The main motivation
for it was to find out how often template parameter packs were used.

Features TPA operates as follows:

1. Get pointers to all templates used in the code – no matter the kind of template, but
store them in four different vectors. This achieved using the Clang matchers library.

2. Iterate over all templates found, and count for each kind of template parameter how
many it contains.

3. Iterate over all templates and set a flag indicating if it uses a template parameter
pack. Note that this just analyzes template parameter packs, not function parameter
packs – after all, we’re analyzing template parameters here.

For example, the features for class templates look like this, indicating that there is some
template Widget1 that has one non-type and one type parameters, and that does not use
parameter packs.

"class templates": {
"Widget1": [

{
"location": 10,
"parameters": {

"non-type": 1,
"template": 0,
"type": 1

},
"uses param pack": false

},
...

],
...

}

Note how the JSON value corresponding to the key is a list. This is because template
names can be overloaded, notably functions.

Statistics As of writing the thesis, I only compute a single statistic from the above
features: for each kind of template, I report how many templates use parameter packs
and how many don’t.

Limitations
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Better reporting of parameters Instead of directly counting the different kinds of parame-
ters, extract more detailed information about them, for example for non-type parameters
what type of argument is required. For template parameters, we could even recursively
employ TPA to get more information about the parameters of template template parame-
ters. The fact that it starts counting already in the feature-extracting stage is an artifact
from when the features-statistics distinction wasn’t yet as clear.

Better reporting of packs Instead of a boolean indicating if a pack was used or not,
reporting how many packs a template uses could be useful to investigate if e.g. a small
number of templates contain a disproportionately large amount of all parameter packs.

Specializations Template specializations (of classes, functions, or variables) and partial
template specializations (of classes or variables) are not analyzed for their template pa-
rameters because the matcher only looks for the primary templates.

4.1.9 using Analysis (UA)
This analysis aims to analyze the usage of type definitions and type aliases, or for short,
(type) synonyms. Note that this analysis is called using analysis due to the main mo-
tivtion of analyzing if typedef was dropped in favor of using – it does not analyze the
use of using-declarations like “using typename <type>” or using-directives likes “using
namespace <namespace-name>”.

Features UA extracts four features:

Type aliases These were very easy to extract since LibASTMatchers provides a pre-built
matcher for this: typeAliasDecl. The only thing I had to improve was to ensure that the
type alias was not part of a type alias template because I wanted to be able to report
templated and nontemplated aliases separately.

Type alias templates These can be extracted using the typeAliasTemplateDecl matcher,
which I also used above to filter the aliases from the alias templates. Recall that when you
instantiate an alias template, you actually instantiate the class that is aliased and don’t
create a new type alias in the AST [28].

“Typedef templates” To distinguish “typedef templates” from class templates that hap-
pen to contain a typedef I made the following assumption about the idiom: A class
template is considered a “typedef template” if and only if it contains

• at least one typedef,
• no declarations other than type definitions and access specifiers (public, private

etc.).

I think that it is sensible to assume that a “typedef template” should only contain type
definitions. If it contains anything else it is simply a regular class template. To account for
the fact that according to the above such templated type definitions can contain multiple
typedefs, a templated type definition is reported as often as the number of typedefs it
contains.
template<typename T>
struct Wrapper {

typedef std::vector<T> Tvector;
typedef std::unique_ptr<T> Tpointer;

};

Right now, Wrapper will be reported twice because it contains two type definitions.
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Typedefs Although type definitions are conceptually simple, they are the most difficult
to extract correctly due to the risk of false positives: I don’t want to report any type
definitions here that are part of a “typedef template” because I want to clearly distin-
guish between type definitions and the type definition template idiom. When a “typedef
template” is used, the compiler creates a specialization of its class template. This is a
problem, because if we don’t take care, the therein contained type definitions will be re-
ported here. Just like an instantiation of an alias template doesn’t create an alias that is
matched by the tool, I don’t want an instantiation of a “typedef template” to cause a type
definition to be matched. Thus, to recap, there are two instances where type definitions
occur which we don’t want to report as type definitions, and thus have to filter out:

• a typedef in a class template that we think is a typedef template → reported as
part of “typedef templates”

• a typedef in “typedef template” specialization/instantiation → never reported

This is what an extracted synonym looks like:

{
"kind": "Alias", // type definition or type alias?
"location": 4, // line number
"templated": true // templated?

},
...

Using kind and templated we can represent the four features that are extracted.

Statistics This is again refreshingly simple: for each feature, we count how often it occurs
and call it a day.

Limitations

Synonymized types I think that it might be also interesting to report the type that was
synonymized.

“Typedef templates” containing multiple typedefs Instead of reporting a templated type
definition multiple times, once for each contained type definition, it would be an improve-
ment to report the type definitions it contains while stating that they were part of a
“typedef template”. I can imagine that programmers still like to use the idiom because it
allows to “bundle” types neatly inside a single class, which we could research better if we
made that change.

4.1.10 Variable Template Analysis (VTA)

Similar to UA, this analysis extracts all occurrences of variable templates and the idioms
used to imitate it before it existed in the language.

Features

Variable templates I was surprised to find out that LibASTMatchers did not contain a
proper matcher for variable templates. Luckily, a variable template is easily spotted in
the Clang AST as a VarTemplateDecl. Using the information found on [9], I was able to
write my own matcher for variable templates using a one-liner.
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static data member of class template A class template is considered an instance of this
idiom when it contains one or more static variable declarations, but not any other kind
of declaration. When a class template contains multiple static variables, it is reported
multiple times to account for that.

constexpr function template A function template is considered to be an instance of this
idiom when the following conditions hold:

• The template is constexpr.
• Its return type is not void.
• It contains zero or more variable declaration, but not any other kind of declaration.
• It has a return statement, which returns one of the variables declared or some other

expression.

These assumptions might be too restrictive, but there isn’t much information about this
idiom. A “constexpr function template returning the desired value” could be in principle
any constexpr function template.

In the end, we report the kind (variable template or idiom) and the location of the feature.

Statistics For each of the three features, we count the number of occurrences to be able
to find out how programmers like to template their variables.

Limitations Information about variable templates seems relatively sparse, and I haven’t
had many encounters with it yet. A blog post (see [43]) wrote that they are useful in
type traits (apart from having variable-precision constants), suggesting that it might be
interesting to dive into the C++ STL (Standard Template Library) to see how they are
used there.
I found contradicting information about the pre-C++14 idioms (see [29] and [34]) w.r.t.
the constexpr-ness of static data members of class templates. I think that [34] declares
all idioms constexpr because it originally proposed constexpr variable templates, only in a
later revision was decided to remove that requirement. The keyword constexpr is a must
for variable templates for them to be useful in programming type traits, but I think that it
can be omitted when variable templates (or either of its idioms for that matter) are used
to declare variable-precision constants. A future improvement of VTA might thus drop
the constexpr requirement for the function template idiom for the sake of consistency.

4.2 Testing methodology
I have written for each analysis a set of unit tests to test that the basic feature extraction
of the analyses is correct. For each feature that an analysis extracts I have collected
instances of it in different contexts to test that it is detected in those. More difficult to
test is that the analyses don’t match code that they should not.

LLVM Integrated Tester I used LLVM’s integrated tester5 (lit) to create the unit tests.
lit allows writing compact test cases by packing test case input and test instructions into
a single file. These files will then be put in a test directory and automatically discovered
by lit. The RUN lines indicate what steps lit should perform.

1 // RUN: clang++ %s -emit-ast -o %t1.ast
2 // RUN: %cxx-langstat --analyses=tia -emit-features -in %t1.ast -out %t1.ast.

json --
3 // RUN: diff %t1.ast.json %s.json

5https://www.llvm.org/docs/CommandGuide/lit.html
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4 template<typename T>
5 class Sub {};
6

7 template<typename T>
8 class Super {
9 Sub<T> w;

10 };
11 template class Super<int>;

In the above example, we want to test that the explicit instantiation of Super and the
implicit instantiation of Sub are reported, where the latter is caused by the former.

1. We use clang++ to preparse the input file for us. %s stands for the name of the current
file. This is optional, but useful for input files that #include headers because it avoids
having to specify those using compile commands.

2. The tool is run with analyses enabled accordingly.
3. Comparison of the output with the reference output.

This way, I collected around 80 files containing basic tests to stress the extraction process.

This approach does not allow testing the classes and functions I declared and used in
the framework, leaving them practically untested. Also, I did not use lit to test the
correctness of the computation of statistics from features. However, the probability of
finding errors should be smaller there since the functions performing those computations
are relatively simple.

I also applied the analyses of cxx-langstat to its own source directory and compared the
extracted features by hand to ensure that they weren’t completely wrong.

4.3 Known issues
Lambdas By default, Clang’s functionDecl matcher matches functions, member func-
tions incl. constructors and destructors, but also lambdas. The problem with the latter
is that they are currently matched three times due to their representation in the Clang
AST, possibly skewing statistics. A quick fix would be to completely ignore lambdas by
changing the matcher for function declarations to:

functionDecl(unless(hasParent(cxxRecordDecl(isLambda()))))

Even better would be if a lambda was just matched once, because it intuitively represents
a single unnamed function. Analyses that inspect functions such as CCA, CEA, and FPA
are susceptible to this.

static class data members static class data members often need the definition to be
out-of-line:

struct C {
static int data; // declaration

};
int Widget::data = 3; // definition

Such code causes problems for CEA, namely because the constexpr-ness of a variable is
reported twice – once for the declaration, once for the definition. By the same token, TIA
reports two instantiations if the static member is a variable template with an out-of-line
definition.
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Chapter 5

Results of the Analysis of the LLVM Core
Libraries

To test the usability of the tool, we run cxx-langstat on the core of the LLVM project.
The core of LLVM contains the source- and target-independent optimizer [13], the code
generation suite to translate the LLVM internal representation (IR) to machine code [14]
as well as the specification of the LLVM IR itself [13]. We analyzed 75 Gigabytes of .ast
files, which were generated by Lukas Gygi using CppBuild [37]. The version of the LLVM
libraries analyzed was 11.1.0. It took approximately 25 minutes to extract the features
from the AST files and one minute to compute the statistics on an Intel Xeon X7550
clocked at 2GHz.

In the next section, I first want to detail some results that I gathered about C++ features,
and in the section following that I will discuss what insights that we can gain from that
data incl. the limitations of the data and potential improvements.

5.1 Results
loop occurrences
for 9493
range-for 13115
do-while 9426
while 2592

Range-based for loops Anectodes of C++ books and ar-
ticles suggest high for loop prevalence. The data showed
comparable usage of for, range-for and do-while loops, but
while loops saw little usage.

Function parameters and move semantics Of all functions that create machine code
(i.e., excl. function templates, incl. full/explicit function template specializations and
function template instantiations) 41744 had at least one by-value/copying paramater,
29825 had at least one non-const lvalue-ref parameter, 13944 had at least one const
lvalue-ref parameter, and only 190 had at least one rvalue-ref parameter. In total, there
were 72936 functions. In the case of function templates, the respective numbers were 575,
422, 170, and 0 found in 885 function templates. Additionally, 108 function templates
adopted at least one forwarding reference parameter. In relative terms, the prevalence of
the different kinds of parameters is comparable, as seen in figure 5.1.

Of all value parameters constructed in calls to functions that were not elided, 79787 were
constructed using the copy constructor, 80501 using the move constructor.

std::move and std::forward were used 2821 and 1131 times, respectively. This represents
all calls to those function templates, which can be in different contexts, e.g., in a call
expression, a member initializer list, or a return statement.
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Figure 5.1: For each kind of parameter, % of functions/function templates that use it

template prevalence
class 1 out of 92
function 182 out of 893
variable 0 out of 1
alias 0 out of 0

Parameter packs When applying TPA to the LLVM core,
we registered that a mere 1.1% of class templates, but a sub-
stantial 20.4% of function templates were using a parameter
pack. Variable and alias templates came in both at 0%, which
is due to the fact they virtually weren’t used.

synonym occurrences
typedef 186
alias 1388
“typedef template” 0
alias template 0

using UA detected in total 1574 non-templated
synonyms, of which 186 were type definitions and
1388 were type aliases, which is 11.8% and 88.2%,
respectively. Interestingly, not a single templated
synonym was found. The fact that no “typedef tem-
plates” were found could be due to the assumptions
that I made about that idiom. I found it surprising to see that no alias templates were
found, given that compared to type definitions one of their strong points is that they can
be templated.

construct occurrences
variable 327 out of 246628 (0.13%)
non-member function 6 out of 16824 (0.04%)
member function 83 out of 59837 (0.14%)
if statement 0 out of 147078 (0%)

constexpr The following table
shows for each C++ construct that
can be adorned with constexpr
the relative prevalence of that
happening. Note again that this
data does not establish a relation
between how many constructs could be constexpr compared to how many actually were
constexpr – it only filters out some trivial cases that are never constant expressions.

Algorithms Of the total 1296 calls to algorithms found (see appendix for list of algorithms
matched), essentially only the algorithms for getting the minimum and maximum are used.

Containers Figure 5.3 shows the results of applying CLA to the LLVM core. For each
standard library container, it plots how many variable declarations and member variable
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Figure 5.2: Number of occurrences of the analyzed algorithms
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Figure 5.3: Number of occurrences of C++ Standard Library containers

declarations of that type were found in the code. This is of course only an approximation
to the popularity or the container, but likely an important first step. According to this
data, std::vector, std::map and std::set make up a whopping 70.2%, 12.2% and 8.9%,
respectively of the 1802 containers used to declare variables, cumulatively responsible for
more than 90%.
By looking at the instantiation arguments of std::vector, we get an idea of the contents
of std::vector (see table 5.1). We ignore LLVM-specific types.

Although the instantiation arguments of the class templates are reported (allowing to get
insights about container contents), I had to sift through those arguments by hand, which
is too tedious.
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contained type occurrences
std::vector 25
std::set 5
built-ins 175
std::unique_ptr 32
std::shared_ptr 5
std::weak_ptr 1
std::pair 89
std::tuple 2

Table 5.1: std::vector contents of non-LLVM type

utility occurrences
std::unique_ptr 1088
std::shared_ptr 162
std::bitset 34
std::pair 1311
std::tuple 54

Table 5.2: Number of occurrences of the analyzed utilities

This data probably doesn’t paint a complete picture about the data structures used due
to the LLVM-provided data structures [12] as well as the fact that containers can occur
not only as variable declarations but also in return type declarations or literals which CLA
(i.e., the underlying TIA) doesn’t analyze.

Utilities and smart pointers There were 1250 variables/member variables declaring
smart pointers in total, however, not a single std::weak_ptr variable. See table 5.2 for
details.

LLVM containers LLVM provides its own set of containers, notably, a variety of Small-
data structures that aim to reduce memory allocations on the heap [12]. Figure 5.4 shows
the number of absolute occurrences of LLVM data structures declared as a (member)
variable or parameter variable. These numbers come from an analysis built on top of
TIA, so only templated class types are respected. The Small- class types (marked in blue
in the plot) make up 61.4% of all occurrences.

5.2 Discussion
In this section, we discuss the results gathered and the ability of the framework to answer
research questions and how to improve the results to do so better.

In the following, I present answers to research questions 1-3 and propose approaches
to solving questions 5-7. I discuss an answer regarding question 4 but also propose an
important improvement.

RQ1. Which new language features are easily and quickly adopted: range-based loops,
move semantics, new keywords? Are there new standard components that are rarely
seen in codes? Our data suggest high popularity of range-based loops, but I am not
able to assess if there could be further increases in popularity. The data does not tell
us if range-based loops were used at all locations where they could have been, making it
harder to see how popular they effectively are. I would, however, argue that this is not as
big of a problem as with constexpr, where there are many more conditions under which
the construct is not applicable. Also, it would be beneficial to analyze multiple versions
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Figure 5.4: Number of occurrences of LLVM containers

of LLVM, ideally all versions from since the introduction of range-based loops until today
and beyond to observe their adoption over time.

The adoption of move semantics at the call site to functions with by-value parameters is
sizable at 50.2%. The existence of a move does not tell us why it occurred, thus we don’t
know whether we have to thank C++ and the compiler or the programmer for that efficient
transfer of resources. The data does not disclose to us how many moves were performed
because functions were called with an rvalue or whether the programmer decided to use
std::move.
Even though we do have data on how often std::move is used, that data enumerates every
use of it, which can be inside a call expression, but also a member initializer list or a
return statement. This makes it impossible to figure out how many moves inside of call
expressions were requested by the programmer.
The data about function parameters (around 60% of functions use by-value parameters)
indicate that there is a potential gain to use move semantics. There is the problem that
these by-value parameters also include those that cannot experience a performance boost
using move semantics, e.g. language built-in types. This limitation, however, can partly
overcome: the features contain information about the types of the parameters, which
could be leveraged to filter out built-ins. This is an example where storing features and
only then computing features has merit since it avoids expensive recomputations on the
source code.

The adoption of parameter packs can be well analyzed by TPA, and the data suggests a
sizable adoption of them among function templates. My guess is that template parameter
packs are more popular with functions than with classes because one wants a function
that accepts a variable amount of arguments more often than a class that stores variable
amounts of data. To further investigate this assertion, we could improve FPA to also
report on the commonness of function parameter packs.

I was surprised to see constexpr to be used so rarely – I would have expected it to be
used more often adorning functions since requirements concerning function bodies have
become less strict [41] (p. 100) since the first appearance of constexpr (member) functions,
allowing more intuitive constexpr programming. These results should, however, be taken
with a big grain of salt due to the limitations of CEA.
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It is safe to say that type aliases are much more popular compared to type definitions,
and it will be interesting to see if this trend continues if we analyze newer versions of this
project and other projects in the future. I think that that will be the case, as the C++

community is shifting away from C-style programming.

RQ2. What is the usage rate of new standard modules and libraries, such as smart
pointers and new containers? Using CLA and ULA, we analyzed the relative popular-
ities of containers and container-like utilities provided by the C++ Standard Library. It
shows that std::vector is hugely popular and that smart pointers also get their fair share.
These analyses can also be used to investigate how many projects use the different types
at all when analyzing multiple projects. However, an improvement would be to be able
to relate their prevalence to that of non-container variables to see how many variables are
containers in the first place. This would be beneficial to analyze smart pointer usage to
see if they could catch up to raw pointers.
Also, there are many other places apart from (member) variables where these classes can
be used, like inside other data structures, in return type declarations or literals. These
occurrences are currently overlooked – table 5.2 suggests that std::weak_ptr isn’t used,
but there is one instance tucked away in an std::vector. This is supported by table 5.1,
where we can see that we miss uses of containers and classes because the analysis looks
only at the types of (member) variable declarations.

RQ3. Which algorithms are the most popular, which are not used at all? ALA solves
this task well, and the results show us that apart from minimum/maximum operations,
algorithms are used sparsely. A limitation that ALA looks at a smaller set of C++ Standard
Library algorithms at the moment, but this isn’t hard to resolve – the bigger problem is
that it doesn’t look at uses of function templates besides call expressions.

RQ4. Which non-standard libraries are most commonly spotted in projects? Can
we deduce recommendations for new directions of standard development? Compar-
ing the usage numbers of the LLVM Small- data structures with their C++ Standard
Library counterparts (compare llvm::SmallVector to std::vector and llvm::SmallSet,
llvm::SmallPtrSet to std::set) shows that select Small- containers are as popular if not
more popular than the standard ones, hinting for such a development in the Standard
Library. I would, however, argue that the data is a bit biased toward a high adoption of
small data structures due to them being part of LLVM itself. It is necessary to analyze
a larger set of C++ projects and consider a broader range of non-standard libraries that
implement such containers (e.g. LLVM, Boost1, etc.) to decide if the Standard Library
needs such constructs.

For general, non-standard libraries, instrumenting TIA or applying it directly can give us
usage statistics on any class and function templates, thus allowing us to detect the use of
library components. The problem is that if a library relies more on nontemplated classes
and functions rather than templated ones, TIA will not be able to analyze the library
well. The problem lies in the name – TIA analyzes the usage of template instantiations
only.
To remove this limitation, I propose to build a new analysis that contains two separate
parts: one that makes use of TIA to analyze template usage and a second one that only
analyzes the use of nontemplated class types and functions. The second part would operate
similarly to TIA, the difference being that it explicitly looks for uses of nontemplated
classes and functions. These two parts combined would make a flexible analysis that
should be able to analyze all major components of a library.
For an example of a two-part analysis, see MSA (4.1.7).

1https://www.boost.org/doc/libs/1_75_0/doc/html/boost/container/small_vector.html
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RQ5. How many projects involve any form of parallel processing? Which parallel
frameworks are commonly spotted? std::thread, OpenMP, TBB, others? Currently,
the framework has limited support to analyze the C++ Standard Threading Library, since
it employs many non-generic classes and functions. A potential instrumentation of TIA
couldn’t analyze this library completely because it would only be able to analyze the usage
of templates. TBB, on the other hand, can profit from an instrumentation of TIA, since
many of its interfaces are programmed using templates [2].

RQ6. How prevalent are deprecated and unsafe constructs, best practices, and anti-
patterns? We didn’t gather much data concerning programming guidelines. I’m con-
vinced that this framework is applicable to build analyses measuring such behavior. Take
for example the recommended practice of using the override keyword to let the compiler
(and colleague programmers, too) know that a virtual function is supposed to override the
function of a base class. I see no deal-breaking problems implementing an analysis that
first extracts all virtual functions, then relates base class and derived class functions by
comparing their signatures and reports all instances where override is successfully used
and all others where it isn’t, but should be.

The constexpr analysis not only helps to identify the adoption of a C++11 feature but
also checks the compliance with a programming practice – it seems Scott Meyers’ advice
to use constexpr relatively gratuitously [41] (p. 97) could be adhered to a little more.

RQ7. Which types of new features have the highest impact on new codebases and
which are frequently adopted by projects that have been in development for a long
time? Packing features into different categories such as keywords, library usage, language
constructs and best practices we can see how applying this tool to multiple projects can
give us insights into what kind of features are more gratuitously adopted by codebases
and the programming community. Applying the tool to a single project across multiple
versions would allow us to observe the prevalence of features as the project develops.
Of course, given I analyzed only a single version of one project, I can’t give any concrete
answers here.
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Chapter 6

Conclusion

In this thesis, I have shown how I built a tool on top of Clang consisting of a framework
and a set of analyses enabling to measure and analyze different types of C/C++ code
features. We’ve seen how we extract features from source code, which we then use to
compute statistics and why this is useful.

cxx-langstat already contains a sizable set of useful analyses, which I motivated with a
broad background chapter about different features of C++. If necessary, new analyses
can be added or even be built from others, e.g. in the same way that CLA is built by
instrumenting TIA.

We’ve seen various results such as the overwhelming popularity of std::vector, the sub-
stantial adoption of range-based loops and type aliases as well as respectable use of param-
eter packs. Also, the results indicate that, as far as we can tell from the limited algorithms
considered, how the C++ Algorithms Library suffers from low adoption.

By looking at a variety of research questions, I’ve demonstrated that cxx-langstat is
flexible enough to encompass a variety of analyses that can help to answer those types of
questions. For questions that couldn’t be directly answered, I have argued how to extend
existing analyses or create new ones.

Future work
For details about possible future research, see the discussion of research questions 4-7 in
the previous chapter. This includes writing an analysis about class and function usage in
general, including usage of both templated and nontemplated classes and functions as well
as implementing an analysis to observe the compliance of programmers with best practice
concerning the usage of the override and final keywords. Analyses about the usage of
the noexcept keyword or the rule of three could also be added for more insights about the
adoption of best practices.

Other opportunities for future work are found in the limitations paragraph contained in
each analysis section, for example, the constexpr analysis from section 4.1.2, where work
is needed to make the analysis only extract a location when constexpr is applicable.
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Appendix A

Appendix

A.1 Full list of containers and algorithms analyzed

Containers

Sequence containers
• std::array
• std::vector
• std::deque
• std::forward_list
• std::list

(Unordered) associate containers
• std::set
• std::map
• std::multiset

• std::multimap
• std::unordered_set
• std::unordered_map
• std::unordered_multiset
• std::unordered_multimap

Container adaptors
• std::stack
• std::queue
• std::priority_queue

Algorithms

Non-modifying sequence opera-
tions

• std::all_of
• std::any_of
• std::none_of
• std::for_each
• std::for_each_n
• std::count
• std::count_if
• std::mismatch
• std::find
• std::find_if
• std::find_if_not
• std::find_end
• std::find_first_of

• std::adjacent_find
• std::search
• std::search_n

Minimum/maximum operations
• std::max
• std::max_element
• std::min
• std::min_element
• std::minmax
• std::minmax_element
• std::clamp

Modifying sequence operations
• std::move // not std::move from

utility!

A.2 Flags for cxx-langstat

The source code can be found on GitHub: https://github.com/hartogss/cxx-langstat
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A. Appendix

Basic usage: cxx-langstat [options]. Append “--” and append zero or more compile
commands on the command line or use -p <build path> to supply a compilation database
in JSON format. See [15] for more information about compilation databases.

Options:

--in
Specifies an input file.
--out
Specifies an output file. Use only when a single output file is expected.
--indir
Specifies an input directory. Tool will run on all files in it, which ones depends on
the stage.
--outdir
Specifies an output directory. Use when multiple output files are expected.

Stages:
--emit-features
Tool looks for source/AST inputs and will emit for each input an output con-
taining extracted features.
--emit-statistics
Tool looks for JSON files (expects them to be generated by previous stage) and
will emit a single output JSON file containing statistics.

--analyses=<string>
Comma-separated list of analyses to be run, can be supplied in either stage.
--parallel or -j
Accepts unsigned integer specifying how many batches to run parallel in the --emit-features
stage. Ignored in the other stage.

Useful compile commands to be used after -- :

-ccc-install-dir, -resource-dir
If you analyze source code (.c, .cpp or headers, not .ast) and you didn’t install
cxx-langstat in your bin folder, the clang++ frontend might have trouble find-
ing headers from the C/C++ Standard Libraries due to clang++ thinking it is in-
stalled in the current build directory. Using -ccc-install-dir /usr/local/bin and
-resource-dir /usr/local/lib/clang/<version> (paths might be different on your
system) helped me resolve those problems. Also see1.
You can also use -I to manually add include paths.

--driver-mode
Useful to force the frontend to interpret .h as C++ headers, however, deprecated.
The -x <language> flag currently bugs, causing it to read no compile commands
from the command line.

1https://gist.github.com/WingTillDie/f636de6e37947c2d23bf7400d6f24911
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