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Abstract

Most physiological processes in humans are synchronized with their environment by so-
called circadian clocks. These molecular time-keeping machineries are present in almost
every cell. While light is the most important external stimulus to reset the circadian clocks,
they can also be entrained by other stimuli, such as feeding or rest/activity cycles. Sleep is
both, one of the major outputs of circadian clocks and also an independently regulated re-
cuperative neurobiological process. Both, circadian clocks and sleep are closely intertwined
with metabolic regulation and their disruption is associated with adverse e�ects on metabolic
health, such as type 2 diabetes, metabolic syndrome, obesity and cardiovascular diseases.
Since sleep restriction and disruption of circadian clocks are common issues in a modern
24/7 society, their negative metabolic consequences constitute a major concern of public
health. However, despite clear evidence for the association between sleep, circadian clocks
and metabolism, many aspects of this relationship remain unclear.
In this thesis, novel insights into metabolic processes related to sleep and circadian clocks

were gained using cutting-edge high-resolution mass spectrometry (HRMS) techniques. The
combination of high resolution and high mass accuracy enables the analysis of complex
mixtures and delivers molecular information. HRMS therefore provides a powerful tool for
metabolic pro�ling. Here, two HRMS approaches were used. Metabolites in exhaled breath
were measured in real time by secondary electrospray ionization high-resolution mass spec-
trometry (SESI-HRMS), o�ering a non-invasive technique with a virtually unlimited sam-
pling frequency for studying systemic metabolic processes. Moreover, metabolic pro�ling
from blood samples was performed using electrospray ionization mass spectrometry cou-
pled to ultra-high performance liquid chromatography. Thereby, chromatography adds an
additional dimension of separation, which improves unambiguous compound identi�cation.
Within this thesis, a setup for the analysis of exhaled breath during sleep by SESI-HRMS

was developed. This allowed an unprecedented monitoring of metabolome-wide regulation
during sleep with a ten-second time resolution. Major metabolic pathways were found to
undergo rapid and reversible changes upon sleep stage transitions. It seems likely that the
relevance of this complex synchronization of metabolism and sleep architecture for human
health and performance is higher than previously thought.
The non-invasive fashion of SESI-HRMS and its capability for real-time information qual-

ify this technique also as a promising tool for clinical diagnostics. Here, breath biomarkers
for obstructive sleep apnea (OSA) were validated in a larger and broader cohort of patients
con�rming the previously stated association between breath levels of these metabolites and
the severity of the disease. These �ndings suggest that breath analysis by SESI-HRMS may

iii



Abstract

add a substantial objective value, especially for OSA screening, and bring SESI-HRMS a step
closer to its clinical application.
By analyzing breath, it was possible to unravel metabolic processes related to sleep archi-

tecture and obstructive sleep apnea, while the metabolic pro�ling of blood provided insights
into the connection between circadian clocks and metabolism. An elongating e�ect on the
circadian period length was observed for a range of metabolic factors in serum frommetabol-
ically unhealthy obese patients. The combination of the molecular information provided by
HRMS and results from genome-wide association revealed insulin resistance as central aspect
of this association.
In contrast to humans, arctic species, such as Norwegian reindeer, have always been ex-

posed to seasonally occurring conditions of constant light. Therefore, they might have devel-
oped strategies to cope with this reoccurring circadian disruption. In the scope of this thesis
circadian regulation of metabolism in arctic reindeer was investigated in combination with
their behavior across all seasons. In contrast their activity patterns, metabolism in reindeer
was not synchronized with the experienced light schedule. While less rhythmic metabolites
were found during constant light in summer, a surprisingly high number of metabolites dis-
played circadian rhythms in winter. These �ndings suggest that reindeer have developed
mechanisms to decouple circadian regulation of metabolism from behavioral rhythmicity.
In conclusion, this thesis demonstrates the value of breath analysis and the versatility of

high-resolution mass spectrometry for the �eld of metabolomics. By using this technique,
metabolic processes related to sleep and circadian clocks were unraveled and the diagnostic
value of metabolic pro�ling in exhaled breath by SESI-HRMS was further validated.
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Zusammenfassung

Die meisten physiologischen Prozesse im Menschen werden durch die sogenannte zirkadi-
ane oder innere Uhr mit der Umgebung synchronisiert. Solche molekularen Schrittmacher
sind in fast jeder Zelle des Körpers vorhanden. Licht ist zwar der wichtigste Zeitgeber
für die innere Uhr, aber auch andere Stimuli, wie zum Beispiel Nahrungsaufnahme oder
Ruhe-/Aktivitätszyklen können die Uhr beein�ussen. Schlaf ist nicht nur ein von der
zirkadianen Uhr bestimmter Prozess, sondern gleichzeitig ein davon unabhängig regulierter,
erholungsfördernder neurobiologischer Prozess. Sowohl die innere Uhr als auch Schlaf
sind eng mit dem menschlichen Sto�wechsel ver�ochten, und eine Beeinträchtigung beider
Prozesse geht mit negativen Auswirkungen auf die Gesundheit einher. Diese äussern
sich beispielsweise durch das Auftreten von Typ-2-Diabetes, metabolischem Syndrom,
Adipositas oder Herz-Kreislauf-Erkrankungen. Da Schlafmangel und Unterbrechungen
des Tagesrhythmus in einer modernen, rund um die Uhr funktionierenden Gesellschaft
weitverbreitet sind, stellen ihre negativen Folgen einige wichtige Herausforderungen für
das aktuelle Gesundheitswesen dar. Trotz eindeutiger wissenschaftlicher Belege für einen
bestehenden Zusammenhang zwischen Schlaf, zirkadianen Uhren und dem Sto�wechsel
sind jedoch viele Aspekte dieser Interaktionen noch wenig erforscht.
In dieser Arbeit wurden mit modernster hochau�ösender Massenspektrometrie (HRMS)

neue Einblicke in Sto�wechselvorgänge im Zusammenhang mit Schlaf und zirkadianen
Uhren gewonnen. Die Kombination von hoher Au�ösung und hoher Massengenauigkeit
ermöglicht die Analyse komplexer Sto�gemische und liefert zudem Informationen über
deren molekulare Zusammensetzung. HRMS ist daher ein leistungsstarkes Werkzeug
für eine möglichst umfassende Analyse von Sto�wechselprodukten (Metabolomik). Hier
wurden zwei verschiedene HRMS-Methoden verwendet: Metabolite in der Atemluft wurden
in Echtzeit mittels hochau�ösender Sekundärelektrospray-Ionisations-Massenspektrometrie
(SESI-HRMS) gemessen, zur Analyse von Blutproben wurde Elektrospray-Ionisations-
Massenspektrometrie mit Ultra-Hochleistungs-Flüssigkeitschromatographie gekoppelt.
Während SESI-HRMS die Untersuchung systemischer Sto�wechselprozesse auf nicht-
invasive Weise und mit nahezu unbegrenzter Probennahmefrequenz ermöglichte, konnten
durch den zusätzlichen Trennungsschritt bei der Kopplung mit Chromatographie chemis-
chen Verbindungen eindeutiger identi�ziert werden. Im Rahmen der vorliegenden Arbeit
wurde für die Analyse von Atemluft von Schlafenden ein Versuchsaufbaumittels SESI-HRMS
entwickelt. Dieser ermöglichte eine bislang beispiellose simultane Überwachung vieler
verschiedener Sto�wechselvorgänge während des Schlafs mit einer zeitlichen Au�ösung von
zehn Sekunden. Es zeigte sich, dass bei Übergängen zwischen verschiedenen Schlafphasen
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Zusammenfassung

schnelle und reversible Veränderungen in Hauptsto�wechselwegen statt�nden. Diese kom-
plexe Orchestrierung von Sto�wechsel und Schlafarchitektur könnte für die menschliche
Gesundheit und Leistungsfähigkeit von höherer Relevanz sein als bislang angenommen.
Da SESI-HRMS nicht invasiv ist und Echtzeit-Informationen liefert, ist die Technologie

auch für die klinische Diagnostik von grossem Interesse. In dieser Arbeit wurden Biomarker
für obstruktive Schlafapnoe (OSA) validiert, indem die Atemluft einer größeren und breit-
eren Patientenkohorte analysiert wurde. Auf diese Weise konnte der zuvor bei einer kleinen
Gruppe festgestellte Zusammenhang zwischen derMenge dieser Sto�wechselprodukte in der
Atemluft und dem Schweregrad der Erkrankung bestätigt werden. Die Ergebnisse deuten
darauf hin, dass die Atemanalyse mittels SESI-HRMS insbesondere zur Früherkennung von
OSA eine bedeutende objektive Diagnosegrundlage beisteuern könnte. Durch diese erstma-
lige Validierungsstudie wurde SESI-HRMS ihrer klinischen Anwendung einen entscheiden-
den Schritt näher gebracht.
Während mittels Atemanalyse neue Erkenntnisse zu Sto�wechselprozessen im Zusam-

menhang mit Schlaf und Schlafapnoe gewonnen werden konnten, lieferte die Analyse von
Metaboliten in Blutproben neue Einblicke in den Zusammenhang zwischen Sto�wechsel und
zirkadianen Uhren. Für eine Reihe von Metaboliten in Blutproben adipöser Patienten wurde
ein verlängernder E�ekt auf die zirkadiane Periode festgestellt. Die Kombination der von
der HRMS gelieferten molekularen Informationen mit den Ergebnissen einer genomweiten
Assoziationsstudie ergab, dass Insulinresistenz hier eine zentrale Rolle spielt.
Während beim Menschen Verschiebungen des Tagesrhythmus mit gesundheitlichen Pro-

blemen einhergehen, waren arktische Spezies wie zum Beispiel das Norwegische Rentier
schon immer saisonal auftretenden Bedingungen mit konstantem Licht ausgesetzt. Daher
könnten solche Arten interessante Strategien entwickelt haben, um mit der immer wieder
auftretenden Veränderung des Tagesrhythmus umzugehen. Im Rahmen dieser Arbeit wurde
deshalb die zirkadiane Regulierung des Sto�wechsels bei arktischen Rentieren sowie deren
Verhalten über alle Jahreszeiten hinweg untersucht. Während die Verhaltensmuster den
Lichtverhältnissen folgten, zeigten Metaboliten in allen Jahreszeiten zirkadiane Rhythmen,
und das in besonderem Masse bei konstanter Dunkelheit im Winter. Besonders viele wur-
den überraschenderweise bei konstanter Dunkelheit imWinter beobachtet. Diese Ergebnisse
deuten darauf hin, dass die Rentiere Mechanismen entwickelt haben, um die zirkadiane Kon-
trolle des Sto�wechsels von ihren Verhaltensmustern zu entkoppeln.
Insgesamt demonstriert die vorliegende Arbeit die Bedeutung und die vielseitigen

Einsatzmöglichkeiten der hochau�ösenden Massenspektrometrie für das Gebiet der
Metabolomik. Mit Hilfe dieser Technik konnten hier zum einen mit Schlaf und zirkadianen
Rhythmen einhergehende Sto�wechselprozesse nachgewiesen werden und zum anderen
wurde der Wert der Atemanalyse mittels SESI-HRMS für die klinische Diagnostik bestätigt.
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1.1. Introduction

1.1. Introduction
Modern society has allowed humans easy access to light, food, transportation, and entertain-
ment, twenty-four hours per day. Perhaps, increased productivity and hedonistic pleasure
has resulted, but also increased shift work, social jetlag, sleep loss, and an epidemic of obe-
sity, type 2 diabetes (T2D), and associated metabolic syndrome.1–3 At the same time, there has
also been an increase in other aspects of pathology such as psychological disorders, cancers,
immune system dysregulation, and gastrointestinal diseases.4–7 In this chapter, we focus on
the relationship between circadian clocks, sleep, and metabolism, and the consequences of
these connections formodern health. The circadian clockwork, the sleep homeostat, and their
regulatory networks have been studied considerably throughout the past decades, and there
has also been extensive work tying each of these processes to metabolism. Despite this, very
few studies exist that focus on the interplay between circadian and sleep processes in terms
of metabolic regulation, function, and pathology. We propose that by looking through the
lenses of both chronobiology and sleep science together, fresh insights may be found which
will further the understanding and development of novel strategies for metabolic health.

1.2. The circadian clock

1.2.1. Clock molecules and circuits
1.2.1.1. The molecular pacemaker

A circadian clock temporally controls virtually every aspect of the cellular function, includ-
ing energy balance, macromolecular synthesis, and signaling. Circadian mechanisms and
outputs have been reviewed elsewhere previously,8,9 and we outline brie�y only the main
transcriptional mechanism for this review. At the core of the molecular clock in mammals
are two transcriptional-translational feedback loops in which the protein products inhibit
their own transcription (�gure 1.1). Conventionally, this mechanism is separated into two
“limbs”. In the positive limb, circadian locomotor output cycles kaput protein (CLOCK) and
aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1), form heterodimers
that bind to cis-acting DNA elements (E-boxes) to activate transcription of Period (Per1-3)
and Cryptochrome (Cry1-2) genes, which are translated into proteins in the cytoplasm. These
proteins form the negative limb, in which PER and CRY proteins then are transported from
the cytoplasm to the nucleus and inhibit their own transcription. These positive and negative
limbs are further interwoven by a connected molecular circuit in which the gene encoding
the nuclear orphan receptor REV-ERBa is induced by CLOCK/BMAL1, and REVERBa itself
is a transcriptional repressor of Bmal1 while other nuclear receptors binding the same site
(RORs) activate it.

1.2.1.2. The master pacemaker

It is thought that virtually every mammalian cell possesses a clock of its own.10 In mammals,
a master pacemaker is necessary to keep all of these clocks synchronously tracking geophys-
ical time; this is the job of the suprachiasmatic nucleus (SCN). The SCN are bilateral nuclei
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Figure 1.1.: Circadian rhythms in clock proteins are driven by the molecular feedback loop, which allows for a
24-hour period length in protein expression. In the positive arm CLOCK and BMAL1 bind to the E-box which
drives expression of PER and CRY. In the negative arm, PER and CRY inhibit CLOCK and BMAL1 from binding
DNA, which leads eventually to a reduction of PER and CRY levels. The positive arm restarts once levels of
PER and CRY are low enough to allow binding of CLOCK and BMAL1 to DNA again. Additional loops such as
REV-ERBa regulating Bmal1 expression or modi�cations via Casein Kinase 1 (CK1d,e) �ne-tune and strengthen
oscillations. Expression of additional clock controlled genes (CCGs) which function in numerous cell processes,
are also driven by circadian clock genes.

of about 20,000 neurons located in the hypothalamus of the brain. They integrate time of
day and environmental lighting cues via input received from the eyes via the retinohypotha-
lamic tract,11 and via a web of direct and indirect cues then coordinates all cellular clocks
in the body.12 Each cell of the SCN has an autonomous clock, and these clocks are coupled
together via synaptic connections, gap junctions, and neuropeptidergic signaling to create
a precisely oscillating entity.8 In turn, the SCN synchronizes body clocks through electrical
and endocrine mechanisms, food timing and body temperature, and various other signaling
pathways to peripheral cells.13 Studies have shown that the sleep-wake cycle, activity, and
feeding behavior are under the control of the SCN, as well as hormone secretions and many
other aspects of physiology.14

1.2.1.3. Peripheral clocks

Peripheral clocks refer to any cellular or organ clock outside of the SCN, including elsewhere
in the brain. Peripheral clocks are capable of integrating phase information with respect to a
stimulus (either at a cellular or organ level), and integrating this information to time output
– generally at a clock phase slightly later than in SCN, as demonstrated nicely in young male
baboons.15 One example of this is glucocorticoid signaling. Via the hypothalamic-pituitary-
adrenal axis, the SCN triggers the release of glucocorticoids from the adrenal glands in a
time-of-day-dependent manner.16 Once released into the blood stream, glucocorticoids act as
a Zeitgeber (German for “time giver”) to peripheral clocks by inducing clock gene expression,
which in turn alters oscillations in these cells. Importantly, the SCN is not the only Zeitgeber
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for peripheral clocks. For example, transcription in the liver is not only driven by the clock,
but also by the timing of food intake.17 When food is consistently given at an abnormal time,
the peripheral clocks become uncoupled from the central ones.18 It is likely that a diversity
of similar cues exist, providing avenues by which di�erent signals such as metabolic and im-
mune state might in�uence circadian timing. Thus, although the circadian clock circuitry
itself is cell-autonomous and robustly self-sustained, nevertheless it is systemically coordi-
nated across cells and tissues. Even in the absence of SCN, experimental models show that
clocks in di�erent organs retain coherence via signals that are currently unknown.19

1.2.2. The circadian clock and metabolism
One of the primary functional outputs of the circadian clock is metabolic regulation: virtually
all aspects of metabolism exhibit daily oscillations, which persist even in constant environ-
mental conditions.8 Recently, there has been a growing interest about the interplay between
metabolism and the circadian clock, and for compelling reasons. The circadian clock exercises
its metabolic control at every level of physiology from individual cells to the organism as a
whole, but at the same time metabolic state can in�uence circadian timing. This regulation
may be thought of as the clock anticipating and preparing the body so that it can respond in a
timely manner to predictable stimuli, such as feeding. In turn, the timing of such stimuli can
feed back to a�ect clock time and re�ne such prediction. In this section, the ways in which
the circadian clock impacts metabolic processes and regulation will be broken up into four
main categories: cellular control, system-wide or organ-speci�c control, neuronal or central
control, and behavioral control.

1.2.2.1. Cellular control

There is an overwhelming amount of evidence that supports the coordination of cellular
energy metabolism by the circadian clock. Some examples of how the clock exercises its
metabolic control include, but are not limited to: regulation of transcription and metabolite
levels20–22 integration of nutrient sensors and nuclear receptors with the circadian clock,23–25
and mitochondrial respiration.26 A diversity of mechanisms have been elucidated to explain
this extensive control.
At the level of transcription, it has been reported that around 10% of transcripts in any

given tissue are regulated in a circadian manner. A signi�cant portion of these in all tissues
relate to metabolic function.15 In individual cellular compartments, this proportion can be
even higher. For example, 67% of synaptic mRNA display biphasic circadian oscillations, and
the peak preceding dawn is entirely related to metabolism and mitochondrial function.27
An example of a post-translational modi�cation under clock control is seen in mitochon-

drial bioenergetics and morphology. Daily rhythms in mitochondrial �ssion is dependent on
the circadian phosphorylation of DRP1 and this in turn controls cellular oxygen consumption
and ATP levels, as they correlate with the morphological state of mitochondria.26 Phospho-
rylation control of circadian metabolism is by no means limited to mitochondrial function.
A study of liver circadian phosphoproteomics revealed control of most major cellular sig-
naling pathways,28 thereby regulating both cellular energetics and xenobiotic metabolism in
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rhythmic fashion. Lipid levels also show dynamic circadian regulation. One study looked at
temporal dynamics in membrane lipids of the nucleus and mitochondria of the mouse liver,
and found that lipid species regulation is driven by feeding time and the circadian clock.29
Another study demonstrated that circadian variations in lipid metabolites are independent
of feeding, because they also occur in cultured myotubes. This suggests cell-autonomous
regulation in diurnal lipid pro�les, and this control was dependent upon the local circadian
clock in these cells.30

Broadly speaking, multiple cellular circuits have been characterized that at least partially
explain widespread circadian control of metabolism. Glucocorticoid hormone-dependent
gene expression certainly explains a portion of this control. It was also found that CRY1
and 2 repress glucocorticoid receptor activation, adding an additional layer of complexity in
this regulation.31

Another major axis is the level of redox cofactors such as NAD+ and NADH. This control
occurs through circadian clock regulation of the rate-limiting enzyme nicotinamide phospho-
ribosyltransferase, a key enzyme within the NAD+ salvage pathway.21 An additional impor-
tant pathway in the circadian regulation of metabolism centers around AMP-Dependent Pro-
tein Kinase (AMPK), which regulates ATP production.32 Additionally, the circadian clock pro-
tein BMAL1 not only plays a crucial role in circadian transcription, but also in translation and
coupling themTOR signaling pathway to the circadian clock.33 Finally, clock proteins can also
act together with factors that modify chromatin, thereby globally orchestrating transcrip-
tional activation and repression across families of related genes. These chromatin modifying
factors include histone acetylases and deacetylases, methyltransferases and demethylases,
and nucleosome remodeling complexes, among others.8,34 For example, the sirtuin class of
histone deacetylases is regulated in circadian fashion via its NAD cofactor,20,24 and circadian
transcriptional regulation of the deacetylase HDAC3 and the REV-ERB and ROR transcription
factors controls a large swath of fatty acid metabolism.35 Another clock protein, PER2, coreg-
ulates nuclear receptor-mediated transcription through its interaction with PPARa and other
nuclear hormone receptors.23 Importantly, for each of these mechanisms feedback control
from metabolic state to circadian clock function has also been characterized. Levels of NAD+
also control the deacetylation of the clock protein PER2,24 and AMPK is able to phosphory-
late the cryptochrome circadian proteins.32 Thus, redox and cellular energetics can directly
in�uence the core transcription-translation feedback loop that drives the circadian clock.

A second, more speculative class of control occurs via possible “non-canonical” cir-
cadian timing mechanisms based entirely on post-translational idioms. Although a
post-translational circadian clock mechanism is well-established in bacteria,36 so far it has
been documented in mammalian cells for only a limited family of redox enzymes (peroxire-
doxins), and operates via an unknown mechanism.37,38 Nevertheless, given recently reported
widespread circadian control of metabolism in mammalian cells and tissues genetically
modi�ed to destroy the “canonical” mechanism, it is possible that post-translational clock
mechanisms provide important additional layers of control.
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1.2.2.2. Organ-specific control

The circadian clock coordinates peripheral tissues so that they are able to carry out appro-
priate metabolic responses. One way this is carried out is through clock-controlled genes
(CCGs), which regulate various tissue-speci�c functions in di�erent tissues or organs.39 For
example, gluconeogenesis and glycogenolysis are promoted in the liver during sleep (fasting
time) and glycogen/cholesterol synthesis are promoted during wake (feeding time). Examin-
ing the liver metabolome, amino acids, carbohydrates, nucleotides, lipids, cofactors, vitamins,
and xenobiotics all display rhythmicity under the control of the circadian clock transcrip-
tional machinery.20 Similarly, the circadian clock is of imperative importance in regulating
glucose sensing and insulin secretion in the pancreas, and loss of these clocks (even speci�-
cally in b-cells) leads to glucose intolerance.40,41 Another important peripheral clock for mam-
malian metabolism is adipose tissue. Adipocytes store energy as triglycerides when the body
has an excess. They also act as a regulator of triglycerides in the blood stream, and this reg-
ulation is compromised when adipocytes lack a functional clock and results in obesity and
a defect in the adipocyte-hypothalamic axis.42 Finally, circadian rhythms in human skeletal
myotubes have been reported to have self-sustained rhythms in vitro, and skeletal muscle
in general plays a massive role in whole body glucose homeostasis as it is the principal or-
gan responsive to insulin. The circadian clock might also be implicated in muscle myokine
secretion, which is also important in glucose homeostasis.43
As mentioned earlier, for circadian rhythms in all of these peripheral tissues, the SCN is

not the only Zeitgeber. Timing of food intake can also entrain peripheral clocks, and in mam-
mals is even dominant to light after about a week of timed feeding. Indeed, the majority of
oscillating mouse liver gene expression was recently found to be controlled by rhythmic food
intake.44 When the timing of food intake was arrhythmic more than 70% of cycling genes lost
rhythmicity.44 The pancreas also shifts its clock time along with the liver, heart, kidney, and
muscle in response to feeding in the inactive period.18 The mechanisms by which food or
feeding entrains peripheral circadian clocks have not yet been fully elucidated, but likely in-
cludes a variety of cues including temperature45 and redox state.46 Post-transcriptional mech-
anisms likely play an important role: for example, the circadian-implicated RNA-binding
protein non-POU domain-containing octamer-binding protein (NONO), which regulates the
pre-mRNA processing of liver circadian genes in response to glucose;47 or poly-ADP ribosyl-
transferase, which modi�es clock factors in NAD+-dependent manner.48

1.2.2.3. Central control by activity and behavioral

At the level of the whole organism, glucocorticoid hormones, insulin, and appetite hormones
play key roles in the regulation of rhythms in activity and behavior.8 It has been proposed that
the molecular circadian clock acts as a metabolic rheostat, and circadian regulation of glucose
metabolism has been extensively reviewed.49 More broadly, however, the control of feeding
behavior and metabolism by hypothalamic circuits themselves play an essential part in the
circadian control of metabolism.50 Glucocorticoid hormones, whose secretion is commanded
by the hypothalamic-pituitary-adrenal axis, have been discussed earlier in this chapter. Glu-
cocorticoids show daily oscillations, ultradian rhythms, and are also secreted in response
to acute stress,51 playing a major circadian role in anticipating metabolic requirements im-
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posed by food intake.52 An additional facet is provided by appetite itself, which is also clock-
controlled and in human peaks in the evening before sleep and fasting, as opposed to in the
morning following an extended fasting period.53 Some of the main hormones at play here in-
clude leptin, ghrelin, cholecystokinin, and insulin. Leptin is released mainly from adipocytes
and binds to its receptor in the hypothalamus; this signaling is essential for this hormone’s
suppressive e�ects on feeding.54 It has been proposed that obesity and leptin resistance can
disrupt circadian regulation, as well as the reverse.54 It was recently established in mice that
the clock of energy-sensing AgRP neurons mediates transcriptional responses to leptin to
help align appetite behaviors to the sleep-wake cycle.55 Ghrelin, an orexigenic peptide hor-
mone essential for appetite stimulation, has recently been found to oscillate in humans.56
This hints at a neuroendocrine mediated circadian variation in hunger, perhaps involving
the entrainment of the stomach cells which secrete ghrelin.56 Further information regarding
the circadian regulation of appetite behavior with respects to nutrient state and sleep-wake
behavior has recently been reviewed.57

1.2.3. Pathophysiology related to the circadian clock and metabolism
Disruption to the circadian clock – for example via sleep deprivation, jetlag, or diet – can
have numerous negative e�ects on the circadian coordination of metabolic systems.58 Some
examples relevant to human disease include, but are certainly not limited to cancer and tumor
development, obesity and related comorbidities, death rate from cardiovascular disease and
stroke, disruptedmenstrual cycles, night time asthma, abnormal cortisol rhythm in Cushing’s
syndrome, and some psychiatric disorders.59–62 Metabolic syndrome describes an increased
risk of diabetes, stroke, and heart disease due to a collection of risk factors such as obesity,
high blood sugar, cholesterol, and high blood pressure.8 The link between metabolic syn-
drome and associated metabolic diseases with circadian dysfunction has been evident since
it was found that mice with a de�cient clock gene have obesity and metabolic syndrome
including hyperleptinemia, hyperlipidemia, hepatic steatosis, hyperglycemia, and hypoinsu-
linemia.63 The interplay and cross-talk between the circadian clock and metabolism has been
reviewed recently and often, and it is important to note that is it a reciprocal relationship.46
A simple example to illustrate the importance of the clock to metabolismwas demonstrated

in a study where high-fat food was fed to mice at either a normal or an inappropriate circa-
dian time. The mice who received food at an inappropriate time (the inactive phase) gained
signi�cantly more fat than mice fed at a normal time.64 Conversely, when feeding is restricted
to a normal time (the active phase), it promotes synchrony with circadian rhythms and actu-
ally prevents obesity.65 In normal or homeostatic conditions, metabolic physiology is driven
by the clock.58 However, when shift work or high-fat feeding for example disrupts either sys-
tem, this disruption in metabolic pathways leads to dampening and lengthening of circadian
oscillations.66 There is also evidence that the correct timing of eating applies also to humans,
and has recently been reviewed.67 Such approaches might help in the prevention or treat-
ment of obesity, diabetes, metabolic syndrome, and many other metabolic dysregulations,
although more long-term and large-scale clinical trials are necessary to clarify and optimize
this treatment potential.
Research over the past decade has placed circadian dysfunction as a strong possible con-
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tributor to diabetic pathology. Normally, pancreatic b-cell located in the islets of Langerhans
operate to secret insulin in response to food intake, and abnormalities such as a reduction in
b-cell mass is considered to be the main cause of T2D.68 However, defects in islet function
are also linked to circadian clock perturbations, since the b-cell clock coordinates transcrip-
tion and eventual insulin release.40 The intrinsic clock regulates many cellular processes that
are crucial to normal b-cell function including glucose-sensing, substrate metabolism, mito-
chondrial function, stress response, and insulin secretion via exocytosis and proliferation.69 In
reverse, circadian period length in cells from human diabetic subjects is inversely correlated
with HbA1c values, a measure of chronic blood sugar levels and hence diabetic severity.70

Long-term epidemiological studies have shown that prolonged desynchrony between cir-
cadian clock and environment is demonstrably deleterious not only to metabolic syndrome
and diabetes,71 but also to many other aspects of health. Chronic jet lag is associated with
increased risk of cancer.61,72 Shift work in nursing is one of the most prevalent examples of
circadian misalignment and internal desynchrony. It is known that shift work is associated
with metabolic syndrome and cancer.73,74 Mechanistically, night shift work a�ected gene ex-
pression in peripheral blood mononucleated cells and circadian alignment in core body tem-
perature, peak cortisol, and melatonin onset compared to day shift work,75 suggesting that
shiftwork might lead to circadian desynchrony among internal organs. Metabolomics stud-
ies of simulated shiftwork have provided further evidence for this idea.76,77 It has also been
shown that the gut microbiota play a key role in this equilibrium. When gut microbiota
were eradicated via antibiotics, these mice did not develop obesity or glucose intolerance,78
suggesting that they were spared at least some aspects of metabolic syndrome. Thus, the ill
e�ects of circadian desynchrony might also be a problem of dysbiosis.
Recent studies have suggested that even simple chronotype – an individual’s timing in

their sleep-wake schedules and circadian physiology – may a�ect metabolic health in fun-
damental ways. Morning-types have earlier timing and evening-types have a later timing
in their circadian and sleep-wake physiology, and most people fall somewhere in between
these two groups. Surprisingly, one study found that evening types are more prone to di-
abetes, metabolic syndrome, and sarcopenia (the loss of skeletal muscle mass and strength
with aging).79 A second study found that an evening chronotype is associated with diabetes
and also a greater all-cause mortality and cardiovascular disease mortality.80 Even for “nor-
mal” chronotypes, weekend schedules often di�er signi�cantly from weekday ones due to
social activities and obligations, a phenomenon called “social jetlag”. This creates a shift ev-
ery week, which disrupts both the circadian and sleep systems. In rats it was found that
social jet lag altered cholesterol, elevating the risk of metabolic syndrome and increasing ap-
petite for fat-rich and carbohydrate heavy food.81 It has also been suggested that people with
evening chronotypes who work regular hours during the week are at an increased risk of
social jet lag and T2D since their endogenous schedule is later.82,83 Thus, awareness of one’s
chronotype could be one strategy to preventively combat metabolic disorders, for example
by adjusting daily schedules.
Overall, much has been discovered in the past few decades about how the circadian clock

might contribute to health and disease. Above, we have discussed extensively how circadian
rhythms might themselves be important for health. Equally important, however, and be-
yond the scope of this review are circadian e�ects upon drug delivery, due either to circadian
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pharmacokinetic e�ects (daily changes in drug metabolism and excretion) or circadian phar-
macodynamics (daily changes in target susceptibility). The same drug may be more e�ective
when taken at one time of day, regardless if this was considered during the development of
the drug, and many examples are included in another review.84

1.3. Sleep

Sleep is both one of the major outputs of the circadian clock and an important recupera-
tive neurobiological process independently regulated and essential for health and well-being.
However, distinct functions of sleep are still poorly understood and the question “Why do
we need to sleep?” is di�cult to answer. Nevertheless, there are several hypotheses about the
functions of sleep. Apart from sleep acting as an important mechanism for brain plasticity
and cognitive functions,85–87 there are clear indications that sleep has a fundamental impact
on metabolism.

1.3.1. Sleep architecture and regulation

In brief, mammalian sleep is categorized into di�erent sleep stages based on types of corti-
cal neural oscillations, and consists of cycles of alternating rapid-eye movement (REM) sleep
and non-rapid eye movement (NREM) sleep. REM sleep is characterized not only by rapid
eye movements, but also by a very low muscle tonus throughout the body. In contrast, brain
activity during REM sleep is comparable with wakefulness, showing high frequency and low
voltage waves. REM sleep occurs primarily during the second half of the night and it is as-
sociated with dreaming. NREM sleep, in contrast, occurs predominantly during the �rst half
of the night and is characterized mainly by brain waves of lower frequency.88 It is there-
fore also called slow wave sleep (SWS). Dreaming may also occur during NREM sleep. In
humans, NREM sleep is further divided into N1, N2 and N3 sleep. N3 sleep is speci�ed by
high-amplitude brain waves of 0-3 Hz and is commonly referred to as deep sleep; N1 and N2
sleep are gradual transitions from wakefulness to deep sleep.
How does the brain control sleep and wakefulness? In broad theoretical terms, sleep-wake

cycles are known to be driven by two main “processes”: a homeostatic process and a cir-
cadian one. Sleep propensity grows with increasing time awake. When it reaches an upper
threshold, sleep onset occurs and at a lower threshold, awakening is induced. This hourglass-
like mechanism de�nes the homeostatic process. However, the propensity levels su�cient to
trigger wake and sleep vary with time of day: these thresholds are under circadian control. In
this way, both circadian and homeostatic in�uences can contribute additively to sleep dura-
tion and intensity. SWS is well predicted by duration of wakefulness at all circadian phases,
leading some to suggest that SWS is determined mostly by homeostatic factors.89,90 Never-
theless, both REM and SWS is altered in mice lacking core clock genes, adding confusion to
this picture.91,92
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1.3.2. Sleep molecules and circuits

At a molecular level, in contrast to the circadian clock relatively little is known about the
workings of the sleep homeostat. Early studies hypothesized that speci�cmolecules (“somno-
gens”) might accumulate with time awake and thereby drive sleep.93 Interestingly, one of
these molecules, adenosine, is also a metabolic byproduct – a topic that we discuss below
as a connection between sleep and metabolism. Although adenosine is well established to
promote sleep and may accumulate in the brain during sleep deprivation,94 nevertheless its
possible role as the principal molecular “currency” of sleep need remains ambiguous. Beyond
adenosine, various sleep-promoting as well as wake-promoting neurotransmitters have been
identi�ed. Examples of sleep-promoting molecules are gamma-aminobutyric acid (GABA),
galanin, growth hormone releasing hormone (GHRH), and also cytokines. Wakefulness is
promoted for example by acetylcholine, norepinephrine,95 glutamate, histamine, serotonin,
and orexins.95,96 Recent studies have suggested that a general increase in phosphorylation of
speci�c synaptic proteins might serve the same somnogenic function,97,98 though this sim-
ple idea is complicated by the fact that other phosphorylations in the same proteins are also
driven oppositely and in circadian fashion.99 Other recent studies have focused upon the
molecular determinants of sleep oscillations such as slow waves, and concluded that cortical
potassium channels play key roles.100,101 Transcriptional regulation, perhaps controlled via
MAP kinase signaling, is likely also implicated.102 Other yet unelucidated pathways likely
exist. At a circuit level, a considerable amount is known about the control of sleep and wake.
Origins of major sleep oscillations have been proposed. For example, although not the only
mechanism to generate slow waves, a thalamocortical circuit certainly plays a major role.103
More broadly, several brain nuclei mostly in the hypothalamus are involved in the regulation
of sleep and wakefulness.104 In the lateral hypothalamus, so-called arousal centers such as the
tuberomammillary nucleus (TMN) and raphe nuclei send neurotransmitters to the cerebral
cortex, promoting wakefulness. Closely connected to the arousal centers is the ventrolateral
preoptic nucleus (VLPO), which counteracts them and thus promotes sleep. Switching be-
tween inactivation and activation of wake- and sleep-promoting nuclei regulates sleep and
wakefulness105,106 (�gure 1.2). A similar “�ip-�op” mechanism has been proposed for the
switch between REM and NREM sleep involving the sublaterodorsal nucleus (SLD) and the
ventrolateral part of the periaqueductal grey matter (vlPAG) in the brainstem.106 A recent
study suggests that two groups of neurons in the dorsomedial nucleus of the hypothalamus
(DMH) project to the preoptic area and to the raphe pallidus area are involved in the REM
sleep switch as well.107

1.3.3. Sleep and metabolism

Many of the molecules mentioned above as somnogens are also involved in the regulation of
metabolic functions such as energy homeostasis, hormone regulation, and immune response.
Brain regions controlling metabolic functions are also located close to sleep and arousal cen-
ters. This spatial arrangement makes it appear likely that neuronal circuits connecting both
are an important link between sleep and its metabolic functions, a subject to which we turn
next.
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Figure 1.2.: Neuronal circuits in the brain involved in sleep regulation. Switching between sleep and wakeful-
ness happens mostly in the hypothalamus. While activation of GABAergic neurons in the VLPO promotes sleep,
the activation of arousal centers, such as TMN or raphe nuclei, promotes wakefulness. Orexinergic neurons are
able to activate these arousal centers. A similar �ip-�op switch is a hypothesis for REM sleep regulation involv-
ing neurons in the DMH and in the brain stem. The DMH also mediates the projection of circadian signals from
the SCN towards the VLPO.

1.3.3.1. Cellular control: restoration of brain energy

It has been suggested that sleep plays an important role in the restoration of brain energy. In
particular, cerebral energy metabolism and its relation to sleep has been reviewed recently.
According to these arguments, during wakefulness glucose is the main cerebral fuel and brain
metabolism is mainly glycolytic.108 (N.B. Whether neurons are directly using this glucose, or
rather burning lactate provided to them by astrocytes, is an interesting question that has also
been a subject of recent discussion, though not yet in the context of sleep109). During sleep,
brain levels of glucose increase and lactate levels decrease. Correspondingly, metabolic rates
of glucose drop signi�cantly during sleep. The metabolic cost of sleep for the brain is proba-
bly almost the same during sleep as quiet wakefulness – a mere 5% di�erence in whole-body
respiratory quotient in humans.110 These changes therefore indicate a transition from glycol-
ysis to oxidative metabolism during sleep. Moreover, enhanced lactate e�ux from the brain
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during sleep has also been measured.108 Interestingly, glucose and lactate are both involved
in sleep regulation in the brain as well. Extracellular glucose levels, for example, have been
shown to promote sleep by inhibiting orexinergic neurons in the lateral hypothalamus111 and
by activating sleep-promoting GABAergic neurons in VLPO.112 They also act by inhibiting
wake-promoting orexinergic neurons.113 In contrast, an association between elevated extra-
cellular levels of lactate and the activation of noradrenergic neurons in the locus coeruleus,
promoting wakefulness, has been reported.114

In addition to these potentially direct connections between metabolism and sleep, vari-
ous studies suggest that other neurotransmitters and signaling molecules might coordinate
both processes in synchrony. For example, norepinephrine (NE) not only stimulates arousal
centers, but also promotes aerobic glycolysis.115 NE might thus represent a link between
sleep regulation and cerebral energy metabolism. Furthermore, there is evidence for speci�c
biosynthetic pathways to be upregulated in the brain during sleep. Several studies reported
alterations in glycogen storage, and gene expression experiments in rat brain revealed en-
hanced biosynthesis of lipids and proteins during sleep.116,117 AMPK might serve as a switch
between anabolic (energy-consuming) and catabolic (energy-producing) processes in order
to maintain sleep homeostasis.118

Although multiple studies including those above have suggested general links between
metabolism and sleep, knowledge about sleep-stage speci�c cerebral metabolism remains
limited. However, some studies report di�erences between REM and NREM sleep, such as
higher glucose utilization during REM sleep compared to NREM sleep.119–121

1.3.3.2. Organ-specific control: energy homeostasis

At the level of the entire organism, one major function attributed to sleep is the main-
tenance of energy homeostasis.122 Sleep is the most energy-e�cient human behavior and
metabolic rate during sleep is reduced compared to resting during wakefulness.123 In mam-
mals, sleep duration decreases with increasing size of the animal,124 perhaps suggesting that
a higher metabolic rate requires more sleep to keep the energy balance. In humans, inter-
individual di�erences in sleep duration have been associated with genetic polymorphism of
the SUR2 subunit of ATP sensitive potassium channels, which sense the state of cellular en-
ergy metabolism.125 In addition to this, a genetic link between sleep duration and lipid levels
in blood has been found with TRIB1.126

Despite overnight fasting, blood glucose levels remain stable during the night with a small
increase towards the end of the night. Under constant glucose infusion, an increase in glu-
cose levels is observed with sleep onset, independent of time of day.127 This decreased glucose
tolerance is caused by reduced glucose utilization by brain and muscles, but also due to de-
creased insulin sensitivity.128 Thus, not only circadian in�uences but direct sleep-dependent
mechanisms likely regulate circulating glucose levels.
Findings about di�erences in whole-body energy expenditure across di�erent sleep stages

are contradictory. Whereas some studies report lower energy expenditure during SWS com-
pared to REM sleep,129,130 others did not con�rm this �nding.131–134 A recent study using
whole-room calorimetry has found di�erences in respiration quotients across di�erent stages
of sleep. Carbohydrate oxidation was lowest during NREM sleep, which was explained with
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decreased glucose consumption by the brain during NREM sleep.135

1.3.3.3. Central control: hormone regulation

Appetite regulating hormones Leptin and ghrelin are hormones that regulate hunger and
appetite as a response to changes in energy balance. It has been shown that there is a link
between these hormones and sleep.136 Ghrelin is released in the stomach and acts rapidly in
response to caloric shortage or fasting by promoting hunger and appetite.137 It also acts as
a sleep-promoting factor and can induce SWS.138 Leptin, in contrast suppresses appetite and
is produced in adipose tissue.139 Both of these hormones increase during sleep and decrease
in the morning. In the �rst part of the night, it is thought that leptin masks the e�ect of
rising ghrelin levels in order to prevent arousals due to hunger.136 Leptin is also under cir-
cadian control and food intake is a confounding factor. However, under continuous enteral
nutrition and during daytime sleep, increased leptin levels are observed with sleep onset.140
Moreover, animal studies have given evidence for leptin reducing REM sleep and modulating
SWS. Leptin de�cient mice have more arousals and mice with mutated leptin receptors show
increased total sleep time, but more fragmented sleep as well as a decrease in compensatory
response to acute sleep deprivation.141 Hence, these appetite regulating hormones might be
an important link between sleep, circadian rhythms, and metabolism.
Orexins Orexin A and B (hypocretins) could represent another major part of the link be-

tween hormonal control of metabolism and sleep. These excitatory neuropeptide hormones
are expressed by neurons in the hypothalamus where energy homeostasis is regulated.142
They are in�uenced by peripheral hormones like ghrelin and leptin and also by glucose.136
Orexin administration has e�ects on sleep regulation as well as metabolism. It induces wake-
fulness, which comes along with increased energy expenditure and increased food intake.113
However, orexin de�cient mice also show reduced energy expenditure regardless of sleep
duration.143 This suggests that there is a direct link between orexins and metabolism, and
metabolic changes are not just a secondary e�ect of orexins regulating sleep-wake time.
Pituitary Hormones The pituitary hormones growth hormone144 and prolactin145 are both

secreted upon sleep onset and reach a maximum 2 hours later. The extent of this hormonal
release is associated with delta activity during NREM sleep.146 Also, levels of posterior pitu-
itary hormones, such as plasma arginine vasopressin and oxytocin, are increased during sleep.
These hormones profoundly regulate di�erent aspects of metabolism, ranging from protein
anabolism and triglyceride breakdown to milk production. Moreover, these hormones are
also involved in sleep regulation and their administration is associated with alterations in
sleep.147 Therefore, also here, the connection between sleep and metabolism is bidirectional.

1.3.3.4. Immune function

Another function associated with sleep is the immune response. Similar to hormonal regu-
lation, there is a bidirectional communication between the immune system and the central
nervous system and therefore sleep. Cytokines aremainmessengermolecules involved in im-
mune responses, which are produced and released by the central nervous systemwith highest
levels during sleep. Examples are interleukins (ILs) and tumor necrosis factors (TNF).148 Cy-
tokines are also involved in sleep-wake regulation.149 Immune function also broadly regulates
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metabolism, especially adipocyte function,150 making immune modulation a possible further
route by which sleep in�uences metabolism.

1.3.4. Pathophysiological consequences of Impaired sleep
When sleep is impaired, the negative consequences for health and metabolic as well as cogni-
tive functions are well established. Typical experiments to investigate these negative e�ects
in healthy individuals are sleep restriction, partial sleep deprivation, and total sleep depriva-
tion studies. Metabolic alterations in patients with sleep related diseases, metabolic diseases,
and their comorbidities can also be studied.
From these experiments, a relatively homogenous picture emerges. Insu�cient sleep across

several days results in a 5% increase of daily energy expenditure.151 Acute sleep deprivation
has also been shown to increase energy expenditure, supporting the hypothesis that energy
conservation is a function of sleep.134 Under controlled conditions of caloric intake and phys-
ical activity prolonged wake can arti�cially provoke a negative energy balance. However,
this does not correspond to real-life situations in modern society, where food shortage is no
longer an issue. It has been shown that short sleep promotes snacking behavior152 and reduces
physical activity.153 With ad libitum feeding, an increased energy intake during wakefulness
was observed, especially after dinner, resulting in a positive energy balance.151 Overeating
occurred despite proper signalling of leptin and ghrelin, indicating that it is not just due
to a longer period of food availability, but also physiological adaptation: energy intake is
increased to sustain prolonged wakefulness.154 Non-homeostatic food intake is likely to be
driven by brain mechanisms similar to those by which mood and comfort regulate feeding.155
This imbalance between food intake and energy expenditure due to a lack of sleep might
partly explain the association between short and fragmented sleep and an increased risk for
metabolic diseases such as T2D and obesity, which has been found in various epidemiologic
studies.156 Importantly, recent studies suggest that even unlimited “recovery sleep” on week-
ends is insu�cient to compensate for metabolic dysregulation incurred during weekday sleep
restriction.157

1.3.4.1. Obesity, T2D and sleep

Sleep restriction has been associatedwith reduced insulin sensitivity, indicating that impaired
sleep alters glucose metabolism.158 Similarly, large epidemiological studies have related in-
su�cient sleep and disturbed sleep to obesity and T2D.159,160 Mechanistically, appetite and
metabolic hormones – the same that we describe above as capable of altering sleep per se –
are believed to play a strong role in this pathology. Leptin, ghrelin, endocannabinoids, and
other appetite peptides have all been shown to be dysregulated by sleep loss, restriction, or
disturbance, and the direction of dysregulation is consistent with increased caloric intake and
decreased glucose clearance. This topic has been reviewed recently.161

1.3.4.2. Obesity, T2D, and obstructive sleep apnea

Obesity is considered as one of the most important risk factors for obstructive sleep apnea
(OSA). In turn, OSA was also found to promote weight gain. Causal relationships are still
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unclear and it is hypothesised as a vicious cycle.162 Both physiopathologies are linked ge-
netically, and worsen each other. Adipose tissue deposits in obese patients lead to reduced
ventilatory stability and promotes the development of OSA. OSA often goes along with phys-
ical inactivity, dysregulated appetite hormones, and insulin resistance, thereby increasing the
risk for obesity. Dysregulated appetite hormones are also likely contributors, since OSA pa-
tients have increased ghrelin levels.163
Apart from obesity, a link between OSA and T2D has been found,164,165 and especially

amongst obese T2D patients there is a high prevalence of OSA.166 One suggested mechanism
for the link between T2D and OSA is that OSA causes sympathetic activation, which inhibits
leptin secretion and promotes HPA axis stimulation. This leads to increased cortisol secretion
resulting in impaired glucose homeostasis.167 Several studies have shown that treatment of
OSA patients with continuous positive airway pressure (CPAP) also improved insulin sensi-
tivity, corroborating the hypothesis that impaired sleep is promoting T2D.168 However, other
studies suggest the opposite: no e�ect of CPAP therapy on glucose metabolism or T2D.169,170
The problem here is that obesity acts as a confounding factor, since obesity is considered as
an important risk factor for OSA and occurs often together with T2D.171 In order to eluci-
date causal relationships, non-obese OSA patients with and without T2D would need to be
investigated.
OSA is not the only sleep disorder linked tometabolic dysfunction. Narcolepsy, a REM sleep

disorder resulting from a de�ciency in orexigenic neurons, is associated with excessive day-
time sleepiness and poor sleep quality, abnormalities in REM sleep and orexin de�ciency,172
and has been linked to obesity.173

1.3.4.3. Inflammatory response to impaired sleep

Sleep deprivation is associated with altered immune responses due to an increase of pro-
in�ammatory markers.174 This is supported by increased systemic levels of TNF-a in OSA,
narcolepsy and insomnia patients.147 Moreover, CPAP treatment can decrease TNF-a levels.175
Furthermore, sleep deprivation results in impaired host defense against pathogens176 and
many autoimmune diseases are associated with sleep disruption, daytime sleepiness, and an
increased risk for sleep disorders.147

1.3.4.4. Alzheimer’s disease and sleep

There is evidence of a link between sleep, T2D, and Alzheimer’s disease (AD). These interac-
tions suggest that sleep impairment and metabolic dysregulation promote the progression of
AD.177 AD patients often show sleep impairments178 and recently, reduced amounts of SWS
have been associated recently with tau pathophysiology of AD.179 Additionally, cerebrospinal
�uid (CSF) levels of several AD biomarkers have been found to correlate with sleep-wake
cycles.180 Moreover, elevated CSF levels of orexin A are reported in AD patients.181 Links be-
tween T2D, AD, and sleep further suggest that impaired glucose metabolism might be a key
player in interactions between sleep impairment and cognitive dysfunction in AD.182 An in-
teresting alternative is that connections between AD and sleep impairment might relate to
glymphatic �ow – the “waste clearance” system of the brain – which increases during sleep
and contributes to Alzheimer-associated peptide (Ac) clearance from the brain.183
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1.4. Clocks or sleep: perspectives
It is clear that modern society has increasingly intruded upon natural circadian rhythms in
humans, possibly leading to profound metabolic consequences. Classically, the phase desyn-
chrony between central and peripheral clocks is thought of as themain contributor. However,
one direct test of this assumption has failed: it was shown that a 6 hour phase misalignment
between central and peripheral clocks was not su�cient to cause obesity and glucose intol-
erance in mice.184 Thus, we favor the hypothesis that metabolic consequences of circadian
disruption arise via multiple mechanisms, rather than solely from internal desynchrony. In
humans, it is unlikely that central and peripheral clocks would have such a large phase mis-
alignment as those arti�cially tested in animals outside situations of shiftwork. Thus, if cir-
cadian disruptions such as social jet lag result in metabolic dysfunction, it is likely that other
factors are at work, and sleep disturbance is a prime possibility.
Equally, sleep restriction is an omnipresent issue in contemporary society, with adverse

e�ects on health and metabolism. However, these metabolic considerations are mostly based
on measures of total energy expenditure rather than pathway-speci�c investigations. It is
likely that advances in metabolomics techniques using high-resolution mass spectrometry
that have been made in recent years have great potential for novel insights. The sensitivity
of some methods is su�cient to identify thousands of compounds in a single human breath,
making thempowerful noninvasive techniques to overcome limitations in sampling rate.185,186
Strikingly, most aspects of metabolism regulated by sleep and circadian clocks are shared

(�gure 1.3). Molecular mechanisms are continually discovered about single aspects of the
relationship between the circadian clock or sleep and the downstream physiology they con-
trol, but often these studies look at a single facet. More recent studies that compare e�ects of
circadian disruption and sleep disruption demonstrate that each might play a role in cellular
physiology. For example, considering brain, individual transcripts might be regulated by ei-
ther circadian or sleep in�uences, or both.187 Even more locally, it has been suggested that at
synapses, RNA abundance is primarily clock-driven, whereas translation and phosphoryla-
tion of proteins is mostly controlled by sleep-wake cycles.27,99
These studies, as well as this review, have mostly addressed the idea that di�erent aspects

of physiology might be controlled by circadian clocks or sleep. However, in practice the two
rather di�cult to separate, creating a major confounding factor. Indeed, circadian rhythm
sleep disorder is often misdiagnosed as insomnia.188,189 Experimentally, circadian clock gene
disruptions in mice also a�ect sleep consolidation.91,190 Thus, the classical paradigm of a clock
gene deletion as a way to ascertain that a process is directly clock controlled contains an un-
avoidable �aw. Similarly, most epidemiological studies – andmany laboratory ones – examin-
ing e�ects of sleep disruption are in fact examining unknown degrees of circadian disruption
as well. The only real solution to this conundrum is a detailed mechanistic understanding
of the regulatory processes involved. Without a doubt, such an understanding will lead to
improved therapies as well.
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Figure 1.3.: Circadian clocks and sleep: two related factors in the multifaceted regulation of metabolism. Pro-
cesses related to food intake (red), immune function (yellow), glucose metabolism (green), cellular functions
(purple) and adiposity (blue) are regulated by circadian clocks, sleep or both. The e�cient interplay of both,
clocks and sleep, is crucial for metabolic health.
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Chapter 2. Aims and outline of this thesis

Metabolic pro�les re�ect fundamental aspects of physiology and metabolomics. The analysis
of such metabolic pro�les therefore represents a versatile tool that can provide answers to
a variety of biological questions. In this thesis, latest mass spectrometry techniques were
applied to unravel metabolic processes related to sleep and circadian clocks (�gure 2.1). While
it is evident that sleep and circadian clocks are closely intertwined with human metabolic
regulation, many aspects of this relationship remain unclear.

Circadian clocksSleep

Metabolism
Arctic reindeer

%JCRVGT��
%JCRVGT��%J

CR
VG
T��
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VG
T��

Obstructive sleep 
apnea

Obese patients

Sleep stages

Wake
REM
N1
N2
N3

!! Metabolomics

Figure 2.1.: In this thesis, metabolomics by high-resolutionmass spectrometry was used to shed light on several
aspects of the complex interplay between sleep, circadian clocks and metabolism. Breath analysis by secondary
electrospray ionization high-resolution mass spectrometry (SESI-HRMS) was used to investigate metabolic pro-
cesses during normal sleep and its applicability as a non-invasive diagnostic tool for obstructive sleep apnea
was evaluated. The analysis of metabolites from blood samples by liquid chromatography coupled to mass spec-
trometry unraveled connections between metabolic alterations associated with obesity and circadian clocks.
Moreover, this technique provided insights into metabolic adaptation to seasonally changing circadian light
conditions in arctic reindeer.

The biology of sleep and circadian clocks is explained in Chapter 1. Known molecular
mechanisms are reported, their impact on human health is described and the current state of
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knowledge about the connection of sleep and circadian rhythms to metabolism is reviewed.
The experimental techniques and instruments used in this thesis are described and ex-

plained in Chapter 3. Amongst them are methods for the assessment of biological parame-
ters, such as polysomnography for the characterization of sleep and a bioluminescence assay
for measuring levels of circadian gene expression. Moreover, high-resolution mass spectrom-
etry techniques and their implementation for the analysis of metabolites in blood and exhaled
breath are introduced.
In Chapter 4, metabolic regulation is investigated across di�erent sleep stages. While

there is evidence from numerous studies for a negative e�ect of disturbed or restricted sleep
on metabolic health, metabolism during sleep itself remains largely unexplored. In this study,
wemade use of the virtually unlimited sampling frequency provided by real-time breath anal-
ysis. We analyzed the exhaled breath of healthy individuals by secondary electrospray ion-
ization high-resolution mass spectrometry (SESI-HRMS) while they were sleeping at night.
In parallel, sleep stages were recorded by polysomnography.
Not only the high sampling frequency but also its non-invasiveness and the instantaneously

available results are outstanding qualities of metabolic pro�ling in exhaled breath. These fac-
tors are the reasons breath analysis is considered to be a promising tool for clinical diagnos-
tics. Previous work on SESI-HRMS indicated the existence of speci�c metabolic patterns in
exhaled breath for several diseases, amongst them obstructive sleep apnea (OSA). InChapter
5, the robustness of these breath biomarkers for OSA was evaluated in a validation cohort
of 149 patients with suspected OSA. This brings the rapid and non-invasive diagnostic tool
SESI-HRMS a step closer to its clinical application.
Similar to disturbed sleep, a disrupted circadian clock is also associated with adverse health

e�ects. Metabolic diseases, such as obesity, metabolic syndrome or type 2 diabetes are highly
prevalent in shift workers, for example. Even though there is clear evidence for this con-
nection from epidemiologic as well as animal studies, there is only little mechanistic under-
standing about it on metabolic pathway level. To get further insights, we investigated the
impact of metabolite levels in serum from obese patients on the circadian expression of the
core clock gene Bmal1 in U2OS cells as described in Chapter 6.
Due to the negative health consequences, there is a high demand for strategies to cope with

circadian disruption. In Chapter 7, we tackled this issue with an evolutionary approach. We
studied circadian metabolism in arctic reindeer, a species, which has always been exposed
to constant light during summer and constant darkness during winter. We investigated how
their metabolism adapted to these seasonally changing light conditions by analyzing blood
plasma with liquid chromatography coupled to high-resolution mass spectrometry across all
four seasons.
In Chapter 8, all conclusions from this thesis are brie�y summarized and discussed to-

gether, before remaining questions and possible future research directions are considered.
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Chapter 3. Experimental techniques for the investigation of sleep, circadian rhythms andmetabolism

3.1. Polysomnography
Polysomnography is the current gold standard for the assessment of sleep quality and quan-
tity and an essential diagnostic tool for various sleep disorders.191 In this diagnostic proce-
dure, a range of physiological parameters are measured simultaneously and continuously
by numerous electrodes and sensors attached to the body (�gure 3.1). These recordings in-
clude electroencephalography (EEG), electrocardiography (ECG), electrooculography (EOG)
and electromyography (EMG) as well as abdominal and thoracic breathing e�ort and body
position. Oxygen saturation is captured by pulse-oximetry and snoring is recorded with a
microphone. By default, breathing air�ow is also measured and the patient is video moni-
tored. From de�ned patterns of muscle and brain activity, sleep stages can be deduced. In
addition, information about the functions of di�erent organs is obtained and abnormalities
can be detected.192–194

Pulse-oximetry
EEG
EOG

Airflow
EMG
Microphone

ECG

Thoractic belt
Body position

Abdominal belt

Figure 3.1.: Setup of electrodes and sensors for polysomnography. Electrodes for EEG, ECG, EOG and EMG
are attached to the head and body, a pulse oximeter is attached to a �nger, sensors for breathing e�ort and
body position are mounted to the torso. The �gure is reproduced with permission from Pandi-Perumal et al.192
Copyright 2014, Springer Nature.

3.2. Bioluminescence assay for clock gene expression in
fibroblasts

In vivo measurements of human circadian period are di�cult and require a time-consuming
observation of subjects under laboratory conditions. However, since most cell types are
equipped with circadian clocks, which are synchronized with the SCN as major pacemaker,
circadian parameters can also be assessed by a simple bioluminescence assay in vitro from
single skin biopsies.195 It has been shown that clock gene expression measured in �broblasts
from human skin biopsies re�ect physiological circadian phenotypes well.196
These in vitro assays are based on bioluminescent circadian reporters. In such reporters,

a luciferase gene is fused with the promoter of a clock gene, such as Bmal1. These reporter
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constructs are incorporated into the genome of the cells, which can be achieved by lentiviral
infection (�gure 3.2a). As a consequence, the enzyme luciferase is expressed in dependence
of the clock gene promotor activity. Luciferase catalyzes the reaction of its substrate luciferin
with oxygen, which results in the emission of light (bioluminescence). (�gure 3.2b) The in-
tensity of the emitted light is proportional to the amount of luciferase and therefore also
proportional to the clock gene expression.197

Bioluminescence

Circadian reporter
Bmal1 promoter Luciferase

Luciferin Oxyluciferin

Luciferase
Mg2+, ATP, O2

CO2, PPi, AMP

+       LIGHT

a b

Figure 3.2.: a A circadian reporter is incorporated into the genome of �broblasts by lentiviral infection. Sub-
sequently, bioluminescence is measured. b Luciferase catalyzes the oxidation of Luciferin under emission of
light.

3.3. Metabolomics based on mass spectrometry

3.3.1. High-resolution mass spectrometry

Mass spectrometry (MS) is one of themostwidely used techniques formetabolomics,198 which
is mostly due to advances in the development of high-resolution mass spectrometry (HRMS)
in the last few decades.199 Especially in untargeted metabolomics approaches where hun-
dreds of compounds are measured simultaneously in complex matrices (such as blood, urine,
cerebrospinal �uid, tissue samples or breath), high mass resolution is essential. It enables
discrimination between isobaric compounds (molecules with the same nominal mass) and
compound identi�cation.200,201 Two commonmass analyzers with high-resolution capabilities
used in this thesis are time-of-�ight (TOF) and orbitrap mass analyzers. In the corresponding
commercial instruments, they are combined with quadrupole units for precursor selection
and the possibility of fragmentation. The basic principles of these mass analyzers and the
instrumental setup of an AB Sciex TripleTOF 5600 and a Thermo Fisher Orbitrap QExactive
Plus instrument, which were used in this thesis, are explained in the following sections.
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Time-of-flight mass analyzer

The principle of time-of-�ight mass spectrometry (�gure 3.3a) relies on the separation of
accelerated ions based on their velocity in a �eld-free region.202 The potential energy Ep of
charged particles that were accelerated by an electric �eld is de�ned by their charge q and the
electric �eld strength U . The charge of ions can be expressed by the product of their charge
state z and the elementary charge e.

Ep = qU = ezU

When the ions enter the �eld-free �ight tube, their potential energy is converted into kinetic
energy, which is determined by their massm and their velocity v.

Ek =
mv2

2

Thus, the velocity of ions in the �eld-free region depends on their mass-to-charge ratio (m/z).
Ions with lower m/z are faster and reach the detector �rst.

ezU =
mv2

2

v =

s
2eU

m/z

Since the length of the �ight path is known, the m/z of the detected ions can be deduced
from their time of �ight. However, the di�erences in time of �ight are very small and thus, a
slight initial energy spread of ions with the same m/z does already cause a substantial loss of
resolving power. To achieve high resolution, it is therefore crucial to correct for this spread.
This is achieved with a re�ectron, which is inserted in the �ight path and serves as an ion
mirror. Ions of the same m/z but with a higher initial energy travel deeper into the re�ectron
than ions with lower energies. Thus, their �ight path gets elongated and ions with the same
m/z but slightly di�erent initial energies are refocused and reach the detector simultaneously.
In addition, the use of a re�ectron doubles the length of the �ight path at the same instrument
size, which results in a further gain of resolution.203

z

Ions

Vacuum

Pulser Reflectron

Detector

TOF tubea b

Figure 3.3.: Schematic representations of the principle of a re�ectron time-of-�ight mass analyzer (a) and an
orbitrap mass analyzer (b).
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Orbitrap mass analyzer

The orbitrap mass analyzer (�gure 3.3b) consists of a spindle-shaped inner electrode and two
surrounding outer electrodes. With this geometry a verywell de�ned electric �eld is achieved
and ions entering the orbitrap tangentially are oscillating on stable trajectories around the
spindle. The frequency of the axial oscillation along the z-axis is proportional to the square
root of the mass-to-charge ratio. The two outer electrodes are detecting an image current,
generated by the oscillating ions. This is subsequently converted by Fourier transformation
into a frequency spectrum of the axial oscillation, from which the m/z is deduced according
to the following equation (k represents the �eld curvature):

!z =

r
k · q

m

The resolving power of the orbitrap is proportional to the number of detected harmonic
oscillations and can therefore be enhanced by increasing the time in the trap. Thus, a trade-o�
between acquisition speed and resolving power needs to be chosen.202,204

Commercial instruments

All mass spectra in this thesis were measured either on an AB Sciex TripleTOF 5600 or a
Thermo Fisher Orbitrap QExactive Plus instrument. Both instruments combine high res-
olution and high mass accuracy with an acquisition speed su�cient for their coupling to
ultra-high performance liquid chromatography (UPLC) and for real-time breath analysis (ta-
ble 3.1).205

Table 3.1.: Speci�cations of the two commercial mass spectrometers used in this work.

Instrument Resolving power (FWHM) Mass accuracy (ppm) Acquisition speed (Hz)
TripleTOF 5600 35,000 < 5 100

Orbitrap QExactive Plus 140,000 (at m/z 200) < 5 12 (at 17,500 resolution)

The ion paths through the two mass spectrometers are depicted in �gure 3.4 and 3.5. After
entering the TripleTOF 5600 mass spectrometer (�gure 3.4) through an ori�ce, the ions are
guided through several quadrupoles in sections of decreasing pressure towards the TOF tube.
The �rst two quadrupoles (QJet and Q0) serve only as ion guides. In full scan mode, the Q1
quadrupole operates also as ion guide, while it is used as mass �lter for precursor selection
in tandem-MS experiments. The collision cell Q2 is �lled with a collision gas (in this work
nitrogen). Collision between this gas and the parent ions lead to molecule-speci�c fragmen-
tations.206 By application of a collision energy (CE), the kinetic energy of the precursor ions
is increased and the extend of fragmentation can be tuned with the use of di�erent collision
energies. The (fragmented) ions are further guided towards the high vacuum region. In the
pulser, short high voltage pulses accelerate ion packages orthogonal to their original path
into the TOF region, where they are separated by their m/z and detected by a microchannel
plate (MCP) detector205,207
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Figure 3.4.: Schematic drawing of the quadrupole time-of-�ight hybrid instrument used in this thesis (AB Sciex,
TripleTOF 5600). The ion path is highlighted in red. (MCP: microchannel plate, Q: quadrupole). Adapted with
permissions from Andrews, G. L. et al..207 Copyright 2011 American Chemical Society.

In the Orbitrap QExactive Plus (�gure 3.5), the ions enter the mass spectrometer through a
heated inlet capillary into the S-lens, a stacked-ring ion guide, where they are focused. After
two subsequent ion guides, the ions arrive at a quadrupole, which acts as in the TripleTOF
instrument as mass �lter for precursor selection in multistage mass spectrometry (MSn) ex-
periments. The ions are then guided into the C-trap, a bent RF quadrupole, where the ions are
either accumulated and thermalized or they are �rst sent to a multipode collision cell �lled
with nitrogen for fragmentation. Finally, they are injected into the orbitrap mass analyzer,
where they are separated by their m/z and detected.208

Collision cell
Quadrupole 
mass filterC-trap

S-lens

Orbitrap Ion source

Figure 3.5.: Schematic drawing of the quadrupole orbitrap hybrid instrument used in this thesis (Thermo Fisher,
Orbitrap QExactive Plus). The ion path is highlighted in red. Adapted from Michalski, A. et al..208
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3.3.2. Blood metabolomics using UPLC-MS
Blood supplies every organ and tissue with gases and nutrients and it also transports
metabolic waste. Its molecular composition is therefore dependent of metabolic function and
activity and even though withdrawal of blood is slightly invasive, this body �uid is easily
accessible. That is why blood is one of the most common bio�uids used for metabolomics
studies. Nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography (GC) or
liquid chromatography (LC) coupled to mass spectrometry are the techniques mostly used
for the analysis of metabolites in blood.209 This section focuses on LC-MS, since this tech-
nique was used in this thesis. The chromatographic separation prior to mass spectrometric
analysis adds a dimension of separation, which is valuable especially for complex mixtures
of analytes, such as biological samples.210 A typical work�ow for the analysis of metabolites
in blood by LC-MS is presented in �gure 3.6.211
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Figure 3.6.: Work�ow for blood metabolomics studies using UPLC-MS. Proteins are precipitated from serum
or plasma samples with methanol and the obtained metabolite extract is analyzed by UPLC-MS. For data pre-
processing, peak detection and integration and retention time alignment is performed to obtain an intensity
matrix. Then statistics are carried out and features of interest are annotated to enable biological interpretation
of the results.

In metabolomics investigations, small molecules are of particular interest. Therefore, pro-
teins are depleted from the extract in a �rst step by precipitation with methanol. The metabo-
lite extract can then be analyzed directly, or it can be further up-concentrated and solvents
might be exchanged prior to analysis. Then, the sample is injected into themobile phase �ow-
ing through a chromatographic column, which contains the stationary phase. Depending on
the properties (especially the polarity) of the analyte and the chosen combination of station-
ary and mobile phase, the analyte elutes from the column after a speci�c time (retention
time). In this thesis, ultra-high performance liquid chromatography (UPLC) coupled to elec-
trospray ionization (ESI) mass spectrometry was used. In comparison with high-performance
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liquid chromatography (HPLC), UPLC operates with stationary phases consisting of smaller
particles and therefore at higher pressures. This reduces the required analysis time as well as
solvent consumption and increases resolving power.212 It is therefore especially advantageous
for large scale metabolomics studies with large sample numbers. In order to achieve a good
separation for a broad range of compounds, two di�erent stationary phases were used in this
work. A reversed phase (RP) column was applied for the separation of unpolar metabolites
and a hydrophilic interaction column with a trifunctionally-bonded amide phase was applied
for more polar compounds.
Ions for mass spectrometry analysis were generated by ESI. In this ionization technique,

a conducting liquid that contains the analyte is pushed through a thin capillary and high
voltage is applied. By electrostatic repulsion, a spray of �ne charged droplets is formed during
this process. The solvent evaporates from these charged droplets and they undergo Coulomb
�ssion until free ions are generated. This ionization technique can be coupled directly to
liquid chromatography.213
Data preprocessing of LC-MS data comprises peak picking and integration. Further, chro-

matogram alignment is needed to correct for retention time shifts. Then, an intensity matrix
is obtained and statistical analysis can be performed. When features of interest have been
retrieved, they need to be identi�ed. Compound identi�cation remains the main challenge in
the �eld of untargetedmetabolomics.201 However, advances have beenmade in the automated
compound annotation by library matching of MS/MS spectra (e.g. MS DIAL software214) or
pathway mapping (e.g. mummichog algorithm215). Ideally, standards are measured after-
wards to con�rm the annotations with retention time and MS/MS spectra matching. Finally,
open biological research questions can be answered with the results obtained.

3.3.3. Breath metabolomics using SESI-MS
Approximately 1% of the molecular composition of human exhaled breath consists of volatile
organic compounds (VOCs). Amongst them are various exogenous compounds, but also
an endogenous fraction.216 These endogenous compounds originate partly from lung tissue,
however, volatile metabolites can also pass the blood-air barrier and di�use from blood into
the lungs (�gure 3.7).217,218 Therefore, exhaled breath contains valuable biochemical infor-
mation about physiology and alterations in the metabolic breath print can point towards
di�erent pathologies. This makes the analysis of exhaled breath a promising diagnostic tool,
which combines non-invasiveness with a virtually unlimited sampling frequency.
A variety of analytical methods is suitable for the analysis of exhaled breath, amongst them

mass spectrometry approaches, as well as optical spectroscopy and sensor-based methodolo-
gies. Awidely used technique is gas chromatography coupled tomass spectrometry (GC-MS).
However, thesemeasurements are performed o�ine and require sample preparation and stor-
age, which can lead to analyte degradation and a�ect results. On the other hand, there are
several online measurement methods based on mass spectrometry, such as selected ion �ow
tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS)
and secondary electrospray ionization mass spectrometry (SESI-MS).219 Here, only SESI-MS,
which has been used in this thesis, will be further explained.
The principle of SESI-MS (�gure 3.8) is based on an aqueous electrospray, which contains
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Figure 3.7.: Blood-gas exchange. Similar to carbon dioxide and oxygen, volatile metabolites can di�use in the
alveoli from blood into the lungs.
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Figure 3.8.: The principle of SESI-MS. The analyte is introduced into a nanoelectrospray consisting of water
and formic acid and thus gets ionized. The ions can then be detected with a mass spectrometer.
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an additive such as formic acid to increase the conductivity of the liquid. In the ionization
chamber, the analyte vapor is introduced into the electrospray plume where it gets ionized.220
The ionization mechanism of SESI-MS is not yet fully understood. However, in a recent study
Rioseras et al. suggest that ionization happens predominantly via gas-phase proton transfer
reactions.221 They proposed that protonated water clusters formed in the electrospray plume
undergo proton exchange with solvent vapors from the carrier gas, i.e. water molecules in
the case of exhaled breath. Subsequently, other neutral vapors are protonated, depending on
their gas phase proton a�nity.
SESI-MS o�ers several advantages for breath analysis. It is a soft ionization technique222

and since the ionization takes place at ambient pressure, a SESI source can be coupled to any
ambient inlet mass spectrometer. Therefore, HRMS and tandem MS capabilities can be ex-
ploited. Further, SESI-MS covers a wide m/z range223 and since ions of both polarities can be
generated, a wide range of compounds can be analyzed. In addition, high sensitivity, down
to pptv, has been reported for SESI-MS224 and recent studies have shown its applicability for
the discovery of putative biomarkers for various diseases225–228 as well as for pharmacoki-
netic studies.229,230 The main drawback of SESI-MS is that the technique still lacks options for
absolute quanti�cation, which complicates standardization e�orts.
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4.1. Introduction

Summary
Sleep is crucial to restore body functions, performance, psychological wellbeing and
metabolism across nearly all tissues and cells, and is known to be regulated by an endoge-
nous circadian clock. Both circadian disruption and sleep restriction are linked to a wide
range of metabolic dysfunctions in humans. Using exhaled breath analysis by secondary
electrospray ionization high-resolution mass spectrometry (SESI-HRMS), here we measured
for the �rst time the human exhaled metabolome at ten seconds resolution across a night
of sleep in combination with conventional polysomnography. Our subsequent analysis of
more than a thousand metabolites demonstrates rapid, reversible control of major metabolic
pathways by the individual vigilance states of slow-wave sleep (SWS), rapid eye movement
(REM) sleep, and wake. Within this framework, whereas a switch to wake increases fatty
acid oxidation, a switch to SWS reduces it, and the subsequent transition to REM sleep
results in elevation of TCA cycle intermediates preparing for mitochondrial oxidation.
We demonstrated a similar stepwise logic for numerous other pathways implicated in
macromolecular synthesis. Thus, in addition to daily regulation of metabolism, there exists
a surprising and complex underlying orchestration across sleep and wake. Both likely play
an important role in optimizing metabolic circuits for human performance and health.

4.1. Introduction
At the most basic level, humans spend daytime awake, moving and feeding, and nighttime
asleep, quiescent and fasting. Considerable research has established that metabolism across
the brain and body is regulated in daily “circadian” fashion, complementing this pattern.
Even in the absence of daily cues, most aspects of this metabolic control persist, directed
by an endogenous molecular clockwork.46 However, systematic disruption of circadian pat-
terns of activity – for example by shiftwork – results in considerable disruptions to normal
metabolic patterns, and such disruption is believed to underlie the linkage between shiftwork
and metabolic syndrome (a spectrum of disorders, including obesity, diabetes, and cardiovas-
cular morbidity, that is associated with metabolic dysfunction).231
Overlaying this daily pattern is the sleep-wake cycle itself, a complex repetitive cycle of

distinct brain states. Mammalian sleep is divided into rapid eye movement (REM) sleep and
non-REM (NREM) sleep based on electroencephalogram (EEG) and electromyogram (EMG)
measurements. In humans, within NREM sleep, three di�erent stages are further di�erenti-
ated: N1 and N2 sleep are considered as gradual changes from wakefulness towards slow-
wave or deep sleep (N3).232 Sleep amount is driven both by circadian in�uences, and by a
separate homeostatic process, with increasing time awake favoring increased sleep.90 Inde-
pendently of circadian disruptions, impaired sleep is also associated with major physiological
and psychological sequelae such as impaired glucose and lipid metabolism, cardiovascular
disease, impaired psychological and social functioning with enormous socioeconomic con-
sequences.233 In general, circadian disruption is usually associated with sleep disturbance as
well.
Much of our knowledge of the control of metabolism by circadian clocks and sleep in

humans comes from metabolomics, the systematic study of small molecules produced by

35



Chapter 4. Rapid and reversible control of human metabolism by individual sleep states

anabolic and catabolic reactions, which can be sampled periodically across the day from
blood, urine, and saliva.76,234–238 These have been complemented by sampling accessible tis-
sues such as blood and adipose tissue across time, and analyzing the temporal pattern of RNAs
(transcriptomics) or proteins (proteomics) therein.239–242 From these studies up to 20 % of all
metabolites vary with time of day, and this oscillation can be disrupted by circadian misphas-
ing (shiftwork),76 and by sleep restriction235 or sleep deprivation.237 Multiple overarching and
logical themes emerge: e.g. carbon energy storage as glycogen during wake/daytime, and its
breakdown during sleep/nighttime; and energy expenditure-related pathways during wake,
followed by synthesis and regeneration during sleep.243
An ever-growing body of evidence emerges that sleep is essential for health. Although

global metabolic rate (for example oxygen consumption and CO2 production as a measure
of di�erences in energy expenditure and glucose utilization) has been measured across
sleep,129,130,135 changes in metabolic regulation on a molecular level across di�erent sleep
stages remain unexplored. This is mainly due to a lack of su�cient sampling rates for
bio�uids or tissues. Taking advantage of secondary electrospray ionization coupled to a
high-resolution mass spectrometer (SESI-HRMS),223 our groups have overcome these di�-
culties by analyzing exhaled breath. Breath analysis provides real-time information within
seconds in a non-invasive fashion. Hundreds of metabolites have been reported from breath
including fatty acids, amino acids and tricarboxylic acid (TCA) cycle intermediates.216,219
We have pioneered the use of these technologies for circadian measurements across the
day185,186 and for identi�cation of molecular alterations present in various diseases during
daytime.226,227,244,245 Here, we have modi�ed a conventional constant positive airway pressure
(CPAP) mask commonly used in sleep apnea to deliver breath to our SESI-HRMS across the
night. In this way, we provide a glimpse of the human exhaled metabolome at unprecedented
ten seconds resolution across a night of sleep.

4.2. Methods

4.2.1. Study participants
A group of 14 healthy volunteers (12 non-smokers, 1 ex-smoker, 1 active smoker) in the age
of 29.2 ± 8.3 years was recruited for this study. 57 % of the study subjects were male and
mean BMI ± SD was 22 ± 3 kg/m2. They did not take any medication. The participants were
asked to refrain from eating, drinking (except water), chewing gum, brushing their teeth and
using any facial cosmetics (such as lip balm) during at least one hour prior to the measure-
ments. Each individual spent two nights in the laboratory. In the �rst night, SESI-HRMS
measurements were carried out in positive ionization mode, in the second night in negative
ionization mode. A full polysomnography was performed in both nights. One participant
could not be measured due to dysfunction of the MS and one quit the study after the �rst
night. Therefore, the �nal numbers of included participants are n = 13 for measurements in
positive ion mode and n = 12 for measurements in negative ion mode. The measurements
were conducted in accordance with the Declaration of Helsinki and written informed consent
was obtained from all participants. The study was approved by the local ethical committee
(KEK-ZH 2016-00384).
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Figure 4.1.:Work�owof thewhole study. SESI-HRMS and PSGmeasurements resulted in two large datasets,
deposited in a curated data archive at ETH Zurich (DOI 10.3929/ethz-b-000422459). In a �rst step of data pre-
processing, mass spectra were aligned, time traces were smoothed and normalized and mass spectra were syn-
chronized with PSG data. The resulting dataset was analysed by inferring non-linear Granger causality with
neural networks yielding a set of m/z features with Granger causal relationships to N3 sleep, REM sleep and
wakefulness. Further, the preprocessed data was baseline corrected and within each subject, data was binned
per sleep stage. Then, conventional statistics were applied resulting in sets of m/z features showing signi�cant
di�erences between sleep stages. These results were used for automated compound annotation and pathway
enrichment analysis. After manual inspection this analysis yielded in a subset of metabolites mapped on path-
ways with potential sleep-related regulation. The identity of some of these metabolites could be con�rmed with
MS/MS data obtained from exhaled breath condensate or real-time breath analysis. In combination with the in-
formation about Granger causal relations between metabolites and sleep stages, we interpreted the obtained
results biologically. We also took into account data from circadian studies reported elsewhere and correlation
between metabolite levels in blood and breath.
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Table 4.1.: Sleep characteristics of our study participants and reference values.246 These results show
that sleep architecture was not signi�cantly altered by the setup. Sleep e�ciency and amounts of REM sleep
were comparable to reference values. Slow-wave sleep (N3) was even more abundant and less arousals occurred
compared to reference. Hence, sleep behavior in this study can be considered as normal.

Variable (TST) Study subjects (n=13) Reference values for <50 years old
Mean ± SD Mean ± 2 SD

Total sleep time, hours 5.9 ± 1.5 –
Number of leg movements 104 ± 82 –
Heart rate, per minute 56.4 ± 12.3 –
Sleep e�ciency, % 84 ± 20 85 (64-100)
Stadium N1, % 8 ± 8 6 (0-15)
Stadium N2, % 51 ± 9 63 (42-84)
Stadium N3, % 22 ± 9 10 (0-30)
REM % 17 ± 7 19 (7-32)
Arousal Index 8 ± 11 17 (1-32)
Apnea Hypopnea Index 0 ± 0 1 (0-8)

4.2.2. SESI-HRMS measurements during sleep

In order to sample exhaled breath continuously, we modi�ed a continuous positive airway
pressure (CPAP) mask with a hole (inner Ø = 12 mm), through which the individuals could
inhale and exhale freely. 0.2 L/min were drawn into the ionization chamber by a vacuum
pump installed at the exhaust of the ionization source. The �ow was controlled by a mass
�ow controller. The mask was connected to the SESI source via a �exible stainless steel tube,
which was coated with SilcoNert 2000 (SilcoTek GmbH, Bad Homburg, Germany) and heated
to 130 °C in order to prevent adsorption and condensation. The �exibility of this tube allowed
the participants to move and sleep in di�erent body positions. Real-time breath analysis was
performed with a commercial SESI source (SEADM, Spain) coupled to a TripleTOF 5600+
high-resolution mass spectrometer (AB Sciex, Concord, ON, Canada). The spray solution
consisted of 0.2 % formic acid (99-100 %, VWR chemicals) in water (LC-MS grade, Fisher
Scienti�c) and a voltage of 5.5 kV was applied in positive ion mode and -4.5 kV in negative
mode. Full scan mass spectra were recorded with an accumulation time of 10 s in a mass
range from 50 to 500 Da in positive mode and 50 to 450 Da in negative ion mode respectively.
The ion source was heated to 130 °C, curtain gas was set to 10, collision gas was set to 0,
collision energy to (-)10 eV, declustering potential (-)20 V

4.2.3. Polysomnography

In parallel to the SESI-HRMS measurements full polysomnography was performed in all par-
ticipants using an Alice 6 system (Philips Respironics, PA USA). For the setup as well as the
scoring the recommendations from the American Academy of SleepMedicine from 2007 were
applied (AASM 2007 criteria, version B).191
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4.2.4. Data preprocessing
Raw mass spectra were converted into .mzXML format using MSConvert (ProteoWizard)247
and polysomnography data was exported to .edf �les. Further data processing was performed
in Matlab R2018b, R 3.6.1 and python 3.7.1. First, mass spectra were aligned across all scans
and all subjects. Then, a peaklist was generated by interpolation and averaging every 50th
scan of all spectra. For positive ion mode spectra, the obtained peaklist was recalibrated
with a list of known reference peaks. All peaks were centroided by integration yielding time
traces of all peaks (1458 in positive ion mode, 1028 in negative ion mode) for each subject.
In order to reduce the number of features, the following �ltering criteria were applied: Only
features that were higher in exhaled breath than dry room air in at least 50 % of the sub-
jects were kept. Further, features with median intensities below 30 counts per second in
at least 50 % of the subjects were removed. Since sleep stages have been determined from
PSG only in 30 s intervals, but mass spectra were recorded every 10 seconds, we interpo-
lated sleep stage information. MS time traces were smoothed by Savitzky Golay �ltering
(smoothing window of 19 data points). In order to reduce technical noise, such as spray
instabilities, but also to account for breathing variations, we normalized our data. The hu-
midity of breath is supposed to be constant.248 Therefore, we used the water cluster signal
([(H2O)3+H]+, m/z 55.03897) for normalization in positive ion mode and the signal of a water-
formic acid cluster ([HCOOH+H2O]-, m/z 63.00877) for normalization in negative ion mode.
MS times and PSG times were synchronized, data points during lights on period as well as
data points, where only MS or only PSG data was available, were removed. Moreover, very
short sleep stages (< 70 s) were annotated with the previous one.

4.2.5. Statistics
4.2.5.1. Detrending

In order to separate gradual changes inmetabolic pro�les across the night from acute changes
across sleep stages, we subtracted a baseline prior to statistical analysis, which we obtained
from Savitzky-Golay �ltering (smoothing window of 1001 datapoints).

4.2.5.2. One-way ANOVA

We �tted our data for each metabolite with linear mixed e�ects models with a �xed e�ect
for sleep stage and a random e�ect for person using the Satterthwaite’s degrees of freedom
method.249 We then performed an �2 test to assess, whether the model with the di�erent
levels for the di�erent sleep stages performs better than the simplest model with only an in-
tercept. The obtained p-values were corrected for multiple hypothesis testing using Storey’s
procedure.250

4.2.5.3. Pairwise comparisons

We calculated average spectra per sleep stage for each subject and performed pairwise com-
parisons of the di�erent sleep stages using a two-sided Wilcoxon signed ranked test. Again,
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we corrected for multiple hypothesis testing using Storey’s procedure.250 In addition, we cal-
culated pairwise e�ect sizes (Cohen’s d251) between sleep stages for each metabolite.

4.2.5.4. Inferring non-linear Granger causality with neural networks

To discover metabolic features that are Granger-caused by di�erent sleep stages, we trained
feedforward neural networks with a specially tailored architecture (see �gure 4.1) with
sparsity-inducing penalty terms in the loss function. Technical details are provided in
the supplementary information. After the above mentioned preprocessing, we performed
training on positive and negative mode MS time series for three stages of sleep separately:
wakefulness, N3 and REM. All sequences were time-reversed252 to infer Granger causal
relationships from sleep stage transitions to metabolism. We used a bootstrap procedure253 to
identify signi�cant interactions between variables (see Algorithm 1). Implementation details,
values of hyperparameters and the results of simulation experiments and cross-validation
are provided in the supplementary information section.

4.2.6. Pathway enrichment analysis and compound identification

Automated compound information using metabolic pathway information was performed
using the mummichog algorithm.215,254 The algorithm was run with the q-values obtained
from pairwise comparisons described above. Signi�cance threshold was set to q = 0.05 and
the manually curated human genome-scale metabolic model from the mummichog python
package (“MFN”) was used as pathway library. Adducts were restricted to [M+H]+ and [M-
H]-. Since mostly protonated or deprotonated species are formed in SESI,221 we removed
all radicals from the list of annotated compounds. We did further manual investigation on
metabolites involved in the pathways with the highest numbers of signi�cant hits and we
thus reduced the selection to a few key pathways. We selected only pathways with very
high metabolite coverage and pathways, in which key metabolites were signi�cant hits. Car-
boxylic acids, where protonated species were signi�cant hits, but not the deprotonated forms,
were neglected. When pathway coverage was only high, because onemass resulted in several
signi�cant hits due to di�erent isomers in one pathway, those were also ignored. For com-
pounds involved in those pathways of interest, MS/MS spectra obtained from exhaled breath
condensate (EBC) were compared to database spectra. Experimental details of EBC collection
and ultra-high performance liquid chromatography-tandem MS methods are described else-
where.255 If features were not detected in EBC, real-time SESI-MS/MS spectra were recorded
using an Orbitrap QExactive Plus mass spectrometer (Thermo Fisher, Germany) with a com-
mercial SESI source (SuperSESI, Fossil Ion Tech, Spain). Breath was sampled at 0.3 L/min.
The sampling line of the ion source was heated to 130 °C, the ionization chamber was heated
to 90 °C and a spray solution of 0.1 % formic acid in water was used. A spray voltage of
(-)3500 V was applied. The mass spectrometer was operated at 140,000 resolution in data de-
pendent acquisition mode with an isolation window of 0.4 m/z. The automated gain control
was set to 1e6 at MS1 level and to 1e5 at MS/MS level and a maximal injection time of 500ms
was used. MS/MS library spectra were obtained from the spectral library with all publicly
available MS/MS records available for MSDial.214,256
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4.2.7. Blood breath comparison experiments
4.2.7.1. Study participants

Nine healthy volunteers in the age of 30.6 ± 7.8 years, 44 % female, were studied to compare
metabolite levels in breath and blood. All participants were non-smokers and did not take any
medication. The participants underwent real-time breath analysis by SESI-HRMS and whole
blood has been withdrawn simultaneously. Participants were asked to refrain from eating,
drinking (except water), chewing gum, brushing their teeth and using any facial cosmetics
(such as lip balm) during at least one hour prior to the measurements. The experiments were
conducted in accordance with the Declaration of Helsinki and written informed consent was
obtained from all participants. The study was approved by the local ethical committee (KEK-
ZH 2016-00384).

4.2.7.2. Real-time SESI-HRMS breath analysis

Real-time breath measurements were preformed similar to breath measurements during
sleep. Instead of the �exible tube and the mask a single-use mouthpiece was connected to
the sampling line. The �ow through the ion source was controlled to 0.2 L/min by a low-Dp
mass �ow controller (Bronkhorst, Switzerland) at the exhaust of the source. The participants
were exhaling with a pressure drop of 12 mbar and to enable sampling of end-tidal breath, a
�ow-splitter was installed front-end. No vacuum pumpwas used in this setup. Full scan mass
spectra were recorded in the range of 50 to 500 Da in positive mode with an accumulation
time of 1 s. At least six exhalations were measured per person. All other parameters were as
described for the measurements during sleep.

4.2.7.3. UPLC-tandem-MS measurements of serum

Whole blood was left at room temperature for 10-30 min for clotting. To obtain serum, it
was then centrifuged for 15 min at 1500 rpm. Aliquots of 200 �L were taken, 200 �L of
1 mg/mL 15N2-tryptophan (Cambridge Isotope Laboratories, Inc., Tewksbury, USA) in water
were added as internal standard and proteins were precipitated by the addition of 600 mL of
methanol (LC-MS grade, Fisher Scienti�c, Pittsburgh, USA). Samples were incubated on ice
for 10 minutes and centrifuged at 4 °C and 15800 g for 15 min. The supernatant was �ltered
using a 0.2 �m reversed cellulose membrane �lter, 400 �L were aliquoted and solvents were
removed in a vacuum dryer. The residual was resuspended in 75 mL of a mixture of water and
methanol (95/5, v/v, both LC-MS grade, Fisher Scienti�c, Pittsburgh, USA), sonicated (10 min)
and centrifuged (15 min, 15800 g) and transferred to LC vials with glass inserts. 10 �L were
injected for analysis. One sample per person has been analysed, analytical reproducibility
was veri�ed with quality control samples.
Chromatographic separation was performed on an ACQUITY UPLC system (I-Class, Wa-

ters, MA, USA) using an ACQUITY UPLC BEH C18 column (1.7 �m, 2.1 × 150 mm, Wa-
ters) with a corresponding precolumn �lter. The �ow rate was set to 240 �L/min using a
binary mixture of solvent A (water with 0.5 % methanol and 0.1 % formic acid) and solvent B
(methanol with 0.1 % formic acid). The following gradient was used: 5 % B (1 min), 5 to 95 %
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B (9 min), 100 % B (2 min), and 5 % B (2 min). The column temperature was set to 30 °C and
the autosampler was kept at 5 °C.
Mass spectra were recorded on a quadrupole-time-of-�ight high-resolutionmass spectrom-

eter (TripleTOF 5600+, AB Sciex, Concord, ON, Canada) with a heated electrospray ionization
source in positive ion mode. Full-scan mass spectra (m/z range 50 to 650 Da) and data depen-
dent MS/MS acquisitions (m/z range 50 to 650 Da) were performed. Curtain gas was set to
30, GS1 and GS2 were set to 50, a spray voltage of 5 kV was applied and the ion source was
heated to 500 °C. The total cycle time was kept at 800 ms to obtain at least 12 points/peak
(minimal LC peak width = 9 s) with 150 ms for full scan MS and 85 ms for seven product ion
scans acquired with a collision energy of 10/20/30 eV.

4.2.7.4. Data analysis.

Data preprocessing of breath spectra was performed as described elsewhere.226 Signal inten-
sities were normalized to the water cluster signal ([(H2O)3+H]+, m/z 55.03897). Raw data
obtained from blood was converted to .mzXML format with MSConvert (ProteoWizard)247
and further processed in Matlab R2018b, R 3.6.1. After centroiding, chromatographic peaks
of target compounds were integrated. Robust linear regression257 was performed with the
intensities obtained from blood and breath. In addition, we calculated Pearson’s and Spear-
man’s correlation coe�cients. As described above, we compared MS/MS spectra from blood
and exhaled breath condensate with database spectra, to con�rm the identities of the detected
acylcarnitines.
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Chapter 4. Rapid and reversible control of human metabolism by individual sleep states

4.3. Results

4.3.1. Breath analysis during sleep
We analyzed exhaled breath of healthy individuals while they were sleeping in order to ac-
cess metabolic pathway activity during di�erent states of vigilance (see work�ow, �gures
4.2a, 4.1). Making use of the non-invasive and very high sampling frequency of SESI-HRMS
breath analysis, we were able to access the human metabolome with an average depth of
about 2000 metabolites per timepoint during sleep with a time resolution of ten seconds,
while performing polysomnography in parallel (�gure 4.2a). In total 13 healthy individuals
with a normal sleep architecture (table 4.1) were analysed and we were able to detect traces
of 1996 m/z features over time. These traces were baseline-subtracted in order to remove
confounding gradual changes in metabolite time pro�les due to the unequal distribution of
NREM sleep and REM sleep across the night, and then correlated with individual sleep stages
(�gure 4.2 b,c; heat maps for all individuals are given in supplementary �gures B.1 and B.2,
Dataset 1). In each subject, clear indications of families of sleep-regulated metabolites were
visible as vertical stripes in these heat maps.

4.3.2. Sleep stage-specific metabolic pa�erns
In order to access whether there is noteworthy di�erential metabolic regulation globally
across di�erent stages of sleep, we �rst visualized median mass spectra of each sleep stage of
all study subjects after dimension reduction. We found that spectral data of di�erent people
belonging to the same stage of vigilance cluster together (�gure 4.3a), whereas we did not
observe clustering according to subjects (�gure 4.3b). Using analysis of variance individually
for each metabolite, we then tested how a model considering sleep states to a�ect metabolite
levels in breath performs compared to the null hypothesis of a model that does not consider
sleep stages, and generated q-value distributions of all metabolites (�gure 4.4a). Remarkably,
for most of the detected m/z features (1277 features), a signi�cant association with sleep state,
q < 0.001, is observed across major sleep states (NREM, REM,WK (�gure 4.4b-d). By contrast,
far fewer di�erences were observed among metabolites across related sleep states (N1, N2,
N3; 4.4e-g). Therefore, we did not consider N1 and N2 sleep in our further analysis.

4.3.3. Immediate metabolic regulation
To further investigate the nature of these sleep state-dependent metabolic patterns, we
followed two approaches of analysis. First, we performed pairwise comparisons of breath
metabolite levels during di�erent sleep stages using Wilcoxon signed rank tests in order to
detect rapid changes in levels of individual metabolites (An example from three individuals
is shown in �gure 4.5a, b. Numerical comparisons across all subjects and features are sum-
marized in �gure 4.5c, with individual metabolites listed in table B.2. Sample boxplots across
all subjects and sleep stages are shown in �gure 4.5d.). We found signi�cant di�erences
(q < 0.05) between REM sleep and wakefulness for 842 m/z features. Relative concentrations
of 411 features di�ered between N3 sleep and wakefulness and 312 features had di�erent
levels during REM sleep and N3 sleep (�gure 4.5c, supplementary �gure B.3).
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4.3. Results
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Figure 4.2.: Real-time breath analysis during sleep by SESI-HRMS. a Experimental Setup. Exhaled breath
was sampled continuously with a mask, which was connected directly to the ionization source via a heated
�exible tube. Molecules were ionized in the electrospray consisting of water and formic acid. Sample �ow
was controlled at the exhaust of the SESI source. Ions were detected with a high-resolution time-of-�ight mass
spectrometer. In parallel a full polysomnography was performed. b,c Heat map of 1271 m/z features detected
in positive ionization mode (b) and 725 m/z features detected in negative ionization mode (c) over time in one
subject after feature-wise baseline subtraction. Sleep stages are labeled on the bottom of the heat maps.
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subject-wise clustering is recognizable. This supports the hypothesis that instantaneous metabolic changes
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Figure 4.4.: a Q-value distribution of ANOVA testing for di�erences between a model accounting for di�erent
e�ects of sleep stages and a model not accounting for these di�erences. For 1277 features we obtained q-values
below 0.001. This indicates sleep stage speci�c regulation of a major part of the metabolome. b-g Q-value
distributions from pairwise comparisons usingWilcoxon signed rank tests. While comparisons of N3 sleep, REM
sleep and wakefulness revealed metabolic di�erences between these states, �at q-value distributions obtained
from comparisons between N1, N2, N3 suggest similarity between those stages also on a metabolic level.
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Figure 4.5.: a Time traces of m/z 149.0237 (negative mode, hereafter abbreviated as “-“) in three individuals,
showing the direct increase of metabolite levels with REM sleep. We detected such metabolites using conven-
tional comparative statistics. b Resulting boxplot (center line: median, box limits: 25th and 75th percent quantile,
whisker length: 1.5 interquartile range) ofmetabolite shown in a. c Pairwise comparisons ofmean breath spectra
in Wilcoxon signed ranked tests suggest signi�cantly di�erential regulation of hundreds of metabolites across
di�erent stages of sleep as presented in the bar plot. The Venn diagram shows that also here, there are overlaps
between the sets of signi�cant m/z features. d Boxplots (center line: median, box limits: 25th and 75th percent
quantile, whisker length: 1.5 interquartile range) of three metabolites identi�ed as carnitine, oxaloacetate and
pentose showing signi�cantly di�erent levels in breath during N3 sleep and wakefulness, during N3 and REM
sleep and during REM sleep and wakefulness, respectively.
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Figure 4.6.: a Time traces of m/z 181.06 (-) in three individuals. Metabolite levels were rising slowly after the
occurrence of REM sleep. Our analysis based on Granger causality unraveled such more complex temporal
relationships. b Results from inferring non-linear Granger causality with neural networks suggest causal rela-
tionships between several hundreds of m/z features and N3 sleep, REM sleep and wakefulness as shown in the
bar plot. The Venn diagram shows that these sets of features are overlapping.
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In order tomove beyond conventional analysis and the discovery of pairwise correlations of
time-series variables (in our case a particular metabolite and a particular sleep stage), towards
identifying directed (“causal”) interactions which could characterize functional circuits relat-
ing sleep and metabolism, we developed a neural network-based method to infer Granger
causal relationships. The concept of Granger causality was previously very successfully ap-
plied in the domains of economics258 and neuroscience.259 Our Granger causality framework
(fully described in the supplementary information) o�ers an alternative view of our data,
based upon the concept of predictability: the idea is that the most signi�cant sleep-related
metabolites can be used to predict sleep states. Other technical advantages, such as modeling
of nonlinear and time-delayed relationships are extensively discussed in the supplementary
information. An example from three individuals is shown in �gure 4.6a. Numerical compar-
isons across all subjects and features are summarized in �gure 4.6b, with individual metabo-
lites listed in table B.2. Our analysis based on Granger causality resulted in 386, 196 and 135
features associated with wakefulness, REM sleep and N3 sleep respectively, many of which
(182, 60, 59) were not identi�ed by our initial conventional approach.

4.3.4. Pathway mapping of MS features
To understand the biology behind the metabolic regulation triggered by sleep stages, we per-
formed compound identi�cation and pathway analysis. Compound identi�cation is still the
biggest challenge in the �eld of metabolomics. Nevertheless, more and more tools are being
developed for automated compound annotation.260 We used an annotation algorithm that
combines information about elemental composition obtained from the accurately measured
mass with metabolic pathway mapping and enrichment analysis.254 In this way, possible er-
rors in the identi�cation of any individual compound are “averaged out” against the expec-
tation that quantitative di�erences would be observed across multiple metabolites within a
given pathway. Since automated annotation is still prone to false positives, we further inves-
tigated top pathway hits further manually and con�rmed the identities of several compounds
with tandemmass spectrometry data from liquid chromatography – mass spectrometry mea-
surements of exhaled breath condensate or from real-time breath measurements (�gure 4.7).

4.3.5. Sleep stages control axes of metabolism
Ontological analyses suggest that major axes of metabolism, such as lipid metabolism, car-
bohydrate metabolism and TCA cycle activity are in fact strongly sleep state-dependent
(overview in �gure 4.8, boxplots in �gure B.4, quantitative results in table 4.2).
For example, we were able to identify short-chain acylcarnitines in exhaled breath for the

�rst time (�gure 4.10a-d), and we found breath levels of short-chain acylcarnitines to be high-
est during wakefulness and lowest during N3 sleep. For most of them, we additionally found
Granger causal relationships to wakefulness and/or N3 sleep. We did not detect signi�cant
di�erences in carnitine levels between N3 and REM sleep. Thus, systemic changes in fatty
acid oxidation are occurring across sleep and wake (yellow quadrant, �gure 4.8): whereas a
switch to wake increases fatty acid oxidation, a switch to NREM sleep reduces it.
Similarly, we found several metabolites involved in propanoate and butanoate metabolism
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Figure 4.7.: MS/MS spectra from exhaled breath condensate (EBC) (a-c) and from real-time breath measure-
ments (d-f) in comparison with database spectra. Database spectra were obtained fromMS-DIAL256 (all publicly
available MS/MS records).
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Figure 4.8.: Metabolic pathways with di�erential regulation across di�erent stages of vigilance.
Metabolites in italic font in transparent ovals are not detected. Solid ovals: metabolites showing signi�cant
di�erences. Boxplots are shown for a subset of these (center line: median, box limits: 25th and 75th percent
quantile, whisker length: 1.5 interquartile range); Boxplots of all indicated compounds are provided in sup-
plementary �gure B.4, and numeric results in table 4.2. Underlined compounds additionally exhibit a Granger
causal relationship between metabolite level and at least one sleep stage. Metabolic up- or downregulation
during sleep stages are indicated for each pathway with arrows. Dashed lines indicate omitted molecules.
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Figure 4.9.: Breath levels of isoprene during sleep. a The isoprene level in breath increases instantaneously
with leg movements measured by EMG. b During REM sleep acute decrease of isoprene is observed. These
�ndings are in good agreement with a study by King et al.261 where isoprene levels were measured during sleep
using proton transfer reactionmass spectrometry (PTR-MS). Thus, we were able to validate data recorded with a
di�erent technique, at a di�erent time, with a di�erent sample cohort and at a di�erent laboratory. As described
before,261 this behavior can be explained by the fact that isoprene is mainly re�ecting muscle activity. Muscles
are the main compartment where isoprene is stored.262 Therefore, during REM sleep, characterized by muscle
atony,263 lower isoprene levels in blood and thus also in breath are expected. During leg movements, in contrast,
muscle perfusion is increased explaining higher isoprene levels in breath.

to be downregulated during NREM sleep and for propanoate and aminobutanoate we also
found Granger causal indications of this connection (green quadrant, �gure 4.8). These
molecules are natural byproducts of fat and protein metabolism.
We observed increased levels of several TCA cycle intermediates during REM sleep (brown

quadrant, �gure 4.8). We also found malate and oxaloacetate to be Granger causally related
with REM sleep. (Succinate was not upregulated during REM sleep.) Since normally REM
sleep can only follow NREM sleep, a transition to REM sleep results in elevation of TCA
cycle intermediates, possibly preparing for mitochondrial oxidation later in wake.
Finally, examining glycolysis, we found highest glucose levels in breath during wakeful-

ness and lowest levels during REM sleep. We observed a similar behavior for several other
metabolites involved in pentose phosphate pathway and pentose and glucoronate intercon-
versions. For most of them, we also �nd Granger causal relationships with REM sleep and
wakefulness. In contrast, we found opposite trends for pyruvate levels. They were increased
during REM sleep and lowest during wakefulness. In addition, for manymetabolites involved
in carbohydrate metabolism, we observed signi�cant di�erences between REM sleep and N3
sleep (purple and turquoise quadrants, �gure 4.8).

4.4. Discussion
By taking advantage of metabolites present in human breath, our studies measure the hu-
man metabolome noninvasively at the unprecedented resolution of ten seconds across the
night. Such exhaled metabolites are mainly the product of di�usion across the lung alveolar
membrane, and therefore are thought to resemble the composition of the blood metabolome,
with additional contributions from the upper airways.264 We have separately veri�ed this in
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nine subjects, comparing the results of the metabolome in blood draws during wakefulness
to that obtained from breath at the same time point. Levels of these carnitines correlate well
with blood levels (�gure 4.10e-i and �gure 4.11a-d), indicating that breath levels are re�ecting
systemic carnitine levels. We also veri�ed this relation between breath and blood metabolites
for representatives of other metabolic pathways such as the TCA cycle (fumarate), glycoly-
sis (lactate), propionate metabolism (lactate) and the pentose phosphate pathway (glycerate)
(�gure 4.11e-g).
Our results imply that a major part of the human metabolome is subjected to sleep stage-

speci�c regulation. As mentioned above, this question has been hitherto di�cult to address
due to issues of sampling rate vs. sleep stage duration. However, our studies are in agreement
with other existing data as we note below. For example, isoprene has been studied previously
with respect to legmovements during sleep.261 Amongst the detectedmolecules, we identi�ed
isoprene and observed decreased isoprene levels during REM sleep and spikes in exhaled
isoprene associated with leg movements (�gure 4.9).
Newly in our study, we found an extensive and immediate metabolic response to REM

sleep, N3 sleep and wakefulness as well as metabolites with a more complicated temporal
relationship to vigilance states. Metabolic patterns of N1, N2 and N3 sleep did not di�er
signi�cantly, indicating that the gradual transition fromwakefulness to deep sleep is re�ected
as well on a metabolic level.
Carnitines are rate-limiting for the transport of long-chain fatty acids across the mitochon-

drial membrane to be oxidized266 and supplementation with carnitines is even able to increase
fatty acid oxidation directly.267 Our �ndings of decreased acylcarnitine levels during N3 sleep
compared to wakefulness therefore suggest that energy consumption by fatty acid degra-
dation is higher during wakefulness than during sleep. This is in agreement with �ndings
from Davies et al.,237 reporting increased carnitine levels during sleep deprivation compared
to sleep, and with the ability of L-carnitine to decrease daytime sleepiness in narcolepsy pa-
tients.268

From our results for pathways involved in carbohydrate metabolism, we hypothesize in-
creased glucose utilization via glycolysis during REM sleep. This assumption is in line with
the previously reported decrease in glucose utilization during NREM sleep compared to REM
sleep.269 Increased pyruvate production via glycolysis during REM sleep goes along with in-
creased TCA cycle activity during REM sleep induced by increased feeding from pyruvate via
oxaloacetate, suggested by our �ndings on TCA cycle intermediates. This increase in TCA
cycle activity might be a preparation for subsequent mitochondrial oxidation. Furthermore,
there is evidence that the TCA cycle is involved in immune reprogramming.270 Macrophage
activation and cytokine production can be triggered by breaks in the TCA cycle, most no-
tably after citrate/isocitrate and after succinate.271 In addition, sleep is associated with anti-
in�ammatory function.147 Our failure to see upregulated succinate during REM sleep in com-
bination with our �nding of upregulation of its successors fumarate and malate suggests that
this checkpoint is not activated, making REM sleep anti-in�ammatory.
Sleep loss has been associated with impaired glucose metabolism.128 Recently, circulating

propanoate levels have been associated positively with insulin sensitivity.272 Thus, our �nd-
ings of downregulated propanoate and butanoate metabolism during N3 sleep suggest SCFAs
(short-chain fatty acids) as mediators for decreased insulin sensitivity during SWS.
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Figure 4.10.: Identi�cation of acylcarnitines in breath and serum. a-c MS/MS spectra of acylcarnitines
obtained from exhaled breath condensate in comparison with databaseMS/MS spectra. d Fragmentation pattern
of acylcarnitines reported in literature.265 e Chromatographic peaks of the carnitines measured in serum. As
expected, retention times increase with increasing size of the alkyl chain. f-i MS/MS spectra of acylcarnitines
obtained from serum in comparison with database MS/MS spectra.
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Figure 4.11.: Correlation of metabolite levels in exhaled breath and serum. a-d Correlation between
blood and breath levels of carnitine, acetylcarnitine, propionylcarnitine and butyrylcarnitine and linear �ts
obtained from robust linear regression. These results indicate that short-chain acylcarnitine levels in exhaled
breath re�ect systemic levels. e-g Correlation between blood and breath levels of representatives of glycolysis
(lactate), propionate metabolism (lactate), TCA cycle (fumarate) and pentose phosphate pathway (glycerate)
and linear �ts obtained from robust linear regression. These results indicate that metabolite levels in exhaled
breath re�ect systemic levels.
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Figure 4.12.: Comparison of sleep-related compounds and compounds under circadian control. In
total, 247 m/z features of the features we detected in this study have also been reported from circadian stud-
ies.55,76,185,236,273 For 43 % of these features, we found an association with wakefulness, REM sleep or N3 sleep,
and they are reported to be also under circadian control.55,76,185,236,273 28 % are associated with sleep only, and
16 % are only under circadian control. This suggests that many circadian metabolic pathways are also acutely
sleep-controlled.

Sleep is a major output of circadian clock and disruption of both is associated with
metabolic diseases.3,274 Metabolic regulation by the circadian clock has been studied previ-
ously.55,76,185,236,273 Here, we could show that metabolism is also controlled by sleep stages.
Despite di�erent samples types and di�erent analysis techniques, we detected 247 of the
m/z features reported in circadian studies also in our study in exhaled breath during sleep
(�gure 4.12). Amongst these commonly detected metabolites, the major part (42.5 %) is
regulated by both sleep stages and circadian clocks. 16.2 % are controlled by circadian clocks
only and 28.3 % are only associated with sleep states. Thus, circadian and sleep-dependent
regulation of metabolism represent an interlocked network of metabolic control, analogous
to the overlapping layers of control that we have described recently for the sleep- and
circadian-dependent transcriptome.27

The orchestration between sleep architecture and metabolism, which we discovered here,
might be essential for human health. To further investigate its clinical relevance, we evalu-
ated breath levels of sleep-state dependent metabolites in a cohort of patients su�ering from
obstructive sleep apnea (OSA) and control subjects (Participant data and detailed methods are
provided in Chapter 5). Many of the sleep state-regulated compounds displayed signi�cant
di�erences between the two groups. The functionality of those metabolites being in�uenced
by both, OSA and sleep stages, is remarkably homogeneous. Most of the compounds are
related to mitochondrial synthesis of acetyl CoA (�gure 4.13). These �ndings indicate that
especially for mitochondrial respiration, a healthy sleep architecture properly synchronized
with metabolism, is of importance.
Although our dataset identi�es over a thousand sleep state-regulatedm/z features, the path-
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ways subject to sleep-dependent regulation found in this study are probably only scratching
the surface of such metabolic regulation. Further studies will improve the identi�cation of
unknown compounds and thus enlarge pathway coverage. Moreover, the techniques that we
have pioneered here could equally be employed to investigate how metabolic regulation is
altered in individuals with sleep-related diseases.

4.5. Conclusion
In conclusion, by analysing exhaled breath during sleep, we found unprecedented evidence
for sleep states as drivers of body metabolism. Not only circadian patterns but also sleep-
wake patterns dynamically program metabolism, providing precise timing for carbohydrate
metabolism, fatty acid oxidation, and the mitochondrial TCA cycle. Thereby, they directly
connect sleep patterns to metabolic homeostasis and health.
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5.1. Introduction

Summary
Obstructive sleep apnea (OSA) is a widespread respiratory disease with negative metabolic
and cardiovascular e�ects. The current gold standard for diagnosing OSA is polysomnogra-
phy in the sleep laboratory, a time-consuming and costly procedure, which is inconvenient
for the patient. Recent studies revealed evidence for the potential of breath analysis for the
diagnosis of OSA based on a disease-speci�c metabolic pattern. However, none of these �nd-
ings was validated in a larger and broader cohort, an essential step for its application in
clinics.
In the present study, we validated a panel of breath biomarkers in a cohort of patients

with possible OSA (N = 149). These markers were previously identi�ed in our group by
secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS). Here,
we could con�rm signi�cant di�erences between metabolic patterns in exhaled breath from
OSA patients compared to control subjects without OSA as well as the association of breath
biomarker levels with disease severity. Our prediction of the diagnosis for the patients from
this completely independent validation study using a classi�cation model trained on the data
from the previous study resulted in an area under the receiver operating characteristic curve
of 0.66, which is comparable to questionnaire-based OSA screenings.
Thus, our results suggest that breath analysis by SESI-HRMSmay be used to screen for OSA.

Its true predictive power should be tested in combination with OSA screening questionnaires.

5.1. Introduction
Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder.275 The
repeated partial or complete collapse of the pharynx during sleep provokes apnea or hy-
popnea events, which may lead to repetitive oxygen desaturations. Frequent sleep disrup-
tions and increased activity of the sympathetic nervous system are accompanying these ap-
nea/hypopnea events and result in poor sleep quality and increased daytime sleepiness.276
Several metabolic and cardiovascular consequences, such as an increased risk for cardiovas-
cular diseases, arterial hypertension, diabetes, vascular dysfunction, as well as depression
and car accidents, are well known.277–280 OSA can be e�ectively treated i.e. with continuous
positive airway pressure (CPAP).281–283
The conventional diagnosis of OSA is carried out by polysomnography or respiratory

polygraphy,284,285 which are time-consuming, costly and inconvenient for patients. In
addition, there is emerging evidence for a high night-to-night variability of OSA, posing
another challenge for diagnostics.286 Thus, for a reliable diagnosis, testing during several
nights would be required. Screening for OSA is conventionally based on questionnaires,
such as the STOP-bang,287 Berlin288 or NoSAS score.289 However, the results from such
questionnaires are by nature subjective.
Exhaled breath contains several hundreds of metabolites and thus provides insights into

biochemical processes of the human body.216 Many of the metabolites in breath do not orig-
inate from the lungs but are transported from blood to the airways via gas exchange in the
lung. Therefore, breath metabolite levels mostly re�ect systemic metabolic processes. Fur-
thermore, consistent alterations of the molecular �ngerprint of exhaled breath in patients
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with a certain disease may indicate disease speci�c metabolic changes. Such disease speci�c
biomarkers detected in exhaled breath, could be the basis for an objective and non-invasive
diagnostic procedure, which is fast and easy to perform for patients.
So far, many studies with small sample sizes have obtained promising results, suggesting a

great diagnostic potential of exhaled breath analysis for various diseases. However, larger val-
idation studies are missing and, to date, exhaled breath analysis is applied in clinical routine
only for very few applications, such as the evaluation of bronchial in�ammation bymeasuring
fractional exhaled nitric oxide (FeNO).290 To achieve a more widespread clinical application of
breath analysis for disease diagnosis and monitoring, the validation of preliminary �ndings
in large cohorts of patients is essential.
The investigation of exhaled breath in OSA patients using di�erent technical approaches

revealed convincing results for diagnosing this disease and for monitoring patients’ compli-
ance to CPAP therapy.277 In some studies, electronic sensors (e-noses) were used to recognize
OSA speci�c patterns in exhaled breath.291–294 In their attempts of diagnosing OSA against the
gold-standard (polysomnography), areas under the receiver operating characteristic curves
(AUROCs) in the range from 0.84 (no 95% CI provided) to 0.87 (95% CI 0.61-1.00) were re-
ported, suggesting future diagnostic applicability of breath analysis. However, e-noses do
not allow for compound identi�cation and thus do not provide mechanistic insights into the
disease, but merely produce a complex “signal” whose statistical evaluation can give some
valuable output. Furthermore, these data from studies with e-noses were not validated in
larger and broader cohorts of patients with possible OSA.
Our untargeted investigation of an extensive spectrum ofmolecules in exhaled breath using

secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) revealed
speci�c markers, allowing identi�cation of a disease speci�c molecular pro�le of exhaled
breath in patients with OSA reccurrence after two weeks of CPAP therapy withdrawal.227 In
that randomized controlled trial, we found signi�cant correlations between metabolite levels
in breath and change in oxygen desaturation index (ODI, a clinical parameter for the severity
of OSA) upon CPAP withdrawal, and signi�cant di�erences between the CPAP withdrawal
and treatment group. Further, we achieved a successful classi�cation (AUROC = 0.87) be-
tween the withdrawal group and the group that continued the treatment. In order to transfer
our exciting �ndings into the diagnostic algorithm of OSA, this observational study aims to
validate these metabolic breath pro�les in a larger treatment naive cohort of patients with
possible OSA.

5.2. Methods

5.2.1. Study participants

This study includes 149 participants with possible OSA in the age of 53.3±13.7 years with
a BMI of 30.1±6.6 kg/m2 (table 5.1). The study protocol was approved by the local ethical
committee (KEK-ZH 2016-00384). The experiments were conducted in accordance with the
Declaration of Helsinki and written informed consent was obtained from all participants
before participation. The clinical trial was registered at ClinicalTrials.gov (NCT02810158).
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Figure 5.1.: Study design. 149 study subjects with possible OSA underwent conventional diagnosis by respi-
ratory polygraphy in the sleep laboratory and exhaled breath analysis by SESI-HRMS.
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All patients underwent in-hospital respiratory polygraphy (RP). Inpatient RPs were
recorded by Alice 6 Diagnostic System (Philips Respironics, PA, USA), scored with validated
Somnolzyer 24x7 software (Philips Respironics, PA, USA), and reviewed manually. The
obtained data was evaluated according to the guidelines of the American Academy of Sleep
Medicine.295
Furthermore, the participants were asked to �ll in Epworth Sleepiness Scale (ESS) ques-

tionnaires.

5.2.2. SESI-HRMS measurements
Participants were asked to refrain from eating, drinking, chewing gum, alcohol, tobacco,
ca�eine use or brushing their teeth at least 1 hour prior to the SESI-HRMS measurements.
Exhaled breath of 149 patients was analyzed by SESI-HRMS using a commercial SESI source
(SEADM, Spain) coupled to a high-resolution TripleTOF 5600+ mass spectrometer (AB Sciex,
Concord, Ontario, Canada). The participants were sitting in upright position in front of the
mass spectrometer and exhaled at least six times with a pressure drop of 12 mbar through
a disposable mouth piece into the heated sampling line, which was connected to the SESI
source. A �ow-splitter at the front-end enabled sampling of end-tidal breath. The �ow
through the ion source was set to 0.2 L/min. Full scan mass spectra were recorded in positive
ion mode with an accumulation time of 1 s in the rage of 50-500 Da.

5.2.3. Data preprocessing
All mass spectral data was analyzed withMATLAB R2020a and R 4.0.0. Mass spectra obtained
from exhaled breath were preprocessed as described elsewhere.226 In short, mass spectra were
interpolated, aligned, exhalation timewindowswere chosen and peak picking was performed
on the average breath spectrum. As in the pilot study,227 breath signal intensities were nor-
malized to the median intensity of the total ion current and then autoscaled.

5.2.4. Statistical analysis
Further, the m/z features were �ltered for markers, which have been associated with OSA
previously.227 The m/z tolerance was set to 0.005 Da. The remaining 78 m/z features were �rst
tested for normality in a Shapiro-Wilk’s test. Since the data was not normally distributed
(p-value distribution from Shapiro-Wilk’s test for normality is provided in supplementary
�gure B.16), we performed a correlation analysis between signal intensity and ODI as well as
between signal intensity and ESS using Spearman correlation.
Moreover, we tested for di�erences in signal intensities between individuals without OSA

and OSA patients by performing two-sided Mann-Whitney-U tests. Here, we �rst applied
strati�cation criteria as they are commonly applied in the clinics: OSA ODI > 30/h or
ODI > 10/h & ESS > 10 points, control ODI < 5/h or ODI < 10/h & ESS < 11 points (strati�ca-
tion 1). We then also tested for between-group di�erences with stricter strati�cation criteria
(OSA: ODI > 30/h & ESS > 10 points, control: ODI < 10/h & ESS < 11 points, strati�cation
2) in order to remove individuals with ambiguous diagnosis. We also calculated log2 fold
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changes between the groups. To account for multiple hypothesis testing, false discovery
rates (q-values) were calculated for all obtained p-values using Storey’s procedure.250

5.2.5. Classification procedure
We combined the breath intensities obtained for the above mentioned 78 m/z features of the
previously reported pilot study and this validation study. We used the data of the pilot study
as training set and used the MATLAB classi�cation learner app to �nd the best classi�cation
algorithm. For model evaluation we used a 7-fold cross validation. We de�ned the OSA
and control group with the above mentioned criteria of strati�cation 1. In order to obtain
balanced group sizes we only used the before and after measurements of the 9 individuals of
the placebo group, who developed OSA in the pilot study. A gaussian support vector machine
model performed best. We thus trained such model on the training data and predicted the
validation data set obtained from this study.

5.2.6. A�empts of improvement of classification performance
Since both data sets were acquired on di�erent mass spectrometers and with di�erent gen-
erations of SESI sources, we assessed by principal component analysis the comparability of
both data sets. A slight shift between both data sets was observed. We therefore performed
a batch correction based on an empirical Bayes algorithm296 and repeated the classi�cation
procedure described above.
We also repeated the classi�cation procedure with strati�cation criteria, which are more

similar to the ones used in the pilot study. For the validation data set we de�ned the groups
as follows: OSA: ODI > 30/h, control: ODI < 10/h. In order to get balanced group sizes in the
training set, we reduced the control group to ODI < 2/h.

5.3. Results

5.3.1. Study design and patient characteristics
149 participants between 19 and 83 years with possible OSA have been examined by respi-
ratory polygraphy and their exhaled breath was analyzed by SESI-HRMS directly after the
sleep study (�gure 5.1). Patient characteristics and results from respiratory polygraphy are
shown in table 5.1. Depending on the applied strati�cation criteria, the mean ODI in the OSA
group varies between 38.3 and 46.8 events per hour. The control group had a mean ODI be-
tween 4.4 and 5.2 events per hour. The mean Epworth Sleepiness Scale score (obtained from
a questionnaire estimating the extend of daytime sleepiness) in the OSA group ranged from
10 to 11 points and in the control group from 6 to 9.4 points.
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5.3.2. Metabolic pa�erns in exhaled breath associated with OSA
The data obtained in this validation study from SESI-HRMSmeasurements was pre-processed
in the same way as it was done in our previous study,227 which we refer to as pilot study in
the following, i.e. the signal intensities were normalized to the median of total ion current
and then autoscaled. We continued our analysis in a targeted fashion focusing only on the
m/z features that have previously been associated with OSA in our pilot study. However, we
were not able to detect all of them, which is most likely due to technical changes that have
beenmade in the meantime. Nevertheless, 78 of the features that have been reported either as
signi�cantly di�erent between the CPAP and the withdrawal group or as correlating with the
change in ODI or as predictive for OSA previously, were also detected in this validation study.
For those 78 m/z features, we tested for signi�cant di�erences between controls without OSA
and OSA patients and for correlation with ODI and ESS. Moreover, we trained a classi�cation
model with the data from the pilot study and predicted the OSA diagnosis of the validation
cohort from this study.

5.3.3. Significant di�erences in metabolic breath pa�erns between
OSA patients and individuals without OSA

We tested for signi�cant di�erences in metabolite intensities in exhaled breath between OSA
patients and controls without OSA (Mann-Whitney-U test). We assigned the participants to
two groups (OSA and control) based on the following criteria, which are commonly applied
in clinics: ODI > 30/h or ODI > 10/h & ESS > 10 points (de�nitive OSA); and ODI < 5/h or
ODI < 10/h & ESS < 11 points (de�nitive without relevant OSA; control) (strati�cation 1).
All subjects in between were assigned to an “unclear” group, since no unambiguous OSA
diagnosis could be stated. For 19 features we found signi�cant (p < 0.05) di�erences between
the two groups (�gure 5.2 and �gure 5.3a and b, boxplots of two examples are shown in �gure
5.3c and d, all boxplots are provided in supplementary �gure B.6).
When we used stricter grouping criteria (OSA: ODI > 30/h & ESS > 10 points, control:

ODI < 10/h & ESS <11 points, strati�cation 2) in order to consider only patients with an
unambiguous diagnosis, signi�cance increases as shown in supplementary �gure B.7 and
supplementary �gure B.8 (all boxplots are given in supplementary �gure B.9). All numeric
results are provided in supplementary tables B.4 and B.5.
Hence, our results from this validation study con�rm our previous �ndings of a speci�c

metabolic pattern in exhaled breath in OSA patients.

5.3.4. Association between disease severity and breath signal
intensity

To test whether in this larger and more diverse cohort of patients, breath patterns do not only
di�er between the control and OSA group, but signal intensities are also correlating with the
severity of OSA, we performed a Spearman correlation analysis. For 21 features, we found a
signi�cant correlation between breath levels and ODI (p < 0.05) (�gure 5.4a, correlation plots
for two examples are shown in �gure 5.4b, all correlation plots are provided in supplementary
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regression lines for 2-propylfuran and 2-pentenal. Regression lines for all features with signi�cant correlations
with the ODI are provided in spplementary �gure B.10. Numeric results for features with signi�cant correlations
are summarized in table 5.2 and 5.3 and numeric results of all 78 features are given in supplementary table B.4
and B.5. (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points;
unclear: in between; strati�cation 1)
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�gure B.10). All except one show higher intensities for an increased ODI, suggesting that
oxygen desaturation correlates with an enrichment of these metabolites. This supports the
association of these metabolites with apnea-related nocturnal hypoxemia. Amongst these
metabolites correlating with the ODI are several unsaturated aldehydes as well as furanes and
benzothiazole that have been identi�ed before.297–299 Thus, we could con�rm the previously
reported association between disease severity and breath signal intensity.

5.3.5. Association between sleepiness and breath signal intensity
For 9 features we found a signi�cant correlation between their breath intensities and the
ESS (p < 0.05) (�gure 5.5a). Amongst them, 4 are also correlating with the ODI, such as
2-pentylfuran and 4-hydroxy-2-octenal. Correlation plots for these two examples are shown
in �gure 5.5b (all correlation plots are provided in supplementary �gure B.11). These �ndings
suggest that not only hypoxia but also sleepiness is re�ected in the metabolic breath pattern.

5.3.6. Classification
To assess to applicability of metabolite levels measured in exhaled breath using SESI-HRMS
for the clinical diagnosis of OSA, we trained a classi�cation model with the data from our
pilot study and predicted the diagnosis of OSA or control in the validation cohort measured
in this study. The classi�cation procedure is shown schematically in �gure 5.6.
First, we grouped the patients again as described above by the clinical criteria of strati�ca-

tion 1. In order to obtain balanced group sizes in the training set, we used only the “before”
and “after” measurements of those patients in the CPAP withdrawal group, who developed
signi�cant OSA under placebo treatment (�gure 5.7a). With the training data, we estimated
the performance of the classi�cation model in a 7-fold cross-validation. This resulted in an
AUROC of 0.59 (�gure 5.7b, the confusion matrix is provided in �gure 5.7c). The prediction
of the diagnosis for the validation data (�gure 5.7a) yielded in an AUROC of 0.66 (�gure 5.7b,
confusion matrix is given in �gure 5.7c). The accuracy of the prediction was 63% with a
sensitivity of 76% and a speci�city of 42%.

5.4. Discussion
To the best of our knowledge, this is the �rst report of a validation of breath biomarkers for
OSA. Previous studies using e-noses, o�ine gas-chromatography coupled tomass spectrome-
try, or enzyme immunoassays to analyze exhaled breath condensate have achieved promising
results regarding the distinction between OSA patients and controls without OSA from ex-
haled breath.277 However, sample sizes in all these studies were limited and none of the results
has been validated in an independent cohort of patients. In this study, we could con�rm in
a large and independent cohort that breath intensities of many of our previously discovered
potential biomarkers for OSA di�er signi�cantly between OSA patients and controls with-
out OSA. Most of them are consistently increased in OSA patients. We could also con�rm a
correlation between breath signal intensity and disease severity (represented by the ODI) for
several metabolites. These �ndings suggest that the 33 metabolites shown in tables 5.2 and
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Figure 5.5.: Correlations between metabolite levels in breath and sleepiness. a p-values and correlation
coe�cients of features from exhaled breath with signi�cant correlations with the ESS. b Exemplary regression
lines for 2-pentylfuran and 4-hydroxy-2-octenal. Regression lines for all features with signi�cant correlations
with the ESS are provided in supplementary �gure B.11. Numeric results for features with signi�cant corre-
lations are summarized in table 5.2 and 5.3 and numeric results of all 78 features are given in supplementary
table B.4 and B.5. (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h &
ESS < 11 points; unclear: in between; strati�cation 1)
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Figure 5.6.: Classi�cation procedure. A classi�cation model was trained with the data from our pilot study
and its performance was estimated in a 7-fold cross validation. Subsequently, the diagnosis of the patient cohort
from this validation study was predicted.

5.3 represent a panel of biomarkers, which are robust enough towards inter-individual vari-
ability to form a promising diagnostic tool. Inter-individual di�erences are the most likely
reason for the lower correlation coe�cients between signal intensities in breath and ODI that
we observed in this diverse validation cohort compared to the correlations between the signal
intensities and the within-subject change of ODI upon CPAP withdrawal, which we reported
previously.
It is unlikely that there is one single biomarker that is su�cient for diagnosing a disease

like OSA potentially associated with complex metabolic and cardiovascular consequences.
In contrast, a pattern of several biomarkers is more likely to be disease-speci�c. Therefore,
classi�cation algorithms based on machine learning are convenient tools for making clinical
diagnoses based on biomarker patterns. Here, we achieved a classi�cation of the validation
data set with an AUROC of 0.66, 76% sensitivity and 42% speci�city, when we trained the
model with the data from the independent patient cohort of our previously reported study.
Since the patient cohort of this study was much more diverse than the one in our pilot

study, a lower classi�cation performance would be expected. However, the support vector
machine (SVM) model, which we used here, performed already worse in the cross validation
with the training data (AUCCV = 0.59) compared to the model presented in the pilot study.
This is likely to be due to di�erent strati�cation criteria used in both studies, since with such
small training sets, few samples can have a considerable in�uence. To test this hypothesis,
we applied di�erent strati�cation criteria. When we strati�ed the training data only based
on ODI (as it was done in the pilot study), the model performance becomes comparable with
the results that were reported previously (AUCCV = 0.79, supplementary �gure B.12a-c). This
result supports our choice of an SVM model. However, the prediction of the validation data,
which was then also strati�ed only based on the ODI, not only did not improve, but even
declined slightly (AUC = 0.62, supplementary �gure B.12d-f). This indicates that groups that
are de�ned based on ODI and ESS can be distinguished better from the breath pattern with
this biomarker panel than groups that are de�ned by ODI only. This is desirable, since a com-
bination of ODI and ESS better re�ects the clinical picture of signi�cant OSA than only the
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ODI. All performance measures of this classi�cation procedure (classi�cation 2) are reported
in the supplementary results and are summarized in supplementary table B.6.
SESI is still a rather novel technique and its performance is constantly improving. Also,

between the pilot study and this validation study, technical improvements have been imple-
mented. For example, a new ion source, which is more robust, has been developed, and we
adapted collision gas settings of theMS in order to prevent fragmentation, although this leads
to increased cluster formation. This is most likely the reason why we did no longer detect
all of the previously reported markers in this study. The comparison of our data before and
after batch correction between the data sets from both studies indicated that the data for the
78 potential biomarkers detected in both data sets are comparable and there is only a very
small batch e�ect. A negligible change of the results from the classi�cation procedure applied
after batch correction con�rmed this observation. (classi�cation 3, PCA plot and classi�ca-
tion outcome are shown in supplementary �gure B.13 and supplementary �gure B.14, and
classi�cation results are described in supplementary results and supplementary table B.6)
Another factor that might impair the classi�cation results is a lack of standardization of

SESI-HRMS and the lack of real-time breath quality control samples, respectively at the
time when the study was conducted. Instrumental drifts are a common issue in large scale
metabolomics studies, which is overcome in o�ine-techniques with quality controls.211 These
samples are then used for normalization, i.e., to separate the biological variation of interest
from unwanted technical variation or other confounding factors, such as exogenous in�u-
ences. Since such samples are not yet available for real-time breath analysis, a higher degree
of standardization of sampling and methodology is required.300 In future studies, a reference
gas mixture could be established, to check the instrument performance and thereby reduce
technical noise. This might improve the e�ectiveness of SESI-HRMS for screening for OSA.
Ideally in a next step, calibration with standards of validated and identi�ed biomarkers, such
as the ones identi�ed in this study, could be applied using standard addition. The standard
addition procedure brings the advantage that in addition to technical �uctuations, matrix
e�ects and thereby the in�uence of humidity on ionization e�ciency and ion suppression ef-
fects can also be eliminated. However, the biggest challenge here is the availability of gaseous
standards as well as the bottleneck of identi�cation of metabolites. One possible approach
is the use of permeation tubes.301 Another confounding factor that might compromise the
results are isobaric compounds since no separation step, such as chromatography, is used
in real-time SESI-HRMS. To overcome this challenge, a targeted detection of the validated
and identi�ed biomarkers could involve MS-MS quanti�cation or a coupling to ion mobility
spectrometry and thereby provide a higher molecular speci�city.
To date, di�erent scores are derived from questionnaires for an initial approach to OSA

screening. Our classi�cation performance is comparable with the performances of the STOP-
bang287 and Berlin scores,288 which are obtained from questionnaires and currently used for
OSA screening. The NoSAS score performs slightly better, AUROCs of 0.74 and 0.81 have
been reported from two di�erent patient cohorts. However, in terms of sensitivity our results
are comparable with the NoSAS score.289 For a screening, this is the most relevant parameter,
since ideally no subjects with OSA are missed. The false negatives that we observed are dis-
cussed in the supplementary discussion. It has been shown previously that the combination
of NoSAS and metabolomics data can improve predictive performance remarkably.302 Here,
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Table 5.2.: A panel of validated OSA biomarkers. 33 of the previously detected227 biomarkers for OSA
show a signi�cant correlation with the ODI or ESS or signi�cant di�erences between OSA patients and control
subjects in the validation cohort (signi�cance level: p < 0.05). (unsat. aldehydes: unsaturated aldehydes)
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2-pentenal ([M+NH4]+ ) unsat aldehydes 102.0913 yes no yes
4-hydroxy-2-heptenal unsat. aldehydes 129.0908 yes yes 0.48 no
4-hydroxy-2-octenal ([M+NH4]+ ) unsat. aldehydes 143.1063 no yes 0.42 no
4-hydroxy-2-octenal unsat. aldehydes 160.1329 yes yes 0.42 no
2-undecenal unsat. aldehydes 169.1584 no yes 0.38 no
2-ethylfuran furanes 97.0647 yes no yes
2-propylfuran furanes 111.0803 yes yes 0.4 yes
2-butylfuran furanes 125.0958 yes yes 0.44 no
2-pentylfuran furanes 139.1116 yes yes 0.38 yes
benzothiazole thiazoles 136.0216 yes no no
4-(hexyloxy)phenol benzenoids 195.1379 no yes 0.38 no
M1 unknown 53.0391 no no yes
M3 unknown 79.0409 no no yes
M5 unknown 81.0525 yes no no
M6 unknown 83.0854 no no yes
M9 unknown 93.0574 no no yes
M13 unknown 103.0943 no no yes
M20 unknown 122.0835 yes no no
M22 unknown 124.0835 yes no no
M23 unknown 128.0701 no no yes
M27 unknown 136.0471 yes no yes
M32 unknown 149.0971 yes no no
M34 unknown 152.0699 yes yes 0.42 no
M36 unknown 158.1241 yes no no
M39 unknown 165.1272 no no yes
M42 unknown 175.1117 yes no yes
M43 unknown 182.0897 no yes 0.38 no
M44 unknown 207.1378 no yes 0.38 no
M46 unknown 209.1168 no yes 0.4 no
M47 unknown 209.1536 yes no no
M48 unknown 210.1568 no no yes
M49 unknown 211.1325 no yes 0.38 no
M54 unknown 228.0686 no no yes
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5.4. Discussion

Table 5.3.: A panel of validated OSA biomarkers. 33 of the previously detected227 biomarkers for OSA
show a signi�cant correlation with the ODI or ESS or signi�cant di�erences between OSA patients and control
subjects in the validation cohort (signi�cance level: p < 0.05). (unsat. aldehydes: unsaturated aldehydes).

m
et
ab

ol
it
e
na

m
e

m
/z

Sp
ea
rm

an
co

rr
el
at
io
n
co

e�
ci
en

tO
D
I

p
co

rr
el
at
io
n
O
D
I

q
co

rr
el
at
io
n
O
D
I

Sp
ea
rm

an
co

rr
el
at
io
n
co

e�
ci
en

tE
SS

p
co

rr
el
at
io
n
ES

S

q
co

rr
el
at
io
n
ES

S

p
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

1)

q
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

1)

lo
g2

fo
ld

ch
an

ge
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

1)

p
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

2)

q
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

2)

lo
g2

fo
ld

ch
an

ge
be

tw
ee
n
gr
ou

ps
(s
tr
at
i�
ca
ti
on

2)

2-pentenal ([M+NH4]+ ) 102.0912 0.23 0.005 0.017 0.07 0.43 0.34 0.029 0.087 0.43 0.003 0.004 0.75
4-hydroxy-2-heptenal 129.0908 0.2 0.015 0.02 0.13 0.11 0.26 0.022 0.081 0.42 0.003 0.004 0.83
4-hydroxy-2-octenal ([M+NH4]+ ) 143.1064 0.16 0.048 0.036 0.13 0.11 0.26 0.036 0.088 0.12 0.006 0.005 0.25
4-hydroxy-2-octenal 160.1331 0.18 0.026 0.023 0.16 0.05 0.19 0.02 0.081 0.47 0.001 0.003 0.85
2-undecenal 169.1586 0.11 0.17 0.072 0.09 0.3 0.34 0.36 0.246 0.16 0.04 0.018 0.33
2-ethylfuran 97.0646 0.23 0.005 0.017 0.1 0.25 0.34 0.009 0.068 0.38 0.005 0.004 0.8
2-propylfuran 111.0803 0.27 0.001 0.011 0.1 0.21 0.34 0.003 0.068 0.41 0.004 0.004 0.56
2-butylfuran 125.0961 0.23 0.004 0.017 0.13 0.13 0.28 0.005 0.068 0.26 0.001 0.004 0.48
2-pentylfuran 139.1116 0.11 0.197 0.074 0.17 0.04 0.19 0.04 0.088 0.26 0.002 0.004 0.57
benzothiazole 136.0213 0.2 0.016 0.02 -0.04 0.62 0.35 0.019 0.081 0.4 0.025 0.014 0.5
4-(hexyloxy)phenol 195.1379 0.15 0.076 0.048 0.06 0.45 0.34 0.111 0.143 0.34 0.01 0.008 0.62
M1 53.0374 0.1 0.237 0.079 0.08 0.37 0.34 0.314 0.223 0.19 0.032 0.015 0.48
M3 79.0392 0.2 0.016 0.02 -0.06 0.49 0.34 0.094 0.143 0.51 0.067 0.024 0.71
M5 81.0525 0.06 0.466 0.12 0.19 0.02 0.19 0.153 0.152 0.46 0.051 0.021 0.74
M6 83.0853 0.19 0.021 0.022 0.16 0.05 0.19 0.037 0.088 0.27 0.03 0.015 0.48
M9 93.0548 0.19 0.022 0.022 -0.1 0.24 0.34 0.213 0.184 0.43 0.179 0.051 0.52
M13 103.0952 0.2 0.013 0.02 0.05 0.55 0.34 0.047 0.088 0.55 0.019 0.011 0.95
M20 122.0806 0.21 0.012 0.02 0.03 0.68 0.37 0.01 0.068 0.49 0.005 0.004 0.8
M22 124.0838 0.14 0.09 0.053 0.15 0.06 0.22 0.024 0.081 0.26 0.036 0.017 0.41
M23 128.0703 0.13 0.114 0.058 0.19 0.02 0.19 0.042 0.088 0.27 0.002 0.004 0.35
M27 136.0511 -0.06 0.485 0.123 0.19 0.02 0.19 0.96 0.446 -0.18 0.401 0.084 -0.03
M32 149.0959 0.11 0.176 0.072 0.21 0.01 0.19 0.126 0.144 0.3 0.019 0.011 0.38
M34 152.0705 0.13 0.104 0.055 0.02 0.82 0.41 0.178 0.164 0.23 0.045 0.02 0.55
M36 158.125 0.16 0.048 0.036 0.14 0.09 0.25 0.044 0.088 0.12 0.003 0.004 0.67
M39 165.1273 0.19 0.019 0.022 0.1 0.24 0.34 0.046 0.088 0.41 0.005 0.004 0.54
M42 175.1134 0.21 0.01 0.02 0.16 0.05 0.19 0.007 0.068 0.41 0.001 0.003 0.64
M43 182.0809 0.12 0.146 0.071 0.14 0.09 0.25 0.064 0.11 0.18 0.001 0.004 0.55
M44 207.1381 0.15 0.065 0.043 0.02 0.82 0.41 0.245 0.204 0.35 0.028 0.015 0.58
M46 209.1173 0.18 0.025 0.023 -0.03 0.69 0.37 0.111 0.143 0.54 0.026 0.014 0.75
M47 209.1536 0.2 0.016 0.02 0.03 0.72 0.37 0.057 0.102 0.37 0.012 0.008 0.68
M48 210.1568 0.24 0.004 0.017 0.02 0.83 0.41 0.02 0.081 0.5 0.014 0.01 0.67
M49 211.1328 0.2 0.015 0.02 0.17 0.04 0.19 0.025 0.081 0.42 0.002 0.004 0.67
M54 228.0642 -0.18 0.03 0.025 -0.05 0.58 0.34 0.119 0.143 -0.37 0.119 0.04 -0.4
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real-time breath analysis could speed up diagnosis and make it even less bothersome for the
patients. We think that the combination of exhaled breath analysis and the NoSAS score
might provide an objective and easy-to-perform assay for screening patients with possible
OSA. Only positively tested patients would then need to undergo the time-consuming, costly
and inconvenient respiratory polygraphy to con�rm or refute the screening result. During
the screening even multiple testing would be possible, since the breath test is fast and non-
invasive. This might help to overcome the problem of a considerable night-to-night variation
of OSA. Further studies, looking at the combination of the NoSAS score and SESI-HRMS are
needed.
In addition, exhaled breath metabolomics can provide biological information because com-

pounds can be identi�ed. Here, we could con�rm the association of unsaturated aldehydes,
furans and benzothiazole with OSA. These �ndings are strengthening the hypotheses from
our pilot study of increased oxidative stress levels and altered gut microbiota in OSA patients.
Moreover, our �ndings of metabolites such as 2-pentylfuran and 4-hydroxy-2-octenal, cor-
relating with both, ESS and ODI, suggest an association of those metabolites with the sleep
deprivation going along with OSA leading to increased sleepiness.

5.5. Conclusion
In conclusion, we could con�rm our previous �ndings of an OSA speci�c metabolic breath
pattern and con�rm a panel of 33 biomarkers in a larger and broader cohort of patients with
possible OSA. This is the �rst validation study for breath analysis by SESI-HRMS, bringing
this technique an important step closer to its application in clinics. However, before it can be
implemented for clinical use, the added value of SESI-HRMS measurements to conventional
OSA screening questionnaires, such as NoSAS, should be evaluated in further studies.
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Multi-omics correlates of insulin signaling

and circadian function
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6.1. Introduction

Summary
There is major evidence for a complex cross-talk between circadian clocks and metabolism.
Moreover, circadian disruption is associated with an increased risk for metabolic diseases,
such as type 2 diabetes, obesity andmetabolic syndrome. Since shift work and social jetlag are
common phenomena in modern society, this association with adverse health e�ects has be-
come a major issue of public health. While several studies investigated the e�ect of disrupted
circadian clocks on metabolism, the in�uence of metabolite pro�les related to metabolic dis-
eases on circadian clock parameters remains largely unexplored.
In this study, we therefore measured the expression of the circadian reporter gene Bmal1-

luc in U2OS cells in the presence of serum from patients with and without type 2 diabetes and
or obesity. Moreover, we assessed clinical parameters and carried out metabolic pro�ling by
ultra-high performance liquid chromatography coupled to high-resolution mass spectrome-
try with the serum samples.
In obese patients su�ering from metabolic syndrome, we detected an association between

elevated levels of metabolites related to insulin resistance and elongation of Bmal1-luc period
length. Furthermore, our results from a genomewide association study using circadian period
length as a trait suggest March1 as genetic origin of these metabolic factors.
Thus, our �ndings indicate that insulin resistance might be a driving force in the vicious

cycle of metabolic syndrome and circadian clock dysfunction.

6.1. Introduction
In virtually all light-sensitive organisms, circadian clocks govern most aspects of physiol-
ogy, including metabolism,58 to synchronize them with the external environment.303 In mam-
mals, a master pacemaker in the brain, located in the suprachiasmatic nuclei (SCN), drives
this circadian control of behavior and physiology. The SCN receives external light stim-
uli and conveys this information to peripheral clocks, which are present in nearly every
cell.304 The circadian clocks can also be entrained by other stimuli such as feeding, exer-
cising or resting/activity cycles.305 On a molecular level, the circadian timing system consists
of transcriptional-translational feedback loops of clock genes and clock proteins, for example
CLOCK, BMAL1, PER and CRY, which result in oscillations with a period length of roughly
24 hours.306
In a modern 24/7 society, shift work is common and social jetlag has become a public is-

sue. There is strong evidence from epidemiologic studies that this circadian disruption is
associated with an increased incidence of metabolic diseases, such as type 2 diabetes (T2D),
obesity and metabolic syndrome, but also cardiovascular diseases.307–309 In mice as well as in
humans, an interplay between circadian clocks and metabolism is considered to be crucial
for metabolic health.
Studies with rodents suggest that there is bidirectional cross talk between clocks and

metabolism. Whereas forced circadian misalignment in mice leads to disruption of metabolic
pathways, high fat diet induces the alteration of circadian oscillations.63,66 Several relation-
ships between clock gene function and metabolic functions have been unraveled. Weitz
et al. found that rather BMAL1 rhythmicity than overall BMAL1 function is essential for
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glucose homeostasis.310 Other studies showed that the core clock gene Rev-erba is crucial
for proper lipid and carbohydrate metabolism.311–313 In addition, epigenetic factors were
identi�ed to play a role in the connection between clocks and metabolism in mice. The
histone deacetylase HDAC3, for example, is necessary for proper metabolic regulation
by Rev-erba35 and the NAD cofactor-dependent histone deacetylase SIRT1 is needed for
circadian acetylation of PER2 and BMAL1.46,314
In humans, sleep restriction has been shown to trigger increased caloric intake and weight

gain despite increased energy expenditure during wakefulness compared to sleep.151 More-
over, mutations in the core clock genes Clock and Bmal1 have been associated with metabolic
disorders in humans.315,316 In adipose tissue of patients su�ering from severe obesity, de-
creased amplitudes of several rhythmically expressed cytokines was observed.317 Recently,
an inverse correlation between the cellular circadian period length and glycated hemoglobin
(HbA1c) was reported in T2D patients, underpinning the relevance of circadian clocks for
metabolic health.70 However, even though there is clear evidence for a direct link between
circadian clocks and metabolic syndrome, genetic and biochemical links remain largely un-
known in humans. Therefore, there is no ability yet to use this knowledge in a clinically
relevant fashion.
Circadian oscillations measured in vitro in human �broblasts were shown to re�ect over-

all in vivo circadian clock properties.196 Further, experiments with human cells cultured in
human serum suggest that circulating factors can alter circadian properties. Serum factors
from elder persons, for example, caused period shortening and phase shifting towards earlier
phases.318 While there are many studies on the e�ect of circadian disruption on metabolism,
the other direction, i.e., how metabolic factors can a�ect circadian clocks, remains much less
explored. Since obesity and T2D are known to provoke metabolic alterations of blood chem-
istry testing e�ects of these serum metabolites on cellular function of the circadian clock
could unravel insights into the connection between metabolic health and proper clock func-
tion. This can make the assessment of clock properties an interesting tool for the detection
of disease-related changes of serum composition.
In this study, we used a combinatorial approach of metabolomics and circadian measure-

ments of human osteosarcoma U2OS cells in the presence of human serum to gain insights
into molecular factors in serum that might modify circadian properties in obese patients. Fur-
ther, we performed a genome wide association study using circadian period length as a trait
to search for genetic origin of these metabolic factors.

6.2. Methods

6.2.1. Participant characteristics and study design
308 participants were enrolled in this study, divided into four categories: non-diabetic non
obese volunteers, non-diabetic obese volunteers, obese volunteers with type 2 diabetes and
non-obese volunteers with type 2 diabetes. All participants gave informed consent and the
study had ethics committee approval (CER11-015). Participants were included according to
the criteria listed in supplementary table B.7, based on a detailed questionnaire completed
during the pre-selection process. The study was registered at ClinicalTrials.gov (registration
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no. NCT02384148). A list of the baseline characteristics of the participants in each group is
presented in supplementary table B.8. The participant age and sex were comparable between
the groups, and di�erences between the groups stemmed from diagnose of Type 2 diabetes,
HbA1c and BMI values (supplementary table B.8). A detailed list of medications taken by
the participants is presented in supplementary table B.9. All study participants �lled out
the Munich Chronotype Questionnaire (MCTQ), allowing calculation of MSF_sc values that
characterize an individual’s chronotype. The participants were asked to follow a moderate
diet without excess fat or alcohol intake, 24 hours prior to the testing day.

6.2.2. Harvesting of sera
Blood samples for all study participants were collected between 08:00 and 10:00 hours, follow-
ing overnight fasting from 10 pm onwards. Blood samples were collected in clot-activator va-
cutainers and immediately analyzed by the Geneva University Hospital laboratory for blood
analysis including glucose, HbA1c, hormones, lipids, liver and kidney functions measure-
ments (detailed list of the measured clinical parameters in the blood is reported in supple-
mentary table B.10). Serum was immediately prepared from blood samples by centrifugation
(10 min, 1650 x g, 4 °C) and stored at -80 °C until circadian measurements.

6.2.3. Primary dermal fibroblast culture, in vitro synchronization
and DNA extraction

Cutaneous biopsies were taken from each participant’s shoulder between 8.00 and 9 AM
and processed as described previously.195 Cells in culture were synchronized with a 100 nM
dexamethasone pulse, and collected 24 h later. DNA was extracted using QIAamp DNA Mini
Kit (Qiagen AG) and eluted in a �nal volume of 15 �L.

6.2.4. Lentivector production
Bmal1-luc lentiviral particles [Brown et al. 2005] were produced at the Viral Vector Facility
of the University of Zurich. Transient transfection in 293T cells was performed using the
polyethylenimine method.319 Lentiviral particles were harvested at 48 h post-transfection,
PEG precipitated, titred and used for the transduction of the U2OS cells with multiplicity of
infection (MOI) of 3.

6.2.5. U2OS cell culture, in vitro synchronization and real-time
bioluminescence recording

U2OS cells (ATCC) were cultured in DMEM low glucose (GIBCO) supplemented with 1%
Penicillin/Streptomycin (GIBCO), 0.5% Amphotericine B (life Diagnostic), 0.5% Gentamyine
(Merck) and 10% FCS (GIBCO). Cells were transduced with the Bmal1 (also known as Arntl)-
luciferase (luc) lentivector, and selected with Blasticidin S (Invitrogen) at 25 �g/mL �nal con-
centration. The same batch of transduced U2OS cells has been used for all the circadian
measurements. After synchronization of the cells with a 100 nmol/l dexamethasone pulse,
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the circadian bioluminescence recording is performed in DMEM low glucose without phenol
red (GIBCO) supplemented with 1% Penicillin/Streptomycin (GIBCO), 0.5% Amphotericine
B (Life Diagnostic), 0.5% Gentamyine (Merck), 1 �L/mL of luciferin (Prolume 13nM pH7.4)
and in the presence of 10% of the individual’s sera. Bioluminescence was monitored by a
home-made robotic device equipped with photomultiplier tube detector assemblies, allowing
the recording of technical triplicates in 24-well plates (Gerber et al., 2013) for 1 week. After
removing the �rst oscillation cycle (to avoid a potential bias stemming from the immediate
early response to synchronization), raw data were processed in parallel graphs by moving
average with a window of 24 h, allowing to analyze the period of time series without the
variability of magnitudes.

6.2.6. Metabolomics by UPLC-MS

6.2.6.1. Sample preparation and measurements

200 �L of serum were thawed on ice, 200 �L of 1 mg/mL 15N2-tryptophan (Cambridge Isotope
Laboratories, Inc., Tewksbury, USA) in water (LC-MS grade, Fisher Scienti�c, Pittsburgh,
USA) were added as internal standard and proteins were precipitated by the addition of
600 mL of methanol (LC-MS grade, Fisher Scienti�c, Pittsburgh, USA). The samples were
incubated on ice for 10 minutes and centrifuged at 4 °C and 15800 g for 15 min. The super-
natant was �ltered using a 0.2 �m reversed cellulose membrane �lter. 10 �L of the metabolite
extract were injected directly for chromatographic separation on an ACQUITY UPLC BEH
AMIDE column (1.7 �m, 2.1 × 150 mm,Waters) with a corresponding precolumn �lter. 400 �L
of the metabolite extract were aliquoted and solvents were removed in a vacuum dryer. The
residual was resuspended in 75 mL of a mixture of water and methanol (95/5, v/v, both LC-
MS grade, Fisher Scienti�c, Pittsburgh, USA), sonicated (10 min) and centrifuged (15 min,
15800 g) and transferred to LC vials with glass inserts for chromatographic separation on an
ACQUITY UPLC BEH C18 column (1.7 �m, 2.1 × 150 mm, Waters). Also there, 10 �L were
injected for analysis. One sample per person were analyzed, analytical reproducibility was
veri�ed with quality control (QC) samples (pool of all samples). The samples were measured
in batches of 60 samples and QC samples were measured across each batch.
Chromatographic separation was performed on an ACQUITY UPLC system (I-Class, Wa-

ters, MA, USA). With the RP column, the �ow rate was set to 240 �L/min using a binary mix-
ture of solvent A (water with 0.5 % methanol and 0.1 % formic acid) and solvent B (methanol
with 0.1 % formic acid). The following gradient was used: 5 % B (1 min), 5 to 95 % B (9 min),
100 % B (2 min), and 5 % B (2 min). The column temperature was set to 30 °C and the au-
tosampler was kept at 5 °C. For the AMIDE column a �ow rate of 400 �L/min was used with
a binary mixture of solvent A (water with 0.1% formic acid) and solvent B (acetonitrile with
0.1% formic acid). The following gradient was applied: 99-30% B (7 min), 99% B (3 min). The
column was kept at 45 °C and the autosampler at 5° C.
Mass spectra were recorded on a quadrupole-time-of-�ight high-resolutionmass spectrom-

eter (TripleTOF 5600+, AB Sciex, Concord, ON, Canada) with a heated electrospray ionization
source in positive and negative ion mode. Full-scan mass spectra (m/z range 50 to 650 Da)
and data dependent MS-MS acquisitions (m/z range 40 to 650 Da) were performed. Curtain
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gas �ow was set to 30 au, GS1 and GS2 were set to 60 au, a spray voltage of 5 kV (-4.5 kV) was
applied and the ion source was heated to 500 °C. For the RP measurements, the total cycle
time was kept at 800 ms to obtain at least 12 points/peak (minimal LC peak width = 9 s) with
150 ms for full scanMS and 85.7 ms for seven data dependent product ion scans acquired with
a collision energy of 10/20/30 eV. For the AMIDEmeasurements, the total cycle time was kept
at 550 ms to obtain at least 12 points/peak (minimal LC peak width = 6 s) with 150 ms for
full scan MS and 87.5 ms for four data dependent product ion scans acquired with a collision
energy of 10/20/30 eV.

6.2.6.2. Measurements of reference standards

In addition, reference standards were measured for a certain number of metabolites. Four
di�erent mixtures of non-isobaric compounds at a concentration of 10 �g/mL, 5 �g/mL and
1 �g/mL in 5% methanol for RP measurements and 75% methanol for AMIDE measurements
were produced (compositions of the four mixtures are given in table 6.1). Moreover, 10 �g/mL
solutions were produced separately for linoleic acid, arachidonic acid, docosapenaenoic acid,
myristic acid and ethanolamine. 10 �L of each sample were injected for UPLC-MS measure-
ments. Mass spectra were recorded in full scan and product ion mode. For measurements
on the RP column, each acquisition cycle consisted of a full scan with an acquisition time of
150 ms and six product ion scans with an acquisition time of 100 ms. For measurements on
the AMIDE column, each acquisition cycle consisted of a full scan with an acquisition time
of 100 ms and four product ion scans with an acquisition time of 100 ms. Collision energies
are stated in table 6.1, the other instrument parameters were set as described above for the
data dependent acquisitions.

6.2.6.3. Data preprocessing

Rawdata �les were converted into .mzXML �les and centroided usingMSConvert (Proteowiz-
ard).247 Further preprocessing was conducted with XCMS320,321 in R (v3.6.1). For each mea-
surement batch, peak picking, peak alignment, integration and annotation was performed.
The applied parameter settings are given in table 6.2.
Subsequently, data obtained from the QC samples was used to correct for instrumental

drift using statTarget in R.322 We applied the QCRLSCmethod (parameter settings: Frule = 0.8,
QCspan = 0.5, degree = 2, imputeM =KNN) and removed all features that were detected in less
than half of the QC samples as well as features, which had a relative standard deviation above
50% in the QCs after drift correction. Features identi�ed as isotopes have also been removed.
To con�rm whether the drift correction did also remove inter-batch e�ects successfully, we
compared the results of a principle component analysis before and after correction (�gure
6.1).
Finally, the features obtained from the di�erent measurement batches were combined au-

tomatically (m/z tolerance: 0.001 Da, retention time tolerance: 15 s). This automatic merging
failed for isomers with small di�erences in retention time, when large shifts in retention
time occurred between batches. We therefore reviewed the merging by visual inspection of
all extracted ion chromatograms and corrected manually for wrong assignments.
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Table 6.1.: Composition of standard mixtures of reference compounds and collision energies used for the ac-
quisition of product ion scans.

Compound Name column polarity Mixture # Collision energy (eV)
3-(4-hydroxyphenyl)propionic acid RP neg 1 -20
3-methyl-2-oxobutyric acid RP neg 1 -20
8-hydroxyoctanoic acid RP neg 1 -20
citric acid RP neg 1 -10
cortisol RP pos 1 20
cortisone RP pos 1 30
D-pantothenic acid RP neg 1 -20
glycodeoxycholic acid RP neg 1 -20
L-isoleucine RP pos 1 15
lauroylcarnitine RP pos 1 -10
succinic acid RP neg 1 -10
3-hydroxybutyric acid RP neg 2 -10
4-hydroxyphenylacetic acid RP neg 2 -10
4-methyl-2-oxovaleric acid RP neg 2 -30
alpha-ketobutyric acid RP neg 2 -10
glycocholic acid RP pos 2 15
hexadecanedioic acid RP neg 2 -20
hippuric acid RP neg 2 -20
L-(-)-phenyllactic acid RP neg 2 -20
L-tryptophan RP neg 2 -20
L-tyrosine RP neg 2 -20
levulinic acid RP neg 2 -10
N-acetylmethionine RP neg 2 -20
tetradecanedioic acid RP neg 2 -20
5-oxoproline RP pos 3 20
creatinine AMIDE pos 3 30
DL-citrulline AMIDE pos 3 15
L-4-hydroxyproline AMIDE pos 3 20
L-alanine AMIDE pos 3 10
L-cysteine AMIDE pos 3 10
L-glutamic acid AMIDE pos 3 10
L-proline AMIDE pos 3 10
L-serine AMIDE pos 3 10
L-threonine AMIDE pos 3 10
N,N-dimethylglycine AMIDE pos 3 10
pipecolinic acid RP pos 3 20
choline chloride AMIDE pos 4 30
creatine AMIDE pos 4 20
cystathionine AMIDE pos 4 10
glycine AMIDE pos 4 10
L-(+)-ornithine AMIDE pos 4 10
L-arginine AMIDE pos 4 15
L-aspartic acid AMIDE pos 4 10
L-histidine AMIDE pos 4 15
L-lysine AMIDE pos 4 10
pelargonic acid RP neg 4 -30
serotonin RP pos 4 15
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Figure 6.1.: Principal component analysis before (a) and after (b) instrumental drift correction.

In addition to this untargeted peak extraction, we performed targeted analysis for metabo-
lites, of which we measured reference standards. We used the peakPantheR R package323
with the target list given in table 6.3. Retention time windows for isoleucine, pipecolinic
acid, citric acid, 4-methyl-2-oxovaleric acid, phenyllactic acid, tetradecanedioic acid and do-
cosapentaenoic acid were adapted for each batch, due to the presence of isomers at similar
retention times. We applied drift correction with QC samples as described above.
Data from untargeted and targeted peak extraction were combined and only features de-

tected in all samples were further considered. We removed features from the untargeted peak
extraction approach, which were already covered by the targeted approach, in order to avoid
duplicates. This resulted in 372 remaining features. Peak areas were log-transformed and
autoscaled.

6.2.7. Statistical analysis
All data analysis was conducted in R (v3.6.1). In order to assess the relation between the
circadian period length measured in U2OS cells cultured in patient’s serum and clinical pa-
rameters or metabolite levels in serum, we performed two-sided Kolmogorow-Smirnow (KS)
tests between the �rst and the fourth data quartile. We performed these comparisons within
the di�erent patient groups (obese, T2D and healthy).

6.2.8. Metabolic pathway analysis and compound annotation
Wemade use of two di�erent tools for automated compound annotation in order to annotate
the peaks from our untargeted metabolic approach. We used MSDial256 for MS/MS library
matching with the spectra we obtained from data dependent MS/MS acquisition. Moreover,
we applied the mummichog algorithm254 in MetaboAnalyst for R,215 which infers metabolic
pathway information and biological activity. We employed the homo sapiens Kegg database,
set the mass tolerance to 10 ppm and the p-value threshold to 0.2. We subsequently reviewed
the annotations for biologically relevant features manually and con�rmed metabolite identi-
ties with reference standards, if available.
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Table 6.2.: Parameter settings for preprocessing of LC-MS data using XCMS in R.

parameter RP pos RP neg AMIDE pos AMIDE neg

peak detection (centWave)

ppm 10 10 10 10
peakwidth c(5,12) c(5,12) c(5,12) c(5,12)
mzdi� -0.001 -0.001 -0.001 -0.001
snthresh 6 3 3 3
integrate 1 1 1 1
noise 0 0 0 0
pre�lter c(3,100) c(3,100) c(3,100) c(3,100)
�tgauss FALSE FALSE FALSE FALSE

alignment (peakGroups)

minFraction 0.5 0.5 0.5 0.5
binSize 0.01 0.01 0.01 0.01
minSamples 1 1 1 1
bw 5 5 5 5
span 0.6 0.6 0.6 0.6

annotation
perfwhm 0.6 0.6 0.6 0.6
mzabs 0.001 0.001 0.001 0.001
cor_eic_th 0.75 0.75 0.75 0.75

6.2.9. Genotyping

Fibroblasts were genotyped using the Illumina CoreExome 24 v1.3 array. Only samples with
variant calling rate > 98 % were considered. Population strati�cation was done by princi-
pal component analysis using the phase 3 1000 genome variants to select for European sub-
jects. This left 269 subjects went into genome wide association analysis. Variants were then
�ltered to choose only variants from the European panel. Next, variants were �ltered using
vcftools with the following parameters: –mac 2, –max-missing 0.95, –hwe 0.000001. This
yielded 290867 genotyped variants. Genotyped were then imputed using the Michigan Im-
putation Server with the phase 3 1000 genome genotypes as reference. Imputed variants were
�ltered out according to these criteria: imputation quality > 0.5, MAF > 0.05, Hardy-Weinberg
probability < 1e-6. A total of 5630127 variants were left after �ltering these steps.

6.2.10. Genome wide association analysis

Genome wide association analysis was performed on circadian period length using PLINK
1.90. Sex, age, disease (control, obese non T2D, non obese T2D, and obese T2D), date of
circadian measurement, experimenter, and the �rst 10 MDS dimensions of the genotypes
were included as covariates.
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Table 6.3.: Target list for targeted peak extraction.

Name m/z m/zmin m/zmax tR tRmin tRmax column polarity
L-isoleucine (M+H) 132.1019 132.1009 132.1029 160.2 145.2 175.2 RP positive
lauroylcarnitine (M+H) 344.2795 344.2785 344.2805 615.6 600.6 630.6 RP positive
cortisone (M+H) 361.2009 361.1999 361.2019 507 492 522 RP positive
cortisol (M+H) 363.2166 363.2156 363.2176 526.2 511.2 541.2 RP positive
glycocholic acid (M+H) 466.3163 466.3153 466.3173 628.2 613.2 643.2 RP positive
5-oxoproline (M+H) 130.0499 130.0489 130.0509 128.4 113.4 143.4 RP positive
pipecolinic acid (M+H) 130.0863 130.0853 130.0873 103.2 88.2 118.2 RP positive
serotonin (M+H-NH3) 160.0757 160.0747 160.0767 159 144 174 RP positive
3-methyl-2-oxobutyric acid (M-H) 115.0401 115.0391 115.0411 245.4 230.4 260.4 RP negative
succinic acid (M-H) 117.0193 117.0183 117.0203 148.8 133.8 163.8 RP negative
8-hydroxyoctanoic acid (M-H) 159.1027 159.1017 159.1037 430.2 415.2 445.2 RP negative
3-(4-hydroxyphenyl)propionic acid (M-H) 165.0557 165.0547 165.0567 379.2 364.2 394.2 RP negative
citric acid (M-H) 191.0197 191.0187 191.0207 129 114 144 RP negative
D-pantothenic acid (M-H) 218.1034 218.1024 218.1044 247.2 232.2 262.2 RP negative
glycodeoxycholic acid (M-H) 448.3068 448.3058 448.3078 667.8 652.8 682.8 RP negative
L-tyrosine (M-H) 180.0666 180.0656 180.0676 136.2 121.2 151.2 RP negative
4-methyl-2-oxovaleric acid (M-H) 129.0557 129.0547 129.0567 372.6 357.6 387.6 RP negative
hippuric acid (M-H) 178.0510 178.0500 178.0520 328.2 313.2 343.2 RP negative
N-acetylmethionine (M-H) 190.0543 190.0533 190.0553 300 285 315 RP negative
L-(-)-phenyllactic acid (M-H) 165.0557 165.0547 165.0567 413.4 398.4 428.4 RP negative
L-tryptophan (M-H) 203.0826 203.0816 203.0836 289.2 274.2 304.2 RP negative
alpha-ketobutyric acid (M-H) 101.0244 101.0234 101.0254 160.2 145.2 175.2 RP negative
4-hydroxyphenylacetic acid (M-H) 151.0401 151.0391 151.0411 334.2 319.2 349.2 RP negative
tetradecanedioic acid (M-H) 257.1758 257.1748 257.1768 640.2 625.2 655.2 RP negative
hexadecanedioic acid (M-H) 285.2071 285.2061 285.2081 0 -15 15 RP negative
myristic acid (M-H) 227.2017 227.2007 227.2027 744.6 729.6 759.6 RP negative
3-hydroxybutyric acid (M-H) 103.0401 103.0391 103.0411 156 141 171 RP negative
levulinic acid (M-H) 115.0401 115.0391 115.0411 193.8 178.8 208.8 RP negative
linoleic acid (M-H) 279.2330 279.2320 279.2340 754.8 739.8 769.8 RP negative
arachidonic acid (M-H) 303.2330 303.2320 303.2340 750 735 765 RP negative
pelargonic acid (M-H) 157.1234 157.1224 157.1244 649.2 634.2 664.2 RP negative
L-alanine (M+H) 90.0550 90.0540 90.0560 232.8 202.8 262.8 AMIDE positive
N,N-dimethylglycine (M+H) 104.0706 104.0696 104.0716 231 201 261 AMIDE positive
L-serine (M+H) 106.0499 106.0489 106.0509 264.6 234.6 294.6 AMIDE positive
creatinine (M+H) 114.0662 114.0652 114.0672 165.6 135.6 195.6 AMIDE positive
L-proline (M+H) 116.0706 116.0696 116.0716 229.2 199.2 259.2 AMIDE positive
L-threonine (M+H) 120.0655 120.0645 120.0665 256.2 226.2 286.2 AMIDE positive
5-oxoproline (M+H) 130.0499 130.0489 130.0509 254.4 224.4 284.4 AMIDE positive
L-4-hydroxyproline (M+H) 132.0655 132.0645 132.0665 258.6 228.6 288.6 AMIDE positive
L-(+)-ornithine (M+H-NH3) 116.0706 116.0696 116.0716 292.8 262.8 322.8 AMIDE positive
L-glutamic acid (M+H) 148.0604 148.0594 148.0614 254.4 224.4 284.4 AMIDE positive
DL-citrulline (M+H-NH3) 159.0764 159.0754 159.0774 265.8 235.8 295.8 AMIDE positive
ethanolamine (M+Na) 84.0420 84.0410 84.0430 254.4 224.4 284.4 AMIDE positive
L-cysteine (2M+H) 243.0468 243.0458 243.0478 331.2 301.2 361.2 AMIDE positive
glycine (M+H) 76.0393 76.0383 76.0403 249 219 279 AMIDE positive
choline chloride (M+H) 105.1148 105.1138 105.1158 64.8 34.8 94.8 AMIDE positive
pipecolinic acid (M+H) 130.0863 130.0853 130.0873 217.8 187.8 247.8 AMIDE positive
creatine (M+H) 132.0768 132.0758 132.0778 195.6 165.6 225.6 AMIDE positive
L-aspartic acid (M+H) 134.0448 134.0438 134.0458 272.4 242.4 302.4 AMIDE positive
L-lysine (M+H) 147.1128 147.1118 147.1138 288 258 318 AMIDE positive
L-histidine (M+H) 156.0768 156.0758 156.0778 289.8 259.8 319.8 AMIDE positive
L-arginine (M+H) 175.1190 175.1180 175.1200 284.4 254.4 314.4 AMIDE positive
serotonin (M+H-NH3) 160.0757 160.0747 160.0767 165 135 195 AMIDE positive
cystathionine (M+H) 223.0747 223.0737 223.0757 324 294 354 AMIDE positive
pelargonic acid (M-H) 157.1234 157.1224 157.1244 84 54 114 AMIDE negative
docosapentaenoic acid (M-H) 329.2486 329.2476 329.2496 64.2 34.2 94.2 AMIDE negative

89



Chapter 6. Multi-omics correlates of insulin signaling and circadian function

LC-MS metabolomicsclinical data SNP genotyping circadian 
measurements

non obese 
non T2D

obese 
T2D

obese
non T2D

T2D
non obese

U2OS cells in 
patient‘s serum

serum samples

BMI
HbA1c
Glycemia
Insulin
HOMA IR
...

Bmal1

retention time

obese T2D

Figure 6.2.: Study overview. Groups of healthy persons, obese and type II diabetes (T2D) patients have been
recruited and clinical parameters were assessed. Serum samples were taken and used for metabolite pro�ling
by liquid chromatography coupled to mass spectrometry (LC-MS) and single nucleotide polymorphism (SNP)
genotyping. Moreover, U2OS cells were cultured in the serum and circadian clock parameters were measured
in a bioluminescence assay.

6.3. Results

6.3.1. Study design

We recruited 144 obese patients, 49 amongst them were also su�ering from T2D. In addition,
we included 52 non-obese T2D patients and 112 non-obese non-diabetic controls. Baseline
characteristics, medication and blood parameters for the patient cohort are summarized in
Table 4, Table 5 and Table 6 and our work�ow is presented in �gure 6.2. Due to a relatively
high variability in the data and in order to not reduce statistical power, we did not divide the
T2D group into obese and lean subjects in our further analysis. We obtained serum samples
from all participants and subjected them to metabolomics analysis by liquid chromatography
coupled to mass spectrometry (LC-MS) and performed SNP genotyping after DNA extraction
from skin biopsies. Further, we measured circadian reporter gene expression of U2OS cells in
the presence of the patient’s sera in a bioluminescence assay.a We then looked for associations
of the measured circadian period length with clinical parameters, metabolites and genotypes
in order to get further insights into the link between circadian clocks and metabolic health.

a Every time, we mention period length or circadian clock property troughout this chapter, we refer to the
this Bmal1-luc expression.
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Figure 6.3.: Association of circadian period length measured in U2OS cells cultured in human serum with
clinical parameters of obese patients. Violin plots for data split in quartiles based on the clinical variables.
Given p-values were obtained from two-sided Kolmogow-Smirnow test. Medians are indicated with horizontal
lines. (HbA1c: glycated hemoglobin, ASAT: aspartate-aminotransferase, HOMA-IR: index for insulin resistance,
TSH: thyroid stimulating hormone)
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6.3.2. Circadian period length increases with severity of obesity

First, we tested for association between clinical parameters that are typically assessed in the
diagnosis of obesity and T2D, and the circadian period length measured in U2OS cells grown
in serum. For each variable, we considered only the extreme cases, comparing only the �rst
and the fourth quartile of the data by means of a Kolmogorow-Smirnow test.
We found an increase in the circadian period length with increased severity of obesity (�g-

ure 6.3). We observed a prolonged period length for increased levels of glycated hemoglobin
(HbA1c), fasting glucose, insulin, triglyceride levels, low-density lipoprotein (LDL) choles-
terol, aspartate-aminotransferase (ASAT) and insuline resistance represented by the HOMA-
IR index.324 In contrast, for high-density lipoprotein (HDL) cholesterol, which is known to be
decreased in obese subjects,325 we detected an inverse correlation with period length. Most
of these di�erences between the two outer quartiles were signi�cant in both, obese subjects
with and without T2D. However, they were not signi�cant in non-obese non-diabetics. In
the non-obese T2D group, we found only for few variables signi�cant di�erences and the ef-
fect size was much lower as compared to the obese group. This points towards obesity being
the most important aspect for the period elongation. The numeric results for all groups are
summarized in table 6.4.
Interestingly, within the obese group, the circadian period lengthening did not correlate

with the bodymass index (BMI). This indicates that only serum frommetabolically unhealthy
patients with severe obesity contains factors, which can modify circadian clock properties.

6.3.3. Branched-chain amino acid pathway activity associated with
circadian period elongation

In order to get further understanding of those metabolic factors, we compared the period
length of U2OS cells grown in serum with low and high levels of the metabolites, which we
measured by LC-MS. For a range of compounds, we found an association between period
length and metabolite levels in serum of obese patients. Numeric data for the most signi�-
cant features (p  0.2) are provided in table 6.6. We were able to identify a subset of these
metabolites (table 6.5), for which the di�erence of the median period length between the �rst
and fourth quartile is summarized in �gure 6.4a. While some metabolites had a prolonging
e�ect on the circadian period length others were accelerating the circadian clock. Metabolic
pathway enrichment analysis suggested branched-chain amino acid (BCAA) degradation and
biosynthesis as most involved metabolic pathways. We found elevated levels of three rep-
resentatives (isoleucine, ketoleucine and 3-methyl-2-oxobutyric acid) of BCAA metabolism
to be associated with an elongation of the period length. Violin plots are shown for these
metabolites in �gure 6.4b-d. Violin plots for all metabolites of �gure 6.4a are provided in
supplementary �gure B.17 and supplementary �gure B.18.
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Figure 6.4.: a Identi�ed metabolites, which have an in�uence on the circadian period length of U2OS cells
sorted by di�erence in period length between the median of quartile 1 (Q1) and quartile 4 (Q4). Metabolites,
for which we also found signi�cant di�erences (pKS-test leq 0.2) in insulin resistance (HOMA-IR) between Q1
and Q4 are marked with asterisks (* for positive association, ** for inverse association). b,c Violin plots for
representatives of branched-chain amino acid (BCAA) metabolism. Data points are split in quartiles based on
the metabolite levels and given p-values were obtained from two-sided Kolmogow-Smirnow test. Medians are
indicated with horizontal lines. Violin plots for all metabolites are provided in supplementary �gures B.17 and
B.17.
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Figure 6.5.: a Manhattan plot from genome-wide assiciation analysis of circadian period length measured in
U2OS cells cultured in patient’s serum and patient’s genotype. The second most signi�cant single nucleotide
polymorphism (SNP) is located at the MARCH1 gene, which is involved in insulin signalling. b The circadian
period length of U2OS cells di�ers for the di�erent genotypes of this SNP found in the patient’s, in whose serum
bmal1-luc expression was measured. The reference allele is G, the alternative allele is T.

6.3.4. March1 as genetic origin of the link between serum
composition and period length in obese subjects

From genome-wide association analysis we found the second most signi�cant SNP
(p = 4.6510-7) to be located on the MARCH1 gene, which is involved in insulin resistance
(�gure 6.5a).326 By evaluating the period length for the three di�erent genotypes of this
SNP, we observed a signi�cantly longer period length for the REF/REF genotype compared
to the two genotypes with the ALT allele (the reference allele is G, the alternative allele is
T, �gure 6.5b). Since the SNP is associated with insulin resistance, we also compared the
HOMA-IR between the di�erent genotypes of this SNP. For all subjects together, we did
not �nd signi�cant di�erences in insulin resistance between the di�erent genotypes (�gure
6.6a). However, in the presence of the reference allele, we found a bigger di�erence in
insulin resistance between obese and non-obese subjects (�gure 6.6b, c, while for T2D (obese
and non-obese) versus non-T2D subjects, the genotype had no in�uence on the di�erence
in insulin resistance (�gure 6.6d, e). This supports our hypothesis of obesity being the
main factor for this link to circadian clock properties and suggests insulin resistance to be
involved in this connection.
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Figure 6.6.: a Violin plot showing the HOMA-IR for the di�erent genotypes of the second most signi�cant
SNP associated with the circadian period length, medians are represented by horizontal lines. No signi�cant
di�erences were observed. However, when data was spilt by obesity (b), we observed a bigger di�erence be-
tween healthy and obese subjects in presence of the reference allele (c). The genotype had no in�uence on the
di�erence between T2D patients and healthy individuals (d,e).
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6.4. Discussion

Obesity, i.e. the weight gain as a result of a positive energy balance, can occur despite a
metabolically normal state (metabolically healthy obesity), but it is often accompanied by
metabolic syndrome as a comorbidity.327 Indications for this metabolic disorder are abdom-
inal obesity, high blood pressure, high blood sugar, high serum triglyceride levels and low
HDL cholesterol. Moreover, metabolic syndrome is closely related to insulin resistance and
prediabetes and is considered as one of the major risk factors for T2D.324

Our data from this study suggests that metabolic alterations in serum of obese patients
su�ering from metabolic syndrome have a lengthening e�ect on the circadian period length.
The more the blood chemistry is altered, the more pronounced the elongation of the circadian
period length in U2OS cells. Our �ndings are in agreement with the results Kohsaka et al.
obtained from mice. They found longer period lengths in mice fed a high-fat diet compared
to regular chow fed mice.66 Notably, we did not �nd a correlation between period length
and BMI, supporting that not only weight gain, but rather metabolic factors associated with
metabolic syndrome are responsible for the circadian changes.
To the best of our knowledge, mechanisms behind this e�ect of metabolic processes on the

circadian clock remain unexplored so far. From metabolite pro�ling by UPLC-MS we were
able to identify a panel of metabolites, which are involved in this interaction with the circa-
dian clock. Remarkably, for most of those metabolites, an association with insulin resistance
has been reported in literature. Accordingly, we found signi�cant di�erences in the HOMA-
IR index between the outer quartiles of the majority of these metabolites (�gure 6.4, table 6.6).
A correlation between uridine levels in urine and HOMA-IR have been observed in humans
before328 and injection of uridine in obese mice induced deterioration of glucose tolerance.329
Moreover, we found a positive correlation between uric acid and glutamic acid levels in serum
and insulin resistance, corroborating results reported in literature.330,331 Also, upregulation of
the kynurenine pathway has been related to insulin resistance in obesity. Tryptophan can be
metabolized either to kynurenines or to serotonin. It has been suggested that in�ammation in
obesity induces upregulation of the tryptophan-kynurenine route.332 Activation of this path-
way results in increased levels of xanthurenic acid, which can form complexes with insulin
that are less active than insulin itself.333 In line with these �ndings, serotonin was reported
to enhance insulin secretion333 and we observed an inverse relation between serotonin levels
in serum and circadian period length. Similarly, for succinic acid,334 citrulline,335 inosine336,337
and lysophosphatidylcholine337 enhancing e�ects on insulin release have been reported. We
found for increased serum levels of all of them a shortening of the circadian period length.
This further indicates insulin resistance being a key factor in the alteration of circadian clock
properties.
Metabolic pathway analysis indicated disturbed BCAA metabolism to be a major contrib-

utor for the period length elongation. For high serum levels of the three representatives
isoleucine, keto(iso)leucine and 3-methyl-2-oxobutyric acid, we also found increased HOMA-
IR values. Within the last decade, evidence for circulating BCAAs promoting insulin resis-
tance in obesity has emerged. It has been suggested that elevated BCAA levels lead to hyper-
activation of the nutrient sensing mammalian target of rapamycin complex 1 (mTORC1) fol-
lowed by activation of the ribosomal kinase S6K1. This leads to phosphorylation and thereby
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inhibition of insulin receptor substrate 1 (IRS-1) resulting in insulin resistance. Another
mechanism, which has been proposed, is mitochondrial dysfunction triggered by increased
BCAA levels, which is also associated with insulin resistance.338–341 mTOR is also involved
in the regulation of the circadian clock and might thus provide a link between insulin resis-
tance and clock properties. Seghal and co-workers found circadian period lengthening upon
mTORC1 activation in drosophila.342 Moreover, insulin is known to have a period lengthen-
ing e�ect in mice, possibly via mTORC1 activation.343 This suggests the activation of mTORC
due to elevated BCAA levels in obese subjects su�ering from insulin resistance as plausible
mechanism for the elongation of period length, which we observed.
Our results from theGWAanalysis indicate that a genetic aspectmight determine the serum

composition in obese patients, which elongates circadian period length. Notably, March1,
where the second top SNP is located, is involved in the regulation of insulin sensitivity. In
insulin resistance, overexpression of the E3 ubiquitin ligase MARCH1 leads to degradation of
insulin receptors on cell surfaces.326 Thus, also these results support our hypothesis of insulin
resistance being a main contributor to the alterations of serum chemistry of obese patients,
which can alter circadian clock properties.
In this study, we gained further evidence for metabolism being able to in�uence circadian

clocks, which has been studied much less so far than the regulation of metabolism by cir-
cadian clocks. In addition, our results showcase how the circadian clock may be used as a
sensor that can be genetically exploited to make discoveries about a disease, since the clock is
intimately connected to many cellular processes. Even though our sample size is rather small
for studying GWA and therefore the expected statistical signi�cance is as expected not very
high, we think the strength of this study lies in the interdisciplinary approach of genetics,
metabolomics and circadian assays. And the results of all experiments point towards in-
sulin resistance as a major contributor for circadian period lengthening. Maintaining a more
metabolically healthy obesity would therefore be helpful to prevent this circadian period ef-
fect. However, at this point it remains unclear if this rather small change in period length has
any harmful e�ect or if it is rather a physiological adaptation to metabolic changes.

6.5. Conclusion
In conclusion, we found that metabolic factors in serum of obese patients, can prolong cir-
cadian clock bmal1-luc period length. Insulin resistance might play a crucial role in this
interaction and might therefore be a driving force in the viscous cycle of metabolic disor-
ders and circadian clocks: The altered blood chemistry in patients su�ering from obesity
with metabolic syndrome disrupts the circadian clocks, which is well-known to have nega-
tive e�ects on metabolic health. The identi�ed metabolic and genetic factors could constitute
promising drug targets for restoring metabolic health and circadian alignment.

97



Chapter 6. Multi-omics correlates of insulin signaling and circadian function

Table 6.4.: Di�erences in period length between quartile 1 and 4 of various clinical parameters that are asso-
ciated with obesity. The given p-values are obtained from a two-sided Kolmogorow-Smirnow test carried out
between the �rst and fourth data quartile, Dt is the di�erence between the median period length of these two
quartiles.

clinical parameter obese obese T2D obese non T2D T2D (obese & non obese) non T2D non obese
p Dt p Dt p Dt p Dt p Dt

Cholesterol HDL
[mmol/L] 0.002 -35.1 0.162 -18.8 0.003 -40.1 0.417 -12.5 0.996 3.5

HbA1c 0.004 31.7 0.174 30.2 0.092 34 0.668 4.2 0.928 -1.4

Glycemia
[mmol/L] 0.009 31.7 0.42 22.2 0.086 22.6 0.154 19 0.324 -12.8

HOMA-IR 0.009 30.6 0.075 28.1 0.017 25 0.076 14.9 0.928 2.8

Triglycerides
[mmol/L] 0.018 30.6 0.187 21.9 0.094 37.5 0.147 13.5 0.518 11.1

Cholesterol LDL
[mmol/L] 0.037 13.5 0.807 2.1 0.808 -11.1 0.61 -4.2 0.996 0.8

Insuline
[mU/L] 0.037 30.1 0.075 28.1 0.174 22.2 0.431 8.9 0.744 6.9

TSH [mU/L] 0.037 -26 1 -3.3 0.007 -44.7 0.867 8 0.744 -7.6

ASAT [U/L] 0.069 29.2 0.174 33 0.328 16.7 0.018 22.4 0.928 2.1

BMI 0.878 2 0.982 6.7 0.907 -8.3 0.684 -3.6 0.049 -30.6
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Table 6.5.: Identi�cation of m/z features, for which signi�cant e�ects on the period length of U2OS cells were
observed in the obese group.
metabolite name m/z tR column polarity adduct ID level
serotonin 160.0756 157.32 RP pos [M+H-NH3]+ standard
ketoleucine 129.0562 335.29 RP neg [M-H]- mummichog annotation
F1 338.3423 811.59 RP pos
hexose 203.0526 90.19 RP pos [M+Na]+ mummichog annotation
F2 310.3109 777.43 RP pos
F3 383.1164 90.48 RP pos
F4 546.72 388.31 RP pos
succinic acid 117.0197 134.55 RP neg [M-H]- standard
F8 219.0264 88.14 RP pos
F9 225.0344 90.18 RP pos
F5 504.858 82.56 RP pos
F6 539.7725 374.55 RP pos
F7 546.2188 388.18 RP pos
3-methyl-2-oxobutyric acid 115.0406 224.29 RP neg [M-H]- standard
F10 147.0571 286.78 RP pos
glutamic acid 148.0602 258.55 AMIDE pos [M+H]+ standard
carnitine 162.1123 90.69 RP pos [M+H]+ MS/MS library match
uric acid 169.0356 111.28 RP pos [M+H]+ mummichog annotation
citrulline 176.1028 274.55 AMIDE pos [M+H]+ standard
carnitine 184.0942 89.19 RP pos [M+Na]+ mummichog annotation
kynurenine 192.0655 214.28 RP pos [M-NH3+H]+ mummichog annotation
kynurenine 209.0921 214.29 RP pos [M+H]+ MS/MS library match
hexadecanedioic acid 285.207 679.95 RP neg [M-H]- standard
F13 302.9691 248.69 AMIDE pos
F14 313.1549 172.21 AMIDE pos
docosapentaenoic acid 329.2486 761.54 RP neg [M-H]- standard
F15 372.7382 237.3 AMIDE pos
F11 378.2409 689.16 RP pos
lysophosphatidylcholine (18:1) 522.3561 738.79 RP pos [M+H]+ MS/MS library match
F12 546.3559 730.6 RP pos
proline 116.0706 250.58 AMIDE pos [M+H]+ standard
threonine 120.0655 260.04 AMIDE pos [M+H]+ standard
isoleucine 132.1022 149.12 RP pos [M+H]+ standard
histidine 156.0767 292.88 AMIDE pos [M+H]+ standard
citrulline 159.0763 274.22 AMIDE pos [M+H-NH3]+ standard
F20 203.1502 264.73 AMIDE pos
F27 206.8936 87.3 RP pos
F16 229.1546 100.71 RP pos
F23 234.9814 248.63 AMIDE pos
F17 237.1123 585.03 RP pos
F18 251.0811 323.7 RP pos
F26 252.0777 260.13 AMIDE pos
uridine 267.0589 103.28 RP pos [M+Na]+ mummichog annotation
F19 279.0847 447.59 RP pos
inosine 291.0703 156.53 RP pos [M+Na]+ mummichog annotation
F28 370.9567 248.71 AMIDE pos
F29 430.6968 237.4 AMIDE pos
F30 440.7256 235.21 AMIDE pos
F21 539.2712 374.62 RP pos
F22 540.2739 374.61 RP pos
F24 604.7954 378.3 RP pos
F25 638.7271 464.58 RP pos
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Table 6.6.: Summary of m/z features, for which signi�cant (p  0.2) e�ects on the period length of U2OS cells
were observed in the obese group. The given p-values are obtained from a two-sided Kolmogorow-Smirnow test
between the �rst and the fourth data quartile,Dt is the di�erence between the median period length of quartile
1 and 4. For the obese group, di�erences in insulin resistance (HOMA-IR) of Q1 and Q4 are also provided.

Metabolite name obese obese T2D obese non T2D T2D healthy obese
p Dt p Dt p Dt p Dt p Dt pHOMA-IR DHOMA-IR

serotonin 0.004 -27.1 0.65 -3.8 0.008 -30.6 0.833 2.4 0.744 -8.3 0.699 2.6
ketoleucine 0.009 31.7 0.928 20.8 0.006 38.9 0.853 -7.4 0.928 7.6 0 205.3
F1 0.009 -31.6 0.064 -31.6 0.189 -25 0.239 -16 0.1 20.8 0.504 -14.2
hexose 0.018 32.6 0.075 30.9 0.017 37.5 0.079 13.5 0.928 2.8 0 401.1
F2 0.018 -32.1 0.075 -27.4 0.32 -34 0.019 -20.8 0.187 11.8 0.699 39.9
F3 0.018 32.6 0.075 35.1 0.039 30.6 0.154 13.9 0.187 28.5 0 401.9
F4 0.018 23 0.064 17.1 0.799 20.1 0.417 8.3 0.518 5.4 0.037 102.6
succinic acid 0.037 -30.2 0.397 -13.5 0.097 -30.6 0.475 5.1 0.744 16.7 0.211 -70.1
F8 0.037 24.1 0.334 3.8 0.343 25.7 0.376 9.7 0.324 -0.7 0 423.5
F9 0.037 27.7 0.354 24.3 0.523 25.6 0.66 7.5 0.928 -7.8 0 373.8
F5 0.037 -13.3 0.894 -3.3 0.474 11.1 0.586 -7.4 0.518 -5.6 0.979 -12.3
F6 0.037 -33.8 0.14 -22.2 0.328 -38.2 0.602 -8.4 0.928 -3.8 0.878 -14.6
F7 0.037 21.3 0.375 9.4 0.189 30.6 0.41 7.4 0.744 3.8 0.037 153.2
3-methyl-2-oxobutyric acid 0.069 24.2 0.024 29.2 0.078 26.8 0.417 10.3 0.324 8.3 0.018 218.4
F10 0.069 22 0.623 -0.3 0.184 38.9 0.781 0.7 0.744 -12.5 0.878 -33.3
glutamic acid 0.069 21.3 0.596 17.1 0.199 26.4 0.833 1.4 0.996 3.8 0.001 264.2
carnitine 0.069 15.8 0.443 9 0.184 22.2 0.157 19.1 0.928 0.4 0.069 -117.8
uric acid 0.069 29.9 0.998 -2.4 0.019 47.2 0.985 -2.8 0.518 -5.6 0.069 51
citrulline 0.069 -23.8 0.397 -12.5 0.523 -26.4 0.446 -8 0.1 -5.6 0.018 -202.3
carnitine 0.069 24.5 0.397 20.3 0.328 33.3 0.908 1.4 0.996 -0.7 0.211 136.3
kynurenine 0.069 24.4 1 6.9 0.043 38.9 0.796 7.6 0.049 -12.8 0.336 36.9
kynurenine 0.069 23.6 0.988 0.3 0.045 34.7 0.954 5.6 0.324 -2.2 0.699 19.2
hexadecanedioic acid 0.069 25.8 0.029 30.9 0.503 8.2 0.02 18.9 0.324 15 0.069 58.6
F13 0.069 29.5 0.894 5.9 0.189 37.5 0.992 -0.4 0.744 2.8 0.504 4.8
F14 0.069 20.4 0.187 17.1 0.966 9 0.635 8.3 0.744 9 0.003 214.3
docosapentaenoic acid 0.069 9.9 0.151 -24.1 0.081 35.7 0.28 -9 0.928 2.1 0.124 83.4
F15 0.069 0 0.596 15.1 0.284 7.6 0.376 4.8 0.744 -10.4 0.037 -122.1
F11 0.069 -31.9 0.174 -27.4 0.543 -33 0.977 3.5 0.1 -20.8 0.211 -116.3
lysophosphatidylcholine (18:1) 0.069 -22 0.2 -27.1 0.513 -17.4 0.453 -2.8 0.187 -12.2 0.069 -95.1
F12 0.069 -20.8 0.081 -26 0.719 -13.8 0.04 -17.8 0.744 -10.4 0.124 -42
proline 0.124 -6.2 0.075 -19.1 0.384 4.2 0.61 11.5 0.928 -13.9 0.069 74.3
threonine 0.124 -23.8 0.024 -18.7 0.739 -6.5 0.61 -6.7 0.518 -12.1 0.004 -201.9
isoleucine 0.124 33.3 0.966 9 0.553 14.6 0.994 2.1 0.1 -11.8 0 246.7
histidine 0.124 25.1 0.982 -0.9 0.043 37.4 0.961 8.3 0.187 16.7 0.336 -19.8
citrulline 0.124 -21.8 0.894 -10.9 0.853 0.7 0.291 8.2 0.324 0.7 0.018 -161.7
F20 0.124 27.5 0.334 15.3 0.199 39.5 0.23 11.7 0.744 -6.9 0.069 -125.3
F27 0.124 -18.1 0.596 -8.7 0.335 22.9 0.475 -4.9 0.744 1.4 0 -283.8
F16 0.124 2.8 0.779 2.8 0.16 11.8 0.954 2.1 0.1 -25 1 -7
F23 0.124 30 0.912 5.4 0.045 37.5 0.95 -0.8 0.744 1.4 0.336 8.4
F17 0.124 19.4 0.65 -0.7 0.359 -3.8 0.61 -4.2 0.928 -2.2 0.885 25.8
F18 0.124 17.1 0.623 -11.3 0.523 25.6 0.602 -4.2 0.023 -22.2 0.124 77.4
F26 0.124 -13.8 0.742 9.4 0.017 -38.2 0.818 4.9 0.928 -0.6 0.124 127.5
uridine 0.124 26 0.623 4.9 0.043 30.8 0.125 10.8 0.518 -10.4 0.211 -107.6
F19 0.124 -22 0.623 -11.8 0.048 -39.1 0.84 -6.3 0.744 -8.3 0.004 -150.2
inosine 0.124 -20.8 0.73 -20.8 0.174 -23.6 0.41 -14.4 0.518 -10.4 0.878 -9.2
F28 0.124 29.2 0.912 5.4 0.1 37.5 0.999 -4.2 0.928 6.3 0.069 35.7
F29 0.124 13.2 0.912 -4.5 0.474 18.8 0.376 7.3 0.744 -6.9 0.211 -60.3
F30 0.124 22.6 0.73 -16.7 0.573 31.6 0.773 5.1 0.518 9 0 -260.1
F21 0.124 -31 0.14 -16.6 0.328 -38.2 0.725 0 0.928 0.7 0.504 -78
F22 0.124 -28.2 0.314 -14.4 0.543 -32.6 0.891 3.5 0.518 -6.3 0.878 34.7
F24 0.124 -12.1 0.314 -3.8 0.914 -17.9 0.125 -14.9 0.996 -2.8 0.336 -61.2
F25 0.124 21.5 0.807 -12.4 0.351 26.4 0.403 9.7 0.744 -7.6 0.211 28.5
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7.1. Introduction

Summary
In humans, metabolism is widely controlled by circadian clocks and disruption of the circa-
dian clock is associated with health issues, such as type 2 diabetes, obesity, metabolic syn-
drome or cardiovascular diseases. In arctic species, such as reindeer, which have always
been seasonally exposed to constant light conditions, circadian biology is poorly understood.
So far, it has been reported that during midnight sun and polar night, arctic reindeer loose
rhythmicity in their activity patterns and blood levels of melatonin. However, daily patterns
in metabolic regulation remain completely unexplored.
In this study, we investigated diurnal rhythms in metabolic regulation in four Norwegian

reindeer (Rangifer tarandus tarandus) across all four seasons. In additionwe recorded actigra-
phy data from the animals and evaluated clock gene expression in reindeer �broblasts in a bi-
oluminescence assay. By metabolic pro�ling of blood samples, which were taken in two-hour
intervals, using ultra high performance liquid chromatography coupled to mass spectrome-
try, we were able to extract 794 metabolic features. In a large percentage of those features, we
detected 24-hour rhythms in at least one reindeer in one season. While corresponding to the
arrhythmic behavior, less metabolites displayed circadian rhythms in summer, surprisingly
many metabolites were rhythmic in winter. Despite a high inter-individual variability, we
found metabolic pathways related to ruminal microbial nitrogen metabolism to be regulated
in a circadian fashion consistently throughout the whole year.
Our �ndings suggest that in artic reindeer, behavioral circadian rhythmicity can be uncou-

pled from metabolic circadian rhythmicity.

7.1. Introduction
Most aspects of physiology, amongst them metabolism58 are synchronized with the exter-
nal environment by circadian clocks in almost all living organisms.303 In mammals, the clock
machinery is organized in a hierarchical fashion. The suprachiasmatic nucleus (SCN) in the
brain acts as master pacemaker. It receives external light stimuli frommelanopsin-containing
retinal ganglion cells in the eye and forwards this information to peripheral clocks.304,344
While light is the most prominent input, also other stimuli such as feeding, exercising or
resting/activity cycles can act as Zeitgeber and entrain the circadian clock.305 On a molec-
ular level, the circadian timing system is based on the rhythmical expression of the clock
genes Clock, Bmal1, Per and Cry, which is regulated by a transcriptional-translational feed-
back loop.306
There is signi�cant evidence that metabolism is largely controlled by circadian

clocks185,236,273 and circadian disruption is associated with negative consequences on
metabolic health. Numerous epidemiologic studies have demonstrated an increased risk for
metabolic diseases, such as diabetes or metabolic syndrome, but also cardiovascular diseases
and cancer when the endogenous clock and the environment are desynchronized.71,345,346
Since shift work has become essential in a modern 24/7 society and social jetlag is a common
problem, strategies for the handling of this public health issue are highly demanded. How-
ever, this is not a modern phenomenon, but artic species have always dealt with seasonal
conditions of constant light (LL) during midnight sun and constant darkness (DD) during
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polar night. Understanding their evolutionary optimized strategies could therefore provide
breakthrough insights for human health.
To date, it remains unclear if arctic species have developed new mechanisms to control

their circadian clock, if they are able to disconnect their clock from the rest of their physi-
ology, or if they are even lacking a circadian clock.347 Several aspects of circadian rhythms
have been investigated in reindeer in the last decade and the results suggest that the ani-
mals have developed remarkable evolutionary strategies. Van Oort et al. studied seasonal
changes in activity patterns of the Norwegian reindeer (Rangifer tarandus tarandus) and the
Svalbard reindeer (Rangifer tarandus platyrhynchus).348,349 They found that both species lost
their circadian activity during midnight sun, while during polar night only the Svalbard rein-
deer lost rhythmic activity. The authors explained these �ndings with the higher latitude
of the habitat of Svalbard reindeer (78°N) compared to 70°N for the Norwegian, where still
some twilight exists during polar night. Furthermore, they observed for ruminants typical
ultradian rhythms, which were most visible during summer and winter. In addition, the loss
of circadian oscillations of blood melatonin levels in reindeer during midnight sun and polar
light has been observed, while in other mammals, melatonin oscillations continued under
constant conditions.350,351 Moreover, Lu et al. found no or only limited circadian oscillations
in the expression of the clock gene Bmal1 in reindeer �broblasts.352 Therefore, they hypoth-
esized that reindeer have lost their circadian clock in adaptation to their arctic habitat. From
a recent genomics study there is evidence for reindeer-speci�c mutations of genes involved
in circadian clock function. For example, a mutation of Per2 was observed, which prevents
binding to CRY1 proteins.353
In contrast to the �ndings described above, which point towards no or little endogenous

circadian control in reindeer, in a recent study, circadian rhythms in rumen temperature
were found throughout the year in Svalbard reindeer indicating a persisting circadian
metabolism.354 In this study, we investigated diel metabolic regulation in Norwegian
reindeer across all four seasons with an untargeted metabolomics approach in combination
with the assessment of behavior and clock gene expression.

7.2. Methods

7.2.1. Animals
Samples for this study were collected from four adult reindeer born in 2017 (3 females, 1 cas-
trated male, paternal half-siblings) in the Department of Arctic and Marine Biology (AAB) at
the University of Tromsø (UiT) 69° N, 18° E. There, the animals were kept for research pur-
poses under the regulation of the Norwegian Food Safety AuthorityMattilsynet in the animal
facility of the AAB. They roamed in big outside enclosures throughout the year and were fed
ad libitum with reindeer food pellets (Felleskjøpet #13541).
For each experiment, the animals were captured and brought into an indoor stable. There,

each animal was tethered by its halter into a separate stall with enough space to lie down,
access food pellets (ad libitum) and water (�gure 7.1). In the stable, natural light came in
through a big window at one side of the room. Programmable ceiling lamps provided addi-
tional light following the outside natural light-dark schedule. In winter, all windows were
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covered to avoid arti�cial light exposure.
The animals had been habituated to the stable and human handling for earlier experiments.

Further habitation was performed by daily human presence in the stable, physical contact to
humans, outdoor walks and reindeer lichens (Cladonia rangiferina) and salix twigs (Salix sp)
as food reward.

Figure 7.1.: The four reindeer tethered in the stable before the experiment in March. The left picture shows the
3 female reindeer #3, #2 and #1 (left to right). The right picture shows the castrated male #4. The silver package
attached to their antlers are the Actiwatches wrapped in duct tape. Each animal has access to an automatically
re�lling drinking trough and a food trough providing food pellets ad libitum.

7.2.2. Actigraphy

Each animal was equipped with a Motionwatch 8 Actiwatch (CamNtech #132764), which
measures activity counts at a 1 min interval. In spring the Actiwatches were attached to the
antlers of the animals and to their halters in all other seasons. Theywere attached fromMarch
12 to April 21 in spring, from June 19 to July 21 in summer, from September 5 to October 29
in autumn and from December 9 to January 16 in winter.
The data was normalized by dividing the counts for each interval by the 99. percentile

of all the counts per minute collected across the year. All values above 1 were considered
as outliers and set to 0. The lower threshold was set to 0.1 setting all values below to 0 as
well. In �gure 7.4, 30-day intervals including the days of the blood sampling were chosen.
The actograms were plotted, and periodicity analysis was performed using the ActogramJ355
plug-in in ImageJ (version 1.53a, Wayne Rasband, USA).
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7.2.3. Catheterization and skin biopsy under anesthesia

For serial blood collection, the four animals received a polyurethane catheter into the jugular
vein (EQUIVET HiFlow long-term IV catheter, KRUUSE # 122005) on the left side of their
neck. Catheterization was performed by a certi�ed veterinary under full anesthesia using
Rompun vet (20mg/mL, Bayer vital GmbH, vNr 023446). A 3-way-stopcock with 10 cm tubing
was attached to the catheter and the catheterized area was covered with a gauze patch and
�xed by a bandage.
After catheterization, a small skin patch (approximately 4x 4 cm) behind the reindeer’s ear

was clipped disinfected with 70% Ethanol andone biopsy per animal was taken with a biopsy
punch needle (ø = 2mm, Stiefel #600208). Each biopsy was immediately transferred into
1.5 mL of cold advanced Dulbecco’sModi�ed EagleMedium (advanced DMEM, Gibco #12491)
containing 50% fetal calf serum (FCS, Bioswisstec #S60500), 1% GlutaMAX (200mM, Gibco
#3505061), 0.1% Gentamycin (50 mg/mL, Sigma-Aldrich #G1397) and 0.1% Amphotericin B
(250 �g/mL, Sigma-Aldrich #A2942) and stored at 4°C. After biopsy taking, the wound was
disinfected with iodine.
The animals were injectedwith the anti-anesthetic Antisedan (5mg/mL, Zoetis, vNr 471953)

into the thigh, given time to wake up until they could stand stably and brought back into
the stable for recovery. It was made sure all animals were standing and awake after the
catheterization.

7.2.4. Primary fibroblast culture from skin biopsy

All procedures described in this section were performed in a biosafety 2 (BSL-2) cell culture
laboratory.
Each skin biopsy was digested for 4 h in 1.8 mL of warm advanced DMEM containing 10%

FCS, 1% GlutaMAX and 0.1% Gentamycin(below referred to as culture medium) and supple-
mented with 0.2 mL the digestion enzyme Liberase TM(1.125 mg/mL,Roche #05401119001).
The content of each well was pipetted 9 mL of Dulbecco’s Phosphate Bu�ered Saline (PBS)
(Sigma-Aldrich # D8537) and then centrifuged for 5 minutes at 1200 rpm. The PBS was aspi-
rated and each biopsy was resuspended in 1 mL of warm culture medium containing 0.1% of
Amphotericin B and placed into a fresh well of a 6-well plate.
For each biopsy, one Milicell culture insert (Millipore #PICMORG50) was prepared by cut-

ting o� its plastic legs and placed on each biopsy. The inside of the insert was �lled with
1.5 mL and the surrounding with 1 mL of warm culture medium (+ 0.1% Amphotericin B).
This setup facilitates �broblast growth due to the biopsies being pressed against the cell cul-
ture. The culture was then stored in a cell culture incubator at 37°C, 5% CO2. After 24 h the
�rst �broblasts started growing out of the biopsy.
The culture medium of the biopsies was changed every 3 - 4 days. In the �rst week, the

culture medium was supplemented with 0.1% Amphotericin B to prevent mold infection of
the cultures. The Milicell culture insert was removed after 1 week. When the �broblasts
reached � 50% con�uency in the original culture, they were replated into one fresh well of a
6-well plate (passaging). Once they had reached 80% con�uency. the �broblasts were split
in a 1:2 ratio for all further passages as follows:

106



7.2. Methods

The culture medium was aspirated and the cells were washed with 2 mL of PBSToTo de-
tach them from the plate, the cells were incubated in 200 �L of 0.05% Trypsin (Trypsin-EDTA,
Life Technologies #15400054) enzyme for 5 min in the cell culture incubator. After 5 min, the
Trypsin had detached most �broblasts and culture medium was added to stop the enzyme
activity. By pipetting the medium up and releasing it over the plate surface 5 - 8 times thor-
oughly, all cells were resuspended in the medium. The cell suspension was then distributed
to the fresh well(s) of a 6-well plate. By moving the plates gently back and forth and left to
right 4 times each, the cells were distributed evenly across the dish surface.
After 1 to 2 months in culture, the �broblasts were frozen at passage 3 to 5. Therefore,

the �broblasts were trypsinized as for passaging, resuspended in freezing medium (culture
medium containing 10% Dimethyl sulfoxide (DMSO, Sigma-Aldrich #D8418), transferred to a
cryotube for freezing cultured cells and frozen at -80°. The next day they were transferred to
a liquid nitrogen tank. For circadian measurements the cells were brought to Zurich on dry
ice.

7.2.5. Bioluminometry of Bmal1 expression in reindeer skin
fibroblasts

All procedures described in this section were performed in a BSL-2 cell culture laboratory.

7.2.5.1. Virus production and titration

The Bmal1:Luciferase plasmid was packaged into lentiviral particles using the well-
established protocol of calcium phosphate transfection for second generation transfer
plasmids356 with one small modi�cation: Step 15, adding of 20% sucrose before concentrating
the virus by ultracentrifugation, was omitted.
The produced Bmal1:Luciferase lentivirus was titrated on human cells of the S2 osteosar-

coma cell line (U2OS) and Bmal1 expression was measured by bioluminometry as described
for reindeer skin �broblasts in the following sections. Therefore, four wells of a black 24-well
measurement plate (BERTHOLD TECHNOLOGIES #41082) of U2OS were infected with 5, 7,
10 and 15 �L of Bmal1:Luciferase lentivirus.

7.2.5.2. Infection of skin fibroblasts with Bmal1:Luciferase lentivirus

Reindeer �broblasts were thawed in a 37° C warm water bath and the thawed cell suspen-
sion was transferred to warm culture medium. The mixture was centrifuged for 5 minutes
at 1’200 rpm. The supernatant was removed and the cells were resuspended in 1 mL warm
culture medium and evenly distributed to fresh wells of preferred size containing warm cul-
ture medium. The next day the medium was changed to fresh warm culture medium. As
before, the culture medium was changed every 3 to 4 days and cell con�uency assessed twice
a week. Once the �broblasts reached � 50% con�uency, the culture medium was changed to
1 mL of culture medium supplemented with 0.1% 8 mM protamine sulfate (8mg/mL, Sigma-
Aldrich #P438) and the �broblasts were infected with 15 �L Bmal1:Luciferase lentivirus (20
times concentrated by Ultracentrifugation, see Salmon et al.356 . After 6 h of incubation, the
culture medium was refreshed.
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Three days after the infection by Bmal1:Luciferase lentivirus, the �broblasts in the 12-well
plate were split 1:1 to 2wells of a 24-well measurement plate. Since, low survival of �broblasts
was noticed after splitting, the above-mentioned splitting protocol was slightly adapted: In-
stead of using 200 �L of 0.05% Trypsin, only two drops of 0.5% Trypsin were used. Using such
a small volume ensured more e�cient subsequent blocking of Trypsin activity and improved
�broblast survival.

7.2.5.3. Synchronization and bioluminometry of Bmal1 expression

For synchronization and measurement, clear DMEM (DMEM 1x, no phenol red, Gibco
#31053028) supplemented with 10% FCS, 1% GlutaMAX and 0.1% Gentamycin was used
(referred to as clear medium in the following section). The following procedures were
additionally performed on a 24-well measurement plate of U2OS cells as technical control.
To synchronize clock gene expression of the �broblasts the culture medium was changed

to 0.5 mL/well of clear medium containing 0.01% of the corticosteroid Dexamethasone
(10mM,Sigma-Aldrich #D4902) were added. The exposure was stopped by aspirating the
medium. Any residual dexamethasone was removed by washing twice with 1 mL of
PBS. Then, 1mL of clear medium supplemented with 0.5% 20 mM Luciferin (20mM, Regis
Technologies #360202) was added to each well and the plates were sealed with para�lm.
Bioluminescence was recorded for one week in a custom-made lumicycler device measuring
bioluminescence signals for 1 min/well returning to the same well every 48 min(LumiCycle,
Actimetrics, USA).
The raw bioluminometry data was plotted in Rstudio (R version 3.6.1, The R Foundation

for Statistical Computing). Time-series analysis was performed using the Lumicycler Anal-
ysis program (Actimetrics), where period and amplitude were predicted by �tting a cosine
function to the raw data.

7.2.6. Blood metabolomics
7.2.6.1. Blood sampling

Bloods samples were collected for 24 h in 2-hour intervals. The exact time schedules are pro-
vided in �gure 7.2. With a 2.5 mL syringe, 2 - 2.5 mL of blood were withdrawn from the 3-way
stopcock from each reindeer at each timepoint. The blood was immediately transferred into a
heparinized vacutainer (VACUETTE® RÖHRCHEN 4 mL Natrium Heparin, Greiner Bio-One
#454030), tilted back and forth 4 times and put on ice. Then 5 mL of Ringer solution (Sodium
chloride 9mg/mL, Baxter #2B0043) were injected through the 3-way stopcock into the tubing
to �ll its dead volume. After that 1 - 2 mL of Ringer solution supplemented with 2% Heparin
solution (Heparin Leo 5000 IE/mL, Leo Pharma, Vnr 064927) were injected into the tubing as
clotting prevention. Before the next sample was taken, the previously injected solution was
aspirated from the tubing and discarded. Subsequently, the blood was centrifuged at 10 rpm
for 15 min and the plasma (supernatant) was stored in 200 �L aliquots at 20°C. Later, the
samples were brought to Zurich and stored at -80° until metabolomic analysis.
After the last blood collection, the catheters were removed, the wound disinfected with

Iodine and the animals were released into a small outside enclosure, where the wound was
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observed for one week. Afterwards, they were released into their usual outside enclosure.

March 22-24
10:00 am 8:00 am 8:00 am

Experiment 1 Experiment 2

 blood sampling

June 21-23
2:00 pm 12:00 am 12:00 am

Experiment 1 Experiment 2

 blood sampling

Sept 20-22
10:00 am 8:00 am 8:00 am

Experiment 1 Experiment 2

 blood sampling

Dec 13-15
10:00 am 8:00 am 8:00 am

Experiment 1 Experiment 2

 blood sampling

Figure 7.2.: Schematic of the experimental design of the blood sampling in the four seasons. Yellow bars indicate
the lights were on, black bars indicate the lights were o�. Blood samples were taken in two-hour intervals. The
�rst sample was taken at 10:00 am, except for June, when it was taken at 2:00 pm.

7.2.6.2. Randomization and quality control samples

Samples were prepared and measured in randomized order and split into batches of approxi-
mately 60 samples. In addition, quality control samples (QC) were made by pooling all sam-
ples from spring and summer. The pooled sample was aliquoted to 200 �L again. Further
sample preparation was done as described below. QC samples were mixed and re-aliquoted
prior to measurements to asses only analytical reproducibility. They were prepared as de-
scribed below, measured across all batches and used later on for batch correction.

7.2.6.3. Plasma sample preparation

200 �L aliquots of reindeer plasma samples were thawed on ice and 200 �L of 1 mg/mL 15N2-
Tryptophan (Cambridge Isotope Laboratories, Inc. #PR-23263 ) in water (LC-MS grade water,
Fisher Scienti�c #W6500) as Internal Standard (IS) and 600 �L of MeOH were added. After
vortexing (2 min), the samples were incubated on ice for 10 min. Then, they were centrifuged
at 15’000 g for 15 min at 4°C to precipitate the proteins and all residual solid components. The
metabolite extract (supernatant) was removed and �ltered with a 0.2 �m reversed cellulose
membrane �lter. Then, 200 �L of the samples were transferred into a HPLC glass vials with
glass insert (BGB #080401 and #110500) for MSmeasurement on the AMIDE column (see next
section). To evaporate the solvent 400 �L of the samples were put into a vacuum dryer and
the residuals were resuspended in 75 �L water with 5% MeOH. To fully resuspend all solid

109



Chapter 7. Understanding metabolic e�ects of seasonal light schedules in arctic reindeer

particles, the samples were sonicated for 10 minutes and were centrifuged for 15 min at room
temperature. The supernatant was transferred into a HPLC glass vial with glass insert for
measurement on the C18 column (see next section).

7.2.6.4. UPLC-MS measurements

Chromatographic separation was performed on an ACQUITY UPLC system as described in
Chapter 6.
Mass spectra were recorded on an Orbitrap mass spectrometer (Orbitrap QExactive Plus,

Thermo Fisher Scienti�c) with a heated electrospray ionization source.
Full scan spectra in the m/z range of m/z = 50 - 750 were recorded in positive and negative

ion mode at a resolving power of 140,000 full width half maximum (fwhm). The automatic
gain control (AGC) target was set to 2 · 105 charges and a maximal injection time (IT) of
200 ms was used. The ion source parameters were optimized for the measurements with the
di�erent UPLC columns separately. For the C18 measurements, sheath gas �ow rate was set
to 50 units, aux gas �ow rate to 5 units and sweep gas �ow rate to 0. A capillary temperature
of 360 °C was used, the aux gas heater temperature was set to 300 °C and a S-lens RF level
of 60 was applied. For the AMIDE measurements, sheath gas �ow rate was set to 60 units,
aux gas �ow rate to 10 units and sweep gas �ow rate to 0. A capillary temperature of 380 °C
was used, the aux gas heater temperature was set to 350°C in positive mode and 360 °C in
negative mode and a S-lens RF level of 60 was applied. In both methods a spray voltage of
3.7 kV was used in positive mode and -3.3 kV in negative mode.
At the beginning, the middle and the end of each batch, a mix of standards was injected for

a quick performance check. Mass calibration was performed prior to each batch to ensure a
mass accuracy of better than 5 ppm.
In addition, data dependent acquisition (DDA) was carried out with the QC samples and

used later for MS/MS matching. The DDA methods consist of one full scan MS (resolution:
140,000 fwhm, AGC target: 2 · 105 charges, maximum IT: 100 ms, mass range: m/z = 50 - 750)
followed by three data dependent MS/MS scans (resolution: 70,000 fwhm, AGC target:
2 · 105 charges, maximum IT: 50 ms, isolation window: 0.4 m/z, stepped collision energy:
10/20/30 eV) with a minimum AGC target of 8 · 103 for scan initiation and 10 s of dynamic
exclusion.

7.2.7. Data analysis

All data analysis was carried out in R (v3.6 and v4.0). Data preprocessing was done as de-
scribed in Chapter 6. The applied parameter settings for the XCMS preprocessing are pro-
vided in table 7.1. In total, we obtained 794 m/z features. Peak areas were log2-transformed
and z-scored across all seasons within each reindeer separately.
Rhythmicity analysis was performed with the R package LimoRhyde357 for each animal in

each season separately. Subsequently, phase and amplitudewere predictedwith ZeitZeiger.358
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Table 7.1.: Parameter settings for preprocessing of LC-MS data using XCMS in R.

parameter RP pos RP neg AMIDE pos AMIDE neg

peak detection (centWave)

ppm 5 5 5 5
peakwidth c(5,12) c(5,12) c(5,12) c(5,12)
mzdi� -0.001 -0.001 -0.001 -0.001
snthresh 10 10 10 10
integrate 1 1 1 1
noise 900000 900000 900000 900000
pre�lter c(4,200000) c(4,200000) c(4,200000) c(4,200000)
�tgauss FALSE FALSE FALSE FALSE

alignment (peakGroups)

minFraction 0.5 0.5 0.5 0.5
binSize 0.01 0.01 0.01 0.01
minSamples 1 1 1 1
bw 5 5 5 5
span 0.6 0.6 0.6 0.6

annotation
perfwhm 0.6 0.6 0.6 0.6
mzabs 0.001 0.001 0.001 0.001
cor_eic_th 0.75 0.75 0.75 0.75

7.2.8. Metabolic pathway enrichment analysis and compound
annotation

We applied two di�erent tools for automated compound annotation in order to annotate
the peaks from our untargeted metabolic approach. We used MSDial256 for MS/MS library
matching with the spectra we obtained from data dependent MS/MS acquisition. Moreover,
we applied the mummichog algorithm254 in MetaboAnalyst for R,215 which infers metabolic
pathway information and biological activity. We employed the bos taurus Kegg database, set
the mass tolerance to 5 ppm and the p-value threshold to 0.05. Only pathways with at least
two signi�cant hits were considered further.

7.3. Results

7.3.1. Study design
We performed experiments on four Norwegian reindeer (Rangifer tarandus tarandus) during
summer and winter solstice and during spring and autumn equinox (�gure 7.3). For each
experiment, the reindeer were brought into a stable, where they were fed ad libitum (�gure
7.1). Under anesthesia, skin biopsies were taken for �broblast cultivation and subsequent as-
sessment of Bmal1 expression and the animals were catheterized. The light in the stable was
programmed according to the natural light schedule in each season. Then, blood samples
were taken in two-hour intervals for 48 hours (�gure 7.2). Here, we only report the results
from the �rst 24 hours. During the second day, the light schedule was modi�ed for a dif-
ferent experiment. After the blood sampling, the reindeer were released. In addition to the
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metabolomics experiment, we recorded their activity with Actiwatches for a longer period.

Metabolism

Behavior

Bmal1

autumn
equinox

spring
equinox

Clock gene 
expression

plasma

Figure 7.3.: Study design. We assessed daily rhythms in four Norwegian reindeer across all four seasons. We
measured clock gene expression in a bioluminescence assay, metabolic pro�les by LC-MS analysis of plasma
samples and we recorded activity patterns by actigraphy.

7.3.2. Circadian behavior in spring, autumn and winter
The activity of the animals across the four seasons is shown in the actograms in �gure 7.4.
We selected time intervals of 30 days including the time of the experiments as well as one or
two days before and several days after. Visual inspection of the actograms already suggests a
much higher activity of the reindeer during summer compared to the other seasons. This ob-
servation was con�rmed by calculation of the 24-h-average activity, shown in �gure 7.5. We
further performed Fourier transformation to compute periodograms (�gure 7.6). In spring
and autumn, when the reindeer experienced alternating light-dark (LD) periods, we detected
circadian rhythms in their activity patterns with period lengths of roughly 24 hours (rang-
ing from 24.05 to 24.23 h). In summer, these circadian patterns disappeared completely, in-
stead, ultradian rhythmswith period lengths below 12 hours becamemuchmore pronounced.
These ultradian rhythms were also detected in the other seasons, but were less dominant. In
winter, the animals did not show any circadian behavior. Note that the animals were kept in
complete darkness in winter already for a week prior to the experiment. However, when they
were released after the experiment, they experienced civil twilight alternating with complete
darkness.

7.3.3. Metabolism under circadian control in spring, autumn and
winter with high inter-individual variability

From UPLC-MS analysis of the blood plasma samples, we extracted 794 m/z features after
removing noisy peaks, peaks not detected in all samples and duplicates. In order to get a
�rst overview of our data, we performed principal component analysis. The results shown in
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Figure 7.4.: Double-plotted actograms (smoothed with Kernel = 25) of the individual reindeer for 30 days in
each season. The days when blood sampling was performed are marked with orange bars.

�gure 7.7 suggest that the �rst two principal components represent di�erences in metabolic
pro�les between the four seasons (�gure 7.7a) rather than between the individual animals
(�gure 7.7b).
Since we observed a relatively high variability in the time pro�les of variousmetabolites be-

tween the four animals, we performed rhythmicity analysis for each animal and each season
separately. The resulting p-value distributions for 24-hour rhythms are provided in �gure 7.8
and all numeric results are given in the supplementary table B.12. Being aware of the high
probability for false positives, we decided to use raw p-values instead of q-values to keep
as many metabolites as possible for pathway enrichment analysis. In reindeer #4, the only
male, we found by far the highest overall number of rhythmic m/z features. Surprisingly,
we found the highest number of circadian features in winter, while as expected in summer,
the fewest features displayed circadian rhythms. The numbers of rhythmic features in spring
and autumn are comparable. Similar to the male reindeer, for the female reindeer we found
mainly arrhythmic metabolic features in summer and a signi�cant number of rhythmic fea-
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Figure 7.5.: Boxplots representing the average activity per period of 24 h obtained from the activity patterns
shown in �gure 7.4 (center line: median, box limits: 25th and 75th percent quantile, whisker length: 1.5 in-
terquartile range).
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Figure 7.6.: Periodograms obtained by Fourier transformation of the activity patterns shown in �gure 7.4.
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Figure 7.7.: Results from principal component analysis of all metabolic features. Data points are colored by
season (a) and individuals (b).

tures during winter. Whereas #1 and #3 show also many rhythmic features in spring, they
had surprisingly few circadian features in autumn. In reindeer #2, in contrast, we detected
far less rhythmic features during spring, probably resulting from catheter problems.
To further investigate di�erences in rhythmicity of the metabolome between the individ-

uals and across the di�erent seasons, we evaluated the overlap between rhythmic features
and displayed them in Venn diagrams (�gure 7.9). For a large fraction of all 794 detected
m/z features, we found circadian rhythms in at least one animal in at least one season. In
spring, 54% of all detected features were rhythmic in at least one animal, in summer 31%, in
autumn 45% and in winter 60% respectively. 119 features (15%) were rhythmic in all seasons
in at least one animal. The comparison between the individual animals shows that inter-
individual di�erences in rhythmicity are most pronounced in autumn, but they exist across
the whole year.
We visualized the time course of all metabolic features, for which we detected circadian

rhythms in at least one animal in at least one season, in a heat map (�gure 7.10). We grouped
them by their rhythmicity detected in reindeer #4, which showed the highest number of
rhythmic features and sorted them by circadian phase within the groups. In most groups,
a cluster of features peaking at night and one peaking during the day can be detected. In
the group of features, which are rhythmic in spring, autumn and winter, a phase shift seems
to happen across the year. Moreover, for some of these features, there are indications for
ultradian rhythms in summer.

7.3.4. Phase and amplitude distribution of circadian metabolic
features

Moreover, we predicted amplitude and phase for the circadian metabolic features (numeric
results are provided in the supplementary table B.12). The predicted phases are visualized in
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clogging.
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rose plots in �gure 7.11. Also here, we observed signi�cant di�erences between the individ-
uals, nevertheless some overall trends are visible.
In spring, most rhythmic features peak during noon (12 am to 2 pm) or before dawn (2 am

to 6 am) in the female reindeer. In contrast, in the male reindeer, we found most features
to display a peak at night (0 am to 2 am). In autumn and winter, we detected a group of
metabolites with a peak at noon (12 am to 2 pm) in all animals. Moreover, in autumn, in
reindeer #1 another group ofmetabolites peaked around dawn, while in reindeer #2 a group of
metabolites peaked after dawn (6 am to 8 am). In the male reindeer, we observed additionally
major peaks after dusk (8 pm to 10 pm) and before dawn (2 am to 4 am). In all reindeer many
circadian features displayed rhythms with peaks spread around the “usual dawn” (2 am to
10 am) despite constant darkness. During summer we did not observe the major peak at
noon, but still many metabolites showed peaks around the “usual dawn” (2 am to 6 am).
Moreover in reindeer #3 and #4 a group of metabolites peaked during “usual dusk” (6 pm to
8 pm).
Thus, even though phase distributions vary among the individuals and across the seasons,

major peaks are always detected around dawn, dusk and/or noon, even under constant light
conditions.
As shown in �gure 7.12, the amplitudes of the rhythmic features did not change much

between the four seasons and the small changes, whichwe observed are not consistent among
the individual animals.
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Figure 7.10.:Heatmaps showing the time course of the intensity of all metabolic features, for which signi�cant
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rhythmicity in reindeer #4 as indicated on the left.
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Within the groups they are sorted by their circadian phase of reindeer #4 during the season shown in bold on the
left. The given times are local clock times. Intensities were normalized and log2-transformed for each animal
separately.
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Figure 7.11.: Roseplots representing the phase distribution of circadian metabolic features in each reindeer in
all seasons. Grey numbers represent local clock time, black number represent counts of features peaking in the
corresponding time interval. The starting time of the bleeding experiment is indicated by the red lines.
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7.3.5. Metabolic pathway enrichment analysis reveals consistent
circadian regulation of certain pathways across the whole year

To get some idea about which metabolic pathways are regulated in a circadian fashion, we
tried to annotate or identify as many m/z features as possible. For compounds for which
whichwe knew retention times from themeasurements described in Chapter 6, we performed
targeted peak extraction directly. For the features, which we obtained from untargeted peak
extraction, we used automatic annotation by data base matching of MS/MS spectra in MS
DIAL.214 Furtherwe used themummichog algorithm,215,254 a combined approach of compound
annotation and metabolic pathway enrichment analysis. We carried out this analysis for each
animal in each season separately. Identi�ed metabolite names and the corresponding method
of annotation are given in the supplementary table B.12. Results from pathway enrichment
analysis are summarized in the supplementary table B.13. Despite the inter-seasonal and
inter-individual di�erences reported above, the results from pathway enrichment analysis
point towards similar pathways being regulated in a circadian fashion across all seasons and
animals. Amino acid related pathways, purine metabolism, pantothenate and CoA biosynthe-
sis and pyrimidine metabolism were enriched among the rhythmic metabolites consistently.
Moreover, in spring and winter, glycero(phospho)lipid metabolism was enriched across sev-
eral animals. In spring, fatty acid synthesis was additionally suggested to be under circadian
control and in winter, propanoate and butanoate metabolism representatives displayed cir-
cadian patterns.

7.4. Discussion
While Larsen et al.353 observed seasonal changes in blood levels of metabolites involved in
lipid metabolism, to the best of our knowledge, circadian regulation of metabolism has not
been investigated in reindeer so far. In this study we found circadian pattern for a variety
of metabolites in all four seasons, despite the di�erent light conditions. Surprisingly, these
rhythms did not all follow the behavioral patterns, which we observed.
Our �ndings on the reindeer’s behavior are consistent with results reported by van Oort
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et al..348 We found robust circadian activity patterns in spring and autumn, while none of
the animals did display circadian rhythms in their behavior during summer. Instead, we
also found more ultradian patterns in summer. In summer, the reindeer were generally more
active throughout the day, which is in good agreementwith previous �ndings.349 The reindeer
are supposed to maximize food intake during midnight sun to extensively exploit the short
vegetative phase in the Arctic and build up energy deposits. Interestingly, the average activity
was similar in autumn, winter and spring. This is in accordance with �ndings from Arnold
et al., who reported that animals start to become really active only in the second half of
spring, when vegetation period starts and only until late summer.354 Even though the animals
experienced civil twilight upon release after the blood sampling, they remained behaviorally
arrhythmic.
On a metabolic level, we found daily rhythms across all seasons. In summer the lowest per-

centage of metabolic features displayed circadian rhythms (11-17% of all detected features),
while surprisingly, the highest number of rhythmic features was observed in winter (15-51%
of all detected features). Hence, most rhythmic patterns in metabolism do not follow the
behavioral patterns we observed in the reindeer.
The low number of rhythmic metabolites observed in summer suggests that constant light

and the absence of other Zeitgebers, such as rhythmic feeding or activity dampen rhythmic-
ity of metabolic regulation. Nevertheless, we did also �nd circadian patterns for a certain
amount of metabolites in summer, indicating that there is no complete abolishment of circa-
dian clock during midnight sun. The surprisingly high number of rhythmic metabolites in
winter despite complete darkness points towards a functional clock in winter. In addition, our
�ndings of rather similar phase distributions in the seasons with and without rhythmic light
conditions and the consistent results from metabolic pathway enrichment analysis across all
four seasons, support the hypothesis of a circadian clock, which is ticking and in�uencing
metabolism around the whole year.
In the group of metabolites, which were rhythmic in spring, autumn and winter in reindeer

#4 (�gure 7.10), 3 clusters are detectable in summer. i) A �rst cluster of features displaying in-
dications for ultradian rhythms, which might re�ect ruminant activity. In order to clearly dis-
tinguish between ultradian patterns and noise a samplingwith increased frequency is needed.
ii) A second cluster of features staying constantly low in summer as in the light phases during
spring and autumn, while they seem to be in free-run in winter. Thus, they might re�ect cir-
cadian regulation with light as main Zeitgeber. iii) A third cluster of metabolites, which stay
constantly high during summer, while they are high during the dark phases and low during
the light phases in spring and autumn. During winter they are constantly rather low and
the amplitudes of rhythms seems dampened. We hypothesize that these metabolites might
be driven by sleep pressure, as in spring and autumn, sleep pressure accumulates during the
day, in summer sleep pressure is constantly high due to the increased activity of the reindeer
and in winter it is constantly rather low due to their decreased activity. This hypothesis could
be tested in a sleep deprivation experiment.
Notably, the metabolic rhythms we found in reindeer #4 only during winter are much less

pronounced or not at all detected in the three female reindeer. This points towards a sex-
dependent e�ect. In winter, male reindeer are digging in the snow to make forage available
for the females.359 It might be that the males can therefore a�ord the comfort of rhythmic
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patterns, while the females need to feed upon occasion and therefore display less rhythms.
We observed large inter-individual di�erences in metabolic rhythms among the four an-

imals regarding rhythmicity itself but also regarding circadian phase. In humans, di�erent
circadian metabolic phenotypes have been reported.360 Certainly, larger sample sizes would
help to further con�rm our �ndings and to clearly distinguish between stochastic e�ects of
noise upon determination of rhythmicity and di�erent circadian metabolic phenotypes in
reindeer. However, this is very di�cult to achieve for this kind of experiment, since reindeer
husbandry is reserved to Saami families with very few exceptions.361

Despite the large inter-individual di�erences, our results from pathway enrichment are sur-
prisingly consistent across the animals and also across the seasons. Many of the top pathway
hits are related to amino acid metabolism and purine and pyrimidine metabolism and dis-
played rhythms across the whole year. Amino acids, pyrimidines and purines are all known
sources for microbial nitrogen in ruminants. Amino acids can be deaminated and excreted as
ammonia by ruminal bacteria.362,363 Ammonia also serves as a nitrogen source for microbial
synthesis of amino acids and peptides, which are necessary for their growth.364 Moreover,
in dairy cows, purines and pyrimidines are the origin of roughly 20% of the ruminal micro-
bial nitrogen.365 Therefore, we hypothesize that the metabolic pathways, which are under
circadian control across the whole year might re�ect primarily nitrogen metabolism of ru-
minal microbial populations. Further con�rmation of the compound annotations obtained
automatically, by measuring reference standards and MS/MS spectra, could provide further
evidence for this hypothesis.
Our experiments on circadian clock gene expressions are still ongoing. Therefore, no �nal

conclusions can be made here, yet. However, our preliminary �ndings indicated an intact
circadian clock in spring (�gure 7.13). Thus against conclusions from earlier studies,352 we
found that at least the clock mechanism exists at a cellular level.
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Figure 7.13.: Bioluminescence recordings re�ecting the expression levels of the circadian reporter gene
Bmal1:luc. a Bmal1:luc expression in reindeer �broblasts collected in March. Circadian rhythms were detected
in the beginning. b Bmal1:luc expression in U2OS cells as control.
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7.5. Conclusion
In conclusion, we found evidence for circadian regulation of metabolism in Norwegian
reindeer throughout the year, despite their arrhythmic behavior in constant light and
constant darkness. This suggests that behavioral circadian rhythmicity can be uncoupled
from metabolic circadian rhythmicity. While the metabolic rhythms were less pronounced
during summer, a high degree of rhythmicity was observed in the metabolome during
winter. Thus, even in constant darkness, circadian metabolic regulation seems favorable for
the animals.
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Chapter 8. Conclusions and outlook

Within the scope of this thesis, novel insights into the complex interplay between sleep, cir-
cadian clocks and metabolism were unraveled with cutting-edge techniques, including high-
resolution mass spectrometry (HRMS). On the one hand, the virtually unlimited sampling
frequency, the non-invasiveness and the real-time information provided by breath analysis
was exploited. On the other hand, blood was used as a biological sample, which is less prone
to exogenous in�uences and can be analyzed e�ciently by liquid chromatography coupled
to HRMS, adding a dimension of separation.
For the �rst time, metabolome-wide regulation during sleep was monitored using breath

analysis by secondary electrospray ionization (SESI) coupled to HRMS (Chapter 4). A setup
for analyzing exhaled breath during sleep using SESI-MS with a ten-second time resolution
was developed and paves the way for the investigation of metabolic processes associated with
sleep itself or with sleep-related diseases. Major axes of metabolism were found to undergo
rapid and reversible modi�cations upon sleep stage changes. While fatty acid oxidation was
increased during wakefulness, this metabolic process was decreased after a switch to slow
wave sleep. A subsequent switch to rapid eye movement sleep activated TCA cycle activity
in preparation for mitochondrial oxidation. This complex orchestration and synchronization
of metabolism and sleep architecture might play an important role for human health and
performance that has been underestimated until now.
Besides these novel biological �ndings, breath analysis by SESI-HRMS was brought a step

closer to its clinical application as a diagnostic tool. A panel of obstructive sleep apnea (OSA)
breath biomarkers was validated in a large and independent group of patients (Chapter 5).
During this validation study, the previously stated association between breath levels of these
markers and OSA severity was con�rmed despite a much higher diversity in this validation
cohort. The obtained results suggest that breath analysis by SESI-MS may add an objective
value for OSA screening and its combination with conventional questionnaires, such as for
the NoSAS score, might thereby improve sensitivity and accuracy of the screening.
Interestingly, 13 of the 33 OSA biomarkers, which were validated here, showed increased

levels during REM sleep compared to the other sleep stages in the healthy individuals, who
were measured continuously during sleep. Amongst those metabolites are furans and unsat-
urated hydroxy-aldehydes. Since both, REM sleep and OSA, are associated with increased
sympathetic activity,366 this suggests that these metabolites are regulated by the autonomous
nervous system.
In addition to these biomarkers, a broader range of compounds, for which the above men-

tioned sleep state-dependent changes were detected in healthy individuals, was also di�eren-
tially regulated between OSA patients and control subjects in this cohort. Remarkably, most
of these compounds were involved in mitochondrial respiration, more precisely in the syn-
thesis of acetyl CoA. This indicates that acetyl CoA regulation might be especially a�ected
by a disrupted sleep architecture. These �ndings further highlight the importance of a syn-
chronization between sleep architecture andmetabolism for metabolic health and will inform
future hypothesis-driven research in this area.
While breath analysis unraveled metabolic processes related to sleep architecture and ob-

structive sleep apnea, metabolic pro�ling in blood provided insights into the connection be-
tween circadian clocks and metabolism. In a multi-omics approach, certain metabolic factors
in serum from metabolically unhealthy obese patients were discovered to have a lengthening
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e�ect on the circadian period length of the expression of the reporter gene Bmal1-luc in U2OS
cells (Chapter 6). Thanks to the molecular information provided by HRMS, a further inves-
tigation of the function of these metabolites was possible. This analysis revealed that most
of them were associated with insulin resistance and in addition, the results from a GWAS
analysis indicated a genomic origin of these metabolic factors. These �ndings lead to the
hypothesis that insulin resistance might play a central role in the vicious cycle that has been
postulated regarding the connection between the circadian clock and obesity in humans.
Furthermore, this connection between metabolic factors associated with insulin resistance

and circadian period length showcases the potential use of circadian measures for diagnostic
purposes. Since the circadian clock is intimately connected to many cellular processes, it may
be used as a sensor that can be genetically exploited to make discoveries about a disease, and
the points at which it acts may provide novel treatment ideas.
Circadian disruption is associated with negative consequences on metabolic health in hu-

mans, whereas arctic species, such as Norwegian reindeer (Rangifer tarandus tarandus), have
always been exposed to seasonally occurring conditions of constant light. Metabolic pro�l-
ing of reindeer blood samples revealed 24-hour rhythms in a large percentage of the detected
metabolites during spring, autumn and surprisingly, even under constant darkness in winter,
when the animals displayed arrhythmic behavior (Chapter 7). During summer, when the an-
imals experienced constant light and were active throughout the whole day and night, this
metabolic rhythmicity was reduced. Nevertheless, a signi�cant number of metabolites still
showed circadian patterns. These results suggests that arctic reindeer have developed mech-
anisms to decouple circadian metabolic regulation from behavioral rhythms. The rhythmic
behavior seems to be driven mostly by the light schedule. In contrast, the origin of metabolic
rhythms, especially in constant darkness during winter, remain to be discovered.
While this thesis adds some pieces to the complex puzzle that is the interaction between

metabolic regulation, sleep and circadian clocks, many other pieces remain to be addressed.
Future research ideas emerging from the results obtained in this work are described in the
following paragraphs.

Pursuing mechanistic understanding of sleep stage-dependent metabolic
regulation

Our unprecedented �ndings on sleep-stage speci�c metabolic regulation provoke questions
about the underlyingmechanisms. We hypothesize that sympathetic activationmay be an im-
portant mechanism for orchestrating sleep architecture and metabolism. Therefore, it would
be interesting to investigate the responses of metabolic pathways upon sympathetic activa-
tion. In humans, sympathetic activity can be triggered by the immersion of hands in ice-
cold water.367 In addition, mice models with chronic sympathetic hyperactivity368 could be
investigated. Another possible approach to get further mechanistic insights into sleep stage-
dependentmetabolic regulationwould be to study e�ects on themetabolome upon REM sleep
deprivation.
In general, thanks to its powerful combination of high resolution in the dimension of mass

and time, the setup we developed here opens further possibilities for research on metabolic
regulation during sleep. For example, metabolic changes upon arousals from di�erent sleep
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stages may be studied to �nd out whether the metabolic or physiological e�ect of an arousal
is in�uenced by the preceding sleep state. Likewise, metabolic pro�ling during sleep may be
performed in patients su�ering from sleep-related diseases, such as narcolepsy or OSA, to
investigate immediate metabolic consequences.

Further investigation of metabolic regulation under arctic light conditions

Besides metabolites regulated in a circadian fashion, metabolic pro�ling in Norwegian rein-
deer revealed indications for groups of metabolite being mainly controlled by sleep depriva-
tion. In addition, a preliminary proof of principle for the assessment of sleep parameters in
reindeer has been achieved in our group. Therefore, a logical follow-up experiment is the
combination of metabolomics and sleep recordings and the investigation of the metabolic ef-
fect of sleep deprivation. Eventually, even breath analysis could be performed on the animals,
similar to our sleep study in humans. However, this would require an on-site mass spectrom-
eter, a sampling device for reindeer breath and a way of avoiding confounding signals from
excretions and environment.
Another aspect calling for further investigation are the ultradian patterns, which became

apparent in summer for certainmetabolites. An experimentwhere blood is sampled in shorter
intervals may provide further evidence here.

Further studies on metabolic interactions between circadian clocks and obesity

Our observation of a prolonged circadian period length in U2OS cells in the presence of cer-
tain metabolic serum factors related to insulin resistance in obesity, raises the following ques-
tions: are the circadian clocks in these patients slowed down? Or did they develop some kind
of compensatory mechanism to keep the clock machinery still running at the same pace?
To tackle these questions, the circadian expression of clock genes may be measured in �-
broblasts originating from obese patients. The bioluminescence assay could be performed in
presence as well as in absence of the patients own serum. These experiments might reveal if
clock properties have changed in these patients and if they show the same period lengthening
e�ect in presence of the metabolic factors in serum.

Pushing SESI-HRMS towards clinical routine

While various clinical trials with rather small study cohorts indicated the diagnostic potential
of breath analysis recently, the transition of breath analysis by SESI-HRMS to a clinical setting
is still in its infancy. It is absolutely essential to validate biomarker candidates in independent
and large sample cohorts, e.g. for diseases such as chronic obstructive pulmonary disease or
cystic �brosis, as was presented here for OSA. Moreover, the OSA biomarkers that were
validated in this thesis, should be further validated in a longitudinal study as well.
In addition to large-cohort studies, further technical development of SESI-MS can bring

the technique closer to its application in clinical routines. Here, the main focus should lie on
standardization and ideally even on strategies for absolute quanti�cation. Recent advances
of using reference gas mixtures for monitoring instrument performance should be incorpo-
rated in all future studies. Besides, one should aim for gaseous standards of as many of the
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validated OSA biomarkers as possible in order to establish targeted quanti�cation methods
for them. Ideally, those methods should rely on the principle of standard addition to account
for matrix e�ects. Multiple reaction monitoring methods on triple quadrupole mass spec-
trometers are a reasonable instrumentation option for a targeted approach providing quan-
titative information with high sensitivity and, due to MS/MS involvement, high speci�city
as well. The transition to such instruments would additionally reduce costs and instrument
size tremendously, which would further facilitate their widespread incorporation in future
clinical routines.
All in all, the advances in the use of SESI-HRMS achieved in this thesis paved the way for

further exploitation of this promising method for clinical applications as well as fundamental
research. Intriguing novel interactions between metabolism and both, sleep architecture and
circadian clocks, were uncovered bymetabolic pro�ling with high-resolution mass spectrom-
etry techniques.
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Abbreviations

ACE angiotensin-converting enzyme
ADP adenosine diphosphate
AHI apnea-hypopnea index
AMPK adenosine monophosphate dependent protein kinase
ARB angiotensin-receptor blocker
ASAT aspartate-aminotransferase
ATP adenosine triphosphate
AUC area under the curve
AUROC area under the receiver operating characteristic curve
BCAA branched-chain amino acids
BMAL1 aryl hydrocarbon receptor nuclear translocator-like protein 1
BMI body mass index
CCGs clock controlled genes
CI con�dence interval
CK1 Casein Kinase 1
CLOCK circadian locomotor otput cycles kaput protein
cMLP componentwise multilayer perceptron
CPAP continuous positive airway pressure
Cry Cryprochrome
CSF cerebrospinal �uid
CV cross validation
DD dark-dark
DMH dorsomedial nucleus of the hypothalamus
DRP1 dynamin-related protein 1
EBC exhaled breath condensate
ECG electrocardiography
EEG electroencephalography
EMG electromyography
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EOG electrooculography
ESI electrospray ionization
ESS Epworth Sleepiness Scale
FCS fetal calf serum
FEV1 forced expiratory volume in one second
FNR false negative rate
FPR false positive rate
FVC expiratory forced vital capacity
GABA gamma-aminobutyric
GC gas chromatography
GC-MLP Granger causal multilayer perceptron
GHRH growth hormone releasing hormone
GLP-1 glucagon-like peptide 1
GWAS genome-wide association study
HbA1c glycated hemoglobin
HDL high-density lipoprotein
HPLC high-performance liquid chromatography
(HR)MS (high-resolution) mass spectrometry
ID identi�cation
IL interleukin
IQR inter-quartile range
IRS-1 insulin receptor substrate 1
KS-test Kolmogorow-Smirnow
LC liquid chromatography
LD light-dark
LDL low-density lipoprotein
LL light-light
m/z mass-to-charge ratio
MAP mitogen-activated protein
MCP microchannel plate
MCTQ Munich chronotype questionnaire
MLP multilayer perceptron
MOI multiplicity of infection
MS/MS tandem mass spectrometry
MSn multistage mass spectrometry
mTOR mechanistic target of rapamycin
mTORC1 mechanistic target of rapamycin complex 1
NA non applicable
NAD+ oxidated form of nicotinamide adenine dinucleotide
NADH reduced form of nicotinamide adenine dinucleotide
NMR nuclear magnetic resonance
NN neural networks
NONO non-POU domain-containing octamerbinding
NREM protein
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ODI oxygen desaturation index
OSA obstructive sleep apnea
PBS phosphate bu�ered saline
PCA principal component analysis
Per Period gene
PSG polysomnography
PTR-MS proton transfer reaction mass spectrometry
QC quality control
REM rapid eye movement
RNA ribunucleic acid
ROC reveiver operating characteristic
ROR retinoic acid receptor-related orphan receptor
RP reversed phase or respiratory polygraphy in OSA chapter
SCFA short-chain fatty acid
SCN suprachiasmatic nucleus
SD standard deviation
SESI secondary electrospray ionization
SIFT-MS selected ion �ow tube mass spectrometry
SIRT1 Sirtuin-1
SLD sublaterodorsal
SNP single nucleotide polymorphism
SUR1 sulfonylurea receptor 1
SVM support vector machine
SWS slow-wave sleep
T2D type 2 diabetes
TCA cylce tricarboxylic acid cylce
TMN tuberomammillary nucleus
TNF tumor necrosis factor
TNR true negative rate
TOF time of �ight
TPR true positive rate
tR retention time
TSH thyroid stimulating hormone
UPLC ultra-high performance liquid chromatography
VAR vector autoregression
vlPAG ventrolateral part of the periaqueductal grey matter
VLPO ventrolateral preoptic nucleus
VOC volatile organic compound
WK wakefulness
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B.1. Rapid and reversible control of human metabolism
by individual sleep states

B.1.1. Inferring nonlinear Granger causality with neural networks
The Granger causality approach that we adopt has seen few applications in the analysis of
time course MS data. This method has several advantages over conventional approaches,
such as correlation analysis and analysis of variance (ANOVA):

• It can represent non-additive nonlinear dependencies between sleep stage labels and
multiple mass spectrometric features;

• It deals with time series in a principled way and can account for time-delayed
(auto)regressive relationships;

• Granger causality is a directed relationship, whereas (cross-)correlation does not focus
on precedence in time;

• It does not merely examine marginal relationships, it performs multiple regression.

More formally, when inferring Granger causality, we consider the following setting. We
assume that we are given N replicates of MS and sleep stage time series retrieved from N
di�erent subjects. These time series include:

• A categorically-valued sleep stage time series {Yt}Tt=1, Yt 2 {W,N1, N2, N3, R}, for
each t;

• M continuously-valued time series {Xj
t }Tt=1, where j = 1, ..., p�1, andXj

t corresponds
to the relative intensity of ion j in the mass spectrum of exhaled breath at time step t.

Our goal is then to identify metabolites that are causally related to sleep stages, i.e. metabo-
lites that drive the sleep stage, denoted by Xj ! Y , and metabolites that are driven by the
stage, Y ! Xj .

B.1.1.1. Granger causality

Granger causality, introduced by C. W. J. Granger258 is one of the most popular approaches
to practical causal time series analysis. Intuitively, if time series X is a cause of Y , then the
past ofX should be useful for predicting the future of Y .369 Formally, Granger causality from
stationary time series {Xt}t2Z to {Yt}t2Z can be de�ned as follows.369 Let I⇤(t � 1) be an
information set containing all information available in the universe up to time t� 1, and let
I⇤
�X(t�1) be the same set as I⇤(t�1), but with values of time seriesX removed (up to time

t� 1). We say thatX Granger-causes Y if and only if Yt and I⇤(t� 1) are not conditionally
independent given I⇤

�X(t � 1), for all t 2 Z. This de�nition for the bivariate case can be
easily extended to multivariate time series. In practice, Granger causality is often inferred by
assuming some time series model, for, instance, vector autoregression (VAR). It can be shown
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that in VAR Granger causality can be determined from zero constraints on the coe�cients.370
Although simple and interpretable, such representation does not allow for nonlinearities and
complex interactions between variables. Therefore, we leverage highly expressive neural
networks (NN)371 to infer Granger causality.

B.1.1.2. Limitations of Granger causality

While the concept of Granger causality is practically compelling, it has some shortcomings
and can be misleading in certain cases. Granger causality analysis can yield spurious conclu-
sions if the set of considered variables is not causally su�cient.372 For example, if there exist
“superior” mechanisms that regulate both metabolism and sleep, statements of causality be-
tween ion intensities and sleep phases could be meaningless. (Such superior mechanisms
would be biologically logical to imagine.) Issues can also arise if time series are not sampled
frequently enough to recover relationships (unlikely in our case) or if there exist instanta-
neous interactions between variables, which are imaginable in biochemical pathways.372

B.1.1.3. Model

Inspired by componentwise multilayer perceptron (cMLP),373 we introduce our own feedfor-
wardNN architecture for unsupervised Granger causal discovery. For the sake of convenience,
we refer to it as Granger causal multilayer perceptron (GC-MLP). Supplementary �gure B.5
depicts the schematic of a GC-MLP. This network is trained in a supervised manner to forecast
target time series Y based on pastK values of predictorsX1, X2, ..., Xp�1 and Y itself. Note
that the network consists of p disjoint encoders which produce “hidden” representations for
each variable. These representations are then multiplied with importance weights c1, c2, ..., cp
and concatenated into one vector.
Consequently, this vector is fed into a multilayer perceptron (MLP) to compute forecast ŷt

of Yt. Granger causality fromXj to Y can then be identi�ed by inspecting importance weight
cj . Ideally, we expect that |cj| ⇡ 0 when Xj 9 Y , and |cj| > 0 when Xj ! Y . The loss
function of GC-MLP is crucial for estimating Granger causality. It encourages importance
weights to be sparse by using an elastic-net-style374 term that penalizes `1 and `2 norms of
c = [c1...cp]:

�
TX

t=K+1

CX

j=1

�j{(yt)j ln((ŷt)j) + (1� (yt)j) ln(1� (ŷt)j)}+ �(↵||c||1 + (1� ↵)||c||22),

where K is the maximum lag of autoregressive relationships; C is the number of classes; �j
is the weight for class j; ŷt refers to the forecast for the value of yt; (�)j stands for the j-th
component of vector � ; � > 0 is the regularization parameter; and ↵ 2 [0, 1] controls the
tradeo� between `1and `2 penalties. Note that herein yt is assumed to be categorical and
encoded with the one-hot encoding scheme.
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B.1.1.4. Bootstrapping

In order to quantify our uncertainty about Granger causal relationships (i.e. to infer a con-
ventional p-value), we leverage bootstrapping.253 Many GC-MLPs are trained on resampled
time series replicates to construct a con�dence interval for each cj that can be used to decide
whether relationship Xj ! Y is signi�cant. The full procedure is summarized in Algo-
rithm 1.

Algorithm 1: Bootstrapping procedure for discovering metabolites with Granger causal as-
sociations with sleep stages

Input: N replicates of target {Yt}Tt=1 and predictors {Xj}Tt=1, for j = 1, ..., p� 1; maximum

lag K 2 N; regularization parameter � > 0; parameter ↵ 2 [0, 1]; threshold cth > 0;

con�dence level � 2 (0, 1); number of re-samples B 2 N.

Output: Set Ŝ of predictors that Granger-cause Y .

Ŝ  Y

for b = 1 to B do

Sample N replicates Ib = {ib1, ..., ibN} with replacement from I = {1, ..., N}.

Train the neural network on replicates in Ib with parameters K , � and ↵ using mini-batch

gradient descent.

Retrieve absolute values of importance weights c⇤b1 , c⇤b1 , ..., c⇤bp�1 from the trained model.

end

for j = 1 to p� 1 do

Compute the empirical (1 � �)-quantile of bootstrapped weights for the j-th variable

qj = qc⇤j(1� �).

if qj � cth then

Ŝ  Ŝ [ {j}

end

return Ŝ
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B.1.1.5. Time reversal

Algorithm 1 identi�es a set of Granger causes of response variable Y . We might be interested
in solving the inverse problem: �nding a set of predictors Granger-caused by the response.
The naive solution would be to train a GC-MLP for each predictor variableXj as the response
and identify if Y Granger-causes Xj . In high-dimensional mass spectrometric time series,
this approach is prohibitively costly. We can leverage time-reversed Granger causality252 by
performing inference on time-reversed sequences. Intuitively, we expect that, if Y ! Xj ,
then the future values of Xj should be useful for predicting the past values of Y . Thus,
instead of naively training p� 1 models, with time reversal we only need one GC-MLP.

B.1.1.6. Hyperparameters and network specification

We implemented the model in Python programming language (version 3.7.1) using PyTorch
machine learning library (version 1.0.1) We considered (auto-)regressive relationships up to
lag K = 30 (⇡ 300s). We choose the model order su�ciently large, to avoid potential
misspeci�cation. Each GC-MLP had 100 hidden units in each encoder and 200 shared hidden
units. We set the regularization parameter � to 0.001 and ↵ = 0.8. The choice of � is
motivated by simulation experiment results discussed below. In the cross-entropy loss, the
weight of 0.9 is assigned to the less prevalent sleep stage, whereas theweight of 0.1 is assigned
to the more prevalent one. The training is performed for one epoch by gradient descent using
Adam optimizer with mini-batches of 100 data points. For the bootstrapping procedure, we
trained B = 1000 models and used parameter values cth = 0.0025 and � = 0.95.

B.1.1.7. Cross-validation

To investigate whether it is possible to predict sleep stages solely based onmass spectrometric
pro�les, we performed cross-validation. Granger causal discoveries discussed before would
be meaningless, if trained neural networks possessed no predictive power. During validation
we did not include sleep stage time series as a predictor. We used the leave-one-subject-out
cross-validation (CV) procedure to see how well GC-MLPs generalize across di�erent sub-
jects. Namely, for each iteration, we left out one subject and trained a neural network on the
rest. To evaluate performance, we employed the balanced accuracy score. This metric is more
appropriate than the normal accuracy because of imbalances in frequencies of classes. Av-
erage balanced accuracy CV scores are shown in supplementary table B.1. For all responses,
mean scores are signi�cantly greater-than 0.5 (↵ = 0.05). Thus, on average, in all predic-
tion tasks GC-MLPs perform better than the random classi�er. To sum up, the results of
cross-validation suggest that there might be some structure in the data driven by di�erences
between stages of sleep.

B.1.1.8. Simulation experiments

We performed experiments on perturbed mass spectrometry data to verify that our neural
network technique for discovering Granger causality behaves as expected. We explored the
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number of false discoveries made in di�erent scenarios and investigated the relationship be-
tween the number of false discoveries and regularization parameter �. Note that in these
experiments we did not reverse the time series.

First, we examine inference results under permuted ion intensity time series. We consid-
ered �ve features that had been originally discovered as Granger-causing REM sleep stage
transitions with mass-to charge ratios 69.070, 118.065, 152.128 229.252 and 271.299. We gen-
erated 10 synthetic datasets wherein we randomly permuted all metabolic time series except
for the sequences of these �ve variables (10 random seeds used). Subsequently, we applied
the bootstrapping procedure on these datasets withB = 100 resamples. We expect that none
of the variables the time series of which were permuted are identi�ed as causal, whereas the
�ve features that remain �xed should be. In all simulations, every of the invariant variables
is discovered as causal. Moreover, none of the permuted time series are falsely claimed to
drive the response.

Another experiment we performed was with randomly permuting REM sleep stage labels
while keeping metabolic time series untouched. In this setting, we expect our inference tech-
nique to identify no variables that are causally related with the permuted target. We ran the
bootstrapping procedure on 10 di�erent simulated datasets with B = 100 resamples. In all
datasets, no spurious relationships were found from predictors to the target.

Finally, we replaced the original REM signal with a synthetic target time series that behaves
like a sleep stage sequence. Similarly, to the setting above, we expect no causal links to be
inferred. We performed bootstrapping on 10 simulated datasets with B = 100 resamples.
We ran the inference for � = 0.10�4, 10�3, 10�2. Supplementary table B.3 contains numbers
of false discoveries made by the inference technique under di�erent values of �. Observe
that for the largest value almost no false discoveries are made. A decrease in the value of the
regularization parameter seems to lead to more spurious causal relationships being inferred.
For , the value we used in the causal analysis of MS and sleep stage time series, on average,
14.4 false discoveries are made. Although this result is not ideal, larger values of the regu-
larization parameter could be, in practice, too conservative and, thus, may lead to inferring
a causal graph that is much sparser than the true structure, i.e. the loss of power.

In general, the results of the simulation experiments are promising. The inference tech-
nique we proposed behaves as expected on perturbedMS data; and we can adequately control
the number of false discoveries with parameter �.
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B.1.2. Supplementary figures
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Figure B.1.: Heatmap of 1271 m/z features detected in positive ionization mode in all individuals. Subject no.
12 is shown in �gure 4.2. Subject no. 9 was awake during almost the whole night and accordingly, nearly no
instantaneous metabolic changes were observed in breath. Note that gradual changes across the night are not
visible here since the data has been detrended.
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Figure B.2.: Heatmap of 725 m/z features detected in negative ionization mode in all individuals. Subject no.
12 is shown in �gure 4.2.
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Figure B.3.: Evolution of numbers of signi�cant m/z features with di�erent signi�cance thresholds of q-values
in pairwise comparisons between N3 and WK (a), N3 and REM (b) and REM and WK (c).
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Figure B.4.: Boxplots of top candidate metabolites for N3 sleep, REM sleep and wakefulness. Box-
plots (center line: median, box limits: 25th and 75th percent quantile, whisker length: 1.5 interquartile range)
correspond to metabolites mapped on pathways in �gure 4.8.

172



B.1. Rapid and reversible control of human metabolism by individual sleep states

-0.01

-0.005

0

0.005

0.01

0.015

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

(Iso)citrate (-)

sleep stage
N3 REM WK

-4
-2
0
2
4
6
8

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Aconitate (-)x10-3

sleep stage
N3 REM WK

-0.5
0

0.5
1

1.5
2

2.5

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Propanoate (-)

-5
0
5

10
15
20
25

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Hydroxypropanoate (-)

-0.5
0

0.5
1

1.5
2

2.5
3

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Malonate semialdehyde (-)

-5

0

5

10

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Aminobutanoate (+)
x10-3

sleep stage
N3 REM WK

sleep stage
N3 REM WK

sleep stage
N3 REM WK

sleep stage
N3 REM WK

-0.1

0

0.1

0.2

0.3

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Acetoacetate (-)

sleep stage
N3 REM WK

-5
0
5

10
15
20
25

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Lactate (-)

sleep stage
N3 REM WK

-6
-4
-2
0
2
4
6
8

10

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Methylcitrate (-)x10-3

sleep stage
N3 REM WK

-6
-4
-2
0
2
4
6
8

10

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Methylaconitate (-)x10-3

sleep stage
N3 REM WK

-0.1
-0.05

0
0.05

0.1
0.15

0.2
0.25

0.3

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Succinate semialdehyde (-)

sleep stage
N3 REM WK

-0.02

0

0.02

0.04

0.06

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Hydroxybutyrate (-)

sleep stage
N3 REM WK

-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05
0.06

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Acetolactate (-)

sleep stage
N3 REM WK

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Propionylcarnitine (+)

-0.01

0

0.01

0.02

0.03

0.04

sleep stage
N3 REM WK

x10-3

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Butyrylcarnitine (+)

-3

-1

1

3

5

sleep stage
N3 REM WK

-0.05

0

0.05

0.1

0.15

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y

Glyoxylate (-)

sleep stage
N3 REM WKno

rm
al

ize
d 

sig
na

l i
nt

en
sit

y

Hydroxypyruvate (-)

0

0.05

0.1

0.15

sleep stage
N3 REM WK

-0.2

-0.1

0

0.1

0.2

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y Deoxyhexose (-)

sleep stage
N3 REM WK

-0.02
0

0.02
0.04
0.06
0.08

no
rm

al
ize

d 
sig

na
l i

nt
en

sit
y Glycerate (-)

sleep stage
N3 REM WK

The central mark in each box represents the median and the edges of the box correspond to the 25th and 75th
percentiles, respectively. Extreme data points are represented by the whiskers, and outliers are indicated with
circles.
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Figure B.5.: The schematic of a feedforward neural network for identifying Granger causes of time series Yt

among predictors X1
t , X

2
t , ..., X

p�1
t .

B.1.3. Supplementary tables

Table B.1.: Balanced accuracy scores for predicting past sleep stages based on the future values of metabolic
features from the positive mode with neural networks. We used the leave-one-subject-out cross-validation
procedure to evaluate classi�ers. 95 % con�dence intervals for the mean accuracy were constructed with the
t-distribution.

Sleep stage Average
balanced accuracy

95 % t CI for the mean
balanced accuracy ion mode

Wake 0.771 [0.727, 0.815] positive
N3 0.676 [0.622, 0.729] positive
REM 0.691 [0.577, 0.806] positive
Wake 0.763 [0.678, 0.847] negative
N3 0.67 [0.640, 0.700] negative
REM 0.747 [0.692, 0.802] negative

Table B.2.: Summary of all features with di�erential regulation across di�erent stages of vigilance. This table
is available online in a curated data archive at ETH Zurich (https://www.research-collection.ethz.ch) under the
DOI 10.3929/ethz-b-000453100.
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Table B.3.: Numbers of features falsely identi�ed as Granger-causing the synthetic target time series for dif-
ferent values of the regularization parameter l.

l Numbers of False Discoveries Average Number of
False Discoveries

0 7, 27, 32, 118, 38, 26, 28, 34, 9, 48 36.7
10-4 43, 21, 73, 29, 70, 14, 12, 60, 17, 14 35.3
10-3 13, 1, 7, 18, 32, 5, 23, 33, 8, 4 14.4
10-2 1, 0, 0, 0, 1, 0, 1, 0, 0, 0 0.3
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B.2. Validation of breath biomarkers for obstructive
sleep apnea

B.2.1. Supplementary results

The classi�cation performance that we estimated with this strati�cation in the cross-
validation based on the training data is considerably lower than the one reported in the pilot
study (reported AUC cross-validation = 0.87). Previously, only the ODI was used for strati�cation.
To evaluate whether the metabolic pattern of exhaled breath predicts groups de�ned only
by ODI better, we repeated the classi�cation procedure again with the following grouping
criteria: ODI > 30/h (OSA), ODI < 10/h (control) (�gure B.12). For the training set we reduced
the control group to ODI < 2/h in order to get balanced group sizes (�gure B.12). With these
strati�cation criteria we achieved similar predictive performance in the training set as in the
pilot study (AUCcross-validation = 0.79, �gure B.12b and c). Nevertheless, the prediction of the
validation set declined to AUC = 0.62 (�gure B.12e and f).

Since technical improvements have been made between the pilot study and this validation
study and both studies were time-wise separated, we assessed the comparability of both data
sets in a principal component analysis (�gure B.13a). Even though only a slight shift be-
tween the two sets is noticeable, we corrected it successfully by applying a batch correction
algorithm based on an Empirical Bayes method (�gure B.13b). We subsequently repeated the
classi�cation procedure with the adjusted data. The results are presented in �gure B.13. How-
ever, the AUC improved only by 0.01 to 0.67. The results from all classi�cation procedures
are summarized in table B.6.

B.2.2. Supplementary discussion

We further investigated the samples that were false negatives in all three classi�cation pro-
cedures as indicated in supplementary �gure B.15. One of them was wearing lipstick, which
we observed often to be confounding due to ion suppression caused by prominent plasticiz-
ers or other ingredients with a good ionization e�ciency. Even though visual inspection of
the spectra of this study participant did not capture our attention, it is possible that a con-
tamination from the lipstick compromised the results. The three remaining false negatives
have in common that the respiratory polygraphy was not carried out on the same day as
the SESI-HRMS breath measurement. It could thus be that the MS-based diagnosis does not
match the clinical diagnosis due to night-to-night variability of OSA, which is well-known.
To overcome this problem, multiple measurements would be required.
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B.2.3. Supplementary figures
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Figure B.6.: Boxplots (center line: median, box limits: 25th and 75th percent quantile, whisker length: 1.5 in-
terquartile range) for all features with signi�cant di�erences between OSA patients and subjects without OSA.
(OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points; unclear:
in between; strati�cation 1). log2FC: log2 fold change, p: p-value.

177



Appendix B. Supplementary information

−log(p)

log2 fold change
M34

2−undecenal
M22
M1
M6
M44
M46

benzothiazole
M32
M13
M48
M47

4−(hexyloxy)phenol
4−hydroxy−2−octenal (NH4+ adduct)

M39
M20

2−ethylfuran
2−propylfuran

M36
2−pentenal (NH4+ adduct)

4−hydroxy−2−heptenal
M49

2−pentylfuran
M23
M43

2−butylfuran
M42

4−hydroxy−2−octenal

0 1 2 3

OSA vs. control

Figure B.7.: Signi�cant di�erences in metabolic breath patterns between OSA patients and individuals without
OSA (control: ODI < 10/h & ESS <11 points; OSA: ODI < 30/h & ESS > 10 points; unclear: in between; strati-
�cation 2). P-values and fold changes of signi�cant features sorted by signi�cance. Boxplots for all signi�cant
features are provided in �gure B.9, numeric results for signi�cant features are summarized in table 5.2 and 5.3
and numeric results of all 78 features are given in supplementary table B.4 and B.5.
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Figure B.8.: Signi�cant di�erences in metabolic breath patterns between OSA patients and individuals without
OSA (control: ODI < 10/h & ESS <11 points; OSA: ODI < 30/h & ESS > 10 points; unclear: in between; strat-
i�cation 2). a volcano plot for all 78 metabolites. b p-value distribution for between-group di�erences from
Mann-Whitney-U test. c, d Exemplary boxplots (center line: median, box limits: 25th and 75th percent quantile,
whisker length: 1.5 interquartile range) of 4-hydroxy-2-octenal and 2-butylfuran. Boxplots for all signi�cant
features are provided in �gure B.9, numeric results for signi�cant features are summarized in table 5.2 and 5.3
and numeric results of all 78 features are given in supplementary table B.4 and B.5.

179



Appendix B. Supplementary information

0

3

6

9

in
te

ns
ity

M6
 p =  0.043 

 log2FC =  0.279

0

2

4

6

in
te

ns
ity

2−ethylfuran 
 p =  0.005 

 log2FC =  0.483

0

2

4

6

in
te

ns
ity

 p =  0.006 
 log2FC =  0.656

0

2

4

in
te

ns
ity

M13
 p =  0.04 

 log2FC =  0.602

0

2

4

6

8

in
te

ns
ity

2−propylfuran 
 p =  0.001 

 log2FC =  0.431

1

2

3

4

5

6

in
te

ns
ity

M20
 p =  0.019 

 log2FC =  0.358

2

4

6

in
te

ns
ity

2−Butylfuran 
 p =  0.002 

 log2FC =  0.256

0

3

6

9

in
te

ns
ity

M24
 p =  0.027 

 log2FC =  −0.327

0.0

2.5

5.0

7.5

in
te

ns
ity

 p =  0.017 
 log2FC =  0.452

0

2

4

6

in
te

ns
ity

benzothiazole 
 p =  0.033 

 log2FC =  0.395

2

4

6

8

in
te

ns
ity

 p =  0.032 
 log2FC =  0.123

0

2

4

6

in
te

ns
ity

M36
 p =  0.021 

 log2FC =  0.382

0.0

2.5

5.0

7.5

10.0

in
te

ns
ity

 p =  0.021 
 log2FC =  0.459

0

2

4

6

in
te

ns
ity

M39
 p =  0.005 

 log2FC =  0.523

0.0

2.5

5.0

7.5

in
te

ns
ity

M42
 p =  0.006 

 log2FC =  0.218

1

2

3

4

5

in
te

ns
ity

 p =  0.02 
 log2FC =  0.707

1

2

3

4

in
te

ns
ity

M44
 p =  0.019 

 log2FC =  0.609

0

5

10

in
te

ns
ity

M45
 p =  0.023 

 log2FC =  0.407

0

2

4

6

in
te

ns
ity

M46
 p =  0.011 

 log2FC =  0.67

1

2

3

4

5

in
te

ns
ity

M47
 p =  0.005 

 log2FC =  0.687

1

2

3

4

5

in
te

ns
ity

M48
 p =  0.001 

 log2FC =  0.646

0

2

4

6

8

in
te

ns
ity

M49
 p =  0.005 

 log2FC =  0.542

0

2

4

6

8

in
te

ns
ity

M52
 p =  0.029 

 log2FC =  0.551

1

2

3

4

in
te

ns
ity

M54
 p =  0.048 

 log2FC =  −0.459

2−pentenal 
(NH4+ adduct) 

4−hydroxy−
2−heptenal 

4−hydroxy−2−octenal 
(NH4+ adduct) 

4−hydroxy−
2−octenal 

4−(hexyloxy)-
phenol 

control OSA unclear

Figure B.9.: Boxplots (center line: median, box limits: 25th and 75th percent quantile, whisker length: 1.5 in-
terquartile range) for all features with signi�cant di�erences between OSA patients and individuals without
OSA (control: ODI < 10/h & ESS <11 points; OSA: ODI < 30/h & ESS > 10 points; unclear: in between; strati�-
cation 2).
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Figure B.10.: Linear regression for all features that correlate signi�cantly (p < 0.05) with ODI (OSA: ODI > 30/h
or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points; unclear: in between;
strati�cation 1).
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Figure B.11.: Linear regression for all features that correlate signi�cantly (p < 0.05) with ESS (OSA: ODI > 30/h
or ODI > 10/h & ESS > 10 points; control: ODI < 5/h or ODI < 10/h & ESS < 11 points; unclear: in between;
strati�cation 1).
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Figure B.12.: Classi�cation results with strati�cation similar to pilot study (classi�cation 2). a ESS and ODI
of samples in the training set. b ROC curve from 7-fold cross validation of the classi�cation model with the
training set and c corresponding confusion matrix. d ESS and ODI of the samples in the validation cohort.
e ROC curve from predictions of the validation cohort and f corresponding confusion matrix.
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Figure B.14.: Classi�cation results after batch correction (classi�cation 3). a ESS and ODI of samples in the
training set. b ROC curve from 7-fold cross validation of the classi�cation model with the training set and
c corresponding confusion matrix. d ESS and ODI of the samples in the validation cohort. e ROC curve from
predictions of the validation cohort and f corresponding confusion matrix.
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Figure B.15.: Accuracy of diagnosis based on metabolic pattern of exhaled breath. Correctly and wrongly
predicted samples of validation data set in classi�cation 1 (a), in classi�cation 2 (b), and in classi�cation 3 (c).
Samples that are false negatives in all three classi�cation procedures are highlighted with blue circles.
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Figure B.16.: P-value distributions from Shapiro-Wilk’s test for normality. a Control group from strati�cation
1 (OSA: ODI > 30/h or ODI > 10/h & ESS > 10 points, control: ODI < 5/h or ODI < 10/h & ESS < 11 points).
b OSA group from strati�cation 1. c Control group from strati�cation 2 (control: ODI < 10/h & ESS <11 points,
OSA: ODI < 30/h & ESS > 10 points). d OSA group from strati�cation 2.
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B.2.4. Supplementary tables

Table B.4.: Results from statistical analysis of validation data for all 78 features that have been reported previ-
ously as potential biomarkers of OSA.
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M1 unknown 53.0391 no no yes
isoprene terpenes 69.0693 yes no yes
M2 unknown 71.0487 no no yes
M3 unknown 79.0409 no no yes
M4 unknown 81.0328 no no yes
M5 unknown 81.0525 yes no no
M6 unknown 83.0854 no no yes
4-hydroxy-2-butenal unsaturated aldehydes 87.0439 no no yes
M7 unknown 88.0472 no no yes
M8 unknown 91.0413 yes no no
M9 unknown 93.0574 no no yes
M10 unknown 95.0494 no no yes
M11 unknown 97.0285 yes no no
2-ethylfuran furanes 97.0647 yes no yes
M12 unknown 101.0598 no no yes
2-pentenal (NH +

4 adduct) unsaturated aldehydes 102.0913 yes no yes
M13 unknown 103.0943 no no yes
M14 unknown 104.0495 yes no no
M15 unknown 105.0551 yes no no
M16 unknown 109.0281 yes no yes
M17 unknown 109.0648 yes no no
M18 unknown 110.0678 no no yes
2-propylfuran furanes 111.0803 yes yes 0.4 yes
M19 unknown 112.0211 no no yes
M20 unknown 122.0835 yes no no
M21 unknown 123.1165 no no yes
M22 unknown 124.0835 yes no no
2-Butylfuran furanes 125.0958 yes yes 0.44 no
M23 unknown 128.0701 no no yes
M24 unknown 129.0183 no no yes
4-hydroxy-2-heptenal unsaturated aldehydes 129.0908 yes yes 0.48 no
M25 unknown 131.0601 yes no yes
M26 unknown 135.0438 yes no no
benzothiazole thiazoles 136.0216 yes no no
M27 unknown 136.0471 yes no yes
M28 unknown 137.0593 yes yes 0.44 no
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Continued from previous page.
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M29 unknown 138.0171 yes no yes
M30 unknown 138.0571 yes no no
2-pentylfuran furanes 139.1116 yes yes 0.38 yes
4-hydroxy-2-octenal (NH +

4 adduct) unsaturated aldehydes 143.1063 no yes 0.42 no
M31 unknown 147.0551 yes no yes
M32 unknown 149.0971 yes no no
M33 unknown 151.1116 no no yes
M34 unknown 152.0699 yes yes 0.42 no
M35 unknown 154.0651 yes no no
M36 unknown 158.1241 yes no no
M37 unknown 160.0611 no no yes
4-hydroxy-2-octenal unsaturated aldehydes 160.1329 yes yes 0.42 no
M38 unknown 164.0704 no yes 0.41 no
M39 unknown 165.1272 no no yes
M40 unknown 167.1064 yes no no
M41 unknown 169.0867 yes no no
2-undecenal unsaturated aldehydes 169.1584 no yes 0.38 no
M42 unknown 175.1117 yes no yes
2-(methylthio)benzothiazole thiazoles 182.0092 yes no yes
M43 unknown 182.0897 no yes 0.38 no
4-(hexyloxy)phenol benzenoids 195.1379 no yes 0.38 no
M44 unknown 207.1378 no yes 0.38 no
M45 unknown 208.1776 no no yes
M46 unknown 209.1168 no yes 0.4 no
M47 unknown 209.1536 yes no no
M48 unknown 210.1568 no no yes
M49 unknown 211.1325 no yes 0.38 no
M50 unknown 221.1532 no yes 0.38 no
M51 unknown 221.19 yes no no
M52 unknown 223.1327 no yes 0.44 no
M53 unknown 227.1269 no yes 0.43 no
M54 unknown 228.0686 no no yes
M55 unknown 231.1741 no no yes
M56 unknown 233.1536 no yes 0.41 no
M57 unknown 237.1123 no yes 0.4 no
M58 unknown 243.1215 no yes 0.38 no
M59 unknown 247.1697 no yes 0.46 no
M60 unknown 249.1476 no yes 0.38 no
M61 unknown 249.1846 no yes 0.45 no
2-ethylhexyl-4-hydroxybenzoate benzenoids 251.1641 no yes 0.43 no
M62 unknown 263.1632 no yes 0.38 no
M63 unknown 313.1127 no yes 0.4 no
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Table B.5.: Results from statistical analysis of validation data for all 78 features that have been reported previ-
ously as potential biomarkers of OSA.
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M1 53.0374 0.1 0.237 0.079 0.08 0.37 0.34 0.314 0.223 0.19 0.032 0.015 0.48
isoprene 69.0698 0.06 0.454 0.119 -0.01 0.88 0.41 0.714 0.37 -0.01 0.314 0.075 0.1
M2 71.0493 0 0.989 0.2 -0.02 0.85 0.41 0.942 0.446 0.07 0.547 0.099 0.13
M3 79.0392 0.2 0.016 0.02 -0.06 0.49 0.34 0.094 0.143 0.51 0.067 0.024 0.71
M4 81.0338 0.1 0.225 0.077 -0.06 0.44 0.34 0.546 0.331 0 0.157 0.047 0.11
M5 81.0525 0.06 0.466 0.12 0.19 0.02 0.19 0.153 0.152 0.46 0.051 0.021 0.74
M6 83.0853 0.19 0.021 0.022 0.16 0.05 0.19 0.037 0.088 0.27 0.03 0.015 0.48
4-hydroxy-2-butenal 87.0442 0.05 0.575 0.129 -0.03 0.69 0.37 0.634 0.342 0.24 0.387 0.083 0.27
M7 88.0502 -0.11 0.163 0.072 -0.05 0.53 0.34 0.365 0.246 -0.19 0.281 0.073 -0.36
M8 91.0393 0.02 0.77 0.162 0.06 0.44 0.34 0.993 0.455 0.03 0.26 0.072 0.17
M9 93.0548 0.19 0.022 0.022 -0.1 0.24 0.34 0.213 0.184 0.43 0.179 0.051 0.52
M10 95.0491 0.08 0.314 0.097 -0.05 0.58 0.34 0.447 0.286 0.09 0.314 0.075 0.12
M11 97.0294 0.05 0.569 0.129 -0.02 0.83 0.41 0.288 0.221 0.04 0.611 0.105 0.01
2-ethylfuran 97.0646 0.23 0.005 0.017 0.1 0.25 0.34 0.009 0.068 0.38 0.005 0.004 0.8
M12 101.0597 0.11 0.183 0.072 0.06 0.47 0.34 0.169 0.16 0.44 0.064 0.024 0.49
2-pentenal (NH +

4 adduct) 102.0912 0.23 0.005 0.017 0.07 0.43 0.34 0.029 0.087 0.43 0.003 0.004 0.75
M13 103.0952 0.2 0.013 0.02 0.05 0.55 0.34 0.047 0.088 0.55 0.019 0.011 0.95
M14 104.0455 -0.07 0.42 0.114 0 0.96 0.43 0.819 0.407 -0.29 0.442 0.087 -0.53
M15 105.0545 0.12 0.161 0.072 0.09 0.3 0.34 0.128 0.144 0.63 0.067 0.024 0.82
M16 109.0285 -0.05 0.545 0.127 -0.1 0.25 0.34 0.296 0.221 -0.25 0.531 0.098 -0.33
M17 109.0648 0.11 0.194 0.074 0.12 0.15 0.3 0.113 0.143 0.34 0.143 0.045 0.41
M18 110.0713 0.08 0.362 0.107 0.06 0.46 0.34 0.099 0.143 0.12 0.414 0.085 -0.1
2-propylfuran 111.0803 0.27 0.001 0.011 0.1 0.21 0.34 0.003 0.068 0.41 0.004 0.004 0.56
M19 112.016 0.01 0.882 0.183 0.05 0.58 0.34 0.68 0.358 0.08 0.314 0.075 0.31
M20 122.0806 0.21 0.012 0.02 0.03 0.68 0.37 0.01 0.068 0.49 0.005 0.004 0.8
M21 123.1166 0.1 0.205 0.075 -0.03 0.7 0.37 0.148 0.151 0.16 0.375 0.083 -0.06
M22 124.0838 0.14 0.09 0.053 0.15 0.06 0.22 0.024 0.081 0.26 0.036 0.017 0.41
2-Butylfuran 125.0961 0.23 0.004 0.017 0.13 0.13 0.28 0.005 0.068 0.26 0.001 0.004 0.48
M23 128.0703 0.13 0.114 0.058 0.19 0.02 0.19 0.042 0.088 0.27 0.002 0.004 0.35
M24 129.0178 -0.15 0.066 0.043 -0.05 0.52 0.34 0.094 0.143 -0.19 0.281 0.073 -0.28
4-hydroxy-2-heptenal 129.0908 0.2 0.015 0.02 0.13 0.11 0.26 0.022 0.081 0.42 0.003 0.004 0.83
M25 131.0568 -0.07 0.365 0.107 0 0.98 0.44 0.949 0.446 -0.64 0.915 0.145 -0.5
M26 135.0438 0.05 0.532 0.127 0.06 0.45 0.34 0.521 0.322 0.3 0.137 0.044 0.34
benzothiazole 136.0213 0.2 0.016 0.02 -0.04 0.62 0.35 0.019 0.081 0.4 0.025 0.014 0.5
M27 136.0511 -0.06 0.485 0.123 0.19 0.02 0.19 0.96 0.446 -0.18 0.401 0.084 -0.03
M28 137.0594 -0.05 0.513 0.126 0.06 0.48 0.34 0.608 0.342 -0.16 0.697 0.113 0.04
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B.2. Validation of breath biomarkers for obstructive sleep apnea

Continued from previous page.
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M29 138.0174 0.11 0.18 0.072 -0.07 0.43 0.34 0.107 0.143 0.15 0.387 0.083 0.1
M30 138.0549 -0.09 0.252 0.083 0.05 0.56 0.34 0.883 0.427 -0.16 0.991 0.155 -0.13
2-pentylfuran 139.1116 0.11 0.197 0.074 0.17 0.04 0.19 0.04 0.088 0.26 0.002 0.004 0.57
4-hydroxy-2-octenal (NH +

4 adduct) 143.1064 0.16 0.048 0.036 0.13 0.11 0.26 0.036 0.088 0.12 0.006 0.005 0.25
M31 147.0507 -0.05 0.549 0.127 -0.08 0.33 0.34 0.64 0.342 0.01 0.314 0.075 -0.52
M32 149.0959 0.11 0.176 0.072 0.21 0.01 0.19 0.126 0.144 0.3 0.019 0.011 0.38
M33 151.1117 0.05 0.521 0.126 0.06 0.47 0.34 0.256 0.208 0.16 0.531 0.098 -0.08
M34 152.0705 0.13 0.104 0.055 0.02 0.82 0.41 0.178 0.164 0.23 0.045 0.02 0.55
M35 154.0695 -0.13 0.104 0.055 -0.05 0.53 0.34 0.216 0.184 -0.32 0.428 0.085 -0.2
M36 158.125 0.16 0.048 0.036 0.14 0.09 0.25 0.044 0.088 0.12 0.003 0.004 0.67
M37 160.0603 -0.06 0.504 0.126 0.14 0.09 0.25 0.798 0.402 0.25 0.714 0.115 0.3
4-hydroxy-2-octenal 160.1331 0.18 0.026 0.023 0.16 0.05 0.19 0.02 0.081 0.47 0.001 0.003 0.85
M38 164.0693 -0.01 0.912 0.187 -0.05 0.54 0.34 0.735 0.376 0.18 0.645 0.108 0.13
M39 165.1273 0.19 0.019 0.022 0.1 0.24 0.34 0.046 0.088 0.41 0.005 0.004 0.54
M40 167.1066 0.06 0.439 0.117 0.05 0.52 0.34 0.145 0.151 0.15 0.157 0.047 0.19
M41 169.0859 0.1 0.209 0.075 0.11 0.2 0.34 0.318 0.223 0.25 0.051 0.021 0.39
2-undecenal 169.1586 0.11 0.17 0.072 0.09 0.3 0.34 0.36 0.246 0.16 0.04 0.018 0.33
M42 175.1134 0.21 0.01 0.02 0.16 0.05 0.19 0.007 0.068 0.41 0.001 0.003 0.64
2-(methylthio)benzothiazole 182.0089 0.08 0.36 0.107 -0.1 0.23 0.34 0.64 0.342 0.2 0.595 0.105 -0.07
M43 182.0809 0.12 0.146 0.071 0.14 0.09 0.25 0.064 0.11 0.18 0.001 0.004 0.55
4-(hexyloxy)phenol 195.1379 0.15 0.076 0.048 0.06 0.45 0.34 0.111 0.143 0.34 0.01 0.008 0.62
M44 207.1381 0.15 0.065 0.043 0.02 0.82 0.41 0.245 0.204 0.35 0.028 0.015 0.58
M45 208.1773 0.15 0.06 0.043 0.06 0.49 0.34 0.117 0.143 0.19 0.387 0.083 0.16
M46 209.1173 0.18 0.025 0.023 -0.03 0.69 0.37 0.111 0.143 0.54 0.026 0.014 0.75
M47 209.1536 0.2 0.016 0.02 0.03 0.72 0.37 0.057 0.102 0.37 0.012 0.008 0.68
M48 210.1568 0.24 0.004 0.017 0.02 0.83 0.41 0.02 0.081 0.5 0.014 0.01 0.67
M49 211.1328 0.2 0.015 0.02 0.17 0.04 0.19 0.025 0.081 0.42 0.002 0.004 0.67
M50 221.1542 -0.07 0.414 0.114 -0.08 0.34 0.34 0.42 0.273 -0.2 0.102 0.036 -0.35
M51 221.19 -0.05 0.583 0.129 0.01 0.86 0.41 0.621 0.342 -0.06 0.611 0.105 -0.23
M52 223.1329 0.14 0.098 0.055 -0.05 0.55 0.34 0.169 0.16 0.44 0.349 0.08 0.49
M53 227.1277 0.14 0.09 0.053 0.06 0.46 0.34 0.305 0.223 0.36 0.057 0.022 0.72
M54 228.0642 -0.18 0.03 0.025 -0.05 0.58 0.34 0.119 0.143 -0.37 0.119 0.04 -0.4
M55 231.1749 0.11 0.169 0.072 0.1 0.24 0.34 0.19 0.17 0.06 0.281 0.073 0.23
M56 233.1534 0.04 0.614 0.134 0.01 0.86 0.41 0.399 0.265 0.23 0.179 0.051 0.31
M57 237.1131 0.07 0.42 0.114 -0.01 0.93 0.43 0.602 0.342 0.11 0.428 0.085 0.17
M58 243.1223 0.1 0.222 0.077 0.09 0.26 0.34 0.481 0.302 0.09 0.137 0.044 0.35
M59 247.1695 0.03 0.757 0.161 0.04 0.61 0.35 0.589 0.342 0.1 0.645 0.108 0.13
M60 249.1487 0.12 0.149 0.071 0.05 0.56 0.34 0.143 0.151 0.2 0.337 0.079 0.2
M61 249.1847 -0.08 0.308 0.097 0.07 0.37 0.34 0.264 0.21 -0.06 0.485 0.092 0.07
2-ethylhexyl-4-hydroxybenzoate 251.1642 0.03 0.732 0.158 0.06 0.46 0.34 0.57 0.34 -0.07 0.662 0.109 0.05
M62 263.1646 0.09 0.281 0.09 0.04 0.61 0.35 0.292 0.221 0.27 0.611 0.105 0.18
M63 313.1136 -0.07 0.413 0.114 0.06 0.48 0.34 0.84 0.412 -0.16 0.485 0.092 -0.44
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Appendix B. Supplementary information

Table B.6.: Diagnostic performance of exhaled breath analysis for OSA. (C1: Classi�cation 1; C2: Classi�cation
2 (strati�cation similar to pilot study); C3: Classi�cation 3 (after batch correction); AUC: area under receiver
operating characteristic curve; CV: cross validation; TPR: true positive rate, FPR: false positive rate, TNR: true
negative rate, FNR: false negative rate, CI: con�dence interval)

Training Set
strati�cation ncontrol nOSA AUC (CV) TPR FPR TNR FNR

C1 OSA: ODI>30 or (ODI>10 & ESS>10) 9 9 0.59 67% 33% 67% 33%control: ODI<5 or (ODI<10 & ESS<=10)

C2 OSA: ODI>30 6 8 0.79 88% 33% 67% 13%
control: ODI<2

C3 OSA: ODI>30 or (ODI>10 & ESS>10) 9 9 0.64 67% 44% 56% 33%
control: ODI<5 or (ODI<10 & ESS<=10)

Validation Set
strati�cation ncontrol nOSA AUC CI1 CI2 TPR FPR TNR FNR

C1 OSA: ODI>30 or (ODI>10 & ESS>10) 33 51 0.66 0.55 0.79 76% 58% 42% 24%control: ODI<5 or (ODI<10 & ESS<11)

C2 OSA: ODI>30 47 36 0.62 0.49 0.73 89% 72% 28% 11%
control: ODI<10

C3 OSA: ODI>30 or (ODI>10 & ESS>10) 33 51 0.67 0.54 0.77 80% 61% 39% 20%
control: ODI<5 or (ODI<10 & ESS<11)
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B.3. Multi-omics correlates of insulin signaling and circadian function

B.3. Multi-omics correlates of insulin signaling and
circadian function

B.3.1. Supplementary figures
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Figure B.17.: Violin plots of identi�ed metabolites, for which we discovered an elongating in�uence on the
circadian period length of U2OS cells. Data points are split in quartiles based on the metabolite levels and given
p-values were obtained from two-sided Kolmogow-Smirnow test. Medians are indicated with horizontal lines.
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Figure B.18.: Violin plots of identi�ed metabolites, for which we discovered an reducing e�ect on the circadian
period length of U2OS cells. Data points are split in quartiles based on the metabolite levels and given p-values
were obtained from two-sided Kolmogow-Smirnow test. Medians are indicated with horizontal lines.

194



B.3. Multi-omics correlates of insulin signaling and circadian function

B.3.2. Supplementary tables

Table B.7.: Participant inclusion and exclusion criteria.

Inclusion criteria

Groups Non T2D T2D
Non obese obese Non obese Obese

Age (y) 40-75
BMI (kg/m2) 18.5-29.9 � 30 18.5-29.9 � 30
Antidiabetic treatment - - + - +
HbA1c (%) <6.0 � 6.5 all range � 6.5 all range

Exclusion criteria
Age < 40y, > 75y
Type 1 diabetes or LADA diabetes
Steroid-induced diabetes or post-transplant diabetes
Active neoplasia
Not-recovered hepatitis
Immunosupressive therapy
Corticosteroid therapy
Chronic sleeping treatment
Sleep apnea syndrome with machine therapy (� 2 hours/night)
Shift work

Table B.8.: Baseline characteristics of the participants divided into four groups (* Values are means ±SD, #
according to the supplemental table B.11, NA non applicable, IQR: Interquartile range)

Characteristics * Non T2D Non obese (112) Non T2D obese (94) T2D non obese (52) T2D obese (50)
Age (y) 57.93 ± 9.63 55.15 ± 8.86 59.72 ± 14.56 61.48 ± 9.87
Female sex — no. (%) 65 (58.04) 47 (50.0) 16 (30.77) 20 (40)
Body-mass index (kg/m2) 24.07 ± 3.5 34.16 ± 4.39 25.82 ± 2.96 34.95 ± 3.81
Median duration of
type 2 diabetes— year (IQR) NA NA 10 (5-15.25) 4.5 (1-9.75)

Systolic blood pressure — mm Hg 121.86 ± 18.64 127.64 ± 14.84 129.67 ± 16.43 140.24 ± 48.19
Heart rate 66.75 ± 9.98 71.44 ± 11.73 74.37 ± 11.71 74.6 ± 14.67
Epworth somnolence score 5.87 ± 3.58 7.05 ± 3.91 5.56 ± 3.26 6.84 ± 4.58
Physical activity score # 3.75 ± 2.06 2.3 ± 1.35 2.75 ± 1.79 2.59 ± 1.66
History of coronary, stroke, peripheral
arterial disease — no. (%) 0 (0) 3 (3.19) 6 (11.54) 3 (6)

History of cancer— no. (%) 0 (0) 2 (2.13) 6 (11.54) 3 (6)
Psychiatric disease— no. (%) 5 (4.46) 7 (7.45) 4 (5.77) 6 (12)
In�ammatory diseases— no. (%) 7 (6.25) 7 (7.45) 4 (5.77) 7 (14)
Sleep disorders— no. (%) 9 (8.04) 14 (14.89) 6 (11.54) 7 (14)
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Appendix B. Supplementary information

Table B.9.: Medications of the participants divided into four groups. (ACE denotes angiotensin-converting
enzyme, ARB angiotensin-receptor blocker, DPP-4 dipeptidyl peptidase 4 and GLP-1 glucagon-like peptide 1.
NA Non Applicable)

Medications Non T2D non obese (112) Non T2D obese (94) T2D non obese (52) T2D obese (50)
Glucose-lowering therapies — no. (%) NA NA 50 (96.15) 48 (96)
Insulin NA NA 13 (25) 14 (28)
Metformin NA NA 43 (82.69) 38 (76)
Sulfonylurea NA NA 13 (25) 11 (22)
Gliptine (DPP4 inhibitors) NA NA 26 (50) 18 (38)
Gli�ozine (SGLT2 inhibitors) NA NA 14 (26.92) 14 (28)
GLP-1 receptor agonist NA NA 1 (1.92) 5 (10)

Cardiovascular therapies — no. (%) 13 (11.61) 26 (27.66) 42 (80.77) 39 (78)
Beta-blocker 3 (2.68) 1 (1.06) 7 (13.46) 3 (6)
Statin 3 (2.68) 7 (7.45) 29 (55.77) 19 (38)
Antiplatelet agents 3 (2.68) 8 (8.51) 23 (44.23) 14 (28)
ACE inhibitor or ARB 7 (6.25) 15 (15.96) 24 (46.15) 26 (52)
Diuretics 0 (0) 2 (2.13) 9 (17.31) 8 (16)
Calcium channel blocker 0 (0) 5 (5.32) 8 (15.38) 9 (18)

Antipsychotics — no. (%) 0 (0) 1 (1.06) 2 (3.85) 3 (6)
Antidepressant — no. (%) 3 (2.68) 9 (9.57) 1 (1.92) 4 (8)
Benzodiazepine — no. (%) 2 (1.79) 0 (0) 0 (0) 1 (2)
Estrogens — no. (%) 12 (10.71) 3 (3.19) 2 (3.85) 0 (0)
Sleeping therapies — no. (%) 4 (3.57) 0 (0) 1 (1.92) 0 (0)
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B.3. Multi-omics correlates of insulin signaling and circadian function
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Appendix B. Supplementary information

Table B.11.: Physical activity criteria score.

Physical activity score
No or very little physical exercise 1
Between one to three times per week 2
Between three to �ve times per week 4
Between six to seven times per week 6.5
More than several consecutive hours of physical exercise every day 7
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B.4. Understanding metabolic e�ects of seasonal light schedules in arctic reindeer

B.4. Understanding metabolic e�ects of seasonal light
schedules in arctic reindeer

B.4.1. Supplementary tables

Table B.12.: Summary of the results from rhythmicity analysis and prediction of rhythmic parameters for all
m/z features. Metabolite names are given for annotated and identi�ed features and the corresponding iden-
ti�cation (ID) method is provided. This table is available online in a curated data archive at ETH Zurich
(https://www.research-collection.ethz.ch) under the DOI 10.3929/ethz-b-000453100.

Table B.13.: Results from metabolic pathway enrichment analysis using the mummichog algorithm. Only
pathways with at least two signi�cant hits and with more signi�cant hits than expected were considered. This
table is available online in a curated data archive at ETH Zurich (https://www.research-collection.ethz.ch) under
the DOI 10.3929/ethz-b-000453100.
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