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Abstract

Thermo- and aeroacoustic instabilities are a critical issue in industry and air transporta-
tion. These instabilities can pose a threat to the mechanical integrity of the system in
which they occur, with catastrophic consequences. In addition, aeroacoustic instabil-
ities also contributes to environmental noise pollution with adverse effects on human
and wildlife health. Thermoacoustic instabilities can occur in heavy-duty gas turbines
or aero-engines, when an unsteady flame constructively interacts with an acoustic mode
of the combustion chamber. They can be prevented by putting additional acoustic cav-
ities, so-called dampers, along the chamber walls. The dampers are usually cooled by a
purge flow passing through the damper, called bias flow. Aeroacoustic instabilities can
occur in any system where, in a pipe traversed by flow, an unsteady shear layer can
couple to an acoustic resonator, whether it is a side-branch cavity (in this case, the flow
is called grazing flow), or an abrupt area change over a section of the pipe in the case
of bias flow. Under particular circumstances, the shear layer starts amplifying pressure
disturbances. If this happens close to the frequency of one of the acoustic resonator
modes, self-sustained acoustic oscillations can occur.

In the present work, these complex phenomena are modelled and analysed accurately
using the approximate description as systems of coupled harmonic oscillators. In a first
part, this modelling approach is applied to the stabilization of an unstable acoustic
mode by an acoustic damper. The main dissipation mechanism of the dampers is vor-
tex shedding, occuring periodically at the damper exit. It can be adjusted by adjusting
the mean flow purging the dampers (bias flow). The modelling of two different types of
dampers as damped harmonic oscillators is derived and confirmed experimentally. This
model is then coupled to another linearly unstable oscillator representing the instabil-
ity. The stability analysis of the system is performed, and confirmed experimentally
against a chamber with an electro-acoustic feedback loop mimicking a thermoacoustic
instability. The best stabilization is shown to occur at the exceptional point of the
system.

In the next part the effects of the damper nonlinearity on the limit cycles of the coupled
system are investigated. Indeed, in case of very high amplitude in the chamber, the
mean flow through a Helmholtz damper can reverse during part of the cycle and produce
vortex shedding on the other side of the neck. This is accounted for using a nonlinearity



in the form of an absolute value term. The slow-flow amplitude equations of the system
are derived in order to determine the limit cycles and bifurcation diagram of the system.
It is shown that the damper nonlinearity induces hysteretic behaviour, which is also
demonstrated experimentally on the previous chamber-damper system.

The last part of the thesis deals with the application of the coupled oscillators system
to aeroacoustic instabilities, applied on the canonical setup of a rectangular deep cavity
attached to a square channel with mean flow (grazing flow). The frequency-dependent
acoustic response of both the cavity and the shear layer developing at the junction are
measured, and fitted using 2nd order transfer functions. The amplitude dependence
of the shear layer’s acoustic response is also measured. This allows for the analysis
of the system linear stability as well as the derivation of a nonlinear system of cou-
pled oscillators. This model can be used for studying the limit cycles of the system
using the slow-flow amplitude equations once again. Addition of both multiplicative
coloured noise and additive white noise to the model allows for the reproduction of the
experimentally-observed intermittency of the instability. In a last part, the influence
of the multiplicative coloured noise is studied on a simpler system, the Van der Pol
oscillator, in order to derive criteria for the occurrence of intermittency.

Overall, the coupled oscillators approach is successfully applied to two types of prob-
lems, namely the deep cavity – shear layer aeroacoustic instability, and the stabilization
of an unstable acoustic mode by acoustic dampers. The results of the model, whether
in terms of stability, oscillation amplitude, bifurcation diagram and influence of noise,
are validated against experiments. The modelling approach, although based on an ap-
proximate solution, allows for the reproduction of peculiar dynamical phenomena of
the real systems.



Résumé

Les instabilités thermoacoustiques et aéroacoustiques sont un problème d’une impor-
tance cruciale dans l’industrie et le transport aérien. Ces instabilités peuvent menacer
l’intégrité mécanique du système dans lequel elles se produisent, avec des conséquences
catastrophiques. De plus, les instabilités aéroacoustiques contribuent également à la
pollution sonore environnementale avec des effets néfastes sur la santé humaine et an-
imale. Les instabilités thermoacoustiques peuvent se produire dans les turbines à gaz
de grande puissance ou les moteurs d’avion, lorsqu’une flamme instable interagit de
manière constructive avec un mode acoustique de la chambre de combustion. Ils peu-
vent être évités en installant des cavités acoustiques supplémentaires, appelées amortis-
seurs acoustiques, le long des parois de la chambre. Ceux-ci sont généralement refroidis
par un flux de purge traversant, appelé flux de biais. Les instabilités aéroacoustiques,
quant à elles, peuvent se produire dans tout système où, dans un conduit traversé par un
écoulement, une couche de cisaillement instationnaire peut se coupler à un résonateur
acoustique, qu’il s’agisse d’une cavité de branche latérale (dans ce cas, l’écoulement
est appelé écoulement rasant), ou un changement brusque de zone sur une section du
tuyau en cas de flux de biais. Dans des circonstances particulières, la couche de cisaille-
ment commence à amplifier les perturbations de pression. Si cela se produit près de
la fréquence de l’un des modes du résonateur acoustique, des oscillations acoustiques
auto-entretenues peuvent se produire.

Dans la présente thèse, ces phénomènes complexes sont modélisés et analysés en détail
en utilisant la description approximative d’un système d’oscillateurs harmoniques couplés.
Dans une première partie, cette approche de modélisation est appliquée à la stabil-
isation d’un mode acoustique instable par un amortisseur acoustique. Le principal
mécanisme de dissipation des amortisseurs est le détachement de tourbillons, qui se
produit périodiquement à la sortie de l’amortisseur. La dissipation peut être ajustée
en ajustant le flux de purge des amortisseurs (flux de biais). La modélisation de deux
différents types d’amortisseurs en tant qu’oscillateurs harmoniques amortis est dérivée
et confirmée expérimentalement. Ce modèle est ensuite couplé à un autre oscillateur
linéairement instable représentant l’instabilité. L’analyse de stabilité du système est
effectuée et confirmée expérimentalement à l’aide une chambre avec une boucle de
rétroaction électro-acoustique imitant une instabilité thermoacoustique. Il est démontré
que la meilleure stabilisation du mode se produit au point exceptionnel du système.



Dans la partie suivante, les effets de la non-linéarité de l’amortisseur sur les cycles
limites du système couplé sont étudiés. En effet, en cas d’amplitude très élevée dans la
chambre, la vitesse moyenne dans le col d’un amortisseur acoustique de type Helmholtz
peut s’inverser pendant une partie du cycle et produire le détachement de tourbillons
du côté intérieur du col. Ceci est pris en compte en utilisant une non-linéarité sous la
forme d’un terme de valeur absolue. Les équations d’amplitude du système sont dérivées
afin de déterminer les cycles limites et le diagramme de bifurcation du système. Il est
démontré que la non-linéarité de l’amortisseur induit un comportement hystérétique, ce
qui est également démontré expérimentalement grâce au système chambre-amortisseur
du chapitre précédent.

La dernière partie de la thèse traite de l’application du système d’oscillateurs couplés
aux instabilités aéroacoustiques, appliqué sur la configuration canonique d’une cavité
profonde rectangulaire attachée à un canal de section carrée traversé par un écoulement
moyen (écoulement rasant). Les réponses acoustiques respectives de la cavité et de
la couche de cisaillement se développant à la jonction, dépendantes de la fréquence,
sont mesurées et ajustées à l’aide de fonctions de transfert du second ordre. La
dépendance en amplitude de la réponse acoustique de la couche de cisaillement est
également mesurée. Ceci permet l’analyse de la stabilité linéaire du système ainsi que
la dérivation d’un système non-linéaire d’oscillateurs couplés. Ce modèle peut être
utilisé pour étudier les cycles limites du système en dérivant à nouveau les équations
d’amplitude. L’ajout à la fois de bruit coloré multiplicatif et de bruit blanc addi-
tif permet de reproduire l’intermittence de l’instabilité observée expérimentalement.
Dans une dernière partie, l’influence du bruit multiplicatif coloré est étudiée sur un
système plus simple, l’oscillateur Van der Pol, afin de dériver des critères d’occurrence
de l’intermittence.

En conclusion, l’approche des oscillateurs couplés est appliquée avec succès à deux types
de problèmes, à savoir l’instabilité aéroacoustique cavité profonde - couche de cisaille-
ment et la stabilisation d’un mode acoustique instable par des amortisseurs acoustiques.
Les résultats du modèle, que ce soit en termes de stabilité, d’amplitude d’oscillation,
de diagramme de bifurcation et d’influence de bruit, sont validés grâce aux expériences.
L’approche de modélisation, bien que basée sur une solution approximative, permet la
reproduction de phénomènes dynamiques particuliers observés sur les systèmes réels.
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Chapter 1

Introduction

1.1 Motivation

Noise pollution is considered one of the main three environmental pollution that has
adverse effects on human health [31], along with air pollution and toxic chemical ex-
posure. The main culprits are road traffic, railways, air traffic and industry [31]. Even
at levels where the human auditory system is not at risk, noise pollution is the source
of numerous health issues [173], among which the release of stress hormones [31, 170],
sleep disturbances [142], hypertension and heart diseases [67]. The animal kingdom is
far from spared, with wildlife highly impacted by anthropogenic noise pollution [89]
and suffering similar health issues to those experienced by humans. As such, managing
the impact of anthropogenic noise is a critical component of maintaining both healthy
ecosystems and a healthy population.

Noise in itself, if within a reasonable level, is not necessarily harmful: low-level white
noise exposition has proven to have positive effects on concentration [144, 171] and
agitation-soothing properties [26]. The issue in noise pollution is rather that of tonal
noise with very narrow frequency content as opposed to broadband noise [139]. Al-
though the “annoyance level” seems to be higher for high frequency noise, compared
to low frequency noise, within the human hearing range for similar sound pressure
level [12], low-frequency noise represents a higher threat since humans seem to be par-
ticularly sensitive to it [9]. In addition, low-frequency noise is by definition particularly
difficult to contain and reduce due to the extent of the corresponding wavelength.

From a modelling perspective, tonal noise has the advantage that it arises from systems
which exhibit strong response at specific frequencies, i.e. systems that feature separated
acoustic modes. In this case, the acoustic field is a superposition of contributions of
all modes of the system. Under the assumption that the modes are sufficiently spaced
and only one of them drives a high amplitude tonal response, the system response can
be modelled using the contribution of that mode only [122], and the mode amplitude

1



1.1. Motivation

can be modelled using a harmonic oscillator equation, with the potential damping and
nonlinearities depending on the specificities of the system.

From a system stability point of view, the high-amplitude tonal noise dynamics can be
further divided between acoustic resonance, and instability, the latter usually involving
acoustics coupled to a source term. Both of these instances can not only be the source of
noise pollution, but also put the mechanical integrity of the system at risk. A zoology
of the different cases for flow-induced vibrations has been performed by Naudascher
& Rockwell [125]. Acoustic resonance corresponds to a linearly stable system (i.e. a
system that, if not excited, would experience exponential decay and converge to noise
level zero) excited by a source, whether coming from vibrations or from background
noise. In that case, the system, which can be modelled by a lightly-damped harmonic
oscillator, experiences resonance if the frequency of the excitation is close to the natu-
ral frequency of the oscillator, and is thus able to reach very high pressure amplitudes.
Those pressure amplitudes can also be reached by a different type of system dynamics,
namely an instability. In that case, the acoustic system itself still is linearly stable,
but is coupled to an active element that can render the full system linearly unstable
under certain conditions. Under those conditions, the system experiences exponential
growth of pressure amplitude until it stabilizes on a high-amplitude limit cycle due to
nonlinearities. There are various examples of this phenomenon, for example thermoa-
coustic instabilities (where the active element is an unsteady flame), or aeroacoustic
instabilities (where the active element is an unsteady shear layer), which are both the
focus of this thesis.

Thermoacoustic instabilities are a well-known phenomena that is triggered when con-
structive feedback is achieved between an unsteady flame and the acoustic field in an
enclosed environment (the combustion chamber for instance, which can be modelled as
an acoustic resonator). The condition for instability has been established as early as
the XIXth century by Lord Rayleigh [145], who noticed a tonal noise was produced by
a flame enclosed in a glass tube under the following condition:∮

p′Q′dt > 0 (1.1)

This equation, called the Rayleigh criterion, can be interpreted as follows: if the pres-
sure fluctuation p′ is in phase with the unsteady heat release Q′ from the flame, local
amplification of disturbances occurs [114]. If the spatial integration of this quantity
over the domain is also positive, an unstable feedback loop is created. This leads to
high pressure oscillation levels which, in the case of a small flame in a glass tube can be
considered an entertaining amusement, however, in the cases of high-power flames, can
lead to extreme damage to the system. For this reason, thermo-acoustic instabilities
has been the topic of numerous investigation for the safe design of rocket engines [68]
and gas turbines [46, 104], either aero-engines or land-based for electricity production.
A counter-measure to avoid thermoacoustic instabilities is adding some damping to
the system, for example by adding passive damping devices [202] such as Helmholtz
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Chapter 1 - Introduction

resonators [8, 17, 47], usually crossed by a purging mean flow (bias flow).

The second type of instability that will be the focus of this thesis is the aeroacoustic
instability. The classical setup is the following: a cavity (i.e. acoustic resonator) is
mounted perpendicularly to a channel through which there is a constant mean flow
(grazing flow). An unsteady shear layer develops at the junction between the channel
and the resonator. In a similar manner to the thermoacoustic instability, the aeroacous-
tic instability arises when constructive feedback is achieved between the unsteady shear
layer and the acoustic field inside the cavity. Once again, the condition for instability
stems from a closed integral from Howe’s energy corollary [73]:

−
∮
ρ̄(ω × v) · u′dt > 0, (1.2)

with ρ̄ the mean air density, ω the local vorticity, v the local velocity and u′ the
acoustic velocity, all of those quantities being evaluated close to the junction where
the shear layer develops. If this projection of the Lamb vector over the acoustic field is
positive over one cycle, acoustic energy is locally produced [73]. If the spatial integration
over the domain (around the unsteady shear layer) is positive, the unstable feedback
loop is achieved [21]. Aeroacoustic instability has been at the root of numerous issues
in industry, ranging from unwanted vibrations to acoustic fatigue failure. Practical
examples include slotted-wall tunnels for train transport [91], annular gas seals for
compressors and turbines [107], metal bellows [189], or steam dryer of a boiling water
reactor [206]. For this reason, the phenomenon of aeroacoustic instability has been
the subject of multiple studies since more than 60 years, beginning with wind tunnel
experiments [49, 94] and first empirical models [11, 152, 180]. Different measures to
counter-act the generation mechanism of disturbances have been studied [154], including
numerical simulations on the influence of the cavity edge geometry [42] or addition of
spoilers [166]. This remains however a challenging task, since the full description of the
different parameters’ influence on the aeroacoustic resonance mechanism is still lacking.

The present thesis uses the approximate harmonic oscillator solution in order to describe
both the influence of acoustic dampers on the stability and limit cycles of a mimicked
unstable thermoacoustic mode, and the aeroacoustic instability in a rectangular T-
junction. The aim is to provide an accurate description of the system dynamics without
trying to model the actual flow physics or the shear layer oscillations in detail. The
frame of the modelling used throughout the thesis and its justification is detailed below.

1.2 Coupled oscillators modelling

This section details the principle of the modelling used throughout the thesis, starting
from the acoustic resonator, which is the “base block” of our modelling approach, then
moving on to the different possible handling of the source term. The origin of the
nonlinearities and the influence of noise are also introduced in this section.

3



1.2. Coupled oscillators modelling

1.2.1 Acoustic resonator

As was mentioned in section 1.1, the acoustic systems considered in this thesis are those
that exhibit strong frequency response at specific frequencies, meaning their acoustic
field is a superposition of contributions of all modes of the system, and the acoustic
variable (usually the pressure) can be projected on an orthogonal basis Ψ using the
Galerkin expansion [117]:

p(t,x) =
∞∑
i=1

ηi(t)ψi(x), (1.3)

with ψi(x) the spatial distribution of the natural eigenmodes and ηi(t) their time-
dependent amplitude. If a certain mode j is dominates the acoustic response in a certain
frequency range, one can approximate the pressure field with p(t,x) = ηj(t)ψj(x). The
dominant mode amplitude ηj(t), simplified as η(t), can be modelled using a harmonic
oscillator equation:

η̈ + 2αη̇ + ω2
0η = F (t), (1.4)

With α the damping of the system (which is always positive if there are only acoustics
involved), ω0 the natural frequency of the dominant mode, and F (t) a forcing, which
can be either noise or a source-term as will be detailed in the next section. The damping
α can be a combination of damping from different sources, the main one being thermo-
viscous dissipation in the acoustic boundary layers at the boundaries of the system.
The boundary layers are formed when the fluid oscillates back and forth close to the
system boundaries due to the pressure oscillation. However, in the case of acoustic
resonators used as dampers in the attempt of stabilizing thermoacoustic instabilities,
the resonators are often purged with a mean flow (known as bias flow) in order to cool
them, but also to enhance the damping.

It is important to note that in specific cases the periodic vortex shedding caused by the
bias flow can lead to sound production [177, 193, 195]. Within the scope of this thesis,
however, only cases where the bias flow induces additional damping will be investigated.
Indeed, in that case, the damping term from the periodic vortex shedding at the end of
the damper mouth is proportional to the mean velocity ū via the pressure loss coefficient
ζH,Q. This coefficient incorporates effects due to the geometry of the damper and to
the flow conditions at the damper opening [8,122]. In this case the principal dissipation
mechanism contributing to the damping α is the vortex shedding, and in some cases
the visco-thermal losses in the acoustic boundary layers can even be neglected [181].

In the remainder of the thesis, the acoustic resonator equation which does not incor-
porate the source term will be expressed with the acoustic velocity as a variable, and
a pressure oscillation as forcing. This will represent our fundamental building block,
although it will always be displayed as the second equation in the coupled systems of
chapters 2, 3 and 4, for the simple reason that the acoustic velocity cannot be directly
compared to the experiments: only the acoustic pressure can be easily experimentally
measured with microphones.
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Chapter 1 - Introduction

1.2.2 Instability modelling

After having established the basis for the modelling of the acoustic resonator, this
section deals with the modelling of the instability, and on how to incorporate the effect
of the source term in simple harmonic oscillator equations. For systems experiencing
thermoacoustic instabilities, the acoustic pressure field, including source term coming
from the flame heat release, can be expressed by the Helmholtz equation in frequency
domain:

∇2p̂(s,x))−
(s
c

)2

p̂(s,x)) = −s(γ − 1)

c2
Q̂(s,x)) in the domain,

p̂(s,x))

û(s,x)) · n
= Z(s,x)) on boundaries,

(1.5)

where p̂ and û are the pressure and velocity fields in the frequency domain, s is the
Laplace variable, c is the speed of sound, γ the specific heat ratio, Q̂ the heat release, n
the normal going out of the boundary and Z the acoustic impedance. As mentioned in
the previous section, in case of a dominant mode the pressure field can be approximated
by p(t,x) = η(t)ψ(x), with ψ the mode shape and η the mode amplitude, which can
be determined by projecting Eq. (1.5) on ψ:

η̂(s) =
sρc2

s2 + ω2
0

1

V Λ

(
γ − 1

ρc2

∫
V

Q̂ψ∗(x)dV −
∫
S

η̂(s)
|ψ(x)|2

Z(x, s)
dS

)
. (1.6)

The second integral in Eq. (1.6) corresponds to the energy flux through the boundaries
and can be modelled by a damping term 2αsη̂, with α > 0 the natural linear damping
of the cavity coming from the visco-thermal losses in the acoustic boundary layers,
as was explained in the previous section. The first integral, incorporating the source
term, can be modelled by ne−iω0τsη̂ using the sensitive time lag, or (n− τ) formulation
used in [35, 114]. This model, based on a gain (or interaction index) and a time delay
(or phase) of the flame heat release response to acoustic velocity, incorporates in a
simple form multiple sources of interaction between the acoustic field and the flame,
including interaction with the boundaries and flame-vortex interactions [46,114]. Some
studies based on an acoustic field coupled to the (n − τ) modelled source term even
highlight intrinsic combustion instabilities [51, 115, 123], which are not covered in this
thesis. The determination of the frequency-dependent n and τ has been tackled in
numerous studies. This frequency dependent flame response, is called flame transfer
function [108, 160, 161], and can be scaled according to the flame Strouhal number
(St = fR/SL, with r the pipe diameter and SL the laminar flame speed) [57].

Going back to the oscillator equation, one can define the linear contribution of the
source term to the system damping by defining 2β = n cos(ω0τ), corresponding to the
real part of the previously defined source term. With this, the complete linear harmonic
oscillator equation representing a thermoacoustic instability reads (in time domain):

η̈ − 2ν0η̇ + ω2
0η = 0, (1.7)
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1.2. Coupled oscillators modelling

with ν0 = β − α the linear growth rate of the instability. For ν > 0 ⇔ β > α (resp.
ν < 0 ⇔ β < α), the system experiences exponential growth (resp. decay). This
modelling will be used for the electro-acoustic feedback loop that mimics a thermo-
acoustic instability in chapters 2 and 3. Note that this oscillator equation models
both acoustic resonator and source term at the same time. As mentioned in section
1.1, stabilization of the instability can be achieved by coupling the system to one or
multiple other acoustic cavities, providing additional damping. This will be done in
chapters 2 and 3.

In the case of aeroacoustic instabilities, the modelling of the shear layer source term
can follow the same treatment, which was done in multiple studies. For instance in
[50, 93, 112], transfer function modelling of the system is performed. This is based on
a feedback loop with the backward transfer function modelling the acoustic resonator
including damping. The forward transfer function modelling the shear layer, on the
other hand, is based on vortex sound theory with a form similar to the (n− τ) model.
Experimental studies have also been performed, where the experimentally measured
shear layer transfer function also resembles a Strouhal number-scaled (n − τ) model
[64, 151], with St = fW/U , with W the width of the opening and U the mean flow
velocity. The additional step of incorporating the source term inside a single harmonic
oscillator equation through its linear contribution has also been done by Boujo et al. [21].

In this thesis, a different approach will be used: the results of the shear layer trans-
fer function measurements will be fitted with a second-order transfer function which,
transformed back into the time domain, will give us the second oscillator equation, to
be coupled with that of the acoustic resonator. This approach for the aeroacoustic
source term modelling has also been used in the work of Debut et al. [41].

As mentioned earlier, for the acoustic resonators acting as dampers mentioned in section
1.2.1, even in pure bias flow cases the effect of the vortex shedding can lead to sound
production [177,193,195]. This ultimately shows that even within the modelling of the
damper used in this thesis, there is another layer of modelling hidden inside the pressure
loss coefficient ζH,Q, which accounts for the dissipation. It is not impossible to imagine
a mapping of this coefficient similar to the one of β mentioned above, where the actual
value of the pressure loss coefficient results from contribution from the dissipation in
the acoustic boundary layers αbl and the contribution from the shear layer/vortex sheet
with a gain and a phase, which depending on the conditions either further stabilizes
(chapters 2 and 3) or destabilizes (chapter 4) the system.

1.2.3 Nonlinearities and influence of noise

In the previous section, modelling of the linear contribution of the source term to the
system stability has been shown. In practice, this is only useful to determine whether
the system converges to or diverges from the origin: indeed the linear system, if not
otherwise specified, is a linearized version of the complete system around the origin,
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Chapter 1 - Introduction

0 0

Figure 1.1: (a) Supercritical bifurcation, with arrow symbolizing multiplicative noise
(i.e. ν = ν(t)), and (b) Subcritical bifurcation, with arrow symbolizing additive noise

meaning for very low values of the acoustic pressure and velocity. If the system is unsta-
ble, in this linear approximation, it would experience indefinite exponential growth. In
the real world, this does not happen and some saturation mechanism occurs, allowing
the system to stabilize on a limit cycle. The saturation mechanisms are modelled in the
form of nonlinear terms in the oscillator equations, i.e. terms that are not proportional
to the acoustic variables or their derivatives.

In the case of thermoacoustic instabilities, the nonlinear response from the flame can
be measured in a similar way to the flame transfer function, but with varying excitation
amplitude, the so-called flame describing function [48,131]. The behaviour of the flame
heat release as function of excitation amplitude was measured experimentally in [4,90].
The flame response can then be approximated by its Taylor expansion [106]. This was
done in [129] with a superposition of linear and cubic term, and with an arctan function.
A superposition of linear, cubic and quintic term was even used in [14]. For the purpose
of this thesis, which is not to describe the flame saturation mechanism accurately, a
simple cubic saturation term will be added to the damping term, thus making the
equation modelling the instability similar to that of a Van der Pol oscillator. In the
electro-acoustic feedback loop used to mimic the instability in chapters 2 and 3, the
saturation term can be freely chosen, so there a cubic saturation was also implemented.

In the case of aeroacoustic instabilities a slightly different approach was used, since the
literature on shear layer saturation is scarce. In chapter 4, a describing function ap-
proach was used, meaning the shear layer acoustic response was measured for different
excitation amplitudes, and the fitting parameters of the linear 2nd order transfer func-
tion were determined in each case. The evolution of these parameters with amplitude
was then fitted with constant, linear or quadratic functions, giving a superposition of
linear and quadratic term for the damping, and a superposition of linear and cubic term
for the dissipative coupling.
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1.2. Coupled oscillators modelling

Up until now only the nonlinearities stemming from the source term acoustic response
were covered. However, another nonlinearity needs to be taken into account: in the case
of Helmholtz resonators used as dampers and purged by a mean flow, if the damper
is excited beyond a certain amplitude, the flow in the damper neck reverses during
part of the cycle, and the dissipation is proportional to the reverse flow velocity during
this part of the cycle. Because of this, an “absolute value” nonlinearity is used for the
acoustic damper in chapter 3 [8, 86,208].

In the deterministic case, the nonlinearities determine the structure of the coupled
system bifurcation diagram. The simplest case between a stable system and a system
experiencing instability is the Hopf bifurcation (displayed Fig. 1.1(a), black line). In
this type of bifurcation where the system is stable while the growth rate of the coupled
system ν < 0 (the origin is the only fixed point of the system). At ν = 0, the Hopf
bifurcation occurs, and for ν > 0 the system has an unstable fixed point at the origin and
a stabe limit cycle, with the limit cycle amplitude A following a monotonous increase as
function of ν. This is the typical bifurcation diagram of a simple Van der Pol oscillator.
Is this case, for all values of ν the system has either only one stable fixed point, or one
stable periodic solution and an unstable fixed point.

Other types of nonlinearities can lead to a very different bifurcation diagram. For
instance, the flame nonlinear response modelling using up to the quintic term in [14]
allows to model an experimentally observed subcritical bifurcation, whose shape is
shown in Fig. 1.1(b) (black line). For this type of system, there is a range of ν where
the system has both a stable fixed point (at the origin) and a stable limit cycle that
coexist. This means that depending on the initial value, in this range the system can
stabilize on either one of those, which leads to a hysteretic behaviour (orange curve).
This type of behaviour will be shown for a combination of cubic and absolute value
nonlinearities in chapter 3. It has also been shown in the context of aeroacoustic
instabilities [205], although this is not reproduced in this thesis.

Now in reality, the systems considered are far from deterministic, since there is always
a stochastic noise coming from the turbulence directly (in the case of aeroacoustic
instability), or indirectly, through the noisy component of the heat release in the case
of thermoacoustic instabilities [13]. One effect of the noise can be that the oscillation
amplitude oscillates around its theoretical value. But it can also lead to more extreme
effects, for instance intermittency (bursts). This should not be confused with chaotic
behaviour, which has also been demonstrated in the case of thermoacoustic instabilities
[65,99,128].

In the case of stochastic bursts, one must distinguish between two possible causes: (i)
the system jumps between coexisting stable states, which typically arises from some
subcritical type of bifurcation with additive noise [14], shown in Fig. 1.1(b) (arrows)
(ii) the system moves back and forth around the bifurcation point under the effect
of multiplicative noise [29, 103, 118], shown in Fig. 1.1(a) (arrows). The focus of the
stochastic study in this thesis (section 4.5) will be on the latter.
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Chapter 1 - Introduction

1.3 Structure of the thesis

The structure of the thesis is the following: chapter 2 investigates the stabilization
capabilities of acoustic damper on a linearly unstable acoustic mode. To this end, the
modelling of the acoustic dampers as linear damped harmonic oscillators is detailed,
both for the Helmholtz as well as for the Quarter-wave geometry. The electro-acoustic
mimicking of a thermoacoustic instability, which allows for the fine-tuning of the un-
stable acoustic mode parameters, is also detailed. A linear stability analysis follows,
culminating in the derivation of the best stabilization parameters which correspond to
an exceptional point of the coupled system.

Chapter 3 builds upon the model of chapter 2 with the addition of nonlinearities: the
chamber nonlinearity is modelled as a cubic nonlinearity, corresponding to the electro-
acoustic mimicking experiment. The nonlinearity of the acoustic damper is measured
separately and modelled using a function, named gQ in the present thesis, that has
already been used multiple times in the literature [8,86,208]. With this, the number of
fixed points and limit cycles in the system can be determined for all sets of parameters
using the averaged “slow-flow” equations, allowing for the derivation of bifurcation
diagrams, involving not only “simple” Hopf bifurcations, but also fold bifurcations. The
bifurcation diagrams are successfully compared to the experimental pressure amplitude
while quasi-steady ramping the growth rate of the unstable mode, and the hysteretic
behaviour of the system is underlined.

Chapter 4 deals with the second type of instability, namely the aeroacoustic instability.
In this chapter, the modelling of the shear layer “source term” is performed by fitting
linear and nonlinear acoustic responses with a second order transfer function. In that
way, the shear layer coupled to a deep cavity of varying depth (modelled as a quarter-
wave damper as in chapter 2) can be modelled as a system of coupled oscillators. Again,
linear stability analysis is performed, as well as the derivation of the averaged “slow-
flow” equation in order to determine the stability limits and the limit cycle amplitudes.
There it is demonstrated that the deterministic system exhibits only Hopf bifurcations.
Since the experiments showed evidence of intermittency, the last part of chapter 4 deals
with the effect of multiplicative noise and draws necessary conditions for this type of
noise to lead to intermittency.

The appendix demonstrates a condition on the frequency ramp rate for the valid use
of sweep experiments, as was extensively used in chapter 2. A visual summary of the
thesis can be seen in Fig. 1.2.
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Figure 1.2: Visual summary of the topics addressed in subsequent chapters
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Chapter 2

Stabilization of acoustic modes
using Helmholtz and Quarter-Wave
resonators tuned at exceptional
points

In the present chapter, an experimental and theoretical study is conducted,
considering both Helmholtz (HH) and Quarter-Wave (QW) acoustic cavities
as potential passive damping systems in order to stabilize a thermoacoustic
unstable mode. Since the resonators are simply added to the system in
order to achieve additional damping, they will be called dampers in all of
Chapter 2 and 3. A model for their acoustic impedance is derived and
experimentally validated. In a second part, a thermoacoustic instability is
mimicked by an electro-acoustic feedback loop in a parallelepipedic cavity,
thereafter called chamber, to which the dampers are added. The length
of the dampers can be adjusted, so that the system can be studied for
tuned and detuned conditions. The linear stability of the coupled system
is investigated experimentally and then analytically, which shows that for
tuned dampers, the best stabilization is achieved at the exceptional point.
The stabilization capabilities of HH and QW dampers are compared for
given damper volume and purge mass flow.

This chapter is based on the research article “Stabilization of acoustic modes using
Helmholtz and Quarter-Wave resonators tuned at exceptional points” by Claire Bourquard
and Nicolas Noiray published in the Journal of Sound and Vibration 445, 288–307
(2019).
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2.1. Introduction

2.1 Introduction

In order to achieve efficient and clean combustion, there is a dire need for robust control
strategies to prevent thermoacoustic instabilities. The use of passive damping devices
such as Helmholtz (HH) or Quarter-Wave (QW) dampers is a cost-effective option to
prevent these combustion instabilities [96, 202].

In the seventies, thermoacoustic instabilities in rocket engines were the topic of several
studies, where different acoustic damping enhancement strategies were compared: for
example baffles, HH and cylindrical liners in [36], HH, QW and Quincke resonator
in [68]. A more recent study dealing with the comparison of absorption coefficients
of half-wave, QW and HH is proposed in [172]. Keller [87] stated that the QW has
a narrower bandwidth than the HH, but it is less influenced by nonlinearities [98].
Although up until two decades ago, the studies on damping device design for rocket
engine combustion instabilities still dealt with QW as well as HH [2], nowadays most of
the available literature concentrates on QW resonator rings [134]: in [135], the influence
of the resonator length on the frequency of the engine acoustic modes is studied and [28]
presents a graphical method based on a low-order network model to determine the
stability of the system. The influence of such a QW resonator ring on the shape of the
longitudinal and transversal [162] as well as azimuthal [200] modes, and on the stability
margin of the engine [199] has also been studied. On the contrary, the literature on
QW applications in aeroengines is sparse (e.g. [80] and [120] with QW tubes installed
upstream of the premixers), whereas one can find many papers about acoustic liners,
behaving as matrices of HH resonators [25, 61, 75]. HH and QW are also used to
hinder thermoacoustic instabilities in the combustors of land-based gas turbines for
power generation [148]. Over the last two decades most publications deal with the
use of HH dampers, either conventional [158] (with a detailed model derived in [8]
and design principles given in [47]), or featuring multiple volumes, i.e. having several
interconnected inner cavities [17,18]. Overall, the choice of using HH or QW dampers to
suppress thermoaocustic instabilities in combustion chambers is often guided by field-
specific trends or past experience of the manufacturers. The present chapter provides
a detailed comparison of the damping capabilities of HH and QW resonators.

Another aspect of the present work is to investigate the stabilizing capabilities of flow-
purged dampers on self-sustained oscillations. A large number of investigations deal-
ing with modal damping enhancement using acoustic dampers generally focus on lin-
early stable configurations where there is no through-flow in the damper: for instance,
in [52, 141], the optimal damping is determined for a configuration where acoustic
and structural modes are coupled; In [92, 198], the authors underline that the optimal
damping depends on whether one wants to achieve minimum narrow-band or broad-
band response or minimum reverberation time. The influence of the detuning of the
damper has been studied in [34, 66] while the effect of multiple dampers is scrutinized
in [137]. Several experimental and analytical studies deal with methods to find the
optimum number of dampers and their best positioning in the combustion chamber,
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

e.g. [197, 201]. A recent work proposes to automatize the damper design process by
using computationally-cheap adjoint-based optimization [116].

In the specific case of gas turbine combustors, dampers and perforated liners are con-
nected to the combustion chamber. Their neck interfaces the hot combustion products,
and the dampers are usually air-purged (e.g. [47,203]), in order to adjust their acoustic
resistance, and to prevent hot gas ingestion, which could not only damage them, but
also detune them. A few studies deal with the influence of the associated density dis-
continuity on the impedance of Helmholtz dampers [19,194]. Another recent work [32]
investigates how the impedance of a HH damper nonlinearly depends on the ampli-
tude of the acoustic level in the combustion chamber, which induces, beyond a certain
threshold, periodic hot gas ingestion.

In this context, the goal of the experimental and analytical study in this chapter is to
build on the work proposed in [132] and investigate the potential of air-purged HH and
QW dampers to increase modal damping in combustion chambers. This investigation
focuses on the linear stability of the coupled system “dampers-combustion chamber”.
The complementary study dealing with the associated nonlinear dynamics will be pre-
sented in chapter 3.

In the first section, the impedance of stand-alone HH and QW dampers is modeled
and experimentally validated for a range of purge mass flows and damper volumes.
In practice, the available ranges for these two parameters are bounded by technical
constraints: i) the available volume for damper implementation is usually limited and
the size of the dampers must be adjusted accordingly; ii) the amount of purge air must
be as low as possible, but sufficiently large to provide required damping performance.
In fact, regarding ii), the following conflicting constraints must be satisfied: bypassing
compressed air from the combustion process to supply the dampers has a negative
impact on the performance and emissions of the combustor and it should therefore be
minimized; however, it should be large enough such that the risk of hot gas ingestion
is properly mitigated.

In the second section of this chapter, the dampers are connected to a chamber in order
to stabilize self-sustained acoustic oscillations. For the experimental investigation, one
uses an electro-acoustic feedback in an enclosure in order to mimic thermoacoustic
instabilities in combustion chambers. This experimental set-up is more flexible than
a combustion experiment and gives full control on the parameters governing the self-
sustained acoustic oscillations. A theoretical model of the coupled system “chamber-
damper” is derived and successfully compared against experimental data.

In the last part of this work, one investigates the existence of acoustic exceptional points
in chambers which are equipped with dissipative resonators. Exceptional points (EP)
pertain to systems exhibiting a special eigenvalue degeneracy, for which not only the
eigenvalues, but also the eigenvectors coalesce when one of the governing parameters is
adjusted. Investigation of EPs in quantum mechanics, optics, electronics, mechanics or
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(a) (b) (c)

H

H

Q

Figure 2.1: Resonator geometry for (a) QW, (b) HH. (c) Table summarizing the
dimensions of the dampers and the mass flows used throughout this chapter.

acoustics is the subject of intense ongoing research [167], e.g. [70] for damping of friction-
induced instabilities, [204] for unidirectional invisibility in an acoustic waveguide, [60]
for exciton-polaritons in semiconductor microcavities, [23] for coupled lasers, [1, 191]
for the design of acoustic metamaterials, [155] for the transient dynamics in the vicin-
ity of EPs, or [43] for the intriguing acoustical properties of coupled cavities. Their
importance in the understanding of thermoacoustic instabilities has been highlighted
in [115].

In the present chapter, it will be shown that the best stabilization of the acoustic mode
is achieved when the resonance frequency and the damping of the HH or QW resonators
are fine-tuned at the EP of the coupled system.

2.2 Damper modelling

2.2.1 Impedance model

In this section second order harmonic oscillator models are introduced for the impedance
of HH and QW dampers. In the remainder of the thesis, (·)H refers to quantities related
to the HH resonator, while (·)Q refers to those related to the QW resonator. Both
resonators considered in this chapter are axisymmetric.

Helmholtz resonator (H)

The HH resonator is sketched in Figure 2.1(b) and Figure 2.3(b). Assuming plane
wave propagation in the back volume of length LH and in the neck of effective length
l = lp + lcor (with end corrections on both sides), one can write the following expression
for the damper reactance at the neck:

=(ZH) = −ρc a− AH tan(ωl/c) tan(ωLH/c)

a tan(ωl/c) + AH tan(ωLH/c)
, (2.1)
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

with ZH the damper impedance, ρ and c the air density and the speed of sound in
the damper, ω the angular frequency, a the neck cross-section and A the back-volume
cross-section. Considering compact neck and compact volume length with respect to
the resonance wavelength (tanωl/c ' ωl/c and tanωL/c ' ωL/c), and the fact that
the area ratio between neck and volume is small (a� AH), Eq. (2.1) can be simplified
to:

=(ZH) = ρl
ω2 − ω2

H

ω
, (2.2)

where ωH = c
√
a/VH l the damper’s resonance frequency, with VH = AHLH the damper

back volume. In the present work, it is assumed that coherent vortex shedding at the
HH resonator mouth is the main dissipation mechanism [181] and that the resistance
of the damper can be written as:

<(ZH) = RH = ζHρū = ζH
ṁ

a
, (2.3)

with ζH a pressure loss coefficient depending on the neck geometry and position, ū the
mean velocity through the HH neck, and ṁ the mean mass flow through the neck, which
is a critical parameter in real turbomachinery applications. This expression is obtained
by linearizing the Bernoulli equation across the neck (e.g. [149]). Please note that
should the acoustic amplitude become high, the resistance would not be proportional
to ū but to |ū + u′|, with u′ the acoustic velocity in the neck. Using a purely linear
dissipation term is justified for the present study, which focuses on the linear stability
limits. The reader can refer to chapter 3 where the nonlinear problem is investigated.
Eq. (2.3) does not depend on the resonance frequency, and the pressure loss coefficient
ζH gives the energy transfer from the acoustically-driven incompressible potential flow
through the neck to the vortices that are periodically shed from the rim of the neck
outlet. One can refer to [193] for a detailed investigation on the modeling of orifice
impedance for a broad range of geometries and Strouhal numbers. Combining (2.2)
and (2.3), one obtains the HH resonator impedance:

ZH = ρl
s2 + ω2

H

s
+RH , (2.4)

with s = iω the Laplace variable, which is the classical (l−ζ) model, where l stands for
the effective length of the inertial mass of air in the orifice and ζ for the pressure loss
coefficient defining the acoustic resistance against the oscillation of air in the orifice. It
was discussed for example by Morse and Ingard [122] at page 760, or in [8, 149].

Quarter-wave resonator (Q)

The QW resonator is sketched in Figure 2.1(a) and Figure 2.3(c). Assuming plane wave
propagation in the resonator with an effective length L = Lp + Lcor (including an end
correction at the outlet), one gets the following expression for the damper reactance:

=(ZQ) = −ρc 1

tan(ωL/c)
. (2.5)

15



2.2. Damper modelling
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Figure 2.2: Comparison between actual reactance with cotangent and simplified func-
tion. ωQ = πc/2L so that when ω = ωQ, ωL/c = π/2

At resonance frequency, ωQL/c = π/2. For angular frequencies ω that are close to the
resonance frequency, one can use the following approximation:

1

tanx
' gQ(x) = −1

2

(
x− π2

4x

)
, (2.6)

which is illustrated in Figure 2.2 and leads to:

=(ZQ) = ρ
L

2

ω2 − ω2
Q

ω
, (2.7)

with ωQ = πc/2L the QW resonance frequency. Using this approximation is quite
uncommon in the literature, although it provides an explicit formulation of the QW
resonator impedance as a second order harmonic oscillator. Regarding dissipation, the
resistive term in the QW case is composed of two contributions: one of them is the
vortex shedding at the damper mouth as for the HH resonator:

Rvs = ρζQū = ζQ
ṁ

AQ
. (2.8)

The second contribution comes from the losses in the acoustic boundary layer [122,163],
with the following expression for the viscous and thermal power loss per wall unit area:

Lbl =
ρω δbl

2
|ûrms|2 +

(γ − 1) ρω δbl

2
√
Pr

∣∣∣∣ p̂rms

ρc

∣∣∣∣2 , (2.9)

where ûrms and p̂rms are the root mean square amplitude of the acoustic velocity and
pressure in the tube, δbl =

√
2ν/ω the acoustic boundary layer thickness with ν the

kinematic viscosity equal to 1.5 ·10−5 m2/s in air at ambient condition. γ is the specific
heat ratio and Pr is the Prandtl number equal to 0.71 for air. Using the acoustic
velocity and pressure distribution along the tube:

ûrms(x) =
|ûmax|√

2
sin
(xπ

2L

)
and p̂rms(x) =

|p̂max|√
2

cos
(xπ

2L

)
, (2.10)
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Resistance [kg.s−1] Mass [kg] Stiffness [kg.s−2]

QW ρ
AQLp

2r

√
2νωQ

(
1 +

γ − 1√
Pr

)
+ ζQṁ

ρLAQ
2

π2

8

ρc2AQ
L

HH ζHṁ ρla
ρc2a2

VH

Table 2.1: Equivalent resistance, mass and stiffness of HH and QW resonators.

using |p̂max| = ρc|ûmax|, multiplying by the perimeter 2πr and integrating over the
physical length Lp with respect to x gives the total boundary layer power losses for the
QW damper:

Lbl,t = ρ
πrLp

4
ωδbl

(
1 +

γ − 1√
Pr

)
|ûmax|2. (2.11)

Note that the viscous losses are about twice as high as the thermal losses. Hence, in the
absence of mean flow, the acoustic resistance per unit area associated with the above
power loss is:

Rbl =
Lbl,t

πr2

2

|ûmax|2
= ρ

Lp
2r

√
2νω

(
1 +

γ − 1√
Pr

)
. (2.12)

Since Rbl is proportional to
√
ω one can approximate a constant value around the

resonance frequency of the damper. The total resistive term is then:

RQ = Rbl +Rvs = ρ
Lp
2r

√
2νωQ

(
1 +

γ − 1√
Pr

)
+ ζQ

ṁ

AQ
, (2.13)

and the QW damper impedance:

ZQ = ρ
L

2
·
s2 + ω2

Q

s
+RQ. (2.14)

Using the impedance equations and accounting for the interface area (a for HH, AQ
for QW), one can get the resistance, mass and stiffness of the equivalent mechanical
oscillators given in Table 2.1.

Note that the equivalent stiffness of the QW KQ is slightly higher than the one Kac

associated with the bulk compression of an air column of length L, using γp̄ = ρc2:

KQ =
π2

8

ρc2AQ
L

=
π2

8

γp̄AQ
L

=
π2

8
Kac, (2.15)

with p̄ is the ambient pressure.
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2.2. Damper modelling

2.2.2 Reflection coefficient measurements and model tuning

A HH damper and a QW damper were used for the experimental investigations. A
piston allows variation of their volume such that their resonance frequency can be
adjusted between 200 and 500 Hz. The HH damper neck has a diameter of 16 mm
and a length of 45 mm. At the frequency of interest in the second part of this chapter
(287 Hz), the back-volume of the HH is 64 mm long, with a diameter of 50 mm (see
Figure 2.3(b)), and the length of the QW is 288 mm with a diameter of 24 mm (see
Figure 2.3(c)). The edges of both the HH neck and the QW outlet are sharp. For the
reflection coefficients measurements, the mass flow ṁ is varied between 0.5 and 7 g/s.
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0.5

1
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Quarter-wave

MicrophonesLoudspeakers

Anechoic end

Choked inlet

(a)

(b)

(c)

(d)

(e)

Figure 2.3: (a) Schematic of the impedance tube used for the reflection coefficient
measurements. (b) Sketch of the Helmholtz resonator with variable back volume length.
(c) Sketch of the Quarter-Wave resonator with variable length. (d) Magnitude and (e)
phase of the reflection coefficient for the HH damper with ṁ = 1.5 g/s. The model
(plain line) is fitted to the experimental results (circles) by adjusting RH .

The impedances of the HH and QW dampers given in Eqs (2.4) and (2.14) feature two
parameters that are empirically estimated in the present work: the length corrections
(lcor and Lcor respectively) and the pressure loss terms (ζH and ζQ respectively).

The end corrections are determined using the Helmholtz solver AVSP for a configuration
where the dampers are connected to an impedance tube with a 62×62 mm2 cross-
section. AVSP solves the Helmholtz equation as an eigenvalue problem in quiescent
domains with possible non-uniform temperature distribution [127]. The solver gives
the first eigenfrequency and the end corrections are obtained using the expressions
ωH = c

√
a/VH l and ωQ = πc/2L. This gives lcor = 13.2 mm and Lcor = 4.2 mm.

For the determination of the pressure loss coefficients ζH and ζQ, reflection coefficients
measurements were performed with an impedance tube of section SIT =62×62 mm2
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

(see Figure 2.3(a)) using the Multi-Microphone-Method (MMM) [159]. For each mass
flow, the value of the acoustic resistance is empirically adjusted so that the best fit
between experimental and theoretical reflection coefficient R = (Z − ρc)/(Z + ρc) is
achieved. Here, the analytical expression for the impedance Z is obtained by dividing
Eq. (2.4) for the HH (resp. Eq. (2.14) for the QW) by the area ratio σH = a/SIT (resp.
σQ = AQ/SIT), such that it can be quantitatively compared to the experiments. An
example of comparison between the HH damper model with tuned parameter RH and
the measurements for a selected mass flow ṁ = 1.5 g/s is given in Figure 2.3(d) and
2.3(e). Figure 2.4(a-d) shows the comparison between the model and the experiments
for a range of mass flows. The comparison is also made for the QW damper in Figure
2.4(e-h). Overall, there is good agreement between model and experiments. One can
note that there is a small drift of the eigenfrequency of the HH damper as a function of
the purge mass flow, which means that the latter has an influence on the end correction,
and that the HH damper is more prone to detuning than the QW damper when the
velocity in the neck changes.

A linear regression is then used in both cases to determine the optimum values of ζH
and ζQ from the fitted resistive terms. This is shown in Figure 2.5 and one obtains
ζH = 1.78 and ζQ = 1.64. The mass flow ṁ0 for which the reflection coefficient van-
ishes, which corresponds to an anechoic condition in the impedance tube, can be easily
determined by matching the impedance at the plane where the damper is connected
to the characteristic impedance of air. This mass flow depends on the cross-section
of the impedance tube used for the measurement and is not an intrinsic property of
the damper. At the resonance frequency, the reactive part of ZH and ZQ is zero. The
condition giving no reflection is then: RH/σH = ρc and RQ/σQ = ρc. Using c = 343
m/s and ρ = 1.14 kg.m-3 (the measurements were done at 500m above sea level) gives
ṁ0,H = 2.6 g/s which is in good agreement with the experiments, and ṁ0,Q = 11.3 g/s.

For the HH damper this is also consistent with the findings of Scarpato et al. [157] who
state that, at the anechoic condition, the Mach number divided by the porosity increases
monotonically from 0.5 for low Strouhal number to 2/π for high Strouhal number. In the
present work, the Strouhal number based on the opening diameter (St = ωH

√
4a/π/ū)

ranges from 3 to 15, which correspond to a “high Strouhal” regime. Therefore, applying
the condition proposed in [157]:

ū

c

1

σH
=
ṁ0,H

ρ a c

1

σH
=

2

π
(2.16)

gives ṁ0,H = 2.9 g/s, which is in good agreement with the experimental value.
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Figure 2.4: Results of the reflection coefficient measurements (left) and the tuned model
(right). For the Helmholtz resonator: magnitude ((a), (b)) and phase ((c), (d)). For
the Quarter-Wave resonator: magnitude ((e), (f)) and phase ((g), (h)).
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Figure 2.5: Acoustic resistance deduced from the measurement of the reflection coef-
ficient as function of mass flow for the HH (triangles) and the QW (circles). Plain
lines correspond to the linear regression on the value of ζH and ζQ using the analytical

expressions from Eqs. (2.3) and (2.13): RH = ζH
ṁ

a
and RQ = Rbl + ζQ

ṁ

A
. For the QW

damper, the acoustic boundary layer losses do not depend on the mass flow, which is
why the red line does not cross the origin.
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2.3. Coupled damper-cavity experiments

2.3 Coupled damper-cavity experiments

The problem of dampers that are connected to a combustion chamber is now considered.
This is a classical acoustic problem of coupled cavities (e.g. [122], Chap. 10.4), in the
specific situation where one of the cavities, the combustion chamber, has a volume that
is much larger than the one of the secondary cavities, namely the dampers. In that
particular situation, the shapes of the first eigenmodes in the main cavity are usually not
significantly altered by the implementation of the dampers, but the latter can strongly
impact the stability of these modes.

In the present work, an electroacoustic feedback in a 0.2 m3 chamber is used to mimic
the thermoacoustic coupling occurring in combustion chambers. This experimental set-
up allows for a precise control of the linear stability of one of the eigenmodes, with and
without dampers. It is sketched in Figure 2.6.

2.3.1 Stand-alone cavity characterization

The experimental setup is composed of: 1) a rectangular metal box (500×700×600
mm3) with stiffening ribs on the outer side of the walls to prevent strong vibro-acoustic
feedback; 2) a set of eight G.R.A.S. 46BD 1/4” CCP microphones distributed on 2 of
the faces of the cavity; 3) two Pioneer TS-1001I loudspeakers baffled in a rectangular
polystyrene structure placed inside the cavity; 4) an electro-acoustic feedback loop,
which consists of band-pass filtering, delaying and amplifying the signal from one of
the microphones and delivering the output signal to one of the loudspeakers. By varying
the amplification and the delay in the feedback loop, it is possible to vary the linear
stability of one of the acoustic modes of the main cavity. The second loudspeaker serves
as external excitation for forced experiments. The coordinates of the different elements
are given in Figure 2.6. The microphones are calibrated using the Norsonic Nor1251
calibrator, giving an output of 114dB at 1000Hz.

The acoustic eigenmode considered in the following sections of this chapter is the first
transversal mode (see Figure 2.6). The natural damping α of this mode, without
damper and without electro-acoustic feedback, is obtained by imposing a ten-second
linear sweep excitation from 200 to 400Hz using the second loudspeaker. Based on the
critical ramp rates determine in the Appendix. A 2nd order transfer function is then
fitted to the experimental transfer function between one of the microphone signals and
the excitation signal in order to determine the eigenfrequency and the corresponding
damping rate. This procedure is illustrated in Figure 2.7(c) and 2.7(d) and it provides
the natural damping α = 4.8 rad/s, which is also indicated as the central black dot in
Figure 2.7(a). The main contribution to the damping of the eigenmode is attributed
in the present situation to one-way acoustic-structure interaction.

In the following part of this work, a QW or HH damper is mounted on the cavity and
a small hole in one of the walls of the cavity serves as exhaust for the damper purge
air that is injected into the cavity (see Figure 2.6). Damping rate measurements were
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

Figure 2.6: Sketch of the experimental setup and coordinates of the elements in mm

performed in order to identify the effect of an air flow through this exhaust orifice
on the natural damping of this eigenmode. These tests showed that the corresponding
additional damping does not exceeds 0.4 rad/s (α comprised between 4.8 and 5.2 rad/s)
over the entire range of purge mass flows considered, which is negligible compared to
the damping rate variations induced by the electro-acoustic feedback loop and/or the
HH and QW dampers.

The signal of the microphone used in the feedback loop is filtered, delayed, amplified to
supply the loudspeaker as was done in e.g. [132, 133]. This real-time signal processing
is done using a NI cRIO-9066 board. The filter is necessary to ensure that the feedback
loop only acts on the first transversal acoustic mode of the cavity at a frequency of about
287 Hz. The filter is a bandpass with cut-off frequencies at 260 and 320 Hz. When the
gain and the time delay in the feedback loop lead to a linearly unstable situation, there
is an exponential growth of the amplitude of the first transversal mode. A nonlinear
cubic term is implemented in the feedback loop such that the exponentially growing
oscillations saturate on a limit cycle, with the dynamics of a Van der Pol oscillator.
One can therefore express the amplitude η of the first transversal mode of the electro-
acoustic system as:

η̈ − (2ν0 + κη2)η̇ + ω2
0η = 0, (2.17)

with ν0 its linear growth/decay rate without damper, ω0 its natural angular frequency
and κ the saturation coefficient. The linear growth rate ν0 results from the contribution
of the linear damping α and the linear gain of the electro-acoustic feedback loop β, such
that ν0 = β−α. The input of the loudspeaker is proportional to c1Uf (t− τ) + c2U

3
f (t−

τ), where Uf is the output voltage of the band-pass filtered signal from the feedback
microphone, c1 and c2 are the linear amplification and the saturation coefficients, and
τ the feedback delay. The latter three parameters can be specified in the real-time
feedback algorithm. As a first approximation, β ∝ c1 cos(ω0τ) and the linear growth
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Figure 2.7: (a) Measured eigenfrequencies of the first transversal mode, without and
with electroacoustic feedback (resp. black and colored circles), for a range of feedback
loop delays, and for the cavity without dampers. (b) For feedback loop delays τ leading
to linearly unstable situations, the linear growth rate (real part of the eigenfrequency)
is obtained by fitting an exponential on the transient. (c) For feedback loop delays τ
leading to linearly stable situations, the second loudspeaker is used to force the system
with a frequency sweep. The associated transfer function H0f shown in (c) and (d)
is fitted with a second-order low-pass filter, which provides the eigenfrequency of the
electro-acoustic system.

rate ν0 is positive when β > α, which can be achieved for a range of delays τ and
amplification factor c1.

Figure 2.7(a) shows the measurements of the eigenfrequency and growth/decay rate
of the first transversal mode when the electroacoustic feedback is active, for different
feedback delays τ and for fixed c1 and c2. When the electroacoustic system is lin-
early unstable (red background), growth rate measurements were performed by fitting
exponential curves on the transient growth of the acoustic amplitude (Figure 2.7(b))
and taking the average over 10 realizations. The standard deviation to mean ratio of
such growth rate measurements can be seen Figure 2.8(b) for different values of c1,
which shows very good accuracy. For the linearly stable cases (green background),
the measurement technique is the same as for measuring the natural damping of the
mode (Figure 2.7(c) and 2.7(d)), namely performing sweep measurements. In addition
to having checked that the frequency ramp rate used during the sweeps were compli-
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

ant with the limits defined in the Appendix, the accuracy of the sweep measurements
was checked using decay rate measurements: the second loudspeaker is used to excite
the system at its resonance frequency, and when the excitation is stopped the tran-
sient decay of the acoustic amplitude is fitted with an exponential curve. These decay
rate measurements are averaged over 10 realizations and gives similar accuracy as the
growth rate measurements. The decay rates ν0 obtained from the sweep measurement
was always within one standard deviation compared to the one obtained from decay
rate measurement.

In the remainder of this chapter, the delay τ = 2.2 ms, which gives the most constructive
feedback, and the saturation coefficient c2 are kept constant. The linear growth rate
ν0 of the system without dampers is varied by adjusting c1, according to the linear
regression shown in Figure 2.8(a). The effective saturation constant κ can be deduced
from the square root evolution of the oscillation amplitude when ν0 is varied. Indeed,
the theoretical limit cycle amplitude of Eq. (2.17) is A =

√
−8ν0/κ (see [133]), and

κ = −0.08 s-1Pa-2 was deduced from these measurements.

2.3.2 Addition of dampers
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Figure 2.8: (a) Relation between c1 and ν0 for several growth rate measurements, and
linear regression verifying proportionality. (b) Standard deviation to mean ratio for the
previous growth rate measurements, showing very good accuracy. (c) Example of the
stability limit measurements for the tuned QW for 3 different mass flows. ν0 is slowly
ramped down and the resulting pressure envelope is fitted using κ = 0.08 [s-1.Pa-2].

A HH or QW damper can be connected to the cavity and fed with a purge flow as shown
in Figure 2.6. For the stability measurements, the mass flow ṁ is varied between 0 and
2 g/s for the HH, and between 0 and 5 g/s for the QW. Without damper, the stability
of the first transversal mode depends on the sign of ν0: if it is positive, the mode
is linearly unstable, if it is negative, the mode is linearly stable. With damper, the
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Figure 2.9: Experimental stability limits as function of purge mass flow ṁ and mode
growth rate ν0 for the perfectly tuned case and two detuned cases with δ = (ωH,Q −
ω0)/ω0 = −0.7 and −2.1 %. (a) HH, (b) QW. The three colored points correspond to
the fits in Figure 2.8(c).

damping of the system is increased, and the stability limits change. These stability
limits depend on the feedback loop gain c1 and on the mass flow of the purge air going
through the damper. The determination of these new limits is done as follows: for each
tuned damper (HH and QW) and each mass flow, the gain c1 is slowly ramped down,
starting from a value where the system with dampers is linearly unstable and is on
a limit cycle. The linear growth rate ν0 is a linear function of c1 as shown in Figure
2.8(a), and the ramping down of c1 is equivalent to a 1 rad/s decrease of ν0 in 30 second.
The decrease of the bifurcation parameter ν0 is therefore quasi-steady and one can fit
the corresponding acoustic envelope using a function that is proportional to

√
ν0. The

origin of that fit is the bifurcation point, which defines the stability limit. The results of
three of those measurements and the respective fits can be seen in Figure 2.8(c). The
error was estimated by doing a fit on the truncated acoustic envelope curve, starting
from the part with the highest amplitude. As shown in Figure 2.8(c), the confidence
intervals are very small compared to the variation caused by mass flow variation.

The length of the back-volume of the HH and the length of the QW are then lengthened
to obtain a detuning δ = (ωH,Q − ω0)/ω0 = −0.7 and −2.1 %, and the measurements
are repeated. The stability limits obtained by employing this procedure, for tuned and
detuned dampers, are presented in Figure 2.9. As expected the zone of stability shrinks
when the damper is detuned. Those results will be compared with the model later on.

The feedback gain c1 is now fixed such that ν0 = 7 rad/s. The eigenvalues of the first
transversal mode of the chamber-damper coupled system are determined as function of
the purge mass flow going through the damper. Since all of those measurements take
place inside the stable zone, the eigenvalues are obtained using sweep measurements as
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

done in Figure 2.7(c) and (d).

When a damper with low damping is added to the cavity, mode splitting occurs. This
was demonstrated experimentally in e.g. [102, 137, 141, 198]. In the detuned case, one
mode is much closer to the stability limit than the other one, and dominates the fre-
quency response of the transfer function. In that case, a 2nd order transfer function fit
yields satisfactory results. In the tuned case however, both modes should have equal
decay rates but different frequencies for low purge mass flow. This means that the ex-
perimental transfer function should be fitted by a 4th order transfer function to capture
both modes correctly. In practice, however, since the mass flow through the damper
also influences the end correction and thus the detuning of the damper, symmetric
mode splitting can only be achieved at one particular mass flow as one can see in Fig-
ure 2.10 for the tuned QW. This is even worse for the HH, since it is much more prone
to mass flow-induced detuning (see Figure 2.4(a)). Therefore, only a 2nd order transfer
function is used to determine the poles of the transfer function in a systematic manner,
accepting that this technique might lead to small errors around the mass flow for which
symmetric mode splitting occurs.
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Figure 2.10: Evolution of the experimental spectrum (a) and of the corresponding roots
(b) of the cavity with ν0 = 7 rad/s by addition of a tuned QW. Increasing the mass
flow also influences the detuning (through the length correction) and the damper can
only be tuned for a certain mass flow (ṁ = 2.5 g/s in this case).

The results of this fit compared with the predictions from the analytical model (which
will be described in the next section) are shown in Fig 2.11 for both dampers, either
tuned or slightly detuned (δ = −0.7 %). As expected, the model is not accurate for
the HH damper at low mass flows: a nonlinear dissipation term would be needed to

27



2.4. Analytical model and optimal damping

capture its behavior at low mass flow. The agreement between theory and experiments
is otherwise good. Comparing HH and QW resonator, the HH damper achieves better
stabilization for low mass flow than the QW for similar damper volume. The mass
flow needed to achieve best stabilization is higher for the QW than for the HH. Even if
both are used at their best mass flow condition, the HH damper achieves slightly better
stabilization than the QW (which is also predicted by the model).
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Figure 2.11: Evolution of an unstable eigenmode (red circle) of the cavity with ν0 =
7 rad/s by addition of dampers according to the model (continuous curve) and to
the experiments (circles) for different mass flows (color scale) for the tuned (a) and
detuned (b) Helmholtz resonator and for the tuned (c) and detuned (d) Quarter-
Wave resonator.

2.4 Analytical model and optimal damping

2.4.1 Analytical model

The derivation of the model used for comparison with the experiments in Figs. 2.10
and 2.11 can be found in 2.6 based on the work of [132]. With a single dominant mode,
the pressure in the chamber can be approximated by p(t,x) = η(t)ψ(x) with ψ(x)
the acoustic eigenmode and η(t) its amplitude. The transfer function of the chamber-
damper coupled system (Figure 2.12(b)) can be written in the HH case as follows:

Hwd(s) =
η̂(s)

Q̂N(s)
=

−2ν0s (s2 + 2αHs+ ω2
H)

(s2 − 2ν0s+ ω2
0) (s2 + 2αHs+ ω2

H) + s2ω2
Hε

2
H

, (2.18)

with Q̂N(s) the noise component of the acoustic source in the chamber volume, ω0 the
natural angular frequency of the dominant mode, ν0 its growth/decay rate, ωH the
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(a) (b)

Figure 2.12: Block diagram representation of the system (a) without and (b) with HH
dampers as in [132].

angular frequency of the damper and its damping αH = RH/2ρdl and RH the resistive
term from Eq. (2.3). εH is the damping efficiency factor defined as:

ε2
H =

VH
V

Ψd

Λ
, (2.19)

with VH the back volume of one damper, V the chamber volume, Λ the norm of the
mode and Ψd =

∑n
k=1 ψ

2(xk) a non-dimensional number describing the number and
location of the dampers with respect to the pressure antinode of the mode. If εH = 0,
then Hwd = H0 shown in Figure 2.12(a). The equivalent expressions for the QW case
εQ can be found in the Appendix. With one damper, Ψd simplifies to ψ2(xd) = ψ2

d.
The previous description is equivalent to the following time domain formulation:

η̈ − 2ν0η̇ + ω2
0η = −ε

2
Hω

2
Hρl

ψd
u̇

ü+ 2αH u̇+ ω2
Hu =

ψd
ρl
η̇,

(2.20)

with u the acoustic velocity in the damper neck. This system of two coupled ODEs can
be expressed as:

Ẋ = MX with M =


2ν0 −ω2

0 −
ε2
Hω

2
Hρl

ψd
0

1 0 0 0
ψd
ρl

0 −2αH −ω2
H

0 0 1 0

 and X =


η̇
η
u̇
u

 .
(2.21)

2.4.2 Optimal damping and exceptional points

The analytical model presented in section 2.4.1 is now used to determine the linear sta-
bility of the coupled system “chamber-damper”, which was experimentally investigated
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in section 2.3. To that end, one uses the geometrical and flow parameters which charac-
terize the acoustic mode, the dampers and the coupling efficiency in this experimental
configuration:

� The first transversal mode of the cavity is considered, with ω0 ' 1803 rad/s,
f0 = ω0/2π ' 287 Hz. The electro-acoustic feedback allows to set ν0 up to 35
rad/s.

� The experimentally-identified linear relationships RH(ṁ) and RQ(ṁ) presented
in Figure 2.5 are used for the evaluation of the damping 2αH(ṁ) = RH/ρl and
2αQ(ṁ) = RQ/ρL. The effective lengths l = lp + lcor and L = Lp + Lcor, for
dampers connected to the large chamber, are not the same as in section 2.2.2 where
they were connected to a duct. Therefore, the end corrections are determined
again using the Helmholtz solver AVSP, for the “chamber-damper” arrangement,
which gives lcor = 15.9 mm and Lcor = 10.3 mm. The physical length L (resp.
Lp) is used for the tuning of the natural resonance frequency of the dampers ωH
(resp. ωQ).

� The damping efficiency factors εH and εQ depend on the damper-to-chamber
volume ratio, on the modal amplitude at the damper location and on the mode
normalization factor. In the present configuration, Λ = 1/2 and ψ = 0.95 (see
Figure 2.6).

The stability of the coupled system is obtained from Eq. (2.18) for the range of purge
mass flow ṁ and linear growth rate ν0 which were used in the experiments. In the
perfectly tuned case with ω0 = ωH , the stability limits of the coupled system for the
HH damper case are explicitly obtained from the Routh-Hurwitz criterion:

αH ≥ ν0 RH1

ω2
0ε

2
H ≥ 4ν0αH RH2

(2.22)

The Routh-Hurwitz criterion can be easily translated as follows: the damping of the
damper needs to be higher than the growth rate of the unstable mode, and the ratio
weighting the feedback in the block diagram (Figure 2.12(b)) needs to be greater than
1. For the QW damper case, the Routh-Hurwitz criterion is the same, replacing αH by
αQ and εH by εQ. For the detuned case, there is no analytical expression giving the
linear stability boundaries. The stability limit is numerically determined by computing
the poles of Eq. (2.18), and searching the change of sign of the real part of the least
stable of these poles. The theoretical stability limits for tuned and detuned Helmholtz
and Quarter-Wave dampers are presented in Figure 2.13 and are in good agreement
with the ones measured experimentally (see Figure 2.9). The comparison between
the theoretical stability limits of the tuned HH and tuned QW (having quasi-identical
volume) are shown in Figure 2.14.
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Figure 2.13: Theoretical stability limits as function of purge mass flow ṁ and growth
rate ν0 for the perfectly tuned case (Routh-Hurwitz criterion, analytical) and two de-
tuned cases (numerical) with δ = −0.7 and −2.1 %. (a) HH, (b) QW.

Figure 2.15 shows the influence of increasing purge mass flow ṁ on the magnitude
and on the poles of the transfer function characterizing the coupled system “chamber-
damper” for fixed ν0 = 7 rad/s. In both cases, the inset shows the coordinates (ν0; ṁ)
in the stability diagram, which are considered for this analysis. For situations where
the damper is tuned to the eigenfrequency of the system without dampers (ω0 = ωH
or ω0 = ωQ), the pair of eigenvalues of the system with damper merge at a so-called
exceptional point (EP) [165], when a critical purge mass flow ṁEP through the damper
is reached. For ṁ < ṁEP, the poles of the system with the damper symmetrically
split, with identical linear growth rate νwd and different frequencies fwd = f0 ± ∆f .
The associated transient dynamics is a decay of the oscillation amplitude with time
constant 1/νwd, which is accompanied with a low-frequency amplitude beating of period
1/∆f [155]. For ṁ > ṁEP, the pair of eigenvalues originating from the exceptional point
exhibit the same frequency as the natural eigenfrequency of the system without damper
(ωwd = ω0), but one of these eigenvalues has a larger linear growth rate νwd than the
other and than the one at the EP, i.e. the associated eigenmode is less stable.

By increasing the purge mass flow, the best stabilization of the mode is therefore
achieved when the eigenvalues and associated eigenmodes of the coupled system co-
alesce at the EP. This can be verified by computing the eigenvalues and eigenvectors
of M in Eq. (2.21): the scalar product between the normalized eigenvectors e1 and
e2 corresponding to positive frequency can be seen in Figure 2.16(e). At the EP, the
scalar product is 1, meaning that they coalesce. If one further increases the purge mass
flow, the eigenvalues split into two separate modes at same frequency but different
decay rates, one of them being stabilized and the other one destabilized by a further
increase of the mass flow. Note that the mass flow giving the best mode stabilization
is higher than the one minimizing the infinite norm of the frequency response. In the
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Figure 2.14: Comparison of the theoretical stability limits as function of purge mass
flow ṁ and growth rate ν0 for the perfectly tuned case between HH and QW.

situation where the dampers are not well tuned (Figure 2.15(b) and 2.15(d)), there is
an avoided crossing of the eigenvalues and the system does not exhibit any EP when
the purge mass flow is varied. In the present configuration, a detuning of 0.7 % leads
to a substantial root loci deviation and to an avoided crossing compared to the tuned
damper scenario. The theoretical behavior presented in Figure 2.15 is again in good
agreement with the experimental measurements shown in Figure 2.10 and Figure 2.11.

To complement this analysis, the eigenvalues λ = νwd + iωwd of the coupled system
“chamber-damper” are presented in the form of Riemann sheets as function of the
damper detuning δ and of the damper purge mass flow ṁ in Figure 2.16 for ν0 = 7
rad/s. In Figure 2.16(c), one can see that the EP is the point where the real part of the
double root of the quartic polynomial [147] (denominator of Eq. (2.18)) is minimum.
When ωH = ω0 (tuned damper), one can explicitly deduce the associated HH resonator
damping:

αH,EP = ω0εH − ν0. (2.23)

Klaus and co-workers [92] recently drawn a similar result in the context of room acous-
tics. In that study, dissipative resonators are employed to minimize reverberation time,
which means that, in contrast with the present work, the acoustic enclosure is already
linearly stable before the implementation of the damper, which are used to further sta-
bilize it. Here, the damping coefficient is linearly related to the mass flow through the
damper and Eq. (2.23) corresponds to

ṁEP(ν0) =
ρal

ζH
(2ω0εH − 2ν0). (2.24)

A similar expression can be derived for the QW damper and includes the acoustic
boundary layer losses. The location of the EP in the linear stability diagram is shown
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Figure 2.15: Influence of increasing mass flow on the magnitude (top) and on the poles
(bottom) of the transfer function describing the coupled system “chamber-damper” for
an unstable mode with ν0 = 7 rad/s and HH resonator. (a) and (c) tuned, (b) and
(d) detuned. For the tuned case, the pair of eigenvalues coalesce at the exceptional
point for a specific mass flow ṁ, which corresponds to the most linearly stable coupled
system.

in Figure 2.17 as a dashed red line. The mass flow giving the best stabilization for
detuned dampers is obtained numerically, and the results are shown in Figure 2.18.
One can see that the slope of the lines indicating the maximum damping does not
depend on the detuning.

For configurations with only one type of dampers, which can be a practical requirement
in order to avoid having to manufacture, test and validate several geometries of dampers,
the present work shows that the optimum damping is reached when the purge mass flow
is adjusted close to the EP of the coupled system “chamber–dampers”.

Combining dampers of different geometries, which address the same dominant acoustic
mode, is also possible. In that case, the number of parameters in the system increases
and the simple analytical expression given in Eq. (2.24) for the optimum damper mass
flow cannot be used. Still, a numerical optimization could be performed to find the
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2.4. Analytical model and optimal damping

mass flows for each of the dampers, which lead to the optimum modal damping.

Note that exceptional points exhibit an extreme sensitivity to parameter variation,
which can be showed analytically. Let us note D(s, δ, αH) the polynomial corresponding
to the denominator of Eq. (2.18), whose roots λ are the eigenvalues of the chamber-
damper coupled system.

D(s, δ, αH) =
(
s2 − 2ν0s+ ω2

0

) (
s2 + 2αHs+ ω2

0(1 + δ)2
)

+ s2ω2
0(1 + δ)2ε2

H . (2.25)

At the EP, the eigenvalues are 2 complex conjugate double roots λEP = νwd,EP±i ωwd,EP.
One can identify D(s, 0, αH,EP) = (s − λEP)2(s − λ∗EP)2, with αH,EP from Eq. (2.23),
giving

νwd,EP = ν0 −
ω0εH

2
, ωwd,EP =

√
ω2

0 − ν2
wd,EP. (2.26)

Using Eqs. (2.25) and (2.26), one can show that the partial derivative of D with respect
to s vanishes at the EP, i.e. ∂sD = 0 for s = λEP, δ = 0, αH = αH,EP. One can also get
analytical expressions of the other partial derivatives around the EP as function of ω0,
ν0 and εH . This gives the following Taylor expansion for a root λ of the polynomial D
around the EP:

0 = D(λ, δ, αH) =
1

2
(λ− λEP)2 ∂

2D

∂s2

∣∣∣∣
EP

+ δ
∂D

∂δ

∣∣∣∣
EP

+ (αH − αH,EP)
∂D

∂αH

∣∣∣∣
EP

+ ... (2.27)

With δ = 0 the following approximation can be derived for a root λ around the EP:

λ ' λEP +

(
2
∂αHD(λEP, 0, αH,EP)

∂ssD(λEP, 0, αH,EP)

)1/2 √
αH − αH,EP (2.28)

Similarly, if αH = αH,EP the following approximation can be derived for a root λ around
the EP:

λ ' λEP +

(
2
∂δD(λEP, 0, αH,EP)

∂ssD(λEP, 0, αH,EP)

)1/2 √
δ (2.29)

Eqs. (2.28) and (2.29) are Puiseux series [84, 164]. For Eq. (2.29), the sensitivity
dλ/dδ ∝ 1/

√
δ, which tends to infinity when δ → 0. A similar dependency can be

found when αH → αH,EP, thus showing the infinite sensitivity to parameter variation
around the EP.
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Figure 2.16: Loci of the coupled system eigenvalues around the EP for ν0 = 7 rad/s.
(a) <(λ) = νwd [rad/s] as function of purge mass flow ṁ and detuning δ and (c) cuts of
the surface for δ = 0 and -2 Hz, (b) =(λ)/2π = fwd [Hz] as function of purge mass flow
ṁ and detuning δ, (d) cuts of the surface for δ = 0 and -0.7%. The EP is represented
by the black dot. (e) Scalar product of the coupled system normalized eigenvectors e1

and e2, showing their coalescence at the EP.
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Figure 2.17: Influence of growth rate ν0 on the mass flow ṁEP at which the exceptional
point (and thus the best stabilization) is achieved. The dashed red line corresponds to
Eq. (2.24)
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Figure 2.18: Influence of detuning on the mass flow giving best stabilization. (a) ṁBS

as a function of ν0 within stability limit for 3 different detuning values. The plain
red curve corresponds to ṁEP (Eq. (2.24)) whereas the dashed and dotted red curves
were obtained numerically. The slope stays the same but the y-intercept varies. (c)
y-intercept of ṁBS as a function of the detuning δ. (b) and (d): same for the QW
damper.
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Figure 2.19: For the exact same damper, comparison between reflection coefficient
absolute value (a) for porosity σ = 0.055 and (c) for porosity σ = 0.024, and coupled
damper-cavity spectrum (b) for efficiency factor ε2

H = 0.0011 (Vc = 0.2 m3) and (d)
for efficiency factor ε2

H = 0.0056 (Vc = 0.041 m3)

2.5 Conclusion

The optimization of the damper purge mass flow has been done in two different setups
throughout this chapter: either for minimizing the reflection coefficient at resonance in
an impedance tube (section 2.2.2) or for achieving the best stabilization of an unsta-
ble eigenmode when the damper is coupled to a chamber (section 2.4.2). These two
problems are very different as illustrated in Figure 2.19: Problem A consists of maxi-
mizing acoustic absorption per unit area, as was done in [75, 143,156]. When identical
dampers are distributed over a surface, the ideal purge mass flow per damper for best
normal-incidence absorption depends on the number of dampers per unit area. When
this purge mass flow is set, the acoustic resistance of the surface matches the character-
istic impedance of the medium. In Figure 2.19(a) and 2.19(c), which give the absolute
value of the normal incidence reflection coefficient as in Figure 2.4, one can see that
the optimum mass flow that leads to anechoic condition, is not the same whether 4 or
9 geometrically identical dampers are distributed over the same surface.
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

Problem B deals with the stabilization of an unstable mode in a chamber using damped
resonators. The ideal mass flow for achieving the best stability margin does not depend
on the density of dampers over the surface enclosing the cavity, but on the volume ratio
between the cavity and the dampers. In 2.19(b) and 2.19(d), the EP obtained by the
connection of a tuned HH resonator to a cavity is not obtained at the same mass flow,
when the cavity-to-damper volume ratio is changed. Note also that, although the HH
dampers considered for this illustration feature the same geometry as the ones used to
clarify Problem A, these mass flow differ from the ones giving anechoic condition in
2.19(a) and 2.19(c). This is due to the fact that the optimization problem is not the
same in the two cases: in the first one, one tries to minimize the reflection coefficient
of a surface; in the second one, one tries to minimize the real part of the eigenvalues of
the coupled system “chamber-damper”.

In this chapter, the damping properties of HH and QW resonators have been inves-
tigated. A new linear model for the QW damper impedance has been derived and
validated using reflection coefficient measurements. A coupled chamber-damper exper-
iment was set up in order to measure the stability limits of the coupled system for both
types of dampers. The damping capabilities of these dampers have been compared
theoretically and experimentally: for comparable volume, the QW damper requires a
higher mass flow both for minimizing the reflection coefficient (for which it provides
damping in a narrower frequency band as the HH) and for optimizing the stabilization
of an acoustic eigenmode. The HH damper is more prone to detuning but also provides
better stabilization at very low purge mass flow than a QW damper featuring the same
volume. The experiments also allowed the validation of the analytical model describing
the coupled system. It was demonstrated that the best damping is achieved at the
exceptional point of the coupled system, obtained for tuned dampers and for a critical
mass flow whose expression is given as function of the key parameters of the system.

2.6 Appendix: Derivation of the analytical model

The problem of coupled cavities has been the topic of numerous studies, which are based
on the model given in chapter 10.4 of the book of Morse and Ingard [122]. In the present
case, one of the cavities (the chamber) is much larger than the others (the dissipative
resonators). One can for instance refer to the work of Fahy and Schofield [55], who
derived a model to predict the increase of modal damping induced by a single damper.
Cummings [38] and Li and Cheng [101] adapted the model to a dissipative resonator
array. Doria [45] studied the effect of the damper on the mode shape and the influence of
different volume ratios between chamber and damper. Subsequent studies extended the
use of the model to cavities exhibiting linearly unstable thermoacoustic modes [7,132].
Following the same approach, the pressure in the chamber is expressed as a Galerkin
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2.6. Appendix: Derivation of the analytical model

expansion using the orthonormal basis ψ composed of the natural acoustic eigenmodes:

p(t,x) =
∞∑
i=1

ηi(t)ψi(x), (2.30)

with ψi(x) the natural eigenmodes and ηi(t) their amplitude. Assuming that the cham-
ber is equipped with dampers and that, under the effect of a field dependent volumetric
source, the pressure field is dominated by one of these modes, the contribution from
the other modes can be neglected and one can express the amplitude of that mode in
the frequency domain as [132]:

η̂(s) =
sρcc

2
c

s2 + ω2
0

1

V Λ

(
γ − 1

ρcc2
c

∫
V

(Q̂C(s) + Q̂N(s))ψ∗(x)dV −
∫
Sd

η̂(s)
|ψ(x)|2

Zd(x, s)
dS

−
∫
S−Sd

η̂(s)
|ψ(x)|2

Z(x, s)
dS

)
.

(2.31)

In this formula, ρc is the air density in the chamber, cc the speed of sound in the
chamber, γ the heat capacity ratio, V the volume of the chamber, ω0 the natural
angular frequency of the dominant mode ψ and Λ its norm defined as

Λ =
1

V

∫
V

|ψ|2dV, (2.32)

Q̂C is the coherent component of the volumetric source, in the sense that it depends on
the acoustic field and therefore on η̂, while Q̂N is the noisy component of the volumetric
source which does not depend on the acoustic field, and which acts as a broadband
acoustic forcing; Sd is the area of the chamber walls which is equipped with dampers;
Zd(x, s) = η̂(s)ψ(x)/û(s) is the impedance of the dampers and Z(x, s) is the impedance
of the chamber walls. In combustion chambers, thermoacoustic instabilities result from
the constructive interaction between the coherent component of the unsteady heat
release rate of the flames QC , and the acoustic field η. When the acoustic energy
produced by the coherent volumetric source exceeds the dissipation at the boundaries,
the thermoacoustic system is linearly unstable. Considering Eq. (2.31) in the situation
where there are no dampers (Sd = 0), one can express the transfer function which links
the modal amplitude to the broadband forcing

H0(s) =
η̂(s)

Q̂N(s)
=

−2ν0s

s2 − 2ν0s+ ω2
0

, (2.33)

where the subscript “wod” stands for “without dampers”, and where

Q̂N(s) =
γ − 1

−2ν0V Λ

∫
V

Q̂N(s)ψ∗(x)dV (2.34)

is the normalized broadband component of volumetric forcing weighted by the mode
shape. ν0 = β − α is the linear growth/decay rate of the thermoacoustic system that
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Chapter 2 - Stabilization of acoustic modes using acoustic resonators

results from the balance between the linear contribution of the source term β (which
depends on the gain and delay between coherent component of the volumetric source
QC and pressure η̂ [37]) and the natural linear damping of the mode α, which results
from the impedance at the boundary (last integral in Eq. (2.31)). The case where n
identical HH dampers are coupled to this chamber is now considered. Assuming that
the neck of the dampers is compact with respect to the wavelength 2πcc/ω0, the second
integral in Eq. (2.31) can be rewritten as

n∑
k=1

aψ2(xk)

ZH
η̂(s), (2.35)

where a is the cross-section of the neck of the dampers and xk is the location of the kth

damper. With Ψd =
∑n

k=1 ψ
2(xk) and with the expression of the HH damper impedance

ZH = ρdl
s2 + 2αHs+ ω2

H

s
. (2.36)

One can rearrange Eq. (2.31) as

η̂(s) = H0Q̂N(s)−H0
ρcc

2
c

ρdc2
d

ALΨd

V Λ︸ ︷︷ ︸
ε2H

c2
da

ALl︸︷︷︸
ω2
H

1

−2ν02αH

2αHs

s2 + 2αHs+ ω2
H

η̂(s), (2.37)

with 2αH = RH/ρdl and RH the resistive term from Eq. (2.3). Considering that the
pressure drop across the damper neck is small (p̄c ≈ p̄d), one has ρdc

2
d = γp̄d ≈ γp̄c =

ρcc
2
c , and one can write the transfer function which links the modal amplitude to the

broadband forcing, when the chamber is equipped “with dampers”:

Hwd(s) =
η̂(s)

Q̂N(s)
=

−2ν0s (s2 + 2αHs+ ω2
H)

(s2 − 2ν0s+ ω2
0) (s2 + 2αHs+ ω2

H) + s2ω2
Hε

2
H

. (2.38)

In this expression, εH is the damping efficiency factor. If εH = 0, then Hwd = H0.
In fact, the damping efficiency factor is a mode-shape weighted dampers-to-chamber
volume ratio

ε2
H =

VH
V

Ψd

Λ
(2.39)

with VH = AHLH the back volume of one damper. For instance, if all the n dampers
are placed at antinodes where ψ = 1, then Ψd = n and ε2

H = nVH/V Λ where one clearly
sees the ratio between overall damping volume nVH and chamber volume V . It shows
that large εH are achieved for large damping volume, with dampers at antinodes. In
the case of the addition of n identical QW dampers, replacing a by A and ZH by ZQ
from Eq. (2.14) and multiplying numerator and denominator by L · 4/π2 yields the
same transfer function as Eqs. (2.18) and (2.38) with subscripts “H” replaced by “Q”,
with 2αQ = 2RQ/ρL (RQ is the QW damper resistance given at Eq. (2.13)) and with

ε2
Q =

8

π2

(
1 +

Lcor

Lp

)
VQ
V

Ψd

Λ
, (2.40)
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where VQ = ALp. The transfer function of the system without (Eq. (2.33)) and with
(Eq. (2.18)) dampers are represented as block diagrams in Figure 2.12.

Note that this model, covering the coupling of one or multiple dampers of same geometry
to the cavity, can be extended to include dampers of different geometries. Assuming
we have N different damper geometries, Eq. (2.37) can be rewritten:

η̂(s) = H0Q̂N(s)−H0

N∑
i=1

ρcc
2
c

ρic2
i

ε2
iω

2
i

1

−2ν02αi

2αis

s2 + 2αis+ ω2
i

η̂(s), (2.41)

with ρi, ci, αi, ωi the air density and speed of sound inside the damper i, as well as its
damping and natural resonance frequency. The damping efficiency factor εi is defined
as in Eqs. (2.39) or (2.40), depending on the damper type. Under the same assumption
as above that ρic

2
i ≈ ρcc

2
c , this gives the following the transfer function:

η̂(s)

Q̂N(s)
=

−2ν0s
N∏
i=1

(
s2 + 2αis+ ω2

i

)
(
s2 − 2ν0s+ ω2

0

) N∏
i=1

(
s2 + 2αis+ ω2

i

)
+

N∑
i=1

ε2
iω

2
i s

2
∏
j 6=i

(
s2 + 2αjs+ ω2

j

) .
(2.42)

For example for N = 2, the characteristic polynomial of the system reads:(
s2 − 2ν0s+ ω2

0

) (
s2 + 2α1s+ ω2

1

) (
s2 + 2α2s+ ω2

2

)
+ε21ω

2
1s

2
(
s2 + 2α2s+ ω2

2

)
+ε22ω

2
2s

2
(
s2 + 2α1s+ ω2

1

)
,

(2.43)

allowing for linear stability and eigenvalue analysis, in order to determine parameters
achieving best stabilization.
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Chapter 3

Stability and limit cycles of a
nonlinear damper acting on a
linearly unstable thermoacoustic
mode

This chapter builds up on the linear study in the previous chapter, intro-
ducing nonlinearities into the system. It aims at providing an overview of
the dynamics of the associated limit cycles using a simple analytical model,
where a perfectly tuned Helmholtz damper is coupled to the chamber fea-
turing an unstable mode. The damper, crossed by a purge flow in order to
prevent hot gas ingestion, is modeled as a non-linearly damped harmonic
oscillator, with vortex shedding as the main dissipation mechanism. The
combustion chamber featuring a linearly unstable thermoacoustic mode is
modelled as a Van der Pol oscillator. The fixed points of the coupled system
and their stability can be determined by analyzing the averaged amplitude
equations. This allows the computation of the limit cycle amplitudes as
function of the growth rate of the unstable mode and the mean velocity
through the damper neck. Time-domain simulations of the coupled ODEs
system are also performed and compared to the analytical predictions. Fi-
nally, experiments are performed using the same setup as in the previous
chapter, where the thermoacoustic instability resulting from the interac-
tion between heat release and acoustic pressure is mimicked by an electro-
acoustic feedback loop. The stabilization capabilities of the damper and
the amplitude of the limit cycle in the unstable cases are compared between
the experiments and the analytical and numerical predictions, underlining
the potentially dangerous hysteretic behavior of the system which should
be taken into account for real engine cases.
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3.1. Introduction

This chapter is based on the research article Stability and Limit Cycles of a Nonlinear
Damper Acting on a Linearly Unstable Thermoacoustic Mode by Claire Bourquard and
Nicolas Noiray published in the Journal of Engineering for Gas Turbines and Power
141 (5), 051012 (2019).

3.1 Introduction

Over the last decades, the ever more stringent regulations on pollutant emissions have
forced gas turbines manufacturers to design turbomachinery capable of running under
leaner and leaner conditions. However, this lean combustion mode makes the combustor
more prone to thermoacoustic instabilities, occuring when the fluctuating heat release
from the flame interacts in a constructive way with the acoustic pressure field. The
limit cycles of such thermoacoustic instabilities have been the topic of multiple studies
[85,105,174,175].

The suppression of thermoacoustic instabilities can be achieved by adding passive damp-
ing devices such as Helmholtz resonators to the combustion chamber [8,17,47,202], but
in practical system the determination of the ideal damper location can be quite chal-
lenging [116]. Using a linear model, the evolution of the stability limits [58, 132, 199]
and limit cycle amplitudes [27] of the system equipped with dampers has been studied.
This model, using a linear dissipation term depending on the mean velocity of the purge
flow going through the damper, is justified since dissipation occurs mostly because of
vortex shedding at the damper exit [69,181]. However, if the acoustic pressure in front
of the damper exceeds a threshold, the flow may reverse during part of the acoustic
cycle, which then requires nonlinear modeling of the damping term.

The nonlinear behavior of a Helmholtz damper has been studied on multiple occasions
in the frame of damper impedance modeling, either with resistance depending only on
amplitude [8,86,208], or adding a dependence on frequency in the model [59,69,169,186].
A study by Park and Sohn [136] investigated the damping of a cavity mode with a half-
wave resonator at high amplitudes using numerical simulations.

To our knowledge, however, the influence of the Helmholtz resonator damping term
nonlinearity on the stability of an acoustic mode has not been yet thoroughly investi-
gated and is the topic of the present chapter. This is of utmost importance since the
nonlinear damping term might lead to non-monotonic behavior such as sudden jumps
to high-amplitude limit cycles, which can be dangerous for the machine integrity dur-
ing ramping between operating points. In practice, reverse flow might lead to hot gas
ingestion [32, 33] and thus detuning of the damper. The damper behavior can also be
influenced by some other temperature or density difference between the damper and
the chamber [19,194]. In the present chapter, however, only the influence of the damp-
ing nonlinearity is studied, and the damper is assumed to stay perfectly tuned at all
conditions.
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Chapter 3 - Limit cycles of nonlinear damper acting on linearly unstable mode

In a first part the analytical model is derived: the thermoacoustic instability is modelled
as a Van der Pol oscillator, while the above-mentioned nonlinear damping model is used
for the resonator. Coupled differential equations are derived and averaged to obtain
the theoretical limit cycle amplitudes for the perfectly tuned case. The next section
introduces the experimental setup, consisting of a parallelepipedic chamber where the
thermoacoustic instability is mimicked by an electro-acoustic feedback loop, to which a
Helmholtz resonator can be added. The growth rate of the electro-acoustic instability as
well as the purge flow velocity through the damper can be controlled. The results of the
analytical predictions and the experiments, as well as results of Simulink simulations
of the coupled equations are compared in the last section.

3.2 Analytical Model

3.2.1 Derivation of the coupled equations

For the derivation of a linear model for the coupling between a damper and an enclosure,
we start from Eq. (2.31) from section 2.6, where the noisy component of the unsteady
heat release is neglected, and where the coherent component is simply written as Q:

η̂(s) =
sρc2

s2 + ω2
0

1

V Λ

(
γ − 1

ρc2

∫
V
Q̂(s)ψ∗d(x)dV

−
∫
S−Sd

η̂(s)
|ψd(x)|2

Z(s)
dS −

∫
Sd

η̂(s)
|ψd(xd)|2

Zd(s)
dS

)
,

(3.1)

with s the Laplace variable, ρ the air density, c the speed of sound in the chamber,
V the chamber volume, Sd the wall surface equipped with dampers, Zd the damper
impedance, γ the specific heat ratio, Q̂ the volumetric source term and Λ the spatial
norm of the mode defined as in Eq. (2.32) from section 2.6. The second integral in Eq.
(2.31) corresponds to the energy flux through the chamber walls and can be modelled by
a damping term 2αsη̂, with α > 0 the natural linear damping of the chamber. The first
integral, corresponding to the source term, can be similarly modelled by ne−iω0τsη̂, with
n the gain and τ the delay between source term and pressure. The linear contribution
of the feedback loop to the growth/decay corresponds to the real part of this term
2β = n cos(ω0τ), which can be either positive or negative. One can then define the
growth rate ν such that ν = β − α. In the present case, a single damper is used. Its
geometry is described in Figure 3.1. Using the assumption that the neck diameter is
compact with respect to the wavelength, one can assume all quantities to be constant
in the third integral. Those simplifications yield:

η̂(s) = − sρc2

s2 − 2νs+ ω2
0

Sdη̂(s)|ψd(xd)|2

V ΛZd
. (3.2)

Multiplying numerator and denominator by the damper back volume VH and the
neck length l (end corrections included), using Sd = a to make the damper reso-
nance frequency ωd = c

√
a/VH l appear, substituting the damper impedance Zd by
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3.2. Analytical Model

p̂/ûd = η̂ψd(xd)/ûd (with ûd the acoustic velocity pointing inside the damper), rear-
ranging the terms and switching back to time domain yields our first coupled equation:

η̈ − 2νη̇ + ω2
0η = −ε

2
Hω

2
dρl

ψd
u̇d, (3.3)

For ease of notation one defines ψd = ψd(xd) which describes the maximum mode
amplitude at damper location and ε2

H a damping efficiency factor, depending on the
volume ratio and the damper location defined as:

ε2
H =

VH
V

ψ2
d

Λ
(3.4)

With such a model, the pressure amplitude would theoretically grow indefinitely. In
practice, however, nonlinear effects stabilize the pressure amplitude to a certain value
describing a limit cycle. The minimum order model which can be used to describe
such a saturation is the Van der Pol oscillator which will be used in this chapter. This
model can represent any nonlinearity that is reasonably approximated by a fourth order
Taylor expansion, since the even order terms vanish when the averaging is performed.
The nonlinearities are then simply modelled by a cubic saturation [130], giving:

η̈ − (2ν + κη2)η̇ + ω2
0η = −ε

2
Hω

2
dρl

ψd
u̇d. (3.5)

1 2

VH

Figure 3.1: Sketch of a Helmholtz resonator with dimensions. For simplicity the neck
length is simply labeled ”l” but the model includes an end correction on both sides of
the neck

The second coupled equation of the system is now derived using the sketch in Figure
3.1. One starts with the momentum equation along a streamline through the damper
neck separating between mean and fluctuating quantities for velocity u = ū + u′ and
pressure p = p̄+ p′:

ρ
∂u′

∂t
+

1

2
ρ
∂(ū+ u′)2

∂x
+
∂(p̄+ p′)

∂x
= 0 (3.6)

One integrates in space from (1) to (2), using the neck length compactness (which
means u′n is constant throughout the neck):

1

2
ρ(ū1 + u′1)2 + p̄1 + p′1 = ρl

du′n
dt

+
1

2
ρ(ū2 + u′2)2 + p̄2 + p′2, (3.7)
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Chapter 3 - Limit cycles of nonlinear damper acting on linearly unstable mode

with l the neck length with end corrections. Using the fact that mean quantities verify
the Bernoulli equation and deriving with respect to time yields:

ρ(ū1 + u′1)u̇′1 + ṗ′1 = ρlü′n + ρ(ū2 + u′2)u̇′2 + ṗ′2 (3.8)

Since some part of the acoustic energy is dissipated in vortex shedding when a jet occurs
as in Figure 3.1, the difference between the first order derivative velocity terms on both
sides is modelled by introducing a pressure loss coefficient ζH : if ūn + u′n > 0 the jet
occurs on the right side which is where pressure loss occurs:

ṗ′1 = ρlü′n + ρζH(ūn + u′n)u̇′n + ṗ′2 (3.9)

Whereas if ūn + u′n < 0 the jet occurs on the left side:

ρζH(ūn + u′n)u̇′n + ṗ′1 = ρlü′n + ṗ′2 (3.10)

In addition, using the mass conservation and the equation of state in the volume gives
ṗ′1 = −(ρc2a/VH)u′n and using the fact that ṗ′2 = ψdη̇ gives for the whole cycle:

ü′n +
ζH
l
|ūn + u′n|u̇′n + ω2

du
′
n = −ψd

ρl
η̇ (3.11)

3.2.2 Averaging and amplitude equations

For ease of notation one defines the acoustic velocity in the neck as u = ud = −u′n. The
system of coupled equations is therefore:

η̈ − (2ν + κη2)η̇ + ω2
0η = −ε

2
Hω

2
dρl

ψd
u̇ κ < 0

ü+
ζH
l
|ū+ u|u̇+ ω2

du =
ψd
ρl
η̇ ζH > 0,

(3.12)

This is a system of two nonlinear oscillators with linear resistive coupling. The 1st

oscillator is a Van der Pol oscillator corresponding to self-sustained acoustic oscillations.
The 2nd oscillator is a stable nonlinearly damped harmonic oscillator, excited by the
derivative of the pressure in front of the damper divided by the mass of air in the
damper neck per unit area. As a summary, the main assumptions that were done to
derive the equations are the following:

1. Single dominant mode

2. A cubic saturation accurately represents the nonlinearities

3. Neck diameter and length are compact with respect to the mode wavelength

4. Dissipation in the damper is only due to vortex shedding and can thus be repre-
sented with a pressure loss coefficient ζH
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3.2. Analytical Model

Following the averaging technique in [5,176], oscillations are assumed at a frequency ω
unknown but with ω ' ω0 ' ωd and ω0 + ωd ' 2ω. The ansatz is:

η = A cos(ωt+ ϕA) =
1

2
(aeiωt + a∗e−iωt) a = AeiϕA

u = B cos(ωt+ ϕB) =
1

2
(beiωt + b∗e−iωt) b = BeiϕB

(3.13)

The first order derivative is:

η̇ =
iω

2
(aeiωt − a∗e−iωt) assuming ȧeiωt + ȧ∗e−iωt = 0

Then η̈ = iωȧeiωt − ω2

2
(aeiωt + a∗e−iωt)

(3.14)

A similar sequence is used for u and b. Substituting into the first line of Eq. (3.12),
multiplying by e−iωt/iω, simplifying, integrating over one cycle, substituting a, b and
ȧ, dividing by eiϕA and taking the real and imaginary part of the equation yields:

Ȧ = νA+
κA3

8
− ε2

Hω
2
dρl

2ψd
B cos(ϕA − ϕB)

ϕ̇A =
ω2

0 − ω2

2ω
+
ε2
Hω

2
dρl

2ψd

B

A
sin(ϕA − ϕB)

(3.15)

Similar treatment for the second line of Eq. (3.12) yields:
Ḃ =

ζH
2l
B2gH

( ū
B

)
+
ψd
2ρl

cos(ϕA − ϕB)

ϕ̇B =
ω2
d − ω2

2ω
+
ψd
2ρl

A

B
sin(ϕA − ϕB),

(3.16)

with the following function coming from the averaging of the damping term with abso-
lute value:

gH(x) =


2

π

(
x arcsin(x) + (2 + x2)

√
1− x2

3

)
for |x| ≤ 1

x for |x| > 1

(3.17)

This function corresponds to the one in the nonlinear damping term model used in [8,
86,208], whose accuracy will be confirmed experimentally in the next section. Defining
∆ϕ = ϕA − ϕB yields the following system of three coupled equations for the slowly
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Chapter 3 - Limit cycles of nonlinear damper acting on linearly unstable mode

Figure 3.2: (a) Chamber limit cycle amplitude A as function of ν and ū for κ = −0.06
[s-1.Pa-2] (other parameters are the same as in the experimental setup introduced in the
next section) Coloring: gradient of the amplitude A. The transparent surface corre-
sponds to the solutions of Eq. (3.23) (η and u not in phase), while the opaque surface
corresponds to the solutions of Eq. (3.20) (η and u in phase) (b,c) Corresponding
bifurcation diagram as function of ν for different fixed ū for the amplitude A (c) and
the phase ∆ϕ (b). Plain lines correspond to stable fixed points (i.e. limit cycles.
thick=out-of-phase, thin=in phase), dotted lines correspond to unstable fixed points.
(d) Corresponding bifurcation diagram as function of ū for different fixed ν. (e) Sta-
bility map as function of ν and ū. Black lines: Hopf bifurcations corresponding to the
linear model stability limit. Red lines: fold bifurcations merging in a cusp catastrophe
point at (ν = 28.4 rad/s,ū = 2.31 m/s). Grey shaded area: limit-cycles corresponding
to out-of-phase solution. Pink shaded area: zone of existence of an unstable fixed point.
Purple shaded area: zone where a single stable limit cycle exists. The area not shaded
corresponds to the zone where the whole system is stable.
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3.2. Analytical Model

varying amplitudes and the phase between the coupled oscillators:

Ȧ = νA+
κA3

8
− ε2

Hω
2
dρl

2ψd
B cos(∆ϕ)

Ḃ = −ζH
2l
B2gH

( ū
B

)
+
ψd
2ρl

A cos(∆ϕ)

∆ϕ̇ = ∆ω +

(
ε2
Hω

2
dρl

2ψd

B

A
− ψd

2ρl

A

B

)
sin(∆ϕ),

(3.18)

with ∆ω =
ω2

0 − ω2
d

2ω
' ω0 − ωd the detuning constant.

3.2.3 Solutions and interpretation

For the solutions to be partially analytically tractable, one has to assume that the
damper is perfectly tuned, i.e. ∆ω = 0. The first trivial fixed point of the system in
Eq. (3.18) is (0, 0, 0). For the non-trivial fixed points, there are two types of solutions.
Either (i) pressure and velocity are in phase, i.e. ∆ϕ = 0. Then

A =
ζHρ

ψd
B2gH

( ū
B

)
(3.19)

Substituting this into the second line of Eq. (3.18) gives:

B5g3
H

( ū
B

)
+

8νψ2
d

κζ2
Hρ

2
BgH

( ū
B

)
− 4ε2

H lψ
2
dω

2
0

κζ3
Hρ

2
= 0 (3.20)

Depending on the values of the parameters κ, ν and ū, this equation yields between 0
and 3 solutions. The other type of solution can be found if (ii) pressure and velocity
are not in phase, i.e. ∆ϕ 6= 0:

ε2
Hω

2
dρl

2ψd

B

A
− ψd

2ρl

A

B
= 0

⇒ A =
ωdρl

√
ε2
H

ψd
B

(3.21)

Substituting this into the first line of Eq. (3.18) gives:

cos(∆ϕ) =
κ

4
ωdρ

2l2
√
ε2
HB

2 +
2ν

ωd
√
ε2
H

(3.22)

Substituting the previous results into the second line of Eq. (3.18) gives:

− ζH
2l
BgH

( ū
B

)
+
κ

8

ω2
dρ

2l2ε2
H

ψ2
d

B2 + ν = 0 (3.23)
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Chapter 3 - Limit cycles of nonlinear damper acting on linearly unstable mode

Figure 3.3: Influence of the value of κ on the bifurcation diagram ((a), (c) and (e))
and position of the bifurcation lines on the (ν − u) map ((b), (d) and (f)).

Depending on the values of the parameters κ, ν and ū, this equation yields either 0 or
1 solution. Equations (3.20) and (3.23) are numerically solved for velocity amplitude
B and the results used with the other equations to obtain A and ∆ϕ. Since only
the acoustic pressure will be measured in the experimental case, the limit cycles are
described in terms of averaged amplitude A only. The solutions correspond to stable
or unstable fixed points of the system. The stability of the fixed points has been
determined by looking at the signs of the eigenvalues of the Jacobian of Eq. (3.18) at
the values of the fixed points. In Figure 3.2(c) and (d), the stable fixed points (i.e.
limit cycles) are represented by plain lines, and the unstable fixed points by dotted lines.
The fixed points corresponding to solutions of Eq.(3.23) (out-of-phase) are always stable
and are represented by thicker plain lines.

Figure 3.2 presents the analytical results for pressure amplitude A for one fixed κ =
−0.06 [s-1.Pa-2]. First, a 3D view of the chamber-damper system limit cycle amplitude A
as function of ν and ū is shown in Figure 3.2 (a). The transparent surface corresponds to
the solutions of Eq. (3.23) (η and u not in phase), while the opaque surface corresponds
to the solutions of Eq. (3.20) (η and u in phase). Taking a closer look at the bifurcations
in 2D (Figure 3.2 (e)), the two Hopf bifurcations (black lines, defined as transition from
stable system to a limit cycle) correspond to the stability limits predicted by the linear
model: indeed if one starts from Eq. (3.2), considers the system excited by non-coherent
noise, and uses a linear impedance model for the damper, then the RHS corresponds to a
linear transfer function. Applying the Routh-Hurwitz criterion to this transfer function
gives the linear stability limits corresponding to the Hopf bifurcations in Figure 3.2 (e)
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3.2. Analytical Model

(see chapter 2). The result of the use of a nonlinear damping model is the appearance
of the two fold bifurcations curves (in red), which are defined as loci where two fixed
points collide and disappear. For the present case, they are equivalent to the limit
of existence of an unstable fixed point. The point where those two fold bifurcation
curves meet is called a cusp catastrophe point, occuring at (ν = 28.4 rad/s,ū = 2.31
m/s). The non-shaded area then corresponds to the stable zone. The grey-shaded area
corresponds to a single out-of-phase limit-cycle. The pink-shaded area is the zone of
existence of an unstable fixed point, and the purple-shaded area is where a single stable
in-phase limit cycle exists.

Some cuts of the bifurcation diagram in Figure 3.2 (e) are shown in Figure 3.2 (d) for
fixed ν and Figure 3.2 (b) and (c) for A and ∆ϕ for fixed ū respectively. Taking a closer
look at Figure 3.2 (c) since those are the results which will be compared to simulations
and experiments: one can see that there is an ”ideal” purge flow velocity ū ' 2.1 m/s
for which the onset of instability occurs at the highest initial growth rate ν possible
(here about 30 rad/s). For fixed velocity ū < 2.1 m/s, and an increasing ν, a first limit
cycle develops when crossing the Hopf bifurcation line (ii) for which η and u are not in
phase, with the phase difference decreasing progressively as one increases ν (see Figure
3.2 (b)), until it reaches the fold bifurcation, at which the system ”jumps” to a higher
limit cycle for which η and u are in phase. From the shape of the bifurcation plots in
Figure 3.2 (c), one might also expect some hysteresis to happen when the growth rate ν
is ramped up and down. The influence of the value of κ on the bifurcation diagram can
be seen in Figure 3.3. For the remainder of this chapter, the initial value of κ = −0.06
[s-1.Pa-2] will be used.
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Figure 3.4: (a) Sketch of the impedance tube used for the damper nonlinear model
validation (b) cut of the Helmholtz damper (c) Comparison between the resistive term
obtained from a fit on the experimental reflection coefficient (triangles) and the resistive
term obtained from the nonlinear model RNL (black line).
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3.3 Experiments

3.3.1 Validation of the damper nonlinear model

First the validity of the nonlinear damper model using the function g in Eq. (3.17)
has to be confirmed. In order to achieve this, the acoustic reflection coefficient R of
our Helmholtz resonator was measured for different mean purge flow velocities and
different excitation amplitudes using the Multi-Microphone-Method [79]. A sketch of
the impedance tube can be seen in Figure 3.4(a). Two Beyma 12SW1300Nd Loud-
speakers and four G.R.A.S. 46BD 1/4” CCP microphones were used. The impedance
tube cross-section is 62x62mm. The damper is also sketched in Figure 3.4(b), and its
dimensions are as follows: the neck has a diameter of 16.4mm and a length of 45mm.
The appropriate end correction is determined using the Helmholtz solver AVSP for the
corresponding geometry, which gives lcor = 15.6mm. The back-cavity of the Helmholtz
damper is 64mm long (this length is adjustable to be able to tune the damper) and
50mm of diameter. Eight small choked holes feed the damper with purge flow. The
experimental reflection coefficient is used to compute the acoustic impedance of the
damper using

Zd =
ρc+R
ρc−R

(3.24)

This experimental impedance is fitted to a simple model by adjusting the specific re-
sistance term R (non-frequency dependent):

Zd = ρc

(
l

c
· s

2 + ω2
d

s
+R

)
, (3.25)

Finally this experimentally fitted resistance R is compared to the resistive term from
the nonlinear model: indeed, starting from Eq. (3.11), performing a Fourier series
expansion of the nonlinear term while neglecting higher frequency terms, uses ψdη̇ = ṗ,
and switching back to frequency domain yields the same expression as Eq. (3.25)
replacing R by RNL defined as follows:

RNL =
ζH û

c
gH

( ū
û

)
, (3.26)

with û the acoustic velocity and gH the function from Eq. (3.17). This model with
non-frequency dependent nonlinear resistive term has already been used in [8, 86, 208].
The value of the pressure loss coefficient ζH has to be fitted so that RNL best matches
the resistive term computed for each single measure. The comparison is done in Figure
3.4(c) for ζH = 1.78 which gives very good agreement, whether on the linear part
(straight line) or on the nonlinear part.

3.3.2 Chamber-damper coupled system measurements

To show the relevance of the analytical model from the first section, a coupled chamber-
damper experiment has been designed. The experimental setup consists of a main
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Figure 3.5: Sketch of the measurement setup

Element x y z
Feedback Microphone 70 80 590
Feedback Loudspeaker 245 345 50

Damper 0 165 45
Exhaust 0 325 45

Table 3.1: Coordinates of the different elements in mm in the chamber coordinate
system

chamber, which is a 500mm x 700mm x 600mm parallelepipoid metal box, with ridges on
the side panels and tensioned metal rods between both main panels to guarantee rigidity.
This is essential to ensure that the measured oscillations are indeed acoustic oscillations
and that no mechanical resonance interferes. A Pioneer TS-1001I loudspeaker, mounted
inside the chamber, is part of the feedback loop that creates the instability. The hole
through which the cable enters the chamber also serves as an exhaust for the damper
purge flow. A set of eight G.R.A.S. 46BD 1/4” CCP microphones are distributed at
different locations on the chamber boundaries for measuring pressure. One suitably
located microphone is chosen as the feedback microphone: its signal is filtered, delayed,
saturated and amplified by a LabVIEW program loaded onto the National Instruments
cRIO-9066 board before being sent back to the loudspeaker. The feedback loop which
mimics the constructive interaction between flame heat release and acoustic pressure
occurring in real combustion systems is thus completed.

The filter is necessary to ensure that only the first transversal eigenmode (mode of
interest) is excited. This mode has a frequency of about 288 Hz and a natural damping
α = 4.8 rad/s. The additional acoustic losses induced by the exhaust hole when flow
is passing through gives an increase of 0.4rad/s to this damping, which is negligible
compared to the growth rates ν at which the onset of instability occurs. One can
then see in Figure 3.5 that both the loudspeaker and the feedback microphone are
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Chapter 3 - Limit cycles of nonlinear damper acting on linearly unstable mode

located at pressure anti-nodes. The exact location of the different elements in the
chamber coordinate system is shown in Table 3.1. The delay τ = 2.1ms, giving the
most unstable state (i.e. maximizing β) was chosen and kept fixed for the whole set of
experiments. The saturation takes the form of the nonlinear term of the first coupled
equation, similar to what was used in [133]:

S(Uf ) = c1Uf + c2U
3
f , (3.27)

with Uf the incoming voltage from the feedback microphone. One can thus play on
the saturation coefficient and the growth rate separately, knowing that νeff ∝ c1 and
κeff ∝ c2. On one of the chamber main panels, the previously tested Helmholtz damper
can be mounted and fed with a purge flow. The damper is tuned by setting the feedback
loop so that an instability is established inside the box and adjusting the length of the
damper so that the amplitude of the instability is minimal (determination by ear).
From the location of the damper with respect to the mode ψd ' 0.95 is an adequate
estimation. An additional microphone records the pressure inside the damper volume,
which is in quadrature with the velocity u inside the damper neck.

Two types of measurements were performed and are shown in Figure 3.6. To determine
the law between c1 and ν, growth rate measurements were performed where one lets
the instability grow and then fits the linear growth of the logarithm of the envelope and
average over ten instances to obtain the growth rate (Figure 3.6 (a)). Once the growth
rate is known, one can get the actual saturation coefficient κ from any limit cycle
amplitude without damper using: A =

√
−8ν/κ. The second type of measurement

performed is the actual ramping of the growth rate, which was achieved by simply
ramping c1 automatically within the LabVIEW program. The experimental ramp speed
was about 20s for 1 rad/s increase/decrease. An example of the results of such a
measurement is shown Figures 3.6 (b) and (c) for ū = 1.3 m/s: one can see that the
pressure inside the chamber grows to a limit cycle past a certain growth rate ν, and
then jumps to a higher limit cycle. The phase between chamber pressure and damper
neck velocity (obtained by substracting π/2 to the phase between chamber pressure
and damper volume pressure) also follows the trend shown in Figure 3.2 (b): it is not
defined when there is no limit cycle, then starts from a non-zero value and decays to
zero as the growth rate is increased.
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Figure 3.6: Measurement techniques: growth rate measurements (a) and growth rate
ramping with effect on the pressure inside the chamber (b) and on the phase between the
chamber pressure and the damper neck velocity (which corresponds to π/2 substracted
to the phase between chamber pressure and damper volume pressure)

Figure 3.7: Comparison between analytical results (a) and experiments (envelope of
the pressure measured during ramping of ν, plain=ramping up, dashed=ramping down)
(b). Black lines= chamber without damper. Besides the mismatch for the onset growth
rate, one can see that the tendency is well reproduced, and all curves seem to collapse
for higher growth rate even though their order is reversed.
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3.4 Results
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Figure 3.8: Comparison between numerical results from slowly ramping down the
growth rate, highlighting the influence of detuning δ = ∆ω/ω0 and of damper posi-
tion with regard to mode shape ψd (a) ū = 1.3 m/s (b) ū = 1.7 m/s (c) ū = 2.1 m/s
(d) ū = 2.5 m/s

We now concentrate on the effect of the damper on the chamber pressure amplitude A
only. Figure 3.7 compares the results of the analytical model (top) with the experiments
(bottom) for different purge flow velocities ū. The results of the chamber without
damper (black curves) are very well reproduced. For the results with damper, the
behavior of the limit cycles is also well reproduced although there is a 30% error on
the predicted onset of instability between model and experiments. Our hypothesis is
that this is due to a small detuning of the damper: indeed, modifying the damper back
chamber length L by 1mm leads to a detuning δ = ∆ω/ω0 > 0.7%.

Figure 3.8 shows how such a small detuning can strongly influence the onset point
of the instability. Another source of uncertainty is the maximum mode amplitude at
damper location ψd. Since the chamber acoustic shape is altered by the presence of the
loudspeaker, the exhaust hole and the damper itself it can well be that the mode shape
is different from the theoretical one and that ψd has been overestimated. Despite this
fact, in Figure 3.7, the onset of instability follows the trend of the model for increasing
velocity: at first, the higher the purge flow, the later the instability is triggered, until
one reaches an ”ideal” velocity, after which the onset of instability occurs at lower
initial growth rates again. The collapsing of all curves for high growth rates is also well
reproduced even though their order is reversed.
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Figure 3.9: Comparison between Simulink simulations and analytical model (left col-
umn) and experiments (right column). On the left, the results of the analytical model
are superimposed on the Simulink simulations, which highlights the perfect match be-
tween both. (a) and (b) represent the chamber without damper. Despite a different
onset of instability, nonlinear features are well reproduced experimentally, for example
the ”jump” in (d) and (f), and the hysteresis in (l) and (n).
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In addition to the analytical work and to the experiments, Simulink simulations of
the system in Eq. (3.12) were performed for different ū ramping ν up and down at
a rate of about 100s for 1 rad/s increase/decrease. In order to have a better look
at the limit cycle behavior close to the onset of instability, one has to zoom on this
part of the curve for both Simulink/analytical model and experiments. Those results
for ramping up and down and for different velocities are shown in Figure 3.9. The
agreement between theoretical results and simulations (on the left) is very good. One
is able to reproduce the ”jump” between limit cycles ((c), (e), (g) and (i)), and the
inferred hysteresis as well ((k) and (m)). And most importantly, the general behaviour
of the experimental limit cycles (on the right) confirms the validity of our model since
both the ”jump” from different limit cycles ((d) and (f)), and the hysteresis ((l) and
(n)) are reproduced.

3.5 Conclusion

An analytical model for the chamber-damper coupled system was derived, using a lin-
early unstable oscillator with cubic saturation for the chamber and a nonlinear damping
for the damper. Amplitude equations were derived and the theoretical limit cycles of
the coupled system computed in the case where the damper is perfectly tuned. Time-
domain simulations of the analytical system of ODEs were performed which are in
excellent agreement with the theoretical predictions of the limit cycle amplitude. Ex-
periments were then performed by ramping the growth rate inside a papallelepipedic
chamber with a damper, in which the thermoacoustic instability is mimicked by an
electro-acoustic feedback loop. Although the onset of instability occured about 30%
earlier than expected (most probably due to slight detuning of the damper), some of
the nonlinear features of the model were experimentally reproduced, thus underlining
the importance of using a nonlinear model for the damper. This is essential if one wants
to be able to predict potential dangerous behavior close to the onset of instability when
mapping a new engine for example, such as hysteresis and sudden ”jumps” from one
limit cycle to another.
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Chapter 4

Whistling of deep cavities subject
to turbulent grazing flow:
intermittently unstable aeroacoustic
feedback

In this chapter, the focus is on aeroacoustic instabilities, namely where the
acoustic cavity modelled as a damped harmonic oscillator does not act as an
additional stabilizing device, but rather enables the instability to take place
when coupled to an unsteady shear layer. To that end, the classic problem of
the aeroacoustic instability occurring in deep cavities subject to a low-Mach
grazing flow is revisited experimentally and theoretically. The deep cavity
can be modelled in a similar manner to the Quarter-Wave damper modelling
done in Chapter 2. The aeroacoustic instability is caused by the constructive
feedback between the acoustic modes of the cavity and the turbulent shear
layer that forms at its opening. Systematic experiments are performed in
order to construct a new theoretical model, which describes the aeroacous-
tic system as two linearly stable oscillators, with linear reactive coupling,
nonlinear damping and nonlinear resistive coupling. This model constitutes
the basis for a linear stability analysis, and for the prediction of limit cycle
amplitudes by using a describing function approach and by searching the
fixed points of amplitudes equations. Moreover, it is shown that only su-
percritical Hopf bifurcations are found in this aeroacoustic system, and that
in contrast with many flow-induced-vibration problems, frequency lock-in
does not occur. In the last part of the chapter, the intermittency observed
in the vicinity of the supercritical Hopf bifurcations is successfully mod-
elled by adding a coloured multiplicative noise to the grazing flow velocity
in order to account for the effect of turbulence. The necessary conditions
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favouring intermittently stable or intermittently unstable intervals in such
systems are identified using stochastic differential equations governing the
aeroacoustic oscillations and Fokker-Planck equations ruling the probability
density function of the acoustic envelope. This work is relevant for many
musical and industrial configurations exhibiting this type of aeroacoustic
instabilities.

This chapter is pased on the research article “Whistling of a deep cavity subject to turbu-
lent grazing flow: intermittently unstable aeroacoustic feedback” by Claire Bourquard,
Abel Faure-Beaulieu and Nicolas Noiray submitted to the Journal of Fluid Mechanics
in April 2020.

4.1 Introduction

The sound of flutes is produced through aeroacoustic instabilities that result from the
constructive feedback between the acoustic modes of the instruments and the dynamics
of a shear layer [54]. These instabilities also cause numerous issues in industry because
they can induce significant noise pollution and unwanted vibrations leading to fatigue
failures [207]. They have been investigated over several decades and they fall into the
category of “fluid-resonant” cavity flows in the classification established by Rockwell &
Naudascher [150]. This type of instability can be further divided into two groups: the
self-sustained flow oscillations in shallow cavities [154], and the ones of deep cavities
[183].

In the former group, the unsteady cavity flows are governed by the mechanism de-
scribed by Rossiter [152] and they are particularly relevant for aeronautic applications
at high subsonic and low supersonic grazing flows. Canonical configurations have been
investigated numerically with dynamic systems and control theory [76], and with com-
putational aeroacoustics (CAA) methods, which are based on Direct Numerical Sim-
ulations (DNS) and Large Eddy Simulations (LES) of the compressible Navier-Stokes
equations [63, 153, 196] or on the linearization of these equations around a given base
flow [178,192].

In the latter group, to which belongs the aeroacoustic instability investigated in this
work, the self-sustained flow oscillations involve the longitudinal acoustic eigenmodes
of the deep cavity. These instabilities are usually relevant for low-Mach grazing flows
and their modelling has been the topic of intense research over several decades. Most
of the investigations considered the canonical problem of a single deep cavity, while
some works deal with multiple deep cavities [40, 184] and liners made of deep cavities
equipped with perforated plates [39]. There are also several studies dealing with various
passive control methods to prevent whistling of a deep cavity, such as flow obstacles
inside the cavity [113], internal cavity liner [72] or changes of the curvature of the cavity
opening corners [188].
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Many of the studies focusing on single deep cavities, including the present investigation,
follow the work of Elder [50], who proposed a feedback loop analysis with the cavity
opening and its aerodynamic forcing as a forward transfer function and the acoustic
resonance of the deep cavity as a backward transfer function. For example, Mast &
Pierce [112] and Kook & Mongeau [93], who used a frequency-domain describing func-
tion analysis to predict the occurrence and the amplitude of deep cavity whistling.

A key element of this type of analysis is the forward transfer function, which is governed
by the unsteady vorticity-velocity cross product as pointed out by Howe [73] and Nelson
et al. [126] about 40 years ago. The analytical models of this transfer function can be
grouped into two categories: the ones based on the work of Howe [74], which considers
the shear layer as a thin vortex sheet and the ones that are based on discrete vortices
that are periodically shed from the upstream corner of the cavity [126]. One can for
instance refer to the papers of Bruggeman et al. [24] or Dequand et al. [42] in which the
latter formulation is adopted. Dequand et al. [42] also compared against simulations of
the compressible Euler equations and results from the vortex blob method of of Peters
& Hoeijemakers [140]. More recently, Ma et al. [109] used particle image velocimetry
to show that shear layers do not appear as either a flapping vortex sheet or discrete
vortices, but rather as a combination of these two ideals, which depends on the grazing
flow velocity and on the self-sustained oscillation amplitude. While several studies
concentrate on frequency-domain oriented analysis, there are also some investigations
focusing on time-domain simulations and transients, which is particularly relevant for
music instruments [182, 187]. Semi-empirical models of the forward transfer function
can also be directly derived from measurements of the impedance of the cavity opening
and its shear layer [64,83]. Finally, it is important to mention that one can use various
computational methods to identify the aeroacoustic response of the cavity opening. A
first example is the paper of Mart́ınez-Lera et al. [111], in which the forward transfer
function is obtained from incompressible flow simulations, vortex sound theory and
system identification techniques. In fact, for sufficiently low frequencies, the cavity
opening is acoustically compact and the unsteady flow can be locally considered and
simulated as incompressible. Another example is the work of Gikadi et al. [62], where
the compressible Navier-Stokes equations are linearized around a mean grazing flow
obtained from LES and where the forward transfer function and transfer matrices are
successfully compared with the experiments from Karlsson & Åbom [83]. One can also
refer to the paper of Boujo et al. [20], who considered the incompressible Navier-Stokes
equations linearized around mean flows of the acoustically forced cavity opening. The
latter mean flows were obtained from LES for a range of acoustic forcing amplitudes,
in order to demonstrate that the forward transfer functions can be extracted with this
method in the linear regime, but also in the saturated non-linear regime.

In the present work the forward and backward transfer functions are measured for ranges
of grazing flow velocities, cavity depths and acoustic amplitudes, and used for deriving
a new low-order model of the aeroacoustic system in the form of two coupled oscillators.
This formulation allows us to revisit this classic problem and to provide novel insights
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about the underlying deterministic and stochastic dynamics. This nonlinear model is
used for frequency-domain describing function analysis as well as for performing time-
domain simulations and for deriving amplitude and phase equations. We also add
stochastic forcing terms to this low-order predictive model to represent the effect of
turbulence on the aeroacoustic instability. In fact the unsteady component of the flow
in deep cavities subject to turbulent grazing flows can be decomposed as turbulent
fluctuations and coherent fluctuations. The recent experimental works of Ishikawa et
al. [78] and of Boujo et al. [21] show the coexistence of these two types of fluctuations
in the case of a whistle and of a bottle.

We will also focus on the fact that our aeroacoustic oscillations are intermittent for
some combinations of turbulent grazing flow velocity and cavity depth. Intermittency
in dynamical systems has received considerable attention. In the case of thermoacous-
tic instabilities, one can for instance refer to the early work of Clavin et al. [29] or
to the more recent studies from Nair et al. [124] or from Bonciolini et al. [14]. Many
of the investigations dealing with intermittency of thermoacoustic systems concentrate
on noise-driven subcritical Hopf bifurcations. We will show in the present chapter
that thermoacoustic and aeroacoustic configurations exhibiting supercritical Hopf bi-
furcations can also exhibit intermittency, with similar acoustic pressure statistics that
correspond to sporadic bursts of high amplitude oscillations, but with very different
dynamical signature. Indeed, we will show that the present aeroacoustic system can be
intermittently unstable, as the systems investigated by Mohamad & Sapsis [118], and
we will identify the necessary conditions for observing this intermittency.

The experimental setup and the aeroacoustic instability are introduced in section 4.2.
The specific acoustic admittance of the deep cavity and the specific acoustic impedance
of its opening with and without grazing flow are presented in section 4.3, together
with the linear model of coupled oscillators and the analysis of its eigenvalues. In sec-
tion 4.4, the nonlinear problem is treated with a describing function analysis as well
as with amplitude equations. Finally, the experimental and theoretical analysis of the
intermittency at play in the present aeroacoustic system is investigated in section 4.5.

4.2 Experimental setup and aeroacoustic instability

The system considered in the present work consists of a two meters long wind channel
with a square cross-section of side H = 62 mm, which is supplied by a blower and
is operated at atmospheric pressure. The temperature in the channel is maintained
constant at 23◦C with a heat exchanger located immediately downstream of the blower,
which corresponds to a speed of sound in the channel c of 345 m/s. The bulk flow
velocity U in the channel is varied between 35 and 75 m/s, respectively corresponding
to Reynolds numbers Re = UH/ν = 145 000 and 310 000, where ν = 1.5× 10−5 m2/s is
the kinematic viscosity of the air. The bulk velocity is deduced from the mass flow and
the temperature in the channel, which are respectively measured with a Bronkhorst
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Figure 4.1: Sketch of the experimental setup used to investigate the side-branch cavity
whistling. The system is broken down into two subsystems: the deep cavity and the
interface between the cavity and the channel along which the shear layer develops.

IN-FLOW F-106CI and a thermocouple. A side-branch cavity is located in the middle
of the channel as shown in Figure 4.1. This rectangular cuboid spans across one of
the channel sides, exhibits a cross section W × H with W = 30 mm, and its length
L can be varied using a tight piston. The edges of the T-junction are sharp. Large
plenums (0.5×0.7×0.7 m3) equipped with sound absorbing foam and catenoid horns are
mounted at both ends of the channel in order to create anechoic conditions upstream and
downstream of the side-branch cavity. The corresponding cut-off frequency is around
300 Hz, and the upstream and downstream reflection coefficients drop below 0.1 beyond
that frequency. The coordinate system is defined as follows: the x axis points in the
direction of the flow, and the y axis inside the deep cavity, with the origin set in the
middle of the junction. A turbulent shear layer develops between the main channel and
the side-branch cavity. Depending on the mean flow velocity U and the cavity length
L, an aeroacoustic instability can occur due to a constructive feedback between the
acoustic modes of the cavity and the aerodynamic modes of the shear layer.

In the present study, the cavity length L is varied between 200 and 270 mm, and the
acoustic mode of the cavity which is involved in the aeroacoustic instability is the three-
quarter wave eigenmode, with its eigenfrequency being close to fa = 3c/4L. For this
range of length, the cavity length to width ratio L/W is about 8 and therefore the
configuration falls in the category of deep cavity whistling. Four G.R.A.S. 46BD 1/4”
CCP microphones are flush-mounted on the internal wall of the cavity, at y = 0, 45,
90 and 190 mm. The full set of microphones is used for the measurements of reflection
coefficient presented in the next section. The acoustic pressure time traces used to
characterise the aeroacoustic instability were recorded with the third microphone, which
is located in the vicinity of a pressure antinode of the three-quarter wave mode for the
considered range of length L.

The length of the deep cavity is first fixed to L = 250mm and the power spectral
density Spp of the acoustic pressure p at y = 90 mm is measured for a range of mean
flow velocity U , between 35 and 75 m/s. This mapping is presented in Figure 4.2(a).
One can see in Figure 4.2(b) that for U = 74 m/s, the power spectral density of the
acoustic pressure exhibits a sharp high amplitude peak at around 980 Hz, which is the
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Figure 4.2: (a) Mapping of the power spectral density of the acoustic pressure Spp
recorded in the cavity at y = 90 mm for mean bulk flow velocities in the wind channel
ranging from 35 to 75 m/s, and for a fixed cavity length L = 250 mm. (b) Blue line:
Spp in the cavity at y = 90 mm for U = 74 m/s. Gray line: Spp in the wind channel
at y = −31 mm for the same velocity, but without cavity, i.e. L = 0 (the piston is
flush to the wind channel wall). (c) Raw acoustic pressure time trace at y = 90 mm,
for L = 250 mm and U = 74 m/s. (d) Band-pass filtered acoustic pressure (inverse
Fourier transform of the shaded area in Figure 4.2(b)).

signature of a strong aeroacoustic limit cycle. Its harmonic at 1960 Hz is also visible
in the power spectral density. This limit cycle involves the three-quarter wave acoustic
eigenmode of the deep cavity, whose natural eigenfrequency can be approximated by
3c/4L = 1035 Hz when the end correction is not considered, and whose presence is
visible at low velocities in Figure 4.2(a).

The raw acoustic pressure time trace for U = 74 m/s is shown in Figure 4.2(c). It can
be decomposed into two main components: slow fluctuations, which correspond to the
high-amplitude low-frequency content of the power spectral density (below 200 Hz), and
fast fluctuations originating from the aeroacoustic instability of the deep cavity. The
low frequency content originates from the blower and the natural aeroacoustic sources of
the air supply line, as indicated in the acoustic power spectral density in the channel and
in absence of cavity, which is shown in Figure 4.2(b). In order to isolate the dynamics
of the aeroacoustic limit cycle, the acoustic pressure signal is band-pass filtered with
a 200 Hz bandwidth centered on the main peak (see shaded region in Figure 4.2(b)).
In the next figures showing time traces and probability density functions (PDFs) of
acoustic pressure from experiments, the signals are filtered in this way. The filtered
time trace for U = 74 m/s is shown in Figure 4.2(d) and it features a slowly varying
amplitude modulation that is typical of a self-sustained weakly nonlinear oscillator
subject to random forcing.

In order to get insights in the aeroacoustic feedback at play in these self-sustained
oscillations, Particle Image Velocimetry (PIV) is used to characterize the dynamics of
the shear layer. The use of PIV for characterizing shear layer dynamics of unsteady
cavity flows has been reviewed by Morris [121]. It is here combined with acoustic
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Figure 4.3: (a) Picture of the test section placed in the middle of the wind channel.
The length L of the side-branch cavity is adjusted with the piston. The PIV field of
view, which encompasses the turbulent shear layer, is indicated with the dotted line
rectangle. (b) Sketch of the experimental setup used for PIV measurements.

records to perform phase-averaging of the velocity field in the shear layer region, which
is optically accessible through two quartz windows as shown in Figure 4.3. These PIV
measurements are made using a double cavity laser (Photonics DM60Nd:YAG, 532 nm),
a laser guiding arm, sheet optics and a HighSpeedStar X camera from Lavision. The
camera is equipped with a Nikon 100F/2.8D lens and a 36mm extension ring, and it
is placed perpendicularly to the laser sheet formed in the central plane of the channel.
The seeding of the flow is achieved with a spray of Di-Ethyl-Hexyl-Sebacat (DEHS)
in the inlet plenum. A measurement of 2500 double-frame images at a rate of 5 kHz
with time interval of 10 µs between pairs of consecutive laser pulses is performed in
combination with the recording of acoustic signal at 50 kHz sampling rate.

The trigger of the camera and the acoustic pressure signal are used to assign to each
Mie-scattering image its corresponding phase angle with respect to the self-sustained
aeroacoustic oscillations. Instantaneous snapshots of the velocity magnitude |v| are
presented in the top row of Figure 4.4 and show the presence of small scale turbu-
lent structure along the shear layer. Phase averaging was performed by considering
instantaneous velocity fields falling in the same phase bin in order to remove the zero
mean turbulent component of the velocity v̌, and the magnitude of the resulting phase-
averaged component of the velocity | 〈v〉 | are shown in the middle row of Figure 4.4.

One can observe that there is no coherent vortex shedding from the upstream corner.
In fact, the shear layer exhibits a hardly discernible low-amplitude coherent flapping
motion, despite the intense sound level (≈ 130 dB) in the cavity that results from
this aeroacoustic limit cycle. These results clearly show that the assumption of a thin
vortex sheet [74] is adequate to describe the present aeroacoustic limit cycle. The mean
component of the velocity field v̄, which is obtained by averaging the 2500 instantaneous
fields, is then subtracted from the phase-averaged velocity fields 〈v〉 in order to extract
the zero mean coherent component of the velocity fluctuations ṽ. Note that these
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Figure 4.4: Combined PIV and acoustic data processing for characterizing the shear
layer dynamics of the aeroacoustic limit cycle occurring when L = 250 mm and U = 74
m/s. Top row: Instantaneous velocity magnitude |v| at 5 regularly spaced instants of an
acoustic period. Middle row: Phase-averaged velocity magnitude | 〈v〉 |. Bottom row:
vector field of the zero mean coherent component of the velocity fluctuations ṽ coloured
by its vertical amplitude ṽy. Movies can be seen in the supplementary material.

notations correspond to the following decompositions of the total velocity field: v =
v̄ + ṽ + v̌ = 〈v〉 + v̌ = v̄ + v′, where v′ are the zero mean fluctuations. The vector
field ṽ is presented in the bottom row of Figure 4.4 together with the magnitude of
the vertical coherent velocity fluctuations. It shows that the constructive aeroacoustic
feedback involves the first longitudinal hydrodynamic mode whose wavelength is close
to the cavity width W . The nonlinear response of this aerodynamic eigenmode to
transverse acoustic forcing has been investigated numerically by Boujo et al. [20] with
the same geometry but at a lower bulk flow velocity (U = 56 m/s).

4.3 Linear model of coupled oscillators

In this section, a linear model is derived to describe the aeroacoustic instability. As
shown in the sketch on the right of Figure 4.1, the aeroacoustic system is broken into
two coupled subsystems: the deep cavity and the cavity opening being subject to the
turbulent grazing flow. The acoustic velocity ũ is the irrotational part of the zero-mean
coherent component of the velocity, and in the remainder of this chapter, we focus on its
vertical component at the opening ũy, which we will just denote u. In subsection 4.3.1,
measurements of the specific acoustic admittance of the deep cavity A = ρcû/p̂ and of
the specific acoustic impedance of the cavity opening Z = p̂/ρcû, are conducted and
serve as a basis for the model derivation. In these expressions, ρ denotes the air density
and ·̂ stands as frequency domain formulation for the acoustic velocity û and pressure
p̂ at the cavity opening.
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Figure 4.5: (a) Experimental setup for measuring the reflection coefficient R, which is
the ratio of the forward and backward acoustic Riemann invariants f and g, and the
specific impedance Z of the interface between the cavity and the channel along which
the shear layer develops. (b) Experimental setup for measuring the specific admittance
of the deep cavity A.

4.3.1 Impedance measurements and model derivation

Measurements of Z and A are made using the experimental setups respectively shown
in Figure 4.5(a) and 4.5(b). Acoustic forcing is applied with loudspeakers and the
Multi-Microphone Method [159] is used to reconstruct the amplitude and phase of the
forward and backward acoustic Riemann invariants f and g, with which the reflection
coefficientR and the specific impedance or admittance at a reference plane are deduced.
The specific impedance of the cavity opening Z and the specific admittance of the deep
cavity A, which are measured with this method, are respectively presented in Figure
4.6(a) and 4.6(b) for several bulk flow velocities U , and in Figure 4.6(c) and 4.6(d)
for several cavity lengths L.

The white circles correspond to the specific impedance Z without flow. In that case,
the specific resistance <(Z) is rather constant and it is equal to about 0.25 for the
considered frequency range. This can be explained by considering the analogy between
the travelling acoustic waves f and g in the side-branch cavity (see Figure 4.5(a)) and
the ones travelling toward and from an idealized compact area expansion in a duct.
In the latter configuration, the amplitude reflection and transmission coefficients are
respectively given byR = (ε−1)/(ε+1) and T = 2ε/(ε+1), and the specific impedance
is Z = ε, where ε is the area ratio at the sudden area expansion.

In the present configuration, one can approximate the effective area expansion as the
ratio between the cavity cross section WH and twice the wind channel cross section
2H2, because acoustic energy originating from the cavity is transmitted in both the
upstream and downstream direction of the channel. It leads to ε ≈ W/2H = 0.24,
which is very close to the measured specific acoustic resistance. In contrast with the
above-mentioned model for a compact area expansion, the measured specific reactance
is not zero. This is due to the fact that an end-correction due to inertial effects is not

69



4.3. Linear model of coupled oscillators

        

0

0.5

1

600 700 800 900 1000 1100 1200 1300

0

0.5

1

800 900 1000 1100 1200

-2

-1

0

1

2

     

20

40

Figure 4.6: (a) and (b): Specific resistance <(Z) and reactance =(Z) of the cavity
opening along which the shear layer develops for several bulk flow velocities U and for
excitation amplitude 20Pa. The black lines correspond to the fits based on Eq. (4.1).
The red dotted line in (a) highlights the presence of frequency ranges for which the
resistance is negative, which means that reflected waves g exhibit higher amplitude than
incident waves f (necessary condition for an aeroacoustic instability in the configuration
of Figure 4.1). (c) and (d): Modulus and phase of the specific admittance of the deep
cavity for different lengths L. The black lines correspond to the fits based on Eq. (4.2).

accounted for in this simplified model.

In presence of the shear layer, the specific impedance of the cavity opening is signif-
icantly affected. One can see in Figure 4.6(a) and 4.6(b) that the specific resistance
and reactance both exhibit a frequency dependence oscillating around the values ob-
tained without channel flow, which is typical of the impedance of side-branches subject
to grazing flow [83]. This is due to the response of the first longitudinal aerodynamic
mode to the incident acoustic wave of complex amplitude f . Further insights about
the nonlinear aerodynamic response of this shear layer when it is subject to incident
acoustic waves are provided in the study from Boujo et al. [20]. One can see in Figure
4.6(a) that for each velocity U , there exists a resistance minimum, which corresponds
to the eigenfrequency f1 of this aerodynamic eigenmode. The frequency of the mini-
mum of <(Z) increases linearly with the flow velocity, scaling with a Strouhal number
St1 = f1W/U ≈ 0.4, which has been already observed in several works on the topic [42].
This corresponds to flow perturbations originating from the upstream corner that travel
at about 0.4U across the opening during one acoustic oscillation cycle. The advection
speed of the perturbations is roughly equal to the mean value of the velocity across the
shear layer, which ranges from very low velocities in the cavity to the bulk velocity U
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in the mean channel (see Figure 4.4).

It is important to note that the specific resistance minimum becomes negative for
velocities exceeding 65 m/s. In fact, when the reflection coefficient satisfies |R| =
|g/f | > 1, then <(Z) < 0, which is a necessary condition for self-sustained aeroacoustic
oscillations in the configuration presented in Figure 4.1. It occurs (i) if the time and
spatially averaged projection of the unsteady component of the Lamb vector (ω × v)′

onto the acoustic field is positive (ω = ∇ × v is the vorticity), which corresponds to
acoustic energy production according to the Howe’s energy corollary [73], and (ii) if this
acoustic energy production exceeds the radiation losses in the wind channel. Readers
interested by the space-time evolution of the unsteady component of the Lamb vector in
a similar configuration (self-sustained aeroacoustic oscillations of a bottle whose neck
is subject to a grazing flow) can refer to the recent work from Boujo et al. [21]. In
the present study, the measured specific impedance is fitted using the following second
order transfer function

Z(s) =
p̂

ρcû
= n

s2 + 2ms+ ω2
l

s2 + 2ds+ ω2
r

, (4.1)

with s = iω the Laplace variable (ω = 2πf is the angular frequency), n the gain, m and d
the damping coefficients, and ωl and ωr the left and right angular frequencies associated
with the response of the aerodynamic mode. For each bulk flow velocity, optimization
of these parameters is performed in order to find the best fit of the measured specific
impedance over the frequency range of interest. The results are presented in Figure
4.6(a) and 4.6(b) where the solid lines show the best fits.

As a further step, these optimized model parameters can be linked to the system pa-
rameters (U , W and c) in the form of non-dimensional numbers. First, very good
estimates of gains n can be obtained using the relationship n0 = n/M2 = 11.8, where
M = U/c is the Mach number. Second, the parameters m and d providing best
impedance predictions can be very well approximated using d1 = dW/U = 0.273
and m1 = mWM3/c = 2.75 × 10−4. Third, the left and right angular frequen-
cies ωl = 2πfl and ωr = 2πfr can be deduced from the following Strouhal numbers
Stl = flW/U = 0.375 and Str = frW/U = 0.461. It is important to mention that the
values obtained here for n0, d1, m1, Stl and Str cannot be generalised because they
depend on the detail of the side-branch geometry and on the turbulent boundary layer
thickness in the channel upstream of the cavity. It is for instance expected that they
would differ for other shapes of the cavity opening, e.g. with round corners. Another
important point to mention is that this model for the specific impedance of the cavity
opening subject to grazing flow can only capture the effect of one of the shear layer’s
aerodynamic eigenmode.

Having found a suitable model for the specific impedance of the cavity opening, one now
focuses on the modelling of the cavity’s specific admittance at y = 0, whose measured
modulus and phase are shown in Figure 4.6(c) and 4.6(d). The specific admittance A is
governed by the quarter wave resonances of the deep cavity, which occur at frequencies
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fn = (2n + 1)c/4L. Since we focus here on only one of these resonances, it is natural
to consider the simple transfer function

A(s) =
ρcû

p̂
= − γs

s2 + 2αs+ ω2
a

, (4.2)

where γ is a gain, which is equal to 2c/L as shown in section 2.2, α is the acoustic damp-
ing in the cavity and ωa is the angular frequency of the three-quarter wave resonance of
the deep cavity. Using the measured specific admittance (colored dots in Figure 4.6(c)
and 4.6(d)) and setting γ = 2c/L and ωa = 3πc/2L (as in section 2.2.1), it is found
that a damping α ' 40 rad/s provides an excellent match between the measured A
and the above transfer function model (solid lines) for the range of deep cavity length
considered in this work.

Combining Eqs. (4.2) and (4.1), and expressing these transfer functions in the time do-
main, one obtains the following system of differential equations for the acoustic pressure
p and the acoustic velocity u at the cavity opening:

p̈+ 2d ṗ+ ω2
r p = n(ü+ 2mu̇+ ω2

l u)

ü+ 2α u̇+ ω2
a u = −γ ṗ.

(4.3)

Using the second equation to express the second time derivative of the acoustic velocity
ü in the first equation, the system can be rewritten as

p̈+ 2β ṗ+ ω2
r p = µu̇+ σu

ü+ 2α u̇+ ω2
a u = −γṗ,

(4.4)

with β = (2d + nγ)/2, µ = 2n(m− α) and σ = n(ω2
l − ω2

a). This system of oscillators
with resistive and reactive coupling depends on a set of a parameters, whose values are
directly linked, as described above, to the physical parameters U , L and W . It will
now be used to predict the aeroacoustic stability of the deep cavity subject to grazing
turbulent flow.

4.3.2 Linear stability analysis

Using x = (u, p)T , the system is expressed in the following matrix form[
1 0
0 1

]
ẍ+

[
2β −µ
γ 2α

]
ẋ+

[
ω2
r −σ

0 ω2
a

]
x = 0. (4.5)

The linear stability depends on the sign of the real part of the system’s eigenvalues λ,
which are the roots of the characteristic polynomial:

λ4 + λ32(α+ β) + λ2(ω2
a + ω2

r + 4αβ + γµ) + λ(2αω2
r + 2βω2

a + γσ) + ω2
rω

2
a = 0. (4.6)
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Figure 4.7: Eigenvalues λ of the aeroacoustic system for a range of U and L. These
eigenvalues are the roots of (4.6). (a) Map of the real part (growth rate) of the largest
eigenvalue λm as function of L and U . The linear stability limit is drawn in red,
and the line where ωa = ωr in white. (b) <(λ) for L = 250 mm as function of U
(black lines). The stability limit is drawn as dashed red line, and the coloured circles
correspond to the eigenvalues with the largest real part, at the values of U considered in
Figure 4.6. (c) Map of the imaginary part (frequency) of the most unstable eigenvalue
λm. (d) =(λ) for L = 250 mm as function of U (black lines), superimposed with the
acoustic mapping of Figure 4.2. The black dashed lines correspond to the frequencies
of each oscillator of the coupled system: ωa (horizontal line) and ωr (linearly increasing
with U). The coloured circles correspond to the most unstable eigenvalues λm at the
values of U considered in Figure 4.6. (e) Prediction of the most unstable eigenvalue
for the velocities considered in Figure 4.6. (f) Corresponding experimental spectra for
L = 250mm and for these velocities.
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4.3. Linear model of coupled oscillators

Based on the previously identified scaling laws for the parameters of the linear model,
the polynomial roots are computed for a range of bulk flow velocity U and deep cavity
length L. These roots are two pairs of complex conjugate eigenvalues, of which only
the ones with positive imaginary part, i.e. positive angular frequency, are presented in
Figure 4.7. Several comments are now made about this figure.

Firstly, the predicted linear stability of the aeroacoustic system for varying L and U is
presented in Figure 4.7(a) and 4.7(c). The former and the latter subfigures respectively
show the real and imaginary parts (linear growth rate and oscillation frequency) of the
most unstable of the two eigenvalues, which is denoted λm. The red line indicates the
stability limit <(λm) = 0. It shows that, for L < 270 mm and U > 65 m/s, the system is
linearly unstable around the white line indicating coincidence of the resonance frequency
of the deep cavity ωa, which governs the oscillator equation for the acoustic velocity, and
of the resonance frequency of the shear layer ωr, which governs the oscillator equation
for the acoustic pressure.

Secondly, a subset (for L = 250 mm) of the predicted system eigenvalues λ is presented
in Figures 4.7(b) and 4.7(d). In the former subfigure, one of the eigenvalues has a
significantly smaller real part for the considered range of U , which implies that it is much
more stable than the other. The eigenvalue with the largest real part crosses the complex
plane imaginary axis when U ' 65 m/s, i.e. the system becomes linearly unstable
beyond this bulk flow velocity. In Figure 4.7(d), the excellent match between the
peak frequency of the overlayed power spectral density and the frequency of the least-
stable eigenvalue indicates that the present coupled oscillators model performs very
well. Moreover, in contrast with the phenomenon of frequency lock-in in flow-induced
vibrations problems, which are also modelled as coupled oscillators [44,97,119,168], the
frequencies of the eigenvalues =(λ) do not merge in the range of L and U for which the
present aeroacoustic system is linearly unstable. Indeed, the black lines corresponding
to the root loci are repelled from the intersection point of the natural frequencies of the
two oscillators (dashed black lines).

The fundamental topological difference of the coupled-oscillator root loci between flow-
induced vibration problems and aeroacoustic instabilities of deep cavities subject graz-
ing flow originates from the differences in stability and coupling nature of the coupled-
oscillators model. In the case of the flow-induced vibration problems, the hydrodynamic
oscillator is linearly unstable and it is typically modelled as a Van-der-Pol oscillator [97],
the mechanical oscillator is linearly stable and their coupling is usually purely reactive.
In the present case of aeroacoustic instabilities of deep cavities, which we model in this
section with the system (4.4), both oscillators are linearly stable and the system can
become linearly unstable because of the presence of both resistive and reactive coupling
terms.

Finally, in Figure 4.7(e), the most unstable eigenvalue λm is plotted in the complex
plane for the velocities considered in Figure 4.6) and for L = 250 mm. These eigenvalues
can be compared with the corresponding experimental power spectral densities for the
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Figure 4.8: (a) Real and (b) imaginary part of the specific impedance of the cavity
opening for different acoustic forcing amplitudes and for U = 74m/s. The white circles
correspond to the specific impedance without flow.

same velocities U that are presented in Figure 4.7(f). The good agreement in terms
of frequency and the sharpening of the peak for U > 65 m/s again contribute to the
linear model validation.

4.4 Nonlinear deterministic model

The nonlinearities of the system are now investigated and modelled. To that end,
measurements of the specific acoustic impedance and admittance at relevant acoustic
amplitudes are performed. Considering that the admittance of the cavity does not
feature any noticeable dependance on the acoustic level at forcing amplitudes that
corresponds to observed aeroacoustic limit cycles, it is considered in the remainder of
this chapter as a linear oscillator.

4.4.1 Describing function analysis

Impedance measurements of the cavity opening are performed with the setup shown
in Figure 4.5(b) for a range of forcing amplitude. This forcing amplitude is deduced
from the multi-microphone method and corresponds to the amplitude at a pressure
antinode. The results of these measurements for U = 74 m/s are presented in Figure
4.8(a) and 4.8(b), respectively showing <(Z) and =(Z). For increasing amplitude,
there is a monotonous decrease of the deviation of the specific impedance from the
one without flow, which shows that the shear layer responds with less strength to the
acoustic forcing. The underlying mechanism has been presented by Boujo et al. [20] for
U = 56 m/s and is in line with previous work on the subject: as the forcing amplitude
grows, coherent Reynolds stresses thicken the mean shear layer, which reduces the
potential for perturbation amplification at the forcing frequency. As a consequence, the
range across which the real part of the impedance is negative reduces progressively as
the amplitude increases. It is seen that beyond a forcing amplitude of 200 Pa, <(Z)
is positive for the whole frequency range. Noticeably, in the range 800 Hz to about
1150 Hz, for which the shear layer produces acoustic energy, this contribution is less
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Figure 4.9: Non-dimensional numbers, which link the system parameters U , W and c to
the optimized model parameters ωl, ωr, d, m and n as function of the acoustic forcing
amplitude. The symbols are coloured with the same colour code for the bulk flow
velocity U as in Figure 4.6. The dashed lines show the scaling laws used in the model
of subsection 4.4.2. (a) and (b) respectively show Stl = ωlW/2πU and Str = ωrW/2πU
that are assumed independent of the forcing amplitude in subsection 4.4.2. (c) shows
dW/U and the scaling law used in subsection 4.4.2: dW/U = d1 + d2|p|. (d) shows
mWM3/c and the scaling law used in subsection 4.4.2: mWM3/c = m1 + m3p

2. (e)
shows n0 = n/M2 that is assumed constant in subsection 4.4.2.

energetic than the radiation losses to the wind channel, and consequently, <(Z) > 0
and the modulus of the reflection coefficient |R| is lower than 1.

As in subsection 4.3.1, for each forcing amplitude, the parameters of the transfer func-
tion given in Eq. (4.1) are optimized to best fit the measured specific impedance Z
over the frequency range presented in Figure 4.8(a) and 4.8(b). The solid lines in this
figure show these best fits. This optimization has also been performed with measure-
ments of the specific impedance for the same set of bulk flow velocities as in Figure
4.6. For each forcing amplitude, the optimized model parameters (d, m, n, ωl and
ωr) were linked to the system parameters U , W and c with the scaling laws presented
in subsection 4.3.1. The non-dimensional numbers with which these optimized model
parameters can be deduced, are presented as coloured dots in Figure 4.9 for several
acoustic forcing amplitudes, with the same colour code for the bulk flow velocity U as
in Figure 4.6.

Based on this data, it is possible to perform a describing function analysis for predicting
the amplitude of the aeroacoustic limit cycle, as it was done by Noiray et al. [131] in the
case of a thermoacoustic instability. In the present situation, it is possible to predict
the limit cycle amplitude and frequency as function of the cavity length L, as in [131],
and thanks to the model and the identified scaling laws for its parameters, one can
also construct bifurcation diagrams as function of the bulk flow velocity in the channel
U . This is now performed for L = 250 mm and U = 74 m/s: the eigenvalues of the
coupled system (4.4) are computed using the optimized model parameters. For each of
the forcing amplitude, the real and imaginary part of the most unstable eigenvalue λm
are displayed in Figures 4.10(a) and 4.10(b).
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Figure 4.10: (a) Real and (b) imaginary part of the most unstable eigenvalue from
system (4.5) as function of the acoustic amplitude for L = 250 mm and U = 74 m/s.
The eigenvalues are the roots of (4.6) in which the optimized model parameters ωl, ωr,
d, m and n (dark blue circles in Figure 4.9) were set. (c) Acoustic pressure filtered
around the limit cycle frequency as done in Figure 4.2(d) (gray line, only p > 0 is
shown), and corresponding envelope A (thick black line), for L = 250 mm and U = 74
m/s. (d) Probability density function (PDF) of the acoustic signal envelope P(A).

When the amplitude increases, the linear growth rate of the system monotonically
decreases while the oscillation frequency does not significantly vary. The linear growth
rate is positive at very low amplitude (about 20 rad/s) and according to the describing
function framework, the aeroacoustic system becomes marginally stable when the real
part of λm vanishes, which in the present case occurs for about 150 Pa. This predicted
limit cycle amplitude is now compared to the actual self-sustained oscillation amplitude,
which is measured for L = 250 mm and U = 74 m/s using the experimental setup
presented in Figure 4.1. This comparison can be done with Figure 4.10(c) and 4.10(d),
which respectively show the band-pass filtered acoustic signal measured at a pressure
antinode (only the positive acoustic pressure fluctuations are shown on this figure), and
the probability density function (PDF) of the signal’s envelope.

One can draw the following conclusions from Figure 4.10: First, this describing func-
tion analysis provides a realistic estimate of the limit cycle amplitude (about 150 Pa),
but it cannot be used for a quantitative prediction of the most probable amplitude
(about 250 Pa). Second, the deterministic and frequency-domain describing-function-
framework cannot capture the significant random fluctuations of the aeroacoustic limit
cycle amplitude that are induced by the forcing from the intense turbulence in the chan-
nel. The next section aims at filling this gap by considering a nonlinear time-domain
analysis of the problem and the turbulent stochastic forcing will be accounted for in
section 4.5.

4.4.2 Time-domain model of coupled oscillators

The starting point of this section is the time domain model (4.4) of the two coupled
linear oscillators developed in section 4.3. One now aims at incorporating into this
model relevant nonlinear terms on the basis of the specific impedance measurements
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presented in the previous section.

One can deduce from the model parameters, which were optimized to reproduce the
specific impedance for different forcing amplitudes and flow velocities, scaling laws that
not only depend on the system parameters, but also on the acoustic amplitude. These
scaling laws are presented as dashed lines in Figure 4.9. Considering that Stl, Str and
n0 do not vary significantly with the acoustic forcing, and that they are respectively
equal to 0.375, 0.461 and 11.8, the same simple laws as in subsection 4.3.1 are used in
the next sections: ωl = 2πStlU/W , ωr = 2πStrU/W and n = n0M

2.

On the other hand, one can see in Figure 4.9(c) and 4.9(d) that the values of dW/U and
mWM3/c significantly depend on the acoustic amplitude, and they can be respectively
approximated by a linear and quadratic regression (dashed lines). Therefore, the model
parameters m and d are respectively deduced from the dW/U = d1 + d2|p| with d1 =
0.273 and d2 = 8.03×10−4 Pa−1, and frommWM3/c = m1+m3p

2 withm1 = 2.75×10−4

and m3 = 3.90 × 10−10 Pa−2. These scaling laws are now incorporated to the time-
domain model which becomes:

p̈+ 2(β1 + β2|p|) ṗ+ ω2
r p = (µ1 + µ3u

2)u̇+ σu

ü+ 2α u̇+ ω2
a u = −γṗ,

(4.7)

with

β1 =
U

W
d1 +

γM2

2
n0, β2 =

U

W
d2, µ1 = 2n0M

2
( c

WM3
m1 − α

)
, γ =

2c

L

µ3 = (ρc)2 2c

WM
n0m3, σ = n0M

2

([
2π

U

W
Stl

]2

− ω2
a

)
, ωr = 2π

U

W
Str. (4.8)

It can be noted (i) that the increase of the acoustic pressure amplitude p leads to an
increase of the effective damping coefficient (β1 +β2|p|) of the second oscillator, which is
associated with the lower receptivity of the thickened shear layer at higher amplitude,
and (ii) that the increase of the acoustic velocity amplitude u yields an increase of the
effective resistive coupling coefficient (µ1 + µ3u

2).

This nonlinear deterministic model of coupled oscillators for describing the aeroacoustic
dynamics of the deep cavity depends on a set of constants (n0, d1, d2, m1, m3, Stl, Str
and α) that were quantified from measurements, and on the system parameters ρ, U ,
c, L, W and the Mach number M = U/c. One also recalls that the angular frequency
of the three-quarter wave resonance is ωa = 3πc/2L. Before augmenting this model
in section 4.5 with stochastic forcing from turbulence in order to explain the random
fluctuations of the limit cycle amplitude, the amplitude and phase equations of this
deterministic model are derived and analysed in the next section.
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4.4.3 Amplitude and phase equations

The averaging procedure of Krylov & Bogoliubov [95] is now applied to the system
of coupled oscillators (4.7) in order to obtain first order differential equations for the
oscillation amplitude and phases. One assumes that oscillations occur at ω and that
this angular frequency satisfies ω ' ωa ' ωr and ωa + ωr ' 2ω. The following ansatz
for the acoustic velocity and pressure are used:

p = A cos(ωt+ ϕA) =
1

2
(aeiωt + a∗e−iωt) with a = AeiϕA ,

u = B cos(ωt+ ϕB) =
1

2
(beiωt + b∗e−iωt) with b = BeiϕB ,

(4.9)

where A represents the pressure amplitude, and B the velocity amplitude, and ϕA
and ϕB their phase. This averaging approach can only be applied if the oscillation
amplitudes and phases vary slowly with respect to the acoustic period, which is satisfied
in the present problem, and which corresponds to damping and coupling terms that
are small compared to the inertial and stiffness terms of the two oscillator equations.
Assuming that the first derivative of the acoustic pressure can be written as

ṗ =
iω

2
(aeiωt − a∗e−iωt), (4.10)

which implies, as explained by Balanov et al. [5], that ȧeiωt + ȧ∗e−iωt = 0, one can
express the second time derivative of the acoustic velocity as

p̈ = iωȧeiωt − ω2

2
(aeiωt + a∗e−iωt). (4.11)

Following the same procedure for p, substituting these expressions into the first oscil-
lator equation of (4.7), multiplying by e−iωt/iω, integrating over one cycle, dividing by
eiϕA and taking the real and imaginary part of the equation yields

Ȧ = −β1A− β2
4

3π
A2 +

(µ1

2
+
µ3

8
B2
)
B cos(ϕA − ϕB)− σ

2ω
B sin(ϕA − ϕB),

ϕ̇A =
ω2
r − ω2

2ω
−
(µ1

2
+
µ3

8
B2
) B
A

sin(ϕA − ϕB)− σ

2ω

B

A
cos(ϕA − ϕB).

(4.12)
Similar treatment of the second oscillator equation in (4.7) yields:

Ḃ = −αB − γ

2
A cos(ϕA − ϕB),

ϕ̇B =
ω2
a − ω2

2ω
− γ

2

A

B
sin(ϕA − ϕB).

(4.13)
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Figure 4.11: (b), (d) and (f): Limit cycle amplitudes A and B and phase difference
φ as function of L and U . They are fixed points of the slow-flow equations (4.14) and
they were obtained by searching the zeros of the right-hand-side of these equations.
The origin is the only fixed point in the white region delimited by the stability border
presented in Figure 4.7. (a), (c) and (e): Cuts showing the limit cycle amplitude for
U = 67, 70 and 74 m/s as function of L.

Defining the phase difference φ = ϕA−ϕB yields the following system of three coupled
equations for the slowly varying amplitudes and the phase of the coupled oscillators:

Ȧ = −β1A− β2
4

3π
A2 +

(µ1

2
+
µ3

8
B2
)
B cosφ− σ

2ω
B sinφ,

Ḃ = −αB − γ

2
A cosφ,

φ̇ = ∆ω +

(
γ

2

A

B
−
(µ1

2
+
µ3

8
B2
) B
A

)
sinφ− σ

2ω

A

B
cosφ,

(4.14)

with ∆ω = (ω2
r − ω2

a)/2ω ' ωr − ωa the detuning constant. The fixed points of this
system of first order differential equations are found by searching for amplitudes and
phase difference that cancel the right-hand-side expressions of (4.14) and that thus lead
to Ȧ = Ḃ = φ̇ = 0. For a few combinations of L and U , this search is initialised from
the amplitudes A and B and phase difference φ of limit cycles that were computed by
integrating the second order system (4.7). The fixed points of the slow-flow system
(4.14) are then obtained for the full range of L and U by continuation of the local
minimum search from neighbouring solutions.

The results are presented in Figure 4.11, which shows the acoustic pressure amplitude
A, the acoustic velocity amplitude B that is afterward compared with experimental
data, and their phase difference φ at conditions featuring aeroacoustic limit cycles.
These results show that, according to this deterministic model, the deep cavity subject
to turbulent grazing flow undergo supercritical Hopf bifurcations only. This is further
illustrated in Figure 4.11(a) and 4.11(b) for three values of the bulk velocity U . One
can see that over the entire range of combinations of L and U leading to limit cycles,
the phase difference between the acoustic pressure p and the acoustic velocity u is
nearly constant and slightly above π/2, which is typical of standing mode oscillations
in quarter wave resonators.

In Figure 4.12(a), the limit cycle amplitude A, which is predicted from the slow-flow
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Figure 4.12: (a) PDFs of the envelope of the band-pass-filtered acoustic pressure for
several cavity lengths L, compared to the predicted bifurcation diagram of the slow-flow
system (4.14), which shows the limit cycle amplitude A for U = 74 m/s as function of L.
For each L, the PDF is normalized by its maximum Pm. The one in the red rectangle
is also shown in Figure 4.10(d). (b) Comparison between the measured and modeled
specific resistance of the opening for U = 74m/s and excitation amplitude 20Pa. This
is a close-up view of data presented in Figure 4.8 in order to highlight the smoothness
of the modelled <(Z).

system (4.14) for U = 74m/s and for several cavity lengths L, is compared to the
probability density function (PDF) of the band-pass-filtered acoustic pressure envelope
measured with the experimental setup shown in Figure 4.1. The overall agreement
between model predictions and most probable amplitude from the experiments is very
good, albeit the former displays a smoother dependance on the cavity length L, with
bifurcation points shifted by about 10 mm. These differences are due to the fact that
the actual specific impedance is not as smooth as the second order transfer function
adopted here to model it (see Figure 4.12(b) showing <(Z) for U = 74 m/s). Indeed,
the details of the system dynamics are not fully retrieved by the model (4.7) and its
corresponding slow-flow dynamics (4.14), but on the other hand, it gives a good estimate
of the most probable limit-cycle amplitude over the full range of cavity length L and
channel velocity U with a single set of parameters.

4.5 Intermittently unstable aeroacoustic feedback

In this section, the model complexity is further increased by adding stochastic forcing
to the deterministic dynamic system (4.7), in order to capture the random fluctuations
of the limit cycle amplitude, the intermittently unstable aeroacoustic feedback and the
associated PDFs of the acoustic pressure. As shown in Figure 4.10(c) with the time
trace of the band-pass filtered acoustic pressure signal, these fluctuations can have
significant amplitudes. As shown in Figure 4.10(d), they lead to broad distributions
P(A) of the acoustic pressure amplitude A, which contrasts with the Dirac distributions
that are found, for each combination of L and U , in the deterministic description of
the problem. This is also illustrated in Figure 4.13 that presents the PDFs of the
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Figure 4.13: PDFs of the band-pass-filtered acoustic pressure P(p) for U = 74 m/s and
several cavity length L. The corresponding PDFs of the signal envelope are given in
Figure 4.12(a) with colour gradients.

band-pass-filtered acoustic pressure P(p) for U = 74 m/s and several cavity length L.

In a deterministic scenario, the PDFs would be (i) the Dirac distribution δ(p) for L =
200 mm and 270 mm, for which the aeroacoustic system is presumably linearly stable,
and (ii) the distribution of pure sine waves (i.e. P(p) = 1/(π

√
1− (p/a)2) with p =

a sinωt and a constant) for the other lengths, for which the system apparently exhibits
stable limit cycles. The actual distributions in Figure 4.13 are obviously significantly
different from the latter ones, indicating that stochastic forcing from the turbulence
should be added to the model.

4.5.1 Intermittency modelled with randomly-forced coupled
oscillators

The Gaussian-like PDFs of the presumably aeroacoustically stable cases (L = 200
and 270 mm in Figure 4.13) can justify incorporating additive stochastic forcing to the
deterministic model (4.7). Indeed, linearly stable oscillators that are subject to additive
white noise forcing display such Gaussian-like PDFs. Furthermore, the PDFs of the
acoustic pressure for L = 220 and 230 mm are typical of marginally stable oscillators and
weakly nonlinear self-sustained oscillators subject to additive white noise forcing [22].
This random additive forcing at the side-branch cavity opening can be attributed to
the broadband noise generated by the highly turbulent flow in the wind channel and its
air supply line. Therefore, we add a Gaussian additive white noise ξ(t) of intensity Γξ
to the right hand side of the equation for u in the system of coupled oscillators (4.7).

Now, when L is decreased from 270 mm to 260 and then to 250 mm, the base of
the PDF thickens. It indicates that the mean acoustic pressure amplitude increases,
which can be explained by the crossing of the supercritical Hopf bifurcation that was
discussed in the previous sections. However, these two PDFs present distinct features
that clearly differ from the ones of weakly nonlinear self-oscillators subject to additive
random forcing only. Indeed, there is a central peak remaining, which is the marker
of high probability of low acoustic amplitude periods. In fact this is the signature of
intermittency between low and high amplitude acoustic oscillations.

As a first remark, the intermittency at play in the present system differs from the one
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found in systems that are governed by combined subcritical -Hopf and saddle-node bi-
furcations, and that are subject to purely additive stochastic forcing. A thermoacoustic
example of the latter systems was investigated by Bonciolini et al. [14] for quasi-steady
and finite-rate ramping of the bifurcation parameter. These systems exhibit, for a range
of bifurcation parameter values, two basins of attraction between which intermittent
jumps can be triggered by the additive random forcing, with resulting PDFs having also
a prominent central peak. In contrast, the deterministic model derived in the previous
sections on the basis of specific impedance measurements clearly show that the present
aeroacoustic system features a supercritical -Hopf bifurcation. Consequently, the only
possible explanation for the observed intermittency is the presence of parametric noise
in the system, which can be linked to the theoretical investigation of Mohamad &
Sapsis [118].

Therefore, considering the intense turbulence of the channel flow as well as the low-
frequency three-dimensional dynamics of the recirculation region, we propose to include
a stochastic component to our bifurcation parameter U , which leads to several terms
with stochastic multiplicative forcing. One can note that the low-frequency random
fluctuations of the flow at the opening of the deep cavity probably share several fea-
tures with the ones that were investigated by Basley et al. [6] in the case of shallow
cavities. Their detailed analysis shows that the broadband slow-fluctuations of the re-
circulating flow in shallow cavities, which results from centrifugal instabilities, interfere
with the (fast) Rossiter modes. In the present deep cavity configuration, similar three-
dimensional structures may alter the strength of the aeroacoustic coupling at time scales
that are long compared to the period of the three-quarter wave acoustic eigenmode. We
therefore express the bulk velocity in our low-order model (4.7) and (4.8) as

U = Ū(1 + χ), (4.15)

where χ is an Ornstein-Uhlenbeck process obeying the Langevin equation

χ̇ = − χ
τχ

+ ζχ, (4.16)

with τχ the correlation time of the bifurcation parameter fluctuations and ζχ a Gaussian
white noise of intensity Γχ/τ

2
χ. By incorporating this unsteady formulation of the bulk

velocity U , with a mean value Ū and a standard deviation σU , into the system of
coupled oscillators, the parameters β1, β2, µ1, µ3, σ and ωr become time dependent.
Using the model coefficients given in subsection 4.4.2, considering Ū = 74 m/s and
setting Γξ = 5 × 109 m2 s−6, Γχ = 5 × 10−3 and τχ = 0.05 s, which corresponds to
σU = Ū

√
Γχ/2τχ ≈ 16 m s−1, time domain simulations of (4.7) are performed for L =

245 and 250 mm. In Figure 4.14, these simulations are compared to the experimental
results obtained L = 255 and 260 mm. We consider this 10 mm cavity length offset
for the comparison because, as it can be seen in Figure 4.12, the predicted bifurcation
diagram is staggered by about 10 mm from the experimental data. The parameters
defining the additive and multiplicative stochastic forcing, i.e. Γξ, Γχ and τχ, were
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Figure 4.14: Comparison of time traces and PDFs of the acoustic pressure p and its
envelope A between experiments (left) and simulations using the coupled stochastic dif-
ferential equations presented in subsection 4.5.1 (right). The considered mean channel
velocity is Ū = 74 m/s, and the cavity lengths are L = 255, 260, 245 and 250 mm in (a),
(b), (c) and (d) respectively. A 10 mm offset is chosen for this comparison because as
shown in Figure 4.12, the predicted bifurcation diagram is staggered by about 10 mm
from the experimental data.

empirically adjusted in order to best match the main features of the experimental time
traces.

One can see in Figure 4.14 that the model reproduces very well the PDFs of the acoustic
pressure p and its envelope B, and especially the central peak of P(p). The underlying
intermittency between periods of low amplitudes and bursts of high amplitude is thus
well captured by the model.

It is important to mention that the intensity of the fluctuating component of the bifurca-
tion parameter U is high enough, such that the instantaneous bulk velocity alternately
take values in the range for which our model of the aeroacoustic system is linearly
stable, and in the one for which it is linearly unstable. Another important point is
that the correlation time τχ of the bifurcation parameter fluctuations is long enough
for the system to adapt to the variations of U . Otherwise, we cannot reproduce with
this model the experimentally observed intermittency.

In order to shed light on the conditions leading to these intermittent high amplitude
bursts or low-amplitude periods, a simplified model is scrutinized in the following sec-
tion.
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4.5.2 Intermittency modelled with a randomly-forced Van der
Pol oscillator

We have established in the previous sections (i) that the present aeroacoustic system
is linearly unstable for sufficiently large bulk flow velocity U and for a range of cavity
length L, (ii) that at the border of the region corresponding to the limit cycles (red line
in Figure 4.7(a)), only supercritical Hopf bifurcations occur, and (iii) that intermittency
is induced by parametric noise. To get further insight in the conditions that lead
to intermittency, rather than carrying on with the model of coupled oscillators, it
is convenient to consider a simpler version of the supercritical Hopf bifurcation with
parametric noise. Reckoning with the fact that one of the eigenvalues of (4.7) is very
stable (see Figure 4.7(b)), it can be shown that in the vicinity of the Hopf bifurcation,
our model of two coupled oscillators for describing the aeroacoustic system can be
approximated by a single Van der Pol oscillator subject to additive and multiplicative
stochastic forcing. This Van der Pol model is

η̈ +
(
−2 [ν̄ + χ(t)] + κη2

)
η̇ + ω2

0η = ξ(t), (4.17)

where η is a new state variable that represents the aeroacoustic oscillations, ω0 is the
natural frequency of the oscillator, ν(t) = ν̄ + χ(t) is the instantaneous linear growth
rate, κ > 0 is the saturation constant, and, as in the previous section, ξ is a Gaussian
additive white noise of intensity Γξ, and χ is a coloured Gaussian multiplicative noise,
with correlation time τχ and equilibrium variance σ2

ν = Γχ/2τχ, and whose Langevin
equation is (4.16).

Time marching of this equation is performed for various combinations of mean linear
growth rate ν̄, multiplicative noise correlation time τχ and standard deviation σν , in
order to illustrate the conditions required for high probability of intermittency. These
conditions are set by two non-dimensional parameters: ν̄/σν , which is related to the
probability of crossing the stability border, and ν̄τχ which compares the characteristic
growth or decay time of the oscillation amplitude with the correlation time of the
instantaneous growth or decay rate.

The natural frequency of the oscillator is set to f0 = ω0/2π = 1050 Hz, which is typical
of the present aeroacoustic instability. The mean linear growth rate ν̄ is successively set
to −30, −8, −4, 4, 8 and 30 rad/s, which are also typical values of the present system
in the vicinity of the supercritical Hopf bifurcation, as shown in subsection 4.3.2. The
saturation constant is set to κ = 0.01 s−1 for all the simulations such that the resulting
oscillation amplitude is of the same order of magnitude as the acoustic pressure in the
cavity. The intensity of the additive noise is set to Γξ = 1012, such that the variance
of η for ν̄ = −30 rad/s is similar to the variance of the band-pass-filtered acoustic
signal for U ' 64 m/s and L = 250 mm. The correlation time τχ and variance σ2

ν of
the multiplicative random forcing χ are changed for each simulation in order to obtain
converged PDFs for ν̄/σν = −10, −1, −0.2, 0.2, 1 and 10, and for |τχν̄| = 0.1, 1 and
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Figure 4.15: (a) Bifurcation diagram of the deterministic problem (right axis, red
curve), and characteristic times of the stochastic problem (left axis). These charac-
teristic times are (i) the inverse of the mean growth or decay rate of the oscillation
amplitude 1/ν̄ indicated as a solid blue line, (ii) the oscillation period T = 2π/ω0 indi-
cated as a dashed blue line and (iii) the correlation time τχ of the fluctuations of the
instantaneous linear growth rate ν. The coloured dots indicate the combinations of τχ
and ν̄ which were used for the temporal simulations of (4.17), whose PDFs are presented
in (b) and (c). (b) PDFs of the linear growth rate. These Gaussians have a mean
ν̄ and a standard deviation σν . (c) PDFs of the oscillations for several combinations
of ν̄/σν and |τχν̄|. Rare events are associated to heavy tails indicating high amplitude
bursts (e.g. for ν̄/σν = −0.2 and |τχν̄| = 10), or to pronounced central peak indicating
sporadic quiet periods (e.g. for ν̄/σν = 1 and |τχν̄| = 10). They reflect the intermit-
tency of the system and they are very likely when |τχν̄| ≥ O(1) and |ν̄/σν | ≤ O(1).

10. The simulated time is 500 s for |τχν̄| = 10 and ν̄/σν = −0.2 and 0.2, and 240 s for
the other simulated cases, which is sufficiently long to get converged statistics.

The results of these temporal simulations are gathered in Figure 4.15, which shows the
converged PDFs of the state variable η. In this system, the parametric noise adds upon
the additive forcing, and its effect is scrutinised in the next paragraphs.

The first necessary condition for intermittency is that the standard deviation σν of the
fluctuations of ν is sufficiently large to have ν penetrating in R+ (resp. R−) when
ν̄ < 0 (resp. ν̄ > 0). Indeed, for negative (resp. positive) mean growth rate, if the
instantaneous growth rate experiences deep excursions in R+ (resp. in R−), rare events
in the form of amplitude bursts (resp. intermittent quiet period) can occur. This
necessary condition is fulfilled for |ν̄/σν | ≤ O(1). It corresponds to the four middle
columns of Figure 4.15(c), where heavy-tailed PDFs. and pronounced central peaks
can be observed.

However, the condition |ν̄/σν | ≤ O(1) is not sufficient for intermittency to occur. In
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fact, sporadic excursions of ν in R+ or R− must last sufficiently long for the dynamic
system to react to this change of stability, i.e. for having a system intermittently
unstable (fat tailed PDF) or intermittently stable (marked central peak). Therefore,
there is a second necessary condition for observing intermittency: the characteristic
relaxation time of the system 1/ν̄ must be shorter than the correlation time of the
parametric stochastic forcing τχ. This condition is satisfied when |ν̄τχ| ≥ O(1), which
corresponds to the two upper rows in 4.15(c). When |ν̄τχ| � O(1), the system is
subject to slow random fluctuations of the instantaneous linear growth rate ν, which
corresponds to quasi-steady change of the bifurcation parameter. When |ν̄τχ| = O(1),
rare events can still occur but the intermittence is less marked. Finally, if |ν̄τχ| � O(1),
the fluctuations of the instantaneous growth rate exhibit a correlation that is smaller
than the charateristic relaxation time of the oscillation amplitude, i.e. they are two
fast to allow the system to adapt to them and the instantaneous attractor cannot be
reached.

In summary, the rare events happen (PDFs with fat tails or marked central peak)
when the correlation time of the fluctuations of instantaneous linear growth rate is of
the order of, or longer than the inverse of the mean linear growth rate, and when the
standard deviation of these fluctuations is larger than the mean linear growth rate.

4.5.3 Amplitude dynamics: Langevin and Fokker-Planck equa-
tions

In order to complement the analysis of carried out in subsection 4.5.2, the amplitude
equation associated to the stochastic differential equations (4.17) is derived by perform-
ing deterministic and stochastic averaging [95,176]. The derivation is based on the fact
that the aeroacoustic system is weakly nonlinear, which implies that the limit cycle is
quasi-sinusoidal, and on the fact that the mean linear growth rate satisfies ν̄ � ω0,
which means that the amplitude and phase drift of the oscillation slowly vary with
respect to the acoustic period T = 2π/ω0. It is therefore convenient to investigate the
system dynamics using the coordinate system (A,ϕ), with

η = A cos(ω0t+ ϕ) and η̇ = −Aω0 sin(ω0t+ ϕ), (4.18)

and A =
√
η2 + (η̇/ω0)2 and ϕ = − arctan(η̇/ω0η) − ω0t. Furthermore, we make the

assumption that the multiplicative Ornstein-Ulhenbeck noise χ, which is governed by
the Langevin equation (4.16), exhibits a correlation time τχ that is significantly longer
than the acoustic period. In other words, when ω0τχ/2π � 1, χ can be considered as
constant during one oscillation period and one can apply the averaging process described
by e.g. Noiray [129]. For most of the cases considered in subsection 4.5.2, τχ is at least
one order of magnitude longer than T (see coloured circles in Figure 4.15(a)) and this
condition is well satisfied. The stochastic averaging procedure leads to a system of
equations for the amplitude A, the phase drift ϕ and the parametric noise χ of the form

Ẏ = F (Y ) +B(Y )N . (4.19)
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In this equation, the dynamics of the system state-vector Y = (A,ϕ, χ)T is defined by
a deterministic contribution F (Y ) and by a stochastic forcing term B(Y )N , where
N = (ζA, ζϕ, ζχ)T is a vector of independent white gaussian noises. The intensity of ζA
and ζϕ is Γξ/2ω

2
0, and the one of ζχ is Γχ/τ

2
χ. The deterministic components of this

coupled system of Langevin equations are

FA(Y ) = (ν̄ + χ)A− κ

8
A3 +

Γξ
4ω2

0A
, Fϕ(Y ) = 0, Fχ(Y ) = − χ

τχ
, (4.20)

and the stochastic components are given by

B(Y )N =

 1 0 0
0 A−1 0
0 0 1

 ζA
ζϕ
ζχ

 . (4.21)

One can notice that the equation for A does not depend on ϕ and one can therefore
focus on the independent system of Langevin equations

Ȧ = (ν̄ + χ)A− κ

8
A3 +

Γξ
4ω2

0A
+ ζA, (4.22)

χ̇ = − χ
τχ

+ ζχ, (4.23)

and write its corresponding two dimensional Fokker-Planck equation

∂P
∂t

= − ∂

∂A
(FAP)− ∂

∂χ
(FχP) +

∂2

∂A2

(
ΓξP
4ω2

0

)
+

∂2

∂χ2

(
ΓχP
2τ 2
χ

)
, (4.24)

which describes the time evolution of the joint PDF P(A,χ; t). This Fokker-Planck
equation is solved in the domain bounded by A ∈ [0, 250] and χ ∈ [−200, 200] by using
finite differences for the partial derivatives with respect to A and χ, and explicit Euler
integration for the time derivative. A Dirichlet boundary condition P(A,χ; t) = 0 is
imposed for A = 0, while the other boundaries assumes Neumann boundary with no
flux. The initial conditions P(A,χ; 0) = Pinit(A,χ) is arbitrarily set for ν̄τχ = 0.1 to
the theoretical joint PDF of the bivariate problem when the two random processes A
and χ are assumed independent, i.e. when χ is removed from Eq. (4.22):

Pinit(A,χ) ∝ exp

(
−4ω0

Γξ

[
ν̄A2

2
− κA4

32

])
exp

(
− χ2

Γχ/τχ

)
. (4.25)

The converged steady solutions of this Fokker-Planck for ν̄τχ = 0.1 and ν̄τχ = 1
are presented in Figures 4.16(i) and 4.16(j) respectively. Note that for ν̄τχ = 1, the
initial condition is not defined by (4.25), but it is set as the converged solution of
the case ν̄τχ = 0.1 in order to avoid numerical instabilities. Note also that these two
cases corresponds to the same set of parameters as the one used to generate the PDFs
presented in the second last column of Figure 4.15(c). In this figure, for the sake
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Figure 4.16: Time domain simulations of the Van der Pol oscillator (4.17) subject to
additive and multiplicative stochastic forcing and stationary solutions of the Fokker-
Planck equation (4.24) for τχν̄ = 0.1 ((a), (b), (c), (d), (i) and (k)) and for τχν̄ = 1
((e), (f), (g), (h), (j) and (l)). (a) and (e): Time traces of ν which is governed by
Eq. (4.16). (b) and (f): PDFs of ν computed from the time domain simulations of
(4.16). (c) and (g): Time traces of η and its envelope. (d) and (h): PDFs of η and its
envelope, which are computed from the time domain simulations of (4.17). (i) and (j):
stationary solutions P(A, ν) of the Fokker-Planck equation (4.24) for τχν̄ = 0.1 and
for τχν̄ = 1 respectively. The deterministic bifurcation diagram is superimposed as a
dashed line, with A = (8ν/κ)1/2 for ν > 0. The marginal PDFs P(A) =

∫∞
−∞P(A, ν)dν

and P(ν) =
∫∞

0
P(A, ν)dA are also shown as solid lines on the top and the side of

the contour plot of P(A, ν). (k) and (l): Comparison of P(η) obtained from the time
domain simulations of (4.16) and (4.17), and from the time domain simulations of
(4.24), respectively shown as dashed and solid lines.
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of clarity, we show P(A, ν), which is identical to P(A,χ) in the coordinate system
(A, ν = ν̄ + χ).

From now on, we refer to stationary PDFs when the time variable t is not indicated as
argument of P . The marginal PDFs for A and ν are also presented on the side and on the
top of the joint distribution in Figures 4.16(i) and 4.16(j). One can note that instead
of computing

∫∞
0
P(A, ν)dA to find P(ν), this marginal distribution could be directly

found analytically: it is given by the Gaussian solution of the Fokker-Planck equation
associated to the univariate Ornstein-Uhlenbeck process (4.23), which is proportional
to the second exponential term in Eq. (4.25). One can clearly see that, when the
correlation time τχ of the parametric noise is increased from 12.5 ms to 125 ms, while
the mean and the standard deviation of the growth rate are kept constant (ν̄ = σν = 8
rad/s), the peak of the joint PDF contracts and adopts a more elongated shape that
follows the bifurcation diagram of the deterministic system. This behaviour is due to
an increased intermittency which is well captured by this Fokker-Planck formalism.

Moreover, these PDFs are compared to the ones deduced from time domain simulations
of the stochastically forced Van der Pol oscillator governed by Eq. (4.17), and of its
coloured multiplicative noise obeying Eq. (4.16). The simulated time traces of ν and
η are presented in Figures 4.16(a), 4.16(c), 4.16(e) and 4.16(g) for ν̄τχ = 0.1 and
ν̄τχ = 1. One can clearly see that the correlation time of the instantaneous growth rate
is larger for the case of ν̄τχ = 1. From these time traces, the histograms of ν, η and
its envelope are computed to get the PDFs shown in Figures 4.16(b), 4.16(d), 4.16(f)
and 4.16(h). One can see that for ν̄τχ = 1, at t ≈ 8 s, the instantaneous growth rate
makes a sufficiently deep and sufficiently long excursion in R− to induce a noticeable
decrease of the oscillation amplitude in Figure 4.16(g). This is an example of sporadic
quiet periods, which is typical of intermittently stable dynamics, and which leads to
an increased probability density function P(A) at low amplitude compared to the case
ν̄τχ = 0.1.

Finally, it is interesting to compare the PDFs of η obtained from the time domain simu-
lations of the Van der Pol oscillator (4.17) and the ones deduced from the Fokker-Planck
equations describing the slow-flow dynamics of this stochastically forced Van der Pol
oscillator. To that end, one has to deduce P(η) from the numerical solution of the
Fokker-Planck equation (4.24), which requires a few steps. First, one assumes that
the joint PDF of the multivariate process (A,ϕ, χ) is separable and can be written
P(A,ϕ, χ) = P(A,χ)P(ϕ) in order to deduce the univariate stationary PDF for ϕ.

By injecting this ansatz into the Fokker-Planck equation of the trivariate process, con-
sidering the stationary solution and the fact that P(A,χ) satisfies Eq. (4.24), we can
deduce that d2P(ϕ)/dϕ2 = 0, which implies that P(ϕ) = c1ϕ + c2 with c1 and c2 the
integration constants. Considering that P(ϕ) must be periodic, one can deduce that
c1 = 0, which means that ϕ is uniformly distributed between 0 and 2π. Second, we con-
sider the projection of the oscillatory dynamics onto the slowly varying amplitude, phase
and linear growth rate that is used to derive the above analytical expressions. With
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the mapping (A,ϕ)→ (η, η̇) given in (4.18), one can write that P(η, η̇) ∝ J−1P(A,ϕ),
where the J = Aω0 is the absolute value of the determinant of the Jacobian matrix
associated with this mapping. Then, considering that P(ϕ) = 1/2π, one can write that
P(A,ϕ) ∝

∫∞
−∞P(A,χ)dχ, and therefore, that P(η, η̇) ∝ A−1

∫∞
−∞P(A,χ)dχ.

Finally, the univariate PDF for η can be obtained from the marginal PDF for A that
is deduced from the numerical solution of (4.24) by using P(η) =

∫∞
−∞P(η, η̇)dη̇. The

PDFs obtained in that way for ν̄τχ = 0.1 and ν̄τχ = 1 are is shown in Figures 4.16(k)
and 4.16(l) as solid lines. As expected, there is an excellent overlap between these PDFs
and the ones from the histograms of the time domain simulations of (4.17) shown as
dashed lines.

For the case shown in Figure 4.16(l), the two necessary conditions for intermittency
presented in subsection 4.5.2 are fulfilled. Indeed, one has |ν̄/σν | ≤ O(1) and |ν̄τχ| ≥
O(1), which leads to a significant change of the shape of P(η) compared to the case
where |ν̄τχ| = 0.1, and this change can be predicted using the Fokker-Planck description
of the slow-flow dynamics.

4.6 Conclusions

This chapter deals with the classic problem of whistling of deep cavities subject to low-
Mach turbulent grazing flow, which arises from the constructive interaction between
the shear layer at the cavity opening and the acoustic modes of the cavity. It occurs for
certain ranges of cavity depth and grazing flow velocity. Acoustic measurements and
particle image velocimetry are performed to systematically characterise the instability
of the present experimental setup.

Then, the specific acoustic admittance of the cavity (resp. the specific acoustic impedance
of its opening) is measured for a range of depths (resp. bulk flow velocities) by using
the multi-microphone method, and subsequently fitted using second order transfer func-
tions. The latter are used to construct a model of two coupled oscillators that allows
us to perform a linear stability analysis of the system, which is in very close agreement
with the experimental measurements of the whistling conditions.

The specific impedance of the cavity opening subject to grazing flow is also measured for
higher acoustic forcing amplitudes. From these measurements, it is possible to establish
scaling laws for all the parameters of the model, which are non-dimensionalized using the
grazing flow velocity, the cavity width and the cavity depth. With this information, the
amplitude of the aeroacoustic limit cycle is first estimated by performing a describing
function analysis, and then by using the amplitude and phase equations derived from
the model of nonlinear oscillators with resistive and reactive coupling. These estimates
are in good agreement with the experimental measurements.

It should be noted that a single set of model parameters allow to predict the bifurcation
diagram for any combination of grazing flow velocity and cavity depth. Furthermore,

91



4.6. Conclusions

this deterministic analysis of the problem allows us i) to demonstrate that for such
aeroacoustic instability problem, the root loci topology differs from the one of flow-
induced vibration problems with frequency lock-in, and that the instability arises from
the resistive and reactive coupling of the two linearly stable oscillators, and ii) to identify
the nonlinearities at play in the system and to demonstrate that our system features
Hopf bifurcations that are always supercritical.

In the last part of this chapter, we identify the origin of the intermittency observed
in the vicinity of these supercritical Hopf bifurcations. We show that the system can
be intermittently stable or intermittently unstable for certain combinations of grazing
flow velocity and cavity depth, as a result of the parametric stochastic forcing induced
by the turbulent fluctuations of the flow. We successfully reproduce the corresponding
acoustic time traces and their probability density functions by incorporating an additive
white noise and a multiplicative coloured noise into the model of coupled oscillators.

Then, considering the fact that in the vicinity of the Hopf bifurcation, the system
of coupled nonlinear oscillators can be simplified to a randomly-forced Van der Pol
oscillator, we identify two necessary conditions for intermittency in this type of system:
the correlation time of the fluctuations of the linear growth rate must be of the order or
longer than the inverse of the mean growth rate, and their standard deviation must be of
the order or larger than the mean linear growth rate. This intermittency manifest itself
by sporadic intervals of low amplitude oscillations, which lead to a marked central peak
in the probability density function of the acoustic pressure, or by intermittent bursts
of high amplitude, which lead to heavy tails. Lastly, we present a complementary
analysis based on the Fokker-Planck equation for the slow-flow dynamics, which offers
an alternative treatment of such problem of weakly nonlinear self-oscillator. As a final
remark, it is worth mentioning that these findings are also relevant for the problem of
thermoacoustic instabilities in turbulent combustors.
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Chapter 5

General conclusion and outlook

Noise pollution is a critical issue for the well-being of human societies and ecosystems.
Most of the noise disturbance stems from high-amplitude tonal noise, which can origi-
nate either in acoustic resonance or in an instability. The instability can occur when an
acoustic system is coupled to a source term, under certain conditions allowing construc-
tive feedback. The focus of this thesis is on thermoacoustic (where the source term is
an unsteady flame) and aeroacoustic instabilities (where the source term is an unsteady
shear layer).

This thesis uses the harmonic oscillator approximate solution in order to model the
different blocks of the system. This coupled oscillator system modelling approach is
used for highlighting the coupling between cavity and source term as the mechanism of
instability (chapter 4, for an aeroacoustic instability), or for modelling the stabilization
potential of additional acoustic cavities coupled to a system experiencing a thermoa-
coustic instability (chapters 2 and 3). This approach allows for the analysis of a variety
of characteristics of the studied system (unstable range, bifurcation diagram, limit-
cycle amplitude estimation, hysteresis and intermittency) without the need to model
any flow physics in detail. The main contributions of the thesis and suggestions for
future research are detailed below, in order of appearance in the thesis.

Quarter-Wave resonator modelling: the modelling of the deep cavity – shaped
acoustic cavity introduced in section 2.2.1 is one of the novelty of this thesis: indeed,
such acoustic cavities are usually represented using a cotangent function, whereas the
approach introduced in this thesis allows the modelling of such cavities as a 2nd order
transfer function or 2nd order differential equation. This modelling, verified against
experiments, was proven to be accurate. It can also be applied for any mode in the
cavity, not only the fundamental quarter-wave mode: this versatility was shown by using
the model on the quarter-wave mode in chapter 2 and on the three-quarter-wave mode
in chapter 4. Some improvements that could be made to the modelling of the damping
term, since even with the addition of visco-thermal losses in the acoustic boundary
layers, the model resistance does not match the experimental one at low purge flows
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(Figure 2.5).

Exceptional point as best stabilization of an unstable acoustic mode by
a cooled damper: The linear stability analysis and study of the coupled systems
eigenvalues gave an analytical criteria for optimizing the damper cooling flow, in order
to achieve best stabilization of a certain unstable acoustic mode. It turns out that the
best stabilization occurs at the exceptional point, i.e. the set of parameters such that
the 4th order system has 2 complex conjugate double eigenvalues. The ideal damping
can easily be expressed as function of the frequency and growth rate of the instability,
as well as the efficiency factor. This analysis can be performed for both Helmholtz and
Quarter-Wave damper thanks to the modelling mentioned in the previous paragraph.

Maximization of acoustic absorption per unit area versus Stabilization of an
unstable mode in a volume: There seems to be some confusion on the method
to determine best damping (i.e. best purge flow) for an acoustic damper that will be
added to a chamber featuring an unstable acoustic mode. Indeed, reflection coefficient
measurements are often used as a mean of estimating the damper performance. This can
be misleading, because the best performance of the damper is then determined when
anechoic conditions are reached (i.e. impedance matching at the damper opening),
which does not give any information on how the damper is going to perform when
coupled to a chamber featuring an unstable acoustic mode. In Fig. 2.19 we clarified
that the two “ideal” purge mass flows have nothing to do with each other: one of them
depends on the porosity, i.e. the damper opening area over total surface area, while
the other one depends on the efficiency factor, which depends on the damper-chamber
volume ratio and on the damper location with respect to the acoustic mode shape.

Helmholtz damper nonlinearity: the effect of the Helmholtz damper nonlinearity
due to reverse flow on the bifurcation diagram of the coupled system has been ana-
lytically derived and experimentally proven in chapter 3. The nonlinearity itself had
already been highlighted in the literature, by measuring the damper acoustic response
under high amplitude, but its effect when the damper is coupled to a chamber with
an unstable acoustic mode was not yet investigated. The work done in this thesis
highlighted the occurrence of hysteretic behaviour, which can be potentially dangerous,
with the system suddenly jumping to a very high oscillation amplitude. One limitation
of this work is that it highlights the effect of the nonlinearity only, whereas in the real
occurrence of reverse flow in the case of thermouacoustic instability stabilization, some
hot gas from the combustion chamber would enter the damper neck and change its
density. The effects of this hot gas ingestion are still not well understood and should
be further studied.

Shear layer describing function: In chapter 4, the occurence of aeroacoustic in-
stability has been predicted as function of deep cavity length and mean flow velocity
based on shear layer acoustic response. The deep cavity using the Quarter-Wave res-
onator modelling mentioned above.The frequency- and amplitude-dependent shear layer
impedance was measured and fitted with a 2nd order transfer function in order to ac-
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curately reproduce the system stability and limit cycle amplitudes. Future work could
involve the extension of the model to multiple modes of both the deep cavity and the
shear layer, in order to cover a bigger range of cavity lengths and mean flow velocities in
the channel. Another possible line of future work would be to develop a framework for
determining the acoustic response based on canonical experiments and various system
parameters, in order to make this applicable in cases where direct measurements of the
acoustic response is not possible.

Intermittency: The use of a well-designed coloured noise with the model described in
the previous paragraph allowed the reproduction of the experimentally-observed inter-
mittency on the studied aeroacoustic instability. The effect of the coloured noise was
then demonstrated on a simpler model (the Van der Pol oscillator) and this allowed
for the derivation of simple criteria for the occurrence of intermittency under multi-
plicative noise excitation. Indeed, for a coloured noise applied to the system’s growth
rate to induce some intermittency, the correlation time of the noise needs to be at least
of the order of magnitude of the inverse of the mean growth rate (i.e. the oscillation
amplitude correlation time), and the variance of the noise needs to be at least of the
order of magnitude of the mean growth rate.

Frequency ramp rate for sweep measurements: The appendix offers a simple
criterion for determining what is the critical ramp rate that one must not exceed,
in order to measure the resonance frequency and corresponding damping of a simple
damped harmonic oscillator using sweep measurements. This critical ramp rate differs
from the one already highlighted in the literature for measuring the amplitude of the
quasi-steady response accurately, which is significantly lower (i.e. significantly slower
sweeps are needed). By extension, this criterion can be used for any linearly stable
system exhibiting sufficiently spaced separate modes.

Over the course of this thesis, the system of coupled oscillators model, although rep-
resenting a projected approximation of the system, has proven very useful to analyse
a variety of features of thermo- and aeroacoustic instabilities, from a qualitative and
quantitative point of view. In order to accurately and quantitatively model the system,
the current approach is semi-empirical and relies on experiments to be performed for
determining crucial parameters. This limitation can be bypassed by using parameters
from canonical measurements that flourish in the literature, and still allows for the
accurate representation of the system dynamics, at least from a qualitative point of
view.
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Appendix: critical frequency ramp
rate for sweep measurements

This appendix is based on the comment Comment on “Slow passage through resonance”
by Claire Bourquard and Nicolas Noiray published in Physical Review E 100, 047001
(2019).

In this appendix, the slow passage through resonance for a damped harmonic oscillator
is reviewed, by looking at previous studies investigating this problem. The difference
between the critical frequency ramp rate for resonance amplitude measurement and the
critical frequency ramp rate for resonance frequency and damping measurement is also
underlined.

As a first introductory comment, it is important to mention that i) this problem of “slow
passage through resonance”, for which the frequency of the harmonic forcing is ramped,
is restricted to stable linear oscillators, i.e. with α being a real positive constant, and
that ii) this problem differs from the “slow passage through Hopf bifurcations”, for
which one ramps at a finite rate the damping coefficient from a positive to a negative
value (e.g. [3, 10, 15,16]).

The first report on the dynamics of a mechanical oscillator excited by a force whose
frequency depends linearly on time, and the first attempt at modelling the discrepancy
between stationary and non-stationary amplitude response dates back to the 30’s [100].
In a subsequent study, Hok [71] derived partial analytical solutions for the amplitude of
a general oscillator during sweep excitations using Fresnel functions. A few years later
Fearn and Millsaps [56] derived a complete analytical expression for the amplitude in
the undamped harmonic oscillator. A NASA report from Reed et. al. [146] quantifies
experimentally the discrepancy in amplitude and frequency at which resonance occurs
as function of the frequency ramp rate. Kevorkian [88] later used the method of multiple
scales to derive asymptotic expansions close to and at a distance from resonance, for a
similar problem, where the excitation frequency of the harmonic forcing is fixed while
the resonance frequency of the system varies with time. As was underlined by Hok [71],
this problem is equivalent to the problem considered here. A more recent study on a
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similar problem was conducted by Kaczmarczyk [81]. Collinge and Ockendon [30] also
used the method of multiple scales for deriving analytical approximations, additionally
using it to underline a relevant time scale for the choice of the frequency ramp rate. An
analytical study by Sung and Stevens [179] also discussed a criterion for the maximum
frequency ramp rate allowed for accurate resonance frequency measurements.

A number of empirical formulae were derived over the years to approximate the dis-
crepancy between resonance amplitude and frequency obtained by harmonic forcing
or frequency chirp, which are summarized in the paper by Markert and Seidler [110].
A study by Torvik [185], also identified the threshold frequency ramp rate for which
one achieves the correct resonating amplitude, claiming the same threshold holds for
damping prediction. Some articles also extend the study to lightly nonlinear oscilla-
tors [30, 53,77,185].

Usually, to correctly capture the resonance frequency and quality factor of the damped
harmonic oscillator from sweep measurements, one has to use a frequency ramp rate
which is slow enough so that the envelope of the time trace of the response does not
exhibit modulation. In a previous study by White [190], a “vector technique” and a fit of
the frequency response in the complex plane (equivalent to the transfer function fit done
in the present appendix) allows the resonance frequency and damping measurements
from “rapid frequency sweeps”, although the actual chirp rate was not specified. This
suggests that higher frequency ramp rates can be used for the characterization of the
resonant mode (frequency and damping), as will be shown subsequently.

Several studies have been specifically undertaken to establish analytical exact and ap-
proximate solutions to the problem of harmonic oscillators forced with chirps, in the
undamped [56, 71, 138] and the damped case [30, 81, 88]. The following part of this
appendix aims to provide an exhaustive picture of the problem based on numerical
solutions of the following ordinary differential equation:

d2x

dτ 2
+ 2αn

dx

dτ
+ ω2

nx = F sin
([
ωi +

εr
2
τ
]
τ
)

(A.1)

With αn the damping rate, ωn the undamped natural angular frequency, F the ampli-
tude of the forcing, ωi the initial frequency of the chirp and εr the frequency ramp rate.
Using the nondimensional time t = ωnτ , this equation becomes:

ẍ+ αẋ+ x = sin(ωf t) with ωf = ω0 +
εt

2
, (A.2)

and with α = 2αn/ωn, ω0 = ωi/ωn and ε = εr/ω
2
n. Note that we also assume

F

ω2
n

= 1.

The instantataneous forcing frequency then reads:

ωinst(t) =
d

dt

[(
ω0 +

εt

2

)
t

]
= ω0 + εt. (A.3)
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For steady harmonic excitation at angular frequency ω, the response amplitude is:

A(ω) =
1√

ω2α2 + (1− ω2)2
. (A.4)

For the chirp excitation of Eq. (A.2), with instantaneous frequency given by Eq. (A.3),
the responses for three different values of ε can be seen in Figure A1(b): for a very slow
frequency ramp rate (green), the shape of the envelope of the response approaches the
response amplitude. For increasing frequency ramp rates (blue and red), the resonance
is delayed and reaches a lower maximum amplitude. In these cases, although resonance
occurs at an excitation frequency higher than the natural frequency, the frequency
response is still dominated by the natural frequency. This explains the low-frequency
oscillation postresonance, which assimilates to a beating between oscillations at the sys-
tem’s natural frequency and oscillations at the excitation frequency, as was underlined
by Markert and Seidler in [110].

The effect of frequency ramp rate upon the instantaneous frequency at which maxi-
mum response occurs is displayed in Figure A1(c) for different oscillator damping: the
quasi-steady chirp asymptotes exhibit instantaneous frequencies at maximum response
that are lower than 1, which corresponds to the expected resonance frequency for har-
monic forcing ω =

√
1− α2/2. The later frequency is different from the frequency

of the pseudo-harmonic free damped oscillations ω =
√

1− α2/4. Figure A1(c) also
underlines the delay in resonance for fast chirps, where the maximum amplitude is
reached at a higher instantaneous frequency than the resonance frequency. This effect
is accentuated when the damping α decreases. The effect of frequency ramp rate upon
the maximum reached amplitude for different damping coefficients is presented in Fig-
ure A1(d) (similar to Figure 4a in [138] with a modified x-axis). One can see that
for increasing oscillator damping, the critical chirp rate, above which the steady-state
resonance amplitude is not attained any more, increases. This critical ramp rate is
εA ≈ α2/4, which is consistent with [30,179,185].

If one is interested in the actual oscillation amplitude (during rampup of an engine to
nominal condition for example [100]), then this criterion holds and one indeed needs
very slow frequency ramp rates. However, for identifying the natural frequency ωn and
the damping α of a linear oscillator, one should not look at the transient amplitude
response, but at the frequency content of the response to the linear chirp, by computing
from data the transfer function:

H(ω) =
Sxy(ω)

Syy(ω)
, (A.5)

where Sxy is the cross-spectral density of the response x(t) and of the chirp excitation
y(t) = sin [φ(t)] = sin [(ω0 + εt/2)t], and Syy is the power spectral density of y(t). The
transfer functions corresponding to the three examples of Figure A1b are displayed in
Figure A1(e) , where all three are almost perfectly superimposed onto the transfer
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function for steady harmonic excitation. In order to obtain the resonance frequency
and damping of the oscillator, one can then simply fit a second order transfer function
to this data. The effect of frequency ramp rate and system damping on the identified
damping αfit is shown in Figure A1(f). One can see that the critical chirp rate for
this measure to be accurate is higher than the critical ramp rate needed to attain
the maximum response amplitude. The critical frequency ramp rate for an accurate
damping measurement is εα ≈ α/10. Since the damping α is by definition not known
when one needs to choose the damping rate, this formula can still help by using an
estimation of α.
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Figure A1: (a) Transfer function of the studied system with s the Laplace variable (b)
Time traces of x(t) as function of instantaneous angular frequency ωinst for α = 10−2

and ε = 10−5 (green), 10−4 (blue), 10−3 (red) (c) Influence of damping α and frequency
ramp rate ε on the instantaneous frequency at which the maximum amplitude is attained
(black lines). Superimposed markers correspond to the time traces on top. (d) Influence
of damping α and frequency ramp rate ε on the maximum amplitude reached by the
oscillator (black lines). Superimposed markers correspond to the time traces on top.
Red dashed line: limit of the maximum ε to be used for staying within 10% error on the
maximum amplitude, given by εA = α2/4. (e) Steady-state transfer function (blacked
dashed) line, with almost perfectly superimposed transfer functions from the green,
blue and red sweep signals on top. (f) Influence of damping α and frequency ramp
rate ε on the damping αfit obtained from a fit on the transfer function (black lines).
Superimposed markers correspond to the time traces on top. Red dashed line: limit of
the maximum ε to be used for staying within 10% error on αfit, given by εα = α/10.
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The difference in these critical ramp rate is quite explicit when one looks closer at
the red curves in subfigures A1(d) and A1(f) : considering the case of ε = 10−3, one
has a maximum amplitude and corresponding instantaneous frequency that significantly
differ from the corresponding steady harmonic forcing values. In contrast, the frequency
response is very similar in terms of peak frequency, amplitude and width.
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Figure A2: (a) Scaled α · xmax as function of ε/α2 (b) Scaled αfit/α as function of ε/α.
In both cases, the curves of Figure A1 (d) and A1 (f) respectively collapse and the
critical ramp rates can be easily estimated.

These results are summarized in Figure A2(a) and A2(b) where the axis have been
rescaled such that the curves of A1(d) and A1(f) collapse and the critical linear chirp
rates εa and εd become evident. These thresholds hold for linear damped harmonic
oscillators excited by linear chirps in absence of significant random additive or mul-
tiplicative forcing. Regarding the later point and the influence of stochastic additive
forcing, one can, for instance, refer to the early investigation of Kandianis [82].
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[62] Gikadi, J., Föller, S., and Sattelmayer, T. Impact of turbulence on the
prediction of linear aeroacoustic interactions: Acoustic response of a turbulent
shear layer. J. Sound Vib. 333, 24 (2014), 6548–6559. (Cited on page 63.)

[63] Gloerfelt, X., Bailly, C., and Juvé, D. Direct computation of the noise
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