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A B S T R A C T

The generation of a gaseous bubble, its violent collapse and rebound in
a liquid that we believe is almost incompressible is another beauty of
nature known as cavitation. The phenomenon appears in a wide range of
applications—desired or undesired—where it is observed in arrangements
involving not just one but many bubbles, broadly termed cloud cavitation.
Experimental and theoretical insights to cloud cavitation are limited due to
the spatial and temporal scales as well as the high non-linearity inherent
to the physics of cavitation. A remedy is found in recent technological
advances of High Performance Computing (HPC) architectures that enable
the numerical investigation of this phenomenon.

Past as well as many recent modeling approaches employ complexity
reductions to cope with the high cost of fully resolved simulations. The
expense of such simplifications are reduced accuracy or even inaccurate
predictions of certain dynamics in the multi-phase flow. The first part of
this thesis, therefore, develops a computational framework that is designed
for large scale stencil computations on recent HPC systems. The frame-
work carefully implements optimizations that enable massively parallel
simulations.

The second part of the thesis is devoted to the development of a high
throughput, compressible multi-phase flow solver for petascale simulations
of cloud cavitation. We simulate the collapse of an unprecedented cloud
with 12500 bubbles and perform an extensive analysis of the involved mi-
crojet formation and shock wave formation in bubbly liquids. Finally, the
technology developed in this thesis is used to perform a parametric study
of cloud cavitation collapse with particular emphasis on the kinetic energy
allocation within the bubble cloud that is affected by local bubble deforma-
tions. The results of the study are further used to asses the limitations of
reduced order models commonly used in practice.
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Z U S A M M E N FA S S U N G

Die Entstehung von gasartigen Blasen, deren Kollaps und Rückstoss in
einer Flüssigkeit, die wir zu glauben pflegen sei praktisch inkomressibel,
ist eine weitere Schönheit der Natur, bekannt als Kavitation. Das Phä-
nomen entsteht in einer breiten Reihe von Anwendungen—erwünscht
oder unerwünscht—wobei man es ausschliesslich in Anordnungen von
mehreren Blasen beobachtet, weitgehend als Wolkenkavitation bezeichnet.
Experimenteller als auch theoretischer Zugang zur Wolkenkavitation ist
beschränkt möglich aufgrund der involvierten Längen- und Zeitskalen
sowohl auch die nicht-lineare Physik der Kavitation erhebliche Schwierig-
keiten bereitet. Abhilfe bieten kürzliche Fortschritte in dem Bereich der
Hochleistungsrechner (HPC), welche die numerische Untersuchung des
Phänomens ermöglichen.

Ältere als auch kürzliche Modellierungsansätze nutzen Vereinfachungen
damit die hohen Kosten im Vergleich zu gänzlich aufgelösten Simulationen
reduziert werden können. Der Nachteil darin liegt in der reduzierten Ge-
nauigkeit oder gar falsche Vorhersagen der dynamischen unbekannten in
der Mehrphasenströmung. Der erste Teil dieser Arbeit befasst sich darum
mit der Entwicklung von einem Berechnungsmodell, dass spezifisch für
die Anwendung von räumlichen Schablonenberechnungen auf heutigen
Hochleistungsrechner konstruiert wurde. Das neue Berechnungsmodell
implementiert diverse Optimierungen welche schlussendlich hoch paralleli-
sierte Simulationen ermöglichen.

Der zweite Teil der Arbeit beschäftigt sich mit der Entwicklung eines
numerischen Lösers für kompressible Mehrphasenströmungen, der für pe-
tascale fähige Simulationen der Wolkenkavitation eingesetzt wird. Hierzu
simulieren wir eine noch nie dagewesene Wolke mit 12500 Blasen und
führen eine umfangreiche Analyse der involvierten Entstehung von Mi-
krojets und Schockwellen im Blasen-Wassergemisch durch. Zum Schluss
verwenden wir die neu entwickelte Technologie für eine Parameterstudie
der Wolkenkavitation mit besonderem Schwerpunkt auf die kinetische Ener-
gieverteilung in der Blasenwolke, welche von der Deformierung einzelner
Blasen beeinträchtigt wird. Im Weiteren benutzen wir die erhaltenen Daten
für die Bestimmung der Anwendungsgrenzen herkömmlicher Modelle mit
reduzierter komplexität, die oft in der Praxis anzutreffen sind.
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N O M E N C L AT U R E

Mathematical conventions
d
dt Ordinary derivative
∂
∂t Partial derivative
∂j Index notation for partial derivative with respect to coordinate j
D
Dt Material derivative ∂

∂t + (u ·∇)

ḟ Time derivative of function f
f̄ Mean of f
f̃ Non-dimensional quantity f
∇ · f Divergence
∇ f Gradient
f · g Inner product
f ⊗ g Outer product
fᵀ Transpose
I Identity tensor
δij Kronecker delta

Numerical conventions
i, j, k Cell center indices; e. g. φi,j,k
i + 1/2 Face center indices; e. g. φi+1/2,j,k
nx

i,j,k First component of vector n at given location1

(·)h
i Denotes a numerical approximation; ()i may be omitted

h Characteristic grid spacing
hx, hy, hz Grid spacing along x, y and z coordinates, respectively
Ci Control volume i (same as “cell” i)
Si Closed surface on boundary of Ci
Si+1/2 Face on boundary of cell Ci where Si+1/2 is part of Si
∆t Time step size
φr Reconstruction of exact variable φ

φn Time level n of variable φ

1 Throughout this thesis, the first component x is analogous to the first dimension, the second
component y is analogous the second dimension and the third component z is analogous to
the third dimension.
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1
I N T R O D U C T I O N

Hope is not the conviction that something will turn out
well but the certainty that something makes sense,
regardless of how it turns out.

— Václav Havel

Collapsing and interacting bubbles are encountered in a variety of in-
dustrial and scientific applications ranging from cavitation phenomena
associated with engineering devices, such as marine propellers, hydro-
electric turbines and fuel injectors (Escaler et al., 2006; Kumar et al., 2010;
Mitroglou et al., 2017; Örley et al., 2015), to non-invasive biomedical proce-
dures, for instance, dental cleansing, kidney stone lithotripsy, drug delivery
and tissue ablation histotripsy (Coussios et al., 2008; Ikeda et al., 2006; Xu
et al., 2008). An overview of applications in medicine that are based on
cavitation is found in Brennen (2015).

In practice, the phenomenon of cavitation is observed in arrangements
of multiple bubbles, referred to as a cloud of bubbles in the following. It
is well known that the destructive potential of cavitation—amplified when
bubbles interact with each—causes material erosion or tissue damage which
is the main property of its utility in the aforementioned applications, either
mitigated (Gonzalez-Avila et al., 2020) or harnessed. The thorough under-
standing of cavitation is therefore fundamental for its efficient exploitation
and control. Past experimental studies have contributed extensively to this
effort. The length scales associated with typical bubble clouds is in the order
of millimeters which poses serious challenges to manufacturers of mea-
surement devices. Furthermore, the time scale associated to the collapse of
such clouds is in the order of microseconds, which requires high temporal
resolution and often expensive high-speed cameras. Consequently, many
such experimental studies provide results on the macroscopic scale of the
cloud and rather diffuse interpretations of microscopic quantities. Only the
recent study of Bremond et al. (2006) achieved a reproducible experimental
setup for Two-Dimensional (2D) cloud cavitation collapse. Furthermore,
Obreschkow et al. (2011) provided experimental insight for the microjet
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2 introduction

formation in a single collapsing bubble by conducting the investigation by
means of parabolic flights.

Similar to experimental studies, numerical investigations of cloud cavi-
tation have contributed equally to the understanding of the phenomenon.
Arriving at a computer informed conclusion, however, imposes similar
difficulties as already encountered for the experimental conduct. Cavitation
is one of the richest phenomenons that arise in fluid mechanics. For one,
cavitation involves multiple phases which have to be modeled somehow.
Multiple phases, in general, means multiple materials for which separate
constitutive laws must be used to obtain the thermodynamic states of the
materials, or fluids in our case. These laws are highly non-linear and, again,
must be determined empirically. A second difficulty of cavitating flows
is that its governing equations allow for discontinuous solutions. Those
discontinuities emerge in the form of shock waves and, if combined with
multiple fluids, such waves propagate in flow regions where the acous-
tic impedance can be orders of magnitudes apart within a small region
in space. Detailed numerical modeling of this broad physical spectrum
can become expensive, both computationally and economically. Past and
present numerical studies therefore employ simplifications that reduce this
burden, which on the other hand produces numerical results that represent
a blurred reality. Research in mathematical models and numerical methods
for compressible multi-phase flows is an active field of research (Saurel and
Pantano, 2018) which is one of the reasons why no standard model has
established for this particular flow problem. A part of this thesis, therefore,
addresses the numerical investigation and performance of a recent model
for compressible multi-phase flows that has not yet been applied to cloud
cavitation collapse.

Manufacturing processes of contemporary computer architecture has
progressed to the point where the transistor size on the die is only that of
about 25 silicone atoms (5 nm technology). Transistor densities are there-
fore reaching the physical limit and Moore’s law will cease to be valid.
Instead, the breadth is exposed by increasing hardware parallelism. This
introduces an efficiency gap (Cameron et al., 2005) because parallelism can
not be exploited efficiently without considering certain design principles in
the software development stage. Understanding those principles requires
understanding of individual hardware components that bond together data
flow paths and control flow paths. The former is the foundation of all
programs, whose sole purpose is to transform data. The latter is guided
by algorithms that eventually solve a problem. Efficient programs employ
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design principles that ensure best interplay between the two. Most often
algorithms can be divided into smaller parts. The smaller pieces further-
more employ operations that are common between parts, but operate on
different data paths. The computational framework developed in this thesis
aims to provide tools that perform such operations on the high-level and
implement the aforementioned design principles for HPC on the low-level
hidden from the caller. The envisioned outcome of this effort is to narrow
the efficiency gap in today’s computing landscape, improve exploitation
of economical value and ensure readiness for next generation compute
architectures.

1.1 structure and summary of contributions

The work in this thesis presents a computational framework specifically
developed for HPC architectures targeting large scale compressible multi-
phase flows problems with application to cloud cavitation collapse including
unprecedented simulations of clouds with O(10000) bubbles. The presented
computational framework has been generalized such that it is not limited
to compressible multi-phase flows only and aims to offer its optimized
computational tools to the broader scientific community that is exposed to
large scale problems. A list of publications is appended to this thesis.

Chapter 2: Physics of cloud cavitation collapse

This chapter provides a brief introduction of the physics involved in cloud
cavitation. An extensive literature body exists for the study of single bubble
cavitation. On the other hand, a much smaller theoretical understanding
for the collapse of many nearby bubbles in cloud cavitation is available
today. Moreover, our understanding is mostly limited to the analysis of
linearizations that are valid only for weak pressure perturbations and small
degrees of bubble-bubble interactions. Nevertheless, these simplified views
provide valuable understanding of the physical phenomena which are used
extensively in the remaining chapters of the thesis and aid in the analysis
of the highly non-linear phenomenon of cloud cavitation collapse by means
of numerical simulation.



4 introduction

Chapter 3: Governing equations

This chapter introduces the compressible multi-phase flow model used for
the large scale simulations performed in this thesis. The model equations
consist of a variation of the general non-equilibrium multi-phase flow
model introduced by Baer et al. (1986). We then reformulate the model used
in Hejazialhosseini, Rossinelli, et al. (2012) and extend it by an improved
limit case of the general non-equilibrium model. The new model is further
extended with viscous and capillary stresses. The chapter concludes with
the discussion of appropriate numerical methods for the solution of the
hyperbolic balance laws that arise in multi-phase flow problems.

Chapter 4: Software design

A program consists of algorithms and data structures. This chapter is
concerned with the data structures used in the software design of the com-
putational framework developed in this thesis. The core design principles
for stencil based applications are discussed in detail and special emphasis
is given on high memory bandwidth utilization, the main bottleneck of
computing architectures today. The new framework is designed such that
temporal and spatial locality of the data is utilized efficiently by the low-
level computational kernels that perform the work. Furthermore, the data
structures are designed such that vectorized Central Processing Unit (CPU)
instructions can be exploited efficiently. Implementations of such optimized
kernels are provided as a black box to the library user, who is mainly
concerned with algorithm and application development. Finally, advanced
HPC architectures consist of compute accelerators such as Graphics Process-
ing Units (GPUs). These accelerators are designed for massive data-level
parallelism (DLP) which is non-trivial to exploit efficiently in stencil codes.
With this in mind, a heterogeneous CPU/GPU algorithm is designed that is
capable to exploit the faster memory bandwidth on GPU architectures. The
algorithm is evaluated with a benchmark for the solution of approximate
Riemann problems.

Chapter 5: Model validation

This chapter provides validation cases for individual features of the ex-
tended multi-phase model. In particular, superior resolution of velocities
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at interfaces is demonstrated and compared to the existing literature. It is
further shown that the multi-phase heritage of the new model is capable of
generating an almost pure gas phase from a liquid that is homogeneously
mixed with a small amount of gas. A feature that can not be captured by the
previous work in Hejazialhosseini, Rossinelli, et al. (2012). The modeling of
the stress tensor is validated by a range of test cases that address capillary
waves of various amplitude as well as a compressible turbulent channel
flow for the validation of viscous dissipation and incorporation of no-slip
boundary conditions.

Chapter 6: Parametric study of cloud cavitation collapse

This chapter provides data and analysis of fully resolved Three-Dimensional
(3D) numerical simulations for cloud cavitation collapse, where the simula-
tion cases are parametrized by the forcing pressure, the degree of bubble-
bubble interaction and the length scale of the cloud. To the best of the
authors knowledge, a systematic parameter study of this kind is currently
not found in the literature. The considered number of bubbles ranges from 5

to 630 for which reduced order models with bubble-bubble interactions are
typically used in industrial applications. The gathered simulation data is
therefore applied to assess the performance of two reduced order models
with particular emphasis on bubble deformation and its effect on transla-
tional bubble motion during collapse. The former is not accounted for in
any of the two simplified models, while the latter is modeled by one of the
two. It is shown that modeling bubble translation leads to an improved
prediction of the collapse time for individual bubbles. Furthermore, strong
bubble deformation caused by microjet penetration decelerates linear bub-
ble motion after pierce through, which in turn leads to a reduced energy
requirement for liquid mass displacement in the bubble cluster. The excess
energy resulting from this process is released in the form of larger pressure
peaks. Due to the inherent spherical collapse of bubbles in the employed
reduced order models, it is shown that deceleration of bubbles does not
take place which leads to incorrect energy allocations between translational
motion and radial interface motion, and eventually wrong predictions for
observed peak pressures.
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Chapter 7: Large scale simulation of cloud cavitation collapse

Here we present unprecedented simulations of cloud cavitation collapse
utilizing clouds with O(10000) bubbles, two orders of magnitude larger
than what is currently reported in the literature. The obtained simulation
results allow to study the involved dynamics on the macroscopic scale of
the cloud, as well as local dynamics at the scale of the bubble radii. The
analysis of the data reveals the formation of a bubbly shock wave at the
outskirts of the cloud with propagation speed slightly higher than what is
predicted by simpler homogeneous models. The computed leading front of
the bubbly shock is shown to be in agreement with experimental results
while larger attenuation is found downstream of the shock in case of radial
propagation in spherical clouds. Microjet data for individual bubbles is
quantified by statistical analysis, where a dependence of microjet strength
on the radial bubble position was established. The orientation of microjets in
collapsing bubbles is of particular interest for mitigating the erosion effects
that follow from jet impact on solid surfaces and is actively researched (E.-A.
Brujan, Noda, et al., 2018; E.-A. Brujan, Takahira, et al., 2019; Kiyama et
al., 2020; Molefe et al., 2019; Onuki et al., 2018; Tagawa et al., 2018). The
present simulations reveal that microjet orientation in cloud cavitation
depends on the size and distribution of neighboring bubbles, resulting in
scattered jet focusing in the cloud center with localized peaks that confirm
the experimental observations reported in Hansson et al. (1980).



2
P H Y S I C S O F C L O U D C AV I TAT I O N C O L L A P S E

It is not easy to become an educated person.
— Richard Hamming

This chapter reviews the theoretical aspects of the involved physics in
cloud cavitation collapse. The research history of cavitating liquids is briefly
summarized, followed by discussions of the additional physics for multiple
bubbles in close vicinity to each other. The mutual interactions exerted in these
configurations influence the collapse dynamics of individual bubbles and also
the collective cloud dynamics. The chapter concludes with a scaling analysis
that relates the spatiotemporal scales in cavitating bubble clouds and bubbly
shock waves.

2.1 early theory of cavitation

One of the earliest formulation of a problem involving a collapsing cavity
in an infinite and incompressible liquid was given in Besant (1859). Later
Rayleigh (1917) proposed a solution to this problem by using conservation
principles to derive

pB(t)− p∞(t)
ρ1

= RBR̈B +
3
2

Ṙ2
B +

4ν1

RB
ṘB +

2σ

ρ1RB
, (2.1)

known as the Rayleigh-Plesset equation.1 The first two terms on the right-
hand side are inertia terms obtained from the momentum equation in
radial coordinates and the last two terms describe viscous and surface
tension effects at the bubble interface. The equation is balanced by dynamic
pressure forces acting on the bubble interface whereas ρ1 and ν1 are the
density and kinematic viscosity of the liquid, respectively. Its solution
describes the temporal evolution of a spherical bubble with radius RB(t)
provided that the pressure pB(t) inside the bubble is known (Brennen, 2013).
Although highly non-linear, equation 2.1 incorporates the assumptions of

1 Lord Rayleigh’s solution assumed pB(t) = 0 Pa and considered only the two inertia terms on
the right-hand side.

7
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an incompressible liquid, perfect sphericity of the bubble at all times and
no mass transfer across the interface.

Given these limitations, various modifications of equation 2.1 have been
proposed in the literature (Gilmore, 1952; Keller et al., 1980; Plesset and
Prosperetti, 1977; Plesset, 1949). Most notably the work of Gilmore (1952)
considered 2nd-order compressibility terms that account for losses in the
bubble energy due to pressure wave radiation. Later Keller et al. (1980) pro-
posed an extended model for large amplitude perturbations. To date, these
models are still extensively used to solve various problems in single-bubble
or multi-bubble cavitation. Moreover, these One-Dimensional (1D) models
are often the building blocks in more sophisticated higher order modeling
approaches.

2.2 bubble-bubble interactions

2.2.1 Bjerknes forces

In the early work of Bjerknes (1906) and his father, the interaction of
expanding and contracting bodies submerged in an incompressible liquid is
described by analogy of charged particles for which the field of force is given
by the principle of superposition. One key difference, however, is that a
submerged object in a liquid can not expand or contract indefinitely. Hence,
the analogy of “charge” in a hydrodynamic field is attributed to periodic
oscillation in radial or translational direction. By this simple analogy, it
is shown that a hydrodynamic field exhibits similar geometric properties
than that of an electric or magnetic field. Their reasoning is based on the
notion of a vector field at a surface of separation, where flux, field intensity
and inductivity are brought in relation with velocity, specific momentum
and mobility, respectively. The latter corresponds to specific density and is
thought of as the “readiness” of matter to take motion. Since the specific
volume is the inverse of density, the density then is a measure of inertial
resistance. For example, a spherical object with high mobility submerged
in a container of water is much more willing to adapt the motion of the
surrounding water than the same object with low mobility. In their work,
they define kinematic buoyancy as the product of the liquid mass displaced
by an object submerged in the liquid times the acceleration of the object. By
this definition, they find an analogy to the Archimedean principle which
states that: any body that participates in the translatory motion of a fluid is subject
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to a kinematic buoyancy (or force) that is equal to the liquid mass displaced by the
body times the acceleration of the translatory motion. Assuming two spherical
bodies in an incompressible liquid, both exhibit radial oscillation and are
separated at a distance r, if they oscillate in phase they produce field
lines similar to those in a magnetic field with two poles of the same sign.
Conversely, if they oscillate out of phase the field lines correspond to those
of a magnetic field with poles of opposite sign. The argument is then further
extended to ask the question whether a hydrodynamic field exhibits similar
dynamical properties than that in an electrodynamic field. Indeed they find
striking similarity with Coulomb’s law in which the hydrodynamic case
only differs by sign inversion. Bjerknes (1906) then formulates laws of two
kinds:

primary bjerknes forces act on a single bubble in an oscillating pres-
sure field if the volume change of the bubble is non-zero over some
period.

secondary bjerknes forces act between two oscillating bubbles and
is proportional to the product of the oscillation amplitudes and in-
versely proportional to the square of the distance between the bubbles.
Bubbles that oscillate in phase attract each other; bubbles that oscillate
out of phase repulse each other.

The instantaneous Bjerknes force is given by

F = −VB∇p, (2.2)

where VB(t) is the volume of the bubble and ∇p is the pressure gradient
along the bubble surface. The resultant force is obtained from a time
averaging filter applied to equation 2.2 (Leighton et al., 1990). These simple
relations further explain why small bubbles with large mobility accumulate
at the anti-nodes in a standing oscillating pressure field and, vice versa,
large bubbles with small mobility accumulate at pressure nodes in the same
field (Crum, 1975; Crum and Eller, 1970; Mitome, 2003).

2.2.2 Microjet formation in a cloud of bubbles

In general, microjet formation may not necessarily be initiated due in-
teraction with nearby bubbles. For example, both a single bubble near a
wall or a shock induced bubble in the free field collapse non-spherically.
Studying the temporal evolution of such collapsing cavities, it is observed
that one side of the bubble begins to form a dent from which a microjet
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emerges and eventually penetrates through the bubble (Benjamin et al.,
1966; Obreschkow et al., 2011; Plesset and Prosperetti, 1977). The mechanism
of microjet formation is explained by equation 2.2. In presence of a wall
or a pressure shock, a pressure gradient exists that points away from the
wall or from the pre-shocked fluid to the post-shocked fluid, respectively.
Initially the change in volume of the bubble is small if we assume it is in
equilibrium with the surrounding fluid at time t = 0 s. The slight imbalance
of pressure along the bubble surface causes small variations in volume
which, by equation 2.2, results in a force at the bubble surface acting in
the opposite direction of the pressure gradient. This initially generates a
small dent that further induces change in volume and amplifies the acting
force. The process accelerates the bubble interface towards the wall or in
direction of the pressure shock, respectively, and results in the formation of
the microjet.

The same phenomenon is observed in a collapsing cloud of bubbles. In the
context of this thesis, these clouds are forced to collapse by a higher pressure
in the liquid far-field. For the sake of argument we assume this forcing
pressure is constant. Since there is no pressure gradient, why do bubbles
form a microjet? The reason is the presence of other bubbles that are close
by to each other. The many nearby bubbles cause a change of the acoustic
impedance in the bubbly mixture that generates a “shielding” effect in the
bubble collective. This shielding effect indeed induces a pressure gradient
across the first few (depending on the number density of bubbles) layers of
bubbles at the outskirts of the cloud. The strength of this gradient depends
on the distance between neighboring bubbles and on the magnitude of the
forcing pressure in the far-field. The direction of the gradient points from the
inside of the cloud into the pure liquid and the same mechanism of microjet
formation takes place as discussed for the cases above. Because of the
geometrical arrangement and the shielding effect of the bubbles in the cloud,
individual spherical “layers” of bubbles do not collapse simultaneously.
This gives rise to the formation of a shock wave in the bubbly medium,
which amplifies as it propagates from the outskirts of the cloud towards
the cloud center. This phenomenon is investigated further by means of
numerical simulation in the later chapters 6 and 7 of this thesis.

In the following work, the geometrical description of a microjet associated
to a bubble i is based on the sketch shown in figure 2.1. The center of mass
of the bubble at any time instant is denoted by xB,i(t) and the center of
the bubble cloud is denoted by xC. The vector xC − xB,i(t = 0) points to
the cloud center and provides a reference for the initial orientation of the
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xB,i(t)

xB,i(t = 0)

utip,i

u⊥tip,i

ũbulk,i

ũ⊥bulk,i

xC − xB,i(t = 0)

θi

ϕi

Figure 2.1: Microjet orientation in space: utip,i, microjet tip velocity; ũbulk,i, bulk
velocity indicator. Projections onto a plane perpendicular to the radial
direction: u⊥tip,i, projection of microjet tip velocity; ũ⊥bulk,i, projection
of bulk velocity indicator.

bubble. At a time t the direction of the microjet is defined by its velocity
vector utip,i computed from the initial center of mass and the coordinate of
minimum curvature on the surface in the microjet pit. Its magnitude |utip,i|
corresponds to the speed at the location of minimum curvature. The devia-
tion of the microjet from the reference vector is quantified by the inclination
angle θi.

Larger bubbles have a stronger influence on the liquid flow. Assuming
potential flow away from the bubbles, the velocity in the surrounding liquid
is given by (Mettin et al., 1997)

u(x, t) =
NB

∑
j=1

R2
B,jṘB,j

|x− xB,j|3
(x− xB,j). (2.3)

Furthermore, the bubble compression rate ṘB,j in equation 2.3 is taken to
be constant and negative, leading to a non-dimensional bulk velocity

ũbulk,i =
NB

∑
j=1
j 6=i

−R2
B,j(t = 0)

|xB,i(t = 0)− xB,j(t = 0)|3
(

xB,i(t = 0)− xB,j(t = 0)
)

(2.4)

at the center xB,i of bubble i. Equation 2.4 provides an estimation for the
bulk flow direction and its strength which is purely based on the initial
geometrical arrangement. The assumption of constant ṘB,j does not exactly
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hold for cloud collapses since the bubbles behind the forming collapse front
compress but remain at rest ahead of it. Therefore, equation 2.4 characterizes
only the flow velocity perpendicular to the direction of the reference vector
and is governed by the arrangement of bubbles along the collapse front.
To examine the influence of the bulk flow induced by the collapse of the
surrounding bubbles on the microjet direction, utip,i and ũbulk,i are projected
onto a plane perpendicular to the radial direction. The resulting velocity
components are marked by the superscript ⊥ and are also schematically
drawn in figure 2.1. The bulk flow deviation angle between u⊥tip,i and ũ⊥bulk,i
is denoted ϕi.

2.2.3 Linear theory of cloud cavitation collapse

The governing equations that describe compressible multi-phase flows are
introduced in chapter 3. The equations introduced there provide an accurate
flow description including the chemical, mechanical and thermodynamic
non-equilibrium at bubble interfaces. An exact solution, however, is not
known to exist which renders their mathematical interpretation difficult.
The theoretical description of cloud cavitation must therefore be simpli-
fied for mathematical accessibility. This is achieved by analysis of small
perturbations and simplified representations of disperse bubble clouds by
homogeneous mixtures (van Wijngaarden, 1972a). Homogeneous models
can describe the macroscopic scales of cloud cavitation associated to the
duration of the cloud collapse and wave propagation in the mixture. On
the other hand, they fully neglect the bubbly character of the real mix-
ture. Mørch (1980) presents a simple homogeneous model that is based
on Rayleigh’s solution in equation 2.1. It is assumed that the gas volume
fraction αC of a homogeneous bubble cluster is reduced to zero behind the
bubbly shock, meaning that cavities are completely annihilated. In this case
the cluster boundary propagates with the speed of sound in the homoge-
neous mixture and the bubble radius RB in equation 2.1 is substituted with
the homogeneous cloud radius RC, that is

RCR̈C +
(

1 +
αC
2

)
Ṙ2

C = − p∞

ρ1αC
. (2.5)

For αC → 1 the homogeneous mixture becomes a pure gas phase and
equation 2.5 reduces to the single bubble case in equation 2.1.
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Figure 2.2: Mixture speed of sound for water-air at 1 bar: harmonic mix-
ture (Wood, 1930); homogeneous mixture (van Wijngaarden,
1972a).

The effective homogeneous mixture speed of sound, cH , for the corre-
sponding assumptions is given by (van Wijngaarden, 1972a)

cH =

√
p1

ρ1αC(1− αC)
(2.6)

and is a crucial component for the description of cloud cavitation col-
lapse. The speed of sound in a real bubbly mixture was first investigated
in Mallock (1910) and later in Wood (1930) and later confirmed experimen-
tally (Campbell et al., 1958; Fox et al., 1955; Karplus, 1957; Silberman, 1957;
Wilson et al., 2008). Figure 2.2 compares the harmonic speed of sound for
a real mixture (Wood, 1930) with the homogeneous speed of sound used
in equation 2.5. It is seen that the homogenization of the bubble cloud is
only valid if αC is not too close to zero, nor unity. The simplification of
cloud cavitation in equation 2.5 was later extended to account for the energy
potential stored in the bubble cluster (Mørch, 1989) and further linearized
treatments of cloud cavitation collapse were discussed in d’Agostino et al.
(1989) and Kubota et al. (1992).

The simplifications discussed above completely neglect bubble-bubble
interactions. Analysis of those dynamics is carried out with potential flow
theory. The bubble wall velocities are described by a superposition of
velocity potentials, φi, for which an analytical description is available (Lamb,
1879). By using Lagrange’s equations, the derived equations of motion result
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in a system of non-linear Ordinary Differential Equations (ODEs) where the
bubble dynamics is governed by the type of equation 2.1 with additional
coupling terms that describe the bubble-bubble interactions. Although
the ODEs can not be solved analytically, they are often combined with a
homogeneous mixture approach and then solved numerically. Chapter 6

provides further context for potential flow based models and addresses
their accuracy with data from realistic bubble-bubble interactions.

2.3 scaling laws for cavitating bubble clouds

This section presents a scaling argument for the variables that determine
the dynamics of collapsing gas bubble clouds. The following variables are
included in the scaling argument:

• Liquid and gas densities ρk with k ∈ {1, 2}
• Liquid and gas sound speeds ck with k ∈ {1, 2}
• Initial bubble and liquid pressure pC in the sphere defining the cloud

• Initial gas volume fraction of the cloud αC

• Initial cloud and bubble radii RC and RB, respectively

The variables are non-dimensionalized following the approach presented
in Bolotnov et al. (2011), where a physically significant quantity q is written
as q = q∗ q̃ with q∗ its characteristic dimensional value and q̃ its non-
dimensional value. The problem is further simplified by the following two
assumptions:

1. The inertia of the gas is neglected (ρ2 � ρ1)

2. The liquid is treated as incompressible (c1 → ∞)

The non-dimensional parameters are set to

ρ̃1 = 1, c̃2 = 1, R̃B = 1,

which determines the characteristic values

ρ∗ =
ρ1

ρ̃1
, (2.7)

c∗ =
c2

c̃2
, (2.8)

R∗ =
RB

R̃B
. (2.9)
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The remaining non-dimensional numbers for the cloud radius, pressure
and gas volume fraction then follow by

R̃C =
RC
R∗

, p̃ =
p
p∗

,

and αC, respectively. The characteristic pressure in the bubble cloud, p∗ =
pC, is obtained from the characteristic speed of sound c∗ =

√
γ2 p∗/ρ2

and p is a reference pressure. A time-scale for the characteristic bubble
dynamics is estimated by

t∗B ∼
1

ωB
, (2.10)

where the bubble oscillation frequency ωB is given by

ωB =
1

RB

√
3γ2 p

ρ1
, (2.11)

see for example Brennen (2013). Substituting the scaled variables leads to

t∗B ∼
1

ωB
∼ RB

√
ρ1

ρ2

ρ2

p
∼ R∗

c∗
R̃B

√
1
p̃

. (2.12)

The macroscopic time-scale of the cloud collapse, t∗C, is governed by the
wave speed of the bubbly shock front, also referred to as effective speed of
sound, given by

ṘF ∼
√

p
ρ1(1− αC)αC

, (2.13)

which is valid for αC neither close to zero nor close to unity as well as no
relative velocity between the gas and liquid (Crespo, 1969; van Wijngaarden,
1968, 1972a). Proceeding similar as above, the characteristic time-scale scales
by

t∗C ∼
RC

ṘF
∼ RC

√
ρ1

ρ2

ρ2

p
(1− αC)αC ∼

R∗

c∗
R̃C

√
(1− αC)αC

p̃
, (2.14)

where experimental work published in Hansson et al. (1980) show good
agreement with this macroscopic scaling. Computing the ratio of the two
time-scales yields

t∗C
t∗B
∼ R̃C

R̃B

√
(1− αC)αC ∼

√
βC, (2.15)
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which is identical to the result presented in Wang et al. (1999). Finally,
estimates for the characteristic microjet tip velocity and bubbly shock speed
are obtained by combining equations 2.9, 2.12 and 2.14 such that

u∗tip ∼
R∗

t∗B
∼ c∗

1
R̃B

√
p̃, (2.16)

Ṙ∗F ∼
R∗

t∗C
∼ c∗

1
R̃C

√
p̃

(1− αC)αC
. (2.17)

It is interesting to note that equation 2.15 can further be discussed by
following a similar argument given in van Wijngaarden (1970). Let dF be
the thickness of the bubbly shock that propagates with the effective speed
ṘF given by equation 2.13. The change of the bubble radius RB induced
by the shock passage happens at the time scale t∗B given by equation 2.10,
where the time scale of the shock passage is of the order dF/ṘF. Requiring
that the time scale of shock passage is at least of the order of the bubble
response leads to the scaling

d̃F ∼
R̃B√

(1− αC)αC
, (2.18)

after using equation 2.9 for conversion to non-dimensional form. Under the
given assumptions, a useful estimate of the bubbly shock thickness then
follows by

dF ≥
RB√

(1− αC)αC
. (2.19)

Finally, the scaling argument for the ratio of the macroscopic and micro-
scopic characteristic time in equation 2.15 can further be expressed in terms
of the non-dimensional shock thickness

t∗C
t∗B
∼ R̃C

d̃F
∼
√

βC, (2.20)

where equation 2.18 has been used.
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G O V E R N I N G E Q UAT I O N S

Our knowledge can only be finite, while our ignorance
must necessarily be infinite.

— Karl Popper

This chapter summarizes the equations that govern compressible multi-
phase flow in a general setting. A relaxed system in the limit of mechanical
equilibrium at the interface is derived and forms the basis for the numerical
calculations performed in this thesis. The chapter concludes with a discus-
sion of the numerical methods used for the discretization of the underlying
hyperbolic conservation laws.

3.1 non-equilibrium two-phase flow

The governing equations for a discrete two-phase flow were first described
by Baer et al. (1986) for a reactive granular system. A variation of these
equations form the basis for the compressible flow systems discussed in
this thesis. Each phase k ∈ {1, 2} is described by a set of balance laws for
mass, momentum and energy according to

∂α1ρ1

∂t
+∇ · (α1ρ1u1) = 0, (3.1)

∂α1ρ1u1

∂t
+∇ · (α1ρ1u1 ⊗ u1 + α1 p1 I) = −pI∇α2 + λ(u2 − u1), (3.2)

∂α1ρ1e1

∂t
+∇ ·

(
(α1ρ1e1 + α1 p1)u1

)
= pI

∂α2

∂t
+ λuI · (u2 − u1), (3.3)

∂α2ρ2

∂t
+∇ · (α2ρ2u2) = 0, (3.4)

∂α2ρ2u2

∂t
+∇ · (α2ρ2u2 ⊗ u2 + α2 p2 I) = pI∇α2 − λ(u2 − u1), (3.5)

∂α2ρ2e2

∂t
+∇ ·

(
(α2ρ2e2 + α2 p2)u2

)
= −pI

∂α2

∂t
− λuI · (u2 − u1), (3.6)

∂α2

∂t
+ (uI ·∇) α2 = µ(p2 − p1). (3.7)

17
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The terms on the right-hand side describe interactions at the interface be-
tween two phases, whereas quantities with subscript I are average values
at the interface. The parameters λ > 0 and µ > 0 describe the rates for
which velocity and pressure relax towards equilibrium at the interface,
respectively. The variables αk, ρk, uk, pk and ek = εk + 1/2 uk · uk are volume
fraction, density, velocity, pressure and specific total energy of the pure
phase k, respectively, where εk denotes the specific internal energy. The
phasic pressure takes the form αk pk, where the scaling with αk is required
to ensure finite dissipation rates at the interface with respect to velocity
gradients (Baer et al., 1986). In case of a homogeneous mixture in thermo-
dynamic equilibrium, the phasic pressure equals the partial pressure of the
corresponding mixture component according to Dalton’s Law.

In addition to the equation of state (EOS) discussed in section 3.3.1, the
geometric relation in equation 3.7 is augmented to the system for closure in
the eight unknowns αk, ρk, uk and ek for k ∈ {1, 2}. The particular choice of
α2 as another degree of freedom is beneficial in terms of its thermodynamic
independence as well as its allowance to take into account compressibility
effects. The additional constraint α1 + α2 = 1 has implicitly been used to
arrive at the system of seven equations 3.1 to 3.7. The laws describe the
evolution of each phase k separately and are non-conservative due to the
disequilibrium state at the interface (mass and heat transfer have been
omitted here). Furthermore, conservation of the mixture is satisfied which
is easily verified by summing the equations of the corresponding variables
for k ∈ {1, 2}.

3.2 two-phase flow in the limit of mechanical relaxation

A simplification to the governing system of the previous section can be
introduced for interfacial flows which are central to this thesis. Such flows
separate pure fluids where the wave speed associated to the interface
corresponds to that of a contact wave. It is therefore necessary that pressure
and normal velocity are in equilibrium at the interface (Saurel and Abgrall,
1999a). This equilibrium state is achieved in the limit of λ → ∞ and
µ→ ∞, i. e., infinitely fast relaxation of the phasic velocities and pressures,
respectively, at the material interface. By asymptotic analysis of equations 3.1
to 3.7 with appropriate choice for pI and uI (Baer et al., 1986; Saurel,
Gavrilyuk, et al., 2003) as well as λ = 1/ε and µ = 1/ε, then for ε → 0+
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the non-equilibrium system in section 3.1 reduces to (Murrone et al., 2005;
Perigaud et al., 2005)

∂α1ρ1

∂t
+∇ · (α1ρ1u) = 0, (3.8)

∂α2ρ2

∂t
+∇ · (α2ρ2u) = 0, (3.9)

∂ρu
∂t

+∇ · (ρu⊗ u + pI) = ∇ · τ +∇ · T , (3.10)

∂ρe + ρεσ

∂t
+∇ ·

(
(ρe + ρεσ + p)u

)
= ∇ · (τ · u) +∇ · (T · u), (3.11)

∂α2

∂t
+ (u ·∇) α2 = K∇ · u. (3.12)

In comparison to the non-equilibrium model in section 3.1 the asymptotic
model of equations 3.8 to 3.12 conserves momentum and energy of the
mixture. Here ρ, u, p and e are density, velocity, pressure and specific
total energy, respectively, with velocity and pressure in equilibrium at the
interface. The phasic treatment for the conservation of mass leaves the
model in thermodynamic disequilibrium and allows for different materials
with separate equations of state in each phase, given appropriate data
for the relaxation rates at the interface. In contrast, single-fluid models
treat density in mixture state as well and evolve the system with the Euler
equations. Phase components are again modeled by augmenting the system
with a transport equation of a marker function usually based on mass
fractions (Karni, 1994; Picone et al., 1988; Quirk et al., 1996; Saurel, P.
Cocchi, et al., 1999; Shyue, 1998).

The asymptotic model is further augmented with the mixture viscous
stress tensor τ as well as mixture capillary stress tensor T and capillary
potential energy ρεσ, discussed further in sections 3.3.3 and 3.3.4, respec-
tively. A variation of this model without stress tensors has first been used
in Kapila et al. (2001) to model deflagration to detonation transition in
granular materials. The term K∇ · u on the right-hand side of equation 3.12

accounts for compression or expansion effects depending on the wave type,
characterized by ∇ · u, and the material pairing described by

K =
α1α2(ρ1c2

1 − ρ2c2
2)

α1ρ2c2
2 + α2ρ1c2

1
. (3.13)

The numerator of K determines the sign by the difference of the bulk moduli
in the two participating phases. If phase k = 1 is less compressible, then
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K > 0. For this case the rate of change Dα2
Dt in equation 3.12 is negative across

shock waves (∇ · u < 0) which causes compression of the volume fraction
α2. Across rarefaction waves the rate of change is positive (∇ · u > 0)
which causes expansion. The factor α1α2 in equation 3.13 is focusing the
magnitude of K towards the center of the mixture. The normalization factor
in the denominator is of the same form as the harmonic averaging operator
required for the mixture speed of sound, discussed in section 3.3.2. In the
pure phase it is obvious that K = 0. Alternatively, the right-hand side in
equation 3.12 can be derived from the EOS along an isentropic trajectory
assuming pressure equilibrium (Saurel, Le Metayer, et al., 2007).

The literature concerned with interfacial flows often neglects the source
term K∇ · u in the volume fraction transport of equation 3.12 because it is
inactive in the pure phase and components are assumed immiscible (Allaire
et al., 2002; Coralic et al., 2014; Perigaud et al., 2005; Saurel, Gavrilyuk,
et al., 2003).1 The characteristics exhibited by this term are favorable for
cavitating flows due to its capability of generating a gaseous phase from a
liquid phase homogeneously mixed with a small amount of the gaseous
phase. The reduced system in equations 3.8 to 3.12 form the governing
equations used for the numerical simulations carried out in this thesis. Its
discretization is discussed in section 3.4. A comprehensive overview of
asymptotic solutions based on the full non-equilibrium two-phase model is
given in Linga et al. (2019).

3.3 constitutive laws

The cavitating flow systems modeled in this work are composed of water
and air (non-condensable gas). The convention adapted here is that the
phase index k = 1 corresponds to the less compressible phase, i. e., liquid
water, whereas the phase index k = 2 corresponds to the gaseous phase.
The following provides the constitutive laws for the closure of equations 3.8
to 3.12.

1 If fluids are assumed immiscible, the term multi-component is often used in the literature.
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ρk/kg m−3 ck/m s−1 νk/m2 s−1 γk pc,k/bar

Water 1000 1625 1.0 × 10−6 4.4 6000

Air 1 374 18.5 × 10−6 1.4 0

Table 3.1: Material parameter for water and air at 1 bar reference pressure.

3.3.1 Equation of state

The incomplete caloric stiffened gas equation of state (SGEOS) (Harlow
et al., 1971; Menikoff et al., 1989) is used for water-air systems, where the
pressure relation ship pk = pk(ρk, εk) for the pure phase is given by

pk = (γk − 1)ρkεk − γk pc,k. (3.14)

The parameters γk > 1 and pc,k ≥ 0 are, respectively, the ratio of specific
heats and a correction pressure to model the stiffness of phase k. For a
polytropic gas the parameter pc,k = 0 and equation 3.14 reduces to the
ideal gas law. The phasic speed of sound is derived from equation 3.14 at
constant entropy

c2
k =

(
∂pk
∂ρk

)
sk

= γk
pk + pc,k

ρk
, (3.15)

where the fundamental thermodynamic identity dεk = Tk dsk − pk dvk with
dsk = 0 has been used. The variables Tk, sk and vk = 1/ρk are temperature,
specific entropy and specific volume for phase k, respectively. The values
for the material parameters used in this work are listed in table 3.1 with
the parameters for the SGEOS adapted from Saurel and Abgrall (1999b).

3.3.2 Mixture equations

Equation 3.14 can be used to approximate the thermodynamic equilibrium
in the mixture with appropriate averaging rules. The mixture conservation
requirement of the non-equilibrium system in equations 3.1 to 3.7 on page 17

determines the mixture rules for the conserved quantities

ρ = α1ρ1 + α2ρ2, (3.16)

ρe = α1ρ1e1 + α2ρ2e2, (3.17)

α1 + α2 = 1, (3.18)
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Figure 3.1: Speed of sound for a water-air mixture: , equilibrium speed of
sound; , frozen speed of sound.

where the interface conditions

u = uI = u1 = u2, (3.19)

p = pI = p1 = p2, (3.20)

follow from the asymptotic limit discussed in section 3.2. Velocity is a
kinematic quantity and needs no further attention. The thermodynamic
closure for the mixture pressure p requires consistent averaging coefficients
which can be obtained from an isobaric closure (Allaire et al., 2002) of
equation 3.14, resulting in

1
γ− 1

= ∑
k

αk
γk − 1

, (3.21)

γpc

γ− 1
= ∑

k
αk

γk pc,k

γk − 1
, (3.22)

where pressure positivity and the interface condition of equation 3.20 has
been assumed. From these rules the mixture pressure takes the form

p = (γ− 1)ρε− γpc, (3.23)

with ρε = ρe − 1/2 ρu · u, γ and pc the mixture internal energy, ratio of
specific heats and correction pressure, respectively.
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Equations 3.8 to 3.12 are hyperbolic for the mixture speed of sound

1
ρc2 = ∑

k

αk

ρkc2
k

. (3.24)

The relation is known as the equilibrium mixture speed of sound and corre-
sponds to the analytical derivations of Mallock (1910) and Wood (1930) for
sound propagation in bubbly liquids. In particular, the equilibrium speed
of sound in a water-air mixture is non-monotonic and below the speed
of sound in the pure phases. If the source term on the right-hand side of
equation 3.12 is neglected, the resulting frozen mixture speed of sound is
monotonic but in disagreement with Wood (1930). Figure 3.1 compares the
equilibrium and frozen speed of sound for a varying gas volume fraction
α2. The material parameters correspond to the values in table 3.1.

3.3.3 Viscous stress

Augmenting the momentum equations 3.2 and 3.5 and energy equations 3.3
and 3.6 in the non-equilibrium model with a viscous stress term, where
µk = ρkνk is the dynamic viscosity of phase k, leads to the equilibrium limit
form (Perigaud et al., 2005)

τ = 2µ

(
D− 1

3
(∇ · u)I

)
, (3.25)

where
µ = α1ρ1ν1 + α2ρ2ν2 (3.26)

is the dynamic viscosity of the mixture. The deformation rate tensor is
given by

D =
1
2
(
∇u + (∇u)ᵀ

)
. (3.27)

3.3.4 Surface tension

Unlike classic surface tension models for incompressible flow, where a
surface tension force fσ is added on the right-hand side of the momentum
equation, a conservative formulation is necessary when the energy equation
can not be neglected. For the present model the evolution of the interface
geometry is described by equation 3.12 depending on the field α2. Assuming
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α2 is continuously differentiable, then an approximation to the true surface
normal n of an interface with zero thickness is given by (Brackbill et al.,
1992; Sussman et al., 1994)

m = − ∇α2

|∇α2|
, (3.28)

where the minus sign ensures that m points towards the phase with larger
mass. The local interface curvature follows from

κ = ∇ ·m. (3.29)

One implication of a continuously differentiable field α2 is that the interface
is represented with finite thickness. This, however, is in concert with the
discrete representation of α2 such that equations 3.28 and 3.29 remain useful.
Brackbill et al. (1992) then formulate the surface tension effects in terms of
the volumetric force

fσ = σκm|∇α2|, (3.30)

where σ is the surface tension coefficient. A conservative formulation in
terms of a capillary stress tensor has been suggested by Gueyffier et al.
(1999)

T = σ(I −m⊗m)|∇α2|. (3.31)

The energy stored in an interface due to capillary stresses, e. g. the
Laplace pressure difference in a spherical bubble, must be accounted for in
the energy equation. Following Perigaud et al. (2005), the capillary potential
energy—based on the interface description discussed above—is given by

ρεσ = σ|∇α2|. (3.32)

This energy corresponds to 1/2 tr (T) and can be regarded as the me-
chanical pressure contribution due to surface tension—following a similar
argument made in Batchelor (1967) for the mechanical pressure due to the
stress tensor −pI + τ. The factor in front of the trace arises due to the 2D
nature of surface tension forces. In Hu et al. (2006), the potential energy in
equation 3.32 has been eliminated for an incompressible flow application
by scaling the identity in equation 3.31 with an appropriate factor that
accounts for the dimensionality of the problem.

3.4 discretization

There are two basic categories of numerical methods used for interfacial
problems. The first category are methods that eliminate numerical diffusion
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at the interfaces. They are also called “sharp interface methods”. They may
further be divided into four branches:

lagrangian methods and arbitrary Lagrangian-Eulerian methods de-
scribe the interface with local coordinates that advect with the local
flow velocity. These methods embed a computational mesh in the fluid
domain and are most natural for problems with interfaces (Benson,
1992). On the other hand, large distortions of the embedded mesh
induces error and frequent re-meshing is necessary especially for prob-
lems in cavitation where large interface deformations occur. These
methods are further difficult to implement in higher dimensions.

front tracking methods use a fixed mesh and use different solvers
for the bulk region away from interfaces and the interfacial region.
These methods are not conservative in higher dimensions and pose
problems when there are topological singularities at the interface, e. g.,
breackup or coalescence, see J.-P. Cocchi et al. (1997). A method for
1D problems was proposed in Harten and Hyman (1983). Apart from
these difficulties, front tracking methods exhibit high accuracy at the
cost of non-trivial implementation.

interface reconstruction methods do not explicitly track the in-
terface but perform a reconstruction based on the ideas of Hirt et al.
(1981) and Youngs (1982). For incompressible flows, knowledge of the
interface location is sufficient to compute the density field. For com-
pressible problems, the determination of the densities and internal
energies of phases in a mixed cell is not obvious (Saurel and Abgrall,
1999b). These methods are widely used but are not conservative.

level set methods are used to compute and analyze the motion of an
interface in multiple dimensions (Osher and Fedkiw, 2001; Osher and
Sethian, 1988). A method for multi-fluid problems that is based on
level sets is described in Fedkiw et al. (1999). In general, level set
methods are not conservative.

The second category of methods allow for numerical diffusion in the
interface region. These methods essentially discretize the flow fields using
an Eulerian description on a single grid. The interfacial region is then neces-
sarily described by a smooth transition zone. This implies that constitutive
laws must correctly describe the thermodynamic state of the mixture in
these transition zones. Derivation of such laws pose a major difficulty in
such situations (Ishii et al., 1984). An equation of state that correctly de-
scribes the artificial mixture zone for simple fluids is given in Allaire et al.
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(2002). The additional numerical dissipation introduced in those methods,
however, is necessary to capture discontinuities in the flow field. adaptive
mesh refinement (AMR), interface sharpening and high-order discretization
schemes are techniques employed to counteract those weaknesses. Diffuse
interface methods may further be divided into two branches:

single fluid methods describe the flow fields by the conventional Eu-
ler equations. Distinction between the participating fluid components
is achieved by introducing an additional marker field coupled with
ideas from the level set method (Abgrall, 1996; Karni, 1996; Shyue,
1998). These methods are efficient and simple to implement. The
single fluid description leads to a marker field that depends on ther-
modynamic quantities. These methods are therefore difficult to extend
to more general constitutive laws and are not capable, for example, of
generating a locally heterogeneous phase composition from a homo-
geneous mixture, a feature of cavitating flows.

multi-phase methods model the participating fluid phases indepen-
dently with a separate set of Euler equations for each. Such a model
was proposed in Baer et al. (1986) to study the deflagration to det-
onation transition in reactive materials. A variant of this model for
compressible multi-phase flows was given in Saurel and Abgrall
(1999a). The separate treatment of the fluid phases allows for complex
fluid/solid material combinations, each governed by corresponding
constitutive laws. The method is furthermore conservative for the
mixture, as discussed in section 3.1. The main difficulty in solving
these systems are the non-equilibrium states at interfaces. The relax-
ation towards mechanical, thermal, chemical and velocity equilibria
happens at different rates and therefore results in stiff systems. These
methods have been very successful in the past for both, model error
and implementation efficiency, and are actively researched today. A
comprehensive overview of the involved multi-phase flow models is
given in Linga et al. (2019).

As outlined in the second category above and in section 3.2, the model
and numerical method used in this thesis are based on a multi-phase flow
model discretized by a diffuse interface method with Eulerian description
of the flow fields. The numerical schemes involved in the diffuse interface
method are described in the following sections.
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3.4.1 Spatial discretization

The governing equations 3.8 to 3.12 are solved on structured grids using
Cartesian coordinates. The basic method is a Reconstruct/Evolve/Average
(REA) algorithm where space is discretized using the Finite Volume Method
(FVM) followed by a time integration step (LeVeque, 2002). The separate
treatment of space and time provides a flexible way to implement different
numerical schemes.

For simplicity we consider the 1D system of conservation laws ∂tq(x, t) +
∂x f (q(x, t)) = 0 on a Cartesian domain (x, t) ∈ Ω ⊂ R×R+ with initial
condition q0(x) and appropriate boundary conditions. The volume of the
spatial domain in Ω is denoted by V. The volume average of q over a control
volume Ci = [xi−1/2, xi+1/2] with volume Vi is given by

Qi(t) =
1
Vi

∫ xi+1/2

xi−1/2

q(x, t)dx. (3.33)

Applying this averaging rule to the 1D system of conservation laws and
using the divergence theorem results in

dQi
dt

= − 1
Vi

∫
Si

f (q(x, t)) · n dS, (3.34)

where it has been assumed that the volume Vi does not change with time
and Si denotes the closed surface on the boundary of Ci with n the surface
unit normal pointing outwards. For N disjoint control volumes, such that
V =

⋃N
i=1 Vi, equation 3.34 is a system of N ODEs whose solution is

exact. Furthermore, the integral form allows for weak solutions. The semi-
discrete system of equation 3.34 is the basis of the REA algorithm and its
discretization requires the following approximations:

1. The time derivative is approximated with a suitable integrator at
discrete time steps ∆t = tn+1 − tn.

2. The surface integral operator must be approximated with a suitable
quadrature rule. Most often, as in this thesis, the mid-point rule is
used leading to overall 2nd-order spatial accuracy. A scheme with
a 4th-order Gaussian quadrature rule is presented in Coralic et al.
(2014).

3. The integrand of the surface integral, i. e. the flux function, needs to be
evaluated at coordinates ξ on the surface Si. If the solution variables
are expressed in cell average form Qi, then a reconstruction q ≈
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qr(x, t) = g(x; Q1(t), Q2(t), . . . , QN(t)) is necessary for a point-wise
evaluation of the solution variables. A zeroth-order reconstruction
simply assumes qr

i = Qi everywhere in the cell Ci.

4. The flux function f (q) depends on the solution q(x, t) itself. As time
progresses from a known state at tn to tn+1 the solution in the time
interval (tn, tn+1] is unknown. This requires a numerical flux approxi-
mation of the form

Fn(ξ) ≈ 1
∆t

∫ tn+1

tn
f (q(ξ, t))dt, (3.35)

where ξ ∈ Si is a coordinate on the surface of control volume Ci.

Source terms may be included in equation 3.34 as well. A detailed discussion
is presented in LeVeque (2002).

To apply these techniques, equations 3.8 to 3.12 are rewritten in the
compact form

∂q
∂t

+∇ · f a = ∇ · f d + s, (3.36)

where

q = (α1ρ1, α2ρ2, ρui, ρe + ρεσ, α2)
ᵀ, (3.37)

f a = ( f a
x , f a

y , f a
z ), (3.38)

f d = ( f d
x , f d

y , f d
z ), (3.39)

s = (0, 0, 0, 0, 0, 0, [α2 + K]∂kuk)
ᵀ, (3.40)

are the vectors of conserved variables, advective fluxes, diffusive fluxes and
source terms, respectively. Index notation has been used for brevity. Indices
that appear in pairs imply summation. The components of the flux vectors
are given by

f a
j = (α1ρ1uj, α2ρ2uj, ρuiuj + pδij, [ρe + ρεσ + p]uj, α2uj)

ᵀ, (3.41)

f d
j = (0, 0, τij + Tij, τjkuk + Tjkuk, 0)ᵀ. (3.42)

The index i appearing in equations 3.37, 3.41 and 3.42 corresponds to the
momentum components and is repetitive. For example, the component ρui
in equation 3.37 repeats three times for a 3D spatial domain (i = 1, 2, 3), i. e.,
q, s, f a

j , f d
j ∈ R7 for j = 1, 2, 3. The symbol δij denotes the Kronecker delta

and ui, τij and Tij are components of the velocity, stress and capillary stress
tensors, respectively.
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The numerical scheme to discretize equation 3.36 is briefly outlined in
the following sections. Software design considerations for their efficient
implementation targeting HPC architectures is discussed in chapter 4.

3.4.2 Reconstruction and advective fluxes

The advective fluxes include the non-linear terms of the governing equa-
tions. Their discretization is non-trivial and require that the numerical
method is conservative, consistent and monotone. Conservation is an in-
herent property of the FVM. A scheme is consistent if F(Q, . . . , Q) = f (Q)
where F is a numerical flux according to equation 3.35. Monotone schemes
converge to entropy-satisfying weak solutions and provide stability. Go-
dunov (1959) showed that such methods can be at most 1st-order accurate.
A numerical method that is higher than 1st-order must be non-linear and
Harten (1983) showed that such methods can be constructed and are stable
if they obey a Total Variation Diminishing (TVD) property. In a scheme that
is TVD, a local minimum or maximum is non-decreasing or non-increasing,
respectively, and no new local extrema can be created. Naturally, this prop-
erty is important to prevent spurious oscillations in the neighborhood of
discontinuous solutions. For example, the classic 2nd-order accurate Lax-
Wendroff scheme (P. Lax et al., 1960) is not TVD and consequently artificial
viscosity must be added for stability. Yet, oscillations in the vicinity of
discontinuities can not be avoided. The commonality of all such methods
is that they generate Gibbs-like oscillations due to the high-order interpo-
lation across discontinuities and a scheme that is TVD eliminates these
oscillations (Harten, 1983, 1984, 1986; Harten and Osher, 1987).

Here we are interested in a high-order accurate scheme based on Go-
dunov’s idea to solve individual Riemann problems at the boundary Si of a
cell Ci. Any such method is high-order accurate in smooth regions and nec-
essarily 1st-order accurate at discontinuities. Improved resolution of strong
shock waves was first obtained in van Leer (1979) by constructing a 2nd-
order extension to Godunov’s scheme called Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL) and later a 3rd-order variant in
Colella et al. (1984) called Piecewise Parabolic Method (PPM). More sophis-
ticated schemes are based on high-order polynomial reconstructions called
Essentially-Non-Oscillatory (ENO), where the non-oscillatory property is
achieved by adaptively choosing one of the reconstructed stencils based
on a smoothness indicator for the field (Harten, Engquist, et al., 1987; Shu
and Osher, 1988, 1989). A weighted Essentially-Non-Oscillatory (WENO)
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Figure 3.2: Riemann problem at face Si+1/2: (a) exact solution; (b) approximate
solution with reconstructed initial conditions. Shock, rarefaction and
contact waves are indicated by s, r and c, respectively.

scheme is a convex combination of nth-order accurate ENO stencils that
leads to a (2n− 1)th-order accurate scheme in smooth regions (Jiang et al.,
1996; Liu et al., 1994). The reconstruction scheme used in the present work
is a 5th-order WENO scheme for uniform grids (Jiang et al., 1996). A 3rd-
order variant and their extension to non-uniform stretched grids (Coralic
et al., 2014) are implemented as well.

The Riemann problem is the initial value problem (IVP) given by equa-
tion 3.36 and the initial condition

q0(x) =

qL x < xi−1/2,

qR x ≥ xi−1/2.
(3.43)

A typical solution q(x, t) is shown in figure 3.2(a) where r, c and s corre-
spond to rarefaction, contact and shock waves, respectively. In a 1D domain
these waves propagate with speeds u− c, u and u + c, respectively. For any
cell Ci, a right-going wave from face xi−1/2 and a left-going wave from face
xi+1/2 will interfere at time ∆t for which the state vector q(xi, t + ∆t) must
change (xi = xi−1/2 + h/2 and h is a characteristic cell size). For stability
in a numerical simulation the constraint c∆t < h/2 (Courant et al., 1928),
known as the Courant-Friedrichs-Lewy (CFL) condition, must hold. In case
where the Riemann problem is evaluated at cell faces with averaged state
variables, the stability constraint can be relaxed to c∆t < h. It is shown in
section 3.4.6 that further constraints apply to the CFL number for a TVD
time integration.
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Solving the Riemann problem exactly (Godunov, 1959) is costly and
not necessary since the solution obtained by the FVM is approximate.
An approximation by a local linearization was first introduced by Roe
(1981). This solver only converges to shock solutions and an appropriate
entropy fix is required for rarefaction waves and sonic points. Another
approximate solver due to Harten, P. D. Lax, et al. (1983) bears the name
of its creators Harten-Lax-van Leer (HLL). The idea is to approximate the
wave structure of the solution because only a part of the exact solution is
required due to averaging. This solver is capable of resolving the non-linear
waves with higher accuracy, while the contact wave suffers resolution due
to approximating the wave structure with only one single state. The Harten-
Lax-van Leer-Contact (HLLC) solver (Toro, 2009; Toro et al., 1994) improves
this deficiency by introducing two approximate states q∗L and q∗R to the
left and right of the contact discontinuity, respectively. This approximate
solver is shown in figure 3.2(b). Here the HLLC solver is extended to
the advective fluxes in equation 3.41. The flux computation is split into
each spatial dimension j = 1, 2, 3. As indicated in figure 3.2(b) the initial
condition of equation 3.43 is required at face locations and is obtained from
a WENO reconstruction carried out in primitive variables to avoid pressure
oscillations (Karni, 1994; Saurel and Abgrall, 1999b). In the following the
notation f a

j,k = f a
j (q

r
k) for k ∈ {L, R} is used to indicate left and right

states in the corresponding spatial direction j. Furthermore, indication of
advective fluxes, time level or reconstructed states in superscripts is omitted
for clarity. The numerical HLLC flux is given by

F j =
1 + sgn(s∗)

2
(

f j,L + s−(q∗j,L − qL)
)

+
1− sgn(s∗)

2
(

f j,R + s+(q∗j,R − qR)
)
,

(3.44)

where

s− = min(sL, 0), (3.45)

s+ = max(0, sR), (3.46)

and sgn(x) is the signum function. The notation F j is used to distinguish
between the numerical flux F in equation 3.35. According to equation 3.43

the state vectors qL and qR correspond to locations at cell faces. Which exact
face it is does not matter, only its spatial orientation j is important. The
notation for a numerical flux at a specific face location in the j = 1 direction
then follows by Fi−1/2,j,k = F 1((qL)i−1/2,j,k, (qR)i−1/2,j,k) and similarly for
the other two directions.
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The wave speeds sk for k ∈ {L, R} are estimates for the slowest and
fastest moving waves and are obtained from Einfeldt (1988). The fluxes in
the intermediate states are obtained by applying the Rankine-Hugoniot
jump conditions across these slowest and fastest waves

f ∗j,k = f j,k + sk(q
∗
j,k − qk). (3.47)

The unknown intermediate states q∗j,k are obtained from these equations
with the further assumption that pressure and velocity across the contact
wave are equal, i. e., p∗k = p∗ and u∗j,k = s∗ for k ∈ {L, R}, respectively.
This assumption is consistent with the mechanical equilibrium limit of the
governing equations 3.8 to 3.12. Here the velocity component u∗j,k is the one
aligned with spatial direction j. The tangential velocity components in the
star-region are given by u∗l,k = ul,k for l 6= j. The intermediate states are
then found to be

q∗j,k =
skqk − f j,k + p∗k d∗j

sk − s∗
, (3.48)

with auxiliary vector d∗j = (0, 0, δij, s∗, 0)ᵀ. The same convention for the
repetitive index i = 1, 2, 3 applies here. The pressure in the star-region is
determined from the initial condition and the wave speed estimates by

p∗k = pk + ρk(sk − uj,k)(s∗ − uj,k), (3.49)

for k ∈ {L, R}. The estimate for the contact wave speed s∗ follows from the
pressure equality p∗k = p∗ and computes to

s∗ =
ρRuj,R(sR − uj,R)− ρLuj,L(sL − uj,L) + pL − pR

ρR(sR − uj,R)− ρL(sL − uj,L)
. (3.50)

For example, in the j = 1 direction equation 3.48 becomes

q∗1,k =
sk − u1,k

sk − s∗



(α1ρ1)k

(α2ρ2)k

ρks∗

(ρu2)k

(ρu3)k

(ρe + ρεσ)k + (s∗ − u1,k)
(

ρks∗ + pk
sk−u1,k

)
(α2)k


, (3.51)
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Figure 3.3: Approximation of gradient component (∂xφ)h
i,j,k+1/2. The target

value is obtained by computing the cell corner values from central
finite differences at cell faces .

where again k ∈ {L, R} is either the state to the left or to the right of
the contact wave. Figure 3.2(b) illustrates these intermediate states. Equa-
tion 3.49 has further been used to simplify the algebra in equation 3.51.
The dependence of the wave speed estimates on the velocity component
uj,k in the j direction implies that these estimates itself have a directional
dependence. Indication of this dependence in the subscripts of sk and s∗ has
been omitted for clarity. Plugging equation 3.51 into equation 3.44 results in
the scheme for the numerical flux computation at the faces Si±1/2,j,k of cell
Ci,j,k. Hence, the integral operator on the right-hand side of equation 3.34

takes the form
− 1

hx
(Fi+1/2,j,k − Fi−1/2,j,k), (3.52)

where hx is the grid spacing for the j = 1 direction. The flux differences in
the other two spatial directions follow likewise.

3.4.3 Diffusive fluxes

The stress tensor components τij and Tij in the diffusive flux vector compo-
nents of equation 3.42 require an approximation of the gradient ∇hφ on
the cell boundaries. This approximation is obtained by means of 2nd-order
central differences (Hirsch, 1990) on Cartesian grids using a 27-point stencil
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for higher robustness in regions with steep gradients or discontinuities.
Approximations of the components of ∇hφ at the face centers of cell Ci,j,k
are computed in two steps. First, their values at the corners of cell Ci,j,k are
computed by(

∂φ

∂x

)h

qrs
=

1

∑
l=0

1

∑
m=0

φi+q,j−1+l+r,k−1+m+s − φi−1+q,j−1+l+r,k−1+m+s

4hx
, (3.53)

(
∂φ

∂y

)h

qrs
=

1

∑
l=0

1

∑
m=0

φi−1+l+q,j+r,k−1+m+s − φi−1+l+q,j−1+r,k−1+m+s

4hy
, (3.54)

(
∂φ

∂z

)h

qrs
=

1

∑
l=0

1

∑
m=0

φi−1+l+q,j−1+m+r,k+s − φi−1+l+q,j−1+m+r,k−1+s

4hz
, (3.55)

where q, r, s ∈ {0, 1} denote the local cell corner coordinates. For example,
(∂xφ)h

000 denotes the lower left corner and (∂xφ)h
111 the upper right corner.

The grid spacing along the x, y and z coordinates is denoted by hx, hy and
hz, respectively. The second step computes the value at the face center from
the cell corners. The first component of ∇hφ at the 6 faces of cell Ci,j,k is
then given by (

∂φ

∂x

)h

i−1/2+q,j,k
=

1
4

1

∑
r=0

1

∑
s=0

(
∂φ

∂x

)h

qrs
, (3.56)

(
∂φ

∂x

)h

i,j−1/2+r,k
=

1
4

1

∑
q=0

1

∑
s=0

(
∂φ

∂x

)h

qrs
, (3.57)

(
∂φ

∂x

)h

i,j,k−1/2+s
=

1
4

1

∑
q=0

1

∑
r=0

(
∂φ

∂x

)h

qrs
. (3.58)

The second and third components follow by analogy. Figure 3.3 illustrates
this procedure for (∂xφ)h

i,j,k+1/2. Indication of the time level has been omitted
in the above notation. The face values of the velocity components for the
power products in the diffusive energy flux of equation 3.42 are obtained
from arithmetic averages of the adjacent cell centered data.

Extension of equations 3.53 to 3.55 to 4th-order accurate central differ-
ences is straightforward and has been implemented in the present work as
well.
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3.4.4 Source terms

The source terms in equation 3.40 are discretized using a 2nd-order accurate
method. The volume average of the source terms in cell Ci is computed
analogous to equation 3.33, that is

Si =
1
Vi

∫
Ci

s dV, (3.59)

where only the last component of s has a non-zero contribution (see equa-
tion 3.40). Following Johnsen and Colonius (2006) this term is approximated
by (

φ(∇ · u)
)

i
≈ φi(∇ · u)h

i , (3.60)

where φi denotes the volume average of scalar φ in cell Ci. The velocity
divergence term is approximated using 2nd-order central differences

(∇ · u)h
i,j,k =

ux
i+1/2,j,k − ux

i−1/2,j,k

hx
+

uy
i,j+1/2,k − uy

i,j−1/2,k

hy
+

uz
i,j,k+1/2

− uz
i,j,k−1/2

hz
.

(3.61)

To ensure consistency with the advective fluxes discussed in section 3.4.2,
the velocities to compute the divergence are obtained from the numerical
flux Jacobian ∂F j/∂q (Johnsen and Colonius, 2006). Using equations 3.44

and 3.48 they compute to

uj =
1 + sgn(s∗)

2

(
uj,L + s−

( sL − uj,L

sL − s∗
− 1
))

+
1− sgn(s∗)

2

(
uj,R + s+

( sR − uj,R

sR − s∗
− 1
))

,
(3.62)

where the superscript j corresponds to the spatial velocity components
in equation 3.61. Similarly, the volume average φi is computed from the
average of the reconstructed face values in the cell interior

φi,j,k =
1
6
((φr

R)i−1/2,j,k + (φr
L)i+1/2,j,k

+ (φr
R)i,j−1/2,k + (φr

L)i,j+1/2,k

+ (φr
R)i,j,k−1/2 + (φr

L)i,j,k+1/2).

(3.63)
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Figure 3.4: Ghost cells for standard boundary conditions: (a) Dirichlet boundary
with prescribed ghost cell values; (b) reflecting boundary; (c) absorb-
ing boundary with zeroth-order extrapolation.

3.4.5 Boundary treatment

Apart from default periodic boundaries, standard boundary treatment for
wave reflection on walls with infinite impedance, zeroth-order extrapolation
for wave absorption and Dirichlet-type boundaries are implemented as
well (Laney, 1998; LeVeque, 2002). The realization of boundaries is achieved
using ghost cells that are filled with either known physical data or data
that is obtained from the interior domain. The boundary condition for a
reflecting wall consists of mirroring the interior cell data into the ghost
cells and inverting the sign of the wall-normal component in vector fields.
Absorbing boundaries extrapolate the cell that is adjacent to the boundary
surface into the ghost cells. First-order extrapolations do not exhibit favor-
able properties especially for discontinuous waves that hit the boundary.
These basic concepts are illustrated in figure 3.4.

In general the zeroth-order absorbing boundaries perform well in terms or
stability. However, some artificial reflections can not be avoided especially in
the case of oblique incoming waves. To counteract this defect, characteristic
based non-reflecting boundary conditions are further considered (Engquist
et al., 1977; Poinsot et al., 1992; Thompson, 1987, 1990) and have been
used for the large scale simulation of cloud cavitation collapse presented in
chapter 7.

For viscous flow simulations no-slip boundaries are obtained by adding
further conditions for the tangential velocity components. In contrast to
the reflecting (slip) wall boundary, the tangential waves in the plane of the
no-slip boundary are further constrained from free propagation by sign
inversion of the corresponding velocity component in the ghost cell image.



3.4 discretization 37

6, Williamson (1980) Gottlieb et al. (1998)

a1 0.000 000 000 0.000 000 000

a2 −0.531 250 000 −2.915 492 525

a3 −1.185 185 185 −0.000 000 094

b1 0.250 000 000 0.924 574 000

b2 0.888 888 889 0.287 713 063

b3 0.750 000 000 0.626 538 110

Table 3.2: LSRK3 coefficients ai and bi.

3.4.6 Time integration

Time integration is performed using an explicit low-storage 3rd-order
Runge-Kutta (LSRK3) method (Williamson, 1980). The memory requirement
for this scheme is 2NB bytes for N computational cells where each cell
Ci has a memory footprint of B bytes. The minimum storage requirement
per cell Ci are the 5 conserved fields of equations 3.8 to 3.12 which are
7 scalars total. Due to vectorization of the compute kernels, discussed in
chapter 4, the total memory footprint per cell is B = 8P bytes, where P is
the chosen floating point precision.2 The vector Q = (Q1, . . . , QN)

ᵀ denotes
the collection of N cells Ci with Qi the volume averages of the conserved
field values in cell Ci according to equations 3.33 and 3.37. The right-hand
side required for the LSRK3 scheme is denoted by R where dim R = dim Q.
An integration stage i = 1, 2, 3 is given by the Euler-step

R(i) = aiR(i−1) + ∆tLh(Q(i−1)), (3.64)

Q(i) = Q(i−1) + biR(i), (3.65)

with coefficients ai, bi and Lh the numerical operator that approximates
the right-hand side of equation 3.34 (see sections 3.4.2 to 3.4.4). The in-
tegrated state corresponds to Qn+1 = Q(3) with Q(0) = Qn. Third-order
Runge-Kutta (RK) schemes require the determination of 6 coefficients from
4 independent equations (Kopal, 1961). The coefficients ai and bi can there-
fore be chosen arbitrarily based on two parameters η1 and η2. Furthermore,
the low-storage property is only satisfied if the parameter pairs (η1, η2)

2 P = 4 bytes for single precision or P = 8 bytes for double precision.
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Figure 3.5: Locus of points (η1, η2) for which the low-storage property of a 3rd-
order RK scheme is satisfied: , LSRK3 coefficients of Williamson
(1980); , optimized TVD LSRK3 coefficients of Gottlieb et al. (1998).
The shaded region corresponds to coefficients that are TVD.

describe the locus shown in figure 3.5. Williamson (1980) proposed different
sets of coefficients which are indicated in figure 3.5 by the symbols. The
case numbers as given in Williamson (1980) are shown next to the symbols.
Gottlieb et al. (1998) optimized the CFL number along this locus with the
constraint that the resulting LSRK3 scheme is TVD. The optimum they
found corresponds to

CFL = 0.32 (3.66)

and is indicated in figure 3.5 by the symbol. The numerical values for
the parameter set 6 in Williamson (1980) and the optimized parameters
of Gottlieb et al. (1998) are listed in table 3.2. The coefficients based on
Gottlieb et al. (1998) together with the CFL condition in equation 3.66

are used for the numerical calculations presented in this thesis. A further
discussion about TVD RK schemes is given in (Shu, 1988). Parameter sets
for TVD schemes that result in more favorable CFL conditions other than
the optimum found in Gottlieb et al. (1998) are currently not known.

For a time dependent right-hand side in equation 3.34 the coefficient
combinations to compute the current time are given, for example, in Shu
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and Osher (1988). Expressed in terms of the LSRK3 coefficients ai and bi,
the time values of the three stages in equation 3.64 are given by

t(0) = tn, (3.67)

t(1) = tn + b1∆t, (3.68)

t(2) = tn +
(
b1 + (a2 + 1)b2

)
∆t, (3.69)

respectively. In general, t(i−1) may not necessarily be monotonically increas-
ing for i = 1, 2, 3.





4
S O F T WA R E D E S I G N F O R P E TA S C A L E S I M U L AT I O N S O F
C L O U D C AV I TAT I O N C O L L A P S E

Software is getting slower more rapidly than hardware
becomes faster.

— Niklaus Wirth

This chapter presents the software design principles employed in the code
development with aim for execution on High Performance Computing (HPC)
architectures. The main task is an efficient implementation of the underlying
stencil problem for the particular Computational Fluid Dynamics (CFD)
application in this thesis. The software framework introduced here is therefore
a modular composition of a part that takes care of the ghost cell exchange
for both, intra-node and inter-node communication and a second part that
implements the computational kernels of the specific problem to be solved.
The former part is generic and can be used for any problem that involves
stencil computations. The former framework part is called Cubism and the
multi-phase compressible flow solver that builds on top of it Cubism-MPCF.

4.1 related work

Stencil computations are operations that require information from neigh-
boring compute elements when traversing an array of data. Such multi-
dimensional data is represented in memory by a linear address mapping.
Efficient stencil codes on multi-core architectures must therefore exploit
spatial and temporal locality of the data in order to reach high performance.
Spatial locality is achieved by blocking techniques either at runtime in loop
structures or by blocking the data layout (Lim et al., 2001; Rivera et al., 2000;
Treibig et al., 2011; Wellein et al., 2009). Temporal locality aims at reuse of
data without re-accessing the slow memory modules (Datta, Murphy, et al.,
2008; Datta, Kamil, et al., 2009; Günther et al., 2006; Kamil, Chan, et al.,
2010; Kamil, Datta, et al., 2006; Kamil, Husbands, et al., 2005; Leopold, 2002;
Oliker et al., 2003; Zhao et al., 2019).

41
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The work of Brandvik et al. (2008) is one of the first to add GPU accelera-
tors in a stencil based turbomachinery code. Elsen et al. (2008) performed
GPU accelerated computations of hypersonic flows with all data resident on
the GPU. Thibault et al. (2009) and Jacobsen et al. (2010) have implemented
the incompressible Navier-Stokes equations on multiple GPUs using the
Message Passing Interface (MPI). A discussion of a GPU accelerated solver
using unstructured grids is given in Duffy et al. (2012).

4.2 distributed stencil computations on structured grids

Stencil computations occur very frequent in scientific computations. Yet,
a generic framework that provides efficient HPC tools for point-wise and
stencil operations is not trivial to build from scratch and requires time to
be accepted for application in the scientific community. Often the accepted
solution is a self-made implementation without paying attention to efficient
resource exploitation. The result is higher cost, extended time to solution
and ultimately energy inefficiency. Two frameworks for AMR with the
same origin are described in W. Zhang et al. (2019) and M. Adams et al.
(2019). These tools provide the algorithms for AMR and users implement
the numerical scheme on top of it with the possibility of similar outcomes
mentioned above if the practitioner is not skilled enough. Furthermore,
the added complexity of AMR algorithms may not always be necessary or
desired. This section provides a brief review of the high-level design princi-
ples of the structured grid framework Cubism which were first discussed in
the context of the multi-phase compressible flow solver Cubism-MPCF (He-
jazialhosseini, Conti, et al., 2013; Hejazialhosseini, Rossinelli, et al., 2012)
which was later further optimized to win the Gordon Bell Prize (Rossinelli
et al., 2013). The software presented in these references is tightly bound to
the particular application and straightforward access to its underlying HPC
principles is difficult. Therefore, the last part of this section introduces the
newly written template C++ software CubismNova with the aim of sepa-
rating HPC related design principles from a particular target application.
This separation allows to develop an optimized set of HPC tools which are
accessible to the general user who is mainly concerned with algorithm and
application development.

The Cubism design considerations discussed in the remainder of this
section are the ones that are the least bound to a particular application and
are referred to as cluster-layer in the aforementioned references.
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4.2.1 Block-structured data layout

Efficient cache utilization is the most important principle for stencil appli-
cations. Algorithms can either be cache-aware or cache-oblivious (Frigo,
Leiserson, et al., 1999; Frigo and Strumpen, 2005). It has been shown in
Datta, Kamil, et al. (2009) that cache-aware stencil algorithms are faster
than their cache-oblivious counterparts. This motivates the use of a block-
structured memory layout where the block size is chosen such that the
data fits into (preferably) at most the L2 cache. Cubism enforces the block-
structured layout in the memory space while other frameworks employ
software based blocking techniques (W. Zhang et al., 2019). Both impose
spatial locality of the data where the former imposes more control for
the granularity of individual contiguous memory segments. This way a
“block” is treated as an isolated computational entity which becomes the
input/output (I/O) of computational kernels that perform certain trans-
formation of the data. The computational kernels implement the low-level
optimizations and can be created by code generation methods that target
different architectures such as multi-core CPUs or accelerator hardware
such as GPUs. A compute block is a generic entity that can carry either
built-in or user defined data types. It is worthwhile to note that, while
object-oriented programming (OOP) is preferable for software structure
and modularity at the high-level, its paradigm is performance adverse for
which a data-oriented design (DOD) is preferred.

This data layout is well suited for the multiple program multiple data
(MPMD) programming model (Hennessy et al., 2017) that is implemented
in Cubism using MPI. A Cartesian MPI topology is chosen for uniform
grids such that load imbalance is minimized. The block-structured data
layout described above is also well suited for AMR algorithms where load
balancing becomes a non-trivial task (van Straalen et al., 2009). The MPI
process mapping further plays a role for inter-node performance consid-
ering the block-structured memory layout described above. In particular,
compute blocks are designed to fit into the fast cache memories nearby the
CPU which means the block size is in the order of kilobytes. Inter-node
communication traffic is routed through the system area network (SAN)
for which bandwidth saturation is only achieved after a certain message
size. Figure 4.1 shows bandwidth measurements1 corresponding to various
message sizes sent through the on-chip network (OCN), where the two
communicating processes are located on the same node, the SAN, where

1 OSU Micro-Benchmarks 5.6.3 https://mvapich.cse.ohio-state.edu/benchmarks

https://mvapich.cse.ohio-state.edu/benchmarks
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the two communicating processes are located on two different nodes, and
through the peripheral component interconnect express (PCIe) which is
commonly used to connect accelerator devices such as GPUs. A 5th-order
WENO reconstruction requires 3 ghost cells at the boundary which results
in a message size of 24 kB for one double precision field and a block size
of 323 cells. It is difficult to consistently saturate the system bandwidth
with such small message sizes. This problem is alleviated by the use of
a Cartesian grid of compute blocks on the MPI process level. Messages
to neighboring processes are then explicitly buffered in communication
buffers to reach a satisfactory bandwidth saturation. Spatial block locality
in the Cartesian block grid is enhanced by a space filling curve (SFC) such
as a Morton (1966) ordering.

4.2.2 Ghost cell treatment

Extra storage for ghost cells is not embedded in the main block-structured
data layout. Instead, blocks that require ghosts for stencil computations are
loaded into an auxiliary block that is extended with the appropriate stencil
size. This allows for more flexible treatment of non-symmetric stencils and
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Figure 4.2: Efficiency of C/T overlap measured on the MIRA BGQ machine using
512 nodes.

minimizes the excessive memory footprint of auxiliary padded structures.
This excess becomes even more pronounced for low-level optimizations
where the efficiency of useful memory is 61 % for a stencil with 2 ghost
cells in a block of 323 cells, optimized by using Advanced Vector Exten-
sions (AVX) instructions. The extra memory copies associated to filling an
extended block come at no extra cost due to compulsory cache misses. Once
the block is ready for kernel dispatch, the cache is already populated with
the necessary data.

Synchronization of ghost cells that require MPI is explicitly managed
using communication buffers in asynchronous mode. Parallel entities
can query the synchronization state to receive a list of blocks that do
not have data dependencies beyond the owning process. This enables a
Compute/Transfer (C/T) overlap that can be used efficiently to hide la-
tencies due to MPI communication. The packing of ghost cells into larger
buffers further helps to reduce these latencies by minimizing the trans-
mission time due to fully sustained bandwidths as shown in figure 4.1.
Figure 4.2 shows measured data for the efficiency of the C/T overlap using
512 nodes on the MIRA BlueGene/Q (BGQ) machine at Argonne National
Laboratory (ANL). For this experiment, the MPI ranks were mapped to
nodes and the 64 cores on each BGQ node were used in a symmetric multi-
processing (SMP) configuration. The low efficiency at small block counts is
due to underutilization of the processor cores.
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4.2.3 CubismNova

A number of different applications for incompressible flow and data com-
pression have emerged based on the principles outlined above (Hadjidoukas
and Wermelinger, 2019; Karnakov, Litvinov, et al., 2020; Karnakov, Wer-
melinger, Chatzimanolakis, et al., 2019; Karnakov, Wermelinger, Litvinov,
et al., 2020; Verma et al., 2018). They all have in common some changes to
the Cubism framework to fit application specific needs. These individual
adjustments lead to divergence of the same code base but the main library
routines for synchronization and block management remain the same.

For these reasons, the Cubism library has been rewritten to increase
its application spectrum and make its underlying HPC concepts more
accessible to a wider audience. The rewritten library is named CubismNova
and its full documentation is hosted at https://cubismnova.readthedocs.
io.

The core changes in its redesign address the underlying data structures
that are hidden from library user. The user implements physical models
based on tensor fields that are provided by CubismNova. Tensor fields
are composed of compute blocks following section 4.2.1. At the low-level,
tensor fields are described by an index space that depends on the resolution
scheme which in turn determines a suitable memory allocator for the data.
A uniform grid solver, for example, utilizes a global Cartesian index space
for which the data is static. An AMR application, on the other hand, requires
a dynamic allocation scheme that must minimize overhead due to frequent
requests to the operating system kernel. Furthermore, fragmentation can
become an issue in this case.

On the high-level, every application requires physical coordinates of the
computational elements in order to perform its calculations. This requires a
mapping of the low-level index space coordinates onto a mesh that describes
the discrete coordinates in the computational domain. CubismNova uses
generic mesh classes that may describe a trivial Cartesian mesh for uniform
or stretched grid applications or more advanced mesh classes for an AMR
solver or tensor fields that describe moving particles instead of Cartesian
grids. Another important consideration is the entity type that the data
represents. The mesh classes that wrap around tensor fields in CubismNova
support cell centered, face centered or node (vertex) centered data.

Finally, compute blocks are the arguments to the computational kernels
which are not concerned with the higher level representation of fields. This

https://cubismnova.readthedocs.io
https://cubismnova.readthedocs.io
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allows to implement different kernels for basic operations such as finite
differences, interpolation or data compression and offer them in a toolbox to
the application developing user. Implementations can further be optimized
by using single program multiple data (SPMD) programming models such
as the Intel ISPC compiler (Pharr et al., 2012) to generate vectorized code
for various architectures more efficiently. Lastly, inclusion of accelerator
devices such as GPUs is readily supported in this model as well.

The development of CubismNova is ongoing. Its current state has imple-
mented and tested the high-level concepts of sections 4.2.1 and 4.2.2 for
Cartesian fields by following the generalized concepts introduced in this
section.

4.3 high throughput simulations of compressible two-phase

flow

The multi-phase compressible flow solver Cubism-MPCF was initially pre-
sented in Hejazialhosseini, Rossinelli, et al. (2012) for a system of conser-
vation laws that describes the evolution of the mixture density instead of
the phasic densities. Furthermore, this system describes the fluid compo-
nents with two transport equations for the mixture averaged parameter of
the SGEOS (Shyue, 1998). In contrast to section 3.1, the chosen degrees of
freedom for the interface description freeze the thermodynamic state of
the mixture and do not allow to take into account compressibility effects
in the interface zone. The approximate Riemann solver used in this code
was based on an earlier HLL-type solver with only one approximate state
for the intermediate wave structure, see figure 3.2(b) for the HLLC solver
where two intermediate states are used.

The core compute kernels of Cubism-MPCF have been rewritten to im-
plement the system of equations 3.8 to 3.12 as well as the HLLC solver
described in section 3.4.2. The results of this work are presented in the
remainder of this section. The results for the optimized HLLC implemen-
tation have been published in Hadjidoukas, Rossinelli, et al. (2015) and
scaling results were published in Rasthofer, Wermelinger, Hadjidoukas,
et al. (2017). The solver is open-source and can be downloaded from
https://github.com/cselab/Cubism-MPCF.

https://github.com/cselab/Cubism-MPCF
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Figure 4.3: AoS compute block structure used for the Cubism-MPCF solver with
additional storage for the LSRK3 integrator.

4.3.1 Low-level optimizations

The data structure to represent a compute block in Cubism-MPCF is shown
in figure 4.3. Each process hosts a Cartesian grid of blocks which is dis-
tributed according to section 4.2.1. Any cell Ci stores the volume averaged
field values of the conserved quantities given in equation 3.37. Such data
arrangement results in an array of structures (AoS) layout in memory. In
cases where a compute kernel requires all cell values to perform a particular
task, the AoS and the structure of arrays (SoA) layouts perform similar in
regard to memory access efficiency. In general, however, the DOD principle
is enforced by the SoA layout and should be preferred for performance
reasons. The CubismNova library, introduced in section 4.2.3, implements
the DOD principle hidden from the application oriented user. Lastly, the
storage requirement in each block is doubled to allocate memory for the
LSRK3 integrator. In order to exploit the full floating point performance
of recent CPUs, the compute kernels must employ vector instructions for
the data transformations. This requires that the block data is aligned at
byte boundaries that are integer multiples of the vector register width. The
7 components of Qi (see figure 4.3) clearly violate this requirement. This
issue, however, is readily resolved by padding the data structure stored in
cell Ci to the nearest power of two. The total memory footprint for a block
in double precision then amounts to 1331 kB for a 163 base block size in an
auxiliary stencil structure with 3 ghost cells on each side (e. g. 5th-order
WENO reconstruction).
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Figure 4.4: Explicit data reordering for SIMD vectorization.

The solver is utilizing the C/T overlap capabilities mentioned in sec-
tion 4.2.2 by mapping MPI processes to either nodes or sockets. The thread-
level parallelism (TLP) on the compute nodes is further exploited using
the Open Multi-Processing (OpenMP) programming model for SMP ar-
chitectures. The target systems for this work are the IBM BGQ and the
Cray XC30/XC50 architectures. The PowerPC A2 on the BGQ is a 16-core
CPU with 2 MB last level cache (LLC) per core (Haring et al., 2012). Sim-
ilarly, the Cray XC30 hosts a 8-core Intel Xeon E3-2670 CPU with 2.5 MB
LLC per core and the Cray XC50 hosts a 12-core Intel Xeon E5-2690 v3

CPU with 2.5 MB LLC per core. For each of those architectures the 1331 kB
compute blocks fit into the shared LLC when TLP is employed.

All of the target CPUs feature instruction set architecture (ISA) extensions
that are used for vectorization of the compute kernels. The multiply-add
operations in equations 3.64 and 3.65 are point-wise operations and trivial to
vectorize. Most recent compilers would auto-vectorize them if intermediate
or aggressive optimization options are passed. Vectorization of the operator
Lh is non-trivial and compilers can not automatically generate satisfactory
results. The operator is therefore explicitly vectorized on a single instruction
multiple data (SIMD) friendly 2D data structure. The data reordering from
AoS into 2D SoA slices is shown in figure 4.4. Individual slices of a field are
arranged in a ring buffer which contains as the number of slices required
to populate stencil width along the k-index direction. The block data is
processed by iterating along k where the ring buffer is rotated and updated
with a new slice in every iteration. Note that the k-index is the slowest
moving index in the block data array. Slices are special structures that are
properly byte aligned and padded to support the Intel x86-64 Streaming
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Level Description

0 No fusion, 8 micro-kernels.

1 As level 0 with reduced accuracy of WENO smoothness indi-
cators.

2 Fusion of energy flux with wave speed estimator, as well as
fusion of mass flux with the diagonal entry of the momentum
flux, 6 micro-kernels.

3 As level 2 with reduced accuracy of WENO smoothness indi-
cators.

4 Aggressive fusion of all micro-kernels into a single macro-
kernel with code transformations and reduced accuracy of
WENO smoothness indicators.

Table 4.1: Code-fusion levels used for the computation of the numerical flux F j.

SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) instructions
as well as the IBM Quad Processing eXtensions (QPX) instructions. The AoS
to SoA data reordering is combined with the conversion from conservative
to primitive variables and does impose additional overhead.

Additional reduction of cache misses can be achieved by increasing the
instruction-level parallelism (ILP) of compute kernels and eliminating com-
mon sub-expressions that are otherwise not visible to the compiler. Such
optimizations are at the cost of additional register usage which may re-
sult in worse performance if there are excessive amounts of register spills.
The multi-purpose design of CPUs is more amenable for such code-fusion
optimizations than the massively parallel GPU architectures addressed
in section 4.4.2. Computing the numerical flux in equation 3.52 requires
7 compute kernels for each of the flux components and an additional kernel
to compute the wave speed estimates (Batten et al., 1997; Einfeldt, 1988).
The naive implementation averages at 22 lines of code per kernel. Table 4.1
shows the various code-fusion levels considered for the 8 kernels used in
the numerical flux computation with level 4 being the most aggressive. In
addition to fusing the micro-kernels associated to the operator Lh, reduction
of complexity for the WENO smoothness indicators allows for further code
optimizations. Optimizations for floating point division based on one and
two iterations of the Netwon-Raphson scheme as well as the IBM intrinsic
SWDIV for software floating point division (IBM, 2018) have been considered
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Figure 4.5: Single precision performance of the HLL and HLLC numerical fluxes:
(a) percentage of nominal peak performance; (b) time to solution
for one time step. , HLL with one Newton-Raphson iteration;

, HLL with two Netwon-Raphson iterations; , HLL with
IBM SWDIV intrinsic; , HLLC with one Netwon-Raphson iteration; ,
HLLC with two Newton-Raphson iterations.

as well. The performance of these low-level optimizations has been evalu-
ated on a single BGQ chip without MPI synchronization overhead. A total
of 4096 blocks are used for the benchmark, corresponding to 134 Million
computational cells Ci processed on 16 cores. The performance figures have
been collected using the IBM Hardware Performance Monitor Toolkit and
the executable has been generated with the IBM XL C/C++ compiler (v12.1)
for single precision data. Figure 4.5 shows the results for the different
code fusion levels. It is shown in figure 4.5(a) that the most aggressive
optimization of the HLLC flux implementation can achieve 72.8 % of the
nominal peak performance on BGQ. This corresponds to an improvement
of 8 % relative to the naive implementation. Compared to the HLL flux,
the HLLC flux achieves better peak performance due to the more complex
algorithm that induces more fused multiply-add (FMA) instructions (but
also more branching). Although the HLLC flux improves the resource uti-
lization, its higher complexity results in an increase of the measured time
to solution (TtS) of about 9 % compared to the previous HLL flux. The
measured TtS for the different code-fusion levels is shown in figure 4.5(b).

The total cell throughput for the HLLC implementation with level 4 code
fusion and two Newton-Raphson iterations for divisions is 455 902 C s−1

per core and 511 500 C s−1 per core for one Newton-Raphson iteration. For
comparison, the cell throughput of the previous implementation of Cubism-
MPCF (Rossinelli et al., 2013) is 458 394 C s−1 per core and HLL-type flux
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Figure 4.6: Scaling of Cubism-MPCF on Piz Daint: (a) strong scaling speedup on
a Cray XC30 node; (b) weak scaling efficiency for 4096 Cray XC30

nodes.

kernels. The numerical results in the following sections of this thesis are
computed using the code-fusion level 2, i. e., no approximate floating point
divisions.

4.3.2 Scaling analysis

The previous sections addressed the high-level and low-level HPC de-
sign considerations for the Cubism-MPCF solver. The scaling analysis is
performed using 4096 Cray XC30 nodes on the Piz Daint supercomputer
at Swiss National Supercomputing Center (CSCS), where each node is
equipped with an 8-core Intel Xeon E5-2670 CPU. The executable code has
been generated with the GNU C++ compiler (v4.8). The block size consists
of 323 cells and each node hosts 4096 blocks. The total memory footprint
for this configuration is 8 GB per node.

Figure 4.6(a) shows the strong scaling on a single node with Intel Hyper-
Threading Technology (HT) enabled. The solver exhibits an excellent node-
level performance also for the Intel x86-64 architecture. Additional gain due
to HT is almost zero because of the high cache utilization (see section 4.2.1).
The Craypat profiler reports a 95.3 % hit ratio for the L1D cache and 99.5 %
for the L1D and L2 caches combined. The cheap context switches of hard-
ware threads in HT can hide latencies when threads need to wait for data
to arrive. Because of the high temporal locality achieved here, such context
switches rarely happen which is the reason for the asymptotic behavior
seen in figure 4.6(a).
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The weak scaling efficiency for 4096 Cray XC30 nodes (78 % of the ma-
chine capacity) is shown in figure 4.6(b). The TtS for a time step aver-
ages at 18.4 s. This result is similar to the BGQ performance shown in
figure 4.5(b). It is noteworthy that the 16 cores on a BGQ node are clocked
at 1.6 GHz (Haring et al., 2012) while the 8 cores on a Cray XC30 node are
clocked at 3.3 GHz maximum. The loss in efficiency is due to the collec-
tive MPI all-reduce operation required to synchronize the admissible ∆t
for each time step. This global operation can not be hidden efficiently by
computation and becomes more pronounced for larger node counts which
span larger portions of the Dragonfly network topology used on Cray sys-
tems. Considering these inefficiencies, the solver exhibits a satisfactory 90 %
weak efficiency on almost all of Piz Daint. The average time to execute
one LSRK3 stage is 6.05 s for a single node and 6.13 s for 4096 nodes which
demonstrates the almost perfect 0.987 C/T overlap when performing the
stencil computations.

4.4 heterogeneous cpu/gpu architectures

Recent and future HPC platforms employ compute accelerators such as
GPUs in order to reach into the exa-scale era. This section presents a hybrid
CPU/GPU algorithm that is designed to offload the compute intensive
right-hand side computation in equation 3.64 onto an accelerator device.
The algorithm is designed for hybrid execution of 3D problems with large
memory requirements. Typical memory available on recent GPUs ranges
from 16 GB to 32 GB while the available memory on the host node is usually
2–4 times larger. In order to scale a problem on large HPC systems, the
main memory must be kept on the host node and the GPUs are used for
acceleration.

Mapping the right-hand side computation of the operator Lh in equa-
tion 3.64 to GPUs requires different considerations regarding the memory
layout discussed in section 4.2.1. In particular, GPUs are massive DLP de-
vices and require large data streams in order to maximize the hardware
utilization. The classification of GPUs is similar to SIMD except that the
primitive is a thread which are grouped into thread blocks for collective
execution. Instead of instructions, so called warps are scheduled where
a warp consists of 32 threads that execute in lockstep. Nvidia classifies
this execution model as single instruction multiple threads (SIMT). The
number of threads that can run concurrently on a GPU is determined by
the complexity of the computational task. Lightweight kernels with low
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resource requirements can run with large concurrency. Therefore, suitable
applications for GPU porting must be decomposable into smaller tasks
with a high number of (arithmetic) operations relative to accessed bytes.
This is especially true for high-order numerical methods. On the downside,
such methods are often stencil schemes that impose restrictions on the
exploitable DLP. The GPU approach introduced in the sections below aims
at maximizing this parallelism until the hardware limit is reached. It is
easily verified by calculating the operational intensity (OI) of the target
operator Lh that the problem is memory bound on any recent GPU. The
memory modules on GPU have about 5-times larger bandwidths than their
CPU counterpart. A maximum improvement of 5× can therefore be ex-
pected when comparing to the multi-core code. Any larger improvement
can only be due to benchmarking against a CPU code that is not fully
optimized (V. W. Lee et al., 2010).

The main difficulty for a heterogeneous code is therefore to provide
a C/T overlap between the CPU and GPU such that the latency of the
connecting network is hidden efficiently (Williams, Shalf, et al., 2007). The
work presented in the following sections has been published in Wermelinger,
Hejazialhosseini, et al. (2016). Its target accelerators are Nvidia architectures
with compute capability 3 or higher. The GPU relevant code is written using
the Compute Unified Device Architecture (CUDA) language extension for
C++ (Hwu et al., 2009; Lindholm et al., 2008; Nickolls et al., 2008).

4.4.1 Heterogeneous algorithm for stencil problems

In contrast to the memory layout discussed in section 4.2.1, the computa-
tional blocks dispatched onto GPU accelerators are designed for optimal
memory utilization. Their memory footprint is therefore in the order of gi-
gabytes to provide enough DLP for efficient resource utilization. A method
for efficient GPU cache exploitation for 3D problems is discussed in the
next section. The algorithm presented in this section applies to a single
compute node with access to a Nvidia GPU accelerator. The management
of ghost cells and inter-node communication is analogous to the multi-core
code discussed in section 4.2.

Figure 4.7 shows the partitioning of the computational domain on a
host node into smaller segments s for GPU scheduling. The size of the
segments is parametrized by the number of cells Nz,s along the k-coordinate
in index space. The computational domain on the host consists of N cells
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Figure 4.7: Partition of the computational domain on the host node into seg-
ments s.

where k is the slowest moving index. Let vector V denote a scalar field
for N volume averaged cells which are stored in a SoA memory layout.
Its elements are scalar values while the elements of the volume averaged
vector Q are state vectors of the conserved variables (see equation 3.37).
The data that corresponds to segment s is denoted by Vs and consists of
Ns = Nx × Ny × Nz,s cells. The communication with the GPU is performed
by using a pair of page-locked memory buffers for P segments Vs. Page-
locked memory allows for direct memory access (DMA) which improves
memory bandwidth by circumventing certain CPU overhead. Figure 4.1
shows the sustainable bandwidth for pageable and page-locked memory
of the PCIe on a Cray XC50 compute node. Note that for the SoA layout,
7 individual arrays V are required to represent the conserved variables.
The heterogeneous algorithm discussed here is agnostic to them and so
they are not distinguished any further. The asynchronous copy-engines on
GPUs with compute capability 3 or higher are used to transfer the data
between host and device. The first page-locked buffer is mapped to host
to device (H2D) transfers while the second buffer is mapped to device to
host (D2H) transfers. The dual copy-engines on these devices allow for
overlapping data transfers in either direction. This feature is exploited by
grouping the page-locked buffer pairs and arranging them on a ring with a
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Figure 4.8: CUDA streams mapped to segment data Vs for task scheduling on
a GPU. The streams are arranged on a ring structure used to iterate
over the segments s.

total of P pairs. The ring structure allows to optimize for the C/T overlap
by mapping each buffer pair to a CUDA stream that is used to schedule
the tasks for execution on the GPU (Nvidia, 2020). For this application it
is found that P = 3 buffer pairs are enough for contention free iteration
over the K data segments. Figure 4.8 shows the ring arrangement of CUDA
streams and the C/T overlap achieved by using individual streams. Since
the execution order of CUDA streams is undefined, a preferred execution
order is imposed using CUDA events. However, the tasks in a stream that
occupy the GPU compute engine can not overlap with similar tasks in other
streams. This sequential execution order of the GPU compute engine is
further indicated in figure 4.8.

The distribution of work between the host CPU and the GPU is achieved
by offloading the work of equation 3.64 and performing the cheaper update
of equation 3.65 on vectorized CPU code. Hence, the initial CPU work
performed on a segment stream corresponds to copying the segment data
into the page-locked memory buffer for dispatch to the GPU. After the
processed data is returned from the GPU the host CPU performs the final
update according to equation 3.65. These initial and terminal CPU tasks
are further shown in figure 4.8. The sequence of steps involved for a
heterogeneous processing of K segments is summarized in algorithm 1.
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Algorithm 1: Heterogeneous processing of LSRK3 stage i

Input: V (i−1) for all conserved variables where V (0) = V n.
Output: V (i) for all conserved variables.

1 s← 1

2 Copy V (i−1)
s into page-locked buffer of stream s mod P

3 Enqueue GPU tasks on stream s mod P
4 while s < K do
5 if s > 1 then
6 Lh,(i)

s−1 ← Synchronize with stream (s− 1) mod P

7 V (i)
s−1 ← Update on host using equation 3.65 and R(i−1)

s−1 from
host memory

8 s← s + 1

9 Copy V (i−1)
s into page-locked buffer of stream s mod P

10 Enqueue GPU tasks on stream s mod P

11 Lh,(i)
s ← Synchronize with stream s mod P

12 V (i)
s ← Update on host using equation 3.65 and R(i−1)

s from host
memory

4.4.2 GPU kernels for the HLLC solver

The goal of the GPU computation is the accelerated evaluation of the
operator Lh in equation 3.64. The implementation discussed here is focusing
on the advective fluxes in equation 3.41 but readily extends to diffusive
fluxes as well. The complexity of a certain compute task determines the
number of registers required to perform the arithmetic operations. The
register file on a GPU is a scarce resource and the compute kernels must be
written with that in mind. The evaluation of the numerical flux F j along
split spatial directions j = 1, 2, 3 is important for the GPU implementation
as it leads to compute kernels with manageable register counts.

The page-locked buffer pairs of the previous section are matched with
two global memory buffers A and B in GPU memory. Buffer A is used for
I/O correspondence with the host CPU. The second buffer B is a read-only
3D CUDA array that is bound to texture references. Texture memory is
used to maximize temporal locality while the CUDA array improves spatial
locality. The number of buffer pairs on the GPU matches the P pairs used
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Algorithm 2: Approximation of Riemann problem on the GPU
Input: Vs for all conserved variables.
Output: Lh

s for advective fluxes.
1 Convert data in A to primitive variables (in-place)
2 Copy data in A into CUDA 3D array B
3 Bind B to global texture reference
4 forall j ∈ {1, 2, 3} do
5 WENO reconstruction from texture B in direction j
6 HLLC flux divergence in direction j

on the host CPU. Hence, P determines the granularity and determines the
maximum segment size Ns. The main steps performed in the GPU compute
engine are summarized in algorithm 2.

The stencil problem is addressed by using 2D thread blocks with 4 warps
in each block. The slim tiles allows for efficient use of the texture cache
along the direction normal to the tiles. This method is different than the
usual 3D thread block approach which are used together with shared
memory (Kamil, Datta, et al., 2006; Micikevicius, 2009). The latter approach
imposes a larger restriction on the total active thread blocks due to limited
shared memory and therefore reduces exploitable parallelism. The issue
becomes more pronounced if high-order numerical methods are used,
such as the 5th-order WENO reconstruction. The use of shared memory
ensures spatial locality, however, the approach discussed here enforces
spatial locality by using CUDA arrays with a suitable SFC. The main
benefit of the smaller 2D thread blocks then results in a higher utilization
of the GPU texture cache. Furthermore, the large 3D stencil imposes high
pressure on the register file which may result in expensive register spills.
An overview of the lightweight GPU kernels mapped to 2D thread blocks is
given in table 4.2. The WENO reconstruction kernels are written using C++
templates to generate compiled code that maps to a specific texture memory
reference. The computation of the numerical flux and the flux divergence is
fused into one kernel to avoid excessive access to global memory. The fused
kernel increases ILP at the cost of reduced occupancy. The increased ILP
still helps with hiding latency and no significant performance impact occurs
due to the reduced amount of active thread blocks (Volkov, 2010). The high-
order WENO reconstruction reaches full occupancy and it is shown in the
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Kernel Registers per thread Occupancy

Convert 24 100 %

WENO (x, y) 29 100 %

WENO (z) 32 100 %

HLLC (x) 32 100 %

HLLC (y, z) 56 56 %

Transpose (x) 64 50 %

Table 4.2: GPU register usage per thread and occupancy for thread blocks with
4 warps. The WENO reconstruction corresponds to a 5th-order scheme.

next section that this kernel indeed operates at the nominal performance
limit of the hardware.

The arrangement of 2D thread blocks on the kernel grid is shown in
figure 4.9 for execution along the x-direction (index i). Fluxes must be
evaluated at the bounding faces Si−1/2,j,k of the computational cells. Thread
blocks are therefore mapped onto face locations i− 1/2 resulting in Nx + 1
thread blocks. To benefit from vectorized code on the host CPU the number
of cells Nx is usually a power of two. Hence, the 2D thread block design
further helps to overcome the Nx + 1 irregularities resulting in less complex
code. Ghost cell data for thread blocks in boundary zones is obtained
from a global memory buffer instead of textures (indicated by the blue
cells in figure 4.9). Interior ghost cells are loaded into the texture cache by
neighboring thread blocks and can be accessed in cache from nearby threads
without overhead. This is the case for most of the thread blocks in the kernel
grid. The result of the WENO reconstruction is written back to auxiliary
arrays in global memory. The HLLC kernel is then launched on the same
kernel grid to compute the numerical flux and the divergence. The result is
written back into the I/O buffer in global memory. A transposition kernel
is required for computations along the x-direction to ensure coalesced
global memory access. The data transposition is implemented using shared
memory.
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Figure 4.9: 2D thread block mapping for stencil evaluation at cell faces. The case
for kernel execution along the x-direction is shown.

4.4.3 Performance analysis

The performance evaluation of the GPU compute kernels has been carried
out using the Cray XC30 compute nodes on the Piz Daint supercomputer
of CSCS. Each of these nodes hosts an 8-core Intel Xeon E3-2670 CPU and
a Nvidia Tesla K20X GPU. The compute kernels are benchmarked using
single precision floating point data and the Roofline model of Williams,
Waterman, et al. (2009). The measured performance is shown in figure 4.10.
The attainable peak performance on a GPU device is lower than the nominal
hardware limits, mainly due to voltage fluctuations and error correcting
codes (ECCs). The attainable bandwidth when ECC is enabled is usually
around 70 % of the nominal value. The attainable ceilings, , are
obtained by using a micro benchmark (Danalis et al., 2010). The OI of
the GPU kernels is computed under the assumption of compulsory cache
misses only. The executed floating point instructions and kernel execution
time are measured using the Nvidia profiler. The performance of the WENO
reconstruction is 907.6 Gflop s−1 and shows uniform behavior for all spatial
directions. However, a 5th-order WENO reconstruction can at most reach
about 23 % of the nominal peak performance on the tested GPUs. The
overall performance for computing Lh

s is 462.4 Gflop s−1 and corresponds
to a total improvement of 3.1× relative to the BGQ performance of the
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Figure 4.10: Roofline of the compute kernel performance on a Nvidia K20X
GPU for single precision: , nominal hardware ceiling; ,
attainable ceiling obtained by micro benchmarks; , convert kernel;

, estimate for computation of Lh
s using linear textures; , measured

performance for computation of Lh
s using CUDA 3D arrays; 5th-

order WENO reconstruction kernels along: , x; , y; , z; HLLC flux
kernels along: , x; , y; , z.

optimized multi-core code (Hadjidoukas, Rossinelli, et al., 2015). This result
is shown by the symbol in figure 4.10.

The average time distribution for the execution of one time step ∆t using
algorithm 1 is shown in figure 4.11. The work performed in figure 4.11(a)
corresponds to the queued tasks in the CUDA streams shown in figure 4.8.
The computation of ∆t at the beginning of the time step is performed using
a vectorized kernel on the host CPU. The copies into the DMA buffers
and the final LSRK3 update of equation 3.65 are almost in balance which
is advantageous for C/T overlap. Slightly more time is spent in the H2D
transfers because of the larger message sizes due to ghost cells. The main
issue on the GPU are the expensive CUDA Application Programming
Interface (API) calls associated to populating the texture buffers by a SFC
for spatial locality. This is evident from figure 4.11(b). Due to the proprietary
nature of the CUDA toolkit, the specific details of the API implementation
are not clear. In order to circumvent these expensive function calls, the
CUDA 3D arrays can be replaced by 1D arrays that can be filled with data
directly through the H2D data transfer. Binding the arrays to textures is at
no cost. To maintain spatial locality, it is required that the arrays used with
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Figure 4.11: Time distribution of the heterogeneous algorithm: (a) average time
for one LSRK3 time step; (b) average time spent for the GPU ker-
nels and CUDA API. , conversion to primitive variables; 5th-order
WENO reconstruction along: , x; , y; , z; HLLC flux along: , x; ,
y; , z. See figures 4.8 and 4.10 as well.

the GPU accelerated solver implement a block-structured data layout at the
granularity of the segments shown in figure 4.7. The CPU related tasks in
figure 4.11(a) are only point-wise operations which means that working
with memory blocks larger than the LLC will not degrade the performance
of the CPU kernels. The estimate for the improvement of the right-hand
side computation, when neglecting the overhead of the CUDA API calls,
corresponds to 4.7× (symbol in figure 4.10) and is in concert with the
hardware limit of 5× for memory bound problems.

4.5 summary

This chapter has introduced the multi-phase compressible flow solver
Cubism-MPCF which is used for the large scale numerical simulation
of cavitating flows presented in this thesis. The solver has been modified
by the HLLC numerical flux which has superior resolution of interfaces in
multi-phase flows compared to the HLL-type flux of an earlier implemen-
tation. The modified implementation has a computational cell throughput
of 455 902 C s−1 per core with almost perfect C/T overlap and exhibits
excellent scaling on state of the art HPC platforms. The solver can be
downloaded from https://github.com/cselab/Cubism-MPCF.

To increase the application spectrum and make its underlying HPC con-
cepts accessible to a wider audience, the core Cubism stencil framework has

https://github.com/cselab/Cubism-MPCF
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been refactored into CubismNova. The rewritten framework inherits the
concepts of optimal cache utilization as well as the methods for ghost syn-
chronization from its predecessor. It uncouples itself from Cubism-MPCF
by introducing the more general concept of tensor fields which are exposed
to the user as building blocks for algorithm and application development.
The HPC principles are hidden from the user and indirectly accessible by
a toolbox of basic operations such as finite difference kernels, data inter-
polation or data compression tools. The development of CubismNova is
ongoing. Support for structured uniform discretization on Cartesian grids
has been implemented and tested. The code and documentation can be
obtained from https://cubismnova.readthedocs.io.

In order to exploit GPU accelerators on current HPC architectures, a
heterogeneous CPU/GPU algorithm has been presented that exhibits a
current 3.1× improvement compared to the highly optimized multi-core
version of Cubism-MPCF. The GPU kernels used in the algorithm are
mapped to 2D thread blocks designed for higher utilization of the texture
cache. This reduces the requirements on shared memory and allows to
run the GPU code at higher occupancy. The algorithm is generic and not
only applicable to the compressible multi-phase flow problem used in this
work. The CubismNova library has further been designed to allow for data
structures that can be used for the heterogeneous CPU/GPU algorithm
presented in this chapter. These structures combine the necessity for efficient
cache utilization on multi-core CPUs and consider a block-structured data
layout at larger granularity that ensures efficient use of the GPU global
memory and texture mapping.

https://cubismnova.readthedocs.io




5
M O D E L VA L I D AT I O N

The successful solution of a realistic problem in applied
mathematics requires the fusion of four distinct
ingredients: (1) knowledge of the subject area;
(2) knowledge of the relevant mathematics;
(3) knowledge of the relevant computer science; (4) a
talent for selecting just what part of all this knowledge
will actually solve the problem, and ignoring the rest.

— George Forsythe

The content of this chapter is concerned with the validation of the model
introduced in section 3.2 with the discrete representation discussed in sec-
tion 3.4. Sections 5.1 to 5.3 address the multi-phase flow capabilities of the
model. Sections 5.4 to 5.6 are test cases for the surface tension model discussed
in section 3.3.4. The last sections 5.7 and 5.8 provide single-phase test cases
for viscous diffusion. Part of this work was used for validation in Rasthofer,
Wermelinger, Hadjidoukas, et al. (2017) and Wermelinger, Rasthofer, et al.
(2018).

5.1 single bubble collapse

Single spherical bubble collapse is addressed in this section. The test prob-
lem consists of a spherical air cavity with radius RB,0 = 10 µm at den-
sity ρ2 = 1 kg m−3 and a pressure pB,0 = 1 bar. The air bubble is submerged
in liquid water with density ρ1 = 1000 kg m−3. Two cases are considered
for liquid far-field pressures of 10 bar and 100 bar, respectively. The initial
velocity field is equal to zero where the gas volume fraction and pressure
fields are given by

α2,0(x) =
1
2

[
1− tanh

(
r− RB,0

3/2 h

)]
, (5.1)

p0(x) =

pB,0 r ≤ RB,0,

p∞ +
RB,0

r (pB,0 − p∞) r > RB,0,
(5.2)

65
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Figure 5.1: Single bubble collapse: (a) p∞ = 10 bar; (b) p∞ = 100 bar. ,
analytical solution (Keller et al., 1980); , present solver.

respectively. The computational domain consists of a cubic box with length
L = 1 mm and absorbing boundary conditions on cube faces as well as a
symmetry boundary in the z-direction. A stretched mesh is used with a total
of 576× 576× 288 cells and initial bubble resolution of 104 cells along RB,0.
Fluids are treated inviscid and without surface tension effects. The reference
solution for this problem is obtained from the weakly compressible Keller et
al. (1980) model, integrated with a Runge-Kutta-Verner (RKV) 5th-6th-order
variable step method.

Figure 5.1(a) shows the simulation results for p∞ = 10 bar. The minimum
bubble radius is well captured and resolved by 29 cells. Figure 5.1(b) illus-
trates the simulation results for p∞ = 100 bar. The minimum bubble radius
is well captured at a resolution of 10 cells. A slight delay of the simulation
results is observed due to the much stronger change of momentum at the
extrema. The small error is then carried on into the rebound phase. A grid
refinement study for the case of p∞ = 10 bar is given in appendix A.2.

5.2 shock induced bubble collapse near rigid wall

The main goal of this validation case is to asses the resolution of bubble
wall velocities during non-spherical collapse. A sketch of the problem setup
is shown in figure 5.2. The focus is on the shock distal and shock proximal
points on the gas-liquid interface, as indicated in the sketch of the problem
configuration. The bubble is initialized with radius RB,0 and its center is
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Figure 5.2: Initial configuration for shock induced bubble collapse near rigid
wall: , shock distal bubble side; , shock proximal bubble side.

located a distance H0 = 2RB,0 away from the rigid wall. A planar shock
wave normal to the x-direction is initialized at coordinate x = 3.15 RB,0
and a strength of ps/p1 = 353. The initial densities in the liquid and air
are ρ1 = 998 kg m−3 and ρ2 = 1 kg m−3, respectively. The pre-shocked
fluids are initially at rest with pressure p1 = 1 bar, resulting in a liquid
speed of sound c1 = 1658 m s−1. The material parameter for the SGEOS
are γ1 = 6.68 and pc,1 = 4.103× 103 bar for the liquid and γ2 = 1.4 and
pc,2 = 0 bar for air. The problem is treated with inviscid fluids and without
surface tension effects (Obreschkow et al., 2011; Plesset and Chapman,
1971). Time is expressed in non-dimensional form by t̃ = tc1/RB,0. Extents
of the domain are given by [Lx × Ly× Lz] = [12× 15× 30], where all spatial
dimensions are normalized with RB,0. The problem is discretized using
1728× 1280× 2560 cells on a stretched Cartesian grid with an initial bubble
resolution of 250 cells along RB,0. The wall at x = 0 is modeled with a
reflecting boundary, where the impedance of the wall is assumed infinite. A
symmetry boundary condition is used at y = 0 and absorbing boundaries
at the remaining faces. A similar problem in a 2D domain was discussed
in Johnsen and Colonius (2009).

Figure 5.3(a) shows the evolution of the distal and proximal bubble wall
velocities computed for α2 = 0.1 on the liquid side of the interface. The
comparison of the results for the present solver with Johnsen and Colonius
(2009) illustrates the superior resolution of interfacial regions in contrast
to the method used therein. The present method is more sensitive to com-
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Figure 5.3: (a) Bubble wall velocities in x-direction for non-spherical collapse.
Present solver: , distal bubble wall; , proximal bubble
wall. Johnsen and Colonius (2009): , distal bubble wall; ,
proximal bubble wall. (b) Schlieren image of |∇p| and bubble inter-
face for α2 = 0.5 in the plane y/RB,0 = 0 for time tc1/RB,0 = 8.295
corresponding to microjet impact on the distal bubble wall.

pression waves due to the K∇ · u source term in equation 3.12. This effect
is seen in figure 5.3(a) by the acceleration of the distal bubble wall, slightly
after tc1/RB,0 = 4 which corresponds to the impact of the wall reflected
initial shock. The wall reflected shock is in the shadow of the bubble and
therefore weaker than the initial planar shock. The present method, how-
ever, is capable of resolving this perturbation. Moreover, the bubble wall
that is proximal to the initial shock, see figure 5.2, experiences a very high
acceleration only in the final collapse stage, leading to a supersonic interface
velocity upon impact on the distal wall. Studies on shock induced bubble
collapse for cavity sizes of about 3 mm report on maximum microjet veloci-
ties in the range of 400 m s−1 (Dear and Field, 1988; Dear, Field, and Walton,
1988). It is noted, however, that measuring the effective microjet velocity is
a difficult task (Supponen et al., 2016). Another modeling approach by Katz
(1999) suggests a cut-off kinetic energy that avoids focusing all the energy
at an infinitesimal point mass. This cut-off suggests a maximum jet velocity
in water of about 2000 m s−1. This estimate agrees well with the 2143 m s−1

peak jet velocity computed in the present case. Moreover, experimental
results confirming supersonic bubble wall velocities in the case of spher-
ical collapse have been reported in Mellen (1956). Finally, the measured
wall pressures of the present case coincide with the results reported in
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Johnsen and Colonius (2009) which hints that the effects of the K∇ · u term
remain local to interfacial regions in the case of compression waves. Effects
associated to expansion waves are shown by the next validation case.

5.3 cavitation tube

The cavitation tube generates two strong rarefaction waves that propagate
in opposite direction. This test is useful to assess the multi-phase flow
capabilities of the model used in this work. A region of strong relaxation is
created behind the parting rarefaction waves, causing a significant pressure
reduction until the liquid evaporates when the pressure falls below the
vapor pressure. The generation of gas volume fraction is modeled by the
K∇ · u source term in equation 3.12. The initial conditions in the 1D domain
x ∈ [0, L], where L = 1 m, are given by

(ρ, u, p, α2)0 =

(1150 kg m−3,−100 m s−1, 1 bar, 0.02) 0 ≤ x ≤ 0.5 m,

(1150 kg m−3, 100 m s−1, 1 bar, 0.02) 0.5 < x ≤ 1 m.
(5.3)

The domain is discretized using 1000 cells with absorbing boundaries. Since
mass transfer is not modeled, a small amount of homogeneously mixed
gas volume fraction must be present in the initial liquid. The parameters
of the SGEOS are set to γ1 = 2.35 and pc,1 = 1× 104 bar for the liquid
and to γ2 = 1.43 and pc,2 = 0 bar for the gas. Figure 5.4 shows the flow
variables at time instants t = 0 ms, t = 0.6 ms, t = 1.2 ms and t = 1.8 ms.
The results of the present solver compare well to Saurel, Petitpas, et al.
(2009) where a 6 equation model with pressure relaxation is used. The
strong rarefaction waves cause a significant pressure reduction for which
density must rarefy accordingly. As mentioned above, the created gas phase
shown in figure 5.4(d) is due to the K∇ · u term and reaches a maximum
value of α2 = 0.998 at time t = 1.8 ms. Positivity of pressure, density and
gas volume fraction is maintained for all times in this validation case with
minimum values of 26.0 Pa, 2.0 kg m−3 and 0.01, respectively.

5.4 equilibration of square cylinder

The purpose of this validation is to test the recovery of the equilibrium
shape of a square column in a two-fluid setup due to surface tension effects.
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Figure 5.4: Spatial wave evolution in cavitation tube: (a) pressure; (b) velocity;
(c) density; (d) gas volume fraction. , t = 0 ms; , t =
0.6 ms; , t = 1.2 ms; , t = 1.8 ms.

The problem is characterized by the length L that describes the square, the
dispersion relation

ω2
0 =

σ

2ρL3 (5.4)

and the ratio of capillary to viscous time scales

ε =
tσ

tν
=

ν

ω0L2 . (5.5)

The capillary time scale is defined by tσ = ω−1
0 and the viscous time scale

by tν = L2/ν. The capillary time scale accounts for both, capillary and
inertia effects due to its relation to equation 5.4 via ω0. In the absence of
viscous effects, tσ expresses the time scale for reversible energy exchange
between surface tension effects and inertia. Furthermore, the ratio ε scales
with the Ohnesorge number ε ∼ Oh. The following assumptions are made:

1. the two fluids are of equal density ρ = ρ1 = ρ2,

2. the kinematic viscosity ν = ν1 = ν2 is the same for both fluids,

3. the two fluids share identical thermodynamic properties.
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Figure 5.5: Mode shapes: (a) ω0t = 0; (b) ω0t = 0.05; (c) ω0t = 0.2; (d) ω0t = 0.7;
(e) ω0t = 1.7; (f) ω0t = 10. Iso-lines are shown for α2 = 0.5.

The problem is initialized in a 2D domain with absorbing boundary condi-
tions. A stretched mesh is used to increase the separation of the artificial
boundaries from the region of interest. The resolution is characterized by
the initial number of cells along L. Initial pressure p0 is uniform and the
sharp square corners of the initial α2 field are smoothed with a 27-point
Laplacian kernel (two sweeps). The equilibrium is expected that take on
a circular shape with volume Ve and radius Re. The pressure inside the
equilibrium shape follows from the Laplace pressure for a cylinder

pe = p0 +
σ

Re
. (5.6)

The equilibrium volume is computed from the isentropic relation (Schmid-
mayer, Petitpas, et al., 2017)

Ve = V0

(
p0

pe

) 1
γ

= L2

(
p0

p0 +
σ
Re

) 1
γ

, (5.7)

where L = 1 m, p0 = 1 bar, γ = 1.4 and σ = 200 N m−1.

Figure 5.5 shows a sequence of mode shapes at non-dimensional times
t̃ = ω0t. The results shown in the figure correspond to the parameters
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Figure 5.6: Temporal evolution of error with respect to number of cells N along L
at fixed ε = 0.01: (a) relative error to equilibrium volume Ve; (b) rela-
tive error to equilibrium Laplace pressure jump ∆pe.
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Figure 5.7: Temporal evolution of error with respect to viscosity ε at fixed num-
ber of cells N = 256: (a) relative error to equilibrium volume Ve;
(b) relative error to equilibrium Laplace pressure jump ∆pe.

ω0 = 10 s−1 and ε = 0.01. The error in the equilibrium volume is quantified
by the relative measure

eV =
V −Ve

Ve
(5.8)

and the relative error in the Laplace pressure jump by

e∆p =
∆p− ∆pe

∆pe
, (5.9)



5.5 capillary waves 73

where ∆pe = σ/Re. The volume V and pressure difference ∆p are computed
from the simulation data at time ω0t = 10 using

V =
∫

Ω
α2 dV, (5.10)

for the volume and
∆p =

1
V

∫
Ω

α2 p dV − p0 (5.11)

for the pressure jump across the interface. The temporal evolution of the
error eV and e∆p is shown in figure 5.6 for a varying resolution and in
figure 5.7 for varying viscosity. For the inviscid configuration, ε = 0, the
equilibrium solution is oscillatory due to reversible energy exchange be-
tween surface energy and inertia (neglecting numerical diffusion). The
observed results converge towards the isentropic limit, where the average
pressure inside the equilibrium configuration is associated with an error
of 2 % on the finest grid. The error reduction of the average pressure is
roughly linear with respect to grid resolution, where the error of geometric
quantities such as the volume decays exponentially.

5.5 capillary waves

This validation case aims at the accuracy of the surface tension model for
small amplitude interface motion, where the resolution of the contact wave
motion is of the same order as the number of cells in the diffuse interface.
This is in contrast to the previous square column validation case where the
interface motion is large. Capillary forces, viscous forces as well as inertia
are all relevant for this case. Assuming that the two fluids share the same
kinematic viscosity, the existence of a closed form analytical solution has
been shown in Prosperetti (1981). A sinusoidal interface perturbation of the
form

y(x) =
Ly

2
+ A0 sin kx (5.12)

is used to initialize the problem, where the wavelength is λ = 2π and
the domain extent Lx = λ. The wave number is defined by k = 2π/λ. The
initial amplitude of the perturbation corresponds to A0. Periodic boundary
conditions are applied in the x-direction and absorbing boundaries in the
y-direction. A uniform resolution is used for the x-direction and a stretched
mesh in the y-direction with a window of uniform resolution in the region
of the perturbed interface. The same fluid assumptions as in section 5.4
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Nx = 64 Nx = 128 Nx = 256 Nx = 512

A0/h 0.64 1.28 2.56 5.12

L2 1.10× 10−3 5.44× 10−4 2.67× 10−4 1.75× 10−4

L∞ 2.40× 10−3 1.34× 10−3 6.81× 10−4 3.76× 10−4

Table 5.1: Lp error norms computed for the capillary wave amplitude on varying
number of cells Nx along wavelength λ.

hold here as well. The problem is characterized by the parameters given in
equations 5.4 and 5.5 with characteristic length L = λ. The simulations are
initialized with A0 = 0.01 λ, ω0 = 1 s−1 and ε = 0.064720863 in accordance
with Gueyffier et al. (1999) and Mirjalili et al. (2019). Table 5.1 provides an
overview of the different resolutions applied to this problem as well as the
initial number of cells along the wave amplitude A0. The reduction of the
wave amplitude error is linear with respect to refining the grid.

Figure 5.8 shows the temporal evolution of the amplitude A(t)/A0 for
different numbers of cells Nx along the x-direction. Furthermore, the relative
amplitude error

eA =
A− Aexact

Aexact
(5.13)

is shown in figure 5.8(b). The amplitude Aexact corresponds to the analytical
solution given in Prosperetti (1981). Considering the low resolution of the
capillary wave motion, the deviation from the analytical solution is less
than 0.5 % on the coarsest grid. The error grows as time progresses, which is
expected due to viscous damping of the amplitude for which the amplitude
motion eventually falls below the resolution limit of the solver. Moreover,
explicit time integration further contributes to the growing error as the
problem evolves slowly.

5.6 bubble coalescence

The final validation case for surface tension is concerned with high interface
curvature which is relevant for highly deformed bubbles. To this end the
coalescence of two bubbles in free space is simulated. Experimental data
for the coalescence of two bubbles that diffusively grow near a surface is
provided in Soto et al. (2018). The initial conditions consist of two air bubbles
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Figure 5.8: Capillary wave motion: (a) evolution of wave amplitude; (b) relative
amplitude error. , exact solution (Prosperetti, 1981); , Nx = 64;

, Nx = 128; , Nx = 256; , Nx = 512.

with radius RB,0 = 10 µm submerged in water with densities ρ2 = 1 kg m−3

and ρ1 = 1000 kg m−3, respectively. The material parameter of the fluids
are given in table 3.1. The pressure in the liquid is p∞ = 1 bar and for
the bubbles the pressure is pB,0 = 1.144 bar due to the Laplace pressure.
The surface tension coefficient is σ = 0.072 N m−1 and fluid viscosities are
µ1 = 1× 10−3 Pa s and µ2 = 1.813× 10−5 Pa s for water and air, respectively.
The bubble centers are initially separated by a distance d = 2RB,0. The
computational domain is a cube with edge length L = 0.24 mm with a
symmetry boundary in the z-direction and absorbing boundaries at the
remaining faces. The initial bubbles are resolved with 152 cells along the
radius. The time for this problem is normalized using the capillary time
scale

tσ =

√
ρ1d3

8σ
. (5.14)

Figure 5.9 shows the computed coalescence sequence for t/tσ = 0, 0.11,
0.22, 0.33, 0.44, and 0.55. The iso-line of the interface shown in that figure
corresponds to α2 = 0.5. The computed states are compared with the
experimental results of Soto et al. (2018). Good agreement is observed for
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Figure 5.9: Bubble coalescence: (a) t/tσ = 0; (b) t/tσ = 0.11; (c) t/tσ = 0.22;
(d) t/tσ = 0.33; (e) t/tσ = 0.44; (f) t/tσ = 0.55. , interface
at α2 = 0.5 of present simulation. Experimental images are taken
from Soto et al. (2018).

the states shown in figures 5.9(a) to 5.9(c). At later times, the symmetrical
simulations in the free field start to deviate due to the presence of the wall
in the experiments, as is seen in figures 5.9(d) to 5.9(f). It is further found
that the resolution of the capillary wave on the interface is slightly diffused
compared to the experiment. Figure 5.10 shows the temporal evolution
of the upper neck radius rn, see Soto et al. (2018) for a definition. The
figure shows three different resolutions for 56, 104, and 152 cells along the
initial radius. The shown time captures the shapes shown in figures 5.9(a)
to 5.9(d). Overall good agreement is found for the finest resolution with
largest deviations compared to the experimental data of Soto et al. (2018)
at the initial stages of the coalescence where the interface curvature and
acceleration is the largest.

5.7 taylor-green vortex

The Taylor-Green problem is used to assess the accuracy of viscous dissipa-
tion in a single-phase fluid at low Mach number. The problem is setup in
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a 3D periodic domain Ω = [−π, π]3 where coordinates are normalized by
the domain length L. The initial velocity components are given by

u1 = u0 sin(x1) cos(x2) cos(x3), (5.15)

u2 = −u0 cos(x1) sin(x2) cos(x3), (5.16)

u3 = 0 (5.17)

and the initial pressure field follows

p = p0 +
ρ0u2

0
16

(
cos(2x1) + cos(2x2)

)(
cos(2x3) + 2

)
, (5.18)

with Re = 1600, Ma = 0.1, L = 1 m, u0 = 1 m s−1 and ρ0 = 1 kg m−3. The
simulation is evolved until t̃ = 20 for a normalized time t̃ = tu0/L. For a
general compressible fluid, the kinetic energy dissipation rate is the sum of
three components

ε1 =
1

2µ

1
ρ0V

∫
Ω

τ : τ dV (5.19)

ε2 = µv
1

ρ0V

∫
Ω
(∇ · u)2 dV (5.20)

ε3 = − 1
ρ0V

∫
Ω

p(∇ · u)dV. (5.21)
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Figure 5.11: Kinetic energy dissipation rate for Taylor-Green vortex: , spec-
tral reference; , N = 256; , N = 512; , N = 1024.

It is assumed that the bulk viscosity µv = 0 Pa s such that ε = ε1 + ε3.
The first term accounts for viscous dissipation and the second term for
compressibility effects, which are small for low Mach number flows.

Figure 5.11 shows the results for the kinetic dissipation rate obtained for
different resolutions using the present solver. The reference data is obtained
from a dealiased pseudo-spectral code for a grid with 5123 cells.1 A grid
convergence study for this method has been carried out in van Rees et al.
(2011). Convergence is achieved for N = 1024 cells along the length L of
the cubic domain. The resolution requirement is relatively large due to the
shock capturing scheme as well as the explicit time stepping of the present
solver. This method is designed for interfacial flows with biased stencils for
shock capturing. For the resolution of turbulent flow structures, centered
schemes are better suited methods.

5.8 compressible turbulent channel flow

The previous validation case demonstrated the resolution capabilities of
the present scheme for turbulent structures in a periodic domain. Here the
solver is validated for a turbulent channel flow with no-slip boundaries,
see section 3.4.5. The simulation is setup in a rectangular domain [Lx × Ly×

1 https://cfd.ku.edu/hiocfd/spectral_Re1600_512.gdiag

https://cfd.ku.edu/hiocfd/spectral_Re1600_512.gdiag
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Figure 5.12: Instantaneous flow fields of fully developed channel flow: (a) stream-
wise velocity component u1; (b) vorticity magnitude.

Lz] = [6× 2× 4] where length scales are normalized with the channel half-
width δ = 1 m. The friction Reynolds number is set to Reτ = 180 and the
Mach number to Ma = 0.3. The fluid is assumed single phase with density
ρ = 1 kg m−3 and kinematic viscosity ν = 3.5× 10−4 m2 s−1. The Reynolds
number based on these quantities is Re = 5637 (Pope, 2000) with a mean
stream-wise velocity of Ū ≈ 1 m s−1. The problem is non-dimensionalized
by the parameters

δ̃ = 1, ρ̃ = 1, µ̃ = 3.5× 10−4,

where the dynamic viscosity is given by µ = ρν. Discretization of the do-
main corresponds to 1152× 384× 768 cells along the x, y and z dimensions,
respectively, using a uniform grid. The parameter setting and discretization
lead to y+ = 0.470 for the grid spacing from the wall to the first grid cell.
Boundaries are treated periodic in the x (stream-wise) and z (span-wise)
directions, whereas no-slip walls are imposed in the wall normal y direction.

The flow in the channel is maintained by a spatially invariant volumetric
forcing term

f (t) = ( fx(t), 0, 0)ᵀ (5.22)
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function. , present simulation; , viscous sub-layer reference;

, logarithmic law of the wall.

that is added to the right-hand side of equations 3.10 and 3.11. The mass
flow in the stream-wise direction is then given by

ṁ =
∫

Sx
ρu · n dS =

2ρ

3µ
fxδ3, (5.23)

where the last term is obtained by integrating the Navier-Stokes (NS)
momentum equation. The mass flow is computed during the simulation
by averaging the data over four yz-planes Sx at locations x = 0, x = Lx/4,
x = Lx/2 and Lx = 3Lx/4. The error in the x-component of the forcing
term in equation 5.22 is then defined by

∆ fx = fx,ref − fx =
3
2

µ

δ3

(
2δŪ − ṁ

ρ

)
, (5.24)

where the term ṁ/ρ is computed from the average over planes Sx as
described above and the reference forcing term fx,ref is obtained from Ū
and equation 5.23. The x-component of the forcing term in equation 5.22

is then corrected every time step with the signal ζ(t) obtained from a
proportional-integral-derivative (PID) controller

ζ(t) = Kpe(t) + Ki

∫ t

0
e(ξ)dξ + Kd

de(t)
dt

, (5.25)

where e(t) = ∆ fx.

Figure 5.12 shows the instantaneous stream-wise velocity u1 = ū1 + u′1
and vorticity magnitude |ω| in the channel for fully developed flow. The
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Figure 5.14: (a) Root-Mean-Square velocity fluctuations; , u1,RMS; ,
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mean velocity for the data shown in figure 5.12(a) is Ū = 0.96± 0.22 m s−1.
Statistics are collected over intervals of 5000 steps using Reynolds averages.
For the present simulation at low Mach number, the differences between
Reynolds and Favre averaged statistics are negligible. The friction Reynolds
number averaged over 10 data sets with 5000 samples each is Reτ = 178. The
mean velocity profile for the fully developed flow is shown in figure 5.13(a).
The indicated references correspond to

ū1

uτ
= u+ = y+ (5.26)

for the viscous sub-layer and

u+ = 2.5 ln y+ + 5.5 (5.27)

for the logarithmic law of the wall, where the von Kármán constant is set
to κ = 0.4. Values with superscript + are normalized by the friction velocity
uτ =

√
τw/ρ where τw is the mean wall shear stress. Figure 5.13(b) shows

the indicator function β (M. Lee et al., 2015)

β(y+) = y+
du+

dy+
, (5.28)

which is constant and equal to 1/κ in the log-law region. Figure 5.13(b)
indicates a slight deviation from the target value in the present simulation.
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The Root-Mean-Square (RMS) of the velocity fluctuations u′i is shown in
figure 5.14(a), whereas the turbulent production

P = −u′1u′2
dū1

dy
(5.29)

is shown in figure 5.14(b). The peak of turbulent production is found 12 wall
units away from the wall which is in agreement with the results presented
in Kim et al. (1987).
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PA R A M E T R I C S T U D Y O F C L O U D C AV I TAT I O N
C O L L A P S E W I T H P E R F O R M A N C E C O M PA R I S O N O F
R E D U C E D O R D E R M O D E L S

Adopt the pace of nature: her secret is patience.
— Ralph Waldo Emerson

This chapter presents a parameter study for 15 collapsing bubble clouds
with varying cloud radius, gas volume fraction and far-field forcing pressure.
The collapse dynamics of fully resolved 3D simulations are compared with two
reduced order models (Doinikov, 2004; Keller et al., 1980) that are based on the
Rayleigh-Plesset (RP) equation with additional terms to model bubble-bubble
interactions. The model of Doinikov (2004) adds additional degrees of freedom
by modeling the translation of the center of mass for individual bubbles. The
work in this chapter highlights the limitations of such advanced reduced
order models with respect to fully resolved simulations of highly non-spherical
bubble collapse in cluster arrangements.

6.1 related work

Cloud cavitation collapse presents a formidable challenge to computational
studies due to its geometric complexity and disparity of spatiotemporal
scales. For instance, bubbles typically occur in clouds whose extent is orders
of magnitude larger than the bubble radius. Direct numerical simulation
(DNS) of cloud cavitation collapse aims at resolving each individual bubble
and its deformation. The associated computational cost, however, is very
high and impedes any detailed computational investigations for engineering
applications. Mainly for this reason, simplifying assumptions and modeling
are unavoidable to account for cavitation effects in numerical simulations
that support the engineering design process. Frequently used simplified
approaches may be roughly classified into homogeneous mixture models
neglecting the resolution of bubbles entirely (Egerer, Schmidt, et al., 2016;
Koukouvinis et al., 2016; Schnerr et al., 2008) and approaches making use
of RP type ODEs (Flynn, 1975; Gilmore, 1952; Keller et al., 1980; Plesset and

83
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Prosperetti, 1977; Prosperetti and Lezzi, 1986; Rayleigh, 1917; Trilling, 1952)
which govern the evolution of the radius of a spherical bubble.

Euler-Lagrange approaches embed particle-like spherical bubbles into
a flow field obtained from averaged Navier-Stokes equations which are
solved on a fixed grid covering the computational domain (Ando et al.,
2011; Fuster and Colonius, 2011; Kubota et al., 1992; Ma et al., 2015; Seo
et al., 2010; van Wijngaarden, 1968; D. Z. Zhang et al., 1994). The radius
of the bubbles, which is typically smaller than a grid cell, is determined
by a RP type equation. This procedure significantly lowers the resolution
requirements and, thus, the computational costs as the bubbles do not have
to be resolved. Seo et al. (2010) showed a comparison of their proposed
bubbly mixture model with fully resolved simulations for bubbly shock
flows in a rectangular container. The results predicted by their model agreed
well with DNS results. The study was restricted, however, to parameters for
which the bubbles remained spherical also in the DNS. Other approaches
use systems of particle-like spherical bubbles only (Doinikov, 2004; Mettin et
al., 1997; Parlitz et al., 1999; Stricker et al., 2013; Yasui et al., 2008; Zeravcic
et al., 2011). In doing so, these bubble-particle approaches even further
reduce the computational costs.

Although the aforementioned applications rely on accurate predictions
for clouds of bubbles, merely the collapse of a single bubble governed by
RP type equations was examined in detail, both, experimentally and nu-
merically (Fuster, Dopazo, et al., 2011; Hilgenfeldt et al., 1998; Obreschkow
et al., 2013). Comprehensive comparisons for extensions of RP type equa-
tions applied to collapsing clouds of interacting bubbles with experimental
or DNS studies are barely considered in literature. Bremond et al. (2006),
for instance, experimentally investigated the collapse process of a planar
arrangement of 37 bubbles. Their study reports predictions obtained by the
incompressible RP equation with extension to account for bubble-bubble
interactions and revealed that the maximum size of the bubbles, their life-
time as well as the chronological order of the bubble collapses are well
captured by a bubble-particle approach. They further observed deviations of
their results for collapse phases where the assumption of spherical bubble
collapse was violated. Later, Chahine, Hsiao, et al. (2014) reproduced the
experiment of Bremond et al. (2006) to illustrate their Euler-Lagrange ap-
proach with bubble interactions. Tiwari et al. (2015) provided a comparison
for the gas volume evolution and the peak pressure using DNS data. A
hemispherical cloud of 50 bubbles adjacent to a solid wall was considered.
While the gas volume evolution obtained from the bubble-particle approach
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was close to the one from the DNS for the growth stage of the bubbles, the
bubble-particle predictions increasingly became less accurate and deviated
from the reference data during the cloud collapse. Furthermore, Tiwari
et al., 2015 observed that the employed bubble-particle approach notably
overestimated the peak pressure.

Those studies as well as many others (N. A. Adams et al., 2013; Brennen,
2002; Chahine and Duraiswami, 1992) revealed the non-spherical collapse
in cavitating bubble clouds and, hence, raise the question about the range
of validity of RP type reduced order models applied in cloud cavitation.
The parametric study of this chapter discusses the results obtained from
two such reduced order models applied to 15 bubble clouds with up to
630 bubbles in the largest configuration. The results are further compared
with resolved 3D simulations. It is found that modeling the translational mo-
tion of bubbles during the collapse enhances the accuracy of the predicted
collapse time of individual bubbles. Moreover, the degree of bubble defor-
mation affects the accuracy of predicted bubble radii and peak pressures,
especially for larger systems.

6.2 bubble cloud configurations

The bubbles considered for this parameter study are initially spherical and
all of equal radius RB,0 = 0.75 mm which is based on similar sizes consid-
ered in N. A. Adams et al. (2013) and Tiwari et al. (2015). The bubble clouds
are created by randomly positioning bubbles within a sphere of radius RC.
These coordinates are obtained by following a uniform distribution with
the constraint that the minimum distance between any two bubbles is not
smaller than the distance dG = 0.4 mm. Bubble surfaces may tangent the
hull of the spherical cloud. A 2D sketch for this cloud configuration with
arbitrary bubble radii is shown in figure 7.1 on page 122.

The clouds are characterized by the gas volume fraction αC and the cloud
interaction parameter βC (Wang et al., 1999); see equation 2.15 for their
scaling dependence. The parameters are defined as

αC = NB

(
RB,0

RC

)3
, (6.1)

βC = αC

(
Req

RB,0

)2
, (6.2)
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Cloud RC/mm βC αC NB

1 7.5 0.015 0.005 5

2 7.5 0.1 0.016 16

3 7.5 0.2 0.025 25

4 7.5 0.5 0.042 42

5 7.5 1.0 0.064 64

6 7.5 2.5 0.110 110

7 10.0 0.2 0.017 41

8 10.0 0.5 0.030 70

9 10.0 1.0 0.045 106

10 10.0 2.5 0.078 184

11 10.0 5.0 0.118 279

12 10.0 7.5 0.150 355

13 12.5 5.0 0.090 416

14 12.5 7.5 0.115 531

15 12.5 10.0 0.136 630

Table 6.1: Bubble cloud configurations.

where NB denotes the number of bubbles in the cloud and Req = N1/3
B RB,0

the equivalent radius, i. e., the radius of a single spherical bubble with the
same gas volume as the cloud. Large values of βC indicate strong interac-
tions among the bubbles and low βC values weak interactions (Brennen,
1998; Wang et al., 1999).

Three different cloud radii RC = 7.5, 10 and 12.5 mm, each with a wide
variety of βC, are considered. The resulting number of bubbles in the cloud
ranges from NB = 5 to 630 and the gas volume fraction from αC = 0.5
to 15 %. The details of all cloud configurations are summarized in table 6.1.

The parameter study is focused on the collapse process of the bubble
clouds as well as the effect of bubble deformation on the predictions ob-
tained by the reduced order models. These models are derived based on
potential flow theory (Fuster and Colonius, 2011) where the effects of
bubble-bubble interactions are captured in the velocity and pressure fields.
The individual bubble collapses remain spherical. Strong forcing pressure
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RC/mm L/mm NL RB,0/h

7.5 55.0 1792 24.44

10.0 60.0 2048 25.60

12.5 65.0 2304 26.58

Table 6.2: Spatial domain discretization and bubble resolution. NL is the number
of computational cells along L.

in the far-field of the cloud result in highly non-spherical bubble collapses
which influence the overall collapse dynamics. An important parameter,
therefore, is the pressure ratio

Π =
p∞

pB,0
, (6.3)

where p∞ is the constant ambient pressure in the far-field and pB,0 < p∞
the initial bubble pressure. The forcing pressure ratios considered in this
study are Π = 2, 4.5 and 10 corresponding to pB,0 = 10 bar. The material
properties for water and air are shown in table 3.1, where the air density
at 10 bar corresponds to ρ2 = 5.180 kg m−3.

6.3 discrete domain of resolved simulations

The resolved 3D simulations are discretized in a cubic domain of size
Ω = [−L/2, L/2]3, where the length L depends on the cloud radius. An
overview of the discrete domains for the 3 cloud radii is provided in
table 6.2. Clouds are at least a distance of 20 mm apart from the domain
boundaries, where space is discretized on a uniform Cartesian grid with cell
size h. The initial resolution of the bubbles is furthermore shown in table 6.2.
Appendix A provides a convergence analysis with resolution requirements
for cavitating bubble clouds. It is remarked that below the resolution limit,
the mathematical model smoothly transfers into a homogeneous mixture
model due to the K∇ · u source term in equation 3.12.

The initial velocity field is assumed zero everywhere, while the pressure
field is initially smooth (Tiwari et al., 2015) with continuous pressure in-
crease towards the domain boundaries. Initial pressure inside the bubbles is
constant and equal to pB,0 = 10 bar. The smooth pressure increase towards
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p∞ at the boundaries is computed from the liquid side bubble surfaces
following a hyperbolic tangent given by

p0(x) =

pB,0 r ≤ RB,0,

pB,0 + tanh
(

r−RB,0
λ

)
(p∞ − pB,0) r > RB,0,

(6.4)

where
r = min

1≤i≤NB
|x− xB,i|

is the distance of point x in the domain from the nearest bubble center xB,i.
The parameter λ = 12 mm defines how fast the pressure increases from the
bubble surface.

The numerical method used for the resolved simulations corresponds to
section 3.4 with the model described in equations 3.8 to 3.12 where viscous
and surface tension effects are neglected. Neglect of viscosity is justified by
the estimated Reynolds number of 23 700 based on the characteristic length
of RB,0 and characteristic velocity

√
pB,0/ρ1, where ρ1 is the density of the

liquid. The kinematic viscosity in liquid is assumed 1.0× 10−6 m2 s−1. Sim-
ilarly, the estimated Weber number is 10 400 assuming the surface tension
of 0.072 N m−1 for an air-water composition, suggesting that fluid iner-
tia dominates surface tension effects. Non-reflecting, characteristic-based
boundary conditions (Engquist et al., 1977; Poinsot et al., 1992; Thompson,
1987, 1990) are used. Additionally, the ambient pressure p∞ is imposed in
the far-field by adding the term Cbc(p− p∞) to the incoming wave (Rudy
et al., 1980). Coefficient Cbc = σ(1 −Ma2)c1/` ≈ σc1/` depends on a
characteristic length ` = 10 mm, the speed of sound c1 in the liquid at
the boundary, the Mach number Ma at the boundary, which is assumed
negligible, and a user defined parameter σ = 1 s. The CFL number of the
simulation is set to 0.3.

6.4 bubble reconstruction and shape characterization

Individual bubble deformations are analyzed by reconstruction of the
bubble surface from the gas volume fraction field. The set of points

Γ(t) = {x ∈ Ω | α2(x, t) = 0.5} (6.5)

defines a surface on which the gas volume fraction is equal to α2 = 0.5,
i. e., centered in the diffuse interface region. The surface Γ is computed
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(a) (c)

(b) (d)

Figure 6.1: Reconstructed interface of a collapsing bubble: (a) t = 0 µs, RB,0 =
0.75 mm, φ = 1; (b) t = 31.6 µs, φ = 0.98; (c) t = 52.9 µs, φ = 0.67
(back view); (d) t = 52.9 µs, φ = 0.67 (front view).

with a marching cube algorithm (Dietrich et al., 2009; Lorensen et al., 1987),
where the cubes are identical to grid cells. The surface is reconstructed by
computing triangular patches in cubes where 0 < α2 < 1 such that the
triangle vertices satisfy the constraint α2 = 0.5. The first step consists of
interpolating the cell centered data onto the vertices of the cubes using the
techniques described in Monaghan (1985). Linear hat kernels were used
for the analysis carried out in this study. Once the values on the cube
vertices are known, the vertices of the triangular patches are computed
along cube edges where the values of the two edge vertices satisfy v1 <
0.5 < v2. The triangle vertex position is then linearly interpolated between
v1 and v2. Higher order interpolation along cube edges did not yield
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improved reconstructions. The individual bubbles in a cloud are obtained
by computing the connected components of Γ. Figure 6.1 shows an interface
reconstruction for α2 = 0.5 of a collapsing bubble at evolving instances of
time using the method described above.

The bubble surface area and volume are readily obtained from the re-
construction. These metrics are used to characterize the shape of a bubble
during non-spherical collapse. The transition to a non-convex shape is of
particular interest to identify the formation of microjets which lead to highly
deformed bubbles. This transition is measured by the porosity

φ =
VB

VB,hull
, (6.6)

where VB,hull denotes the volume of the convex bubble hull. A convex
bubble shape is characterized by φ = 1 and non-convex shapes by φ < 1.
The degree of bubble deformation is indicated by the magnitude of φ,
where values closer to zero indicate large deformations. Figure 6.1 provides
a reference for the porosity associated with the shown bubbles.

Although the computation of Γ involves additional work, performing
the bubble reconstruction with a dedicated C++ code allows for higher
processing throughput compared to visualization tools such as ParaView.1

Higher processing throughput becomes especially important when the
number of bubbles to be analyzed grows beyond O(103). The surface
reconstruction tool described here has further been used for shock wave
visualization.

6.5 reduced order rayleigh-plesset type models

The reduced order models considered for comparison with the resolved sim-
ulations are based on the Keller-Miksis (KM) equation (Keller et al., 1980)
with an additional extension for modeling bubble-bubble interactions (Met-
tin et al., 1997). The KM equation takes weak compressibility of the liquid
into account in contrast to the classic RP equation (Plesset and Prosperetti,
1977; Rayleigh, 1917) and is therefore the preferred model for comparison
with the compressible 3D simulations. Compressibility effects in the cou-
pling terms for bubble-bubble interactions are usually neglected (Doinikov,
2004; Mettin et al., 1997; Tiwari et al., 2015; Yasui et al., 2008). An extended
model that takes into account first order terms for these compressibility

1 https://www.paraview.org

https://www.paraview.org
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effects was suggested in Fuster and Colonius (2011). The models described
above account for the interactions of nearby bubbles, describing the effec-
tive dynamics of the gas-liquid interface. Additional degrees of freedom
for bubble translations were described in the model of Doinikov (2004)
and Ilinskii et al. (2007). These models extend the velocity potential by the
translational motion ẋB,i for each bubble i which is then used to formulate
expressions for the kinetic and potential energies of the bubble cluster. The
equations of motion for the bubbles can then be derived with Lagrange’s
equations. Following Doinikov (2004), these equations of motion are(

1− ṘB,i

c1

)
RB,iR̈B,i +

(
3
2
− ṘB,i

2c1

)
Ṙ2

B,i

=
1
ρ1

(
1 +

ṘB,i

c1

)
(pB,i − p∞) +

RB,i

ρ1c1

d
dt

(pB,i − p∞)

+
1
4

ẋ2
B,i −

NB

∑
j=1
j 6=i

{
1

dij

(
R2

B,jR̈B,j + 2RB,jṘ2
B,j

)

+
R2

B,j

2d3
ij
(xB,i − xB,j) · (RB,j ẍB,j + ṘB,j ẋB,i + 5ṘB,j ẋB,j)

−
R3

B,j

4d3
ij

[
ẋB,j · (ẋB,i + 2ẋB,j)

+
3

d2
ij

(
ẋB,j · (xB,j − xB,i)

)(
(xB,i − xB,j) · (ẋB,i + 2ẋB,j)

)]}
,

(6.7)

1
3

RB,i ẍB,i + ṘB,i ẋB,i

=
NB

∑
j=1
j 6=i

{
1

d3
ij
(xB,i − xB,j)

(
RB,iR2

B,jR̈B,j + 2RB,iRB,jṘ2
B,j + ṘB,iṘB,jR2

B,j
)

−
R2

B,j

2d3
ij

(
RB,iRB,j ẍB,j + (ṘB,iRB,j + 5RB,iṘB,j)ẋB,j

)
+

3R2
B,j

2d5
ij
(xB,i − xB,j)

[
(xB,i − xB,j) ·

(
RB,iRB,j ẍB,j

+ (ṘB,iRB,j + 5RB,iṘB,j)ẋB,j

)]}
,

(6.8)
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where RB,i denotes the radius of bubble i, xB,i its position, pB,i its pressure,
dij the distance between bubble i and any other bubble j, ρ1 and c1 the
liquid density and speed of sound, respectively, and p∞ the constant far-
field pressure. The bubble pressure pB,i is given by

pB,i = pB,i(t = 0)
(

RB,i(t = 0)
RB,i

)3γ2

(6.9)

with γ2 the ratio of specific heats in the gas. The liquid speed of sound c1
is computed by equation 3.15 based on the far-field pressure p∞ and the
liquid material parameter in table 3.1. Equations 6.7 and 6.8 are a cou-
pled system of 2NB 2nd-order non-linear ODEs in the 2NB unknowns RB,i
and xB,i with i = 1, . . . , NB and NB the number of bubbles in the cloud. The
unknowns RB,i = RB,i(t) and xB,i = xB,i(t) are the bubble radius and center
of mass coordinates, respectively. In accord with the resolved simulation
setup, viscous and surface tension effects are neglected. For brevity, the
model in equations 6.7 and 6.8 is abbreviated by DK (Doinikov, 2004).

In the limit of spatially constrained bubbles where xB,i = ẋB,i = 0,
equations 6.7 and 6.8 to the KM equations with bubble-bubble interaction
terms as used for example in Tiwari et al. (2015). This limit model will be
denoted as KM in the following whereas the coupled system of equations 6.7
and 6.8 is denoted as DK. Quantities of the fully resolved 3D simulations
are denoted by the superscript “res” in the following sections.

The solver used for these reduced models is based on an explicit RKV 5th-
6th-order variable step integrator implemented in C++. The linear systems
due to the bubble-bubble interactions are solved with a Householder rank-
revealing QR decomposition and column-pivoting; implemented in the
Eigen library.2 The initial conditions for the interface velocities, ṘB,i =
0, and additionally for DK the translational velocities, ẋB,i = 0, are in
correspondence with the initial conditions of the resolved simulations. The
initial bubble radii are RB,i = 0.75 mm whereas the initial bubble positions
xB,i depend on the cloud configurations shown in table 6.1.

2 http://eigen.tuxfamily.org

http://eigen.tuxfamily.org
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6.6 results

6.6.1 Parameter impact on holistic cloud collapse

This section provides a comparison on the observed holistic cloud collapse
dynamics for different parameters. An illustration of the highly non-linear
relationship between 6 parameter sets is shown in figure 6.2. The time of
minimum gas volume in the cloud is denoted by tC and referred to as the
cloud collapse time in the following. The figure shows the state of 3 clouds
selected from table 6.1 for the two pressure ratios Π = 2 and Π = 10 at
time t/tC = 0.95. In all of the cases the bubbles are focusing towards the
cloud center, while in the case of small βC and weak pressure ratio Π the
bubbles exhibit a small degree of deformation and all shapes conserve
convexity; see figure 6.2(a). In particular, the focusing of bubbles towards
the cloud center is mainly determined by geometrical parameters and βC,
where the focal point becomes sharper at increasing values of βC. On the
other hand, the degree of bubble deformation is mainly determined by the
forcing pressure ratio Π, especially at moderate values of βC. The mean
degree of bubble deformation in a collapsing cloud is estimated by the
average porosity

φ̄ =
1

NB

NB

∑
i=1

φi, (6.10)

where φi is the porosity of bubble i determined by equation 6.6. Figure 6.3
shows the mean temporally evolving porosity corresponding to the cases
shown in figure 6.2. The cases with Π = 10 exhibit about 2–9 times stronger
deformation rates, where the case with large βC shows a less dramatic in-
crease of the deformation rate when compared to the case with Π = 2. This
weaker dependence when the far-field pressure increases is attributed to the
higher number density of bubbles in the cloud, which cause stronger shield-
ing. This also explains the observation that bubble shapes turn non-convex
at almost the same time, regardless of the forcing pressure magnitude;
see figures 6.3(c) and 6.3(f). Furthermore, the maximum degree of deforma-
tion is only observed for the pressure ratio Π = 10, as seen in figures 6.3(d)
to 6.3(f). The recording of the maximum degree of deformation roughly
coincides with the time of minimum gas volume tC. After this time the
rate of bubble deformations remains approximately constant in the case of
strong forcing pressures.
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(a) (d)

(b) (e)

(c) (f)

Figure 6.2: Comparison of collective bubble collapse state at time t/tC = 0.95:
(a)–(c) Π = 2; (d)–(f) Π = 10. Cloud configurations correspond
to table 6.1: (a) and (d) cloud 3; (b) and (e) cloud 9; (c) and (f) cloud 14.
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Figure 6.3: Temporal evolution of the mean porosity φ̄ (degree of bubble de-
formations): (a)–(c) Π = 2; (d)–(f) Π = 10. Cloud configurations
correspond to table 6.1: (a) and (d) cloud 3; (b) and (e) cloud 9; (c) and
(f) cloud 14. , t/tC = 0.95 (see figure 6.2); , φ̄ = 0.995.

The bubble collapse is initiated at the cloud perimeter due higher forcing
pressure in the far-field of the liquid. The magnitude of the forcing pres-
sure Π as well as the cloud interaction parameter βC determine the collapse
dynamics of the bubble cluster. In particular, for clouds with sufficiently
large βC and pressure ratios Π, a bubbly shock wave with thickness dF
forms at the outskirts of the cloud and is magnified as it propagates towards
the cloud center. The magnification is caused by local bubble collapses that
emit strong pressure shocks upon collapse. Part of the released energy
radiates towards the cloud center which is transferred into collapse energy
of the following bubbles. This is in accordance with the hypotheses in Hans-
son et al. (1980) and Mørch (1980). Visualizations for the collapse of cloud 8

and 12 are shown in figures 6.4 and 6.5, respectively. The images correspond
to the xy-plane through the cloud center at z = 0 mm and show streamlines
based on the velocity field and schlieren visualizations computed from the
pressure gradient |∇p|. The collapse shown in figure 6.4 corresponds to
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Figure 6.4: Collapse chronology of cloud 8 in the xy-plane at z = 0 mm: (a) initial
bubble distribution; (b) t = 11.25 µs; (c) t = 22.5 µs; (d) t = 33.75 µs;
(e) t = 45 µs; (f) t = 52.22 µs. Streamlines of the instantaneous velocity
field and schlieren images of |∇p| are superimposed on the bubble
interfaces shown for α2 = 0.5. Configuration parameter: RC = 10 mm;
βC = 0.5; Π = 2.



6.6 results 97

−10 −5 0 5 10
−10

−5

0

5

10
y/

m
m

(a) 0 2 4 6 8 10
0

2

4

6

8

10

(d)

0 2 4 6 8 10
0

2

4

6

8

10

y/
m

m

(b) 0 2 4 6 8 10
0

2

4

6

8

10

(e)

0 2 4 6 8 10

x/mm

0

2

4

6

8

10

y/
m

m

(c) 0 2 4 6 8 10

x/mm

0

2

4

6

8

10

(f)

Figure 6.5: Collapse chronology of cloud 12 in the xy-plane at z = 0 mm: (a) ini-
tial bubble distribution; (b) t = 12.5 µs; (c) t = 25 µs; (d) t = 37.5 µs;
(e) t = 50 µs; (f) t = 57.55 µs. Streamlines of the instantaneous velocity
field and schlieren images of |∇p| are superimposed on the bubble
interfaces shown for α2 = 0.5. Configuration parameter: RC = 10 mm;
βC = 7.5; Π = 4.5.
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cloud 8 with Π = 2 and time instants t = 11.25, 22.5, 33.75, 45 and 52.22 µs.
It is evident from the schlieren visualization in the background that the
formation of a bubbly shock wave does not take place for this configura-
tion. There is, however, a chronology of flow acceleration inside bubbles
which starts at the outskirts of the cloud. The direction of the acceleration
inside the bubbles is towards its closest neighbor due to secondary Bjerknes
forces (Bjerknes, 1906; Pelekasis et al., 1993). The bulk flow tends towards
the cloud center while streamlines in direction away from the cloud center
coexist. On the contrary, the collapse shown in figure 6.5 corresponds to
cloud 12 with Π = 4.5 and time instants t = 12.5, 25, 37.5, 50 and 57.55 µs.
The configuration for this case causes the formation of a bubbly shock wave,
as seen in figures 6.5(c) and 6.5(d). Here βC is one order of magnitude lager
than for the previous case, while the forcing pressure is about two time
larger. This leads to a violent evident based on the indicated streamlines
that the cloud collapse is charged at the cloud perimeter by a build up of
kinetic energy in the first bubble layer. The kinetic energy increases the
momentum in the liquid which transports the kinetic energy in wards as
the collapse progresses. The potential energy released by individual bub-
ble collapses magnify the strength of the bubbly shock wave as the cloud
collapse proceeds. This is in concert with Hansson et al. (1980) and Mørch
(1980).

The initial charging of kinetic energy at the cloud perimeter and the
subsequent propagation of the kinetic energy wave is shown by the example
of cloud 14, see figures 6.2(c) and 6.2(f). The kinetic energy in the mixture
is computed along radial lines that start from the cloud center in the xy-
plane through the cloud center z = 0 mm. To average out the random
bubble positions, the kinetic energy is averaged over 360 samples obtained
at 1° increments along the positive z-axis. Figure 6.6 shows the temporal
evolution of the average kinetic energy wave in the rt-space for cloud 14 at
the pressure ratio Π = 2. The vertical dimension indicates the logarithm
of the average kinetic energy Ēkin. The figure shows the initial charging
with kinetic energy at the cloud perimeter r/RC = 1 within the time
interval t/tC < 0.3. Additional energy peaks appear for t/tC ≥ 0.3 where
the spatial separation of the energy peaks is of the order 2RB,0. Although βC
is large in this cloud configuration, the weak forcing pressure in the liquid
far-field does not impose enough potential for a bubbly shock formation.
The increase of kinetic energy is governed by the bubble length scale and the
elasticity of the present gas phase, which attenuates the incoming pressure
perturbation. For this reason, no wave amplification is observed towards the
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Figure 6.6: Radially averaged kinetic energy wave in rt-space for cloud 14:
, energy wave before cloud collapse (t/tC < 1); ,

energy wave after cloud collapse (t/tC > 1); , projection
of maxr Ēkin(r, t); , wave trajectory corresponding to the radial
coordinate RF such that Ēkin(RF, t) = 0.05 maxr Ēkin(r, t). Configura-
tion parameter: RC = 12.5 mm; βC = 7.5; Π = 2.

core of the cloud. Moreover, the wave profiles are almost standing which
indicates a stronger dependence on the temporal coordinate as the wave
magnitude merely amplifies and attenuates along the time axis. The state
at t/tC = 0.95 for this cloud configuration is shown in figure 6.2(c).

Figure 6.7 shows the same case as before at pressure ratio Π = 4.5.
The initial charging at the cloud perimeter takes slightly longer up to
about t/tC < 0.4. The pressure perturbation in the liquid far-field is strong
enough in this case to cause the formation of a bubbly shock wave. The
wave profiles reveal, however, a slightly rippled shape along the r axis for
time t/tC ≥ 0.4, indicating that the length scales of the bubbles cause local
energy relaxation effects and thus a more oscillatory propagation of the
bubbly shock wave.
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Figure 6.7: Radially averaged kinetic energy wave in rt-space for cloud 14:
, energy wave before cloud collapse (t/tC < 1); ,

energy wave after cloud collapse (t/tC > 1); , projection
of maxr Ēkin(r, t); , wave trajectory corresponding to the radial
coordinate RF such that Ēkin(RF, t) = 0.05 maxr Ēkin(r, t). Configura-
tion parameter: RC = 12.5 mm; βC = 7.5; Π = 4.5.

Finally, figure 6.8 shows the results for a pressure amplification of Π = 10.
The charging at the cloud perimeter takes about the same time as for
the Π = 4.5 case before. The wave profile, however, is steeper and the
forming wave has a lager magnitude. The visibility of the bubble length
scales disappears due to the higher gas phase compression of the resulting
wave. As a result, the wave trajectory in figure 6.8 appears smoother com-
pared to the other two cases. For both cases in figures 6.7 and 6.8, the wave
amplitude is reinforced due to the cascading effects of individual bubble
collapses as the wave propagates towards the core of the cloud. Slightly
before t/tC = 1 the kinetic energy wave reaches the singularity at the cloud
center which generates a sudden change in the liquid momentum, trans-
forming the entire kinetic energy into potential energy which is released
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Figure 6.8: Radially averaged kinetic energy wave in rt-space for cloud 14:
, energy wave before cloud collapse (t/tC < 1); ,

energy wave after cloud collapse (t/tC > 1); , projection
of maxr Ēkin(r, t); , wave trajectory corresponding to the radial
coordinate RF such that Ēkin(RF, t) = 0.05 maxr Ēkin(r, t). Configura-
tion parameter: RC = 12.5 mm; βC = 7.5; Π = 10.

by a very strong outward propagating shock wave. This result is consistent
with Mørch (1980). Due to the Rankine-Hugoniot jump conditions, the large
pressure behind the outward shock induces a bulk velocity in the liquid;
causing relaxation of the fluid state in the cloud core. This transfer of energy
is again seen by the formation of kinetic energy for t/tC > 1 in figures 6.7
and 6.8. It is noted that the 2× increase of the far-field pressure for the
cases Π = 2 and Π = 4.5 results in 10× higher energy conversion due to
the activation of local bubble dynamics whose energy potential is released
in the form of local pressure shocks. On the other hand, increasing the
forcing pressure by another 2× in the case of Π = 4.5 and Π = 10 results in
a 2× increase of the energy transformation rate, suggesting a proportional
relationship in the regime where bubbly shock waves develop during cloud
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cavitation collapse. Analysis of the bubbly shock structure is discussed
in section 7.3.1.

6.6.2 Individual bubble collapses

The following analysis of individual bubble collapses is based on three
characteristic bubbles whose dynamics are then compared with the KM
and DK models. The selection of those bubbles is based on their initial
radial distance from the cloud center:

I the bubble furthest away from the cloud center,

II the bubble closest to the RC/2 coordinate,

III the bubble closest to the cloud center.

Figures 6.9 and 6.10 display the evolution of the bubble radius RB for the
three characteristic bubbles at the locations described above. Figure 6.9
shows the evolution for the pressure ratio Π = 2 and figure 6.10 for the
pressure ratio Π = 10. The time axes are normalized by the time tres

III corre-
sponding to the minimum volume (collapse time) of the bubble closest to
the cloud center, see the enumeration above, computed with the resolved 3D
simulation. Comparative results with time tm

III/tres
III < 1 for m ∈ {KM, DK}

indicate faster collapse dynamics and vice versa tm
III/tres

III > 1 corresponds
to slower collapse dynamics. The cloud radius in those figures is equal
to RC = 10 mm. Predictions obtained from the reduced order models KM
and DK are shown as well.

For Π = 2, shown in figure 6.9, the prediction of the bubble radius
by the reduced order models is in overall good agreement with the data
obtained from the resolved 3D simulation for βC = 0.2 and 0.5. The slight
deviations, observed in particular at bubble location I, are attributed to
the initial pressure field which cannot be prescribed fully consistent with
approaches based on the RP type equations. From βC = 1 to 7.5, increasing
deviations between KM and DK as well as with respect to the 3D simulation
are observed for the evolution of the bubble radius at location III and, less
pronounced, also for the bubble at location II. In particular, a delayed col-
lapse of bubble III and a smaller minimum radius than in the 3D simulation
is shown by KM. Both the delay of the collapse and the underestimation
of the minimum radius increase with βC. In contrast, the results obtained
from DK are able to follow the curve of bubble III predicted by the 3D
simulation farther towards the minimum radius. Only a slight delay in
the collapse time of bubble III is observed for DK. However, the minimum
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Figure 6.9: Temporal evolution of bubble radius RB for RC = 10 mm and Π = 2:
(a) βC = 0.2; (b) βC = 0.5; (c) βC = 1; (d) βC = 2.5; (e) βC = 5;
(f) βC = 7.5. , resolved 3D simulation; , Keller-Miksis
(KM); , Doinikov (DK). Bubble locations: I, at cloud perimeter;
II, at coordinate RC/2; III, at cloud center.
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Figure 6.10: Temporal evolution of bubble radius RB for RC = 10 mm and Π =
4.5: (a) βC = 0.2; (b) βC = 0.5; (c) βC = 1; (d) βC = 2.5; (e) βC = 5;
(f) βC = 7.5. , resolved 3D simulation; , Keller-Miksis
(KM); , Doinikov (DK). Bubble locations: I, at cloud perimeter;
II, at coordinate RC/2; III, at cloud center.
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radius of bubble III is clearly overestimated. Again, the overestimation
increases with βC.

Analogous to the lower pressure ratio, KM and DK provide similar results
for bubble I in the case of Π = 4.5, shown in figure 6.10, with the curves
obtained from KM being slightly closer to the ones from the 3D simulation.
However, somewhat larger deviations between them and the 3D simulation
are observed. For bubble II and III, deviations between the results obtained
with KM and DK emerge from βC = 1 and increase with βC as already
seen for Π = 2. As observed from figures 6.10(d) to 6.10(f), numerical
failure of the DK scheme is observed after the collapse of bubble III. These
failures are due to bubble collisions caused by translation. To summarize,
the chronological order of the collapses predicted by the considered bubble-
particle approaches matches the one from the 3D simulation. A similar
observation was reported in Bremond et al. (2006) using experimental data
as a reference. Notable differences in the minimum radius and, for KM,
also in the collapse time of bubble III, emerge with respect to increasing βC
and Π for both reduced order models. As seen from figures 6.2 and 6.3, the
bubble deformation likewise increases with these parameters, leading to a
violation of the assumption of spherical bubble collapse, fundamental to the
bubble-particle approaches. Moreover, KM and DK also deviate from each
other with increasing βC. The consideration of bubble translation in DK
significantly influences the results, and the results obtained from DK closer
match the resolved 3D simulations compared to the KM model. The effects
of bubble translation during collapse are addressed in the next section.

6.6.3 Bubble translation during collapse

The analysis of the previous section suggests that the bubble dynamics in
cloud cavitation collapse are influenced by the translation of the bubbles.
The purpose of this section is to provide a more detailed investigation of
such translational bubble motions.

Figures 6.11 and 6.12 show the temporal evolution for the radial distance
rB of the center of bubble mass relative to the center of the cloud. The
evolution of those distances are given for the three considered bubbles I,
II and III, their definition was given at the beginning of section 6.6.2. The
results shown in these figures correspond to a cloud with RC = 10 mm and
pressure ratios Π = 2 and Π = 4.5, respectively. The time axes are again
normalized with time tres

III . The positions obtained from DK are compared
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Figure 6.11: Temporal evolution of radial distance rB for RC = 10 mm and Π = 2:
(a) βC = 0.2; (b) βC = 0.5; (c) βC = 1; (d) βC = 2.5; (e) βC = 5;
(f) βC = 7.5. , resolved 3D simulation; , Keller-Miksis
(KM); , Doinikov (DK). Bubble locations: I, at cloud perimeter;
II, at coordinate RC/2; III, at cloud center.
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Figure 6.12: Temporal evolution of radial distance rB for RC = 10 mm and Π =
4.5: (a) βC = 0.2; (b) βC = 0.5; (c) βC = 1; (d) βC = 2.5; (e) βC = 5;
(f) βC = 7.5. , resolved 3D simulation; , Keller-Miksis
(KM); , Doinikov (DK). Bubble locations: I, at cloud perimeter;
II, at coordinate RC/2; III, at cloud center.
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to the respective data obtained from the resolved 3D simulations. Curves
corresponding to the fixed bubble positions of KM are included for addi-
tional reference. The computed positions of the 3D simulations correspond
to the center of mass for a generally deformed bubble. For cases with weak
pressure ratio Π = 2, hardly any difference between the results obtained
from DK and the 3D simulation are observable. The bubbles only slightly
move for βC values up to 1. Merely for bubble I, some slight deviations
from the 3D simulation arise for the higher βC values towards the end
of the bubble collapse where the largest deformations are to be expected;
see figure 6.3. Results for the stronger pressure amplification Π = 4.5 are
shown in figure 6.12. Significantly larger deviations are observed, where DK
clearly overestimates the displacement of bubble I and, later in time, also for
bubble II. The deviations again increase with βC. Significant translational
motion of bubble III is observed only at the very end of its collapse process
for sufficiently large βC and Π. This impulsive non-linear bubble translation
is again overestimated by the DK model.

Further insight into the origins of the deviations between DK and the 3D
simulation is gained from the examination of bubble shapes. Selected
time instances for the shape of bubble I are therefore additionally shown
in figures 6.11 and 6.12. The last instance corresponds to tres

III . When the
bubble starts to develop stronger shape deformations, the deviation of
the trajectories predicted by DK and the 3D simulations becomes more
pronounced. At the time when the collapsing bubble takes a toroidal shape
due to the penetration of microjets, it becomes more transparent to the local
flow field and its motion starts to stagnate. For Π = 2 and βC ≤ 1, the
bubble remains spherical during its compression and the predictions by DK
perfectly match the 3D simulation results. The bubble translation in those
cases is mainly attributed to slight changes in the liquid momentum that
are not related to a bubbly shock. The involved dynamics are governed by
primary and secondary Bjerknes forces (Bjerknes, 1906).

Only for clouds with sufficiently large interaction parameter, βC, and
correspondingly high pressure ratio Π to overcome the elasticity induced
by the gas phase, a bubbly shock wave will form. Attributed to the Rankine-
Hugoniot jump condition, the flow velocity behind this shock is non-zero
(assuming a zero initial velocity field). The phenomenon of bubbly shock
formation has been visualized in figures 6.4 and 6.5, where the two cases
considered in those images correspond to the cases shown in figures 6.9(b)
and 6.11(b) and figures 6.10(f) and 6.12(f), respectively. The time instants
shown for bubble I in these latter figures are identical to the time instants
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RC = 10 mm; , RC = 12.5 mm. Error bars indicate standard
deviation.

of the slices through the cloud center shown in the former figure reference.
As mentioned above, in the case of βC = 0.5 and Π = 2, bubbly shock
formation is not taking place resulting in only slight bubble movement
and excellent agreement with DK. The kinetic energy wave in this case is
standing in space, where formation of kinetic energy is exclusively due
to local bubble wall velocities; see figure 6.6. On the contrary, a bubbly
shock formation is observed for the case βC = 7.5 and Π = 10, leading to
a violent bubble collapse with high deformations and microjet formation.
The evolution of the kinetic energy wave due to these effects is shown in fig-
ure 6.8. The non-zero velocity behind the bubbly shock causes the bubbles
to move towards the focal point of the shock wave, seen in figure 6.12(f).
The high bubble deformations lead to toroidal shapes that become more
transparent to the bulk liquid momentum, causing bubbles to slow down at
the later stage of the collapse. This phenomenon is not captured by the DK
model and consequently bubbles continue to accelerate towards the cloud
center, resulting in large deviations in predicted positions relative to the
resolved simulations.

A quantitative description for the evolution of the bubble shapes can
be obtained in terms of the average porosity defined in equation 6.6. To
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quantify the error of bubble translation in radial direction, the following
measure is defined

eDK
rB

=
1

RB,0Ndisp

Ndisp

∑
i=1

(
rres

B,i(t
res
III )− rDK

B,i (t
DK
III )

)
, (6.11)

where Ndisp = b0.15NBc corresponds to the number of displaced bubbles
used for this analysis. These bubbles are located in the outer region of
the cloud where the translation trajectory is similar to that of bubble I
in figures 6.11 and 6.12. Figure 6.13 shows the measured radial displacement
error based on equation 6.11 for the clouds listed in table 6.1. The data is
plotted against the average bubble porosity for the Ndisp bubbles according
to equation 6.6. The radial displacement errors are normalized by the initial
bubble radius RB,0, such that a value of eDK

rB
= 1 means an average radial

displacement error of one initial bubble radius measured between the DK
model and the resolved 3D simulations. The positive number indicates
that the bubble position predicted by the DK model is closer to the cloud
center, i. e., rDK

B,i < rres
B,i on average. The standard deviations for both plotted

quantities are indicated in figure 6.13 as well. Data from the 3D simulation
is evaluated at the collapse time tres

III of bubble III and data from DK at the
corresponding time tDK

III . For increasing βC, the porosity decreases, i. e., the
degree of bubble deformation increases, leading to an increase in the error
of the radial bubble positions. In particular, the curves of all cloud radii
and pressure ratios approximately coincide. To illustrate this consistency,
the curves corresponding to the other cloud radii are plotted as a reference
in figure 6.13. For the largest error in the radial position, the porosity does
not further decrease as a lower bound for these values is reached; see
also figure 6.3. These observations clearly indicate that deviations in the
radial displacement of bubbles strongly correlate with their deformation, a
quantity that is not accounted for in typical RP type models.

6.6.4 Bubble pressure

This section provides an analysis of the predicted pressure for the con-
sidered computational models. In a collapsing cloud composed of non-
condensable gas bubbles, the global peak pressure arises within a bubble
close to the cloud center. Table 6.3 provides the bubble indices which exhibit
the global peak pressure. The indices are sorted according to the bubble
location, where the index 1 corresponds to the bubble closest to the center
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Π = 2 Π = 4.5 Π = 10

RC/mm βC res KM DK res KM DK res KM DK

7.5 0.015 2 2 2 2 2 2 2 2 2

7.5 0.1 1 1 1 1 1 1 1 1 2

7.5 0.2 2 2 2 2 2 2 2 2 2

7.5 0.5 2 2 2 2 2 2 2 2 2

7.5 1.0 1 1 1 1 1 1 1 1 1

7.5 2.5 1 1 1 1 1 1 1 1 1

10.0 0.2 2 2 2 2 2 2 2 2 2

10.0 0.5 1 3 1 3 3 3 3 3 3

10.0 1.0 3 3 3 2 7 2 2 7 7

10.0 2.5 3 3 3 3 3 3 1 3 3

10.0 5.0 1 1 1 1 1 1 1 1 1

10.0 7.5 1 1 4 1 1 1 1 1 1

12.5 5.0 1 1 1 1 1 1 1 1 1

12.5 7.5 1 1 1 1 1 1 1 1 1

12.5 10.0 2 2 2 2 2 2 2 2 2

Table 6.3: Peak pressure location by bubble index. Bubble indices are sorted such
that index 1 is closest to the cloud center.

of the cloud. By this order, bubble III corresponds to index 1 and bubble I
to the largest index NB. For most of the considered cases, KM, DK and the
resolved 3D simulation predict the same peak pressure bubble. In summary,
KM as well as DK provide adequate predictions for the location of the peak
pressure.

Most of the locations shown in table 6.3 correspond to bubble III. It was
shown in section 6.6.2 that the KM model exhibits delays in the collapse
time tIII in particular for large βC; see figures 6.9(f) and 6.10(f). A more
quantitative evaluation for the collapse time of bubble III is given by the
juxtaposition in figure 6.14. The reference curve y = x corresponds to perfect
agreement. All clouds in table 6.1 and all pressure ratios Π are considered
in this figure. Doinikov is overall in good agreement with the resolved
simulation for all configurations owing to the additional degrees of freedom
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Figure 6.14: Collapse time of bubble III compared to the resolved 3D simulation:
(a) Keller-Miksis (KM); (b) Doinikov (DK). , RC = 7.5 mm; , RC =
10 mm; , RC = 12.5 mm; , Π = 2; , Π = 4.5; , Π = 10; ,
y = x.

for bubble translation. Notable overestimation of the collapse time tKM
III is

observed for Keller-Miksis at Π = 2, especially for large βC (necessarily for
larger RC). This inaccuracy vanishes at large pressure ratios Π.

The pressure inside a bubble is computed by means of spherical sensors
with radius RS,i = RB,i(t = 0) + 1/2 dG and concentrical with the center
of mass of bubble i. This allows to capture bubble movement and avoids
overlap with neighboring bubbles; see figure 7.1 on page 122 for a sketch.
The bubble pressure pIII is then obtained by

pIII =
1

VB,III

∫
ΩS,III

α2 p dV, (6.12)

where ΩS,III denotes the domain of the sensor for bubble III. The bubble
volume is computed according to

VB,III =
∫

ΩS,III

α2 dV. (6.13)

For the strongest cloud collapses considered in this study, which are the
ones for Π = 10, RC = 12.5 mm and all considered βC values, as well as
the cases corresponding to Π = 10 and RC = 10 mm with βC = 5 and 7.5,
the shape of bubble III is strongly deformed and highly compressed. Only
a thin torus with α2 < 1 of the thickness of the cell size remains from
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Figure 6.15: Collapse time of bubble III compared to the resolved 3D simulation:
(a) Keller-Miksis (KM); (b) Doinikov (DK). , RC = 7.5 mm; , RC =
10 mm; , RC = 12.5 mm; , Π = 2; , Π = 4.5; , Π = 10; ,
y = x; , y = x2.

these bubbles. This issue prohibits any accurate computation of the bubble
pressure at location III, suitable for comparison with the reduced order
models. Figure 6.15 displays the peak pressure maxt(pIII) for the bubble
at location III computed by the 3D simulation and compared with KM
and DK. Pressures are displayed as amplification factors by normalization
with the liquid far-field pressure p∞. The aforementioned extreme cases
are excluded. For the weakest collapses (Π = 2, low βC values and small
RC), the 3D simulation, KM and DK predict similar peak pressures for bub-
ble III. In the remaining cases, especially the ones with medium and high
pressure ratio, KM leads to overestimated peak pressures compared to the
3D simulation. For reference, curves y = x and y = x2 are further added
in the diagrams. Tiwari et al. (2015) observed the latter scaling for KM
based on hemispherical clouds with 50 bubbles and various comparable
pressure ratios. The simulations of the spherical clouds in this work, how-
ever, indicate that a quadratic scaling law for the peak pressure predictions
between KM and the resolved 3D simulation is more of an upper bound.
In the case of KM only peak pressure overestimates have been observed.
For the DK model underestimates occur as well, where underestimates are
mainly observed in regions of higher βC and RC values.
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Figure 6.16: Error in peak pressure predictions for bubble III closest to the cloud
center: (a) KM, RC = 7.5 mm; (b) KM, RC = 10 mm; (c) KM, RC =
12.5 mm; (d) DK, RC = 7.5 mm; (e) DK, RC = 10 mm; (f) DK, RC =
12.5 mm; , porosity φ̄; , cloud 2, Π = 2; , cloud 9, Π = 4.5.
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A quantification of the error for the prediction of the peak pressure
observed in bubble III is based on the measure

em
p,III =

maxt(pm
III)−maxt(pres

III )

p∞
, (6.14)

where m ∈ {KM, DK}. The quantity em
p,III describes the factor by which the

reduced order model m overestimates (positive) or underestimates (nega-
tive) the observed peak pressure in bubble III relative to the resolved 3D
simulation. The deviations based on this measure are shown in figure 6.16

for the full parameter range. In contrast to the data shown in figure 6.15

the extreme cases not shown in that figure are included in figure 6.16. It is
noted that the uncertainty for those extreme cases may be large, however,
the reduced order models tend to generate already larger errors for less
extreme cases in the same parameter neighborhood. Data points between
simulated parameter sets are linearly interpolated. In addition to the results
obtained with equation 6.14, labeled contour lines corresponding to the
mean porosity based on equation 6.10 are superimposed.

The Keller-Miksis model exhibits a clear correlation between the error
in the peak pressure prediction of bubble III and the degree of bubble
deformation indicated by the porosity φ̄. The direction of the gradient
of increasing error in the peak pressure prediction follows the direction
of the gradient for decreasing porosity, i. e., larger bubble deformations.
Figures 6.16(a) and 6.16(b) illustrate that this correlation is valid for the
full set of test clouds with RC = 7.5 mm as well as over the full range of Π
for clouds with RC = 10 mm and if βC < 1, which applies to clouds 1–
8 in table 6.1. It is noted, however, that KM performs best for Π < 4
which is evident from figures 6.16(a) to 6.16(c). The model by Doinikov
exhibits a similar correlation between porosity and the associated error in
the peak pressure prediction. The region of best performance is similar to
that observed for KM; corresponding to the blue colored regions in the
diagrams of figures 6.16(d) to 6.16(f). On contrary to KM, the peak pressure
predictions by DK include underestimates and overestimates, which are
symmetric around the null-error point. Since the initial condition of both,
KM and DK consists of identical far-field liquid pressure and bubble cluster
configuration, and hence, identical potential energies, the DK model draws
part of that energy budget for the translational motions. This results in an
imbalance of total kinetic energy at the gas-liquid interfaces between KM
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and DK and leads to lower peak pressures measured for bubble III. The
total kinetic energy at the gas-liquid interfaces is quantified by

Em
kin,I =

1
2

ρ1

NB

∑
i=1

Ṙ2
B,i, (6.15)

where m ∈ {KM, DK}. The amount of energy required to displace the
liquid mass for the translational motion in the DK model is further given
by

EDK
disp =

1
2

ρ1

NB

∑
i=1

ẋ2
B,i. (6.16)

The temporal evolution of those energies is shown in figure 6.17 for the
two sets of parameters indicated in figure 6.16. The parameter configu-
ration shown in figure 6.17(a) corresponds to cloud 2 with low pressure
ratio Π = 2. This cloud contains only 16 bubbles and consequently the
energy for the bubble displacement is about one order of magnitude smaller
than the energy at the gas-liquid interfaces for bubble compression. The
later energy is about identical for both KM and DK for all t, resulting in
identical bubble dynamics. Figure 6.17(b) shows the case for the configu-
ration of cloud 9 with 109 bubbles at pressure ratio Π = 4.5, furthermore
indicated in figure 6.16. The figure reveals that for large enough forcing
potentials, both Em

kin,I and EDK
disp transition into an exponential growth region
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after about 20 µs where EDK
disp grows at a 3.2× stronger rate. This eventually

leads to less compression potential for the DK model which in turn results
in smaller peak pressures in the bubbles as well as faster collapse, a defi-
ciency of the KM model illustrated in figures 6.9 and 6.10 for the larger βC
systems. While accounting for bubble translation improves the collapse
time prediction over the full range of βC, see figure 6.14(b), the accuracy of
predicted bubble radii and peak bubble pressure abates compared to the
resolved 3D simulation due to the inherent assumption of spherical bubble
collapse in the DK model. Moreover, it is seen from figure 6.15(b) that the
partitioning of the EDK

kin,I and EDK
disp energy budgets is sensitive to the random

bubble positions in the initial cloud configurations, especially for denser
clouds with larger βC and higher pressure ratios Π. This sensitivity due to
the energy partitioning into translatory and compressive budgets explains
the over- and underestimations of the peak pressure measurements shown
in figure 6.15(b) and eventually in figures 6.16(d) to 6.16(f).

6.7 conclusion

Rayleigh-Plesset type reduced order models with extensions for bubble-
bubble interactions are a widely used approach to model the dynamics of
cloud cavitation collapse. The parametric study performed in this chapter
demonstrates their limitations with regard to more realistic results obtained
from resolved 3D simulations. It is shown that for small cloud interaction
parameter βC shock formation in the bubbly liquid does not take place.
Naturally, these cases are limit cases with negligible bubble-bubble interac-
tion and consequently the reduced order models considered here perform
equally well and accurate. The predictions of the peak pressure locations
in cloud configurations within this parameter range all coincide with the
predictions resolved simulations.

By increasing βC (or equivalently αC) and maintaining a low forcing
pressure in the liquid far-field (relative to the initial bubble pressure), the
additional benefit of modeling bubble translation becomes apparent in
preserving the correct collapse time of bubbles that are within a spherical
region with radius half that of the cloud radius RC. This observation holds
true for far-field pressures that are about 5× larger than the initial bubble
pressure. The main defect of the KM model consists of overestimating
the collapse time for bubbles that are responsible for peak pressure shock
emission. The reason for this time elongation is the incorrect modeling
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of the energy budget available for bubble compression during collapse.
This energy is too large which results in excessive bubble compression that
requires more time. As a consequence, the predicted peak pressures in
the KM model are too large by about a factor of 2, less than what Tiwari
et al. (2015) reported for hemispherical clouds.

The modeling of bubble translation in DK allows to divide the initial
energy potential into a partition allocated for liquid mass displacement dur-
ing bubble translation and a second partition for bubble compression. For
weak initial pressure potentials and small βC the former energy partition
is about one order of magnitude smaller than that for bubble compression
for which DK and KM perform equal. By increasing βC as well as the
forcing pressure in the liquid far-field, both energy partitions transition to
exponential growth after a certain initiation time. The energy associated to
bubble translation grows at a too large rate, which becomes more severe
at larger βC. The reason for this energy overestimate is the inherent as-
sumption of spherical bubble collapse. The toroidal bubble deformations in
realistic cloud cavitation results in bubbles that are opaque to the bulk flow
and therefore slow down their linear motion. Consequently, the deceleration
of bubbles reduces the required energy for liquid displacement, which is
not accounted for in the case of idealized spherical bubble collapse. Finally,
the energy overestimate in the DK model leads weaker bubble compres-
sion resulting in larger minimum bubble radii and lower peak pressure
estimates. It is further noted that dense clouds and high far-field pressures
lead to numerical issues in the DK model due to bubble collisions.

It is found that both KM and DK perform reasonably well at far-field pres-
sure amplifications below Π ≈ 4. For low βC the additional complexity of
the DK model is not justified. For increasing βC systems DK is the preferred
model due to more accurate prediction of individual bubble collapse times.
It has been shown, however, that DK is not suitable for systems with gas
volume fractions of about 12 % or more, even for weak far-field pressures.
For systems with high gas volume fraction, both reduced order models fail
to model accurately the higher complexity of the bubble-bubble interactions.
Higher order models are necessary in such cases. An interesting future
investigation would be the combination of DK with data-driven approaches
that are able to learn the correct evolution of the energy required for bubble
displacements based on data obtained from fully resolved simulations. Such
an extension would help to increase the applicability of DK to problems
with large βC at moderate far-field pressures. The effect of varying bubble
sizes has further been neglected in this study.
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Empty your mind, be formless, shapeless, like water.
Now you put water into a cup, it becomes the cup. You
put water into a bottle it becomes the bottle, you put it
in a teapot it becomes the teapot. Now water can flow,
or it can crash. Be water my friend.

— Bruce Lee

This chapter presents results and analysis of unprecedented simulations
of cloud cavitation collapse utilizing 12500 air bubbles in liquid water. The
present simulations are enabled by the HPC software design discussed in chap-
ter 4 and performed on a Cartesian uniform grid. The formation and propaga-
tion of a bubbly shock is investigated and compared with a 1D model (Mørch,
1989), a reduced order 3D homogeneous mixture model as well as experimen-
tal data (Kameda and Matsumoto, 1996; Kameda, Shimaura, et al., 1998).
The analysis of the microscopic length scales present in the flow include the
formation of microjets during individual bubble collapse. It is found by sta-
tistical analysis that the velocity magnitude of the microjets depends on the
local strength of the bubbly shock wave and hence on the radial position of
the bubbles in the cloud. At the same time, the orientation of microjets is
influenced by the size of neighboring bubbles.

7.1 related work

The collective growth and rapid collapse of a large number of bubbles, i. e.,
a cloud of bubbles, in a liquid subjected to large pressure variation has been
investigated both experimentally and numerically. Experiments in Mørch
(1980) studied the collapse of a cloud of bubbles via the formation of an
inward propagating shock wave and the geometric focusing of this shock
at the center of the cloud. Experimental measurements with hydrofoils
subjected to cloud cavitation, conducted in Reisman et al. (1998), showed
that very large pressure pulses occur within the cloud and are radiated

119
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outward during the collapse process. A technique developed in Bremond
et al. (2006) allowed for controlling the bubble distance within a 2D cloud.
The study revealed the shielding effect of the outer bubbles and showed
the formation of an inward-directed microjet. The final stage of the collapse
of a hemispherical cloud near a solid surface was investigated using ultra
high-speed photography in E. Brujan et al. (2011). Cloud cavitation in a
water jet was examined in Yamamoto (2016). Various numerical studies
were also reported in the literature; for instance, early ones assuming a
potential flow in the liquid in Chahine and Duraiswami (1992) and Wang
et al. (1999). The recently presented study of Ma et al. (2015) used an
Euler-Lagrange approach, combining the Navier-Stokes equations with
subgrid-scale spherical bubbles governed by a Rayleigh-Plesset type equa-
tion, to investigate spherical clouds collapsing near a rigid wall. A similar
approach was applied in Chahine, Hsiao, et al. (2014) to study the impulsive
loads generated by a cloud with 400 bubbles under an imposed oscillating
pressure field. Resolved and deforming bubbles were considered in N. A.
Adams et al. (2013), Peng et al. (2015), Šukys et al. (2018), and Tiwari et al.
(2015). A 2D simulation of the collapse of a small cluster with 7 bubbles
in an incompressible liquid using a front tracking method was presented
in Peng et al. (2015). The collapse dynamics of a cloud composed of 125

vapor bubbles with random radii was studied in N. A. Adams et al. (2013),
while Tiwari et al. (2015) reported the evolution of a hemispherical cloud
of 50 air bubbles. In Tiwari et al. (2015), a homogeneous mixture model and
a coupled system of Rayleigh-Plesset type equations were considered in
addition, but provided qualitatively different predictions of the pressure
field.

Early studies of wave propagation in disperse bubbly liquids date back
to Mallock (1910) and Wood (1930) where fundamentally different wave
propagation was reported compared to the pure phases, see also figure 3.1
on page 22. These theoretical observations have later been confirmed exper-
imentally in works of Campbell et al. (1958), Carstensen et al. (1947), Fox
et al. (1955), Karplus (1957), and Silberman (1957). An early study of wave
structures based on scattering was published in Foldy (1945). Further stud-
ies have investigated the structure of shock waves that emerges in disperse
bubbly liquids. The small bubbles submerged in the liquid contain most
of the compressibility while inertia in the flow is mostly due to the liquid
phase. A discussion on this topic was given in Batchelor (1969). Approaches
to model and compute the shock structure in bubbly liquids, mostly based
on 1D simplifications, were discussed in Caflisch et al. (1985a,b), Crespo
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(1969), Noordzij and van Wijngaarden (1974), Noordzij (1973b), and van Wi-
jngaarden (1968, 1970, 1972a,b). An extensive report on the phenomenon of
shock propagation in two-phase problems was given in Eddington (1967).

The goal of the present chapter is to advance the state of the art in
studies of cloud collapse processes and wave propagation in bubbly disperse
liquids by simulating thousands of gas bubbles and studying their collective
interactions. The results of this study have been published in Rasthofer,
Wermelinger, Karnakov, et al. (2019). An uncertainty quantification (UQ)
study concerned with the initial geometrical configurations of smaller
cavitating bubble clouds was published in Šukys et al. (2018). The work
therein presents novel empirically optimal control variate coefficients to
enhance the variance reduction in the multi-level Monte Carlo (MLMC)
method used for the study.

7.2 bubble cloud setup and initial conditions

This section describes the initial condition that has been implemented to
simulate 12500 randomly distributed bubbles in a spherical confinement. It
is further shown that the computation of an expensive initial condition for
the pressure field, one that satisfies the Laplace equation ∇2 p = 0, can be
substituted by a simpler initial pressure field.

7.2.1 Bubble cloud configuration

The bubble cloud in this simulation is initially spherical and of radius
RC = 45 mm, composed of NB = 12500 spherical bubbles of radius RB,i
with i ∈ 1, . . . , NB. The cloud is generated by randomly positioning bubbles
within a sphere of radius RC using a uniform distribution and subject to
the constraint that the minimum distance between the surfaces of any two
bubbles is greater than dG = 0.4 mm. The radius of the bubbles is chosen
in the range [RB,min, RB,max] using a log-normal probability distribution.
The minimum and maximum bubble radii values, RB,min = 0.5 mm and
RB,max = 1.25 mm, are based on the respective values suggested in N. A.
Adams et al. (2013) and Tiwari et al. (2015). The mean bubble radius is
defined by

R̄B =
2eµ+ 1

2 σ2 − 1
4

(RB,max − RB,min) + RB,min = 0.7 mm, (7.1)
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Figure 7.1: Sketch of spherical cloud with radius RC composed of bubbles with
radius RB in close-up of two bubbles separated by distance dG.

where µ = 0 and σ = 0.3 are the mean and standard deviation of the log-
normal distribution, respectively. A two-dimensional sketch of the cloud
setup is shown in figure 7.1. The bubble cloud is characterized by the gas
volume fraction αC and the cloud interaction parameter βC, defined as

αC =
1

R3
C

NB

∑
i=1

R3
B,i, (7.2)

βC = αC

(
RC

RB,avg

)2

, (7.3)

where

RB,avg =
1

NB

NB

∑
i=1

RB,i (7.4)

denotes the average bubble radius. Higher βC values indicate stronger
interactions among the bubbles (Brennen, 1998; Wang et al., 1999). For the
present cloud, αC = 4.9 %, βC = 208, and RB,avg = 0.69 mm. Figure 7.2
shows a histogram of the distribution of the bubble radius and a visualiza-
tion of the generated cloud.

The cloud is centered in a cubic computational domain of size 6RC ×
6RC × 6RC. The domain is uniformly discretized using 6144× 6144× 6144
cells, leading to RB,min/h = 11.38 for the minimum bubble resolution and
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Figure 7.2: Model cloud with 12500 bubbles: (a) bubble radius distribution;
(b) rendering of the initial cloud.

RB,max/h = 28.44 for the maximum bubble resolution, where the cell size
is denoted by h.

Non-reflecting, characteristic-based boundary conditions (Engquist et al.,
1977; Poinsot et al., 1992; Thompson, 1987, 1990) are used. Additionally,
the ambient pressure p∞ is imposed in the far-field by adding the term
Cbc(p− p∞) to the incoming wave (Rudy et al., 1980). Coefficient Cbc =
σ(1−Ma2)c1/` ≈ σc1/` depends on a characteristic length ` = 3RC, the
speed of sound c1 in the liquid at the boundary, the Mach number Ma at
the boundary, which is assumed negligible, and a user defined parameter
σ = 0.75 s. The CFL number of the simulation is set to 0.3.

7.2.2 Initial condition

Initially, a zero velocity field is assumed. The density of water is set to
ρ1 = 1000 kg m−3 and of air to ρ2 = 1 kg m−3. Moreover, a smoothed initial
pressure field (Tiwari et al., 2015) is used which is essential in order to
attenuate the emission of spurious pressure waves caused by the initial
conditions. The bubble and liquid pressure in the sphere defined by RC is set
to pC = 0.1 MPa and the ambient pressure to p∞ = 1 MPa. Following Tiwari
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et al. (2015), the initial pressure field in the liquid outside of the cloud is
then approximated by

p0(x) =

pC |x− xC| ≤ RC,

pC + tanh
( |x−xC |−RC

λ

)
(p∞ − pC) |x− xC| > RC,

(7.5)

where xC denotes the center of the cloud. Parameter λ defines how fast
the pressure increases from the cloud surface to the ambient and is set
to 50 mm. Note that equation 7.5 is a simplified statement of the condition
in equation 6.4 used for the initial pressure field in the smaller clouds used
for the parameter study in chapter 6. The additional detail in equation 6.4 is
not justified by the computational overhead, especially for the large cloud
used in this study where shielding effects and small inter-bubble distances
dominate.

The validity of assuming a uniform pressure in the initial spherical hull
of the bubble cloud is shown by a small cloud with 10 bubbles at similar
resolution as the main cloud in section 7.2.1. Figures 7.3(a) and 7.3(b)
shows the initial pressure distribution on a slice through the cloud center
for the simplified approach and an initial pressure field that satisfies the
Laplace equation ∇2 p = 0 with Dirichlet boundary conditions at the bubble
walls and domain boundaries. The initial pressure is 0.1 MPa inside the
bubbles and 1 MPa in the far-field. The boundary conditions for evolving the
clouds are identical to section 7.2.1. The evolved pressure fields after 14 µs
(2400 iterations) are shown in figures 7.3(c) and 7.3(d), respectively. At
this point, the simplified initial pressure has relaxed towards the Laplace
reference with a relative error of 0.6± 0.8 %.

Figures 7.4(a) and 7.4(b) show the evolution of the equivalent bubble
radii RB,i and the average bubble pressures pB,i, see equations 7.17 and A.2
on pages 138 and 161, respectively. A slight delay in time is observed for the
case of the simplified initial condition due to the initial pressure relaxation
around the bubbles in the cloud. This process does not introduce artificial
pressure oscillations. The most important characteristics, such as time of
minimum gas volume in the cloud, the individual time of minimum bubble
volumes as well as time and magnitude of peak pressures are all preserved.
This shows that the average and local features are not affected by the choice
of a simplified initial pressure field, as its relaxation towards the pressure
obtained for a field that initially satisfies ∇2 p = 0 takes place well before
the fast scales of the cloud collapse start to dominate. The slightly increased
cloud collapse time does not affect the local bubble dynamics as shown
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Figure 7.3: Initial pressure field on a slice through the cloud center: (a) simpli-
fication at t = 0 µs; (b) solution of ∇2 p = 0 at t = 0 µs; (c) evolved
pressure field at t = 14 µs with initial condition (a); (d) evolved pres-
sure field at t = 14 µs with initial condition (b). Dark color in the
cloud center corresponds to 0.1 MPa and white color in the far-field
to 1 MPa.
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Figure 7.4: Temporal evolution of individual bubbles: (a) equivalent bubble ra-
dius RB,i; (b) average bubble pressure pB,i. Solid lines correspond to
the Laplace reference that satisfies ∇2 p = 0 initially; symbols corre-
spond to the solution obtained using the simplified pressure initial
condition.

in figure 7.4 and confirms the validity of the simplified condition for the
initial pressure field.

7.3 cloud collapse dynamics

This section examines macroscopic quantities during the collapse of 12500

bubbles. These include the formation of a bubbly shock wave of finite
thickness, determined by the length scale of the present bubbles. Bubble
interactions and bubble dynamics of the collapse are discussed in section 7.4.
Subsequently, the propagation of the collapse wave through the cloud is
analyzed and compared to results from a reduced order homogeneous
mixture model as well as the model of Mørch (1989) where a modified
Rayleigh-Plesset type equation is derived by considering the potential
energy stored in a cavity cluster.

The cloud collapse process is quantified through the temporal evolu-
tion of a number of local and global quantities. Figure 7.5 shows the
development of the gas volume V2/V2,0, the point-wise maximum pres-
sure pmax/ppeak within the computational domain, the average pressure
pC/pC,peak within the cloud, the average pressure pS/pS,peak within a sen-
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Figure 7.5: Temporal evolution of macroscopic quantities: , maximum
pressure over all cells pmax/ppeak; , average pressure
pS/pS,peak inside spherical sensor in cloud center; , average
kinetic energy Ekin,C/Ekin,C,peak within cloud; , average pres-
sure pC/pC,peak within cloud; , gas volume V2/V2,0. Symbols
mark time instants for the visualizations shown in figures 7.6 and 7.7.
The gray shaded area indicates the time interval of data extraction
for the microjet analysis in section 7.4.2.

sor at the center of the cloud, further described below, and the total kinetic
energy Ekin,C/Ekin,C,peak within the cloud. The peak values are defined by

fpeak = max
0≤t≤T

f (t), (7.6)

for some function f (t) defined on the interval t ∈ [0, T]. The symbols on top
of the curve for the gas volume in figure 7.5 coincide with the time instants
of the collapse visualizations shown in figures 7.6 and 7.7. The pressure
iso-surface shown in figure 7.6 corresponds to the pressure piso = 0.15 MPa.
The numerical schlieren (Quirk et al., 1996) in figure 7.7 show the magnitude
of the pressure gradient |∇p| in the xy-plane at z = 0. The last two symbols
correspond to the time of peak pressure pS,peak within the cloud center
sensor and the time of minimum gas volume in the cloud, respectively. The
remaining symbols are spaced evenly between t = 0 µs and the time of
occurrence of pS,peak.

The minimum gas volume is reached at the cloud collapse time tC =
343.9 µs. At this time, the gas volume is reduced by 88 % relative to its initial
value. The maximum pressure pmax = maxC p over all computational cells C
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Figure 7.6: Temporal evolution of collapsing cloud with pressure iso-surface
at piso = 0.15 MPa. Symbols in top left corner correspond to time
instants marked figure 7.5.
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Figure 7.7: Temporal evolution of collapsing cloud visualized using numerical
schlieren images of the |∇p| field in the xy-plane at z = 0. Symbols
in top left corner correspond to time instants marked in figure 7.5.
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is a highly fluctuating quantity. Its peak ppeak = 3.41 GPa is detected at time
t/tC = 0.898 and occurs before the minimum gas volume is encountered.
A similar observation was reported in Yamamoto (2016). To capture the
behavior in the core of the cloud, a spherical sensor of radius RS = 1 mm
is placed at the center of the cloud. The sensor measures the average
pressure pS within its domain. The maximum value of pS amounts to
pS,peak = 89.5 MPa and is observed at time t/tC = 0.901. The pressure
curve of the sensor reveals the shielding effect Brennen, 2005; d’Agostino et
al., 1989 of the outer bubbles in the cloud. Although a broad time interval of
high pressures is observed for pmax, merely the major peak and one smaller
peak are detected by the sensor. Strong pressure waves emitted away from
the immediate surrounding of the sensor are absorbed by bubbles between
the source of the pressure wave and the sensor by contributing to the
compression of these bubbles. The maximum value of the average pressure
within the cloud is pC,peak = 3.69 MPa and corresponds to 4 % of the value
measured for pS,peak. It is encountered at a later time t/tC = 1.021, which
is almost exactly the time of minimum gas volume. The kinetic energy of
the mixture in the cloud region increases until it reaches its peak value of
Ekin,C,peak = 3.69 J at t/tC = 0.800, which is before the occurrence of ppeak.
At time tC, the kinetic energy is already reduced by 72 %.

Figure 7.6 illustrates the deformation of the bubbles caused by the for-
mation of microjets discussed in section 7.4.2. As the collapse of the cloud
progresses, the extracted pressure iso-surface is moving inward with focus
to the cloud center. Accordingly, an evolving circular front is detected by
the numerical schlieren of the pressure gradient shown in figure 7.7. These
images reveal a radially inward-propagating collapse wave and the afore-
mentioned shielding effect. While the bubbles behind the front are subject
to a collapse process, bubbles ahead of the front remain at their initial state.
In the transition from frame to , a break-down of the shielding effect
is observed. Furthermore, strong spherical pressure waves emitted from
individual bubble collapses are clearly visible in frame of figure 7.7.

7.3.1 Wave propagation in bubbly liquid

The large number of bubbles in the cloud renders the macroscopic flow
spherically symmetric and allows for analyzing the collapse wave observed
in the previous section. In order to proceed, spherical averages

ᾱ2(r, t), p̄(r, t), ū(r, t),
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ᾱ
2/

α
C

0 50 100 150 200 250 300

t/µs

0

100

200

300

400

500

600

700

800

900

Ṙ
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Figure 7.8: Temporal evolution of bubbly shock: (a) front trajectory on ᾱ2 con-
tour plot; (b) effective wave propagation speed. , simulation
with resolved bubbles; , homogeneous mixture model; ,
Mørch (1989).

of the gas volume fraction, the pressure and the velocity magnitude, u = |u|,
are computed over spheres with radius r centered at the cloud center. The
radial position of the collapse wave front is defined by the location of the
maximum average velocity magnitude as

RF(t) = arg max
r

ū(r, t). (7.7)

Figure 7.8(a) shows the front trajectory in the rt-space on top of a contour
plot of ᾱ2(r, t) where the white color below the trajectory corresponds to
large gas content in the liquid. The plot is related to the Ēkin = 0 plane
in figure 6.8 on page 101. The effective speed of the shock in the bubbly
liquid, ṘF, is shown in figure 7.8(b). For reference, equation 2.13 estimates
a wave speed of 50 m s−1 for a pressure of 1 bar and gas volume fraction
αC of 5 % (van Wijngaarden, 1972a). The effective speed of propagation is
lower than that in the pure phases (Wood, 1930) and was already observed
in figure 3.1. In addition to the resolved simulation, predictions by the
model of Mørch (1989) and a homogeneous mixture approach, further
addressed below, are also included in the figure.

Profiles of the spherical averages at time instants t = 139, 183, 218, 245,
267, 285 and 297 µs corresponding to RF = 40, 35, 30, 25, 20, 15 and 10 mm
are shown in figure 7.9. The profiles are normalized and plotted in the
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Figure 7.9: Normalized bubbly shock profiles of spherical averages at different
radial locations: (a)–(c) resolved simulation; (d)–(f) homogeneous
mixture model. , RF(139 µs) = 40 mm; , RF(183 µs) =
35 mm; , RF(218 µs) = 30 mm; , RF(245 µs) = 25 mm;

, RF(267 µs) = 20 mm; , RF(285 µs) = 15 mm; ,
RF(297 µs) = 10 mm. Arrows indicate increasing time.
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frame of reference of the front, i. e., depending on the relative radial location
r− RF(t). The normalized gas volume fraction, pressure and velocity are
defined as

ᾱ2

αC
,

p̄− pC
p̄F − pC

,
ū

ūF
,

where

p̄F(t) = p̄(RF(t), t), (7.8)

ūF(t) = ū(RF(t), t), (7.9)

are pressure and velocity at the bubbly shock front, respectively. Fig-
ures 7.9(a) to 7.9(c) correspond to the profiles computed from the resolved
bubble simulation while figures 7.9(d) to 7.9(f) correspond to profiles ob-
tained by the homogeneous mixture model addressed below. The gas
volume fraction shows some oscillations which decay towards the cloud
surface as more bubbles contribute to the averages with increasing r. The
normalization of the radial profiles reveals their self-similarity in the vicin-
ity of the front. The gas volume fraction gradually decreases to α2/αC ≈ 0.2
in the close vicinity of the shock front, while the pressure and the velocity
grow towards their peak values. Behind the bubbly shock front the pressure
exhibits a drop which causes an expansive rebound of the gas volume
fraction. The shock structure is further addressed below. Farther outward
from the cloud center, all profiles keep declining. At the cloud surface, the
gas volume fraction drops to zero in a sharp fashion whereas pressure and
velocity decrease smoothly to their prescribed far field values.

For a single-phase fluid the thickness of discontinuities in the flow is in
the order of the mean free path, whereas the thickness of a bubbly shock
depends on the length scale of the bubbles in the disperse mixture (Hai
et al., 1982; Noordzij, 1973b; van Wijngaarden, 1970). Figure 7.10 illustrates
the pressure shock profile computed at 285 µs for RF = 15 mm. An estimate
for the bubbly shock thickness dF = 3.2 mm is obtained using equation 2.19.
The thickness corresponds to about 5 bubble diameter relative to the mean
radius R̄B. It has been shown by Crespo (1969) that planar shock propaga-
tion in disperse bubbly liquids exhibits an exponential steepening ahead
of the shock and an oscillatory wave pattern behind the shock. A similar
behavior is observed at the shock front for a spherical (radially inward)
shock propagation. This is confirmed by fitting the exponential function

f (x) = A exp

(√
3γ2(1− αC)αC

R̄2
B

(x− x0)

)
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Figure 7.10: Bubbly shock thickness: , shock profile for RF(285 µs) =
15 mm; , fit for exponential steepening upstream; ,
(sech x)2 type fit of oscillatory downstream pattern. Measurements
in a vertical shock tube: , spatially parabolic bubble distribu-
tion (Kameda and Matsumoto, 1996); , spatially uniform bubble
distribution (Kameda, Shimaura, et al., 1998). Color shades indicate
the standard deviation of the measurements. The estimate for the
shock thickness dF = 3.2 mm is obtained from equation 2.19.

to the leading front of the shock profile in figure 7.10. The parameter A
and x0 are determined by fitting to the simulation data. The wave pattern
behind the shock exhibits different behavior compared to the case of a
planar shock. The decay behind the wave peak is following a profile given
by

g(x) = A− B

(
sech

(√
3γ2(1− αC)αC

R̄2
B

(x− x0)

))2

,

which is in agreement to the solitary wave discussion in Noordzij (1973a)
and Noordzij (1973b). Here parameters A, B and x0 are obtained by fitting
to the simulation data. The oscillatory wave pattern behind the shock un-
dergoes stronger damping compared to data presented in Crespo (1969)
and van Wijngaarden (1972b) for planar shocks. Figure 7.10 further includes
measurement data of a vertical shock tube with non-condensable gas bub-
bles for a spatially parabolic bubble distribution (Kameda and Matsumoto,
1995, 1996) and a spatially uniform bubble distribution (Kameda, Shimaura,
et al., 1998). The exponential shock steepening upstream and the shock
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Figure 7.11: Temporal evolution of average flow: (a) front pressure; (b) flow veloc-
ity magnitude at the front. , simulation with resolved bubbles;

, homogeneous mixture model; , fitted equations 7.12

and 7.13 for (a) and (b), respectively.

structure within the estimated thickness dF is very well matched by the
experimental data. Major differences arise in the downstream region of
the shock. The spherical geometry of the cloud causes dissipation of the
outbound wave due to radiation which is one reason for the mismatch
of the shock profile in the downstream region. Secondary causes on the
downstream shock structure, which are currently unclear, are effects of
geometry imposed by the spherical cloud and the distribution of bubbles
within that confinement. Finally, numerical dissipation may cause further
dissipation of the downstream shock structure since the shock capturing
scheme used here is not ideal for the resolution of weak, or acoustic, waves
observed in this region of the flow.

One more difference in the present simulations is the gradual build-up
of the bubbly shock at the outskirt of the cloud in contrast to the planar
shock experiments where a shock wave is directed onto a bubble cluster. The
temporal evolution of the front pressure and flow velocity at the front during
the build-up of the bubbly shock are depicted in figures 7.11(a) and 7.11(b),
respectively. As derived from mass and momentum balance (Mørch, 1989;
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van Wijngaarden, 1970), pF and uF are related to the bubbly shock speed.
Approximate relations for these quantities near the front are given by

pF − pC ∼ ρ1(1− αC)αCṘ2
F, (7.10)

uF ∼ αCṘF, (7.11)

up to a scaling factor which depends on the definition of the front location.
Fitting these relations to the simulation data results in

pF − pC = 6.20 ρ1(1− αC)αCṘ2
F, (7.12)

uF = 0.75 αCṘF, (7.13)

and provides a good approximation to the present results as shown in fig-
ure 7.11.

A model proposed in Mørch (1989) describes the collapse of a spherical
cloud of vapor bubbles using the Rayleigh-Plesset equation extended by
considering the potential energy stored in the cavity cluster. The model is
given by

RFR̈F +

(
3
2
− 1

2
(1− ψ)(1− αC)

)
Ṙ2

F = − p∞ − pv

ρ1αC
, (7.14)

where pv denotes the vapor pressure of the liquid and ψ an energy conser-
vation factor. The energy conservation factor accounts for energy losses due
to the radiation of acoustic waves and dissipation. A larger value leads to
a higher front speed. According to Mørch (1989), the energy conservation
factor should be in the range 0 ≤ ψ ≤ 0.5. The model assumes that the
bubbles are small compared to the cloud radius and that the vapor volume
fraction is sufficiently high.

In contrast to the present simulation of a cloud of gas bubbles, the model
by Mørch (1989) is derived for vapor bubbles which means that the pressure
inside the bubbles remains constant during the collapse and that the bubbles
collapse completely without rebound. When setting pv = pC, the model in
equation 7.14 also provides a reasonable prediction for the front trajectory
and speed of the present case, as is shown in figure 7.8. The curves shown
in that figure correspond to an energy conservation factor ψ = 0.5. It is
found, however, that ψ is only of minor influence for the case discussed
here.

Furthermore, results obtained by a homogeneous mixture approach are
included for comparison. Homogeneous mixture (or single fluid) models,
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such as the ones proposed and/or used in Egerer, Hickel, et al. (2014), Kunz
et al. (2000), Merkle et al. (1998), Schnerr et al. (2008), Senocak et al. (2002),
and Singhal et al. (2002), do not consider individual bubbles, but treat the
cloud region as a mixture of water and gas (or vapor), for instance, based on
a cell-averaged void-fraction distribution. Such models may be used in a sit-
uation where none of the void structures are resolved on the computational
grid. These situations exhibit a ratio R̄B/h� 1 of the characteristic size of
the bubbles to the grid cell length. In this case, homogeneous mixture mod-
els allow the simulation of large scale flow dynamics, i. e., dynamics that are
resolvable on the chosen computational grid. By increasing the grid resolu-
tion, homogeneous mixture models are able to capture the flow dynamics
of decreasingly smaller scales. The mathematical model introduced in sec-
tion 3.2 may also be used to describe a homogeneous mixture of gas and
liquid owing to the K∇ · u term in equation 3.12. This is achieved by simply
setting a uniform gas volume fraction α2 = αC for all cells within the sphere
of radius RC, instead of initially computing local cell averaged values of the
gas volume fraction field based on the distribution of the 12500 bubbles in
the cloud and some filter kernel. The initial conditions for the velocity and
the pressure as well as the applied boundary conditions remain identical
to the simulation with resolved bubbles. A similar approach was used in
Tiwari et al. (2015). The results obtained from the homogeneous mixture
simulations are discretized on a uniform grid with 1024 cells per spatial
direction. Similarly as before, spherically averaged profiles for RF = 40, 35,
30, 25, 20, 15 and 10 mm corresponding to t = 94, 154, 203, 242, 271, 293
and 309 µs, are shown in figure 7.9. In contrast to the case with resolved
bubbles, the radial profiles are discontinuous at the front. The mechanisms
responsible for the formation of a bubbly shock front are amplitude disper-
sion which leads to steepening of the shock front and frequency dispersion
responsible for the opposite phenomena (van Wijngaarden, 1972b). These
physics can only take place if disperse bubbles are present in the liquid,
essentially expressed by equation 2.18 on page 16. The homogeneous mix-
ture model is not capable of resolving these length scales and consequently
the observed shock profiles in figures 7.9(d) to 7.9(f) are fundamentally
different compared to the profiles of the resolved simulation in figures 7.9(a)
to 7.9(c). The major difference due to the comments above is the inability to
resolve the finite shock thickness dF, while the macroscopic features shown
in figure 7.11 reveal a similar evolutionary trend, but are 30 % lower in
magnitude compared to the results of the resolved bubble simulation. The
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wave locator in equation 7.7 is not suitable for the homogeneous mixture
case, instead, the wave is located from the gas volume fraction field via

RF(t) = arg max
r

∣∣∣∣∂ᾱ2

∂t
(r, t)

∣∣∣∣ , (7.15)

which detects the discontinuity in ᾱ2. The front trajectory and speed, shown
in figure 7.8 are qualitatively similar compared to the resolved simulation.
The effective propagation speed of the wave shown in figure 7.8(b), however,
is underestimated starting from t = 150 µs, where the deviation grows in
time reaching 20 % relative error at t = 200 µs and 40 % relative error at
t = 300 µs.

In summary, the results indicate that the front trajectory and effective
wave propagation speed observed in the simulation with large numbers of
bubbles are well captured by the model of Mørch (1989) and the present
homogeneous mixture approach. The evolution of the pressure and the
velocity near the front matches the theoretical relations and in turn validates
the present numerical results.

7.4 bubble interactions and dynamics

This section discusses the microscopic scales involved in the collapse of
large bubble clusters. The first section dissects the collapse behavior of
individual bubbles depending on their position in the cloud. The second
part provides a statistical analysis of the microjet formation during the
cloud collapse.

7.4.1 Bubble collapses

The shape of the bubbles is implicitly described by the gas volume fraction
field α2, which is sampled at a frequency of 0.63 MHz. The center xB,i(t)
and the equivalent radius RB,i(t) of bubble i are calculated as

xB,i(t) =
1

VB,i(t)

∫
ΩB,i

α2x dV, (7.16)

RB,i(t) =
(

3
4π

VB,i(t)
) 1

3
, (7.17)
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where
VB,i(t) =

∫
ΩB,i

α2 dV (7.18)

is the bubble volume. The integration is performed over the spherical
domain ΩB,i concentric with the bubble center of the previous time sample
and the radius equal to the initial bubble radius RB,i(t = 0). In order to
improve the accuracy of peak detection, the function RB,i(t) is interpolated
in time using a cubic spline.

Figure 7.12 shows the evolution of the equivalent bubble radius for a few
bubbles selected at various radial locations. All curves are normalized by
the initial bubble radius. A bubble starts to collapse once it is overtaken by
the inward-propagating wave. The figure illustrates that the strength of the
collapses, expressed in terms of short collapse time and stronger bubble
compression, increases with decreasing distance to the cloud center. In the
vicinity of the center of the cloud, bubbles collapse in a highly non-linear
fashion, as seen in figures 7.12(d) to 7.12(f), whereas weak oscillations
are observed for bubbles located in the outskirts of the cloud, shown in
figures 7.12(a) to 7.12(c).

7.4.2 Microjet formation

The evolving pressure gradient along the bubble surface leads to the for-
mation of a localized liquid jet of high velocity which notably deforms the
bubble and eventually pierces though it. Following Jayaprakash et al. (2012),
the tip xtip,i of the microjet associated with bubble i is identified as the
location of minimum curvature on the bubble surface. Here, the interface is
represented by the iso-surface α2 = 0.5 of the gas volume fraction field. The
curvature of any iso-contour of α2 can be calculated from equation 3.29.

Figure 7.13 illustrates the evolution of the microjet for three bubbles. The
relative location of the tip, xtip,i − xB,i, as well as the bubble radius RB,i are
displayed as a function of time. Additionally, bubble shapes are shown for
selected time instants. At the beginning of the collapse process, the bubble
surface is largely spherical and possesses a positive curvature. Therefore,
the distance between the location of minimum curvature and the bubble
center is approximately equal to the equivalent radius, but the location
itself is not well-defined and thus bounces from one point to another. Once
the microjet starts to form, the curvature changes its sign. The location of
minimum curvature then identifies the tip of the microjet. The microjet
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Figure 7.12: Temporal evolution of equivalent radius for selected bubbles: (a) r =
40 mm; (b) r = 33 mm; (c) r = 26 mm; (d) r = 19 mm; (e) r = 12 mm;
(f) r = 5 mm. The gray shaded area corresponds to the time interval
of microjet analysis.
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Figure 7.13: Temporal evolution of microjets for three selected bubbles: ,
|xtip− xB|/RB,0, , linear fit; , (xtip− xB)/RB,0, ,
linear fit; , (ytip − yB)/RB,0, , linear fit; , (ztip −
zB)/RB,0, , linear fit; , RB/RB,0; , fitting range
[ttip,i, timp,i]; , collapse wave arrival tF. Iso-lines of α2 = 0.5
at 10 µs intervals are shown at the bottom for each case.
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deforms the bubble into a cap-like shape until it pierces through the bubble
on the opposite surface, see figure 7.13. The time of microjet impact on
the opposite bubble wall is denoted by timp,i for bubble i. At this time, the
distance between the location of minimum curvature and the bubble center
again approximately equals the equivalent radius. Hence, the characteristic
quantities of the microjets are evaluated during the time interval [ttip,i, timp,i]
for which

|xB,i − xtip,i| < 0.75 RB,i (7.19)

holds. As observed in figure 7.13, the relative trajectory xtip,i − xB,i of the tip
of the microjet propagates with approximately a constant velocity within
this interval. The microjet velocity utip,i is defined by the time derivative of
a linear fit of xtip,i − xB,i in the time interval [ttip,i, timp,i]. In order to obtain
reliable statistics, the fitting range is required to comprise at least 6 samples
in time, i. e., is of duration of at least 10 µs and the RMS error of the fitting
has to be below 0.1 RB,i(t = 0). Due to the limited data sampling frequency
and the complexity of the microjet tip trajectories, not all bubbles satisfy
these requirements. Such bubbles are excluded from the subsequent analysis
of the microjets, leaving about 7500 bubbles (i. e., 60 % of the bubbles) for
further evaluation. The time interval considered for the microjet analyses of
all bubbles is defined by the interval [tM,s, tM,e], where

tM,s = min
i

ttip,i, (7.20)

tM,e = max
i

timp,i, (7.21)

are the start and end times, respectively. The microjet interval is highlighted
in figure 7.5 with a gray shaded region. It is noted that the end time tM,e
corresponds to a time instant before the time of minimum cloud volume
tC. Appendix A presents a convergence study to prove that the bubble
resolution in the present simulation is sufficient during the time interval of
microjet analysis. The associated error of microjet velocity magnitudes is at
most 10.0± 5.2 % relative to a grid with twice the resolution.

As of preceding studies on cloud collapse dynamics (Bremond et al.,
2006; Tiwari et al., 2015), the microjets point towards the core of the cloud.
As shown in the present work, the axes of these microjets are not perfectly
aligned with the radial direction xC− xB,i(t = 0) from the initial bubble cen-
ter to the cloud center. The inclination angle θi denotes the angle between
the radial direction and the direction of the microjet velocity corresponding
to bubble i, see figure 2.1 in section 7.4.2 on page 11 for an illustration and
further explanation. A microjet with θi = 0° is directed towards the cloud
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Bubble r
mm θ/°

utip

m s−1
RB,0
mm

mint(−ṘB(t))
m s−1 ϕ/° |ũ⊥bulk|

1 41.9 9.8 13.4 0.58 3.9 50.6 0.005

2 41.4 49.4 14.6 0.66 3.3 22.9 0.293

3 34.1 12.6 64.1 1.14 14.7 92.5 0.148

Table 7.1: Microjet parameters of selected bubbles.

center. Values of the inclination angle for bubbles shown in figure 7.13 are
given in table 7.1 where the microjet of bubble 2 (symbol ) is distinguished
by stronger inclination. Figure 7.14(a) depicts a scatter plot of the inclina-
tion angle θi versus the radial distance r. All scatter plots shown in this
subsection also contain the moving average and the standard deviation
computed with a window length equal to 10 % of the corresponding hor-
izontal axis range. The selected bubbles shown in figure 7.13 are further
indicated by their corresponding symbol. Furthermore, figure 7.14(c) de-
picts the probability density function (PDF) of the simulated inclination
angle.

The average inclination angle for the present cloud collapse process
is 13.2°. Furthermore, 90 % of the bubbles exhibit an inclination angle
smaller than 24°. Local mean values of the inclination angle range from 10°
at r = 45 mm to 18° at r = 26 mm. As a result, the microjet inclination angle
increases slightly towards the cloud center indicating a weak dependence
on the collapse wave speed, which strongly depends on r. Very large
inclination angles in the range of 35° to 61° are observed for 1 % of the
bubbles. Closer examination of these microjets reveals that the microjet
inclination is affected by the surrounding bubbles. Figure 7.14(b) shows the
neighborhood of a bubble with an inclination angle of 50°. The microjet is
inclined towards a specific neighbor bubble that has a significantly larger
size, most likely due to secondary Bjerknes forces. A similar effect has been
observed in Blake et al. (1997) where the microjet direction was influenced
due to buoyancy.

The observed PDF for the bulk flow deviation angle ϕi is shown in fig-
ure 7.14(d). Scatter plots of ϕi versus θi and θi versus the magnitude |ũ⊥bulk,i|
of the projected bulk velocity are shown in figures 7.15(a) and 7.15(b),
respectively. For 68 % of the bubbles, ϕi is smaller than 45°, which demon-
strates that the microjets are inclined towards the direction of the bulk
liquid flow around the bubble. This angle reduces with increasing inclina-
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Figure 7.14: Microjet inclination: (a) inclination angle θi depending on radial
location of bubble; , moving average; (b) tendency of microjet
inclination towards larger neighbor bubbles; (c) PDF of inclination
angle θi; (d) PDF of angle ϕi between u⊥tip,i and ũ⊥bulk,i. The color
shades in (a) indicate the standard deviation.
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Figure 7.15: Deviation of microjet direction relative to cloud center: (a) angle ϕi
between u⊥tip,i and ũ⊥bulk,i depending on inclination angle θi; (b) in-

clination angle θi depending on the magnitude |ũ⊥bulk,i|; ,
moving average. Color shades indicate the standard deviation.

tion. The mean value of ϕi is 45° for θi = 10° and 25° for θi = 40°. Moreover,
a positive correlation between the inclination angle θi and the magnitude of
the projected component of the bulk flow indicator |ũ⊥bulk,i| is observed.

Figure 7.16 displays scatter plots of the microjet velocity magnitude
depending on various quantities. The velocity magnitude of the microjets
increases with their time of initiation. For instance, the mean value amounts
to 10 m s−1 for ttip = 80 µs and to 50 m s−1 for ttip = 250 µs. This behavior
is consistent with the acceleration of the collapse wave and the growth
of the pressure at the front. One of the fastest microjets is observed for
bubble 3 (symbol ) shown in figure 7.13(c) and table 7.1. The scatter
plot of the microjet velocity magnitude versus the initial bubble radius
RB,0 shows that larger bubbles exhibit faster microjets. The mean value
rises from 20 to 40 m s−1 for bubbles with an initial radius between 0.5
and 1.2 mm. Another quantity relevant to the collapse strength of a bubble
is the peak compression rate mint(−ṘB,i(t)) which is evaluated within the
time interval [ttip,i, timp,i]. A positive correlation of the compression rate
with the magnitude of the microjet velocity is observed in figure 7.16(b).
In contrast, the inclination angle θi does not affect the magnitude of the
microjet velocity, as seen in figure 7.16(d). The analyzed relations reveal
that the microjet velocity is influenced by both, parameters of individual
bubbles (e. g., the initial bubble radius) and macroscopic parameters of the
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Figure 7.16: Microjet tip velocity depending on: (a) microjet initiation time ttip,i;
(b) bubble compression rate mint −ṘB,i(t); (c) bubble initial radius
RB,i(t = 0); (d) inclination angle θi; , moving average. Color
shades indicate the standard deviation.
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cloud collapse (e. g., the effective propagation speed of the bubbly shock).
The overall large dispersion of these relations, however, indicates further
influence of factors such as the spatial configuration of locally surrounding
bubbles.

7.5 conclusion

This chapter presented a large scale simulation of cloud cavitation collapse
with 12500 gas bubbles. Intensive literature research suggests that the
simulation results presented here are the first of its kind. The mathematical
model, numerical methods and HPC techniques are those described in
chapters 3 and 4. The simulated bubble cloud corresponds to a gas volume
fraction of 4.9 % and is composed of bubbles with radii following a log-
normal distribution with mean radius 0.7 mm. The many small bubbles
allows for proper averaging over the global system and enables a large
sample count for reliable statistics on the scale of the bubbles.

The collapse process has been studied for macroscopic scales where the
formation of a bubbly shock wave has been identified that starts at the
surface of the cloud and propagates inward with focus on the core of the
cloud. The flow has been analyzed by means of spherically averaged quan-
tities. The bubbly shock wave advances in accordance with the 1D model
of Mørch (1989) as well as a reduced order 3D homogeneous mixture ap-
proach. In contrast to these models, the detailed simulation presented in
this chapter discloses the thickness of the collapse wave front which is of
the order of a few bubble diameters, in agreement with the 1D theory in the
literature (van Wijngaarden, 1970, 1972a,b). The computed shock structure
has been compared to measurement data of simpler linear bubble config-
urations in shock tubes (Kameda and Matsumoto, 1995, 1996; Kameda,
Shimaura, et al., 1998). The leading exponential shock steepening and the
core bubbly shock structure is found to be in agreement with the measured
data. Disagreement between measurement and simulation is observed in
post shock region further downstream. The differences are attributed to
dissipation and geometric variables in the spherical cloud configuration.
Further investigation in this direction would benefit the community as the
body of literature is rather sparse. The literature mainly consists of dilute or
small systems with few bubbles (Ando et al., 2011; Watanabe et al., 1994) or
DNS approaches where incompressible liquids are assumed simulated in
domains with few bubbles (Delale, Nas, et al., 2005; Delale and Tryggvason,
2008; Tryggvason et al., 2013).
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Finally, the microscopic scales have been analyzed by studying the indi-
vidual bubbles in a small neighborhood. The associated microjet formation
has been quantified which revealed that the microjets do in general not
exactly point towards the cloud center. For the present cloud configuration,
they are inclined to an angle up to 50° with respect to the radial direction.
Closer examinations have demonstrated the correlation between this incli-
nation and the bubble distribution in the vicinity of the microjets. For the
velocity at the tip of the microjet, correlations with the radial location and
the size of the bubble have been identified.
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C O N C L U S I O N A N D O U T L O O K

Dealing with failure is easy: Work hard to improve.
Success is also easy to handle: You’ve solved the wrong
problem. Work hard to improve.

— Alan Perlis

The work in this thesis is engaged with the study of large scale cloud
cavitation, its discrete representation and the mapping onto contemporary
High Performance Computing architectures. The capability of the developed
tools is demonstrated by the numerical solution of cloud cavitation that
employs collapsing bubble clouds that are two orders of magnitude larger than
what is currently reported in the literature.

8.1 conclusion

Hyperbolic two-phase flow model

In chapter 3 we introduced the non-equilibrium two-phase flow model in
the limit of infinitely fast relaxation of pressure and velocity. The hyperbolic
model has further been extended to include viscous and capillary effects.
The extended model has been validated and we demonstrate its superiority
by means of improved resolution for interface velocities as well as its
ability to generate a gaseous phase in the case of strong rarefaction. Both of
these features are due the source term K∇ · u that acts in equation 3.12 on
page 19 and is significant for cavitating flows. It was found that the source
term further exhibits beneficial behavior in under-resolved flow regions
where mixed fluids exist. In opposite to some other studies of cavitating
flows (Allaire et al., 2002; Coralic et al., 2014; Perigaud et al., 2005) we
explicitly retain this term and show that the resulting model is capable of
resolving complex cavitating flows involving a large number of interfaces.

Moreover, we have shown—although using a biased shock capturing
scheme—that the extended model is capable of resolving turbulent struc-
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tures at low Mach numbers and can capture a broad range of capillary
waves.

High throughput computing

In chapter 4 we have established the computational framework upon which
we have implemented the compressible multi-phase flow model. The soft-
ware developed in this thesis is a successor of previous work in Rossinelli
et al. (2013). Major changes incorporate a redesign of the data structures
that have been used previously, such that HPC concepts can be separated
from algorithm development. Moreover, the new library is extensively
documented. One of the main drawbacks of the predecessor is its tight
coupling between algorithm and HPC, which makes it difficult to imple-
ment algorithmic changes. The new framework overcomes this difficulty
by implementing an extensible set of optimized compute kernels that are
commonly needed for algorithm implementation. Such kernels may be re-
striction or prolongation operators, finite differences, gradient computations
or data compression.

The developed framework is not specific to a certain memory allocator
and can therefore adapt to different paradigms such as structured grids
with Cartesian ordering, static block-structured grids, adaptively refined
grids, particle based discretizations which may be combined with fields
that are discretized by structured grids or specialized allocators that are re-
quired to target accelerators such as GPUs. To this end, we have developed
a heterogeneous algorithm that targets GPU accelerators for 3D stencil com-
putations and demonstrated its performance by solving the approximate
Riemann problem encountered in discretizations of compressible flows.
Lastly, the method used in this thesis has been extended by the HLLC
numerical flux and it is shown that the performance of the new method
is similar to the method used in Rossinelli et al. (2013) with a throughput
of 455 902 cells per second per core with the additional benefit of higher
numerical accuracy in regions with interfaces.

Reduced order modeling of cloud cavitation collapse

In chapter 6 we have applied the developed methods to perform a para-
metric study of cloud cavitation collapse. We find that the formation of
a bubbly shock within the cloud depends on a combination of the liquid
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far-field pressure and the amount of gas within the bubble cluster. The
elastic response of a cloud depends on the number of bubbles and their
relative distances. This elasticity requires a certain potential that must be
overcome by the far-field forcing potential in order to give rise to bubbly
shock formation. For low far field pressures, the elasticity imposed by
the interaction parameter βC attenuates bubble-bubble interactions and
prevents the formation of a bubbly shock. In configurations of high βC
and low pressure ratios Π, the shape of the kinetic energy waves within
the cloud is determined by bubble length scales only. By increasing the
far-field pressure, a bubbly shock begins to form at the outskirts of the
cloud. For intermediate forcing pressures, the kinetic energy is found to
be a superposition of two factors: bubble oscillations that cause damping
and high frequency pressure waves radiated from collapsing bubbles. The
latter are responsible for the amplitude accumulation in the bubbly shock
wave. For large far-field pressures, the damping period associated to the
frequency of bubble oscillations exceeds the collapse time of individual
bubbles. In this case, the wave structure of kinetic energy does not expose
bubble length scales which in turn leads to less damping in the bubbly
shock and consequently a larger shock amplitude.

We have further used the data form the parametric study to asses the ac-
curacy of reduced order models that are typically used in practice as well as
in modeling approaches based on Euler-Lagrange couplings. These models
are characterized by spherical bubble collapse and therefore associated with
error that follows from non-spherical bubble collapse in realistic cavitation.
It is found that modeling bubble translation improves the accuracy of such
models. The additional degrees of freedom introduced for translation di-
vide the total collapse potential into two parts: energy required to displace
liquid mass and energy required for bubble compression. The former acts
as an attenuator which reduces the peak pressure in the final collapse stage.
This behavior is indeed in concert with the resolved 3D simulation. The de-
formation of bubbles, however, causes a deceleration of linear motion once
they adopt a toroidal shape. An effect that is not captured by the reduced
order model and consequently yields underestimates of peak pressures.
It is found that the energy allocated for liquid mass displacement grows
exponentially and becomes worse with increasing number of bubbles. In
contrast, reduced order models that ignore bubble translation consistently
overestimate both peak pressure and collapse time.
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State of the art simulation of cloud cavitation with 12500 bubbles

In chapter 7 we have presented state of the art simulations of cloud cav-
itation collapse with 12500 bubbles. We have used the data to study the
macroscopic dynamics and compared the captured bubbly shock with data
from bubbly shock tube experiments. The leading front of the simulated
shock structure corresponds with the exponential shock steepening that is
observed in the experiments and the associated 1D modeling approaches
therein. We further find that the back of the shock attenuates stronger in
radial motion and is in better agreement with experimental data samples
that follow a parabolic bubble distribution. From this we conclude that the
downstream part of a bubbly shock is more sensitive to the geometrical ar-
rangements of bubbles. Moreover, the initial condition used in the spherical
cloud collapse must be accounted for as well. This uncertainty could not be
investigated further in the present work.

Lastly, we have examined the microjet formation of individual bubbles
by means of interface deformation and associated velocity. These investi-
gations have revealed that the microjets do in general not exactly point
towards the cloud center. For the present cloud configuration, they are
inclined to an angle up to 50° with respect to the radial direction. Closer
examination demonstrated the correlation between microjet inclination and
size of neighboring bubbles. Microjet velocities further reveal correlation
with radial location and the initial size of its originating bubble.

8.2 outlook

Modeling of compressible multi-phase flow

As mentioned earlier, the field of numerical methods for compressible
multi-phase flow is actively researched. Often new methods are tested with
1D models and validated with cases that only address special features.
Method validation with larger problems that involve more complex wave
structures are left out due to additional effort. For example, the K∇ · u
source term in equation 3.12 can lead to violation of gas volume fraction
positivity because of the non-monotonic mixture speed of sound. This de-
fect may result in negative pressure and eventually failure of the method.
Instabilities of this kind did not occur during the first collapse stage of the
simulations carried out in this work. For some configurations, however, nu-
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merical stability issues have been encountered during the rebound phase of
the cloud. Although the rebound phase was not considered in the analyses
herein, the present method is not suitable for flow analysis in the rebound
phase of cloud cavitation collapse. A possible remedy for this flaw may be
achieved by not assuming instantaneous pressure relaxation at interfaces.
Instead, balance laws for the phasic energy are considered with additional
non-conservative products. Pressure equilibrium at interfaces must then
be obtained by a relaxation procedure after solving the homogeneous hy-
perbolic problem first (Saurel, Petitpas, et al., 2009). A model of this type
is likely to perform better during the cloud rebound and improve stability
issues. An assessment of this method for single bubble collapse was given
in Schmidmayer, Bryngelson, et al. (2020). Assessing the performance of
this model with data from the present work would be informative.

Adaptive mesh refinement and mutltigrid methods

The computational framework developed in this thesis is capable to adapt
data structures other than those optimal for structured memory access. In
particular, adaptive mesh refinement (AMR) is readily supported as its
implementation is mainly concerned with load-balancing that is acting
above the node-level and further requires conservative interpolation kernels
for ghost cell reconstructions at block boundaries with different resolution.
The structure of computational kernels, on the other hand, remains identical
to the ones already used in this work. AMR for compressible flows and
multi-phase flows in particular is a high value asset and it has been taken
into consideration during the present software development stages.

Secondly, the solution of linear systems is ubiquitous in most algorithms.
Multigrid methods (Brandt, 1977) are fast and often used for this purpose.
Their implementation in the present computational framework can be
realized with ease by considering a series of Cartesian grids at power of two
resolution levels. The tools to process the data on the individual grids again
remain identical in structure to the ones already used here. The possibility
to solve linear systems within the same computational framework is a
convenience that results more structured software with less dependencies.



154 conclusion and outlook

Data-driven reduced order modeling

In section 6.6.4 we have identified the effect of bubble deformation on kinetic
energy and showed its implication on reduced order models. These models
are typically used in higher order approaches such as Euler-Lagrange one-
way or two-way couplings. By improving the accuracy and time to solution
of RP type models, the parent models directly benefit from the improvement.
A possible strategy to account for the effects of bubble deformation in
RP type equations is to learn these physics from data of the resolved
3D simulations by constructing a scalar potential that is superimposed
on the velocity potential of the RP type model. The learned physics may
be encoded such that they account for individual bubble corrections or
a global correction averaged over all bubbles. The goal is to interfere the
exponential growth of kinetic energy for linear motion, as was shown in
figure 6.17(b) on page 116. Since the defect of the Doinikov (DK) model
mainly appears for large clouds with many bubbles, such a modification
would help increase the application spectrum of the model to larger clouds.
Moreover, as the number of bubbles grow, reduced order models with
bubble-bubble interaction terms are notorious for their stiffness attributed to
the large separation of time scales during the collective collapse. Improving
the time to solution with the help of a data-driven model could render
considerably cheaper model evaluation.

Turbulent flow and cavitation

In closing, the majority of flow configurations discussed in this thesis
were simulated with inviscid fluids. In real flows, however, turbulence
is ubiquitous and natural next steps that build on the present work is
the combination of turbulent flow with cavitating bubbles. Accurate nu-
merical methods for compressible turbulence with shock interactions are
challenging because of contradicting numerical methods used in discon-
tinuous hyperbolic flow regions and turbulent flow regions, characterized
by parabolic smooth solutions (N. Adams et al., 1996; Johnsen, Larsson,
et al., 2010; Larsson et al., 2013). The computational framework developed
in this thesis, nevertheless, now offers improved flexibility to address both
the challenging algorithmic requirements and HPC needs of turbulent flow
with cavitation.
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G R I D C O N V E R G E N C E S T U D Y

It is not routine practice in the multi-phase flow community to perform
grid convergence studies, especially for multi-dimensional problems (Saurel
and Pantano, 2018). To alleviate this issue and to prove convergence of the
results presented in chapter 7, a grid refinement study for the macroscopic
and microscopic scales involved in the collapse of gas bubble clouds is
presented in this appendix.

The simulation setup for the resolution assessment is based on the scaling
laws given in equations 2.16 and 2.17. The laws are given by

u∗tip ∼
R∗

t∗B
∼ c∗

1
R̃B

√
p̃, (2.16 revisited)

Ṙ∗F ∼
R∗

t∗C
∼ c∗

1
R̃C

√
p̃

(1− αC)αC
, (2.17 revisited)

and describe the characteristic velocity on the microscopic and macroscopic
scale, respectively. These velocity scales are retained by configuring a bubble
cloud with an identical log-normal distribution for the bubble radii as well
as preserving the pressure ratio p̃ based on a reference pressure p = p∞,
see section 7.2. Taking into account a reduced computational budget for
this convergence study, the cloud radius RC and gas volume fraction αC
cannot be preserved. Changing these parameters will only affect the macro-
scopic scales for which convergence is achieved faster, even on coarse grids.
For these reasons, a bubble cloud with radius RC = 9 mm and NB = 400
bubbles is used, which yields a gas volume fraction of αC = 15.2 %. All

Case NB RC/mm RB,avg/mm αC/% t∗C/t∗B

Production run 12 500 45 0.69 4.9 13.9

Grid refinement 400 9 0.64 15.2 4.6

Table A.1: Overview of altered simulation parameter for the resolution assess-
ment study.
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Figure A.1: Temporal evolution of macroscopic scales: (a) gas volume V2/V2,0;
(b) average kinetic energy Ekin,C/Ekin,C,peak within the cloud. ,
reduced domain approximation with symmetry boundaries; ,
full cloud simulation.

other parameters remain unchanged and correspond to their definitions in
table 3.1 and section 7.2. Table A.1 shows the simulation parameters that are
changed for the resolution assessment. The computational cost is further
reduced by a symmetry approximation such that only one octant of the full
computational domain is simulated. Symmetry boundary conditions are
used for boundaries that intersect the cloud, where the remaining boundary
conditions are identical to section 7.2. The center of bubbles that initially
intersect one of the symmetry planes has been shifted onto the intersecting
plane such that the bubble is initially symmetric with respect to that plane.
The cloud in the octant is then extracted from the full cloud. Figure A.1
shows the temporal evolution of the gas volume V2/V2,0 and the average
kinetic energy Ekin,C/Ekin,C,peak within the cloud corresponding to the grid
refinement parameter shown in Table A.1. The cloud collapse time for this
configuration is tC = 115.9 µs which corresponds to a 2.97 times faster col-
lapse compared to the time reported in section 7.3. In contrast, equation 2.14

estimates a 3.01 times faster cloud collapse time. Furthermore, figure A.1
shows the result for the simulation using the aforementioned symmetry
approximation, which results in a slightly faster cloud collapse time. The
difference stems from the mirroring of the random cloud in the octant on
the symmetry planes, which does not exactly match the full random cloud
in the remaining 7 octants. The resulting relative error in the cloud collapse
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Grid N RB,min/h RB,max/h tM,s/µs tM,e/µs

G− (coarse) 448 8 14 42.3 103.6

G0 (production) 896 16 28 40.3 98.4

G+ (fine) 1792 33 57 39.9 98.8

Table A.2: Grid resolutions used in the refinement study.

time is 3.8 % and does not affect the order of magnitude of the macroscopic
time scale. The reduction in computational cost clearly outweighs the small
error incurred by this approximation. The microscopic time scale, described
by equation 2.12, remains in the same order of magnitude for all clouds
presented in the manuscript.

a.1 convergence of macroscopic quantities

Three grid resolutions G−, G0 and G+ are used, where G0 corresponds to
the initial bubble resolution described in section 7.2. The resolution on the
coarse grid G− is half of G0 and the resolution on the fine grid G+ is twice
the resolution of G0. Table A.2 shows the three grids used for the resolution
assessment including the number of cells N along each edge of the octant
and the initial number of cells per radius for the smallest and largest bubbles
in the cloud. Due to the symmetry assumption, the cloud is centered at
the domain origin with domain extents 3RC × 3RC × 3RC for the x, y and z
coordinates, respectively. Figure A.2 compares the temporal evolution of the
gas volume V2/V2,0 and the average kinetic energy Ekin,C/Ekin,C,peak within
the cloud for the three different resolutions. Geometric quantities such
as the gas volume already converge on the coarse grid G−. Only a weak
grid dependence is identified during the post collapse of the cloud where
small length scales are dominant. Stronger grid dependence is observed
for velocity and quantities that depend on it. This dependence is mainly
restricted to the region after the minimum cloud volume has been reached
due to its sensitivity on numerical diffusion at smaller scales. The analyses
presented in this thesis do not depend on data after tC and, therefore, is not
critical. During the cloud collapse we observe convergence for the integral of
kinetic energy on grid G0. The reduced cloud used for this grid refinement
study consists of 62 bubbles where 49 bubbles (79 %) satisfy the quality
criteria for the microjet evaluation on all three grids, see section 7.4.2. The
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Figure A.2: Temporal evolution of macroscopic scales: (a) cloud gas volume
V2/V2,0; (b) average kinetic energy Ekin,C/Ekin,C,peak within the cloud.

, G−; , G0; , G+. The gray shaded area corre-
sponds to the time interval of the data shown in figure A.3.

characteristic quantities are evaluated within the time interval [ttip,i, timp,i]
for bubble i. The start and end time that covers the microjet analyses for all
bubbles, tM,s and tM,e, respectively, are furthermore shown in table A.2 for
each grid. Their definition was given in equations 7.20 and 7.21 on page 142.
The values associated to those quantities have converged on grid G0.

a.2 characteristic microjet quantities

Figure A.3 shows the microjet velocity magnitudes and the inclination
angles computed on the three different resolutions. The data for G+ is sorted
in increasing order while the data for G0 and G− are shown relative to
that sort order. The gray shaded region in figure A.2 highlights the interval
[tM,s, tM,e] which corresponds to the time range of the displayed data in
figure A.3. Table A.3 shows absolute errors relative to the fine grid G+ for
the microjet velocity magnitude utip,i, inclination angle θi and the fit range
[ttip,i, timp,i] averaged over all bubbles. The microjet velocity magnitudes
on the production grid G0 are within a 10.0± 5.2 % error margin relative
to the fine grid G+. The errors reported in table A.3 suggest that only
a marginal accuracy improvement can be achieved when doubling the
resolution of the production run and does not justify the 16× increase
in computational cost that is associated with it in regard to the scope of
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Figure A.3: Microscopic quantities of individual bubbles: (a) microjet velocity
magnitude utip,i; (b) microjet inclination angle θi. , G−; , G0; , G+.
Both quantities clearly indicate convergence towards the finest grid
G+.

the analyses. Moreover, microjet velocity magnitudes are between 10 m s−1

and 60 m s−1, see figures 7.16 and A.3(a). These characteristic velocities
relate to the length scale imposed by the mean bubble radius R̄B defined
in equation 7.1 on page 121. Based on these quantities, as well as the
kinematic viscosity ν = 1.0× 10−6 m2 s−1 for water, the Reynolds number
is in the expected range of 7000–42000. Similarly, the Weber number is in
the range of 972–35000 based on a surface tension coefficient of 0.072 N m−1

for air-water systems. Both of these ranges justify the neglect of viscous
and surface tension forces for this study.

Figure A.4 shows the temporal evolution of the normalized bubble radius
RB/RB,0 as well as the normalized interface thickness (dI − dI,0)/dI,0 for
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Grid utip,i/m s−1 θi/° ttip,i/µs timp,i/µs TB,i/µs

G− 13.0± 8.6 6.4± 4.1 1.7± 0.9 11.1± 6.4 0.41± 0.46

G0 3.2± 1.6 2.4± 2.0 1.0± 1.1 2.7± 1.8 0.24± 0.21

Table A.3: Absolute error averaged over all bubbles relative to the fine grid G+.
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Figure A.4: Collapse of a single air bubble in water: (a) bubble radius RB; (b) in-
terface thickness dI . , reference solution based on Keller et al.
(1980); , RB,0/h = 12 (without K∇ · u); , RB,0/h = 25
(without K∇ · u); , RB,0/h = 12 ; , RB,0/h = 25.

the collapse of a single air bubble in water at p∞ = 10 bar (Wermelinger,
Rasthofer, et al., 2018). The interface thickness is defined by

dI = Rθ=0.1 − Rθ=0.9 (A.1)

based on two equivalent bubble radii. These radii are associated with the
0.1 and 0.9 iso-contours of the gas volume fraction field α2. The equivalent

bubble radius is defined by Rθ = h 3
√

3/(4π)∑N
i=1 χθ and uses a shifted

phase indicator function χθ with threshold value θ, which is given by
χθ = 1 if α2 > θ and χθ = 0 otherwise. In the definition of Rθ , h denotes
the uniform grid spacing and N the number of cells Ci. The validation
of the numerical results shown in figure A.4(a) is based on a reference
solution proposed by Keller et al. (1980). The numerical results are obtained
from equations 3.8 to 3.12 on two grid resolutions that correspond to
the resolution of the smallest and largest bubbles in the 12 500 bubble
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cloud introduced in section 7.2. Emphasis is given on the influence of the
source term K∇ · u in equation 3.12. Including this term in the model
improves the accuracy of the numerical result considerably, even at rather
low resolutions. A similar trend is observed in the evolution of the interface
thickness in figure A.4(b). The thickness of the interface increases strongly
when the bubble reaches its minimum radius for simulations that do not
include the K∇ · u term in the model, while an approximate linear increase
of the interface thickness is observed for the case that includes the term. This
linear increase can be attributed almost exclusively to numerical diffusion.

a.3 collapse period and bubble pressure

Figure A.5 shows the temporal evolution the equivalent bubble radius,
defined in equation 7.17, and average bubble pressure for three selected
bubbles. The computation of the average bubble pressure follows the same
approach used for the bubble center xB,i in equation 7.16. It is defined by

pB,i(t) =
1

VB,i(t)

∫
ΩB,i

α2 p dV, (A.2)

where the bubble volume VB,i(t) is defined in equation 7.18. Data for the
three resolutions described in table A.2 is included in each plot. The location
of the first and second minimum of the equivalent bubble radius is not
sensitive to the grid resolution. This observation is in correspondence with
the previous statement regarding convergence of geometric quantities. The
bubble collapse period TB is derived from the equivalent bubble radius
and is associated with a 1.8± 1.7 % error margin on grid G0 relative to the
fine grid G+. Absolute error values averaged over all bubbles are shown
in table A.3. The fluctuating error of the evolving quantities RB,i(t) and
pB,i(t) is measured by

L2(y; ts, te) =

√
1

te − ts

∫ te

ts

∣∣∣∣y− y+
y+

∣∣∣∣2 dt, (A.3)

where y(t) is the subject function and y+(t) a reference associated with
the fine grid G+. A cubic spline interpolant is used to obtain a representa-
tion for y and approximate the integral in equation A.3 with a 4th-order
Simpson quadrature. The data for the cubic spline interpolant is sampled
at 2.53 MHz. Table A.4 shows error measures based on equation A.3 eval-
uated for two time intervals [0, tM,e] and [tM,e, tC] which correspond to
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Grid RB,i; [0, tM,e] RB,i; [tM,e, tC] pB,i; [0, tM,e] pB,i; [tM,e, tC]

G− 1.1 ± 0.4 3.3± 1.6 4.9± 1.6 15.7± 10.0

G0 0.60± 0.09 2.8± 0.9 2.4± 0.5 13.2± 5.8

Table A.4: L2 error measures for RB,i and pB,i averaged over all bubbles. The
values correspond to the indicated intervals and are expressed in
percentages relative to the fine grid G+.

the interval of microjet analyses and region of peak pressure in the cloud,
respectively. Values for tM,e are shown in table A.2. The interval of the
microjet evaluation [tM,s, tM,e] and tC are further highlighted in figure A.5.
The equivalent bubble radius RB,i has converged in both regions of interest
with a relative error of 2.8± 0.9 % in the peak pressure region of the cloud,
averaged over all bubbles. This is consistent with the error associated to the
collapse period TB reported above. The average bubble pressure pB,i shows
similar convergence during the microjet evaluation interval with a relative
error of 2.4± 0.5 % averaged over all bubbles. The measured relative error
is 13.2± 5.8 % during the peak pressure interval in the cloud. Note that
the pressure averages discussed in section 7.3.1 propagate through both of
these regions of interest and are associated with at most 13.2± 5.8 % relative
error during the final stage of the cloud collapse. This peak error is in the
same order as the error measured for the microjet velocity magnitudes but
occurs during the second interval of interest, while the error associated with
the microjets occurs in the first interval. The magnitude of the point-wise
maximum pressure ppeak, reported in section 7.3, is determined by the local
maximum measure L∞(pB,i; tM,e, tC) = 38.1± 22.6 % on grid G0, averaged
over all bubbles. The large local error is mainly due to deviation in local
pressure magnitude, not dislocation in time, see figures A.5(d) to A.5(f).
This point-wise maximum pressure is only shown here to orient the reader
about its appearance in time. The discussions in chapter 7 do not further
elaborate on this quantity.
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Figure A.5: Temporal evolution of selected bubbles at different radial distance r
from the cloud center: (a)–(c) equivalent bubble radius RB/RB,0; (d)–
(f) average bubble pressure pB. , G−; , G0; , G+;

, end of the microjet evaluation interval tM,e; , time of
minimum cloud volume tC. First and second minimum locations of
the equivalent radius are indicated for , G−; , G0; , G+. The gray
shaded area corresponds to the time interval of the data shown in
figure A.3.
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